WorldWideScience

Sample records for basis function approach

  1. Symmetry-Adapted Ro-vibrational Basis Functions for Variational Nuclear Motion Calculations: TROVE Approach.

    Science.gov (United States)

    Yurchenko, Sergei N; Yachmenev, Andrey; Ovsyannikov, Roman I

    2017-09-12

    We present a general, numerically motivated approach to the construction of symmetry-adapted basis functions for solving ro-vibrational Schrödinger equations. The approach is based on the property of the Hamiltonian operator to commute with the complete set of symmetry operators and, hence, to reflect the symmetry of the system. The symmetry-adapted ro-vibrational basis set is constructed numerically by solving a set of reduced vibrational eigenvalue problems. In order to assign the irreducible representations associated with these eigenfunctions, their symmetry properties are probed on a grid of molecular geometries with the corresponding symmetry operations. The transformation matrices are reconstructed by solving overdetermined systems of linear equations related to the transformation properties of the corresponding wave functions on the grid. Our method is implemented in the variational approach TROVE and has been successfully applied to many problems covering the most important molecular symmetry groups. Several examples are used to illustrate the procedure, which can be easily applied to different types of coordinates, basis sets, and molecular systems.

  2. Functional imaging in oncology. Biophysical basis and technical approaches. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Antonio [Health Time Group, Jaen (Spain); University Hospitals, Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Radiology; Vilanova, Joan C. [Clinica Girona - Hospital Sta. Caterina, Girona (Spain); Hygino da Cruz, L. Celso Jr. [CDPI and IRM, Rio de Janeiro, RJ (Brazil). Dept. of Radiology; Rossi, Santiago E. (ed.) [Centro de Diagnostico, Buenos Aires (Argentina)

    2014-07-01

    Easy-to-read manual on new functional imaging techniques in oncology. Explains current clinical applications and outlines future avenues. Includes numerous high-quality illustrations to highlight the major teaching points. In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This well-illustrated two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including preclinical and clinical imaging techniques, based on US, CT, MRI, PET and hybrid modalities. This first volume explains the biophysical basis for these functional imaging techniques and describes the techniques themselves. Detailed information is provided on the imaging of cancer hallmarks, including angiogenesis, tumor metabolism, and hypoxia. The techniques and their roles are then discussed individually, covering the full range of modalities in clinical use as well as new molecular and functional techniques. The value of a multiparametric approach is also carefully considered.

  3. Functional imaging in oncology. Biophysical basis and technical approaches. Vol. 1

    International Nuclear Information System (INIS)

    Luna, Antonio; Hygino da Cruz, L. Celso Jr.

    2014-01-01

    Easy-to-read manual on new functional imaging techniques in oncology. Explains current clinical applications and outlines future avenues. Includes numerous high-quality illustrations to highlight the major teaching points. In the new era of functional and molecular imaging, both currently available imaging biomarkers and biomarkers under development are expected to lead to major changes in the management of oncological patients. This well-illustrated two-volume book is a practical manual on the various imaging techniques capable of delivering functional information on cancer, including preclinical and clinical imaging techniques, based on US, CT, MRI, PET and hybrid modalities. This first volume explains the biophysical basis for these functional imaging techniques and describes the techniques themselves. Detailed information is provided on the imaging of cancer hallmarks, including angiogenesis, tumor metabolism, and hypoxia. The techniques and their roles are then discussed individually, covering the full range of modalities in clinical use as well as new molecular and functional techniques. The value of a multiparametric approach is also carefully considered.

  4. Estimated Quality of Multistage Process on the Basis of Probabilistic Approach with Continuous Response Functions

    Directory of Open Access Journals (Sweden)

    Yuri B. Tebekin

    2011-11-01

    Full Text Available The article is devoted to the problem of the quality management for multiphase processes on the basis of the probabilistic approach. Method with continuous response functions is offered from the application of the method of Lagrange multipliers.

  5. Optimal Piecewise Linear Basis Functions in Two Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Brooks III, E D; Szoke, A

    2009-01-26

    We use a variational approach to optimize the center point coefficients associated with the piecewise linear basis functions introduced by Stone and Adams [1], for polygonal zones in two Cartesian dimensions. Our strategy provides optimal center point coefficients, as a function of the location of the center point, by minimizing the error induced when the basis function interpolation is used for the solution of the time independent diffusion equation within the polygonal zone. By using optimal center point coefficients, one expects to minimize the errors that occur when these basis functions are used to discretize diffusion equations, or transport equations in optically thick zones (where they approach the solution of the diffusion equation). Our optimal center point coefficients satisfy the requirements placed upon the basis functions for any location of the center point. We also find that the location of the center point can be optimized, but this requires numerical calculations. Curiously, the optimum center point location is independent of the values of the dependent variable on the corners only for quadrilaterals.

  6. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  7. GRACE L1b inversion through a self-consistent modified radial basis function approach

    Science.gov (United States)

    Yang, Fan; Kusche, Juergen; Rietbroek, Roelof; Eicker, Annette

    2016-04-01

    Implementing a regional geopotential representation such as mascons or, more general, RBFs (radial basis functions) has been widely accepted as an efficient and flexible approach to recover the gravity field from GRACE (Gravity Recovery and Climate Experiment), especially at higher latitude region like Greenland. This is since RBFs allow for regionally specific regularizations over areas which have sufficient and dense GRACE observations. Although existing RBF solutions show a better resolution than classical spherical harmonic solutions, the applied regularizations cause spatial leakage which should be carefully dealt with. It has been shown that leakage is a main error source which leads to an evident underestimation of yearly trend of ice-melting over Greenland. Unlike some popular post-processing techniques to mitigate leakage signals, this study, for the first time, attempts to reduce the leakage directly in the GRACE L1b inversion by constructing an innovative modified (MRBF) basis in place of the standard RBFs to retrieve a more realistic temporal gravity signal along the coastline. Our point of departure is that the surface mass loading associated with standard RBF is smooth but disregards physical consistency between continental mass and passive ocean response. In this contribution, based on earlier work by Clarke et al.(2007), a physically self-consistent MRBF representation is constructed from standard RBFs, with the help of the sea level equation: for a given standard RBF basis, the corresponding MRBF basis is first obtained by keeping the surface load over the continent unchanged, but imposing global mass conservation and equilibrium response of the oceans. Then, the updated set of MRBFs as well as standard RBFs are individually employed as the basis function to determine the temporal gravity field from GRACE L1b data. In this way, in the MRBF GRACE solution, the passive (e.g. ice melting and land hydrology response) sea level is automatically

  8. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation

    International Nuclear Information System (INIS)

    Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Teresa; Skylaris, Chris-Kriton; Head-Gordon, Martin

    2016-01-01

    Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.

  9. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  10. Large-Eddy Simulation Using Projection onto Local Basis Functions

    Science.gov (United States)

    Pope, S. B.

    In the traditional approach to LES for inhomogeneous flows, the resolved fields are obtained by a filtering operation (with filter width Delta). The equations governing the resolved fields are then partial differential equations, which are solved numerically (on a grid of spacing h). For an LES computation of a given magnitude (i.e., given h), there are conflicting considerations in the choice of Delta: to resolve a large range of turbulent motions, Delta should be small; to solve the equations with numerical accuracy, Delta should be large. In the alternative approach advanced here, this conflict is avoided. The resolved fields are defined by projection onto local basis functions, so that the governing equations are ordinary differential equations for the evolution of the basis-function coefficients. There is no issue of numerical spatial discretization errors. A general methodology for modelling the effects of the residual motions is developed. The model is based directly on the basis-function coefficients, and its effect is to smooth the fields where their rates of change are not well resolved by the basis functions. Demonstration calculations are performed for Burgers' equation.

  11. A Bayesian spatial model for neuroimaging data based on biologically informed basis functions.

    Science.gov (United States)

    Huertas, Ismael; Oldehinkel, Marianne; van Oort, Erik S B; Garcia-Solis, David; Mir, Pablo; Beckmann, Christian F; Marquand, Andre F

    2017-11-01

    The dominant approach to neuroimaging data analysis employs the voxel as the unit of computation. While convenient, voxels lack biological meaning and their size is arbitrarily determined by the resolution of the image. Here, we propose a multivariate spatial model in which neuroimaging data are characterised as a linearly weighted combination of multiscale basis functions which map onto underlying brain nuclei or networks or nuclei. In this model, the elementary building blocks are derived to reflect the functional anatomy of the brain during the resting state. This model is estimated using a Bayesian framework which accurately quantifies uncertainty and automatically finds the most accurate and parsimonious combination of basis functions describing the data. We demonstrate the utility of this framework by predicting quantitative SPECT images of striatal dopamine function and we compare a variety of basis sets including generic isotropic functions, anatomical representations of the striatum derived from structural MRI, and two different soft functional parcellations of the striatum derived from resting-state fMRI (rfMRI). We found that a combination of ∼50 multiscale functional basis functions accurately represented the striatal dopamine activity, and that functional basis functions derived from an advanced parcellation technique known as Instantaneous Connectivity Parcellation (ICP) provided the most parsimonious models of dopamine function. Importantly, functional basis functions derived from resting fMRI were more accurate than both structural and generic basis sets in representing dopamine function in the striatum for a fixed model order. We demonstrate the translational validity of our framework by constructing classification models for discriminating parkinsonian disorders and their subtypes. Here, we show that ICP approach is the only basis set that performs well across all comparisons and performs better overall than the classical voxel-based approach

  12. Accurate correlation energies in one-dimensional systems from small system-adapted basis functions

    Science.gov (United States)

    Baker, Thomas E.; Burke, Kieron; White, Steven R.

    2018-02-01

    We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.

  13. Surface interpolation with radial basis functions for medical imaging

    International Nuclear Information System (INIS)

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-01-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

  14. Diffusion Forecasting Model with Basis Functions from QR-Decomposition

    Science.gov (United States)

    Harlim, John; Yang, Haizhao

    2017-12-01

    The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

  15. Spherical radial basis functions, theory and applications

    CERN Document Server

    Hubbert, Simon; Morton, Tanya M

    2015-01-01

    This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...

  16. Modeling multivariate time series on manifolds with skew radial basis functions.

    Science.gov (United States)

    Jamshidi, Arta A; Kirby, Michael J

    2011-01-01

    We present an approach for constructing nonlinear empirical mappings from high-dimensional domains to multivariate ranges. We employ radial basis functions and skew radial basis functions for constructing a model using data that are potentially scattered or sparse. The algorithm progresses iteratively, adding a new function at each step to refine the model. The placement of the functions is driven by a statistical hypothesis test that accounts for correlation in the multivariate range variables. The test is applied on training and validation data and reveals nonstatistical or geometric structure when it fails. At each step, the added function is fit to data contained in a spatiotemporally defined local region to determine the parameters--in particular, the scale of the local model. The scale of the function is determined by the zero crossings of the autocorrelation function of the residuals. The model parameters and the number of basis functions are determined automatically from the given data, and there is no need to initialize any ad hoc parameters save for the selection of the skew radial basis functions. Compactly supported skew radial basis functions are employed to improve model accuracy, order, and convergence properties. The extension of the algorithm to higher-dimensional ranges produces reduced-order models by exploiting the existence of correlation in the range variable data. Structure is tested not just in a single time series but between all pairs of time series. We illustrate the new methodologies using several illustrative problems, including modeling data on manifolds and the prediction of chaotic time series.

  17. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  18. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices.

    Science.gov (United States)

    Leclerc, Arnaud; Carrington, Tucker

    2014-05-07

    We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH3CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about 10(20) components and would hence require about 8 × 10(11) GB. With the approach of this paper only 1 GB of memory is necessary. Results for CH3CN agree well with those of a previous calculation on the same potential.

  19. Learning Mixtures of Truncated Basis Functions from Data

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Pérez-Bernabé, Inmaculada

    2014-01-01

    In this paper we investigate methods for learning hybrid Bayesian networks from data. First we utilize a kernel density estimate of the data in order to translate the data into a mixture of truncated basis functions (MoTBF) representation using a convex optimization technique. When utilizing a ke...... propose an alternative learning method that relies on the cumulative distribution function of the data. Empirical results demonstrate the usefulness of the approaches: Even though the methods produce estimators that are slightly poorer than the state of the art (in terms of log......In this paper we investigate methods for learning hybrid Bayesian networks from data. First we utilize a kernel density estimate of the data in order to translate the data into a mixture of truncated basis functions (MoTBF) representation using a convex optimization technique. When utilizing......-likelihood), they are significantly faster, and therefore indicate that the MoTBF framework can be used for inference and learning in reasonably sized domains. Furthermore, we show how a particular sub- class of MoTBF potentials (learnable by the proposed methods) can be exploited to significantly reduce complexity during inference....

  20. A Hartree–Fock study of the confined helium atom: Local and global basis set approaches

    Energy Technology Data Exchange (ETDEWEB)

    Young, Toby D., E-mail: tyoung@ippt.pan.pl [Zakład Metod Komputerowych, Instytut Podstawowych Prolemów Techniki Polskiej Akademia Nauk, ul. Pawińskiego 5b, 02-106 Warszawa (Poland); Vargas, Rubicelia [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico); Garza, Jorge, E-mail: jgo@xanum.uam.mx [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico)

    2016-02-15

    Two different basis set methods are used to calculate atomic energy within Hartree–Fock theory. The first is a local basis set approach using high-order real-space finite elements and the second is a global basis set approach using modified Slater-type orbitals. These two approaches are applied to the confined helium atom and are compared by calculating one- and two-electron contributions to the total energy. As a measure of the quality of the electron density, the cusp condition is analyzed. - Highlights: • Two different basis set methods for atomic Hartree–Fock theory. • Galerkin finite element method and modified Slater-type orbitals. • Confined atom model (helium) under small-to-extreme confinement radii. • Detailed analysis of the electron wave-function and the cusp condition.

  1. General Fit-Basis Functions and Specialized Coordinates in an Adaptive Density-Guided Approach to Potential Energy Surfaces

    DEFF Research Database (Denmark)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide

    . This results in a decreased number of single point calculations required during the potential construction. Especially the Morse-like fit-basis functions are of interest, when combined with rectilinear hybrid optimized and localized coordinates (HOLCs), which can be generated as orthogonal transformations......The overall shape of a molecular energy surface can be very different for different molecules and different vibrational coordinates. This means that the fit-basis functions used to generate an analytic representation of a potential will be met with different requirements. It is therefore worthwhile...... single point calculations when constructing the molecular potential. We therefore present a uniform framework that can handle general fit-basis functions of any type which are specified on input. This framework is implemented to suit the black-box nature of the ADGA in order to avoid arbitrary choices...

  2. Defense-in-depth approach against a beyond design basis event

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, H., E-mail: Hoa.hoang@ge.com [GE Hitachi Nuclear Energy, 1989 Little Orchard St., 95125 San Jose, California (United States)

    2013-10-15

    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  3. Defense-in-depth approach against a beyond design basis event

    International Nuclear Information System (INIS)

    Hoang, H.

    2013-10-01

    The US industry, with the approval of the Nuclear Regulatory Commission, is promoting an approach to add diverse and flexible mitigation strategies, or Flex, that will increase the defense-in-depth capability for the nuclear power plants in the event of beyond design basis event, such as at the Fukushima Dai-ichi station. The objective of Flex is to establish and indefinite coping capability to prevent damage to the fuel in the core and spent fuel pool, and to maintain the containment function by utilizing installed equipment, on-site portable equipment and pre-staged off-site resources. This capability will address both an extended loss of all Ac power and a loss of ultimate heat sink which could arise following a design basis event with additional failures, and conditions from a beyond design basis event. (author)

  4. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    International Nuclear Information System (INIS)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry

    2015-01-01

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

  5. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Laura E., E-mail: lratcliff@anl.gov [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry [Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France)

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.

  6. Doubly stochastic radial basis function methods

    Science.gov (United States)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  7. Mixtures of truncated basis functions

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2012-01-01

    In this paper we propose a framework, called mixtures of truncated basis functions (MoTBFs), for representing general hybrid Bayesian networks. The proposed framework generalizes both the mixture of truncated exponentials (MTEs) framework and the mixture of polynomials (MoPs) framework. Similar t...

  8. Fast generation of macro basis functions for LEGO through the adaptive cross approximation

    NARCIS (Netherlands)

    Lancellotti, V.

    2015-01-01

    We present a method for the fast generation of macro basis functions in the context of the linear embedding via Green's operators approach (LEGO) which is a domain decomposition technique based on the combination of electromagnetic bricks in turn described by means of scattering operators. We show

  9. Radial Basis Function Networks for Conversion of Sound Spectra

    Directory of Open Access Journals (Sweden)

    Carlo Drioli

    2001-03-01

    Full Text Available In many advanced signal processing tasks, such as pitch shifting, voice conversion or sound synthesis, accurate spectral processing is required. Here, the use of Radial Basis Function Networks (RBFN is proposed for the modeling of the spectral changes (or conversions related to the control of important sound parameters, such as pitch or intensity. The identification of such conversion functions is based on a procedure which learns the shape of the conversion from few couples of target spectra from a data set. The generalization properties of RBFNs provides for interpolation with respect to the pitch range. In the construction of the training set, mel-cepstral encoding of the spectrum is used to catch the perceptually most relevant spectral changes. Moreover, a singular value decomposition (SVD approach is used to reduce the dimension of conversion functions. The RBFN conversion functions introduced are characterized by a perceptually-based fast training procedure, desirable interpolation properties and computational efficiency.

  10. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    International Nuclear Information System (INIS)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon

    2015-01-01

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF − and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN + , and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects

  11. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)

    2015-06-07

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF{sup −} and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN{sup +}, and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects.

  12. Quantum functional analysis non-coordinate approach

    CERN Document Server

    Helemskii, A Ya

    2010-01-01

    This book contains a systematic presentation of quantum functional analysis, a mathematical subject also known as operator space theory. Created in the 1980s, it nowadays is one of the most prominent areas of functional analysis, both as a field of active research and as a source of numerous important applications. The approach taken in this book differs significantly from the standard approach used in studying operator space theory. Instead of viewing "quantized coefficients" as matrices in a fixed basis, in this book they are interpreted as finite rank operators in a fixed Hilbert space. This allows the author to replace matrix computations with algebraic techniques of module theory and tensor products, thus achieving a more invariant approach to the subject. The book can be used by graduate students and research mathematicians interested in functional analysis and related areas of mathematics and mathematical physics. Prerequisites include standard courses in abstract algebra and functional analysis.

  13. Assessing the utility of phase-space-localized basis functions: Exploiting direct product structure and a new basis function selection procedure.

    Science.gov (United States)

    Brown, James; Carrington, Tucker

    2016-06-28

    In this paper we show that it is possible to use an iterative eigensolver in conjunction with Halverson and Poirier's symmetrized Gaussian (SG) basis [T. Halverson and B. Poirier, J. Chem. Phys. 137, 224101 (2012)] to compute accurate vibrational energy levels of molecules with as many as five atoms. This is done, without storing and manipulating large matrices, by solving a regular eigenvalue problem that makes it possible to exploit direct-product structure. These ideas are combined with a new procedure for selecting which basis functions to use. The SG basis we work with is orders of magnitude smaller than the basis made by using a classical energy criterion. We find significant convergence errors in previous calculations with SG bases. For sum-of-product Hamiltonians, SG bases large enough to compute accurate levels are orders of magnitude larger than even simple pruned bases composed of products of harmonic oscillator functions.

  14. Assessing the utility of phase-space-localized basis functions: Exploiting direct product structure and a new basis function selection procedure

    International Nuclear Information System (INIS)

    Brown, James; Carrington, Tucker

    2016-01-01

    In this paper we show that it is possible to use an iterative eigensolver in conjunction with Halverson and Poirier’s symmetrized Gaussian (SG) basis [T. Halverson and B. Poirier, J. Chem. Phys. 137, 224101 (2012)] to compute accurate vibrational energy levels of molecules with as many as five atoms. This is done, without storing and manipulating large matrices, by solving a regular eigenvalue problem that makes it possible to exploit direct-product structure. These ideas are combined with a new procedure for selecting which basis functions to use. The SG basis we work with is orders of magnitude smaller than the basis made by using a classical energy criterion. We find significant convergence errors in previous calculations with SG bases. For sum-of-product Hamiltonians, SG bases large enough to compute accurate levels are orders of magnitude larger than even simple pruned bases composed of products of harmonic oscillator functions.

  15. Speech/Nonspeech Detection Using Minimal Walsh Basis Functions

    Directory of Open Access Journals (Sweden)

    Pwint Moe

    2007-01-01

    Full Text Available This paper presents a new method to detect speech/nonspeech components of a given noisy signal. Employing the combination of binary Walsh basis functions and an analysis-synthesis scheme, the original noisy speech signal is modified first. From the modified signals, the speech components are distinguished from the nonspeech components by using a simple decision scheme. Minimal number of Walsh basis functions to be applied is determined using singular value decomposition (SVD. The main advantages of the proposed method are low computational complexity, less parameters to be adjusted, and simple implementation. It is observed that the use of Walsh basis functions makes the proposed algorithm efficiently applicable in real-world situations where processing time is crucial. Simulation results indicate that the proposed algorithm achieves high-speech and nonspeech detection rates while maintaining a low error rate for different noisy conditions.

  16. A Basis Function Approach to Simulate Storm Surge Events for Coastal Flood Risk Assessment

    Science.gov (United States)

    Wu, Wenyan; Westra, Seth; Leonard, Michael

    2017-04-01

    Storm surge is a significant contributor to flooding in coastal and estuarine regions, especially when it coincides with other flood producing mechanisms, such as extreme rainfall. Therefore, storm surge has always been a research focus in coastal flood risk assessment. Often numerical models have been developed to understand storm surge events for risk assessment (Kumagai et al. 2016; Li et al. 2016; Zhang et al. 2016) (Bastidas et al. 2016; Bilskie et al. 2016; Dalledonne and Mayerle 2016; Haigh et al. 2014; Kodaira et al. 2016; Lapetina and Sheng 2015), and assess how these events may change or evolve in the future (Izuru et al. 2015; Oey and Chou 2016). However, numeric models often require a lot of input information and difficulties arise when there are not sufficient data available (Madsen et al. 2015). Alternative, statistical methods have been used to forecast storm surge based on historical data (Hashemi et al. 2016; Kim et al. 2016) or to examine the long term trend in the change of storm surge events, especially under climate change (Balaguru et al. 2016; Oh et al. 2016; Rueda et al. 2016). In these studies, often the peak of surge events is used, which result in the loss of dynamic information within a tidal cycle or surge event (i.e. a time series of storm surge values). In this study, we propose an alternative basis function (BF) based approach to examine the different attributes (e.g. peak and durations) of storm surge events using historical data. Two simple two-parameter BFs were used: the exponential function and the triangular function. High quality hourly storm surge record from 15 tide gauges around Australia were examined. It was found that there are significantly location and seasonal variability in the peak and duration of storm surge events, which provides additional insights in coastal flood risk. In addition, the simple form of these BFs allows fast simulation of storm surge events and minimises the complexity of joint probability

  17. Organization of Business Processes of the Company on the Basis of the Systems Approach Teners

    Directory of Open Access Journals (Sweden)

    Vaganova Valentina

    2016-01-01

    Full Text Available The article considers the management specificity on the basis of the systems approach tenets and description of business processes of the industrial enterprises. As the Company is a service-provider, its functional features are taken into consideration when modeling the business processes. The authors highlight challenges the Company faces in performance management because the existing system doesn’t allow to predict the financial results at the stage of formation of orders portfolio, to evaluate adequacy of financial resources to objectives set and to operate cash flows. All these issues are considered in sufficient detail when analyzing a range of problems and are taken as a basis of the project on implementation of the budgeting system based on the process approach.

  18. The static response function in Kohn-Sham theory: An appropriate basis for its matrix representation in case of finite AO basis sets

    International Nuclear Information System (INIS)

    Kollmar, Christian; Neese, Frank

    2014-01-01

    The role of the static Kohn-Sham (KS) response function describing the response of the electron density to a change of the local KS potential is discussed in both the theory of the optimized effective potential (OEP) and the so-called inverse Kohn-Sham problem involving the task to find the local KS potential for a given electron density. In a general discussion of the integral equation to be solved in both cases, it is argued that a unique solution of this equation can be found even in case of finite atomic orbital basis sets. It is shown how a matrix representation of the response function can be obtained if the exchange-correlation potential is expanded in terms of a Schmidt-orthogonalized basis comprising orbitals products of occupied and virtual orbitals. The viability of this approach in both OEP theory and the inverse KS problem is illustrated by numerical examples

  19. Using piecewise sinusoidal basis functions to blanket multiple wire segments

    CSIR Research Space (South Africa)

    Lysko, AA

    2009-06-01

    Full Text Available This paper discusses application of the piecewise sinusoidal (PWS) basis function (BF) over a chain of several wire segments, for example as a multiple domain basis function. The usage of PWS BF is compared to results based on the piecewise linear...

  20. Systemic-Functional Approach to Utilities Supplys

    Directory of Open Access Journals (Sweden)

    Nikolay I. Komkov

    2017-01-01

    Full Text Available Purpose: the purpose of the article consists in statement of management approach to development of utilities supply processes based on conflict situations decision – making search. It had appeared in the period of the transition from the planned and directive management to market development. Methods: the research methodology is based on the system analysis of full life cycle processes functioning, forecasting of complex systems development, mathematical modeling of processes of services supply and innovative and investment projects modeling as well as development of supplying services processes. Results: the results of the work are concentrated in the presentation of systemic-functional approach to managing the development of processes of municipal services, able to resolve conflict situations in this sphere. Conclusions and Relevance: the traditional management approach on the basis of elimination of "bottlenecks" and emergencies prevailing within planned and directive system at its transformation in the market conditions has led to accumulation of conflict situations and unsolvable problems. The offered systemic-functional approach based on forecasting of full life cycle of the modernized processes and the services providing systems allows to consider costs of modernization, prime cost and quality of the rendered services. 

  1. An Integrated Approach for Non-Recursive Formulation of Connection-Coefficients of Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    Monika GARG

    2012-08-01

    Full Text Available In this paper, an integrated approach is proposed for non-recursive formulation of connection coefficients of different orthogonal functions in terms of a generic orthogonal function. The application of these coefficients arises when the product of two orthogonal basis functions are to be expressed in terms of single basis functions. Two significant advantages are achieved; one, the non-recursive formulations avoid memory and stack overflows in computer implementations; two, the integrated approach provides for digital hardware once-designed can be used for different functions. Computational savings achieved with the proposed non-recursive formulation vis-à-vis recursive formulation, reported in the literature so far, have been demonstrated using MATLAB PROFILER.

  2. Reconfiguration of face expressions based on the discrete capture data of radial basis function interpolation

    Institute of Scientific and Technical Information of China (English)

    ZHENG Guangguo; ZHOU Dongsheng; WEI Xiaopeng; ZHANG Qiang

    2012-01-01

    Compactly supported radial basis function can enable the coefficient matrix of solving weigh linear system to have a sparse banded structure, thereby reducing the complexity of the algorithm. Firstly, based on the compactly supported radial basis function, the paper makes the complex quadratic function (Multiquadric, MQ for short) to be transformed and proposes a class of compactly supported MQ function. Secondly, the paper describes a method that interpolates discrete motion capture data to solve the motion vectors of the interpolation points and they are used in facial expression reconstruction. Finally, according to this characteris- tic of the uneven distribution of the face markers, the markers are numbered and grouped in accordance with the density level, and then be interpolated in line with each group. The approach not only ensures the accuracy of the deformation of face local area and smoothness, but also reduces the time complexity of computing.

  3. Fast radial basis functions for engineering applications

    CERN Document Server

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  4. Explicit appropriate basis function method for numerical solution of stiff systems

    International Nuclear Information System (INIS)

    Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling

    2015-01-01

    Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations

  5. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  6. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  7. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  8. An Inverse Kinematic Approach Using Groebner Basis Theory Applied to Gait Cycle Analysis

    Science.gov (United States)

    2013-03-01

    AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS Anum Barki AFIT-ENP-13-M-02 DEPARTMENT OF THE AIR...copyright protection in the United States. AFIT-ENP-13-M-02 AN INVERSE KINEMATIC APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS THESIS...APPROACH USING GROEBNER BASIS THEORY APPLIED TO GAIT CYCLE ANALYSIS Anum Barki, BS Approved: Dr. Ronald F. Tuttle (Chairman) Date Dr. Kimberly Kendricks

  9. Gaussian basis functions for highly oscillatory scattering wavefunctions

    Science.gov (United States)

    Mant, B. P.; Law, M. M.

    2018-04-01

    We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.

  10. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  11. Complex basis functions for molecular resonances: Methodology and applications

    Science.gov (United States)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  12. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations.

    Science.gov (United States)

    Hellweg, Arnim; Rappoport, Dmitrij

    2015-01-14

    We report optimized auxiliary basis sets for use with the Karlsruhe segmented contracted basis sets including moderately diffuse basis functions (Rappoport and Furche, J. Chem. Phys., 2010, 133, 134105) in resolution-of-the-identity (RI) post-self-consistent field (post-SCF) computations for the elements H-Rn (except lanthanides). The errors of the RI approximation using optimized auxiliary basis sets are analyzed on a comprehensive test set of molecules containing the most common oxidation states of each element and do not exceed those of the corresponding unaugmented basis sets. During these studies an unsatisfying performance of the def2-SVP and def2-QZVPP auxiliary basis sets for Barium was found and improved sets are provided. We establish the versatility of the def2-SVPD, def2-TZVPPD, and def2-QZVPPD basis sets for RI-MP2 and RI-CC (coupled-cluster) energy and property calculations. The influence of diffuse basis functions on correlation energy, basis set superposition error, atomic electron affinity, dipole moments, and computational timings is evaluated at different levels of theory using benchmark sets and showcase examples.

  13. Closed fringe demodulation using phase decomposition by Fourier basis functions.

    Science.gov (United States)

    Kulkarni, Rishikesh; Rastogi, Pramod

    2016-06-01

    We report a new technique for the demodulation of a closed fringe pattern by representing the phase as a weighted linear combination of a certain number of linearly independent Fourier basis functions in a given row/column at a time. A state space model is developed with the weights of the basis functions as the elements of the state vector. The iterative extended Kalman filter is effectively utilized for the robust estimation of the weights. A coarse estimate of the fringe density based on the fringe frequency map is used to determine the initial row/column to start with and subsequently the optimal number of basis functions. The performance of the proposed method is evaluated with several noisy fringe patterns. Experimental results are also reported to support the practical applicability of the proposed method.

  14. Factorization of products of discontinuous functions applied to Fourier-Bessel basis.

    Science.gov (United States)

    Popov, Evgeny; Nevière, Michel; Bonod, Nicolas

    2004-01-01

    The factorization rules of Li [J. Opt. Soc. Am. A 13, 1870 (1996)] are generalized to a cylindrical geometry requiring the use of a Bessel function basis. A theoretical study confirms the validity of the Laurent rule when a product of two continuous functions or of one continuous and one discontinuous function is factorized. The necessity of applying the so-called inverse rule in factorizing a continuous product of two discontinuous functions in a truncated basis is demonstrated theoretically and numerically.

  15. Modular High Temperature Gas-Cooled Reactor Safety Basis and Approach

    Energy Technology Data Exchange (ETDEWEB)

    David Petti; Jim Kinsey; Dave Alberstein

    2014-01-01

    Various international efforts are underway to assess the safety of advanced nuclear reactor designs. For example, the International Atomic Energy Agency has recently held its first Consultancy Meeting on a new cooperative research program on high temperature gas-cooled reactor (HTGR) safety. Furthermore, the Generation IV International Forum Reactor Safety Working Group has recently developed a methodology, called the Integrated Safety Assessment Methodology, for use in Generation IV advanced reactor technology development, design, and design review. A risk and safety assessment white paper is under development with respect to the Very High Temperature Reactor to pilot the Integrated Safety Assessment Methodology and to demonstrate its validity and feasibility. To support such efforts, this information paper on the modular HTGR safety basis and approach has been prepared. The paper provides a summary level introduction to HTGR history, public safety objectives, inherent and passive safety features, radionuclide release barriers, functional safety approach, and risk-informed safety approach. The information in this paper is intended to further the understanding of the modular HTGR safety approach. The paper gives those involved in the assessment of advanced reactor designs an opportunity to assess an advanced design that has already received extensive review by regulatory authorities and to judge the utility of recently proposed new methods for advanced reactor safety assessment such as the Integrated Safety Assessment Methodology.

  16. Big geo data surface approximation using radial basis functions: A comparative study

    Science.gov (United States)

    Majdisova, Zuzana; Skala, Vaclav

    2017-12-01

    Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation is appropriate for big scattered datasets in n-dimensional space. It is a non-separable approximation, as it is based on the distance between two points. This method leads to the solution of an overdetermined linear system of equations. In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage of the sparse matrix. The experiments are performed for synthetic and real datasets.

  17. Two-step superresolution approach for surveillance face image through radial basis function-partial least squares regression and locality-induced sparse representation

    Science.gov (United States)

    Jiang, Junjun; Hu, Ruimin; Han, Zhen; Wang, Zhongyuan; Chen, Jun

    2013-10-01

    Face superresolution (SR), or face hallucination, refers to the technique of generating a high-resolution (HR) face image from a low-resolution (LR) one with the help of a set of training examples. It aims at transcending the limitations of electronic imaging systems. Applications of face SR include video surveillance, in which the individual of interest is often far from cameras. A two-step method is proposed to infer a high-quality and HR face image from a low-quality and LR observation. First, we establish the nonlinear relationship between LR face images and HR ones, according to radial basis function and partial least squares (RBF-PLS) regression, to transform the LR face into the global face space. Then, a locality-induced sparse representation (LiSR) approach is presented to enhance the local facial details once all the global faces for each LR training face are constructed. A comparison of some state-of-the-art SR methods shows the superiority of the proposed two-step approach, RBF-PLS global face regression followed by LiSR-based local patch reconstruction. Experiments also demonstrate the effectiveness under both simulation conditions and some real conditions.

  18. Satisfiability of logic programming based on radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-01-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems

  19. Satisfiability of logic programming based on radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  20. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: Benchmarks approaching the complete basis set limit

    Science.gov (United States)

    Santra, Biswajit; Michaelides, Angelos; Scheffler, Matthias

    2007-11-01

    The ability of several density-functional theory (DFT) exchange-correlation functionals to describe hydrogen bonds in small water clusters (dimer to pentamer) in their global minimum energy structures is evaluated with reference to second order Møller-Plesset perturbation theory (MP2). Errors from basis set incompleteness have been minimized in both the MP2 reference data and the DFT calculations, thus enabling a consistent systematic evaluation of the true performance of the tested functionals. Among all the functionals considered, the hybrid X3LYP and PBE0 functionals offer the best performance and among the nonhybrid generalized gradient approximation functionals, mPWLYP and PBE1W perform best. The popular BLYP and B3LYP functionals consistently underbind and PBE and PW91 display rather variable performance with cluster size.

  1. Representation and Metrics Extraction from Feature Basis: An Object Oriented Approach

    Directory of Open Access Journals (Sweden)

    Fausto Neri da Silva Vanin

    2010-10-01

    Full Text Available This tutorial presents an object oriented approach to data reading and metrics extraction from feature basis. Structural issues about basis are discussed first, then the Object Oriented Programming (OOP is aplied to modeling the main elements in this context. The model implementation is then discussed using C++ as programing language. To validate the proposed model, we apply on some feature basis from the University of Carolina, Irvine Machine Learning Database.

  2. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  3. Learning Methods for Radial Basis Functions Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  4. An approach to develop chemical intuition for atomistic electron transport calculations using basis set rotations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, A.; Solomon, G. C. [Department of Chemistry and Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark)

    2016-05-21

    Single molecule conductance measurements are often interpreted through computational modeling, but the complexity of these calculations makes it difficult to directly link them to simpler concepts and models. Previous work has attempted to make this connection using maximally localized Wannier functions and symmetry adapted basis sets, but their use can be ambiguous and non-trivial. Starting from a Hamiltonian and overlap matrix written in a hydrogen-like basis set, we demonstrate a simple approach to obtain a new basis set that is chemically more intuitive and allows interpretation in terms of simple concepts and models. By diagonalizing the Hamiltonians corresponding to each atom in the molecule, we obtain a basis set that can be partitioned into pseudo-σ and −π and allows partitioning of the Landuaer-Büttiker transmission as well as create simple Hückel models that reproduce the key features of the full calculation. This method provides a link between complex calculations and simple concepts and models to provide intuition or extract parameters for more complex model systems.

  5. Global sensitivity analysis using a Gaussian Radial Basis Function metamodel

    International Nuclear Information System (INIS)

    Wu, Zeping; Wang, Donghui; Okolo N, Patrick; Hu, Fan; Zhang, Weihua

    2016-01-01

    Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on response variables. Amongst the wide range of documented studies on sensitivity measures and analysis, Sobol' indices have received greater portion of attention due to the fact that they can provide accurate information for most models. In this paper, a novel analytical expression to compute the Sobol' indices is derived by introducing a method which uses the Gaussian Radial Basis Function to build metamodels of computationally expensive computer codes. Performance of the proposed method is validated against various analytical functions and also a structural simulation scenario. Results demonstrate that the proposed method is an efficient approach, requiring a computational cost of one to two orders of magnitude less when compared to the traditional Quasi Monte Carlo-based evaluation of Sobol' indices. - Highlights: • RBF based sensitivity analysis method is proposed. • Sobol' decomposition of Gaussian RBF metamodel is obtained. • Sobol' indices of Gaussian RBF metamodel are derived based on the decomposition. • The efficiency of proposed method is validated by some numerical examples.

  6. Higher-Order Hierarchical Legendre Basis Functions in Applications

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2007-01-01

    The higher-order hierarchical Legendre basis functions have been developed for effective solution of integral equations with the method of moments. They are derived from orthogonal Legendre polynomials modified to enforce normal continuity between neighboring mesh elements, while preserving a high...

  7. Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model

    Directory of Open Access Journals (Sweden)

    Yazid Edwar

    2014-07-01

    Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.

  8. Optimized Basis Sets for the Environment in the Domain-Specific Basis Set Approach of the Incremental Scheme.

    Science.gov (United States)

    Anacker, Tony; Hill, J Grant; Friedrich, Joachim

    2016-04-21

    Minimal basis sets, denoted DSBSenv, based on the segmented basis sets of Ahlrichs and co-workers have been developed for use as environmental basis sets for the domain-specific basis set (DSBS) incremental scheme with the aim of decreasing the CPU requirements of the incremental scheme. The use of these minimal basis sets within explicitly correlated (F12) methods has been enabled by the optimization of matching auxiliary basis sets for use in density fitting of two-electron integrals and resolution of the identity. The accuracy of these auxiliary sets has been validated by calculations on a test set containing small- to medium-sized molecules. The errors due to density fitting are about 2-4 orders of magnitude smaller than the basis set incompleteness error of the DSBSenv orbital basis sets. Additional reductions in computational cost have been tested with the reduced DSBSenv basis sets, in which the highest angular momentum functions of the DSBSenv auxiliary basis sets have been removed. The optimized and reduced basis sets are used in the framework of the domain-specific basis set of the incremental scheme to decrease the computation time without significant loss of accuracy. The computation times and accuracy of the previously used environmental basis and that optimized in this work have been validated with a test set of medium- to large-sized systems. The optimized and reduced DSBSenv basis sets decrease the CPU time by about 15.4% and 19.4% compared with the old environmental basis and retain the accuracy in the absolute energy with standard deviations of 0.99 and 1.06 kJ/mol, respectively.

  9. A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation.

    Science.gov (United States)

    Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S

    2017-06-01

    Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.

  10. Determination of many-electron basis functions for a quantum Hall ground state using Schur polynomials

    Science.gov (United States)

    Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik

    2018-03-01

    A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.

  11. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    Science.gov (United States)

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  12. Radial Basis Function Based Quadrature over Smooth Surfaces

    Science.gov (United States)

    2016-03-24

    Radial Basis Functions φ(r) Piecewise Smooth (Conditionally Positive Definite) MN Monomial |r|2m+1 TPS thin plate spline |r|2mln|r| Infinitely Smooth...smooth surfaces using polynomial interpolants, while [27] couples Thin - Plate Spline interpolation (see table 1) with Green’s integral formula [29

  13. Novel approach for tomographic reconstruction of gas concentration distributions in air: Use of smooth basis functions and simulated annealing

    Science.gov (United States)

    Drescher, A. C.; Gadgil, A. J.; Price, P. N.; Nazaroff, W. W.

    Optical remote sensing and iterative computed tomography (CT) can be applied to measure the spatial distribution of gaseous pollutant concentrations. We conducted chamber experiments to test this combination of techniques using an open path Fourier transform infrared spectrometer (OP-FTIR) and a standard algebraic reconstruction technique (ART). Although ART converged to solutions that showed excellent agreement with the measured ray-integral concentrations, the solutions were inconsistent with simultaneously gathered point-sample concentration measurements. A new CT method was developed that combines (1) the superposition of bivariate Gaussians to represent the concentration distribution and (2) a simulated annealing minimization routine to find the parameters of the Gaussian basis functions that result in the best fit to the ray-integral concentration data. This method, named smooth basis function minimization (SBFM), generated reconstructions that agreed well, both qualitatively and quantitatively, with the concentration profiles generated from point sampling. We present an analysis of two sets of experimental data that compares the performance of ART and SBFM. We conclude that SBFM is a superior CT reconstruction method for practical indoor and outdoor air monitoring applications.

  14. Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes.

    Science.gov (United States)

    Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon

    2017-12-01

    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.

  15. Tomographic Approach in Three-Orthogonal-Basis Quantum Key Distribution

    International Nuclear Information System (INIS)

    Liang Wen-Ye; Yin Zhen-Qiang; Chen Hua; Li Hong-Wei; Chen Wei; Han Zheng-Fu; Wen Hao

    2015-01-01

    At present, there is an increasing awareness of some three-orthogonal-basis quantum key distribution protocols, such as, the reference-frame-independent (RFI) protocol and the six-state protocol. For secure key rate estimations of these protocols, there are two methods: one is the conventional approach, and another is the tomographic approach. However, a comparison between these two methods has not been given yet. In this work, with the general model of rotation channel, we estimate the key rate using conventional and tomographic methods respectively. Results show that conventional estimation approach in RFI protocol is equivalent to tomographic approach only in the case of that one of three orthogonal bases is always aligned. In other cases, tomographic approach performs much better than the respective conventional approaches of the RFI protocol and the six-state protocol. Furthermore, based on the experimental data, we illustrate the deep connections between tomography and conventional RFI approach representations. (paper)

  16. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    Science.gov (United States)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  17. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    Science.gov (United States)

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  18. Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks

    Science.gov (United States)

    Meng, Qinggang; Lee, M. H.

    2007-03-01

    Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.

  19. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  20. Quantum phase space with a basis of Wannier functions

    Science.gov (United States)

    Fang, Yuan; Wu, Fan; Wu, Biao

    2018-02-01

    A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.

  1. An Intelligent Approach to Educational Data: Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Networks

    Science.gov (United States)

    Kayri, Murat

    2015-01-01

    The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…

  2. Application of Trapezoidal-Shaped Characteristic Basis Functions to Arrays of Electrically Interconnected Antenna Elements

    NARCIS (Netherlands)

    Maaskant, R.; Mittra, R.; Tijhuis, A.G.; Graglia, R.D.

    2007-01-01

    This paper describes a novel technique for generating the characteristic basis functions (CBFs) used to represent the surface currents on finite arrays of electrically interconnected antenna elements. The CBFs are high-level basis functions, defined on subdomains in which the original problem is

  3. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  4. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    1998-01-01

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  5. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error.

    Science.gov (United States)

    Plumley, Joshua A; Dannenberg, J J

    2011-06-01

    We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.

  6. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  7. Radial basis function and its application in tourism management

    Science.gov (United States)

    Hu, Shan-Feng; Zhu, Hong-Bin; Zhao, Lei

    2018-05-01

    In this work, several applications and the performances of the radial basis function (RBF) are briefly reviewed at first. After that, the binomial function combined with three different RBFs including the multiquadric (MQ), inverse quadric (IQ) and inverse multiquadric (IMQ) distributions are adopted to model the tourism data of Huangshan in China. Simulation results showed that all the models match very well with the sample data. It is found that among the three models, the IMQ-RBF model is more suitable for forecasting the tourist flow.

  8. Empirical projection-based basis-component decomposition method

    Science.gov (United States)

    Brendel, Bernhard; Roessl, Ewald; Schlomka, Jens-Peter; Proksa, Roland

    2009-02-01

    Advances in the development of semiconductor based, photon-counting x-ray detectors stimulate research in the domain of energy-resolving pre-clinical and clinical computed tomography (CT). For counting detectors acquiring x-ray attenuation in at least three different energy windows, an extended basis component decomposition can be performed in which in addition to the conventional approach of Alvarez and Macovski a third basis component is introduced, e.g., a gadolinium based CT contrast material. After the decomposition of the measured projection data into the basis component projections, conventional filtered-backprojection reconstruction is performed to obtain the basis-component images. In recent work, this basis component decomposition was obtained by maximizing the likelihood-function of the measurements. This procedure is time consuming and often unstable for excessively noisy data or low intrinsic energy resolution of the detector. Therefore, alternative procedures are of interest. Here, we introduce a generalization of the idea of empirical dual-energy processing published by Stenner et al. to multi-energy, photon-counting CT raw data. Instead of working in the image-domain, we use prior spectral knowledge about the acquisition system (tube spectra, bin sensitivities) to parameterize the line-integrals of the basis component decomposition directly in the projection domain. We compare this empirical approach with the maximum-likelihood (ML) approach considering image noise and image bias (artifacts) and see that only moderate noise increase is to be expected for small bias in the empirical approach. Given the drastic reduction of pre-processing time, the empirical approach is considered a viable alternative to the ML approach.

  9. On-line learning in radial basis functions networks

    OpenAIRE

    Freeman, Jason; Saad, David

    1997-01-01

    An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives ...

  10. Functional Basis of Microorganism Classification.

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  11. Advances in the indirect, descriptive, and experimental approaches to the functional analysis of problem behavior.

    Science.gov (United States)

    Wightman, Jade; Julio, Flávia; Virués-Ortega, Javier

    2014-05-01

    Experimental functional analysis is an assessment methodology to identify the environmental factors that maintain problem behavior in individuals with developmental disabilities and in other populations. Functional analysis provides the basis for the development of reinforcement-based approaches to treatment. This article reviews the procedures, validity, and clinical implementation of the methodological variations of functional analysis and function-based interventions. We present six variations of functional analysis methodology in addition to the typical functional analysis: brief functional analysis, single-function tests, latency-based functional analysis, functional analysis of precursors, and trial-based functional analysis. We also present the three general categories of function-based interventions: extinction, antecedent manipulation, and differential reinforcement. Functional analysis methodology is a valid and efficient approach to the assessment of problem behavior and the selection of treatment strategies.

  12. Compactly Supported Basis Functions as Support Vector Kernels for Classification.

    Science.gov (United States)

    Wittek, Peter; Tan, Chew Lim

    2011-10-01

    Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.

  13. Application of natural basis functions to soft x-ray tomography

    International Nuclear Information System (INIS)

    Ingesson, L.

    2000-03-01

    Natural basis functions (NBFs), also known as natural pixels in the literature, have been applied in tomographic reconstructions of simulated measurements for the JET soft x-ray system, which has a total of about 200 detectors spread over 6 directions. Various types of NBFs, i.e. normal, generalized and orthonormal NBFs, are reviewed. The number of basis functions is roughly equal to the number of measurements. Therefore, little a priori information is required as regularization and truncated singular-value decomposition can be used for the tomographic inversion. The results of NBFs are compared with reconstructions by the same solution technique using local basis functions (LBFs), and with the reconstructions of a conventional constrained-optimization tomography method with many more LBFs that requires more a priori information. Although the results of the conventional method are superior due to the a priori information, the results of the NBF and other LBF methods are reasonable and show the main features. Therefore, NBFs are a promising way to assess whether features in reconstructions are real or artefacts resulting from the a priori information. Of the NBFs, regular triangular (generalized) NBFs give the most acceptable reconstructions, much better than traditional square pixels, although the reconstructions with pyramid-shaped LBFs are also reasonable and have slightly smaller reconstruction errors. A more-regular (virtual) viewing geometry improves the reconstructions. However, simulations with a viewing geometry with a total of 480 channels spread over 12 directions clearly show that a priori information still improves the reconstructions considerably. (author)

  14. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  15. Complexity of Gaussian-Radial-Basis Networks Approximating Smooth Functions

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Sanguineti, M.

    2009-01-01

    Roč. 25, č. 1 (2009), s. 63-74 ISSN 0885-064X R&D Projects: GA ČR GA201/08/1744 Institutional research plan: CEZ:AV0Z10300504 Keywords : Gaussian-radial-basis-function networks * rates of approximation * model complexity * variation norms * Bessel and Sobolev norms * tractability of approximation Subject RIV: IN - Informatics, Computer Science Impact factor: 1.227, year: 2009

  16. Functional Basis of Microorganism Classification

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  17. Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions

    International Nuclear Information System (INIS)

    Havu, V.; Blum, V.; Havu, P.; Scheffler, M.

    2009-01-01

    We consider the problem of developing O(N) scaling grid-based operations needed in many central operations when performing electronic structure calculations with numeric atom-centered orbitals as basis functions. We outline the overall formulation of localized algorithms, and specifically the creation of localized grid batches. The choice of the grid partitioning scheme plays an important role in the performance and memory consumption of the grid-based operations. Three different top-down partitioning methods are investigated, and compared with formally more rigorous yet much more expensive bottom-up algorithms. We show that a conceptually simple top-down grid partitioning scheme achieves essentially the same efficiency as the more rigorous bottom-up approaches.

  18. Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.

    Science.gov (United States)

    Mitin, Alexander V

    2013-09-05

    The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.

  19. Problem-Matched Basis Functions for Microstrip Coupled Slot Arrays based on Transmission Line Green+s Functions (TLGF)

    NARCIS (Netherlands)

    Bruni, S.; Llombart, N.; Neto, A.; Gerini, G.; Maci, S.

    2004-01-01

    A method is proposed for the analysis of arrays of linear printed antennas. After the formulation of pertinent set of integral equations, the appropriate equivalent currents of the Method of Moments are represented in terms of two sets of entire domain basis functions. These functions synthesize on

  20. ROAM: A Radial-Basis-Function Optimization Approximation Method for Diagnosing the Three-Dimensional Coronal Magnetic Field

    International Nuclear Information System (INIS)

    Dalmasse, Kevin; Nychka, Douglas W.; Gibson, Sarah E.; Fan, Yuhong; Flyer, Natasha

    2016-01-01

    The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 and 10798 lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements into magnetic field data is a difficult task because the corona is optically thin at these wavelengths and the observed signal is therefore the integrated emission of all the plasma along the line of sight. To overcome this difficulty, we take on a new approach that combines a parameterized 3D magnetic field model with forward modeling of the polarization signal. For that purpose, we develop a new, fast and efficient, optimization method for model-data fitting: the Radial-basis-functions Optimization Approximation Method (ROAM). Model-data fitting is achieved by optimizing a user-specified log-likelihood function that quantifies the differences between the observed polarization signal and its synthetic/predicted analog. Speed and efficiency are obtained by combining sparse evaluation of the magnetic model with radial-basis-function (RBF) decomposition of the log-likelihood function. The RBF decomposition provides an analytical expression for the log-likelihood function that is used to inexpensively estimate the set of parameter values optimizing it. We test and validate ROAM on a synthetic test bed of a coronal magnetic flux rope and show that it performs well with a significantly sparse sample of the parameter space. We conclude that our optimization method is well-suited for fast and efficient model-data fitting and can be exploited for converting coronal polarimetric measurements, such as the ones provided by CoMP, into coronal magnetic field data.

  1. An Herbal Derivative as the Basis for a New Approach to Treating Post-Traumatic Osteoarthritis

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0396 TITLE: An Herbal Derivative as the Basis for a New Approach to Treating Post- Traumatic Osteoarthritis...TITLE AND SUBTITLE An Herbal Derivative as the Basis for a New Approach to Treating Post- Traumatic Osteoarthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER...third goal. A) Major activities: i. In vivo analysis and comparison of the efficacy of systemic HF and Hfol in the DMM mouse model of PTOA. ii

  2. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  3. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au [School of Chemistry and Biochemistry, The University of Western Australia, Perth, WA 6009 (Australia)

    2015-05-15

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.

  4. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    International Nuclear Information System (INIS)

    Spackman, Peter R.; Karton, Amir

    2015-01-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L α two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol –1 . The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol –1

  5. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    Abramov, D. I.

    2013-01-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ρ = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ρ→∞, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  6. Problem-Matched Basis Functions for Microstrip Coupled Slot Antennas based on Transmission Line Greens Functions

    NARCIS (Netherlands)

    Bruni, S.; Llombart Juan, N.; Neto, A.; Gerini, G.; Maci, S.

    2004-01-01

    A general algorithm for the analysis of microstrip coupled leaky wave slot antennas was discussed. The method was based on the construction of physically appealing entire domain Methods of Moments (MoM) basis function that allowed a consistent reduction of the number of unknowns and of total

  7. A Radial Basis Function Approach to Financial Time Series Analysis

    Science.gov (United States)

    1993-12-01

    consequently this approach is at the core of a large fraction of the portfolio management systems today. The Capital Asset Pricing Model ( CAPM ). due...representation used by each method. but of course a critical concern is how to actually estimate the parameters of the models. To sonic extent these...model fitting unseen data nicely depends critically on maintaining a balance between the number of data points used for estimation and the number of

  8. Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination

    Science.gov (United States)

    Abbas, Fayçal; Babahenini, Mohamed Chaouki

    2018-06-01

    Global illumination of natural scenes in real time like forests is one of the most complex problems to solve, because the multiple inter-reflections between the light and material of the objects composing the scene. The major problem that arises is the problem of visibility computation. In fact, the computing of visibility is carried out for all the set of leaves visible from the center of a given leaf, given the enormous number of leaves present in a tree, this computation performed for each leaf of the tree which also reduces performance. We describe a new approach that approximates visibility queries, which precede in two steps. The first step is to generate point cloud representing the foliage. We assume that the point cloud is composed of two classes (visible, not-visible) non-linearly separable. The second step is to perform a point cloud classification by applying the Gaussian radial basis function, which measures the similarity in term of distance between each leaf and a landmark leaf. It allows approximating the visibility requests to extract the leaves that will be used to calculate the amount of indirect illumination exchanged between neighbor leaves. Our approach allows efficiently treat the light exchanges in the scene of a forest, it allows a fast computation and produces images of good visual quality, all this takes advantage of the immense power of computation of the GPU.

  9. A partitioned correlation function interaction approach for describing electron correlation in atoms

    International Nuclear Information System (INIS)

    Verdebout, S; Godefroid, M; Rynkun, P; Jönsson, P; Gaigalas, G; Fischer, C Froese

    2013-01-01

    MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given. (paper)

  10. A partitioned correlation function interaction approach for describing electron correlation in atoms

    Science.gov (United States)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  11. Safety Basis Report

    International Nuclear Information System (INIS)

    R.J. Garrett

    2002-01-01

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities

  12. Safety Basis Report

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  13. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters.

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-14

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  14. Matrix elements of N-particle explicitly correlated Gaussian basis functions with complex exponential parameters

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2006-06-01

    In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.

  15. Optimal choice of basis functions in the linear regression analysis

    International Nuclear Information System (INIS)

    Khotinskij, A.M.

    1988-01-01

    Problem of optimal choice of basis functions in the linear regression analysis is investigated. Step algorithm with estimation of its efficiency, which holds true at finite number of measurements, is suggested. Conditions, providing the probability of correct choice close to 1 are formulated. Application of the step algorithm to analysis of decay curves is substantiated. 8 refs

  16. Nutritional approach for designing meat-based functional food products with nuts.

    Science.gov (United States)

    Olmedilla-Alonso, B; Granado-Lorencio, F; Herrero-Barbudo, C; Blanco-Navarro, I

    2006-01-01

    Meat and meat products are essential components of diets in developed countries and despite the convincing evidence that relate them to an increased risk for CVD, a growing consumption of meat products is foreseen. Epidemiological studies show that regular consumption of nuts, in general, and walnuts in particular, correlates inversely with myocardial infarction and ischaemic vascular disease. We assess the nutritional basis for and technological approach to the development of functional meat-based products potentially relevant in cardiovascular disease (CVD) risk reduction. Using the available strategies in the meat industry (reformulation processes) and a food-based approach, we address the design and development of restructured beef steak with added walnuts, potentially functional for CVD risk reduction. Its adequacy as a vehicle for active nutrients is confirmed by a pharmacokinetic pilot study in humans using gamma-tocopherol as an exposure biomarker in chylomicrons during the post-prandial state. Effect and potential "functionality" is being assessed by a dietary intervention study in subjects at risk and markers and indicators related to CVD are being evaluated. Within the conceptual framework of evidence-based medicine, development of meat-based functional products may become a useful approach for specific applications, with a potential market and health benefits of great importance at a population level.

  17. Cost-Sensitive Radial Basis Function Neural Network Classifier for Software Defect Prediction.

    Science.gov (United States)

    Kumudha, P; Venkatesan, R

    Effective prediction of software modules, those that are prone to defects, will enable software developers to achieve efficient allocation of resources and to concentrate on quality assurance activities. The process of software development life cycle basically includes design, analysis, implementation, testing, and release phases. Generally, software testing is a critical task in the software development process wherein it is to save time and budget by detecting defects at the earliest and deliver a product without defects to the customers. This testing phase should be carefully operated in an effective manner to release a defect-free (bug-free) software product to the customers. In order to improve the software testing process, fault prediction methods identify the software parts that are more noted to be defect-prone. This paper proposes a prediction approach based on conventional radial basis function neural network (RBFNN) and the novel adaptive dimensional biogeography based optimization (ADBBO) model. The developed ADBBO based RBFNN model is tested with five publicly available datasets from the NASA data program repository. The computed results prove the effectiveness of the proposed ADBBO-RBFNN classifier approach with respect to the considered metrics in comparison with that of the early predictors available in the literature for the same datasets.

  18. Heavy quarkonium in a holographic basis

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-07-01

    Full Text Available We study the heavy quarkonium within the basis light-front quantization approach. We implement the one-gluon exchange interaction and a confining potential inspired by light-front holography. We adopt the holographic light-front wavefunction (LFWF as our basis function and solve the non-perturbative dynamics by diagonalizing the Hamiltonian matrix. We obtain the mass spectrum for charmonium and bottomonium. With the obtained LFWFs, we also compute the decay constants and the charge form factors for selected eigenstates. The results are compared with the experimental measurements and with other established methods.

  19. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    Science.gov (United States)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods

  20. Consistent structures and interactions by density functional theory with small atomic orbital basis sets

    International Nuclear Information System (INIS)

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-01-01

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT

  1. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    Science.gov (United States)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  2. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan

    2013-03-01

    The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  3. Radial basis function networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, Gyu-Cheon; Heung Chang, Soon

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety

  4. Application of the Characteristic Basis Function Method Using CUDA

    Directory of Open Access Journals (Sweden)

    Juan Ignacio Pérez

    2014-01-01

    Full Text Available The characteristic basis function method (CBFM is a popular technique for efficiently solving the method of moments (MoM matrix equations. In this work, we address the adaptation of this method to a relatively new computing infrastructure provided by NVIDIA, the Compute Unified Device Architecture (CUDA, and take into account some of the limitations which appear when the geometry under analysis becomes too big to fit into the Graphics Processing Unit’s (GPU’s memory.

  5. The fruits of a functional approach for psychological science.

    Science.gov (United States)

    Stewart, Ian

    2016-02-01

    The current paper introduces relational frame theory (RFT) as a functional contextual approach to complex human behaviour and examines how this theory has contributed to our understanding of several key phenomena in psychological science. I will first briefly outline the philosophical foundation of RFT and then examine its conceptual basis and core concepts. Thereafter, I provide an overview of the empirical findings and applications that RFT has stimulated in a number of key domains such as language development, linguistic generativity, rule-following, analogical reasoning, intelligence, theory of mind, psychopathology and implicit cognition. © 2015 International Union of Psychological Science.

  6. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  7. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  8. New Method for Mesh Moving Based on Radial Basis Function Interpolation

    NARCIS (Netherlands)

    De Boer, A.; Van der Schoot, M.S.; Bijl, H.

    2006-01-01

    A new point-by-point mesh movement algorithm is developed for the deformation of unstructured grids. The method is based on using radial basis function, RBFs, to interpolate the displacements of the boundary nodes to the whole flow mesh. A small system of equations has to be solved, only involving

  9. Composite fermion basis for two-component Bose gases

    Science.gov (United States)

    Meyer, Marius; Liabotro, Ola

    The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.

  10. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: Total energy calculation

    International Nuclear Information System (INIS)

    Lin Lin; Lu Jianfeng; Ying Lexing; Weinan, E

    2012-01-01

    Kohn–Sham density functional theory is one of the most widely used electronic structure theories. In the pseudopotential framework, uniform discretization of the Kohn–Sham Hamiltonian generally results in a large number of basis functions per atom in order to resolve the rapid oscillations of the Kohn–Sham orbitals around the nuclei. Previous attempts to reduce the number of basis functions per atom include the usage of atomic orbitals and similar objects, but the atomic orbitals generally require fine tuning in order to reach high accuracy. We present a novel discretization scheme that adaptively and systematically builds the rapid oscillations of the Kohn–Sham orbitals around the nuclei as well as environmental effects into the basis functions. The resulting basis functions are localized in the real space, and are discontinuous in the global domain. The continuous Kohn–Sham orbitals and the electron density are evaluated from the discontinuous basis functions using the discontinuous Galerkin (DG) framework. Our method is implemented in parallel and the current implementation is able to handle systems with at least thousands of atoms. Numerical examples indicate that our method can reach very high accuracy (less than 1 meV) with a very small number (4–40) of basis functions per atom.

  11. Practical auxiliary basis implementation of Rung 3.5 functionals

    International Nuclear Information System (INIS)

    Janesko, Benjamin G.; Scalmani, Giovanni; Frisch, Michael J.

    2014-01-01

    Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r -vector ,r -vector ′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r -vector ,r -vector ′) onto a semilocal model density matrix γ SL (ρ(r -vector ),∇ρ(r -vector ),r -vector −r -vector ′). γ SL depends on the electron density ρ(r -vector ) at reference point r -vector , and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expanding the r -vector −r -vector ′ dependence of γ SL in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ SL yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms

  12. Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia.

    Science.gov (United States)

    Lardi, Martina; Pessi, Gabriella

    2018-05-18

    Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).

  13. Influence of the Training Methods in the Diagnosis of Multiple Sclerosis Using Radial Basis Functions Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ángel Gutiérrez

    2015-04-01

    Full Text Available The data available in the average clinical study of a disease is very often small. This is one of the main obstacles in the application of neural networks to the classification of biological signals used for diagnosing diseases. A rule of thumb states that the number of parameters (weights that can be used for training a neural network should be around 15% of the available data, to avoid overlearning. This condition puts a limit on the dimension of the input space. Different authors have used different approaches to solve this problem, like eliminating redundancy in the data, preprocessing the data to find centers for the radial basis functions, or extracting a small number of features that were used as inputs. It is clear that the classification would be better the more features we could feed into the network. The approach utilized in this paper is incrementing the number of training elements with randomly expanding training sets. This way the number of original signals does not constraint the dimension of the input set in the radial basis network. Then we train the network using the method that minimizes the error function using the gradient descent algorithm and the method that uses the particle swarm optimization technique. A comparison between the two methods showed that for the same number of iterations on both methods, the particle swarm optimization was faster, it was learning to recognize only the sick people. On the other hand, the gradient method was not as good in general better at identifying those people.

  14. Probing the mutational interplay between primary and promiscuous protein functions: a computational-experimental approach.

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2012-01-01

    Protein promiscuity is of considerable interest due its role in adaptive metabolic plasticity, its fundamental connection with molecular evolution and also because of its biotechnological applications. Current views on the relation between primary and promiscuous protein activities stem largely from laboratory evolution experiments aimed at increasing promiscuous activity levels. Here, on the other hand, we attempt to assess the main features of the simultaneous modulation of the primary and promiscuous functions during the course of natural evolution. The computational/experimental approach we propose for this task involves the following steps: a function-targeted, statistical coupling analysis of evolutionary data is used to determine a set of positions likely linked to the recruitment of a promiscuous activity for a new function; a combinatorial library of mutations on this set of positions is prepared and screened for both, the primary and the promiscuous activities; a partial-least-squares reconstruction of the full combinatorial space is carried out; finally, an approximation to the Pareto set of variants with optimal primary/promiscuous activities is derived. Application of the approach to the emergence of folding catalysis in thioredoxin scaffolds reveals an unanticipated scenario: diverse patterns of primary/promiscuous activity modulation are possible, including a moderate (but likely significant in a biological context) simultaneous enhancement of both activities. We show that this scenario can be most simply explained on the basis of the conformational diversity hypothesis, although alternative interpretations cannot be ruled out. Overall, the results reported may help clarify the mechanisms of the evolution of new functions. From a different viewpoint, the partial-least-squares-reconstruction/Pareto-set-prediction approach we have introduced provides the computational basis for an efficient directed-evolution protocol aimed at the simultaneous

  15. Basis set approach in the constrained interpolation profile method

    International Nuclear Information System (INIS)

    Utsumi, T.; Koga, J.; Yabe, T.; Ogata, Y.; Matsunaga, E.; Aoki, T.; Sekine, M.

    2003-07-01

    We propose a simple polynomial basis-set that is easily extendable to any desired higher-order accuracy. This method is based on the Constrained Interpolation Profile (CIP) method and the profile is chosen so that the subgrid scale solution approaches the real solution by the constraints from the spatial derivative of the original equation. Thus the solution even on the subgrid scale becomes consistent with the master equation. By increasing the order of the polynomial, this solution quickly converges. 3rd and 5th order polynomials are tested on the one-dimensional Schroedinger equation and are proved to give solutions a few orders of magnitude higher in accuracy than conventional methods for lower-lying eigenstates. (author)

  16. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Zaidi, Habib

    2014-01-01

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function

  17. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB (Netherlands)

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis

  18. Comparison of different eigensolvers for calculating vibrational spectra using low-rank, sum-of-product basis functions

    Science.gov (United States)

    Leclerc, Arnaud; Thomas, Phillip S.; Carrington, Tucker

    2017-08-01

    Vibrational spectra and wavefunctions of polyatomic molecules can be calculated at low memory cost using low-rank sum-of-product (SOP) decompositions to represent basis functions generated using an iterative eigensolver. Using a SOP tensor format does not determine the iterative eigensolver. The choice of the interative eigensolver is limited by the need to restrict the rank of the SOP basis functions at every stage of the calculation. We have adapted, implemented and compared different reduced-rank algorithms based on standard iterative methods (block-Davidson algorithm, Chebyshev iteration) to calculate vibrational energy levels and wavefunctions of the 12-dimensional acetonitrile molecule. The effect of using low-rank SOP basis functions on the different methods is analysed and the numerical results are compared with those obtained with the reduced rank block power method. Relative merits of the different algorithms are presented, showing that the advantage of using a more sophisticated method, although mitigated by the use of reduced-rank SOP functions, is noticeable in terms of CPU time.

  19. Computing single step operators of logic programming in radial basis function neural networks

    Science.gov (United States)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  20. Computing single step operators of logic programming in radial basis function neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong [School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  1. Computing single step operators of logic programming in radial basis function neural networks

    International Nuclear Information System (INIS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-01-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T p :I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks

  2. A Comparison of the Behavior of Functional/Basis Set Combinations for Hydrogen-Bonding in the Water Dimer with Emphasis on Basis Set Superposition Error

    OpenAIRE

    Plumley, Joshua A.; Dannenberg, J. J.

    2011-01-01

    We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimenta...

  3. Method of applying single higher order polynomial basis function over multiple domains

    CSIR Research Space (South Africa)

    Lysko, AA

    2010-03-01

    Full Text Available A novel method has been devised where one set of higher order polynomial-based basis functions can be applied over several wire segments, thus permitting to decouple the number of unknowns from the number of segments, and so from the geometrical...

  4. Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    G. Trejo-Caballero

    2015-01-01

    Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

  5. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    Science.gov (United States)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-18

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  6. S-pairing in neutron matter: I. Correlated basis function theory

    International Nuclear Information System (INIS)

    Fabrocini, Adelchi; Fantoni, Stefano; Illarionov, Alexey Yu.; Schmidt, Kevin E.

    2008-01-01

    S-wave pairing in neutron matter is studied within an extension of correlated basis function (CBF) theory to include the strong, short range spatial correlations due to realistic nuclear forces and the pairing correlations of the Bardeen, Cooper and Schrieffer (BCS) approach. The correlation operator contains central as well as tensor components. The correlated BCS scheme of [S. Fantoni, Nucl. Phys. A 363 (1981) 381], developed for simple scalar correlations, is generalized to this more realistic case. The energy of the correlated pair condensed phase of neutron matter is evaluated at the two-body order of the cluster expansion, but considering the one-body density and the corresponding energy vertex corrections at the first order of the Power Series expansion. Based on these approximations, we have derived a system of Euler equations for the correlation factors and for the BCS amplitudes, resulting in correlated nonlinear gap equations, formally close to the standard BCS ones. These equations have been solved for the momentum independent part of several realistic potentials (Reid, Argonne v 14 and Argonne v 8 ' ) to stress the role of the tensor correlations and of the many-body effects. Simple Jastrow correlations and/or the lack of the density corrections enhance the gap with respect to uncorrelated BCS, whereas it is reduced according to the strength of the tensor interaction and following the inclusion of many-body contributions

  7. Method of moments solution of volume integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter

    2004-01-01

    An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...

  8. An enhanced radial basis function network for short-term electricity price forecasting

    International Nuclear Information System (INIS)

    Lin, Whei-Min; Gow, Hong-Jey; Tsai, Ming-Tang

    2010-01-01

    This paper proposed a price forecasting system for electric market participants to reduce the risk of price volatility. Combining the Radial Basis Function Network (RBFN) and Orthogonal Experimental Design (OED), an Enhanced Radial Basis Function Network (ERBFN) has been proposed for the solving process. The Locational Marginal Price (LMP), system load, transmission flow and temperature of the PJM system were collected and the data clusters were embedded in the Excel Database according to the year, season, workday and weekend. With the OED applied to learning rates in the ERBFN, the forecasting error can be reduced during the training process to improve both accuracy and reliability. This would mean that even the ''spikes'' could be tracked closely. The Back-propagation Neural Network (BPN), Probability Neural Network (PNN), other algorithms, and the proposed ERBFN were all developed and compared to check the performance. Simulation results demonstrated the effectiveness of the proposed ERBFN to provide quality information in a price volatile environment. (author)

  9. Density Functional Theory and the Basis Set Truncation Problem with Correlation Consistent Basis Sets: Elephant in the Room or Mouse in the Closet?

    Science.gov (United States)

    Feller, David; Dixon, David A

    2018-03-08

    Two recent papers in this journal called into question the suitability of the correlation consistent basis sets for density functional theory (DFT) calculations, because the sets were designed for correlated methods such as configuration interaction, perturbation theory, and coupled cluster theory. These papers focused on the ability of the correlation consistent and other basis sets to reproduce total energies, atomization energies, and dipole moments obtained from "quasi-exact" multiwavelet results. Undesirably large errors were observed for the correlation consistent basis sets. One of the papers argued that basis sets specifically optimized for DFT methods were "essential" for obtaining high accuracy. In this work we re-examined the performance of the correlation consistent basis sets by resolving problems with the previous calculations and by making more appropriate basis set choices for the alkali and alkaline-earth metals and second-row elements. When this is done, the statistical errors with respect to the benchmark values and with respect to DFT optimized basis sets are greatly reduced, especially in light of the relatively large intrinsic error of the underlying DFT method. When judged with respect to high-quality Feller-Peterson-Dixon coupled cluster theory atomization energies, the PBE0 DFT method used in the previous studies exhibits a mean absolute deviation more than a factor of 50 larger than the quintuple zeta basis set truncation error.

  10. Molecular basis of the functional heterogeneity of the muscarinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Numa, S.; Fukuda, K.; Kubo, T.; Maeda, A.; Akiba, I.; Bujo, H.; Nakai, J.; Mishina, M.; Higashida, H.

    1988-01-01

    The muscarinic acetylcholine receptor (mAChR) mediates a variety of cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides, and modulation of potassium channels, through the action of guanine-nucleotide-binding regulatory proteins (G proteins). The question then arises as to whether multiple mAChR species exist that are responsible for the various biochemical and physiological effects. In fact, pharmacologically distinguishable forms of the mAChR occur in different tissues and have been provisionally classified into M 1 (I), M 2 cardiac (II), and M 2 glandular (III) subtypes on the basis of their difference in apparent affinity for antagonists. Here, the authors have made attempts to understand the molecular basis of the functional heterogeneity of the mAChR, using recombinant DNA technology

  11. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    International Nuclear Information System (INIS)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook; Kim, Woo Youn

    2015-01-01

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal to 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems

  12. Adaptive Linear and Normalized Combination of Radial Basis Function Networks for Function Approximation and Regression

    Directory of Open Access Journals (Sweden)

    Yunfeng Wu

    2014-01-01

    Full Text Available This paper presents a novel adaptive linear and normalized combination (ALNC method that can be used to combine the component radial basis function networks (RBFNs to implement better function approximation and regression tasks. The optimization of the fusion weights is obtained by solving a constrained quadratic programming problem. According to the instantaneous errors generated by the component RBFNs, the ALNC is able to perform the selective ensemble of multiple leaners by adaptively adjusting the fusion weights from one instance to another. The results of the experiments on eight synthetic function approximation and six benchmark regression data sets show that the ALNC method can effectively help the ensemble system achieve a higher accuracy (measured in terms of mean-squared error and the better fidelity (characterized by normalized correlation coefficient of approximation, in relation to the popular simple average, weighted average, and the Bagging methods.

  13. Rational Density Functional Selection Using Game Theory.

    Science.gov (United States)

    McAnanama-Brereton, Suzanne; Waller, Mark P

    2018-01-22

    Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.

  14. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  15. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  16. Does communicating disappointment in negotiations help or hurt? : Solving an apparent inconsistency in the social-functional approach to emotions

    NARCIS (Netherlands)

    Lelieveld, G.; van Dijk, E.; van Beest, I.; van Kleef, G.A.

    2013-01-01

    On the basis of a social-functional approach to emotion, scholars have argued that expressing disappointment in negotiations communicates weakness, which may evoke exploitation. Yet, it is also argued that communicating disappointment serves as a call for help, which may elicit generous offers. Our

  17. Does communicating disappointment in negotiations help or hurt? Solving an apparent inconsistency in the social-functional approach to emotions

    NARCIS (Netherlands)

    Lelieveld, G.-J.; van Dijk, E.; van Beest, I.; van Kleef, G.A.

    2013-01-01

    On the basis of a social-functional approach to emotion, scholars have argued that expressing disappointment in negotiations communicates weakness, which may evoke exploitation. Yet, it is also argued that communicating disappointment serves as a call for help, which may elicit generous offers. Our

  18. A metric for the Radial Basis Function Network - Application on Real Radar Data

    NARCIS (Netherlands)

    Heiden, R. van der; Groen, F.C.A.

    1996-01-01

    A Radial Basis Functions (RBF) network for pattern recognition is considered. Classification with such a network is based on distances between patterns, so a metric is always present. Using real radar data, the Euclidean metric is shown to perform poorly - a metric based on the so called Box-Cox

  19. A risk-informed framework for establishing a beyond design basis safety basis for external hazards

    Energy Technology Data Exchange (ETDEWEB)

    Amico, P. [Hughes Associates, Inc, Baltimore, MD (United States); Anoba, R. [Hughes Associates, Inc, Raleigh, NC (United States); Najafi, B. [Hughes Associates, Inc., Los Gatos, CA (United States)

    2014-07-01

    The events at Fukushima Daiichi taught us that meeting a deterministic design basis requirement for external hazards does not assure that the risk is low. As observed at the plant, the two primary reasons for this are failure cliffs above the design basis event and that combined hazard effects are not considered in design. Because the possible combinations of design basis exceedences and external hazard combinations are very large and complex, an approach focusing only on the most important ones is needed. For this reason, a risk informed approach is the most effective approach, which is discussed in this paper. (author)

  20. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    International Nuclear Information System (INIS)

    Dunnington, Benjamin D.; Schmidt, J. R.

    2015-01-01

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strict orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches

  1. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  2. Preliminary Evaluation Methodology of ECCS Performance for Design Basis LOCA Redefinition

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Ahn, Seung Hoon; Seul, Kwang Won

    2010-01-01

    To improve their existing regulations, the USNRC has made efforts to develop the risk-informed and performance-based regulation (RIPBR) approaches. As a part of these efforts, the rule revision of 10CFR50.46 (ECCS Acceptance Criteria) is underway, considering some options for 4 categories of spectrum of break sizes, ECCS functional reliability, ECCS evaluation model, and ECCS acceptance criteria. Since the potential for safety benefits and unnecessary burden reduction from design basis LOCA redefinition is high relative to other options, the USNRC is proceeding with the rulemaking for design basis LOCA redefinition. An instantaneous break with a flow rate equivalent to a double ended guillotine break (DEGB) of the largest primary piping system in the plant is widely recognized as an extremely unlikely event, while redefinition of design basis LOCA can affect the existing regulatory practices and approaches. In this study, the status of the design basis LOCA redefinition and OECD/NEA SMAP (Safety Margin Action Plan) methodology are introduced. Preliminary evaluation methodology of ECCS performance for LOCA is developed and discussed for design basis LOCA redefinition

  3. Recent advances in radial basis function collocation methods

    CERN Document Server

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  4. Estimation of optical rotation of γ-alkylidenebutenolide, cyclopropylamine, cyclopropyl-methanol and cyclopropenone based compounds by a Density Functional Theory (DFT) approach.

    Science.gov (United States)

    Shahzadi, Iram; Shaukat, Aqsa; Zara, Zeenat; Irfan, Muhammad; Eliasson, Bertil; Ayub, Khurshid; Iqbal, Javed

    2017-10-01

    Computing the optical rotation of organic molecules can be a real challenge, and various theoretical approaches have been developed in this regard. A benchmark study of optical rotation of various classes of compounds was carried out by Density Functional Theory (DFT) methods. The aim of the present research study was to find out the best-suited functional and basis set to estimate the optical rotations of selected compounds with respect to experimental literature values. Six DFT functional LSDA, BVP86, CAM-B3LYP, B3PW91, and PBE were applied on 22 different compounds. Furthermore, six different basis sets, i.e., 3-21G, 6-31G, aug-cc-pVDZ, aug-cc-pVTZ, DGDZVP, and DGDZVP2 were also applied with the best-suited functional B3LYP. After rigorous effort, it can be safely said that the best combination of functional and basis set is B3LYP/aug-cc-pVTZ for the estimation of optical rotation for selected compounds. © 2017 Wiley Periodicals, Inc.

  5. Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm. (On-Line Harmonics Estimation Application

    Directory of Open Access Journals (Sweden)

    Eyad K Almaita

    2017-03-01

    Keywords: Energy efficiency, Power quality, Radial basis function, neural networks, adaptive, harmonic. Article History: Received Dec 15, 2016; Received in revised form Feb 2nd 2017; Accepted 13rd 2017; Available online How to Cite This Article: Almaita, E.K and Shawawreh J.Al (2017 Improving Stability and Convergence for Adaptive Radial Basis Function Neural Networks Algorithm (On-Line Harmonics Estimation Application.  International Journal of Renewable Energy Develeopment, 6(1, 9-17. http://dx.doi.org/10.14710/ijred.6.1.9-17

  6. A conceptual basis to encode and detect organic functional groups in XML.

    Science.gov (United States)

    Sankar, Punnaivanam; Krief, Alain; Vijayasarathi, Durairaj

    2013-06-01

    A conceptual basis to define and detect organic functional groups is developed. The basic model of a functional group is termed as a primary functional group and is characterized by a group center composed of one or more group center atoms bonded to terminal atoms and skeletal carbon atoms. The generic group center patterns are identified from the structures of known functional groups. Accordingly, a chemical ontology 'Font' is developed to organize the existing functional groups as well as the new ones to be defined by the chemists. The basic model is extended to accommodate various combinations of primary functional groups as functional group assemblies. A concept of skeletal group is proposed to define the characteristic groups composed of only carbon atoms to be regarded as equivalent to functional groups. The combination of primary functional groups with skeletal groups is categorized as skeletal group assembly. In order to make the model suitable for reaction modeling purpose, a Graphical User Interface (GUI) is developed to define the functional groups and to encode in XML format appropriate to detect them in chemical structures. The system is capable of detecting multiple instances of primary functional groups as well as the overlapping poly-functional groups as the respective assemblies. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The matrix elements of the potential energy operator between the Sp(2,R) basis generating functions. Near-magic nuclei

    International Nuclear Information System (INIS)

    Filippov, G.F.; Ovcharenko, V.I.; Teryoshin, Yu.V.

    1980-01-01

    For near-magnetic nuclei, the matrix elements of the central exchange nucleon-nucleon interaction potential energy operator between the generating functions of the total basis of the Sn are obtained. The basis states are highest weigt vectorsp(2,R) irreducible representatio of the SO(3) irredicible representation and in addition, have a definite O(A-1) symmetry. The Sp(2,R) basis generating matrix elements simplify essentially the problem of calculating the spectrum of collective excitations of the atomic nucleus over an intrinsic function of definite O(A-1) symmetry

  8. Performance-oriented asymptotic tracking control of hydraulic systems with radial basis function network disturbance observer

    Directory of Open Access Journals (Sweden)

    Jian Hu

    2016-05-01

    Full Text Available Uncertainties, including parametric uncertainties and uncertain nonlinearities, always exist in positioning servo systems driven by a hydraulic actuator, which would degrade their tracking accuracy. In this article, an integrated control scheme, which combines adaptive robust control together with radial basis function neural network–based disturbance observer, is proposed for high-accuracy motion control of hydraulic systems. Not only parametric uncertainties but also uncertain nonlinearities (i.e. nonlinear friction, external disturbances, and/or unmodeled dynamics are taken into consideration in the proposed controller. The above uncertainties are compensated, respectively, by adaptive control and radial basis function neural network, which are ultimately integrated together by applying feedforward compensation technique, in which the global stabilization of the controller is ensured via a robust feedback path. A new kind of parameter and weight adaptation law is designed on the basis of Lyapunov stability theory. Furthermore, the proposed controller obtains an expected steady performance even if modeling uncertainties exist, and extensive simulation results in various working conditions have proven the high performance of the proposed control scheme.

  9. Reconstruction of tissue dynamics in the compressed breast using multiplexed measurements and temporal basis functions

    Science.gov (United States)

    Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Fang, Qianqian; Carp, S. A.; Selb, J. J.; Boas, David A.

    2007-02-01

    In the course of our experiments imaging the compressed breast in conjunction with digital tomosynthesis, we have noted that significant changes in tissue optical properties, on the order of 5%, occur during our imaging protocol. These changes seem to consistent with changes both in total Hemoglobin concentration as well as in oxygen saturation, as was the case for our standalone breast compression study, which made use of reflectance measurements. Simulation experiments show the importance of taking into account the temporal dynamics in the image reconstruction, and demonstrate the possibility of imaging the spatio-temporal dynamics of oxygen saturation and total Hemoglobin in the breast. In the image reconstruction, we make use of spatio-temporal basis functions, specifically a voxel basis for spatial imaging, and a cubic spline basis in time, and we reconstruct the spatio-temporal images using the entire data set simultaneously, making use of both absolute and relative measurements in the cost function. We have modified the sequence of sources used in our imaging acquisition protocol to improve our temporal resolution, and preliminary results are shown for normal subjects.

  10. Reconstruction of Daily Sea Surface Temperature Based on Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Zhihong Liao

    2017-11-01

    Full Text Available A radial basis function network (RBFN method is proposed to reconstruct daily Sea surface temperatures (SSTs with limited SST samples. For the purpose of evaluating the SSTs using this method, non-biased SST samples in the Pacific Ocean (10°N–30°N, 115°E–135°E are selected when the tropical storm Hagibis arrived in June 2014, and these SST samples are obtained from the Reynolds optimum interpolation (OI v2 daily 0.25° SST (OISST products according to the distribution of AVHRR L2p SST and in-situ SST data. Furthermore, an improved nearest neighbor cluster (INNC algorithm is designed to search for the optimal hidden knots for RBFNs from both the SST samples and the background fields. Then, the reconstructed SSTs from the RBFN method are compared with the results from the OI method. The statistical results show that the RBFN method has a better performance of reconstructing SST than the OI method in the study, and that the average RMSE is 0.48 °C for the RBFN method, which is quite smaller than the value of 0.69 °C for the OI method. Additionally, the RBFN methods with different basis functions and clustering algorithms are tested, and we discover that the INNC algorithm with multi-quadric function is quite suitable for the RBFN method to reconstruct SSTs when the SST samples are sparsely distributed.

  11. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  12. Ground motion following selection of SRS design basis earthquake and associated deterministic approach

    International Nuclear Information System (INIS)

    1991-03-01

    This report summarizes the results of a deterministic assessment of earthquake ground motions at the Savannah River Site (SRS). The purpose of this study is to assist the Environmental Sciences Section of the Savannah River Laboratory in reevaluating the design basis earthquake (DBE) ground motion at SRS during approaches defined in Appendix A to 10 CFR Part 100. This work is in support of the Seismic Engineering Section's Seismic Qualification Program for reactor restart

  13. Generation of Optimal Basis Functions for Reconstruction of Power Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moonghu [Sejong Univ., Seoul (Korea, Republic of)

    2014-05-15

    This study proposes GMDH to find not only the best functional form but also the optimal parameters those describe the power distribution most accurately. A total of 1,060 cases of axially 1-dimensional core power distributions of 20-nodes are generated by 3-dimensional core analysis code covering BOL to EOL core burnup histories to validate the method. Axially five-point box powers at in-core detectors are considered as measurements. The reconstructed axial power shapes using GMDH method are compared to the reference power shapes. The results show that the proposed method is very robust and accurate compared with spline fitting method. It is shown that the GMDH analysis can give optimal basis functions for core power shape reconstruction. The in-core measurements are the 5 detector snapshots and the 20-node power distribution is successfully reconstructed. The effectiveness of the method is demonstrated by comparing the results of spline fitting for BOL, saddle and top-skewed power shapes.

  14. The utility function and the emotional well-being function

    OpenAIRE

    Parada Daza, Jose Rigoberto

    2004-01-01

    Behind the utility function, which is the basis for economic and finance theory, is a philosophical and ethical approach based essentially on the Utilitarian and Hedonistic schools. Once qualitative, the utility function’s approach shifted to a quantitative one based on the work of the mathematician, D. Bernoulli. This quantitative approach is normative and based on a maximizing agent. In this paper, the “emotional well-being” function is developed which mixes the ethics of a rationa...

  15. Transient and accident analyses topical design basis documents

    International Nuclear Information System (INIS)

    Chi, Larry; Eckert, Eugene; Grim, Brit

    2004-01-01

    The designers and operators of nuclear power plants have extensively documented system functions, licensing performance, and operating procedures for all conditions. This paper presents a complementary, systematic approach for the documentation of all requirements that are based on the analysis of operational transients, abnormal transients, accidents, and other events which are included in the design and licensing basis for the plant. Up to now, application of the approach has focused on required mitigation actions (automatic or manual). All mitigation actions are directly identified with all applicable reactor events, as well as the plant-unique systems that work together to perform each function. The approach is also applicable to all operational functions. The approach makes extensive use of data base methods, thereby providing effective ways to interrogate the information for the varied users of this information. Examples of use include: evaluations of system design changes and equipment modifications, safety evaluations of any plant change (e.g., USNRC 10CFR50.59 review), plant operations (e.g., manual actions during unplanned events), system interactions, classification of safety-related equipment, environmental qualification of equipment, and mitigation requirements for different reactor operating states. This approach has been applied in customized ways to several boiling water reactor (BWR) units, based on the desires and needs of the specific utility. (author)

  16. KARHUNEN-LOÈVE Basis Functions of Kolmogorov Turbulence in the Sphere

    Science.gov (United States)

    Mathar, Richard J.

    In support of modeling atmospheric turbulence, the statistically independent Karhunen-Loève modes of refractive indices with isotropic Kolmogorov spectrum of the covariance are calculated inside a sphere of fixed radius, rendered as series of 3D Zernike functions. Many of the symmetry arguments of the well-known associated 2D problem for the circular input pupil remain valid. The technique of efficient diagonalization of the eigenvalue problem in wavenumber space is founded on the Fourier representation of the 3D Zernike basis, and extensible to the von-Kármán power spectrum.

  17. Machine learning (ML)-guided OPC using basis functions of polar Fourier transform

    Science.gov (United States)

    Choi, Suhyeong; Shim, Seongbo; Shin, Youngsoo

    2016-03-01

    With shrinking feature size, runtime has become a limitation of model-based OPC (MB-OPC). A few machine learning-guided OPC (ML-OPC) have been studied as candidates for next-generation OPC, but they all employ too many parameters (e.g. local densities), which set their own limitations. We propose to use basis functions of polar Fourier transform (PFT) as parameters of ML-OPC. Since PFT functions are orthogonal each other and well reflect light phenomena, the number of parameters can significantly be reduced without loss of OPC accuracy. Experiments demonstrate that our new ML-OPC achieves 80% reduction in OPC time and 35% reduction in the error of predicted mask bias when compared to conventional ML-OPC.

  18. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    Science.gov (United States)

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  19. Rational quadratic trigonometric Bézier curve based on new basis with exponential functions

    Directory of Open Access Journals (Sweden)

    Wu Beibei

    2017-06-01

    Full Text Available We construct a rational quadratic trigonometric Bézier curve with four shape parameters by introducing two exponential functions into the trigonometric basis functions in this paper. It has the similar properties as the rational quadratic Bézier curve. For given control points, the shape of the curve can be flexibly adjusted by changing the shape parameters and the weight. Some conics can be exactly represented when the control points, the shape parameters and the weight are chosen appropriately. The C0, C1 and C2 continuous conditions for joining two constructed curves are discussed. Some examples are given.

  20. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    Directory of Open Access Journals (Sweden)

    Alisson C. D. de Souza

    2014-09-01

    Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

  1. Mayer Transfer Operator Approach to Selberg Zeta Function

    DEFF Research Database (Denmark)

    Momeni, Arash; Venkov, Alexei

    . In a special situation the dynamical zeta function is defined for a geodesic flow on a hyperbolic plane quotient by an arithmetic cofinite discrete group. More precisely, the flow is defined for the corresponding unit tangent bundle. It turns out that the Selberg zeta function for this group can be expressed...... in terms of a Fredholm determinant of a classical transfer operator of the flow. The transfer operator is defined in a certain space of holomorphic functions and its matrix representation in a natural basis is given in terms of the Riemann zeta function and the Euler gamma function....

  2. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    Science.gov (United States)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the

  3. A machine learning approach for efficient uncertainty quantification using multiscale methods

    Science.gov (United States)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  4. Solution of volume-surface integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2007-01-01

    The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....

  5. DESIGNING ALGORITHMS FOR SERVICE ROBOTS ON THE BASIS OF MIVAR APPROACH

    Directory of Open Access Journals (Sweden)

    Alexey Andreevich Panferov

    2017-05-01

    Full Text Available Opportunities of mivar-based approach for robots have been analyzed. Mivar-based method of rapid logical inference for calculating random algorithms of service robot functioning has been tested successfully. The logical model of office robot-guide functioning with the application of mivar-based method of rapid logical inference in the software environment “KESMI” (Wi!Mi 1.1 has been developed. Formalized map of the office for service robot has been described in mivar matrix, 63 objects for 100 rules. Simulation of robot functioning in the software environment V-REP has been performed.

  6. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan; Liang, Faming; Mallick, Bani K.

    2013-01-01

    be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle

  7. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    Science.gov (United States)

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  8. A new approach to determine the environmental qualification requirements for the safety related equipment

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Parent, G.

    2000-01-01

    The objective of the environmental qualification of safety related equipment is to ensure that the plant defense-in-depth is not compromised by common mode failures following design basis accidents with a harsh environment. A new approach based on safety functions has been developed to determine what safety-related equipment is required to function during and after a design basis accident, as well as their environmental qualification requirements. The main feature of this approach is to use auxiliary safety functions established from safety requirements as credited in the safety analyses. This approach is undertaken in three steps: identification of the auxiliary safety functions of each main safety function; determination of the main equipment groups required for each auxiliary safety function; and review of the safety analyses for design basis accidents in order to determine the credited auxiliary safety functions and their mission times for each accident scenario. Some of the benefits of the proposed approach for the determination of the safety environmental qualification requirements are: a systematic approach for the review of safety analyses based on a safety function check list, and the insurance, with the availability of the safety functions, that Gentilly-2 defense-in-depth would not be compromised by design basis accidents with a harsh environment. (author)

  9. Wavelets as basis functions in electronic structure calculations

    International Nuclear Information System (INIS)

    Chauvin, C.

    2005-11-01

    This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)

  10. Machine learning of radial basis function neural network based on Kalman filter: Introduction

    Directory of Open Access Journals (Sweden)

    Vuković Najdan L.

    2014-01-01

    Full Text Available This paper analyzes machine learning of radial basis function neural network based on Kalman filtering. Three algorithms are derived: linearized Kalman filter, linearized information filter and unscented Kalman filter. We emphasize basic properties of these estimation algorithms, demonstrate how their advantages can be used for optimization of network parameters, derive mathematical models and show how they can be applied to model problems in engineering practice.

  11. Modelling of coil-loaded wire antenna using composite multiple domain basis functions

    CSIR Research Space (South Africa)

    Lysko, AA

    2010-03-01

    Full Text Available - tional Electromagnetics, Artech House, 2001. 3. Rogers, S. D. and C. M. Butler, \\An e–cient curved-wire integral equation solution technique," IEEE Trans. Ant. and Propag., 70{79, Vol. 49, Jan. 2001. 4. Mosig, J. and E. Suter, \\A multilevel divide.... 8. Wan, J. X., J. Lei, and C.-H. Liang, \\An e–cient analysis of large-scale periodic microstrip antenna arrays using the characteristic basis function method," Progress In Electromagnetics Research, PIER 50, 61{81, 2005. 9. Taguchi, M., K...

  12. Radial basis function neural networks with sequential learning MRAN and its applications

    CERN Document Server

    Sundararajan, N; Wei Lu Ying

    1999-01-01

    This book presents in detail the newly developed sequential learning algorithm for radial basis function neural networks, which realizes a minimal network. This algorithm, created by the authors, is referred to as Minimal Resource Allocation Networks (MRAN). The book describes the application of MRAN in different areas, including pattern recognition, time series prediction, system identification, control, communication and signal processing. Benchmark problems from these areas have been studied, and MRAN is compared with other algorithms. In order to make the book self-contained, a review of t

  13. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L =1

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-01

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  14. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  15. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  16. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    2017-12-01

    We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.

  17. Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    International Nuclear Information System (INIS)

    Al-Saidi, W.A.; Zhang Shiwei; Krakauer, Henry

    2006-01-01

    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with the system size as a low power. A QMC approach with auxiliary fields, in principle, allows an exact solution of the Schroedinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few millihartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled cluster with single and double excitations and with noniterative triples [CCSD(T)]. For stretched bonds in H 2 O, our method exhibits a better overall accuracy and a more uniform behavior than CCSD(T)

  18. Relaxation of functions of STO-3G and 6-31G* basis sets in the series of isoelectronic to LiF molecule

    International Nuclear Information System (INIS)

    Ermakov, A.I.; Belousov, V.V.

    2007-01-01

    Relaxation effect of functions of the basis sets (BS) STO-3G and 6-31G* on their equilibration in the series of isoelectron molecules: LiF, BeO, BN and C 2 is considered. Values of parameters (exponential factor of basis functions, orbital exponents of Gauss primitives and coefficients of their grouping) of basis functions in molecules are discovered using the criterion of minimum of energy by the unlimited Hartree-Fock method calculations (UHF) with the help of direct optimization of parameters: the simplex-method and Rosenbrock method. Certain schemes of optimization differing by the amount of varying parameters have been done. Interaction of basis functions parameters of concerned sets through medium values of the Gauss exponents is established. Effects of relaxation on the change of full energy and relative errors of the calculations of interatomic distances, normal oscillations frequencies, dissociation energy and other properties of molecules are considered. Change of full energy during the relaxation of basis functions (RBF) STO-3G and 6-31G* amounts 1100 and 80 kJ/mol correspondingly, and it is in need of the account during estimation of energetic characteristics, especially for systems with high-polar chemical bonds. The relaxation BS STO-3G practically in all considered cases improves description of molecular properties, whereas the relaxation BS 6-31G* lightly effects on its equilibration [ru

  19. A Functional Approach to User Guides

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2007-01-01

    to fulfil the requirements of users. By applying the functional approach lexicographers are forced to reconsider the scope of the user guide. The user guide has traditionally centred on the structures of entries - and consequently on the word list - but its scope should be widened, so as to include all......The functional approach opens up exciting new possibilities for theoretical and practical lexicography. It encourages lexicographers to adopt a new way of thinking when planning and compiling dictionaries and when discussing and developing new lexicographic principles. One area in which it impacts...... on lexicography and lexicographic products is the writing of a really crafted and valuable user guide for instance by giving increased consideration to the user perspective. This involves the identification of the functions of the dictionary in terms of communication-oriented and cognitive functions, which helps...

  20. Finite element transport using Wachspress rational basis functions on quadrilaterals in diffusive regions

    International Nuclear Information System (INIS)

    Davidson, G.; Palmer, T.S.

    2005-01-01

    In 1975, Wachspress developed basis functions that can be constructed upon very general zone shapes, including convex polygons and polyhedra, as well as certain zone shapes with curved sides and faces. Additionally, Adams has recently shown that weight functions with certain properties will produce solutions with full-resolution. Wachspress rational functions possess those necessary properties. Here we present methods to construct and integrate Wachspress rational functions on quadrilaterals. We also present an asymptotic analysis of a discontinuous finite element discretization on quadrilaterals, and we present 3 numerical results that confirm the predictions of our analysis. In the first test problem, we showed that Wachspress rational functions could give robust solutions for a strongly heterogeneous problem with both orthogonal and skewed meshes. This strongly heterogenous problem contained thick, diffusive regions, and the discretization provided full-resolution solutions. In the second test problem, we confirmed our asymptotic analysis by demonstrating that the transport solution will converge to the diffusion solution as the problem is made increasingly thick and diffusive. In the third test problem, we demonstrated that bilinear discontinuous based transport and Wachspress rational function based transport converge in the one-mesh limit

  1. Localifecation of variable-basis topological systems | Solovyov ...

    African Journals Online (AJOL)

    The paper provides another approach to the notion of variable-basis topological system generalizing the fixed-basis concept of S. Vickers, considers functorial relationships between the categories of modified variable-basis topological systems and variable-basis fuzzy topological spaces in the sense of S.E. Rodabaugh ...

  2. Current-voltage curves for molecular junctions computed using all-electron basis sets

    International Nuclear Information System (INIS)

    Bauschlicher, Charles W.; Lawson, John W.

    2006-01-01

    We present current-voltage (I-V) curves computed using all-electron basis sets on the conducting molecule. The all-electron results are very similar to previous results obtained using effective core potentials (ECP). A hybrid integration scheme is used that keeps the all-electron calculations cost competitive with respect to the ECP calculations. By neglecting the coupling of states to the contacts below a fixed energy cutoff, the density matrix for the core electrons can be evaluated analytically. The full density matrix is formed by adding this core contribution to the valence part that is evaluated numerically. Expanding the definition of the core in the all-electron calculations significantly reduces the computational effort and, up to biases of about 2 V, the results are very similar to those obtained using more rigorous approaches. The convergence of the I-V curves and transmission coefficients with respect to basis set is discussed. The addition of diffuse functions is critical in approaching basis set completeness

  3. DESIGNING ALGORITHMS FOR SOLVING PHYSICS PROBLEMS ON THE BASIS OF MIVAR APPROACH

    Directory of Open Access Journals (Sweden)

    Dmitry Alekseevich Chuvikov

    2017-05-01

    Full Text Available The paper considers the process of designing algorithms for solving physics problems on the basis of mivar approach. The work also describes general principles of mivar theory. The concepts of parameter, relation and class in mivar space are considered. There are descriptions of properties which every object in Wi!Mi model should have. An experiment in testing capabilities of the Wi!Mi software has been carried out, thus the model has been designed which solves physics problems from year 8 school course in Russia. To conduct the experiment a new version of Wi!Mi 2.1 software has been used. The physics model deals with the following areas: thermal phenomena, electric and electromagnetic phenomena, optical phenomena.

  4. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Gaigong [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720 (United States); Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Hu, Wei, E-mail: whu@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Pask, John E., E-mail: pask1@llnl.gov [Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2017-04-15

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  5. Binary operators and their Green's functions

    International Nuclear Information System (INIS)

    Sheff, J.R.

    1982-01-01

    Three topics are considered. First, the Langevin approach to neutron noise is used as a basis and guide to develop solutions and solution techniques for the ChapmanKolmogorov forward equation approach to neutron noise. The approach followed throughout this first part is that of solution by means of Green's functions. A particular form for the binary operator Green's function was picked on the basis of the Langevin method. Second, the basic solution technique using the particular Green's function form mentioned above is proven to be a correct and a general result. It is proven that the binary operator is always separable and that the Green's function could be written as the product of two single operator Green's functions. This is a new result. Third and finally, the forward equation approach of Chapman-Kolmogorov is generalized to include time allowing differential equations for second and higher order correlation functions to be developed directly. The principal result of the last section, the differential equation for correlation function of the neutron density, is new. Its derivation is really outside of or broader than the scope indicated by the title of the paper

  6. Prohibition as ontological basis of the Russian legal reality

    Directory of Open Access Journals (Sweden)

    Andrey V. Skorobogatov

    2016-09-01

    Full Text Available Objective to identify characteristics of the nature content and functioning of prohibition in the legal reality of Russia. nbsp Methods the methodological basis of research is the dialectical approach to cognition of social phenomena allowing to analyze them in historical development and functioning in the context of the totality of objective and subjective factors as well as a postmodern paradigm giving the opportunity to explore the legal reality at different levels. Dialectical approach and postmodern paradigm determined the choice of specific research methods comparative hermeneutic discursive. Results the paper proposes a definition of prohibition as a state socio volitional constraining limiting means that under the threat of legal liability is intended to prevent the wrongful act of the subject physical or legal entity and ensure the maintenance of law and order. Prohibition is a necessary means of ensuring the discipline of public relations and the consolidation of legal values designed to assure the effectiveness of legal regulation. Scientific novelty for the first time the article shows that prohibition as a legal category is the ontological basis of legal reality and acts as a determining factor in the content and focus not only of lawmaking and law enforcement but legal behavior as well. Practical significance the main provisions and conclusions of the article can be used in research and teaching when considering questions about the nature content and functioning of prohibitions.

  7. The neural basis of human social values: evidence from functional MRI.

    Science.gov (United States)

    Zahn, Roland; Moll, Jorge; Paiva, Mirella; Garrido, Griselda; Krueger, Frank; Huey, Edward D; Grafman, Jordan

    2009-02-01

    Social values are composed of social concepts (e.g., "generosity") and context-dependent moral sentiments (e.g., "pride"). The neural basis of this intricate cognitive architecture has not been investigated thus far. Here, we used functional magnetic resonance imaging while subjects imagined their own actions toward another person (self-agency) which either conformed or were counter to a social value and were associated with pride or guilt, respectively. Imagined actions of another person toward the subjects (other-agency) in accordance with or counter to a value were associated with gratitude or indignation/anger. As hypothesized, superior anterior temporal lobe (aTL) activity increased with conceptual detail in all conditions. During self-agency, activity in the anterior ventromedial prefrontal cortex correlated with pride and guilt, whereas activity in the subgenual cingulate solely correlated with guilt. In contrast, indignation/anger activated lateral orbitofrontal-insular cortices. Pride and gratitude additionally evoked mesolimbic and basal forebrain activations. Our results demonstrate that social values emerge from coactivation of stable abstract social conceptual representations in the superior aTL and context-dependent moral sentiments encoded in fronto-mesolimbic regions. This neural architecture may provide the basis of our ability to communicate about the meaning of social values across cultural contexts without limiting our flexibility to adapt their emotional interpretation.

  8. Configuration interaction wave functions: A seniority number approach

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-01-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure

  9. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  10. Sturmian functions in a L{sup 2} basis: Critical nuclear charge for N-electron atoms

    Energy Technology Data Exchange (ETDEWEB)

    Frapiccini, A.L. [Departamento de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)], E-mail: afrapic@uns.edu.ar; Gasaneo, G. [Departamento de Fisica, Universidad Nacional del Sur, Bahia Blanca (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Colavecchia, F.D. [Centro Atomico Bariloche, San Carlos de Bariloche, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Mitnik, D. [Instituto de Astronomia y Fisica del Espacio and, Departamento de Fisica, Universidad de Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2007-10-15

    Two particle Sturmian functions [M. Rotenberg, Ann. Phys., NY 19 (1962) 262; S.V. Khristenko, Theor. Math. Fiz. 22 (1975) 31 (Engl. Transl. Theor. Math. Phys. 22, 21)] for a short range potentials are obtained by expanding the solution of the Schroedinger equation in a finite L{sup 2}Laguerre-type basis. These functions are chosen to satisfy certain boundary conditions, such as regularity at the origin and the correct asymptotic behavior according to the energy domain: exponential decay for negative energy and outgoing (incoming or standing wave) for positive energy. The set of eigenvalues obtained is discrete for both positive and negative energies. This Sturmian basis is used to solve the Schroedinger equation for a one-particle model potential [A.V. Sergeev, S. Kais, J. Quant. Chem. 75 (1999) 533] to describe the motion of a loosely bound electron in a multielectron atom. Values of the two parameters of the potential are computed to represent the Helium isoelectronic series and the critical nuclear charge Z{sub c} is found, in good agreement with previous calculations.

  11. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  12. Estimating Function Approaches for Spatial Point Processes

    Science.gov (United States)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting

  13. Least square fitting of low resolution gamma ray spectra with cubic B-spline basis functions

    International Nuclear Information System (INIS)

    Zhu Menghua; Liu Lianggang; Qi Dongxu; You Zhong; Xu Aoao

    2009-01-01

    In this paper, the least square fitting method with the cubic B-spline basis functions is derived to reduce the influence of statistical fluctuations in the gamma ray spectra. The derived procedure is simple and automatic. The results show that this method is better than the convolution method with a sufficient reduction of statistical fluctuation. (authors)

  14. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  15. Defining mental disorder. Exploring the 'natural function' approach.

    Science.gov (United States)

    Varga, Somogy

    2011-01-21

    Due to several socio-political factors, to many psychiatrists only a strictly objective definition of mental disorder, free of value components, seems really acceptable. In this paper, I will explore a variant of such an objectivist approach to defining metal disorder, natural function objectivism. Proponents of this approach make recourse to the notion of natural function in order to reach a value-free definition of mental disorder. The exploration of Christopher Boorse's 'biostatistical' account of natural function (1) will be followed an investigation of the 'hybrid naturalism' approach to natural functions by Jerome Wakefield (2). In the third part, I will explore two proposals that call into question the whole attempt to define mental disorder (3). I will conclude that while 'natural function objectivism' accounts fail to provide the backdrop for a reliable definition of mental disorder, there is no compelling reason to conclude that a definition cannot be achieved.

  16. Improvement of methodical approaches to higher schools' marketing activity assessment on the basis of Internet technologies application

    OpenAIRE

    Elizaveta E. Tarasova; Evgeny A. Shein

    2014-01-01

    The paper substantiates the necessity of higher schools marketing activity developing on the basis of Internet technologies; suggests the technique of comprehensive assessment of functioning and quality of the site as the main tool of marketing activity on the Internet, substantiates the stages of its implementation and provides the approbation results; suggests strategic directions for the improvement of functioning and quality improvement of a higher school site, which makes it possible to ...

  17. Interregional Knowledge Management Workshop on Life Cycle Management of Design Basis Information. Issues, Challenges, Approaches

    International Nuclear Information System (INIS)

    Šula, Radek

    2013-01-01

    Introduction and objectives: • It is evident that the design basis area is from the point of view of knowledge sharing extremely complicated. • Time is changing and puts on us ever greater demands. • We have to analyze the near and remote surroundings and have to simplified the problem of knowledge sharing in that area. • I believe that it is graspable task for knowledge management and I will try to outline some possible context and approaches

  18. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  19. The Gaussian radial basis function method for plasma kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  20. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study.

    Science.gov (United States)

    Wang, Ping; Zhu, Xing-Ting; Qi, Zhigang; Huang, Silin; Li, Hui-Jie

    2017-01-01

    Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI) study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs) and twenty non-video game players (NVGPs) of 60 years of age or older participated in the present study, and there are no significant differences in age ( t = 0.62, p = 0.536), gender ratio ( t = 1.29, p = 0.206) and years of education ( t = 1.92, p = 0.062) between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  1. Neural Basis of Enhanced Executive Function in Older Video Game Players: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2017-11-01

    Full Text Available Video games have been found to have positive influences on executive function in older adults; however, the underlying neural basis of the benefits from video games has been unclear. Adopting a task-based functional magnetic resonance imaging (fMRI study targeted at the flanker task, the present study aims to explore the neural basis of the improved executive function in older adults with video game experiences. Twenty video game players (VGPs and twenty non-video game players (NVGPs of 60 years of age or older participated in the present study, and there are no significant differences in age (t = 0.62, p = 0.536, gender ratio (t = 1.29, p = 0.206 and years of education (t = 1.92, p = 0.062 between VGPs and NVGPs. The results show that older VGPs present significantly better behavioral performance than NVGPs. Older VGPs activate greater than NVGPs in brain regions, mainly in frontal-parietal areas, including the right dorsolateral prefrontal cortex, the left supramarginal gyrus, the right angular gyrus, the right precuneus and the left paracentral lobule. The present study reveals that video game experiences may have positive influences on older adults in behavioral performance and the underlying brain activation. These results imply the potential role that video games can play as an effective tool to improve cognitive ability in older adults.

  2. On grouping individual wire segments into equivalent wires or chains, and introduction of multiple domain basis functions

    CSIR Research Space (South Africa)

    Lysko, AA

    2009-06-01

    Full Text Available The paper introduces a method to cover several wire segments with a single basis function, describes related practical algorithms, and gives some results. The process involves three steps: identifying chains of wire segments, splitting the chains...

  3. The Economic Security of Bank: Theoretical Basis and Systemic Approach

    Directory of Open Access Journals (Sweden)

    Gavlovska Nataliia I.

    2017-07-01

    Full Text Available The article analyzes the existing approaches to interpreting the category of «economic security of bank». A author’s own definition of the concept of «economic security of bank» has been proposed, which should be understood as condition of protecting the vital interests of bank, achieved by harmonizing relationships with the entities of external influence and optimizing the internal system processes, thus enabling efficient function as well as development by means of an adaptation mechanism. A number of approaches to understanding the substance of the above concept has been allocated and their main characteristics have been provided. The need to study the specifics of interaction of banking institutions with the external environment in the context of interaction between the State agents and market actors has been underlined. Features of formation of the term of «system» have been defined, three main groups of approaches to interpretation of the term have been provided. A author’s own definition of the concept of «economic security system of bank» has been proposed. A concrete definition of principles for building an economic security system of bank has been provided.

  4. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    CERN Document Server

    Massobrio, C

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm sup - sup 1). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm sup - sup 1 to -300 cm sup - sup 1. The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and r...

  5. Localized orbitals vs. pseudopotential-plane waves basis sets: performances and accuracy for molecular magnetic systems

    International Nuclear Information System (INIS)

    Massobrio, C.; Ruiz, E.

    2003-01-01

    Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbital, has become the method of choice for calculating the exchange-couplings in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50-300 cm -1 ). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm -1 to -300 cm -1 . The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably employed to predict and rationalize the magnetic properties of molecular-based materials. (author)

  6. Defining mental disorder. Exploring the 'natural function' approach

    Directory of Open Access Journals (Sweden)

    Varga Somogy

    2011-01-01

    Full Text Available Abstract Due to several socio-political factors, to many psychiatrists only a strictly objective definition of mental disorder, free of value components, seems really acceptable. In this paper, I will explore a variant of such an objectivist approach to defining metal disorder, natural function objectivism. Proponents of this approach make recourse to the notion of natural function in order to reach a value-free definition of mental disorder. The exploration of Christopher Boorse's 'biostatistical' account of natural function (1 will be followed an investigation of the 'hybrid naturalism' approach to natural functions by Jerome Wakefield (2. In the third part, I will explore two proposals that call into question the whole attempt to define mental disorder (3. I will conclude that while 'natural function objectivism' accounts fail to provide the backdrop for a reliable definition of mental disorder, there is no compelling reason to conclude that a definition cannot be achieved.

  7. Introducing linear functions: an alternative statistical approach

    Science.gov (United States)

    Nolan, Caroline; Herbert, Sandra

    2015-12-01

    The introduction of linear functions is the turning point where many students decide if mathematics is useful or not. This means the role of parameters and variables in linear functions could be considered to be `threshold concepts'. There is recognition that linear functions can be taught in context through the exploration of linear modelling examples, but this has its limitations. Currently, statistical data is easily attainable, and graphics or computer algebra system (CAS) calculators are common in many classrooms. The use of this technology provides ease of access to different representations of linear functions as well as the ability to fit a least-squares line for real-life data. This means these calculators could support a possible alternative approach to the introduction of linear functions. This study compares the results of an end-of-topic test for two classes of Australian middle secondary students at a regional school to determine if such an alternative approach is feasible. In this study, test questions were grouped by concept and subjected to concept by concept analysis of the means of test results of the two classes. This analysis revealed that the students following the alternative approach demonstrated greater competence with non-standard questions.

  8. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cé cile

    2012-01-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper

  9. Systems approach to waste management in developing countries

    International Nuclear Information System (INIS)

    Johnson, E. R.

    1991-01-01

    A systems engineering approach to the development of waste management facilities is described which may prove to be useful for developing countries. Basically the approach involves a determination of performance objectives, the functions necessary to achieve the objectives, the constraints involved, and the basic facility requirements necessary to accomplish the functions. The foregoing provides the basis for developing a set of descriptions and associated requirements for the overall system as well as for elements of the system at different hierarchical levels. These in turn provide the basis for initiation of design and subsequently construction of the facilities involved. The operation of the approach is illustrated for a hypothetical low level waste processing system

  10. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials.

    Science.gov (United States)

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2011-02-14

    A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.

  11. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    Science.gov (United States)

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  12. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    Science.gov (United States)

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  13. Model's sparse representation based on reduced mixed GMsFE basis methods

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn [Institute of Mathematics, Hunan University, Changsha 410082 (China); Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn [College of Mathematics and Econometrics, Hunan University, Changsha 410082 (China)

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in

  14. The cognitivist approach to the development of functional thinking of junior elementary school students

    Directory of Open Access Journals (Sweden)

    Mićanović Veselin

    2015-01-01

    Full Text Available The paper deals with the cognitivist approach to the development of functional thinking from the period of preschool and early school age. Some recent scientific results on the capacity of child's brain undoubtedly indicate the fact that the experience that children receive on a daily basis, the way they receive and respond to the outside impressions and the stimuli to which they react shape their brain and influence the development of their general personality. A continuous fight for dominance takes place among the brain neurons, the result of which is creation the new connections between active neurons and new brain controls. The principal intention of the author is to stress the importance of a correct approach to an early-age development at the point of which the most intense development of the brain cells takes place and the paths for the total development of personality are traced out. Therefore, what happens to a child in this period is consequential for further development. The goal of this work is to stress that total cognitive development is conditioned by the development thinking at an early age. Therefore, the way we stimulate the child's functional thinking at an early pre-school age is extremely important and requires a more serious approach. Logical tasks and problem-solving situations are of special importance for the development of logical cognitive structures. The child's natural and social environments stimulate several sensory cooperative activities and increase the impact on perception, thus increasing a number of synapses. A methodological approach to activities to result in a functional thinking of children at an early age should be developed in such a way as to satisfy some higher demands than is the case with the current ones, i.e. it should stimulate children's further cognitive development.

  15. A new diffusion nodal method based on analytic basis function expansion

    International Nuclear Information System (INIS)

    Noh, J.M.; Cho, N.Z.

    1993-01-01

    The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node

  16. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Jonathon [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Neaton, Jeffrey B. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States); Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-21

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.

  17. Advanced Test Reactor Safety Basis Upgrade Lessons Learned Relative to Design Basis Verification and Safety Basis Management

    International Nuclear Information System (INIS)

    G. L. Sharp; R. T. McCracken

    2004-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The reactor also provides other irradiation services such as radioisotope production. The ATR and its support facilities are located at the Test Reactor Area of the Idaho National Engineering and Environmental Laboratory (INEEL). An audit conducted by the Department of Energy's Office of Independent Oversight and Performance Assurance (DOE OA) raised concerns that design conditions at the ATR were not adequately analyzed in the safety analysis and that legacy design basis management practices had the potential to further impact safe operation of the facility.1 The concerns identified by the audit team, and issues raised during additional reviews performed by ATR safety analysts, were evaluated through the unreviewed safety question process resulting in shutdown of the ATR for more than three months while these concerns were resolved. Past management of the ATR safety basis, relative to facility design basis management and change control, led to concerns that discrepancies in the safety basis may have developed. Although not required by DOE orders or regulations, not performing design basis verification in conjunction with development of the 10 CFR 830 Subpart B upgraded safety basis allowed these potential weaknesses to be carried forward. Configuration management and a clear definition of the existing facility design basis have a direct relation to developing and maintaining a high quality safety basis which properly identifies and mitigates all hazards and postulated accident conditions. These relations and the impact of past safety basis management practices have been reviewed in order to identify lessons learned from the safety basis upgrade process and appropriate actions to resolve possible concerns with respect to the current ATR safety

  18. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  19. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    Science.gov (United States)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  20. Transient management using the safety function approach

    International Nuclear Information System (INIS)

    Corcoran, W.R.; Barrow, J.H.; Bischoff, G.C.; Callaghan, V.M.; Pearce, R.T.

    1984-01-01

    The safety function approach is described. Its use in the development of a transient management procedures system includes optimal recovery procedures tailored to specific, anticipated symptom sets and a functional recovery procedure which is more general. Simulator evaluations are described

  1. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    Science.gov (United States)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  2. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    Science.gov (United States)

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  3. Interface information transfer between non-matching, nonconforming interfaces using radial basis function interpolation

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2016-10-01

    Full Text Available words, gB = [ φBA PB ] [ MAA PA P TA 0 ]−1 [ gA 0 ] . (15) NAME: DEFINITION C0 compactly supported piecewise polynomial (C0): (1− (||x|| /r))2+ C2 compactly supported piecewise polynomial (C2): (1− (||x|| /r))4+ (4 (||x|| /r) + 1) Thin-plate spline (TPS... a numerical comparison to Kriging and the moving least-squares method, see Krishnamurthy [16]). RBF interpolation is based on fitting a series of splines, or basis functions to interpolate information from one point cloud to another. Let us assume we...

  4. Cellular and molecular basis of chronic constipation: taking the functional/idiopathic label out.

    Science.gov (United States)

    Bassotti, Gabrio; Villanacci, Vincenzo; Creţoiu, Dragos; Creţoiu, Sanda Maria; Becheanu, Gabriel

    2013-07-14

    In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called "functional" or "idiopathic" disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of "functional" gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors' work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality.

  5. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems

    Directory of Open Access Journals (Sweden)

    Richard W. Merritt

    2016-06-01

    Full Text Available Over fifty years of research on freshwater macroinvertebrates has been driven largely by the state of the taxonomy of these organisms. Significant advances have been and continue to be made in developing ever more refined keys to macroinvertebrate groups. When advances in macroinvertebrate ecological research are restricted by the level of detail in identifications, then analysis by function is a viable alternative. The focus on function, namely adaptations of macroinvertebrates to habitats and the utilization of food resources, has facilitated ecological evaluation of freshwater ecosystems. This classification is based not on what insects eat, but how they obtain their food. These categories are called 'functional feeding groups', as the name implies, denoting their functional role when describing how and where they feed. This is the basis for the functional feeding group (FFG method that was initially developed in the early 1960s. Taxonomy is applied only to the level of detail that allows assignment to one of five functional feeding group categories: detrital shredders, scrapers, filtering collectors, gatherers, and predators. The aim of this short communication, originating from the presentation of R.W. Merritt at the Biomonitoring Symposium in Rome, 2015, is to promote the use of a functional approach in biomonitoring, especially in Italian and European lotic systems. Here, we present two case studies and we discuss the advantages of the method, especially considering the great availability of quantitative data on macroinvertebrates after the implementation of the WFD 2000/60. We are confident that the increase of functional assessment of ecosystem attributes could have important and direct repercussions in the understanding and management of running waters.

  6. REFORMASI SISTEM AKUNTANSI CASH BASIS MENUJU SISTEM AKUNTANSI ACCRUAL BASIS

    Directory of Open Access Journals (Sweden)

    Yuri Rahayu

    2016-03-01

    Full Text Available Abstract –  Accounting reform movement was born with the aim of structuring the direction of improvement . This movement is characterized by the enactment of the Act of 2003 and Act 1 of 2004, which became the basis of the birth of Government Regulation No.24 of 2005 on Government Accounting Standards ( SAP . The general,  accounting is based on two systems,  the cash basis  and the accrual basis. The facts speak far students still at problem with differences to the two methods that result in a lack of understanding on the treatment system for recording. The purpose method of research is particularly relevant to student references who are learning basic accounting so that it can provide information and more meaningful understanding of the accounting method cash basis and Accrual basis. This research was conducted through a normative approach, by tracing the document that references a study/library that combines source of reference that can be believed either from books and the internet are processed with a foundation of knowledge and experience of the author. The conclusion can be drawn that basically to be able to understand the difference of the system and the Cash Basis accrual student base treatment requires an understanding of both methods. To be able to have the ability and understanding of both systems required reading exercises and reference sources.   Keywords : Reform, cash basis, accrual basis   Abstrak - Gerakan reformasi akuntansi dilahirkan dengan tujuan penataan ke arah perbaikan. Gerakan ini  ditandai dengan dikeluarkannya  Undang-Undang tahun 2003 dan Undang-Undang No.1 Tahun 2004  yang menjadi dasar lahirnya Peraturan Pemerintah No.24 Tahun 2005 tentang Standar Akuntansi Pemerintah (SAP . Pada umumnya pencatatan akuntansi di dasarkan pada dua sistem yaitu basis kas (Cash Basis dan basis akrual  (Accrual Basis. Fakta berbicara Selama ini mahasiswa masih dibinggungkan dengan perbedaan ke dua metode itu sehingga

  7. CULTUROLOGICAL APPROACH AS METHODOLOGICAL BASIS OF MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Ye. A. Perminov

    2017-01-01

    literacy have the extreme humanitarian importance, since their existence either indirectly or sometimes directly influences quality of life of any person and society in general. The most in-demand, significant and obligatory thematic and methodological components of mathematical education are highlighted: mathematical modeling, discrete mathematics and computing processes. The principle of a cultural conformity and a harmonious combination of the culturological and artfundamentals of mathematical education are emphasized as the basic educational principles, the use of which is capable to improve and raise the level of mathematical culture of the Russian society on a new, higher position.The evidence from this study points towards the idea that effective functioning of the system of mathematical education is impossible without the qualified, well prepared staff who are not only professionals in the subject sphere, but also bearers of high pedagogical culture. Moral and ethical, communicative and individual, and personal components of pedagogical culture of a teacher-mathematician are characterized.Practical significance. The author is convinced that introduction of the proposed concept of mathematical education based on culturological approach to its contents and the organization will help to overcome the disproportions existing today in mathematical education between integration and subject differentiation of a training material, technologization of educational process and preservation of traditional methods of training, fundamentalization of knowledge and competence-based approach to it, etc.Materials of the publication can be useful for future and practising teachers of mathematics and allied sciences, as well as for other categories of the educators engaged in the organization and advance of mathematical education and promotion of mathematical knowledge.

  8. Molecular basis sets - a general similarity-based approach for representing chemical spaces.

    Science.gov (United States)

    Raghavendra, Akshay S; Maggiora, Gerald M

    2007-01-01

    A new method, based on generalized Fourier analysis, is described that utilizes the concept of "molecular basis sets" to represent chemical space within an abstract vector space. The basis vectors in this space are abstract molecular vectors. Inner products among the basis vectors are determined using an ansatz that associates molecular similarities between pairs of molecules with their corresponding inner products. Moreover, the fact that similarities between pairs of molecules are, in essentially all cases, nonzero implies that the abstract molecular basis vectors are nonorthogonal, but since the similarity of a molecule with itself is unity, the molecular vectors are normalized to unity. A symmetric orthogonalization procedure, which optimally preserves the character of the original set of molecular basis vectors, is used to construct appropriate orthonormal basis sets. Molecules can then be represented, in general, by sets of orthonormal "molecule-like" basis vectors within a proper Euclidean vector space. However, the dimension of the space can become quite large. Thus, the work presented here assesses the effect of basis set size on a number of properties including the average squared error and average norm of molecular vectors represented in the space-the results clearly show the expected reduction in average squared error and increase in average norm as the basis set size is increased. Several distance-based statistics are also considered. These include the distribution of distances and their differences with respect to basis sets of differing size and several comparative distance measures such as Spearman rank correlation and Kruscal stress. All of the measures show that, even though the dimension can be high, the chemical spaces they represent, nonetheless, behave in a well-controlled and reasonable manner. Other abstract vector spaces analogous to that described here can also be constructed providing that the appropriate inner products can be directly

  9. Selection of design basis event for modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Nakagawa, Shigeaki; Ohashi, Hirofumi

    2016-06-01

    Japan Atomic Energy Agency (JAEA) has been investigating safety requirements and basic approach of safety guidelines for modular High Temperature Gas-cooled Reactor (HTGR) aiming to increase internarial contribution for nuclear safety by developing an international HTGR safety standard under International Atomic Energy Agency. In this study, we investigate a deterministic approach to select design basis events utilizing information obtained from probabilistic approach. In addition, selections of design basis events are conducted for commercial HTGR designed by JAEA. As a result, an approach for selecting design basis event considering multiple failures of safety systems is established which has not been considered as design basis in the safety guideline for existing nuclear facility. Furthermore, selection of design basis events for commercial HTGR has completed. This report provides an approach and procedure for selecting design basis events of modular HTGR as well as selected events for the commercial HTGR, GTHTR300. (author)

  10. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    Science.gov (United States)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  11. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  12. Functional integral approach to classical statistical dynamics

    International Nuclear Information System (INIS)

    Jensen, R.V.

    1980-04-01

    A functional integral method is developed for the statistical solution of nonlinear stochastic differential equations which arise in classical dynamics. The functional integral approach provides a very natural and elegant derivation of the statistical dynamical equations that have been derived using the operator formalism of Martin, Siggia, and Rose

  13. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  14. The Methodical Approach to Assessment of Enterprise Activity on the Basis of its Models, Based on the Balanced Scorecard

    Directory of Open Access Journals (Sweden)

    Minenkova Olena V.

    2017-12-01

    Full Text Available The article proposes the methodical approach to assessment of activity of enterprise on the basis of its models, based on the balanced scorecard. The content is presented and the following components of the methodical approach are formed: tasks, input information, list of methods and models, as well as results. Implementation of this methodical approach provides improvement of management and increase of results of enterprise activity. The place of assessment models in management of enterprise activity and formation of managerial decision has been defined. Recommendations as to the operations of decision-making procedures to increase the efficiency of enterprise have been provided.

  15. Disturbance observer that uses radial basis function networks for the low speed control of a servo motor

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Bae, C.H.; Blaabjerg, Frede

    2005-01-01

    A scheme to estimate the moment of inertia in a servo motor drive system at very low speed is proposed. The typical speed estimation scheme used in most servo systems operated at low speed is highly sensitive to variations in the moment of inertia. An observer that uses a radial basis function...

  16. The physiological basis and application of renal radionuclide studies

    International Nuclear Information System (INIS)

    Britton, K.E.

    1983-01-01

    A knowledge of the basic physiology of the kidney is essential for an understanding of the application of radionuclide studies in clinical practice. A knowledge of the physiology of the kidney allows one to develop physiological models that are isomorphic and then apply the appropriate type of data analysis in relationship to these models. In this way mistakes in the type of analysis can be avoided and a strong basis for the interpretation of renal radionuclide studies in health and disease is thereby provided. Methods for measuring total renal function, the contribution of each kidney to total renal function, the presence or absence of obstructive nephropathy and the determination of the relative flows to the cortical and juxtamedullary nephrons are given as examples of this approach. (author)

  17. BWR NSSS design basis documentation

    International Nuclear Information System (INIS)

    Vij, R.S.; Bates, R.E.

    2004-01-01

    programs that GE has participated in and describes the different options and approaches that have been used by various utilities in their design basis programs. Some of these variations deal with the scope and depth of coverage of the information, while others are related to the process (how the work is done). Both of these topics can have a significant effect on the program cost. Some insight into these effects is provided. The final section of the paper presents a set of lessons learned and a recommendation for an optimum approach to a design basis information program. The lessons learned reflect the knowledge that GE has gained by participating in design basis programs with nineteen domestic and international BWR owner/operators. The optimum approach described in this paper is GE's attempt to define a set of information and a work process for a utility/GE NSSS Design Basis Information program that will maximize the cost effectiveness of the program for the utility. (author)

  18. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan

    2013-09-26

    We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.

  19. Global and Regional Gravity Field Determination from GOCE Kinematic Orbit by Means of Spherical Radial Basis Functions

    Czech Academy of Sciences Publication Activity Database

    Bucha, B.; Bezděk, Aleš; Sebera, Josef; Janak, J.

    2015-01-01

    Roč. 36, č. 6 (2015), s. 773-801 ISSN 0169-3298 R&D Projects: GA ČR GA13-36843S Grant - others:SAV(SK) VEGA 1/0954/15 Institutional support: RVO:67985815 Keywords : spherical radial basis functions * spherical harmonics * geopotential Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.622, year: 2015

  20. An Approach for Integrating the Prioritization of Functional and Nonfunctional Requirements

    Directory of Open Access Journals (Sweden)

    Mohammad Dabbagh

    2014-01-01

    Full Text Available Due to the budgetary deadlines and time to market constraints, it is essential to prioritize software requirements. The outcome of requirements prioritization is an ordering of requirements which need to be considered first during the software development process. To achieve a high quality software system, both functional and nonfunctional requirements must be taken into consideration during the prioritization process. Although several requirements prioritization methods have been proposed so far, no particular method or approach is presented to consider both functional and nonfunctional requirements during the prioritization stage. In this paper, we propose an approach which aims to integrate the process of prioritizing functional and nonfunctional requirements. The outcome of applying the proposed approach produces two separate prioritized lists of functional and non-functional requirements. The effectiveness of the proposed approach has been evaluated through an empirical experiment aimed at comparing the approach with the two state-of-the-art-based approaches, analytic hierarchy process (AHP and hybrid assessment method (HAM. Results show that our proposed approach outperforms AHP and HAM in terms of actual time-consumption while preserving the quality of the results obtained by our proposed approach at a high level of agreement in comparison with the results produced by the other two approaches.

  1. An approach for integrating the prioritization of functional and nonfunctional requirements.

    Science.gov (United States)

    Dabbagh, Mohammad; Lee, Sai Peck

    2014-01-01

    Due to the budgetary deadlines and time to market constraints, it is essential to prioritize software requirements. The outcome of requirements prioritization is an ordering of requirements which need to be considered first during the software development process. To achieve a high quality software system, both functional and nonfunctional requirements must be taken into consideration during the prioritization process. Although several requirements prioritization methods have been proposed so far, no particular method or approach is presented to consider both functional and nonfunctional requirements during the prioritization stage. In this paper, we propose an approach which aims to integrate the process of prioritizing functional and nonfunctional requirements. The outcome of applying the proposed approach produces two separate prioritized lists of functional and non-functional requirements. The effectiveness of the proposed approach has been evaluated through an empirical experiment aimed at comparing the approach with the two state-of-the-art-based approaches, analytic hierarchy process (AHP) and hybrid assessment method (HAM). Results show that our proposed approach outperforms AHP and HAM in terms of actual time-consumption while preserving the quality of the results obtained by our proposed approach at a high level of agreement in comparison with the results produced by the other two approaches.

  2. Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems

    Science.gov (United States)

    Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric

    We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.

  3. Combining formal and functional approaches to topic structure

    NARCIS (Netherlands)

    Zellers, M.; Post, B.

    2012-01-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this

  4. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Dabrowska, Dominika; Sadikoglu, Fahreddin

    2017-05-01

    As an innovation, both black box and physical-based models were incorporated into simulating groundwater flow and contaminant transport. Time series of groundwater level (GL) and chloride concentration (CC) observed at different piezometers of study plain were firstly de-noised by the wavelet-based de-noising approach. The effect of de-noised data on the performance of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) was evaluated. Wavelet transform coherence was employed for spatial clustering of piezometers. Then for each cluster, ANN and ANFIS models were trained to predict GL and CC values. Finally, considering the predicted water heads of piezometers as interior conditions, the radial basis function as a meshless method which solves partial differential equations of GFCT, was used to estimate GL and CC values at any point within the plain where there is not any piezometer. Results indicated that efficiency of ANFIS based spatiotemporal model was more than ANN based model up to 13%.

  5. Radial basis functions in mathematical modelling of flow boiling in minichannels

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2017-01-01

    Full Text Available The paper addresses heat transfer processes in flow boiling in a vertical minichannel of 1.7 mm depth with a smooth heated surface contacting fluid. The heated element for FC-72 flowing in a minichannel was a 0.45 mm thick plate made of Haynes-230 alloy. An infrared camera positioned opposite the central, axially symmetric part of the channel measured the plate temperature. K-type thermocouples and pressure converters were installed at the inlet and outlet of the minichannel. In the study radial basis functions were used to solve a problem concerning heat transfer in a heated plate supplied with the controlled direct current. According to the model assumptions, the problem is treated as twodimensional and governed by the Poisson equation. The aim of the study lies in determining the temperature field and the heat transfer coefficient. The results were verified by comparing them with those obtained by the Trefftz method.

  6. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  7. Functional approaches in translation studies in Germany Functional approaches in translation studies in Germany

    Directory of Open Access Journals (Sweden)

    Paul Kussmaul

    2008-04-01

    Full Text Available In the early phase of translation studies in Germany, contrastive linguistics played a major role. I shall briefly describe this approach so that the functional approach will become clearer by contrast. Influenced by the representatives of stylistique comparée, Vinay/Darbelnet (1968 Wolfram Wilss, for instance, in his early work (1971, 1977 makes frequent use of the notion transposition (German “Ausdrucksverschiebung“, cf. also Catford’s (1965 term shift. As a whole, of course, Wilss’ work has a much broader scope. More recently, he has investigated the role of cognition (1988 and the various factors in translator behaviour (1996. Nevertheless, transposition is still a very important and useful notion in describing the translation process. The need for transpositions arises when there is no possibility of formal one-to-one correspondence between source and target-language structures. The basic idea is that whenever there is a need for transposition, we are faced with a translation problem. In the early phase of translation studies in Germany, contrastive linguistics played a major role. I shall briefly describe this approach so that the functional approach will become clearer by contrast. Influenced by the representatives of stylistique comparée, Vinay/Darbelnet (1968 Wolfram Wilss, for instance, in his early work (1971, 1977 makes frequent use of the notion transposition (German “Ausdrucksverschiebung“, cf. also Catford’s (1965 term shift. As a whole, of course, Wilss’ work has a much broader scope. More recently, he has investigated the role of cognition (1988 and the various factors in translator behaviour (1996. Nevertheless, transposition is still a very important and useful notion in describing the translation process. The need for transpositions arises when there is no possibility of formal one-to-one correspondence between source and target-language structures. The basic idea is that whenever there is a need for

  8. Green's function approach to neutron flux discontinuities

    International Nuclear Information System (INIS)

    Saad, E.A.; El-Wakil, S.A.

    1980-01-01

    The present work is devoted to the presentation of analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non-absorbing medium. On the basis of the central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering, in terms of the Green function of elastic scattering, is solved. The Green function is decomposed according to the number of collisions. Placzec discontinuity associated with elastic scattering in addition to two discontinuities due to inelastic scattering are investigated. Numerical calculations for Fe 56 show that the elastic discontinuity produces about 41.8% change in the collision density whilst the ratio of the inelastic collision density discontinuity at qsub(o)sup(+) to the Placzec discontinuity at usub(o) + 1n 1/oc gives 55.7 percent change. (author)

  9. Geometrical approach to the discrete Wigner function in prime power dimensions

    International Nuclear Information System (INIS)

    Klimov, A B; Munoz, C; Romero, J L

    2006-01-01

    We analyse the Wigner function in prime power dimensions constructed on the basis of the discrete rotation and displacement operators labelled with elements of the underlying finite field. We separately discuss the case of odd and even characteristics and analyse the algebraic origin of the non-uniqueness of the representation of the Wigner function. Explicit expressions for the Wigner kernel are given in both cases

  10. Identifying Similarities in Cognitive Subtest Functional Requirements: An Empirical Approach

    Science.gov (United States)

    Frisby, Craig L.; Parkin, Jason R.

    2007-01-01

    In the cognitive test interpretation literature, a Rational/Intuitive, Indirect Empirical, or Combined approach is typically used to construct conceptual taxonomies of the functional (behavioral) similarities between subtests. To address shortcomings of these approaches, the functional requirements for 49 subtests from six individually…

  11. Comparison of some dispersion-corrected and traditional functionals with CCSD(T) and MP2 ab initio methods: Dispersion, induction, and basis set superposition error

    Science.gov (United States)

    Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.

    2012-10-01

    We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.

  12. Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches.

    Science.gov (United States)

    Wang, Jiaojian; Yang, Yong; Fan, Lingzhong; Xu, Jinping; Li, Changhai; Liu, Yong; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2015-01-01

    The superior parietal lobule (SPL) plays a pivotal role in many cognitive, perceptive, and motor-related processes. This implies that a mosaic of distinct functional and structural subregions may exist in this area. Recent studies have demonstrated that the ongoing spontaneous fluctuations in the brain at rest are highly structured and, like coactivation patterns, reflect the integration of cortical locations into long-distance networks. This suggests that the internal differentiation of a complex brain region may be revealed by interaction patterns that are reflected in different neuroimaging modalities. On the basis of this perspective, we aimed to identify a convergent functional organization of the SPL using multimodal neuroimaging approaches. The SPL was first parcellated based on its structural connections as well as on its resting-state connectivity and coactivation patterns. Then, post hoc functional characterizations and connectivity analyses were performed for each subregion. The three types of connectivity-based parcellations consistently identified five subregions in the SPL of each hemisphere. The two anterior subregions were found to be primarily involved in action processes and in visually guided visuomotor functions, whereas the three posterior subregions were primarily associated with visual perception, spatial cognition, reasoning, working memory, and attention. This parcellation scheme for the SPL was further supported by revealing distinct connectivity patterns for each subregion in all the used modalities. These results thus indicate a convergent functional architecture of the SPL that can be revealed based on different types of connectivity and is reflected by different functions and interactions. © 2014 Wiley Periodicals, Inc.

  13. A systemic approach for modeling soil functions

    Science.gov (United States)

    Vogel, Hans-Jörg; Bartke, Stephan; Daedlow, Katrin; Helming, Katharina; Kögel-Knabner, Ingrid; Lang, Birgit; Rabot, Eva; Russell, David; Stößel, Bastian; Weller, Ulrich; Wiesmeier, Martin; Wollschläger, Ute

    2018-03-01

    The central importance of soil for the functioning of terrestrial systems is increasingly recognized. Critically relevant for water quality, climate control, nutrient cycling and biodiversity, soil provides more functions than just the basis for agricultural production. Nowadays, soil is increasingly under pressure as a limited resource for the production of food, energy and raw materials. This has led to an increasing demand for concepts assessing soil functions so that they can be adequately considered in decision-making aimed at sustainable soil management. The various soil science disciplines have progressively developed highly sophisticated methods to explore the multitude of physical, chemical and biological processes in soil. It is not obvious, however, how the steadily improving insight into soil processes may contribute to the evaluation of soil functions. Here, we present to a new systemic modeling framework that allows for a consistent coupling between reductionist yet observable indicators for soil functions with detailed process understanding. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. The non-linear character of these interactions produces stability and resilience of soil with respect to functional characteristics. We anticipate that this new conceptional framework will integrate the various soil science disciplines and help identify important future research questions at the interface between disciplines. It allows the overwhelming complexity of soil systems to be adequately coped with and paves the way for steadily improving our capability to assess soil functions based on scientific understanding.

  14. Ultrasound beam transmission using a discretely orthogonal Gaussian aperture basis

    Science.gov (United States)

    Roberts, R. A.

    2018-04-01

    Work is reported on development of a computational model for ultrasound beam transmission at an arbitrary geometry transmission interface for generally anisotropic materials. The work addresses problems encountered when the fundamental assumptions of ray theory do not hold, thereby introducing errors into ray-theory-based transmission models. Specifically, problems occur when the asymptotic integral analysis underlying ray theory encounters multiple stationary phase points in close proximity, due to focusing caused by concavity on either the entry surface or a material slowness surface. The approach presented here projects integrands over both the transducer aperture and the entry surface beam footprint onto a Gaussian-derived basis set, thereby distributing the integral over a summation of second-order phase integrals which are amenable to single stationary phase point analysis. Significantly, convergence is assured provided a sufficiently fine distribution of basis functions is used.

  15. Design basis document open-item resolution and reportability

    International Nuclear Information System (INIS)

    Gambhir, S.K.; Livingston, B.R.; Purcell, J.J.; Erickson, E.A.

    1989-01-01

    In the process of reconstituting the design bases for older nuclear power plants, information or references may not be available to fully define the design requirements or to document and verify the adequacy of the design. Also, information that is in conflict with other data is identified. The missing and conflicting information must be reconstituted in order to adequately document the design bases of the plant. For these operating facilities, the identification, tracking, and resolution of missing or conflicting information is very important when the reporting requirements stipulated by 10CFR21, 10CFR50.72, and 10CFR50.73 are considered. Additionally, controlled documentation (calculations, drawings, etc.) used to develop the design basis documents may contain conflicting data. In some cases, conflicts between the as-built design and licensing or design basis requirements established in specific commitments to the U.S. Nuclear Regulatory Commission may be identified. Furthermore, concerns regarding the adequacy of safety-related systems or components to perform their required function may be identified that would warrant prompt action by the licensee. The approach discussed in this paper was used by Omaha Public Power District for the ongoing design basis reconstitution effort at the Fort Calhoun nuclear plant

  16. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Meshfree Local Radial Basis Function Collocation Method with Image Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Ki; Kim, Minjae [Pukyong National University, Busan (Korea, Republic of)

    2017-07-15

    We numerically solve two-dimensional heat diffusion problems by using a simple variant of the meshfree local radial-basis function (RBF) collocation method. The main idea is to include an additional set of sample nodes outside the problem domain, similarly to the method of images in electrostatics, to perform collocation on the domain boundaries. We can thereby take into account the temperature profile as well as its gradients specified by boundary conditions at the same time, which holds true even for a node where two or more boundaries meet with different boundary conditions. We argue that the image method is computationally efficient when combined with the local RBF collocation method, whereas the addition of image nodes becomes very costly in case of the global collocation. We apply our modified method to a benchmark test of a boundary value problem, and find that this simple modification reduces the maximum error from the analytic solution significantly. The reduction is small for an initial value problem with simpler boundary conditions. We observe increased numerical instability, which has to be compensated for by a sufficient number of sample nodes and/or more careful parameter choices for time integration.

  18. Yielding physically-interpretable emulators - A Sparse PCA approach

    Science.gov (United States)

    Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.

    2015-12-01

    Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.

  19. Response functions of a superlattice with a basis: A model for oxide superconductors

    International Nuclear Information System (INIS)

    Griffin, A.

    1988-01-01

    The new high-T/sub c/ oxide superconductors appear to be superlattice structures with a basis composed of metallic sheets as well as metallic chains. Using a simple free-electron-gas model for the sheets and chains, we obtain the dielectric function ε(q,ω) of such a multilayer system within the random-phase approximation (RPA). We give results valid for arbitrary wave vector q appropriate to sheets and chains (as in the orthorhombic phase of Y-Ba-Cu-O) as well as for two different kinds of sheets (such as may be present in the Bi-Ca-Sr-Cu-O superconductors). The occurrence of acoustic plasmons is a general phenomenon in such superlattices, as shown by an alternative formulation based on the exact response functions for the individual sheets and chains, in which only the interchain (sheet) Coulomb interaction is treated in the RPA. These results generalize the long-wavelength expressions recently given in the literature. We also briefly discuss the analogous results for two arrays of mutually perpendicular chains, such as found in Hg chain compounds

  20. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    Science.gov (United States)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  1. Application of GA package in functional packaging

    Science.gov (United States)

    Belousova, D. A.; Noskova, E. E.; Kapulin, D. V.

    2018-05-01

    The approach to application program for the task of configuration of the elements of the commutation circuit for design of the radio-electronic equipment on the basis of the genetic algorithm is offered. The efficiency of the used approach for commutation circuits with different characteristics for computer-aided design on radio-electronic manufacturing is shown. The prototype of the computer-aided design subsystem on the basis of a package GA for R with a set of the general functions for optimization of multivariate models is programmed.

  2. An approach to the structure function for nucleon

    International Nuclear Information System (INIS)

    Long Ming

    1986-01-01

    The structure function for nucleon is discussed by using the method given in a previous paper. The formula are compared with the experimental data from low Q 2 to high Q 2 . The results show that the way that the structure function for nucleon can be obtained from the hadronic wavefunction is a possible approach of investigating structure functions for hadron

  3. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems

    Science.gov (United States)

    Kruse, Holger; Grimme, Stefan

    2012-04-01

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  4. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems.

    Science.gov (United States)

    Kruse, Holger; Grimme, Stefan

    2012-04-21

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model

  5. Using a pruned, nondirect product basis in conjunction with the multi-configuration time-dependent Hartree (MCTDH) method

    Energy Technology Data Exchange (ETDEWEB)

    Wodraszka, Robert, E-mail: Robert.Wodraszka@chem.queensu.ca; Carrington, Tucker, E-mail: Tucker.Carrington@queensu.ca [Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-07-28

    In this paper, we propose a pruned, nondirect product multi-configuration time dependent Hartree (MCTDH) method for solving the Schrödinger equation. MCTDH uses optimized 1D basis functions, called single particle functions, but the size of the standard direct product MCTDH basis scales exponentially with D, the number of coordinates. We compare the pruned approach to standard MCTDH calculations for basis sizes small enough that the latter are possible and demonstrate that pruning the basis reduces the CPU cost of computing vibrational energy levels of acetonitrile (D = 12) by more than two orders of magnitude. Using the pruned method, it is possible to do calculations with larger bases, for which the cost of standard MCTDH calculations is prohibitive. Pruning the basis complicates the evaluation of matrix-vector products. In this paper, they are done term by term for a sum-of-products Hamiltonian. When no attempt is made to exploit the fact that matrices representing some of the factors of a term are identity matrices, one needs only to carefully constrain indices. In this paper, we develop new ideas that make it possible to further reduce the CPU time by exploiting identity matrices.

  6. A density functional approach to ferrogels

    Science.gov (United States)

    Cremer, P.; Heinen, M.; Menzel, A. M.; Löwen, H.

    2017-07-01

    Ferrogels consist of magnetic colloidal particles embedded in an elastic polymer matrix. As a consequence, their structural and rheological properties are governed by a competition between magnetic particle-particle interactions and mechanical matrix elasticity. Typically, the particles are permanently fixed within the matrix, which makes them distinguishable by their positions. Over time, particle neighbors do not change due to the fixation by the matrix. Here we present a classical density functional approach for such ferrogels. We map the elastic matrix-induced interactions between neighboring colloidal particles distinguishable by their positions onto effective pairwise interactions between indistinguishable particles similar to a ‘pairwise pseudopotential’. Using Monte-Carlo computer simulations, we demonstrate for one-dimensional dipole-spring models of ferrogels that this mapping is justified. We then use the pseudopotential as an input into classical density functional theory of inhomogeneous fluids and predict the bulk elastic modulus of the ferrogel under various conditions. In addition, we propose the use of an ‘external pseudopotential’ when one switches from the viewpoint of a one-dimensional dipole-spring object to a one-dimensional chain embedded in an infinitely extended bulk matrix. Our mapping approach paves the way to describe various inhomogeneous situations of ferrogels using classical density functional concepts of inhomogeneous fluids.

  7. Quasiparticle properties of DNA bases from GW calculations in a Wannier basis

    Science.gov (United States)

    Qian, Xiaofeng; Marzari, Nicola; Umari, Paolo

    2009-03-01

    The quasiparticle GW-Wannier (GWW) approach [1] has been recently developed to overcome the size limitations of conventional planewave GW calculations. By taking advantage of the localization properties of the maximally-localized Wannier functions and choosing a small set of polarization basis we reduce the number of Bloch wavefunctions products required for the evaluation of dynamical polarizabilities, and in turn greatly reduce memory requirements and computational efficiency. We apply GWW to study quasiparticle properties of different DNA bases and base-pairs, and solvation effects on the energy gap, demonstrating in the process the key advantages of this approach. [1] P. Umari,G. Stenuit, and S. Baroni, cond-mat/0811.1453

  8. A Constructive Sharp Approach to Functional Quantization of Stochastic Processes

    OpenAIRE

    Junglen, Stefan; Luschgy, Harald

    2010-01-01

    We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes.

  9. Estimating variability in functional images using a synthetic resampling approach

    International Nuclear Information System (INIS)

    Maitra, R.; O'Sullivan, F.

    1996-01-01

    Functional imaging of biologic parameters like in vivo tissue metabolism is made possible by Positron Emission Tomography (PET). Many techniques, such as mixture analysis, have been suggested for extracting such images from dynamic sequences of reconstructed PET scans. Methods for assessing the variability in these functional images are of scientific interest. The nonlinearity of the methods used in the mixture analysis approach makes analytic formulae for estimating variability intractable. The usual resampling approach is infeasible because of the prohibitive computational effort in simulating a number of sinogram. datasets, applying image reconstruction, and generating parametric images for each replication. Here we introduce an approach that approximates the distribution of the reconstructed PET images by a Gaussian random field and generates synthetic realizations in the imaging domain. This eliminates the reconstruction steps in generating each simulated functional image and is therefore practical. Results of experiments done to evaluate the approach on a model one-dimensional problem are very encouraging. Post-processing of the estimated variances is seen to improve the accuracy of the estimation method. Mixture analysis is used to estimate functional images; however, the suggested approach is general enough to extend to other parametric imaging methods

  10. Mixed kernel function support vector regression for global sensitivity analysis

    Science.gov (United States)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  11. Radial Basis Function (RBF Interpolation and Investigating its Impact on Rainfall Duration Mapping

    Directory of Open Access Journals (Sweden)

    Hassan Derakhshan

    2012-01-01

    Full Text Available The missing data in database must be reproduced primarily by appropriate interpolation techniques. Radial basis function (RBF interpolators can play a significant role in data completion of precipitation mapping. Five RBF techniques were engaged to be employed in compensating the missing data in event-wised dataset of Upper Paramatta River Catchment in the western suburbs of Sydney, Australia. The related shape parameter, C, of RBFs was optimized for first event of database during a cross-validation process. The Normalized mean square error (NMSE, percent average estimation error (PAEE and coefficient of determination (R2 were the statistics used as validation tools. Results showed that the multiquadric RBF technique with the least error, best suits compensation of the related database.

  12. Application of radial basis function in densitometry of stratified regime of liquid-gas two phase flows

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    In this paper, a novel method is proposed for predicting the density of liquid phase in stratified regime of liquid-gas two phase flows by utilizing dual modality densitometry technique and artificial neural network (ANN) model of radial basis function (RBF). The detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors for registering transmitted and scattered photons. At the first step, a Monte Carlo simulation model was utilized to obtain the optimum position for the scattering detector in dual modality densitometry configuration. At the next step, an experimental setup was designed based on obtained optimum position for detectors from simulation in order to generate the required data for training and testing the ANN. The results show that the proposed approach could be successfully applied for predicting the density of liquid phase in stratified regime of gas-liquid two phase flows with mean relative error (MRE) of less than 0.701. - Highlights: • Density of liquid phase in stratified regime of two phase flows was predicted. • Combination of dual modality densitometry technique and ANN was utilized. • Detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors. • MCNP simulation was done to obtain the optimum position for the scattering detector. • An experimental setup was designed to generate the required data for training the ANN.

  13. Combining Formal and Functional Approaches to Topic Structure

    Science.gov (United States)

    Zellers, Margaret; Post, Brechtje

    2012-01-01

    Fragmentation between formal and functional approaches to prosodic variation is an ongoing problem in linguistic research. In particular, the frameworks of the Phonetics of Talk-in-Interaction (PTI) and Empirical Phonology (EP) take very different theoretical and methodological approaches to this kind of variation. We argue that it is fruitful to…

  14. Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs

    International Nuclear Information System (INIS)

    Bollig, Evan F.; Flyer, Natasha; Erlebacher, Gordon

    2012-01-01

    This paper presents parallelization strategies for the radial basis function-finite difference (RBF-FD) method. As a generalized finite differencing scheme, the RBF-FD method functions without the need for underlying meshes to structure nodes. It offers high-order accuracy approximation and scales as O(N) per time step, with N being with the total number of nodes. To our knowledge, this is the first implementation of the RBF-FD method to leverage GPU accelerators for the solution of PDEs. Additionally, this implementation is the first to span both multiple CPUs and multiple GPUs. OpenCL kernels target the GPUs and inter-processor communication and synchronization is managed by the Message Passing Interface (MPI). We verify our implementation of the RBF-FD method with two hyperbolic PDEs on the sphere, and demonstrate up to 9x speedup on a commodity GPU with unoptimized kernel implementations. On a high performance cluster, the method achieves up to 7x speedup for the maximum problem size of 27,556 nodes.

  15. Ab initio localized basis set study of structural parameters and elastic properties of HfO2 polymorphs

    International Nuclear Information System (INIS)

    Caravaca, M A; Casali, R A

    2005-01-01

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2 1 /c, Pbca, Pnma, Fm3m, P4 2 nmc and Pa3 phases of HfO 2 . Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2 1 /c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2 1 /c → Pbca and Pbca → Pnma, respectively, in accordance with different high pressure experimental values

  16. Variational functionals which admit discontinuous trial functions

    International Nuclear Information System (INIS)

    Nelson, P. Jr.

    1975-01-01

    It is argued that variational synthesis with discontinuous trial functions requires variational principles applicable to equations involving operators acting between distinct Hilbert spaces. A description is given of a Roussopoulos-type variational principle generalized to cover this situation. This principle is suggested as the basis for a unified approach to the derivation of variational functionals. In addition to esthetics, this approach has the advantage that the mathematical details increase the understanding of the derived functional, particularly the sense in which a synthesized solution should be regarded as an approximation to the true solution. By way of illustration, the generalized Roussopoulos principle is applied to derive a class of first-order diffusion functionals which admit trial functions containing approximations at an interface. These ''asymptotic'' interface quantities are independent of the limiting approximations from either side and permit use of different trial spectra at and on either side of an interface. The class of functionals derived contains as special cases both the Lagrange multiplier method of Buslik and two functionals of Lambropoulos and Luco. Some numerical results for a simple two-group model confirm that the ''multipliers'' can closely approximate the appropriate quantity in the region near an interface. (U.S.)

  17. Characterizing the Long-Term PM2.5 Concentration-Response Function: Comparing the Strengths and Weaknesses of Research Synthesis Approaches.

    Science.gov (United States)

    Fann, Neal; Gilmore, Elisabeth A; Walker, Katherine

    2016-09-01

    The magnitude, shape, and degree of certainty in the association between long-term population exposure to ambient fine particulate matter (PM2.5 ) and the risk of premature death is one of the most intensely studied issues in environmental health. For regulatory risk analysis, this relationship is described quantitatively by a concentration-response (C-R) function that relates exposure to ambient concentrations with the risk of premature mortality. Four data synthesis techniques develop the basis for, and derive, this function: systematic review, expert judgment elicitation, quantitative meta-analysis, and integrated exposure-response (IER) assessment. As part of an academic workshop aiming to guide the use of research synthesis approaches, we developed criteria with which to evaluate and select among the approaches for their ability to inform policy choices. These criteria include the quality and extent of scientific support for the method, its transparency and verifiability, its suitability to the policy problem, and the time and resources required for its application. We find that these research methods are both complementary and interdependent. A systematic review of the multidisciplinary evidence is a starting point for all methods, providing the broad conceptual basis for the nature, plausibility, and strength of the associations between PM exposure and adverse health effects. Further, for a data-rich application like PM2.5 and premature mortality, all three quantitative approaches can produce estimates that are suitable for regulatory and benefit analysis. However, when fewer data are available, more resource-intensive approaches such as expert elicitation may be more important for understanding what scientists know, where they agree or disagree, and what they believe to be the most important areas of uncertainty. Whether implicitly or explicitly, all require considerable judgment by scientists. Finding ways for all these methods to acknowledge

  18. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Science.gov (United States)

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  19. Resting state functional connectivity: its physiological basis and application in neuropharmacology.

    Science.gov (United States)

    Lu, Hanbing; Stein, Elliot A

    2014-09-01

    Brain structures do not work in isolation; they work in concert to produce sensory perception, motivation and behavior. Systems-level network activity can be investigated by resting state magnetic resonance imaging (rsMRI), an emerging neuroimaging technique that assesses the synchrony of the brain's ongoing spontaneous activity. Converging evidence reveals that rsMRI is able to consistently identify distinct spatiotemporal patterns of large-scale brain networks. Dysregulation within and between these networks has been implicated in a number of neurodegenerative and neuropsychiatric disorders, including Alzheimer's disease and drug addiction. Despite wide application of this approach in systems neuroscience, the physiological basis of these fluctuations remains incompletely understood. Here we review physiological studies in electrical, metabolic and hemodynamic fluctuations that are most pertinent to the rsMRI signal. We also review recent applications to neuropharmacology - specifically drug effects on resting state fluctuations. We speculate that the mechanisms governing spontaneous fluctuations in regional oxygenation availability likely give rise to the observed rsMRI signal. We conclude by identifying several open questions surrounding this technique. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Published by Elsevier Ltd.

  20. Group Theory of Wannier Functions Providing the Basis for a Deeper Understanding of Magnetism and Superconductivity

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2015-05-01

    Full Text Available The paper presents the group theory of optimally-localized and symmetry-adapted Wannier functions in a crystal of any given space group G or magnetic group M. Provided that the calculated band structure of the considered material is given and that the symmetry of the Bloch functions at all of the points of symmetry in the Brillouin zone is known, the paper details whether or not the Bloch functions of particular energy bands can be unitarily transformed into optimally-localized Wannier functions symmetry-adapted to the space group G, to the magnetic group M or to a subgroup of G or M. In this context, the paper considers usual, as well as spin-dependent Wannier functions, the latter representing the most general definition of Wannier functions. The presented group theory is a review of the theory published by one of the authors (Ekkehard Krüger in several former papers and is independent of any physical model of magnetism or superconductivity. However, it is suggested to interpret the special symmetry of the optimally-localized Wannier functions in the framework of a nonadiabatic extension of the Heisenberg model, the nonadiabatic Heisenberg model. On the basis of the symmetry of the Wannier functions, this model of strongly-correlated localized electrons makes clear predictions of whether or not the system can possess superconducting or magnetic eigenstates.

  1. Statistical Downscaling of Gusts During Extreme European Winter Storms Using Radial-Basis-Function Networks

    Science.gov (United States)

    Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.

    2012-04-01

    Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.

  2. Excited state nuclear forces from the Tamm-Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework

    Science.gov (United States)

    Hutter, Jürg

    2003-03-01

    An efficient formulation of time-dependent linear response density functional theory for the use within the plane wave basis set framework is presented. The method avoids the transformation of the Kohn-Sham matrix into the canonical basis and references virtual orbitals only through a projection operator. Using a Lagrangian formulation nuclear derivatives of excited state energies within the Tamm-Dancoff approximation are derived. The algorithms were implemented into a pseudo potential/plane wave code and applied to the calculation of adiabatic excitation energies, optimized geometries and vibrational frequencies of three low lying states of formaldehyde. An overall good agreement with other time-dependent density functional calculations, multireference configuration interaction calculations and experimental data was found.

  3. Concepts of soil mapping as a basis for the assessment of soil functions

    Science.gov (United States)

    Baumgarten, Andreas

    2014-05-01

    Soil mapping systems in Europe have been designed mainly as a tool for the description of soil characteristics from a morphogenetic viewpoint. Contrasting to the American or FAO system, the soil development has been in the main focus of European systems. Nevertheless , recent developments in soil science stress the importance of the functions of soils with respect to the ecosystems. As soil mapping systems usually offer a sound and extensive database, the deduction of soil functions from "classic" mapping parameters can be used for local and regional assessments. According to the used pedo-transfer functions and mapping systems, tailored approaches can be chosen for different applications. In Austria, a system mainly for spatial planning purposes has been developed that will be presented and illustrated by means of best practice examples.

  4. From Process Understanding Via Soil Functions to Sustainable Soil Management - A Systemic Approach

    Science.gov (United States)

    Wollschlaeger, U.; Bartke, S.; Bartkowski, B.; Daedlow, K.; Helming, K.; Kogel-Knabner, I.; Lang, B.; Rabot, E.; Russell, D.; Stößel, B.; Weller, U.; Wiesmeier, M.; Rabot, E.; Vogel, H. J.

    2017-12-01

    Fertile soils are central resources for the production of biomass and the provision of food and energy. A growing world population and latest climate targets lead to an increasing demand for both, food and bio-energy, which requires preserving and improving the long-term productivity of soils as a bio-economic resource. At the same time, other soil functions and ecosystem services need to be maintained: filter for clean water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these soil functions result from the interaction of a multitude of physical, chemical and biological processes that are not yet sufficiently understood. In addition, we lack understanding about the interplay between the socio-economic system and the soil system and how soil functions benefit human wellbeing. Hence, a solid and integrated assessment of soil quality requires the consideration of the ensemble of soil functions and its relation to soil management to finally be able to develop site-specific options for sustainable soil management. We present an integrated modeling approach that investigates the influence of soil management on the ensemble of soil functions. It is based on the mechanistic relationships between soil functional attributes, each explained by a network of interacting processes as derived from scientific evidence. As the evidence base required for feeding the model is for the most part stored in the existing scientific literature, another central component of our work is to set up a public "knowledge-portal" providing the infrastructure for a community effort towards a comprehensive knowledge base on soil processes as a basis for model developments. The connection to the socio-economic system is established using the Drivers-Pressures-Impacts-States-Responses (DPSIR) framework where our improved understanding about soil ecosystem processes is linked to ecosystem services and resource efficiency via the soil functions.

  5. On the functional integral approach in quantum statistics. 1. Some approximations

    International Nuclear Information System (INIS)

    Dai Xianxi.

    1990-08-01

    In this paper the susceptibility of a Kondo system in a fairly wide temperature region is calculated in the first harmonic approximation in a functional integral approach. The comparison with that of the renormalization group theory shows that in this region the two results agree quite well. The expansion of the partition function with infinite independent harmonics for the Anderson model is studied. Some symmetry relations are generalized. It is a challenging problem to develop a functional integral approach including diagram analysis, mixed mode effects and some exact relations in the Anderson system proved in the functional integral approach. These topics will be discussed in the next paper. (author). 22 refs, 1 fig

  6. Sample Data Synchronization and Harmonic Analysis Algorithm Based on Radial Basis Function Interpolation

    Directory of Open Access Journals (Sweden)

    Huaiqing Zhang

    2014-01-01

    Full Text Available The spectral leakage has a harmful effect on the accuracy of harmonic analysis for asynchronous sampling. This paper proposed a time quasi-synchronous sampling algorithm which is based on radial basis function (RBF interpolation. Firstly, a fundamental period is evaluated by a zero-crossing technique with fourth-order Newton’s interpolation, and then, the sampling sequence is reproduced by the RBF interpolation. Finally, the harmonic parameters can be calculated by FFT on the synchronization of sampling data. Simulation results showed that the proposed algorithm has high accuracy in measuring distorted and noisy signals. Compared to the local approximation schemes as linear, quadric, and fourth-order Newton interpolations, the RBF is a global approximation method which can acquire more accurate results while the time-consuming is about the same as Newton’s.

  7. An evolutionary computation approach to examine functional brain plasticity

    Directory of Open Access Journals (Sweden)

    Arnab eRoy

    2016-04-01

    Full Text Available One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN and the executive control network (ECN during recovery from traumatic brain injury (TBI; the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in

  8. A new approach to the logistic function with some applications

    OpenAIRE

    Rzadkowski, Grzegorz; Głażewska, Iwona; Sawińska, Katarzyna

    2014-01-01

    In the present paper we propose a new approach to investigate the logistic function, commonly used in mathematical models in economics and management. The approach is based on indicating in a given time series, having a logistic trend, some characteristic points corresponding to zeroes of successive derivatives of the logistic function. We give also examples of application of this method.

  9. Dynamical basis set

    International Nuclear Information System (INIS)

    Blanco, M.; Heller, E.J.

    1985-01-01

    A new Cartesian basis set is defined that is suitable for the representation of molecular vibration-rotation bound states. The Cartesian basis functions are superpositions of semiclassical states generated through the use of classical trajectories that conform to the intrinsic dynamics of the molecule. Although semiclassical input is employed, the method becomes ab initio through the standard matrix diagonalization variational method. Special attention is given to classical-quantum correspondences for angular momentum. In particular, it is shown that the use of semiclassical information preferentially leads to angular momentum eigenstates with magnetic quantum number Vertical BarMVertical Bar equal to the total angular momentum J. The present method offers a reliable technique for representing highly excited vibrational-rotational states where perturbation techniques are no longer applicable

  10. ADAPTIVE REUSE FOR NEW SOCIAL AND MUNICIPAL FUNCTIONS AS AN ACCEPTABLE APPROACH FOR CONSERVATION OF INDUSTRIAL HERITAGE ARCHITECTURE IN THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Oleg Fetisov

    2016-04-01

    Full Text Available The present paper deals with a problem of conservation and adaptive reuse of industrial heritage architecture. The relevance and topicality of the problem of adaptive reuse of industrial heritage architecture for new social and municipal functions as the conservation concept are defined. New insights on the typology of industrial architecture are reviewed (e. g. global changes in all European industry, new concepts and technologies in manufacturing, new features of industrial architecture and their construction and typology, first results of industrialization and changes in the typology of industrial architecture in post-industrial period. General goals and tasks of conservation in context of adaptive reuse of industrial heritage architecture are defined (e. g. historical, architectural and artistic, technical. Adaptive reuse as an acceptable approach for conservation and new use is proposed and reviewed. Moreover, the logical model of adaptive reuse of industrial heritage architecture as an acceptable approach for new use has been developed. Consequently, three general methods for the conservation of industrial heritage architecture by the adaptive reuse approach are developed: historical, architectural and artistic, technical. Relevant functional methods' concepts (social concepts are defined and classified. General beneficial effect of the adaptive reuse approach is given. On the basis of analysis results of experience in adaptive reuse of industrial architecture with new social functions general conclusions are developed.

  11. Ab initio localized basis set study of structural parameters and elastic properties of HfO{sub 2} polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, M A [Facultad de Ingenieria, Universidad Nacional del Nordeste, Avenida Las Heras 727, 3500-Resistencia (Argentina); Casali, R A [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad, 5600-Corrientes (Argentina)

    2005-09-21

    The SIESTA approach based on pseudopotentials and a localized basis set is used to calculate the electronic, elastic and equilibrium properties of P 2{sub 1}/c, Pbca, Pnma, Fm3m, P4{sub 2}nmc and Pa3 phases of HfO{sub 2}. Using separable Troullier-Martins norm-conserving pseudopotentials which include partial core corrections for Hf, we tested important physical properties as a function of the basis set size, grid size and cut-off ratio of the pseudo-atomic orbitals (PAOs). We found that calculations in this oxide with the LDA approach and using a minimal basis set (simple zeta, SZ) improve calculated phase transition pressures with respect to the double-zeta basis set and LDA (DZ-LDA), and show similar accuracy to that determined with the PPPW and GGA approach. Still, the equilibrium volumes and structural properties calculated with SZ-LDA compare better with experiments than the GGA approach. The bandgaps and elastic and structural properties calculated with DZ-LDA are accurate in agreement with previous state of the art ab initio calculations and experimental evidence and cannot be improved with a polarized basis set. These calculated properties show low sensitivity to the PAO localization parameter range between 40 and 100 meV. However, this is not true for the relative energy, which improves upon decrease of the mentioned parameter. We found a non-linear behaviour in the lattice parameters with pressure in the P 2{sub 1}/c phase, showing a discontinuity of the derivative of the a lattice parameter with respect to external pressure, as found in experiments. The common enthalpy values calculated with the minimal basis set give pressure transitions of 3.3 and 10.8?GPa for P2{sub 1}/c {yields} Pbca and Pbca {yields} Pnma, respectively, in accordance with different high pressure experimental values.

  12. Experimentation on accuracy of non functional requirement prioritization approaches for different complexity projects

    Directory of Open Access Journals (Sweden)

    Raj Kumar Chopra

    2016-09-01

    Full Text Available Non functional requirements must be selected for implementation together with functional requirements to enhance the success of software projects. Three approaches exist for performing the prioritization of non functional requirements using the suitable prioritization technique. This paper performs experimentation on three different complexity versions of the industrial software project using cost-value prioritization technique employing three approaches. Experimentation is conducted to analyze the accuracy of individual approaches and the variation of accuracy with the complexity of the software project. The results indicate that selecting non functional requirements separately, but in accordance with functionality has higher accuracy amongst the other two approaches. Further, likewise other approaches, it witnesses the decrease in accuracy with increase in software complexity but the decrease is minimal.

  13. Data preparation for functional data analysis of PM10 in Peninsular Malaysia

    Science.gov (United States)

    Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd

    2014-07-01

    The use of curves or functional data in the study analysis is increasingly gaining momentum in the various fields of research. The statistical method to analyze such data is known as functional data analysis (FDA). The first step in FDA is to convert the observed data points which are repeatedly recorded over a period of time or space into either a rough (raw) or smooth curve. In the case of the smooth curve, basis functions expansion is one of the methods used for the data conversion. The data can be converted into a smooth curve either by using the regression smoothing or roughness penalty smoothing approach. By using the regression smoothing approach, the degree of curve's smoothness is very dependent on k number of basis functions; meanwhile for the roughness penalty approach, the smoothness is dependent on a roughness coefficient given by parameter λ Based on previous studies, researchers often used the rather time-consuming trial and error or cross validation method to estimate the appropriate number of basis functions. Thus, this paper proposes a statistical procedure to construct functional data or curves for the hourly and daily recorded data. The Bayesian Information Criteria is used to determine the number of basis functions while the Generalized Cross Validation criteria is used to identify the parameter λ The proposed procedure is then applied on a ten year (2001-2010) period of PM10 data from 30 air quality monitoring stations that are located in Peninsular Malaysia. It was found that the number of basis functions required for the construction of the PM10 daily curve in Peninsular Malaysia was in the interval of between 14 and 20 with an average value of 17; the first percentile is 15 and the third percentile is 19. Meanwhile the initial value of the roughness coefficient was in the interval of between 10-5 and 10-7 and the mode was 10-6. An example of the functional descriptive analysis is also shown.

  14. Generalized Wigner functions in curved spaces: A new approach

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1988-01-01

    It is well known that, given a quantum field in Minkowski space, one can define Wigner functions f/sub W//sup N/(x 1 ,p 1 ,...,x/sub N/,p/sub N/) which (a) are convenient to analyze since, unlike the field itself, they are c-number quantities and (b) can be interpreted in a limited sense as ''quantum distribution functions.'' Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equations which make sense ''quasilocally'' for ''short-wavelength modes.'' This paper suggests a completely orthogonal approach for defining curved-space Wigner functions which generalizes instead an object such as the Fourier-transformed f/sub W/ 1 (k,p), which is effectively a two-point function viewed in terms of the ''natural'' creation and annihilation operators a/sup dagger/(p-(12k) and a(p+(12k). The approach suggested here lacks the precise phase-space interpretation implicit in the approach of Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any ''natural'' mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as for a source-free linear field in a static spacetime

  15. Mass spectra and wave functions of meson systems and the covariant oscillator quark model as an expansion basis

    International Nuclear Information System (INIS)

    Oda, Ryuichi; Ishida, Shin; Wada, Hiroaki; Yamada, Kenji; Sekiguchi, Motoo

    1999-01-01

    We examine mass spectra and wave functions of the nn-bar, cc-bar and bb-bar meson systems within the framework of the covariant oscillator quark model with the boosted LS-coupling scheme. We solve nonperturbatively an eigenvalue problem for the squared-mass operator, which incorporates the four-dimensional color-Coulomb-type interaction, by taking a set of covariant oscillator wave functions as an expansion basis. We obtain mass spectra of these meson systems, which reproduce quite well their experimental behavior. The resultant manifestly covariant wave functions, which are applicable to analyses of various reaction phenomena, are given. Our results seem to suggest that the present model may be considered effectively as a covariant version of the nonrelativistic linear-plus-Coulomb potential quark model. (author)

  16. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization

    Science.gov (United States)

    Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario

    2018-04-01

    Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.

  17. A NEW TOOL FOR IMAGE ANALYSIS BASED ON CHEBYSHEV RATIONAL FUNCTIONS: CHEF FUNCTIONS

    International Nuclear Information System (INIS)

    Jiménez-Teja, Y.; Benítez, N.

    2012-01-01

    We introduce a new approach to the modeling of the light distribution of galaxies, an orthonormal polar basis formed by a combination of Chebyshev rational functions and Fourier polynomials that we call CHEF functions, or CHEFs. We have developed an orthonormalization process to apply this basis to pixelized images, and implemented the method as a Python pipeline. The new basis displays remarkable flexibility, being able to accurately fit all kinds of galaxy shapes, including irregulars, spirals, ellipticals, highly compact, and highly elongated galaxies. It does this while using fewer components than similar methods, as shapelets, and without producing artifacts, due to the efficiency of the rational Chebyshev polynomials to fit quickly decaying functions like galaxy profiles. The method is linear and very stable, and therefore is capable of processing large numbers of galaxies in a fast and automated way. Due to the high quality of the fits in the central parts of the galaxies, and the efficiency of the CHEF basis modeling galaxy profiles up to very large distances, the method provides highly accurate estimates of total galaxy fluxes and ellipticities. Future papers will explore in more detail the application of the method to perform multiband photometry, morphological classification, and weak shear measurements.

  18. Solving one-dimensional phase change problems with moving grid method and mesh free radial basis functions

    International Nuclear Information System (INIS)

    Vrankar, L.; Turk, G.; Runovc, F.; Kansa, E.J.

    2006-01-01

    Many heat-transfer problems involve a change of phase of material due to solidification or melting. Applications include: the safety studies of nuclear reactors (molten core concrete interaction), the drilling of high ice-content soil, the storage of thermal energy, etc. These problems are often called Stefan's or moving boundary value problems. Mathematically, the interface motion is expressed implicitly in an equation for the conservation of thermal energy at the interface (Stefan's conditions). This introduces a non-linear character to the system which treats each problem somewhat uniquely. The exact solution of phase change problems is limited exclusively to the cases in which e.g. the heat transfer regions are infinite or semi-infinite one dimensional-space. Therefore, solution is obtained either by approximate analytical solution or by numerical methods. Finite-difference methods and finite-element techniques have been used extensively for numerical solution of moving boundary problems. Recently, the numerical methods have focused on the idea of using a mesh-free methodology for the numerical solution of partial differential equations based on radial basis functions. In our case we will study solid-solid transformation. The numerical solutions will be compared with analytical solutions. Actually, in our work we will examine usefulness of radial basis functions (especially multiquadric-MQ) for one-dimensional Stefan's problems. The position of the moving boundary will be simulated by moving grid method. The resultant system of RBF-PDE will be solved by affine space decomposition. (author)

  19. A Novel Synchronization-Based Approach for Functional Connectivity Analysis

    Directory of Open Access Journals (Sweden)

    Angela Lombardi

    2017-01-01

    Full Text Available Complex network analysis has become a gold standard to investigate functional connectivity in the human brain. Popular approaches for quantifying functional coupling between fMRI time series are linear zero-lag correlation methods; however, they might reveal only partial aspects of the functional links between brain areas. In this work, we propose a novel approach for assessing functional coupling between fMRI time series and constructing functional brain networks. A phase space framework is used to map couples of signals exploiting their cross recurrence plots (CRPs to compare the trajectories of the interacting systems. A synchronization metric is extracted from the CRP to assess the coupling behavior of the time series. Since the functional communities of a healthy population are expected to be highly consistent for the same task, we defined functional networks of task-related fMRI data of a cohort of healthy subjects and applied a modularity algorithm in order to determine the community structures of the networks. The within-group similarity of communities is evaluated to verify whether such new metric is robust enough against noise. The synchronization metric is also compared with Pearson’s correlation coefficient and the detected communities seem to better reflect the functional brain organization during the specific task.

  20. Dynamical pruning of static localized basis sets in time-dependent quantum dynamics

    NARCIS (Netherlands)

    McCormack, D.A.

    2006-01-01

    We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active

  1. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.

    Science.gov (United States)

    Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads

    2018-06-27

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  2. What is the best density functional to describe water clusters: evaluation of widely used density functionals with various basis sets for (H2O)n (n = 1-10)

    Czech Academy of Sciences Publication Activity Database

    Li, F.; Wang, L.; Zhao, J.; Xie, J. R. H.; Riley, Kevin Eugene; Chen, Z.

    2011-01-01

    Roč. 130, 2/3 (2011), s. 341-352 ISSN 1432-881X Institutional research plan: CEZ:AV0Z40550506 Keywords : water cluster * density functional theory * MP2 . CCSD(T) * basis set * relative energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.162, year: 2011

  3. Optimization of nonlinear wave function parameters

    International Nuclear Information System (INIS)

    Shepard, R.; Minkoff, M.; Chemistry

    2006-01-01

    An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules

  4. The potential-free approach to the construction of the NN-wave functions

    International Nuclear Information System (INIS)

    Troitsky, V.E.

    1984-01-01

    The traditional approaches to the nonrelativistic NN-interaction use local and nonlocal potentials of the kind defined by different dynamical speculations. The wave functions are obtained then from the Schroedinger equation with the chosen potential. Here the author obtains the wave functions (scattering wave function and bound state wave function) directly from the scattering phases in the frame of a dispersion approach without use of potential. (Auth.)

  5. Efficient computation of smoothing splines via adaptive basis sampling

    KAUST Repository

    Ma, Ping

    2015-06-24

    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.

  6. Efficient computation of smoothing splines via adaptive basis sampling

    KAUST Repository

    Ma, Ping; Huang, Jianhua Z.; Zhang, Nan

    2015-01-01

    © 2015 Biometrika Trust. Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n3). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.

  7. Improvement of the Model of Enterprise Management Process on the Basis of General Management Functions

    Directory of Open Access Journals (Sweden)

    Ruslan Skrynkovskyy

    2017-12-01

    Full Text Available The purpose of the article is to improve the model of the enterprise (institution, organization management process on the basis of general management functions. The graphic model of the process of management according to the process-structured management is presented. It has been established that in today's business environment, the model of the management process should include such general management functions as: 1 controlling the achievement of results; 2 planning based on the main goal; 3 coordination and corrective actions (in the system of organization of work and production; 4 action as a form of act (conscious, volitional, directed; 5 accounting system (accounting, statistical, operational-technical and managerial; 6 diagnosis (economic, legal with such subfunctions as: identification of the state and capabilities; analysis (economic, legal, systemic with argumentation; assessment of the state, trends and prospects of development. The prospect of further research in this direction is: 1 the formation of a system of interrelation of functions and management methods, taking into account the presented research results; 2 development of the model of effective and efficient communication business process of the enterprise.

  8. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    Directory of Open Access Journals (Sweden)

    Arthur Henriques Pontes

    2016-10-01

    Full Text Available The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  9. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, Prosanta

    1997-01-01

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization

  10. The Feynman-Vernon Influence Functional Approach in QED

    International Nuclear Information System (INIS)

    Biryukov, Alexander; Shleenkov, Mark

    2016-01-01

    In the path integral approach we describe evolution of interacting electromagnetic and fermionic fields by the use of density matrix formalism. The equation for density matrix and transitions probability for fermionic field is obtained as average of electromagnetic field influence functional. We obtain a formula for electromagnetic field influence functional calculating for its various initial and final state. We derive electromagnetic field influence functional when its initial and final states are vacuum. We present Lagrangian for relativistic fermionic field under influence of electromagnetic field vacuum

  11. THE ALGORITHM OF MESHFREE METHOD OF RADIAL BASIS FUNCTIONS IN TASKS OF UNDERGROUND HYDROMECHANICS

    Directory of Open Access Journals (Sweden)

    N. V. Medvid

    2016-01-01

    Full Text Available A Mathematical model of filtering consolidation in the body of soil dam with conduit andwashout zone in two-dimensional case is considered. The impact of such technogenic factors as temperature, salt concentration, subsidence of upper boundary and interior points of the dam with time is taken into account. The software to automate the calculation of numerical solution of the boundary problem by radial basis functions has been created, which enables to conduct numerical experiments by varying the input parameters and shape. The influence of the presence of conduit and washout zone on the pressure, temperature and concentration of salts in the dam body at different time intervals isinvestigated. A number of numerical experiments is conducted and the analysis of dam accidents is performed.

  12. Pediatrician's knowledge on the approach of functional constipation

    OpenAIRE

    Vieira, Mario C.; Negrelle, Isadora Carolina Krueger; Webber, Karla Ulaf; Gosdal, Marjorie; Truppel, Sabine Krüger; Kusma, Solena Ziemer

    2016-01-01

    Abstract Objective: To evaluate the pediatrician's knowledge regarding the diagnostic and therapeutic approach of childhood functional constipation. Methods: A descriptive cross-sectional study was performed with the application of a self-administered questionnaire concerning a hypothetical clinical case of childhood functional constipation with fecal incontinence to physicians (n=297) randomly interviewed at the 36th Brazilian Congress of Pediatrics in 2013. Results: The majority of the p...

  13. A Comprehensive Approach for Pectin Chemical and Functional Characterization

    DEFF Research Database (Denmark)

    de Sousa, António Felipe Gomes Teixeira

    In this work, a comprehensive approach for the chemical and functional analysis of pectin was used in order to relate the different extraction conditions used to the polymer structure and the final functional (mainly gelling) properties. A wide range of methods were utilized including chemical an...

  14. Exponentiation for products of Wilson lines within the generating function approach

    International Nuclear Information System (INIS)

    Vladimirov, A.A.

    2015-01-01

    We present the generating function approach to the perturbative exponentiation of correlators of a product of Wilson lines and loops. The exponentiated expression is presented in closed form as an algebraic function of correlators of known operators, which can be seen as a generating function for web diagrams. The expression is naturally split onto two parts: the exponentiation kernel, which accumulates all non-trivial information about web diagrams, and the defect of exponentiation, which reconstructs the matrix exponent and is a function of the exponentiation kernel. The detailed comparison of the presented approach with existing approaches to exponentiation is presented as well. We also give examples of calculations within the generating function exponentiation, namely, we consider different configurations of light-like Wilson lines in the multi-gluon-exchange-webs (MGEW) approximation. Within this approximation the corresponding correlators can be calculated exactly at any order of perturbative expansion by only algebraic manipulations. The MGEW approximation shows violation of the dipole formula for infrared singularities at three-loop order.

  15. Multifunctionality of forestry as basis for creating gross innovational forestry product

    Directory of Open Access Journals (Sweden)

    Nikolai Mikhailovich Bolshakov

    2013-06-01

    Full Text Available The article is devoted to theoretical and methodological issues of defining the essence, role and place of multifunctional forest economy (MFFE from the perspective of the scientific rationale of the state forest policy, which contributes to transference of the forest sector to the innovative basis with the emphasis on the regeneration issues. The system-regeneration approach is used as a methodological tool, which is the combination of principles and analysis of the forest sector as a complicated social-economical system based on the methodology of the regeneration process. On the basis of objective economic laws and regulations, a political-economic analysis is carried out to find out the system interrelation of the quality of forest resource use and productivity of social labour in the forest sector. Common features in the circulation of the functions of forestry capable of creating a special form of an innovation, gross innovational forestry product are identified. A model of a multifunctional forestry providing an opportunity to predict the characteristics of innovational products in complex systems is suggested. This model makes the basis for research of the innovative changes potentional for modernization of the innovative forest product.

  16. Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    International Nuclear Information System (INIS)

    Ebata, Shuichiro; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2011-01-01

    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.

  17. Basis of integrated approach to sports and recreational activities of students of special medical groups

    Directory of Open Access Journals (Sweden)

    L.V. Zaharova

    2014-02-01

    Full Text Available Purpose : to prove the superiority of techniques integrated approach to sports and recreational activities of students of special medical groups in the educational institution. Material / methods : the annual pedagogical experiment conducted on three groups that have been formed based on the results of preliminary studies based on diagnosis. Learning process based on the principle of improving training. Results : the advantages of an integrated approach to sports and recreational activities of students with disorders of the musculoskeletal system. Recommended approaches to increase physical and functional training. Also - the formation of a stable demand of motor activity, leading healthy lifestyles, in the acquisition of social status in the educational activity. Conclusions : the integrated approach will meet the educational needs of students to form a cultural competence of the individual in the preservation and conservation of health, ability to adapt and successfully implement their professional activities.

  18. A Multivariate Approach to Functional Neuro Modeling

    DEFF Research Database (Denmark)

    Mørch, Niels J.S.

    1998-01-01

    by the application of linear and more flexible, nonlinear microscopic regression models to a real-world dataset. The dependency of model performance, as quantified by generalization error, on model flexibility and training set size is demonstrated, leading to the important realization that no uniformly optimal model......, provides the basis for a generalization theoretical framework relating model performance to model complexity and dataset size. Briefly summarized the major topics discussed in the thesis include: - An introduction of the representation of functional datasets by pairs of neuronal activity patterns...... exists. - Model visualization and interpretation techniques. The simplicity of this task for linear models contrasts the difficulties involved when dealing with nonlinear models. Finally, a visualization technique for nonlinear models is proposed. A single observation emerges from the thesis...

  19. The Dirac Equation in the algebraic approximation. VII. A comparison of molecular finite difference and finite basis set calculations using distributed Gaussian basis sets

    NARCIS (Netherlands)

    Quiney, H. M.; Glushkov, V. N.; Wilson, S.; Sabin,; Brandas, E

    2001-01-01

    A comparison is made of the accuracy achieved in finite difference and finite basis set approximations to the Dirac equation for the ground state of the hydrogen molecular ion. The finite basis set calculations are carried out using a distributed basis set of Gaussian functions the exponents and

  20. PFP functional development planning guide

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    The PFP Functional Development Planning Guide presents the strategy and process used for the identification, development, and analysis of functions (activities) necessary to satisfy the requirements within the Plutonium Finishing Plant (PFP) integrated project baseline. The functional analysis will provide the basis for the development of a function driven work breakdown structure. Future revisions to this document will include as attachments the results of the PFP Functional Analysis resulting from this approach. This document is intended be a Project-owned management tool. As such, the guide will periodically require revisions resulting from improvements of the information, processes, and techniques as now described

  1. Radiological emergency response - a functional approach

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Prosanta [Louisiana Radiation Protection Div., Baton Rouge, LA (United States)

    1997-12-31

    The radiological emergency response program in the State of Louisiana is discussed. The improved approach intends to maximize the efficiency for both nuclear power plant and radiological emergency response as a whole. Several broad-based components are identified: cluster of `nodes` are generated for each component; these `nodes` may be divided into `sub-nodes` which will contain some `attributes`; `relational bonds` among the `attributes` will exist. When executed, the process begins and continues with the `nodes` assuming a functional and dynamic role based on the nature and characteristics of the `attributes`. The typical response based on stand-alone elements is eliminated; overlapping of functions is avoided, and is produced a well-structure and efficient organization 1 ref., 6 figs.; e-mail: prosanta at deq.state.la.us

  2. Dynamic Fault Diagnosis for Semi-Batch Reactor under Closed-Loop Control via Independent Radial Basis Function Neural Network

    OpenAIRE

    Abdelkarim M. Ertiame; D. W. Yu; D. L. Yu; J. B. Gomm

    2015-01-01

    In this paper, a robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor, when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is emplo...

  3. A review of function modeling: Approaches and applications

    OpenAIRE

    Erden, M.S.; Komoto, H.; Van Beek, T.J.; D'Amelio, V.; Echavarria, E.; Tomiyama, T.

    2008-01-01

    This work is aimed at establishing a common frame and understanding of function modeling (FM) for our ongoing research activities. A comparative review of the literature is performed to grasp the various FM approaches with their commonalities and differences. The relations of FM with the research fields of artificial intelligence, design theory, and maintenance are discussed. In this discussion the goals are to highlight the features of various classical approaches in relation to FM, to delin...

  4. A functional approach for managing ITER operations

    International Nuclear Information System (INIS)

    Houtte, Didier van; Sagot, François; Okayama, Katsumi; Blackler, Kenneth

    2012-01-01

    Highlights: ► A function-oriented approach for defining and organizing all the functions required to perform the mission has been developed. ► A Functional Breakdown Structure providing a complete hierarchy of functions on multiple levels is presented. ► The FBS is used for giving a good visibility of ITER project needs and requirements. ► Reliability (R) and Inherent Availability (A I ) of basic functions are calculated from data on the structures, systems and components (failure rate and time to repair) for obtaining the Availability objectives of the ITER project. - Abstract: ITER is currently the most ambitious project on nuclear fusion research. Its objective is to demonstrate the feasibility of fusion as an energy source for the future. The complexity of the systems required to meet this challenge present many opportunities for omissions or incorrect assumptions. System engineering allows the engineer to deal with such a complexity by developing a Functional Breakdown Structure (FBS). Unlike a Plant Breakdown Structure (PBS), the FBS is a function-oriented tree, not a product-oriented tree. It details operations or activities that have to be performed as needed functions of the architecture, allowing identification of any missing elements, defining the personnel skills required to operate the architecture and managing the machine availability.

  5. EEG Source Reconstruction using Sparse Basis Function Representations

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2014-01-01

    -validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility...

  6. A functional approach to emotion in autonomous systems.

    Science.gov (United States)

    Sanz, Ricardo; Hernández, Carlos; Gómez, Jaime; Hernando, Adolfo

    2010-01-01

    The construction of fully effective systems seems to pass through the proper exploitation of goal-centric self-evaluative capabilities that let the system teleologically self-manage. Emotions seem to provide this kind of functionality to biological systems and hence the interest in emotion for function sustainment in artificial systems performing in changing and uncertain environments; far beyond the media hullabaloo of displaying human-like emotion-laden faces in robots. This chapter provides a brief analysis of the scientific theories of emotion and presents an engineering approach for developing technology for robust autonomy by implementing functionality inspired in that of biological emotions.

  7. Evaluation of characteristics of some giant multipole resonances within a many-particle approach

    International Nuclear Information System (INIS)

    Steshenko, A.J.

    1994-01-01

    Within a microscopic approach including the many-particle basis of longitudinal-vibration functions (Sp 2 (2,R))-basis) the widths and energies of some gigantic isoscalar monopole and quadrupole resonances in light magic and near-magic nuclei have been calculated. The theoretical results are in agreement with the available experimental data

  8. The Technology of Introduction of Innovation Methods of Management of Development of the Hotel and Restaurant Enterprises on the Basis of Synergistic Approach

    Directory of Open Access Journals (Sweden)

    Davydova Oksana Yu.

    2018-02-01

    Full Text Available The article is aimed at formation of technology of introduction of innovation methods of management of development of hotel and restaurant enterprises on the basis of synergetic approach. The following evolutionary stages of innovative management of enterprises’ development are proposed: preliminary (conjugation; existing (relations and bifurcation; perspective (counterdifferentiation. The technology of introduction of innovation methods of management of development of enterprises of hotel-restaurant industry on the basis of synergistic approach has been developed, confirming existence of synergism in the system of increase of activity potential, opening of new directions of innovative management of development of hotel and restaurant enterprises. The indicators of synergistic effect are determined as follows: high level of performance indicators of enterprise of hotel-restaurant industry; adequate response to changes in the external and internal environment; adaptation to predictable and unpredictable crisis phenomena; improving the quality of products and services; creation and improvement of positive image in both internal and external markets, etc.

  9. Hierarchical structure of correlation functions for single jets

    International Nuclear Information System (INIS)

    Lupia, S.; Giovannini, A.; Ugoccioni, R.

    1993-01-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p T intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e + e - annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  10. A revised approach of human mastication function rehabilitation through monotypical mastication analysis.

    Science.gov (United States)

    Skirbutis, Gediminas; Surna, Algimantas; Barauskas, Rimantas; Surna, Rimas; Gleiznys, Alvydas

    2015-01-01

    The aim of the simulation was to find the forcing laws, which provide the close-to reality mastication motions of the components of the system and to investigate the contact zones, interaction forces and their action points as they vary in time. The loss of one or few elements of the mastication system can be restored without significant violations of the overall function provided the general correlations among the mastication system elements, which were influenced during the evolutionary development, have been determined in advance. We present an approach based on the computer simulation of mastication biomechanics on the basis of finite element (FE) models. They were generated by using the data acquired with both optical and CT scanning systems, which enabled to obtain highly accurate three-dimensional geometrical models of all hard parts of the mastication system of a real dead goat. The surfaces of dental arcs of upper and lower jaws mechanically interacting one against another have been used as the main parts of the model. Using FE models we discovered that mastication forces are correlated directly between dental arches and TMJ surfaces. Factors influencing geometry of dental arches results a destroy jaw function. In the course of this analysis the mastication system of a goat has been considered as a representative of the ruminant individual and enabled to demonstrate the mechanics of the mastication process with insights for evaluation of the similarities and differences against the human mastication.

  11. [Application of wavelet transform-radial basis function neural network in NIRS for determination of rifampicin and isoniazide tablets].

    Science.gov (United States)

    Lu, Jia-hui; Zhang, Yi-bo; Zhang, Zhuo-yong; Meng, Qing-fan; Guo, Wei-liang; Teng, Li-rong

    2008-06-01

    A calibration model (WT-RBFNN) combination of wavelet transform (WT) and radial basis function neural network (RBFNN) was proposed for synchronous and rapid determination of rifampicin and isoniazide in Rifampicin and Isoniazide tablets by near infrared reflectance spectroscopy (NIRS). The approximation coefficients were used for input data in RBFNN. The network parameters including the number of hidden layer neurons and spread constant (SC) were investigated. WT-RBFNN model which compressed the original spectra data, removed the noise and the interference of background, and reduced the randomness, the capabilities of prediction were well optimized. The root mean square errors of prediction (RMSEP) for the determination of rifampicin and isoniazide obtained from the optimum WT-RBFNN model are 0.00639 and 0.00587, and the root mean square errors of cross-calibration (RMSECV) for them are 0.00604 and 0.00457, respectively which are superior to those obtained by the optimum RBFNN and PLS models. Regression coefficient (R) between NIRS predicted values and RP-HPLC values for rifampicin and isoniazide are 0.99522 and 0.99392, respectively and the relative error is lower than 2.300%. It was verified that WT-RBFNN model is a suitable approach to dealing with NIRS. The proposed WT-RBFNN model is convenient, and rapid and with no pollution for the determination of rifampicin and isoniazide tablets.

  12. Magnetic Resonance and Brain Function. Approaches from Physics

    International Nuclear Information System (INIS)

    Maraviglia, B.

    1999-01-01

    In the last decade of this millennium, while, on the one hand, the international scientific community has focused with increasing endeavour on the research about the great unknown of the mechanism and the pathologies of the human brain, on the other hand, the NMR community has achieved some important results, which should widely affect, in the future, the possibility of understanding the function and disfunction of the human brain. In the early 1980's, the beginning of the application of Magnetic Resonance Imaging (MRI) to the morphological study of the brain in vivo, has played an extraordinary role, which, since then, placed MRI in a leading position among the methodologies used for investigation and diagnostics of the Central Nervous System. In the 1990s, the objective of finding new means, based on MRI, capable of giving functional and metabolic information, with the highest possible space resolution, drove the scientists towards different approaches. Among these, the first one to generate a breakthrough in the localization of specific cerebral functions was the Blood Oxygen Level Development (BOLD) MRI. A very wide range of applications followed the discovery of BOLD imaging. Still, this method gives an indirect information of the localization of functions, via the variation of oxygen release and deoxyhemoglobin formation. Of course, a high-resolution spatial distribution of the metabolites, crucial to brain function, would give a deeper insight into the occurring processes. This finality is aimed at by the Double Magnetic Resonance methods, which are developing new procedures able to detect some metabolites with increasing sensitivity and resolution. A third new promising approach to functional MRI should derive from the use of hyperpolarized, opens a series of potential applications to the study of brain function

  13. On the choice of basis functions to eliminate false roots of the quantization condition in quantum defect theory

    International Nuclear Information System (INIS)

    Child, M S; Hiyama, M

    2007-01-01

    It is shown that the inherent arbitrariness in the construction of basis functions in quantum defect theory allows a choice that eliminates the occurrence of false roots of the quantization condition, with energies below the minimum of the channel potential. Comparisons are given with the well-known Ham procedure and with the more recent generalization to arbitrary fields by Jungen and Texier. The significance of the results for ab initio R matrix/MQDT studies is also discussed

  14. Defending the four principles approach as a good basis for good medical practice and therefore for good medical ethics.

    Science.gov (United States)

    Gillon, Raanan

    2015-01-01

    This paper argues that the four prima facie principles-beneficence, non-maleficence, respect for autonomy and justice-afford a good and widely acceptable basis for 'doing good medical ethics'. It confronts objections that the approach is simplistic, incompatible with a virtue-based approach to medicine, that it requires respect for autonomy always to have priority when the principles clash at the expense of clinical obligations to benefit patients and global justice. It agrees that the approach does not provide universalisable methods either for resolving such moral dilemmas arising from conflict between the principles or their derivatives, or universalisable methods for resolving disagreements about the scope of these principles-long acknowledged lacunae but arguably to be found, in practice, with all other approaches to medical ethics. The value of the approach, when properly understood, is to provide a universalisable though prima facie set of moral commitments which all doctors can accept, a basic moral language and a basic moral analytic framework. These can underpin an intercultural 'moral mission statement' for the goals and practice of medicine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Organisms modeling: The question of radial basis function networks

    Directory of Open Access Journals (Sweden)

    Muzy Alexandre

    2014-01-01

    Full Text Available There exists usually a gap between bio-inspired computational techniques and what biologists can do with these techniques in their current researches. Although biology is the root of system-theory and artifical neural networks, computer scientists are tempted to build their own systems independently of biological issues. This publication is a first-step re-evalution of an usual machine learning technique (radial basis funtion(RBF networks in the context of systems and biological reactive organisms.

  16. A minimalist functional group (MFG) approach for surrogate fuel formulation

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2018-03-20

    Surrogate fuel formulation has drawn significant interest due to its relevance towards understanding combustion properties of complex fuel mixtures. In this work, we present a novel approach for surrogate fuel formulation by matching target fuel functional groups, while minimizing the number of surrogate species. Five key functional groups; paraffinic CH, paraffinic CH, paraffinic CH, naphthenic CH–CH and aromatic C–CH groups in addition to structural information provided by the Branching Index (BI) were chosen as matching targets. Surrogates were developed for six FACE (Fuels for Advanced Combustion Engines) gasoline target fuels, namely FACE A, C, F, G, I and J. The five functional groups present in the fuels were qualitatively and quantitatively identified using high resolution H Nuclear Magnetic Resonance (NMR) spectroscopy. A further constraint was imposed in limiting the number of surrogate components to a maximum of two. This simplifies the process of surrogate formulation, facilitates surrogate testing, and significantly reduces the size and time involved in developing chemical kinetic models by reducing the number of thermochemical and kinetic parameters requiring estimation. Fewer species also reduces the computational expenses involved in simulating combustion in practical devices. The proposed surrogate formulation methodology is denoted as the Minimalist Functional Group (MFG) approach. The MFG surrogates were experimentally tested against their target fuels using Ignition Delay Times (IDT) measured in an Ignition Quality Tester (IQT), as specified by the standard ASTM D6890 methodology, and in a Rapid Compression Machine (RCM). Threshold Sooting Index (TSI) and Smoke Point (SP) measurements were also performed to determine the sooting propensities of the surrogates and target fuels. The results showed that MFG surrogates were able to reproduce the aforementioned combustion properties of the target FACE gasolines across a wide range of conditions

  17. A minimalist functional group (MFG) approach for surrogate fuel formulation

    KAUST Repository

    Abdul Jameel, Abdul Gani; Naser, Nimal; Issayev, Gani; Touitou, Jamal; Ghosh, Manik Kumer; Emwas, Abdul-Hamid M.; Farooq, Aamir; Dooley, Stephen; Sarathy, Mani

    2018-01-01

    Surrogate fuel formulation has drawn significant interest due to its relevance towards understanding combustion properties of complex fuel mixtures. In this work, we present a novel approach for surrogate fuel formulation by matching target fuel functional groups, while minimizing the number of surrogate species. Five key functional groups; paraffinic CH, paraffinic CH, paraffinic CH, naphthenic CH–CH and aromatic C–CH groups in addition to structural information provided by the Branching Index (BI) were chosen as matching targets. Surrogates were developed for six FACE (Fuels for Advanced Combustion Engines) gasoline target fuels, namely FACE A, C, F, G, I and J. The five functional groups present in the fuels were qualitatively and quantitatively identified using high resolution H Nuclear Magnetic Resonance (NMR) spectroscopy. A further constraint was imposed in limiting the number of surrogate components to a maximum of two. This simplifies the process of surrogate formulation, facilitates surrogate testing, and significantly reduces the size and time involved in developing chemical kinetic models by reducing the number of thermochemical and kinetic parameters requiring estimation. Fewer species also reduces the computational expenses involved in simulating combustion in practical devices. The proposed surrogate formulation methodology is denoted as the Minimalist Functional Group (MFG) approach. The MFG surrogates were experimentally tested against their target fuels using Ignition Delay Times (IDT) measured in an Ignition Quality Tester (IQT), as specified by the standard ASTM D6890 methodology, and in a Rapid Compression Machine (RCM). Threshold Sooting Index (TSI) and Smoke Point (SP) measurements were also performed to determine the sooting propensities of the surrogates and target fuels. The results showed that MFG surrogates were able to reproduce the aforementioned combustion properties of the target FACE gasolines across a wide range of conditions

  18. Geometry optimization of molecules within an LCGTO local-density functional approach

    International Nuclear Information System (INIS)

    Mintmire, J.W.

    1990-01-01

    We describe our implementation of geometry optimization techniques within the linear combination of Gaussian-type orbitals (LCGTO) approach to local-density functional theory. The algorithm for geometry optimization is based on the evaluation of the gradient of the total energy with respect to internal coordinates within the local-density functional scheme. We present optimization results for a range of small molecules which serve as test cases for our approach

  19. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    Science.gov (United States)

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  20. UAV Control on the Basis of 3D Landmark Bearing-Only Observations.

    Science.gov (United States)

    Karpenko, Simon; Konovalenko, Ivan; Miller, Alexander; Miller, Boris; Nikolaev, Dmitry

    2015-11-27

    The article presents an approach to the control of a UAV on the basis of 3D landmark observations. The novelty of the work is the usage of the 3D RANSAC algorithm developed on the basis of the landmarks' position prediction with the aid of a modified Kalman-type filter. Modification of the filter based on the pseudo-measurements approach permits obtaining unbiased UAV position estimation with quadratic error characteristics. Modeling of UAV flight on the basis of the suggested algorithm shows good performance, even under significant external perturbations.

  1. How do companies envisage the future? Functional foresight approaches

    Directory of Open Access Journals (Sweden)

    Kononiuk Anna

    2017-12-01

    Full Text Available The main aim of the paper is to present the synthesis of the results of methodological analysis conducted on examples of foresight projects executed in chosen companies representing four companies type: small and medium-sized enterprise (SME, nonprofit- organization, international corporations and consulting companies as well as to posit functional approach for the implementation of foresight research within organizations. The empirical part of the study is based on the qualitative approach. A multiple case study methodology is employed. The research objects are sixteen companies experienced in foresight research. The first part of the paper gives an overview of definitions of corporate foresight and the analysis of background that have influence on the conducting of foresight in large multinational companies on one side and SMEs on the other side. In the field of the theory of foresight research, the study demonstrates that there are different motivations for foresight introduction as well as different organizational structure of teams conducting the activities and the approaches that they use. In the practical perspective, the study and a detailed functional foresight approach proposed by authors could be valuable for SMEs who consider implementing foresight research into their strategic planning processes.

  2. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  3. Sequential approach to Colombeau's theory of generalized functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1987-07-01

    J.F. Colombeau's generalized functions are constructed as equivalence classes of the elements of a specially chosen ultrapower of the class of the C ∞ -functions. The elements of this ultrapower are considered as sequences of C ∞ -functions, so in a sense, the sequential construction presented here refers to the original Colombeau theory just as, for example, the Mikusinski sequential approach to the distribution theory refers to the original Schwartz theory of distributions. The paper could be used as an elementary introduction to the Colombeau theory in which recently a solution was found to the problem of multiplication of Schwartz distributions. (author). Refs

  4. Elements of a function analytic approach to probability.

    Energy Technology Data Exchange (ETDEWEB)

    Ghanem, Roger Georges (University of Southern California, Los Angeles, CA); Red-Horse, John Robert

    2008-02-01

    We first provide a detailed motivation for using probability theory as a mathematical context in which to analyze engineering and scientific systems that possess uncertainties. We then present introductory notes on the function analytic approach to probabilistic analysis, emphasizing the connections to various classical deterministic mathematical analysis elements. Lastly, we describe how to use the approach as a means to augment deterministic analysis methods in a particular Hilbert space context, and thus enable a rigorous framework for commingling deterministic and probabilistic analysis tools in an application setting.

  5. Quartic scaling MP2 for solids: A highly parallelized algorithm in the plane wave basis

    Science.gov (United States)

    Schäfer, Tobias; Ramberger, Benjamin; Kresse, Georg

    2017-03-01

    We present a low-complexity algorithm to calculate the correlation energy of periodic systems in second-order Møller-Plesset (MP2) perturbation theory. In contrast to previous approximation-free MP2 codes, our implementation possesses a quartic scaling, O ( N 4 ) , with respect to the system size N and offers an almost ideal parallelization efficiency. The general issue that the correlation energy converges slowly with the number of basis functions is eased by an internal basis set extrapolation. The key concept to reduce the scaling is to eliminate all summations over virtual orbitals which can be elegantly achieved in the Laplace transformed MP2 formulation using plane wave basis sets and fast Fourier transforms. Analogously, this approach could allow us to calculate second order screened exchange as well as particle-hole ladder diagrams with a similar low complexity. Hence, the presented method can be considered as a step towards systematically improved correlation energies.

  6. A computational approach to discovering the functions of bacterial phytochromes by analysis of homolog distributions

    Directory of Open Access Journals (Sweden)

    Lamparter Tilman

    2006-03-01

    Full Text Available Abstract Background Phytochromes are photoreceptors, discovered in plants, that control a wide variety of developmental processes. They have also been found in bacteria and fungi, but for many species their biological role remains obscure. This work concentrates on the phytochrome system of Agrobacterium tumefaciens, a non-photosynthetic soil bacterium with two phytochromes. To identify proteins that might share common functions with phytochromes, a co-distribution analysis was performed on the basis of protein sequences from 138 bacteria. Results A database of protein sequences from 138 bacteria was generated. Each sequence was BLASTed against the entire database. The homolog distribution of each query protein was then compared with the homolog distribution of every other protein (target protein of the same species, and the target proteins were sorted according to their probability of co-distribution under random conditions. As query proteins, phytochromes from Agrobacterium tumefaciens, Pseudomonas aeruginosa, Deinococcus radiodurans and Synechocystis PCC 6803 were chosen along with several phytochrome-related proteins from A. tumefaciens. The Synechocystis photosynthesis protein D1 was selected as a control. In the D1 analyses, the ratio between photosynthesis-related proteins and those not related to photosynthesis among the top 150 in the co-distribution tables was > 3:1, showing that the method is appropriate for finding partner proteins with common functions. The co-distribution of phytochromes with other histidine kinases was remarkably high, although most co-distributed histidine kinases were not direct BLAST homologs of the query protein. This finding implies that phytochromes and other histidine kinases share common functions as parts of signalling networks. All phytochromes tested, with one exception, also revealed a remarkably high co-distribution with glutamate synthase and methionine synthase. This result implies a general role of

  7. [Assessment of functioning in patients with head and neck cancer based on the international classification of functioning, disability and health (ICF)].

    Science.gov (United States)

    Tschiesner, U

    2011-09-01

    The article approaches with the question how preservation of function after treatment of head and neck cancer (HNC) can be defined and measured across treatment approaches. On the basis of the "International Classification of Functioning, Disability and Health (ICF)" a series of efforts are summarized how all relevant aspects of the interdisciplinary team can be integrated into a common concept.Different efforts on the development, validation and implementation of ICF Core Sets for head and neck cancer (ICF-HNC) are discussed. The ICF-HNC covers organ-based problems with food ingestion, breathing, and speech, as well as psychosocial difficulties.Relationships between the ICF-HNC and well-established outcome measures are illustrated. This enables the user to integrate different aspects of functional outcome into a consolidated approach towards preservation/rehabilitation of functioning after HNC - applicable for a variety of treatment-approaches and health-professions. George Thieme Verlag KG Stuttgart · New York.

  8. A three-way approach for protein function classification.

    Directory of Open Access Journals (Sweden)

    Hafeez Ur Rehman

    Full Text Available The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS and Information-Theoretic Rough Sets (ITRS for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy.

  9. Overcoming function annotation errors in the Gram-positive pathogen Streptococcus suis by a proteomics-driven approach

    Directory of Open Access Journals (Sweden)

    Bárcena José A

    2008-12-01

    Full Text Available Abstract Background Annotation of protein-coding genes is a key step in sequencing projects. Protein functions are mainly assigned on the basis of the amino acid sequence alone by searching of homologous proteins. However, fully automated annotation processes often lead to wrong prediction of protein functions, and therefore time-intensive manual curation is often essential. Here we describe a fast and reliable way to correct function annotation in sequencing projects, focusing on surface proteomes. We use a proteomics approach, previously proven to be very powerful for identifying new vaccine candidates against Gram-positive pathogens. It consists of shaving the surface of intact cells with two proteases, the specific cleavage-site trypsin and the unspecific proteinase K, followed by LC/MS/MS analysis of the resulting peptides. The identified proteins are contrasted by computational analysis and their sequences are inspected to correct possible errors in function prediction. Results When applied to the zoonotic pathogen Streptococcus suis, of which two strains have been recently sequenced and annotated, we identified a set of surface proteins without cytoplasmic contamination: all the proteins identified had exporting or retention signals towards the outside and/or the cell surface, and viability of protease-treated cells was not affected. The combination of both experimental evidences and computational methods allowed us to determine that two of these proteins are putative extracellular new adhesins that had been previously attributed a wrong cytoplasmic function. One of them is a putative component of the pilus of this bacterium. Conclusion We illustrate the complementary nature of laboratory-based and computational methods to examine in concert the localization of a set of proteins in the cell, and demonstrate the utility of this proteomics-based strategy to experimentally correct function annotation errors in sequencing projects. This

  10. Functional genomics approaches in parasitic helminths.

    Science.gov (United States)

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths. © 2011 Blackwell Publishing Ltd.

  11. SOME ASPECTS OF METHODOLOGICAL BASIS OF BANK’S FINANCIAL SECURITY MODELING

    Directory of Open Access Journals (Sweden)

    Z. Vasylchenko

    2013-05-01

    Full Text Available Developed methodical approaches for assessing financial safety of bank. Proposed by authors theoretical concept of integral bank’s financial security index has in its basis indicators of capital sufficiency, capital growth, liquidity and return on assets. Bringing together all the mentioned values is appropriate to do using the reliability function. As an input data for setting this function serve expert evaluations regarding the stability of the object that is under consideration. It was found out, that typically system of expert evaluations has couple of features (advantages, which don’t exclude and also don’t complement each other. These features authors consider by separating them as compensational, non-compensational and partly compensational advantages. It was proved, that in banking it is extremely important itself the realistic setup of the ratio between partial and integral indicators, which are partly inherent to-compensational advantage. Proved that the developed approaches for assessing strategic decisions on financial safety of bank are based on three-level index system: bank’s primary accounting figures; aggregate of special generalized figures which consolidate information on management decisions made in bank to the most possible extent; integral indices of financial safety of bank.

  12. Hierarchical structure of correlation functions for single jets

    Energy Technology Data Exchange (ETDEWEB)

    Lupia, S. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Giovannini, A. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy)); Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. di Torino, and INFN, Sezione di Torino (Italy))

    1993-08-01

    Theoretical basis of void scaling function properties of hierarchical structure in rapidity and p[sub T] intervals are explored. Their phenomenological consequences are analyzed at single jet level by using Monte Carlo methods in e[sup +]e[sup -] annihilation. It is found that void scaling function study provides an interesting alternative approach for characterizing single jets of different origin. (orig.)

  13. An Integrated model for Product Quality Development—A case study on Quality functions deployment and AHP based approach

    Science.gov (United States)

    Maitra, Subrata; Banerjee, Debamalya

    2010-10-01

    Present article is based on application of the product quality and improvement of design related with the nature of failure of machineries and plant operational problems of an industrial blower fan Company. The project aims at developing the product on the basis of standardized production parameters for selling its products in the market. Special attention is also being paid to the blower fans which have been ordered directly by the customer on the basis of installed capacity of air to be provided by the fan. Application of quality function deployment is primarily a customer oriented approach. Proposed model of QFD integrated with AHP to select and rank the decision criterions on the commercial and technical factors and the measurement of the decision parameters for selection of best product in the compettitive environment. The present AHP-QFD model justifies the selection of a blower fan with the help of the group of experts' opinion by pairwise comparison of the customer's and ergonomy based technical design requirements. The steps invoved in implementation of the QFD—AHP and selection of weighted criterion may be helpful for all similar purpose industries maintaining cost and utility for competitive product.

  14. Polarization observables in the longitudinal basis for pseudo-scalar meson photoproduction using a density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Biplab Dey, Michael E. McCracken, David G. Ireland, Curtis A. Meyer

    2011-05-01

    The complete expression for the intensity in pseudo-scalar meson photoproduction with a polarized beam, target, and recoil baryon is derived using a density matrix approach that offers great economy of notation. A Cartesian basis with spins for all particles quantized along a single direction, the longitudinal beam direction, is used for consistency and clarity in interpretation. A single spin-quantization axis for all particles enables the amplitudes to be written in a manifestly covariant fashion with simple relations to those of the well-known CGLN formalism. Possible sign discrepancies between theoretical amplitude-level expressions and experimentally measurable intensity profiles are dealt with carefully. Our motivation is to provide a coherent framework for coupled-channel partial-wave analysis of several meson photoproduction reactions, incorporating recently published and forthcoming polarization data from Jefferson Lab.

  15. Basis Expansion Approaches for Regularized Sequential Dictionary Learning Algorithms With Enforced Sparsity for fMRI Data Analysis.

    Science.gov (United States)

    Seghouane, Abd-Krim; Iqbal, Asif

    2017-09-01

    Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.

  16. A review of function modeling : Approaches and applications

    NARCIS (Netherlands)

    Erden, M.S.; Komoto, H.; Van Beek, T.J.; D'Amelio, V.; Echavarria, E.; Tomiyama, T.

    2008-01-01

    This work is aimed at establishing a common frame and understanding of function modeling (FM) for our ongoing research activities. A comparative review of the literature is performed to grasp the various FM approaches with their commonalities and differences. The relations of FM with the research

  17. An approach for using risk assessment in risk-informed decisions on plant-specific changes to the licensing basis

    International Nuclear Information System (INIS)

    Caruso, Mark A.; Cheok, Michael C.; Cunningham, Mark A.; Holahan, Gary M.; King, Thomas L.; Parry, Gareth W.; Ramey-Smith, Ann M.; Rubin, Mark P.; Thadani, Ashok C.

    1999-01-01

    This paper discusses an acceptable approach that the US Nuclear Regulatory Commission staff has proposed for using Probabilistic Risk Assessment in making decisions on changes to the licensing basis of a nuclear power plant. First, the overall philosophy of risk-informed decision-making, and the process framework are described. The philosophy is encapsulated in five principles, one of which states that, if the proposed change leads to an increase in core damage frequency or risk, the increases must be small and consistent with the intent of the Nuclear Regulatory Commission's Safety Goal Policy Statement. The second part of the paper discusses the use of PRA to demonstrate that this principle has been met. The discussion focuses on the acceptance guidelines, and on comparison of the PRA results with those guidelines. The difficulties that arise because of limitations in scope and analytical uncertainties are discussed and approaches to accommodate these difficulties in the decision-making are described

  18. Experimentation on accuracy of non functional requirement prioritization approaches for different complexity projects

    OpenAIRE

    Raj Kumar Chopra; Varun Gupta; Durg Singh Chauhan

    2016-01-01

    Non functional requirements must be selected for implementation together with functional requirements to enhance the success of software projects. Three approaches exist for performing the prioritization of non functional requirements using the suitable prioritization technique. This paper performs experimentation on three different complexity versions of the industrial software project using cost-value prioritization technique employing three approaches. Experimentation is conducted to analy...

  19. Fuzzy set approach to quality function deployment: An investigation

    Science.gov (United States)

    Masud, Abu S. M.

    1992-01-01

    The final report of the 1992 NASA/ASEE Summer Faculty Fellowship at the Space Exploration Initiative Office (SEIO) in Langley Research Center is presented. Quality Function Deployment (QFD) is a process, focused on facilitating the integration of the customer's voice in the design and development of a product or service. Various input, in the form of judgements and evaluations, are required during the QFD analyses. All the input variables in these analyses are treated as numeric variables. The purpose of the research was to investigate how QFD analyses can be performed when some or all of the input variables are treated as linguistic variables with values expressed as fuzzy numbers. The reason for this consideration is that human judgement, perception, and cognition are often ambiguous and are better represented as fuzzy numbers. Two approaches for using fuzzy sets in QFD have been proposed. In both cases, all the input variables are considered as linguistic variables with values indicated as linguistic expressions. These expressions are then converted to fuzzy numbers. The difference between the two approaches is due to how the QFD computations are performed with these fuzzy numbers. In Approach 1, the fuzzy numbers are first converted to their equivalent crisp scores and then the QFD computations are performed using these crisp scores. As a result, the output of this approach are crisp numbers, similar to those in traditional QFD. In Approach 2, all the QFD computations are performed with the fuzzy numbers and the output are fuzzy numbers also. Both the approaches have been explained with the help of illustrative examples of QFD application. Approach 2 has also been applied in a QFD application exercise in SEIO, involving a 'mini moon rover' design. The mini moon rover is a proposed tele-operated vehicle that will traverse and perform various tasks, including autonomous operations, on the moon surface. The output of the moon rover application exercise is a

  20. Adaptive Analysis of Functional MRI Data

    International Nuclear Information System (INIS)

    Friman, Ola

    2003-01-01

    Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuro-imaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities to unravel the mysteries and advance the understanding of the human brain, as well as to perform pre-surgical examinations in order to optimize surgical interventions. This dissertation introduces new approaches for the analysis of fMRI data. The detection of active brain areas is a challenging problem due to high noise levels and artifacts present in the data. A fundamental tool in the developed methods is Canonical Correlation Analysis (CCA). CCA is used in two novel ways. First as a method with the ability to fully exploit the spatio-temporal nature of fMRI data for detecting active brain areas. Established analysis approaches mainly focus on the temporal dimension of the data and they are for this reason commonly referred to as being mass-univariate. The new CCA detection method encompasses and generalizes the traditional mass-univariate methods and can in this terminology be viewed as a mass-multivariate approach. The concept of spatial basis functions is introduced as a spatial counterpart of the temporal basis functions already in use in fMRI analysis. The spatial basis functions implicitly perform an adaptive spatial filtering of the fMRI images, which significantly improves detection performance. It is also shown how prior information can be incorporated into the analysis by imposing constraints on the temporal and spatial models and a constrained version of CCA is devised to this end. A general Principal Component Analysis technique for generating and constraining temporal and spatial subspace models is proposed to be used in combination with the constrained CCA

  1. A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell

    KAUST Repository

    Wright, G. B.

    2010-07-01

    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth\\'s mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature. Copyright 2010 by the American Geophysical Union.

  2. Cost function approach for estimating derived demand for composite wood products

    Science.gov (United States)

    T. C. Marcin

    1991-01-01

    A cost function approach was examined for using the concept of duality between production and input factor demands. A translog cost function was used to represent residential construction costs and derived conditional factor demand equations. Alternative models were derived from the translog cost function by imposing parameter restrictions.

  3. Comparison of two Minkowski-space approaches to heavy quarkonia

    Energy Technology Data Exchange (ETDEWEB)

    Leitao, Sofia; Biernat, Elmar P. [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Li, Yang [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); College of William and Mary, Department of Physics, Williamsburg, VA (United States); Maris, Pieter; Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); Pena, M.T. [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Universidade de Lisboa, Departamento de Fisica, Instituto Superior Tecnico, Lisbon (Portugal); Stadler, Alfred [Universidade de Lisboa, CFTP, Instituto Superior Tecnico, Lisbon (Portugal); Universidade de Evora, Departamento de Fisica, Evora (Portugal)

    2017-10-15

    In this work we compare mass spectra and decay constants obtained from two recent, independent, and fully relativistic approaches to the quarkonium bound-state problem: the Basis Light-Front Quantization approach, where light-front wave functions are naturally formulated; and, the Covariant Spectator Theory (CST), based on a reorganization of the Bethe-Salpeter equation. Even though conceptually different, both solutions are obtained in Minkowski space. Comparisons of decay constants for more than ten states of charmonium and bottomonium show favorable agreement between the two approaches as well as with experiment where available. We also apply the Brodsky-Huang-Lepage prescription to convert the CST amplitudes into functions of light-front variables. This provides an ideal opportunity to investigate the similarities and differences at the level of the wave functions. Several qualitative features are observed in remarkable agreement between the two approaches even for the rarely addressed excited states. Leading-twist distribution amplitudes as well as parton distribution functions of heavy quarkonia are also analyzed. (orig.)

  4. Strategic approach to outsourcing the research and development function

    OpenAIRE

    Firend, A.R

    2010-01-01

    This paper proposes an approach for outsourcing the R&D function. This model is to serve as a strategic approach to outsourcing that considers number of elements with strategic competitive advantage as an ultimate objective. This paper suggest that outsourcing research and development should be planed and conducted from a strategic standpoint and have positive impact on organizational competitive position by incorporating it into the overall\\ud strategy of the organization to reduce the numbe...

  5. A novel approach to error function minimization for feedforward neural networks

    International Nuclear Information System (INIS)

    Sinkus, R.

    1995-01-01

    Feedforward neural networks with error backpropagation are widely applied to pattern recognition. One general problem encountered with this type of neural networks is the uncertainty, whether the minimization procedure has converged to a global minimum of the cost function. To overcome this problem a novel approach to minimize the error function is presented. It allows to monitor the approach to the global minimum and as an outcome several ambiguities related to the choice of free parameters of the minimization procedure are removed. (orig.)

  6. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    Energy Technology Data Exchange (ETDEWEB)

    Betzinger, Markus

    2011-12-14

    and mixed product basis is mandatory for a smooth and physical local EXX potential. The LAPW basis must be converged to an accuracy which is far beyond that for LDA or GGA calculations. We demonstrate that this is necessary to lend the LAPW basis and thus the KS wave functions and density sufficient flexibility to react adequately to the changes of the effective potential, which are described in our formalism by the MPB. If both basis sets are properly balanced, our results for C, Si, SiC, Ge, GaAs as well as solid Ne and Ar are in favorable agreement with plane-wave pseudopotential results. We propose a correction, the finite basis-set correction (FBC), for the density and wave-function response, which explicitly considers the dependence of the LAPW basis on the effective potential and which vanishes in the limit of an infinite, complete basis. For the example of ScN, we demonstrate that the FBC leads to converged potentials at much smaller LAPW basis sets and thus turns the EXX-OEP approach into a practical method. Finally, we discuss a generalization of the formalism to metals and report results for the cubic perovskites CaTiO{sub 3}, SrTiO{sub 3}, and BaTiO{sub 3}, the transition-metal oxides MnO, FeO, and CoO as well as the metals Al, Na, and Cu.

  7. Orbital-dependent exchange-correlation functionals in density-functional theory realized by the FLAPW method

    International Nuclear Information System (INIS)

    Betzinger, Markus

    2011-01-01

    and mixed product basis is mandatory for a smooth and physical local EXX potential. The LAPW basis must be converged to an accuracy which is far beyond that for LDA or GGA calculations. We demonstrate that this is necessary to lend the LAPW basis and thus the KS wave functions and density sufficient flexibility to react adequately to the changes of the effective potential, which are described in our formalism by the MPB. If both basis sets are properly balanced, our results for C, Si, SiC, Ge, GaAs as well as solid Ne and Ar are in favorable agreement with plane-wave pseudopotential results. We propose a correction, the finite basis-set correction (FBC), for the density and wave-function response, which explicitly considers the dependence of the LAPW basis on the effective potential and which vanishes in the limit of an infinite, complete basis. For the example of ScN, we demonstrate that the FBC leads to converged potentials at much smaller LAPW basis sets and thus turns the EXX-OEP approach into a practical method. Finally, we discuss a generalization of the formalism to metals and report results for the cubic perovskites CaTiO 3 , SrTiO 3 , and BaTiO 3 , the transition-metal oxides MnO, FeO, and CoO as well as the metals Al, Na, and Cu.

  8. Conjugate schema and basis representation of crossover and mutation operators.

    Science.gov (United States)

    Kazadi, S T

    1998-01-01

    In genetic search algorithms and optimization routines, the representation of the mutation and crossover operators are typically defaulted to the canonical basis. We show that this can be influential in the usefulness of the search algorithm. We then pose the question of how to find a basis for which the search algorithm is most useful. The conjugate schema is introduced as a general mathematical construct and is shown to separate a function into smaller dimensional functions whose sum is the original function. It is shown that conjugate schema, when used on a test suite of functions, improves the performance of the search algorithm on 10 out of 12 of these functions. Finally, a rigorous but abbreviated mathematical derivation is given in the appendices.

  9. Integration a functional approach

    CERN Document Server

    Bichteler, Klaus

    1998-01-01

    This book covers Lebesgue integration and its generalizations from Daniell's point of view, modified by the use of seminorms. Integrating functions rather than measuring sets is posited as the main purpose of measure theory. From this point of view Lebesgue's integral can be had as a rather straightforward, even simplistic, extension of Riemann's integral; and its aims, definitions, and procedures can be motivated at an elementary level. The notion of measurability, for example, is suggested by Littlewood's observations rather than being conveyed authoritatively through definitions of (sigma)-algebras and good-cut-conditions, the latter of which are hard to justify and thus appear mysterious, even nettlesome, to the beginner. The approach taken provides the additional benefit of cutting the labor in half. The use of seminorms, ubiquitous in modern analysis, speeds things up even further. The book is intended for the reader who has some experience with proofs, a beginning graduate student for example. It might...

  10. Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory?

    International Nuclear Information System (INIS)

    Hupin, G; Lacroix, D; Bender, M

    2011-01-01

    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.

  11. Generic metrics and quantitative approaches for system resilience as a function of time

    International Nuclear Information System (INIS)

    Henry, Devanandham; Emmanuel Ramirez-Marquez, Jose

    2012-01-01

    Resilience is generally understood as the ability of an entity to recover from an external disruptive event. In the system domain, a formal definition and quantification of the concept of resilience has been elusive. This paper proposes generic metrics and formulae for quantifying system resilience. The discussions and graphical examples illustrate that the quantitative model is aligned with the fundamental concept of resilience. Based on the approach presented it is possible to analyze resilience as a time dependent function in the context of systems. The paper describes the metrics of network and system resilience, time for resilience and total cost of resilience. Also the paper describes the key parameters necessary to analyze system resilience such as the following: disruptive events, component restoration and overall resilience strategy. A road network example is used to demonstrate the applicability of the proposed resilience metrics and how these analyses form the basis for developing effective resilience design strategies. The metrics described are generic enough to be implemented in a variety of applications as long as appropriate figures-of-merit and the necessary system parameters, system decomposition and component parameters are defined. - Highlights: ► Propose a graphical model for the understanding of the resilience process. ► Mathematical description of resilience as a function of time. ► Identification of necessary concepts to define and evaluate network resilience. ► Development of cost and time to recovery metrics based on resilience formulation.

  12. AN ENERGY FUNCTION APPROACH FOR FINDING ROOTS OF CHARACTERISTIC EQUATION

    OpenAIRE

    Deepak Mishra; Prem K. Kalra

    2011-01-01

    In this paper, an energy function approach for finding roots of a characteristic equation has been proposed. Finding the roots of a characteristics equation is considered as an optimization problem. We demonstrated that this problem can be solved with the application of feedback type neural network. The proposed approach is fast and robust against variation of parameter.

  13. A Service-Oriented Approach for Dynamic Chaining of Virtual Network Functions over Multi-Provider Software-Defined Networks

    Directory of Open Access Journals (Sweden)

    Barbara Martini

    2016-06-01

    Full Text Available Emerging technologies such as Software-Defined Networks (SDN and Network Function Virtualization (NFV promise to address cost reduction and flexibility in network operation while enabling innovative network service delivery models. However, operational network service delivery solutions still need to be developed that actually exploit these technologies, especially at the multi-provider level. Indeed, the implementation of network functions as software running over a virtualized infrastructure and provisioned on a service basis let one envisage an ecosystem of network services that are dynamically and flexibly assembled by orchestrating Virtual Network Functions even across different provider domains, thereby coping with changeable user and service requirements and context conditions. In this paper we propose an approach that adopts Service-Oriented Architecture (SOA technology-agnostic architectural guidelines in the design of a solution for orchestrating and dynamically chaining Virtual Network Functions. We discuss how SOA, NFV, and SDN may complement each other in realizing dynamic network function chaining through service composition specification, service selection, service delivery, and placement tasks. Then, we describe the architecture of a SOA-inspired NFV orchestrator, which leverages SDN-based network control capabilities to address an effective delivery of elastic chains of Virtual Network Functions. Preliminary results of prototype implementation and testing activities are also presented. The benefits for Network Service Providers are also described that derive from the adaptive network service provisioning in a multi-provider environment through the orchestration of computing and networking services to provide end users with an enhanced service experience.

  14. Canonical three-body angular basis

    International Nuclear Information System (INIS)

    Matveenko, A.V.

    2001-01-01

    Three-body problems are basic for the quantum mechanics of molecular, atomic, or nuclear systems. We demonstrate that their variational solution for rotational states can be greatly simplified. A special choice of coordinates (hyperspherical) and of the kinematics (body-fixed coordinate frame) allows one to choose basis functions in a form that makes the angular coupling trivial. (author)

  15. Many-body theory and Energy Density Functionals

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M. [INFN, Catania (Italy)

    2016-07-15

    In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach. (orig.)

  16. Localized atomic basis set in the projector augmented wave method

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Vanin, Marco; Mortensen, Jens Jørgen

    2009-01-01

    We present an implementation of localized atomic-orbital basis sets in the projector augmented wave (PAW) formalism within the density-functional theory. The implementation in the real-space GPAW code provides a complementary basis set to the accurate but computationally more demanding grid...

  17. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    Science.gov (United States)

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients

  18. Teaching Mathematical Functions Using Geometric Functions Approach and Its Effect on Ninth Grade Students' Motivation

    Science.gov (United States)

    Akçakin, Veysel

    2018-01-01

    The purpose of this study is to investigate the effects of using geometric functions approach on 9th grade students' motivation levels toward mathematics in functions unit. Participants of this study were 87 students who were ongoing in the first year of high school in Turkey. In this research, pretest and posttest control group quasiexperimental…

  19. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations

    DEFF Research Database (Denmark)

    Kupka, Teobald; Stachów, Michal; Kaminsky, Jakub

    2013-01-01

    , estimated from calculations with the family of polarizationconsistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and obtained with significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected......A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T) ), with affordable pcS-2 basis set and corresponding complete basis set results...... set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method...

  20. A meshless local radial basis function method for two-dimensional incompressible Navier-Stokes equations

    KAUST Repository

    Wang, Zhiheng

    2014-12-10

    A meshless local radial basis function method is developed for two-dimensional incompressible Navier-Stokes equations. The distributed nodes used to store the variables are obtained by the philosophy of an unstructured mesh, which results in two main advantages of the method. One is that the unstructured nodes generation in the computational domain is quite simple, without much concern about the mesh quality; the other is that the localization of the obtained collocations for the discretization of equations is performed conveniently with the supporting nodes. The algebraic system is solved by a semi-implicit pseudo-time method, in which the convective and source terms are explicitly marched by the Runge-Kutta method, and the diffusive terms are implicitly solved. The proposed method is validated by several benchmark problems, including natural convection in a square cavity, the lid-driven cavity flow, and the natural convection in a square cavity containing a circular cylinder, and very good agreement with the existing results are obtained.

  1. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    Science.gov (United States)

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  2. Testing the basic assumption of the hydrogeomorphic approach to assessing wetland functions.

    Science.gov (United States)

    Hruby, T

    2001-05-01

    The hydrogeomorphic (HGM) approach for developing "rapid" wetland function assessment methods stipulates that the variables used are to be scaled based on data collected at sites judged to be the best at performing the wetland functions (reference standard sites). A critical step in the process is to choose the least altered wetlands in a hydrogeomorphic subclass to use as a reference standard against which other wetlands are compared. The basic assumption made in this approach is that wetlands judged to have had the least human impact have the highest level of sustainable performance for all functions. The levels at which functions are performed in these least altered wetlands are assumed to be "characteristic" for the subclass and "sustainable." Results from data collected in wetlands in the lowlands of western Washington suggest that the assumption may not be appropriate for this region. Teams developing methods for assessing wetland functions did not find that the least altered wetlands in a subclass had a range of performance levels that could be identified as "characteristic" or "sustainable." Forty-four wetlands in four hydrogeomorphic subclasses (two depressional subclasses and two riverine subclasses) were rated by teams of experts on the severity of their human alterations and on the level of performance of 15 wetland functions. An ordinal scale of 1-5 was used to quantify alterations in water regime, soils, vegetation, buffers, and contributing basin. Performance of functions was judged on an ordinal scale of 1-7. Relatively unaltered wetlands were judged to perform individual functions at levels that spanned all of the seven possible ratings in all four subclasses. The basic assumption of the HGM approach, that the least altered wetlands represent "characteristic" and "sustainable" levels of functioning that are different from those found in altered wetlands, was not confirmed. Although the intent of the HGM approach is to use level of functioning as a

  3. Single-particle basis and translational invariance in microscopic nuclear calculations

    International Nuclear Information System (INIS)

    Ehfros, V.D.

    1977-01-01

    The approach to the few-body problem is considered which allows to use the simple single-particle basis without violation of the translation invariance. A method is proposed to solve the nuclear reaction problems in the single-particle basis. The method satisfies the Pauli principle and the translation invariance. Calculation of the matrix elements of operators is treated

  4. Validating the Kinematic Wave Approach for Rapid Soil Erosion Assessment and Improved BMP Site Selection to Enhance Training Land Sustainability

    Science.gov (United States)

    2014-02-01

    installation based on a Euclidean distance allocation and assigned that installation’s threshold values. The second approach used a thin - plate spline ...installation critical nLS+ thresholds involved spatial interpolation. A thin - plate spline radial basis functions (RBF) was selected as the...the interpolation of installation results using a thin - plate spline radial basis function technique. 6.5 OBJECTIVE #5: DEVELOP AND

  5. Dual Approach to the Study of Land Market Functioning

    Directory of Open Access Journals (Sweden)

    Liliya Oganesovna Oganesyan

    2015-12-01

    Full Text Available The article reveals the essence, the structural elements and features of the mechanism of functioning of the market of agricultural land. The authors present the supplementing idea on the structural dichotomy of the agricultural land market. In contrast to neoclassical approaches, it is proposed to explore the market based on its structural dichotomy – market property rights and market rights of management. In this context, the mechanism of functioning of agricultural lands market performs the function of a basic element in the system of land relations to ensure market circulation of agricultural land through alienation and assign full or partial rights of land ownership. The use of the institutional approach to the study of market structures justifies the dual nature of the mechanism of functioning of the market of agricultural land due to the fact that on the one hand, the market is slow and limited in the market space of the rare economic good or factor of production, and on the other hand, it is a dynamic institutional and economic system within which the specification of property rights to land is implemented. The structure of the mechanism of functioning and development of agricultural land market is considered as a system of interrelated and interacting elements of state regulation and market self-regulation, based on the principles of coordination and harmonization of personalized economic interests and market law of supply and demand. The combination of elements of market self-regulation and state regulation allows in practice to justify the choice of model combinations of stable and changing elements of the mechanism. This combination complies with the institutional conditions for the functioning of the market of agricultural land considering the dominance of regulated sustainable standards at the market of property rights and in the frames of informal institutions at the market of the management rights. The authors prove the

  6. A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan-Rong; Wang, Jian-Min [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-11-10

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  7. A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING

    International Nuclear Information System (INIS)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming

    2016-01-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  8. Points of convergence between functional and formal approaches to syntactic analysis

    DEFF Research Database (Denmark)

    Bjerre, Tavs; Engels, Eva; Jørgensen, Henrik

    2008-01-01

    respectively: The functional approach is represented by Paul Diderichsen's (1936, 1941, 1946, 1964) sætningsskema, ‘sentence model', and the formal approach is represented by analysis whose main features are common to the principles and parameters framework (Chomsky 1986) and the minimalist programme (Chomsky...

  9. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach.

    Science.gov (United States)

    Li, Jun; Zhao, Patrick X

    2016-01-01

    Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.

  10. TWRS authorization basis configuration control summary

    International Nuclear Information System (INIS)

    Mendoza, D.P.

    1997-01-01

    This document was developed to define the Authorization Basis management functional requirements for configuration control, to evaluate the management control systems currently in place, and identify any additional controls that may be required until the TWRS [Tank Waste Remediation System] Configuration Management system is fully in place

  11. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known...... to be densely packed with serotonin transporters (5-hydroxytryptaminic [5-HTT] system). METHODS: A template set for the raphe nuclei, based on their high content of 5-HTT as visualized in parametric (11)C-labeled 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile PET images, was created for 10...... healthy subjects. The templates were subsequently included in the region sets used in a previously published automatic MRI-based approach to create an observer- and activity-independent probabilistic VOI map. The probabilistic map approach was tested in a different group of 10 subjects and compared...

  12. Optimization of the variational basis in the three body problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Pushkash, O.M.; Bestuzheva, A.B.

    1995-01-01

    The procedure of variational oscillator basis optimization is proposed to the calculation the energy spectra of three body systems. The hierarchy of basis functions is derived and energies of ground and excited states for three gravitating particles is obtained with high accuracy. 12 refs

  13. Radiological emergency response - a functional approach

    International Nuclear Information System (INIS)

    Chowdhury, P.

    1998-01-01

    The state of Louisiana's radiological emergency response programme is based on the federal guidance 'Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants' (NUREG-0654, FEMA-REP-1 Rev. 1). Over the past 14 years, the planning and implementation of response capabilities became more organized and efficient; the training programme has strengthened considerably; co-ordination with all participating agencies has assumed a more co-operative role, and as a result, a fairly well integrated response planning has evolved. Recently, a more 'functional' approach is being adopted to maximize the programme's efficiency not only for nuclear power plant emergency response, but radiological emergency response as a whole. First, several broad-based 'components' are identified; clusters of 'nodes' are generated for each component; these 'nodes' may be divided into 'sub-nodes' which will contain some 'attributes'; 'relational bonds' among the 'attributes' will exist. When executed, the process begins and continues with the 'nodes' assuming a functional and dynamic role based on the nature and characteristics of the 'attributes'. The typical response based on stand-alone elements is thus eliminated, the overlapping of functions is avoided, and a well structured and efficient organization is produced, that is essential for today's complex nature of emergency response. (author)

  14. Cellular Basis for ADT-Induced Acceleration of Sarcopenia

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0454 TITLE: Cellular Basis for ADT-Induced Acceleration of Sarcopenia PRINCIPAL INVESTIGATOR: Joe V...AND SUBTITLE Cellular Basis for ADT-Induced Acceleration of Sarcopenia 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0454 5c. PROGRAM...cell function and thereby regenerative capability contribute to the acceleration of sarcopenia observed in prostate cancer patients undergoing ADT

  15. Prediction of the Reminiscence Functions in Older Adults on the Basis of the Five Personality Factor Model

    Directory of Open Access Journals (Sweden)

    Azam Farmani

    2014-07-01

    Full Text Available Objectives: The aim of the present study is to examine the prediction of the reminiscence functions in older adults on the basis of the five personality factor model.  Methods & Materials: 242 elderly adults older than 60 were recruited from retirement clubs of the city of Shiraz via available sampling method. The participants completed the Reminiscence Functions Scale and Goldberg's International Personality Item Pool. Forty participants were deleted from the sample because they did not complete the questionnaires fully. All the participants took part in the study with their conscious consent. To conduct the necessary descriptive and inferential statistical operations, SPSS (Version 16 was used. Mean, standard deviation and Pearson correlation coefficient were utilized to analyze the data in the descriptive statistics section, And in inferential statistics section, simultaneous multiple regression was used to predict reminiscence functions.  Results: According to the results of the multiple regression analysis, Neuroticism predicted the reminiscence functions of Bitterness Revival (β=0.28, P≤0.001 and Intimacy Maintenance (β=0.25, P≤0.001 and Extraversion predicted the reminiscence functions of Teach/Inform (β=0.18, P<0.05.  Conclusion: The results indicated that people with higher levels of psychological distress tend to rehash and ruminate on bitter memories and hold onto memories of intimate social relations who are no longer part of their lives. Moreover, extravert people tend to share memories to transmit a lesson of life and share personal ideologies and experiences. Clinicians should focus on more adaptive functions of reminiscence (e.g., identity, problem solving and teach/inform and teach such functions.

  16. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  17. Inter-regional Knowledge Management Workshop on Life-cycle Management of Design Basis Information – Issues, Challenges, Approaches. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    This Workshop had a strategic focus on identifying and clarifying long-term issues and objectives related to our collective responsibilities to ensure that both existing nuclear facilities and future new build projects properly address life-cycle management of plant design basis knowledge (i.e. from design to decommissioning). The workshop attempted to bring together key stakeholders and build a better collective understanding, recognizing that very different perspectives exist and there are a wide range of national contexts and approaches. The various issues and challenges related to this topic and facing the nuclear energy sector both today and in the long-term were discussed in a senior management context and at strategic level

  18. Fault diagnosis and performance evaluation for high current LIA based on radial basis function neural network

    International Nuclear Information System (INIS)

    Yang Xinglin; Wang Huacen; Chen Nan; Dai Wenhua; Li Jin

    2006-01-01

    High current linear induction accelerator (LIA) is a complicated experimental physics device. It is difficult to evaluate and predict its performance. this paper presents a method which combines wavelet packet transform and radial basis function (RBF) neural network to build fault diagnosis and performance evaluation in order to improve reliability of high current LIA. The signal characteristics vectors which are extracted based on energy parameters of wavelet packet transform can well present the temporal and steady features of pulsed power signal, and reduce data dimensions effectively. The fault diagnosis system for accelerating cell and the trend classification system for the beam current based on RBF networks can perform fault diagnosis and evaluation, and provide predictive information for precise maintenance of high current LIA. (authors)

  19. ``Green's function'' approach & low-mode asymmetries

    Science.gov (United States)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  20. A Floquet-Green's function approach to mesoscopic transport under ac bias

    International Nuclear Information System (INIS)

    Wu, B H; Cao, J C

    2008-01-01

    The current response of a mesoscopic system under a periodic ac bias is investigated by combining the Floquet theorem and the nonequilibrium Green's function method. The band structure of the lead under ac bias is fully taken into account by using appropriate self-energies in an enlarged Floquet space. Both the retarded and lesser Green's functions are obtained in the Floquet basis to account for the interference and interaction effects. In addition to the external ac bias, the time-varying Coulomb interaction, which is treated at the self-consistent Hartree-Fock level, provides another internal ac field. The numerical results show that the time-varying Coulomb field yields decoherence and reduces the ringing behavior of the current response to a harmonic bias

  1. Radioactive Waste Management Basis

    International Nuclear Information System (INIS)

    Perkins, B.K.

    2009-01-01

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  2. Trait approach and avoidance motivation: lateralized neural activity associated with executive function.

    Science.gov (United States)

    Spielberg, Jeffrey M; Miller, Gregory A; Engels, Anna S; Herrington, John D; Sutton, Bradley P; Banich, Marie T; Heller, Wendy

    2011-01-01

    Motivation and executive function are both necessary for the completion of goal-directed behavior. Research investigating the manner in which these processes interact is beginning to emerge and has implicated middle frontal gyrus (MFG) as a site of interaction for relevant neural mechanisms. However, this research has focused on state motivation, and it has not examined functional lateralization. The present study examined the impact of trait levels of approach and avoidance motivation on neural processes associated with executive function. Functional magnetic resonance imaging was conducted while participants performed a color-word Stroop task. Analyses identified brain regions in which trait approach and avoidance motivation (measured by questionnaires) moderated activation associated with executive control. Approach was hypothesized to be associated with left-lateralized MFG activation, whereas avoidance was hypothesized to be associated with right-lateralized MFG activation. Results supported both hypotheses. Present findings implicate areas of middle frontal gyrus in top-down control to guide behavior in accordance with motivational goals. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. No need for external orthogonality in subsystem density-functional theory.

    Science.gov (United States)

    Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R

    2016-08-03

    Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.

  4. On the performance of atomic natural orbital basis sets: A full configuration interaction study

    International Nuclear Information System (INIS)

    Illas, F.; Ricart, J.M.; Rubio, J.; Bagus, P.S.

    1990-01-01

    The performance of atomic natural orbital (ANO) basis sets has been studied by comparing self-consistant field (SCF) and full configuration interaction (CI) results obtained for the first row atoms and hydrides. The ANO results have been compared with those obtained using a segmented basis set containing the same number of contracted basis functions. The total energies obtained with the ANO basis sets are always lower than the one obtained by using the segmented one. However, for the hydrides, differential electronic correlation energy obtained with the ANO basis set may be smaller than the one recovered with the segmented set. We relate this poorer differential correlation energy for the ANO basis set to the fact that only one contracted d function is used for the ANO and segmented basis sets

  5. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model.

    Science.gov (United States)

    Vavalle, Nicholas A; Schoell, Samantha L; Weaver, Ashley A; Stitzel, Joel D; Gayzik, F Scott

    2014-11-01

    Human body finite element models (FEMs) are a valuable tool in the study of injury biomechanics. However, the traditional model development process can be time-consuming. Scaling and morphing an existing FEM is an attractive alternative for generating morphologically distinct models for further study. The objective of this work is to use a radial basis function to morph the Global Human Body Models Consortium (GHBMC) average male model (M50) to the body habitus of a 95th percentile male (M95) and to perform validation tests on the resulting model. The GHBMC M50 model (v. 4.3) was created using anthropometric and imaging data from a living subject representing a 50th percentile male. A similar dataset was collected from a 95th percentile male (22,067 total images) and was used in the morphing process. Homologous landmarks on the reference (M50) and target (M95) geometries, with the existing FE node locations (M50 model), were inputs to the morphing algorithm. The radial basis function was applied to morph the FE model. The model represented a mass of 103.3 kg and contained 2.2 million elements with 1.3 million nodes. Simulations of the M95 in seven loading scenarios were presented ranging from a chest pendulum impact to a lateral sled test. The morphed model matched anthropometric data to within a rootmean square difference of 4.4% while maintaining element quality commensurate to the M50 model and matching other anatomical ranges and targets. The simulation validation data matched experimental data well in most cases.

  6. Cumulant approach to dynamical correlation functions at finite temperatures

    International Nuclear Information System (INIS)

    Tran Minhtien.

    1993-11-01

    A new theoretical approach, based on the introduction of cumulants, to calculate thermodynamic averages and dynamical correlation functions at finite temperatures is developed. The method is formulated in Liouville instead of Hilbert space and can be applied to operators which do not require to satisfy fermion or boson commutation relations. The application of the partitioning and projection methods for the dynamical correlation functions is discussed. The present method can be applied to weakly as well as to strongly correlated systems. (author). 9 refs

  7. Neural substrates of approach-avoidance conflict decision-making

    Science.gov (United States)

    Aupperle, Robin L.; Melrose, Andrew J.; Francisco, Alex; Paulus, Martin P.; Stein, Murray B.

    2014-01-01

    Animal approach-avoidance conflict paradigms have been used extensively to operationalize anxiety, quantify the effects of anxiolytic agents, and probe the neural basis of fear and anxiety. Results from human neuroimaging studies support that a frontal-striatal-amygdala neural circuitry is important for approach-avoidance learning. However, the neural basis of decision-making is much less clear in this context. Thus, we combined a recently developed human approach-avoidance paradigm with functional magnetic resonance imaging (fMRI) to identify neural substrates underlying approach-avoidance conflict decision-making. Fifteen healthy adults completed the approach-avoidance conflict (AAC) paradigm during fMRI. Analyses of variance were used to compare conflict to non-conflict (avoid-threat and approach-reward) conditions and to compare level of reward points offered during the decision phase. Trial-by-trial amplitude modulation analyses were used to delineate brain areas underlying decision-making in the context of approach/avoidance behavior. Conflict trials as compared to the non-conflict trials elicited greater activation within bilateral anterior cingulate cortex (ACC), anterior insula, and caudate, as well as right dorsolateral prefrontal cortex. Right caudate and lateral PFC activation was modulated by level of reward offered. Individuals who showed greater caudate activation exhibited less approach behavior. On a trial-by-trial basis, greater right lateral PFC activation related to less approach behavior. Taken together, results suggest that the degree of activation within prefrontal-striatal-insula circuitry determines the degree of approach versus avoidance decision-making. Moreover, the degree of caudate and lateral PFC activation is related to individual differences in approach-avoidance decision-making. Therefore, the AAC paradigm is ideally suited to probe anxiety-related processing differences during approach-avoidance decision-making. PMID:25224633

  8. New STO(II-3Gmag family basis sets for the calculations of the molecules magnetic properties

    Directory of Open Access Journals (Sweden)

    Karina Kapusta

    2015-10-01

    Full Text Available An efficient approach for construction of physically justified STO(II-3Gmag family basis sets for calculation of molecules magnetic properties has been proposed. The procedure of construction based upon the taken into account the second order of perturbation theory in the magnetic field case. Analytical form of correction functions has been obtained using the closed representation of the Green functions by the solution of nonhomogeneous Schrödinger equation for the model problem of "one-electron atom in the external uniform magnetic field". Their performance has been evaluated for the DFT level calculations carried out with a number of functionals. The test calculations of magnetic susceptibility and 1H nuclear magnetic shielding tensors demonstrated a good agreement of the calculated values with the experimental data.

  9. Political Economy of Piracy in Somalia: Basis for a Transformative Approach

    Directory of Open Access Journals (Sweden)

    Gilberto Carvalho de Oliveira

    2010-12-01

    Full Text Available This article examines the current wave of piracy off the coast of Somalia in light of political economy framework proposed by Michael Pugh and Neil Cooper. According to these authors, three types of economies flourish in protracted conflicts - combat economy, shadow economy, and coping economy - whose aims are, respectively, to finance combat activities, generate personal profits and provide minimum resources to the subsistence of poor and marginalized people. Based on empirical evidences showing that piracy in Somalia performs these three functions, one argues that the current international intervention against piracy is not sustainable because it does not seek to transform the factors and dynamics that make piracy an economically attractive alternative for local populations. For this reason, one proposes a shift on the Somali piracy agenda by adopting a critical perspective where piracy is no longer treated exclusively as a mere disruption of order at sea. Instead, one suggests a transformative approach where piracy is understood in its political economy dimension taking into account not only the local aspects, but also their regional links.

  10. New approach to equipment quality evaluation method with distinct functions

    Directory of Open Access Journals (Sweden)

    Milisavljević Vladimir M.

    2016-01-01

    Full Text Available The paper presents new approach for improving method for quality evaluation and selection of equipment (devices and machinery by applying distinct functions. Quality evaluation and selection of devices and machinery is a multi-criteria problem which involves the consideration of numerous parameters of various origins. Original selection method with distinct functions is based on technical parameters with arbitrary evaluation of each parameter importance (weighting. Improvement of this method, presented in this paper, addresses the issue of weighting of parameters by using Delphi Method. Finally, two case studies are provided, which included quality evaluation of standard boilers for heating and evaluation of load-haul-dump (LHD machines, to demonstrate applicability of this approach. Analytical Hierarchical Process (AHP is used as a control method.

  11. High-order Div- and Quasi Curl-Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE

    KAUST Repository

    Valdes, Felipe; Andriulli, Francesco P.; Cools, Kristof; Michielssen, Eric

    2011-01-01

    A new high-order Calderón multiplicative preconditioner (HO-CMP) for the electric field integral equation (EFIE) is presented. In contrast to previous CMPs, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of high-order quasi curl-conforming basis functions. Like its predecessors, the HO-CMP can be seamlessly integrated into existing EFIE codes. Numerical results demonstrate that the linear systems of equations obtained using the proposed HO-CMP converge rapidly, regardless of the mesh density and of the order of the current expansion. © 2006 IEEE.

  12. High-order Div- and Quasi Curl-Conforming Basis Functions for Calderón Multiplicative Preconditioning of the EFIE

    KAUST Repository

    Valdes, Felipe

    2011-04-01

    A new high-order Calderón multiplicative preconditioner (HO-CMP) for the electric field integral equation (EFIE) is presented. In contrast to previous CMPs, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of high-order quasi curl-conforming basis functions. Like its predecessors, the HO-CMP can be seamlessly integrated into existing EFIE codes. Numerical results demonstrate that the linear systems of equations obtained using the proposed HO-CMP converge rapidly, regardless of the mesh density and of the order of the current expansion. © 2006 IEEE.

  13. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  14. Radioactive Waste Management BasisApril 2006

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  15. Functional approach to a time-dependent self-consistent field theory

    International Nuclear Information System (INIS)

    Reinhardt, H.

    1979-01-01

    The time-dependent Hartree-Fock approximation is formulated within the path integral approach. It is shown that by a suitable choice of the collective field the classical equation of motion of the collective field coincides with the time-dependent Hartree (TDH) equation. The consideration is restricted to the TDH equation, since the exchange terms do not appear in the functional approach on the same footing as the direct terms

  16. Exact Travelling Solutions of Discrete sine-Gordon Equation via Extended Tanh-Function Approach

    International Nuclear Information System (INIS)

    Dai Chaoqing; Zhang Jiefang

    2006-01-01

    In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.

  17. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  18. Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management

    Directory of Open Access Journals (Sweden)

    Ahmad Alkhatib

    2017-12-01

    Full Text Available Functional foods contain biologically active ingredients associated with physiological health benefits for preventing and managing chronic diseases, such as type 2 diabetes mellitus (T2DM. A regular consumption of functional foods may be associated with enhanced anti-oxidant, anti-inflammatory, insulin sensitivity, and anti-cholesterol functions, which are considered integral to prevent and manage T2DM. Components of the Mediterranean diet (MD—such as fruits, vegetables, oily fish, olive oil, and tree nuts—serve as a model for functional foods based on their natural contents of nutraceuticals, including polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, and unsaturated fatty acids. Polyphenols within MD and polyphenol-rich herbs—such as coffee, green tea, black tea, and yerba maté—have shown clinically-meaningful benefits on metabolic and microvascular activities, cholesterol and fasting glucose lowering, and anti-inflammation and anti-oxidation in high-risk and T2DM patients. However, combining exercise with functional food consumption can trigger and augment several metabolic and cardiovascular protective benefits, but it is under-investigated in people with T2DM and bariatric surgery patients. Detecting functional food benefits can now rely on an “omics” biological profiling of individuals’ molecular, genetics, transcriptomics, proteomics, and metabolomics, but is under-investigated in multi-component interventions. A personalized approach for preventing and managing T2DM should consider biological and behavioral models, and embed nutrition education as part of lifestyle diabetes prevention studies. Functional foods may provide additional benefits in such an approach.

  19. The Navier-Stokes equations an elementary functional analytic approach

    CERN Document Server

    Sohr, Hermann

    2001-01-01

    The primary objective of this monograph is to develop an elementary and self­ contained approach to the mathematical theory of a viscous incompressible fluid in a domain 0 of the Euclidean space ]Rn, described by the equations of Navier­ Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers' convenience, in the first two chapters we collect without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain O. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n = 2,3 that are also most significant from the physical point of view. For mathematical generality, we will develop the lin­ earized theory for all n 2 2. Although the functional-analytic approach developed here is, in principle, known ...

  20. Velocity-gauge real-time TDDFT within a numerical atomic orbital basis set

    Science.gov (United States)

    Pemmaraju, C. D.; Vila, F. D.; Kas, J. J.; Sato, S. A.; Rehr, J. J.; Yabana, K.; Prendergast, David

    2018-05-01

    The interaction of laser fields with solid-state systems can be modeled efficiently within the velocity-gauge formalism of real-time time dependent density functional theory (RT-TDDFT). In this article, we discuss the implementation of the velocity-gauge RT-TDDFT equations for electron dynamics within a linear combination of atomic orbitals (LCAO) basis set framework. Numerical results obtained from our LCAO implementation, for the electronic response of periodic systems to both weak and intense laser fields, are compared to those obtained from established real-space grid and Full-Potential Linearized Augmented Planewave approaches. Potential applications of the LCAO based scheme in the context of extreme ultra-violet and soft X-ray spectroscopies involving core-electronic excitations are discussed.

  1. Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions

    Science.gov (United States)

    Jerke, Jonathan; Poirier, Bill

    2018-03-01

    Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.

  2. The power of simplification: Operator interface with the AP1000R during design-basis and beyond design-basis events

    International Nuclear Information System (INIS)

    Williams, M. G.; Mouser, M. R.; Simon, J. B.

    2012-01-01

    The AP1000 R plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been designed

  3. Parton distribution function for quarks in an s-channel approach

    CERN Document Server

    Hautmann, F

    2007-01-01

    We use an s-channel picture of hard hadronic collisions to investigate the parton distribution function for quarks at small momentum fraction x, which corresponds to very high energy scattering. We study the renormalized quark distribution at one loop in this approach. In the high-energy picture, the quark distribution function is expressed in terms of a Wilson-line correlator that represents the cross section for a color dipole to scatter from the proton. We model this Wilson-line correlator in a saturation model. We relate this representation of the quark distribution function to the corresponding representation of the structure function F_T(x,Q^2) for deeply inelastic scattering.

  4. Basis expansion model for channel estimation in LTE-R communication system

    Directory of Open Access Journals (Sweden)

    Ling Deng

    2016-05-01

    Full Text Available This paper investigates fast time-varying channel estimation in LTE-R communication systems. The Basis Expansion Model (BEM is adopted to fit the fast time-varying channel in a high-speed railway communication scenario. The channel impulse response is modeled as the sum of basis functions multiplied by different coefficients. The optimal coefficients are obtained by theoretical analysis. Simulation results show that a Generalized Complex-Exponential BEM (GCE-BEM outperforms a Complex-Exponential BEM (CE-BEM and a polynomial BEM in terms of Mean Squared Error (MSE. Besides, the MSE of the CE-BEM decreases gradually as the number of basis functions increases. The GCE-BEM has a satisfactory performance with the serious fading channel.

  5. Functional renormalization group approach to the two dimensional Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Sinner, A; Kopietz, P [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue Strasse 1, 60438 Frankfurt (Germany); Hasselmann, N [International Center for Condensed Matter Physics, Universidade de BrasIlia, Caixa Postal 04667, 70910-900 BrasIlia, DF (Brazil)], E-mail: hasselma@itp.uni-frankfurt.de, E-mail: sinner@itp.uni-frankfurt.de

    2009-02-01

    We investigate the small frequency and momentum structure of the weakly interacting Bose gas in two dimensions using a functional renormalization group approach. The flow equations are derived within a derivative approximation of the effective action up to second order in spatial and temporal variables and investigated numerically. The truncation we employ is based on the perturbative structure of the theory and is well described as a renormalization group enhanced perturbation theory. It allows to calculate corrections to the Bogoliubov spectrum and to investigate the damping of quasiparticles. Our approach allows to circumvent the divergences which plague the usual perturbative approach.

  6. Moral functioning: socio-psychological approach.Social intuitionist theory of John Haidt

    Directory of Open Access Journals (Sweden)

    Victor A. Zaikin

    2017-03-01

    Full Text Available The paper studies the methodological aspect of developing social intuitionist approach to moral psychology. The paper reveals the possibility of applying this approach to the study of morality and moral functioning today, emphasizes the representation of issues in moral psychology methodological origins of social psychology, both in Russia and abroad. Social and psychological foundations of social intuitionist approach are described in detail. The research results show that the child perceiving the concept of fairness and variability in the framework of a specific group membership is culturally determined. The matter of special consideration is the theory of the American social psychologist George Haidt. The results of his work and his colleagues’ works are presented herein describing the concept of cultural variable moral intuitions, the findings of empirical studies carried out in the framework of this approach are summarized. The paper reveals the fundamental provisions of the social and intuitionistic theory. The comparative analysis of the social intuitionistic and cognitive approaches in moral psychology is presented. The conclusion that the relativistic understanding of morality is not an obstacle to its study, and the presence of various determinants of moral functioning should be based on further empirical research. The authors conceptualized the current state of social intuitionistic theory of moral functioning, which describes the theoretical and methodological sources of this area (Rawls, 2010; Freud, 2005; Hume, 1996; Hare’s, 1981. As justification for this approach the paper considers the phenomena studied in psychology, social cognition, and those that create the possibility of developing this area, namely affective motivation (Zajonc, 1980, fair-world hypothesis (Lerner, 1965, the objectivity of the illusion (Perkins, Allen, & Hafner , 1983, the phenomenon of «naive realism» (Griffin, & Ross, 1991, group interaction in a

  7. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  8. epsilon : A tool to find a canonical basis of master integrals

    Science.gov (United States)

    Prausa, Mario

    2017-10-01

    In 2013, Henn proposed a special basis for a certain class of master integrals, which are expressible in terms of iterated integrals. In this basis, the master integrals obey a differential equation, where the right hand side is proportional to ɛ in d = 4 - 2 ɛ space-time dimensions. An algorithmic approach to find such a basis was found by Lee. We present the tool epsilon, an efficient implementation of Lee's algorithm based on the Fermat computer algebra system as computational back end.

  9. Parent-child Communication-centered Rehabilitative Approach for Pediatric Functional Somatic Symptoms.

    Science.gov (United States)

    Gerner, Maya; Barak, Sharon; Landa, Jana; Eisenstein, Etzyona

    2016-01-01

    Functional somatic symptoms (FSS) are a type of somatization phenomenon. Integrative rehabilitation approaches are the preferred treatment for pediatric FSS. Parental roles in the treatment process have not been established. to present 1) a parent-focused treatment (PFT) for pediatric FSS and 2) the approach's preliminary results. The sample included 50 children with physical disabilities due to FSS. All children received PFT including physical and psychological therapy. A detailed description of the program's course and guiding principles is provided. FSS extinction and age-appropriate functioning. Post-program, 84% of participants did not exhibit FSS and 94% returned to age-appropriate functioning. At one-year follow-up, only 5% of participants experienced symptom recurrence. No associations were found between pre-admission symptoms and intervention duration. PFT is beneficial in treating pediatric FSS. Therefore, intensive parental involvement in rehabilitation may be cardinal.

  10. Questionnaire of Executive Function for Dancers: An Ecological Approach

    Science.gov (United States)

    Wong, Alina; Rodriguez, Mabel; Quevedo, Liliana; de Cossio, Lourdes Fernandez; Borges, Ariel; Reyes, Alicia; Corral, Roberto; Blanco, Florentino; Alvarez, Miguel

    2012-01-01

    There is a current debate about the ecological validity of executive function (EF) tests. Consistent with the verisimilitude approach, this research proposes the Ballet Executive Scale (BES), a self-rating questionnaire that assimilates idiosyncratic executive behaviors of classical dance community. The BES was administrated to 149 adolescents,…

  11. Multicomponent and Dissipative Self-Assembly Approaches : Towards functional materials

    NARCIS (Netherlands)

    Boekhoven, J.

    2012-01-01

    The use of self-assembly has proven to be a powerful approach to create smart and functional materials and has led to a vast variety of successful examples. However, the full potential of self-assembly has not been reached. Despite the number of successful artificial materials based on

  12. Ludic Function of Precedent-Related Phenomena in Media Discourse

    Directory of Open Access Journals (Sweden)

    Yu. M. Velykoroda

    2016-12-01

    Full Text Available The aim of this paper is to determine the ludic function of precedent-related phenomena as a type of intertextuality. The analysis is done on the basis of relevance theoretic approach, through which we aim to show the additional cognitive effect which is created by precedent-related phenomena in media discourse, and this comic effect serves as a foundation for the ludic function of these units.

  13. Task to Training Matrix Design for Decommissioning Engineer on the basis of Systematic Approach to Training Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jeong Keun [KHNP, Ulsan (Korea, Republic of)

    2016-10-15

    In nuclear history, before Chernobyl Accident, Three Mile Island (TMI) Accident was the severest accident. For this reason, to resolve the disclosed or potential possibilities of nuclear accident, more than one hundred countermeasures were proposed by United States Nuclear Regulatory Commission (USNRC). Among various recommendations by USNRC, one suggestion was related to training aspect. It was Systematic Approach to Training (SAT) and this event was the initiation of SAT methodology in the world. In Korea, upcoming June 2017, Kori Unit-1 NPP is scheduled to be shut down and it will experience NPP decommissioning for the first time. Present study aims to establish concrete training foundation for NPP decommissioning engineers based on Systematic Approach to Training (SAT) methodology, in particular, Task to Training Matrix (TTM). The objective of this paper is to organize TTM on the basis of SAT for NPP decommissioning engineer. For this reason, eighteen tasks are yielded through Job and Task Analysis (JTA) process. After that, for the settlement of Task to Training Matrix (TTM), various data are determined such as element, condition, standard, knowledge and skill, learning objective and training setting. When it comes to training in nuclear industry, SAT methodology has been the unwavering principle in Korea since NPPs export to UAE.

  14. Developmental Programming of Renal Function and Re-Programming Approaches.

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early

  15. Developmental Programming of Renal Function and Re-Programming Approaches

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T.; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application

  16. Functional Associations by Response Overlap (FARO, a functional genomics approach matching gene expression phenotypes.

    Directory of Open Access Journals (Sweden)

    Henrik Bjørn Nielsen

    2007-08-01

    Full Text Available The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental factors including treatments, mutations and pathogen infections. Similarly, drugs may be discovered by the relationship between the transcript profiles effectuated or impacted by a candidate drug and by the target disease. The integration of such data enables systems biology to predict the interplay between experimental factors affecting a biological system. Unfortunately, direct comparisons of gene expression profiles obtained in independent, publicly available microarray experiments are typically compromised by substantial, experiment-specific biases. Here we suggest a novel yet conceptually simple approach for deriving 'Functional Association(s by Response Overlap' (FARO between microarray gene expression studies. The transcriptional response is defined by the set of differentially expressed genes independent from the magnitude or direction of the change. This approach overcomes the limited comparability between studies that is typical for methods that rely on correlation in gene expression. We apply FARO to a compendium of 242 diverse Arabidopsis microarray experimental factors, including phyto-hormones, stresses and pathogens, growth conditions/stages, tissue types and mutants. We also use FARO to confirm and further delineate the functions of Arabidopsis MAP kinase 4 in disease and stress responses. Furthermore, we find that a large, well-defined set of genes responds in opposing directions to different stress conditions and predict the effects of different stress combinations. This demonstrates the usefulness of our approach for exploiting public microarray data to derive biologically meaningful associations between experimental factors. Finally, our

  17. MRD-CI potential surfaces using balanced basis sets. IV. The H2 molecule and the H3 surface

    International Nuclear Information System (INIS)

    Wright, J.S.; Kruus, E.

    1986-01-01

    The utility of midbond functions in molecular calculations was tested in two cases where the correct results are known: the H 2 potential curve and the collinear H 3 potential surface. For H 2 , a variety of basis sets both with and without bond functions was compared to the exact nonrelativistic potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. It was found that optimally balanced basis sets at two levels of quality were the double zeta single polarization plus sp bond function basis (BF1) and the triple zeta double polarization plus two sets of sp bond function basis (BF2). These gave bond dissociation energies D/sub e/ = 4.7341 and 4.7368 eV, respectively (expt. 4.7477 eV). Four basis sets were tested for basis set superposition errors, which were found to be small relative to basis set incompleteness and therefore did not affect any conclusions regarding basis set balance. Basis sets BF1 and BF2 were used to construct potential surfaces for collinear H 3 , along with the corresponding basis sets DZ*P and TZ*PP which contain no bond functions. Barrier heights of 12.52, 10.37, 10.06, and 9.96 kcal/mol were obtained for basis sets DZ*P, TZ*PP, BF1, and BF2, respectively, compared to an estimated limiting value of 9.60 kcal/mol. Difference maps, force constants, and relative rms deviations show that the bond functions improve the surface shape as well as the barrier height

  18. Anomalous current from the covariant Wigner function

    Science.gov (United States)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  19. Approach to ''Mind'' using functional neuroimaging

    International Nuclear Information System (INIS)

    Matsuda, Hiroshi

    2006-01-01

    This review mainly describes authors' recent investigations concerning neuroimages approaching to even human ''mind'' using techniques of PET, SPECT and functional MRI (fMRI). Progress of such studies greatly owes to the development of image statistics of the brain like statistical parametric mapping (www.fil.ion.ucl.ac.uk/spm/), and brain standards (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html, and ric.uthscsa.edu/projects/talairach daemon.html). The author discusses and presents images in cases of hallucinations (SPECT and H 2 15 O-PET), autism (SPECT), sleep, depression, and its therapy by transcaranial magnetic stimulation. These studies are expected to contribute to diagnosis and therapy of endogenous neurological disorders. (T.I.)

  20. Approach to ''Mind'' using functional neuroimaging

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi [Saitama Medical School, Hospital, Moroyama, Saitama (Japan)

    2006-05-15

    This review mainly describes authors' recent investigations concerning neuroimages approaching to even human ''mind'' using techniques of PET, SPECT and functional MRI (fMRI). Progress of such studies greatly owes to the development of image statistics of the brain like statistical parametric mapping (www.fil.ion.ucl.ac.uk/spm/), and brain standards (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html, and ric.uthscsa.edu/projects/talairach daemon.html). The author discusses and presents images in cases of hallucinations (SPECT and H{sub 2}{sup 15}O-PET), autism (SPECT), sleep, depression, and its therapy by transcaranial magnetic stimulation. These studies are expected to contribute to diagnosis and therapy of endogenous neurological disorders. (T.I.)

  1. Designing an artificial neural network using radial basis function to model exergetic efficiency of nanofluids in mini double pipe heat exchanger

    Science.gov (United States)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-06-01

    The present study aims at predicting and optimizing exergetic efficiency of TiO2-Al2O3/water nanofluid at different Reynolds numbers, volume fractions and twisted ratios using Artificial Neural Networks (ANN) and experimental data. Central Composite Design (CCD) and cascade Radial Basis Function (RBF) were used to display the significant levels of the analyzed factors on the exergetic efficiency. The size of TiO2-Al2O3/water nanocomposite was 20-70 nm. The parameters of ANN model were adapted by a training algorithm of radial basis function (RBF) with a wide range of experimental data set. Total mean square error and correlation coefficient were used to evaluate the results which the best result was obtained from double layer perceptron neural network with 30 neurons in which total Mean Square Error(MSE) and correlation coefficient (R2) were equal to 0.002 and 0.999, respectively. This indicated successful prediction of the network. Moreover, the proposed equation for predicting exergetic efficiency was extremely successful. According to the optimal curves, the optimum designing parameters of double pipe heat exchanger with inner twisted tape and nanofluid under the constrains of exergetic efficiency 0.937 are found to be Reynolds number 2500, twisted ratio 2.5 and volume fraction( v/v%) 0.05.

  2. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    Science.gov (United States)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  3. A genetic basis for functional hypothalamic amenorrhea.

    Science.gov (United States)

    Caronia, Lisa M; Martin, Cecilia; Welt, Corrine K; Sykiotis, Gerasimos P; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A; Seminara, Stephanie B; Boepple, Paul A; Sidis, Yisrael; Crowley, William F; Martin, Kathryn A; Hall, Janet E; Pitteloud, Nelly

    2011-01-20

    Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.).

  4. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsaecker functional

    International Nuclear Information System (INIS)

    Garcia-Aldea, David; Alvarellos, J. E.

    2008-01-01

    We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved

  5. Soviet-designed pressurized water reactor symptomatic emergency operating instruction analytical procedure: approach, methodology, development and application

    International Nuclear Information System (INIS)

    Beelman, R.J.

    1999-01-01

    A symptom approach to the analytical validation of symptom-based EOPs includes: (1) Identification of critical safety functions to the maintenance of fission product barrier integrity; (2) Identification of the symptoms which manifest an impending challenge to critical safety function maintenance; (3) Development of a symptomatic methodology to delineate bounding plant transient response modes; (4) Specification of bounding scenarios; (5) Development of a systematic calculational approach consistent with the objectives of the methodology; (6) Performance of thermal-hydraulic computer code calculations implementing the analytical methodology; (7) Interpretation of the analytical results on the basis of information available to the operator; (8) Application of the results to the validation of the proposed operator actions; (9) Production of a technical basis document justifying the proposed operator actions. (author)

  6. Zeta-function approach to Casimir energy with singular potentials

    International Nuclear Information System (INIS)

    Khusnutdinov, Nail R.

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

  7. The Reason for the Efficiency of the Pian-Sumihara Basis

    OpenAIRE

    Childs, S. J.; Reddy, B. D.

    1999-01-01

    A logical explanation as to why the choice of the Pian-Sumihara basis (as a linear basis to approximate stress) leads to greater efficiency in enhanced strain problems, is presented. An Airy stress function and the consequent selective simplification resulting from the differentiation of an implied, single, parent approximating polynomial, are the essence of this argument.

  8. Relationship between different approaches to derive weighting functions related to atmospheric remote sensing problems

    International Nuclear Information System (INIS)

    Rozanov, Vladimir V.; Rozanov, Alexei V.

    2007-01-01

    The paper is devoted to the investigation of the relationship between different methods used to derive weighting functions required to solve numerous inverse problems related to the remote sensing of the Earth's atmosphere by means of scattered solar light observations. The first method commonly referred to as the forward-adjoint approach is based on a joint solution of the forward and adjoint radiative transfer equations and the second one requires the linearized forward radiative transfer equation to be solved. In the framework of the forward-adjoint method we consider two approaches commonly used to derive the weighting functions. These approaches are referenced as the 'response function' and the 'formal solution' techniques, respectively. We demonstrate here that the weighting functions derived employing the formal solution technique can also be obtained substituting the analytical representations for the direct forward and direct adjoint intensities into corresponding expressions obtained in the framework of the response function technique. The advantages and disadvantages of different techniques are discussed

  9. Integrative approaches to the prediction of protein functions based on the feature selection

    Directory of Open Access Journals (Sweden)

    Lee Hyunju

    2009-12-01

    Full Text Available Abstract Background Protein function prediction has been one of the most important issues in functional genomics. With the current availability of various genomic data sets, many researchers have attempted to develop integration models that combine all available genomic data for protein function prediction. These efforts have resulted in the improvement of prediction quality and the extension of prediction coverage. However, it has also been observed that integrating more data sources does not always increase the prediction quality. Therefore, selecting data sources that highly contribute to the protein function prediction has become an important issue. Results We present systematic feature selection methods that assess the contribution of genome-wide data sets to predict protein functions and then investigate the relationship between genomic data sources and protein functions. In this study, we use ten different genomic data sources in Mus musculus, including: protein-domains, protein-protein interactions, gene expressions, phenotype ontology, phylogenetic profiles and disease data sources to predict protein functions that are labelled with Gene Ontology (GO terms. We then apply two approaches to feature selection: exhaustive search feature selection using a kernel based logistic regression (KLR, and a kernel based L1-norm regularized logistic regression (KL1LR. In the first approach, we exhaustively measure the contribution of each data set for each function based on its prediction quality. In the second approach, we use the estimated coefficients of features as measures of contribution of data sources. Our results show that the proposed methods improve the prediction quality compared to the full integration of all data sources and other filter-based feature selection methods. We also show that contributing data sources can differ depending on the protein function. Furthermore, we observe that highly contributing data sets can be similar among

  10. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation

    International Nuclear Information System (INIS)

    Kutzelnigg, Werner; Liu Wenjian

    2009-01-01

    The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.

  11. Quadratic Hedging of Basis Risk

    Directory of Open Access Journals (Sweden)

    Hardy Hulley

    2015-02-01

    Full Text Available This paper examines a simple basis risk model based on correlated geometric Brownian motions. We apply quadratic criteria to minimize basis risk and hedge in an optimal manner. Initially, we derive the Föllmer–Schweizer decomposition for a European claim. This allows pricing and hedging under the minimal martingale measure, corresponding to the local risk-minimizing strategy. Furthermore, since the mean-variance tradeoff process is deterministic in our setup, the minimal martingale- and variance-optimal martingale measures coincide. Consequently, the mean-variance optimal strategy is easily constructed. Simple pricing and hedging formulae for put and call options are derived in terms of the Black–Scholes formula. Due to market incompleteness, these formulae depend on the drift parameters of the processes. By making a further equilibrium assumption, we derive an approximate hedging formula, which does not require knowledge of these parameters. The hedging strategies are tested using Monte Carlo experiments, and are compared with results achieved using a utility maximization approach.

  12. A review of genome-wide approaches to study the genetic basis for spermatogenic defects.

    Science.gov (United States)

    Aston, Kenneth I; Conrad, Donald F

    2013-01-01

    Rapidly advancing tools for genetic analysis on a genome-wide scale have been instrumental in identifying the genetic bases for many complex diseases. About half of male infertility cases are of unknown etiology in spite of tremendous efforts to characterize the genetic basis for the disorder. Advancing our understanding of the genetic basis for male infertility will require the application of established and emerging genomic tools. This chapter introduces many of the tools available for genetic studies on a genome-wide scale along with principles of study design and data analysis.

  13. Convergence of an L2-approach in the coupled-channels optical potential method for e-H scattering

    International Nuclear Information System (INIS)

    Bray, I.; Konovalov, D.A.; McCarthy, I.E.

    1990-08-01

    An L 2 approach to the coupled-channels optical method is studied. The investigation is done for electron-hydrogen elastic scattering at projectile energies of 30, 50, 100 and 200 eV. Weak coupling, free-particle Green's function and no exchange in Q-space are appoximations used to calculate the polarization potential. This model problem is solved exactly using actual hydrogen discrete and continuum functions. The convergence of an L 2 approach with the Laguerre basis to the exact result is investigated. It is found that a basis of 10 Laguerre functions is sufficient for convergence of approximately 5% in the polarization potential matrix elements and 2% in the differential cross sections for non-large angles. The convergence is faster for smaller energies. In general, the convergence to the exact result is slow. 12 refs., 2 tabs., 2 figs

  14. The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes.

    Science.gov (United States)

    Sylvetsky, Nitai; Kesharwani, Manoj K; Martin, Jan M L

    2017-10-07

    We have developed a new basis set family, denoted as aug-cc-pVnZ-F12 (or aVnZ-F12 for short), for explicitly correlated calculations. The sets included in this family were constructed by supplementing the corresponding cc-pVnZ-F12 sets with additional diffuse functions on the higher angular momenta (i.e., additional d-h functions on non-hydrogen atoms and p-g on hydrogen atoms), optimized for the MP2-F12 energy of the relevant atomic anions. The new basis sets have been benchmarked against electron affinities of the first- and second-row atoms, the W4-17 dataset of total atomization energies, the S66 dataset of noncovalent interactions, the Benchmark Energy and Geometry Data Base water cluster subset, and the WATER23 subset of the GMTKN24 and GMTKN30 benchmark suites. The aVnZ-F12 basis sets displayed excellent performance, not just for electron affinities but also for noncovalent interaction energies of neutral and anionic species. Appropriate CABSs (complementary auxiliary basis sets) were explored for the S66 noncovalent interaction benchmark: between similar-sized basis sets, CABSs were found to be more transferable than generally assumed.

  15. Description of ionization in the molecular approach to atomic collisions. II

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.; Sevila, I.; Harel, C.; Jouin, H.; Pons, B.

    2002-01-01

    We complement a previous article [Harel et al., Phys. Rev. A 55, 287 (1997)] that studied the characteristics of the description of ionization by the molecular approach to atomic collisions, by comparing the wave functions with accurate counterparts. We show how the failure of the basis to describe the phase of the ionizing wave function results in a trapping of the corresponding population in some molecular channels. The time evolution of the molecular wave function then departs from the exact one and the ionization and capture mechanisms appear as interlocked. We thus elucidate the question of the 'natural' boundary of the molecular approach and draw further consequences as to the choice of pseudostates and the use of translation factors

  16. The power of simplification: Operator interface with the AP1000{sup R} during design-basis and beyond design-basis events

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. G.; Mouser, M. R.; Simon, J. B. [Westinghouse Electric Company, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and cost. The passive safety features are designed to function without safety-grade support systems such as component cooling water, service water, compressed air or HVAC. The AP1000 passive safety features achieve and maintain safe shutdown in case of a design-basis accident for 72 hours without need for operator action, meeting the expectations provided in the European Utility Requirements and the Utility Requirement Document for passive plants. Limited operator actions may be required to maintain safe conditions in the spent fuel pool (SFP) via passive means. This safety approach therefore minimizes the reliance on operator action for accident mitigation, and this paper examines the operator interaction with the Human-System Interface (HSI) as the severity of an accident increases from an anticipated transient to a design basis accident and finally, to a beyond-design-basis event. The AP1000 Control Room design provides an extremely effective environment for addressing the first 72 hours of design-basis events and transients, providing ease of information dissemination and minimal reliance upon operator actions. Symptom-based procedures including Emergency Operating Procedures (EOPs), Abnormal Operating Procedures (AOPs) and Alarm Response Procedures (ARPs) are used to mitigate design basis transients and accidents. Use of the Computerized Procedure System (CPS) aids the operators during mitigation of the event. The CPS provides cues and direction to the operators as the event progresses. If the event becomes progressively worse or lasts longer than 72 hours, and depending upon the nature of failures that may have occurred, minimal operator actions may be required outside of the control room in areas that have been designed to be accessible using components that have been

  17. Developmental Programming of Renal Function and Re-Programming Approaches

    Directory of Open Access Journals (Sweden)

    Eva Nüsken

    2018-02-01

    Full Text Available Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated

  18. Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction.

    Science.gov (United States)

    Sweitzer, Maggie M; Donny, Eric C; Hariri, Ahmad R

    2012-06-01

    Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior. We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence. Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence. Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. A genetic basis for functional hypothalamic amenorrhea.

    OpenAIRE

    Caronia, L.M.; Martin, C.; Welt, C.K.; Sykiotis, G.P.; Quinton, R.; Thambundit, A.; Avbelj, M.; Dhruvakumar, S.; Plummer, L.; Hughes, V.A.; Seminara, S.B.; Boepple, P.A.; Sidis, Y.; Crowley, W.F.; Martin, K.A.

    2011-01-01

    Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogon...

  1. A Genetic Basis for Functional Hypothalamic Amenorrhea

    Science.gov (United States)

    Caronia, Lisa M.; Martin, Cecilia; Welt, Corrine K.; Sykiotis, Gerasimos P.; Quinton, Richard; Thambundit, Apisadaporn; Avbelj, Magdalena; Dhruvakumar, Sadhana; Plummer, Lacey; Hughes, Virginia A.; Seminara, Stephanie B.; Boepple, Paul A.; Sidis, Yisrael; Crowley, William F.; Martin, Kathryn A.; Hall, Janet E.; Pitteloud, Nelly

    2011-01-01

    BACKGROUND Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. METHODS We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. RESULTS Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kall-mann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. CONCLUSIONS Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.) PMID:21247312

  2. A biopsychosocial approach to women's sexual function and dysfunction at midlife: A narrative review.

    Science.gov (United States)

    Thomas, Holly N; Thurston, Rebecca C

    2016-05-01

    A satisfying sex life is an important component of overall well-being, but sexual dysfunction is common, especially in midlife women. The aim of this review is (a) to define sexual function and dysfunction, (b) to present theoretical models of female sexual response, (c) to examine longitudinal studies of how sexual function changes during midlife, and (d) to review treatment options. Four types of female sexual dysfunction are currently recognized: Female Orgasmic Disorder, Female Sexual Interest/Arousal Disorder, Genito-Pelvic Pain/Penetration Disorder, and Substance/Medication-Induced Sexual Dysfunction. However, optimal sexual function transcends the simple absence of dysfunction. A biopsychosocial approach that simultaneously considers physical, psychological, sociocultural, and interpersonal factors is necessary to guide research and clinical care regarding women's sexual function. Most longitudinal studies reveal an association between advancing menopause status and worsening sexual function. Psychosocial variables, such as availability of a partner, relationship quality, and psychological functioning, also play an integral role. Future directions for research should include deepening our understanding of how sexual function changes with aging and developing safe and effective approaches to optimizing women's sexual function with aging. Overall, holistic, biopsychosocial approaches to women's sexual function are necessary to fully understand and treat this key component of midlife women's well-being. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. An exploratory data analysis of electroencephalograms using the functional boxplots approach

    KAUST Repository

    Ngo, Duy

    2015-08-19

    Many model-based methods have been developed over the last several decades for analysis of electroencephalograms (EEGs) in order to understand electrical neural data. In this work, we propose to use the functional boxplot (FBP) to analyze log periodograms of EEG time series data in the spectral domain. The functional bloxplot approach produces a median curve—which is not equivalent to connecting medians obtained from frequency-specific boxplots. In addition, this approach identifies a functional median, summarizes variability, and detects potential outliers. By extending FBPs analysis from one-dimensional curves to surfaces, surface boxplots are also used to explore the variation of the spectral power for the alpha (8–12 Hz) and beta (16–32 Hz) frequency bands across the brain cortical surface. By using rank-based nonparametric tests, we also investigate the stationarity of EEG traces across an exam acquired during resting-state by comparing the spectrum during the early vs. late phases of a single resting-state EEG exam.

  4. An exploratory data analysis of electroencephalograms using the functional boxplots approach

    Science.gov (United States)

    Ngo, Duy; Sun, Ying; Genton, Marc G.; Wu, Jennifer; Srinivasan, Ramesh; Cramer, Steven C.; Ombao, Hernando

    2015-01-01

    Many model-based methods have been developed over the last several decades for analysis of electroencephalograms (EEGs) in order to understand electrical neural data. In this work, we propose to use the functional boxplot (FBP) to analyze log periodograms of EEG time series data in the spectral domain. The functional bloxplot approach produces a median curve—which is not equivalent to connecting medians obtained from frequency-specific boxplots. In addition, this approach identifies a functional median, summarizes variability, and detects potential outliers. By extending FBPs analysis from one-dimensional curves to surfaces, surface boxplots are also used to explore the variation of the spectral power for the alpha (8–12 Hz) and beta (16–32 Hz) frequency bands across the brain cortical surface. By using rank-based nonparametric tests, we also investigate the stationarity of EEG traces across an exam acquired during resting-state by comparing the spectrum during the early vs. late phases of a single resting-state EEG exam. PMID:26347598

  5. An exploratory data analysis of electroencephalograms using the functional boxplots approach

    KAUST Repository

    Ngo, Duy; Sun, Ying; Genton, Marc G.; Wu, Jennifer; Srinivasan, Ramesh; Cramer, Steven C.; Ombao, Hernando

    2015-01-01

    Many model-based methods have been developed over the last several decades for analysis of electroencephalograms (EEGs) in order to understand electrical neural data. In this work, we propose to use the functional boxplot (FBP) to analyze log periodograms of EEG time series data in the spectral domain. The functional bloxplot approach produces a median curve—which is not equivalent to connecting medians obtained from frequency-specific boxplots. In addition, this approach identifies a functional median, summarizes variability, and detects potential outliers. By extending FBPs analysis from one-dimensional curves to surfaces, surface boxplots are also used to explore the variation of the spectral power for the alpha (8–12 Hz) and beta (16–32 Hz) frequency bands across the brain cortical surface. By using rank-based nonparametric tests, we also investigate the stationarity of EEG traces across an exam acquired during resting-state by comparing the spectrum during the early vs. late phases of a single resting-state EEG exam.

  6. Use of radial basis functions for meshless numerical solutions applied to financial engineering barrier options

    Directory of Open Access Journals (Sweden)

    Gisele Tessari Santos

    2009-08-01

    Full Text Available A large number of financial engineering problems involve non-linear equations with non-linear or time-dependent boundary conditions. Despite available analytical solutions, many classical and modified forms of the well-known Black-Scholes (BS equation require fast and accurate numerical solutions. This work introduces the radial basis function (RBF method as applied to the solution of the BS equation with non-linear boundary conditions, related to path-dependent barrier options. Furthermore, the diffusional method for solving advective-diffusive equations is explored as to its effectiveness to solve BS equations. Cubic and Thin-Plate Spline (TPS radial basis functions were employed and evaluated as to their effectiveness to solve barrier option problems. The numerical results, when compared against analytical solutions, allow affirming that the RBF method is very accurate and easy to be implemented. When the RBF method is applied, the diffusional method leads to the same results as those obtained from the classical formulation of Black-Scholes equation.Muitos problemas de engenharia financeira envolvem equações não-lineares com condições de contorno não-lineares ou dependentes do tempo. Apesar de soluções analíticas disponíveis, várias formas clássicas e modificadas da conhecida equação de Black-Scholes (BS requerem soluções numéricas rápidas e acuradas. Este trabalho introduz o método de função de base radial (RBF aplicado à solução da equação BS com condições de contorno não-lineares relacionadas a opções de barreira dependentes da trajetória. Além disso, explora-se o método difusional para solucionar equações advectivo-difusivas quanto à sua efetividade para solucionar equações BS. Utilizam-se funções de base radial Cúbica e Thin-Plate Spline (TPS, aplicadas à solução de problemas de opções de barreiras. Os resultados numéricos, quando comparados com as soluções analíticas, permitem afirmar

  7. More powerful significant testing for time course gene expression data using functional principal component analysis approaches.

    Science.gov (United States)

    Wu, Shuang; Wu, Hulin

    2013-01-16

    One of the fundamental problems in time course gene expression data analysis is to identify genes associated with a biological process or a particular stimulus of interest, like a treatment or virus infection. Most of the existing methods for this problem are designed for data with longitudinal replicates. But in reality, many time course gene experiments have no replicates or only have a small number of independent replicates. We focus on the case without replicates and propose a new method for identifying differentially expressed genes by incorporating the functional principal component analysis (FPCA) into a hypothesis testing framework. The data-driven eigenfunctions allow a flexible and parsimonious representation of time course gene expression trajectories, leaving more degrees of freedom for the inference compared to that using a prespecified basis. Moreover, the information of all genes is borrowed for individual gene inferences. The proposed approach turns out to be more powerful in identifying time course differentially expressed genes compared to the existing methods. The improved performance is demonstrated through simulation studies and a real data application to the Saccharomyces cerevisiae cell cycle data.

  8. Comparative Application of Radial Basis Function and Multilayer Perceptron Neural Networks to Predict Traffic Noise Pollution in Tehran Roads

    Directory of Open Access Journals (Sweden)

    Ali Mansourkhaki

    2018-01-01

    Full Text Available Noise pollution is a level of environmental noise which is considered as a disturbing and annoying phenomenon for human and wildlife. It is one of the environmental problems which has not been considered as harmful as the air and water pollution. Compared with other pollutants, the attempts to control noise pollution have largely been unsuccessful due to the inadequate knowledge of its effectson humans, as well as the lack of clear standards in previous years. However, with an increase of traveling vehicles, the adverse impact of increasing noise pollution on human health is progressively emerging. Hence, investigators all around the world are seeking to findnew approaches for predicting, estimating and controlling this problem and various models have been proposed. Recently, developing learning algorithms such as neural network has led to novel solutions for this challenge. These algorithms provide intelligent performance based on the situations and input data, enabling to obtain the best result for predicting noise level. In this study, two types of neural networks – multilayer perceptron and radial basis function – were developed for predicting equivalent continuous sound level (LA eq by measuring the traffivolume, average speed and percentage of heavy vehicles in some roads in west and northwest of Tehran. Then, their prediction results were compared based on the coefficienof determination (R 2 and the Mean Squared Error (MSE. Although both networks are of high accuracy in prediction of noise level, multilayer perceptron neural network based on selected criteria had a better performance.

  9. Some considerations about Gaussian basis sets for electric property calculations

    Science.gov (United States)

    Arruda, Priscilla M.; Canal Neto, A.; Jorge, F. E.

    Recently, segmented contracted basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (XZP, X = D, T, and Q, respectively) for the atoms from H to Ar were reported. In this work, with the objective of having a better description of polarizabilities, the QZP set was augmented with diffuse (s and p symmetries) and polarization (p, d, f, and g symmetries) functions that were chosen to maximize the mean dipole polarizability at the UHF and UMP2 levels, respectively. At the HF and B3LYP levels of theory, electric dipole moment and static polarizability for a sample of molecules were evaluated. Comparison with experimental data and results obtained with a similar size basis set, whose diffuse functions were optimized for the ground state energy of the anion, was done.

  10. A discrimlnant function approach to ecological site classification in northern New England

    Science.gov (United States)

    James M. Fincher; Marie-Louise Smith

    1994-01-01

    Describes one approach to ecologically based classification of upland forest community types of the White and Green Mountain physiographic regions. The classification approach is based on an intensive statistical analysis of the relationship between the communities and soil-site factors. Discriminant functions useful in distinguishing between types based on soil-site...

  11. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.

    Science.gov (United States)

    Liu, Zhihai; Su, Minyi; Han, Li; Liu, Jie; Yang, Qifan; Li, Yan; Wang, Renxiao

    2017-02-21

    In structure-based drug design, scoring functions are widely used for fast evaluation of protein-ligand interactions. They are often applied in combination with molecular docking and de novo design methods. Since the early 1990s, a whole spectrum of protein-ligand interaction scoring functions have been developed. Regardless of their technical difference, scoring functions all need data sets combining protein-ligand complex structures and binding affinity data for parametrization and validation. However, data sets of this kind used to be rather limited in terms of size and quality. On the other hand, standard metrics for evaluating scoring function used to be ambiguous. Scoring functions are often tested in molecular docking or even virtual screening trials, which do not directly reflect the genuine quality of scoring functions. Collectively, these underlying obstacles have impeded the invention of more advanced scoring functions. In this Account, we describe our long-lasting efforts to overcome these obstacles, which involve two related projects. On the first project, we have created the PDBbind database. It is the first database that systematically annotates the protein-ligand complexes in the Protein Data Bank (PDB) with experimental binding data. This database has been updated annually since its first public release in 2004. The latest release (version 2016) provides binding data for 16 179 biomolecular complexes in PDB. Data sets provided by PDBbind have been applied to many computational and statistical studies on protein-ligand interaction and various subjects. In particular, it has become a major data resource for scoring function development. On the second project, we have established the Comparative Assessment of Scoring Functions (CASF) benchmark for scoring function evaluation. Our key idea is to decouple the "scoring" process from the "sampling" process, so scoring functions can be tested in a relatively pure context to reflect their quality. In our

  12. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    International Nuclear Information System (INIS)

    Souza, Fabio A. L. de; Jorge, Francisco E.

    2013-01-01

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  13. Basis set convergence on static electric dipole polarizability calculations of alkali-metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fabio A. L. de; Jorge, Francisco E., E-mail: jorge@cce.ufes.br [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil)

    2013-07-15

    A hierarchical sequence of all-electron segmented contracted basis sets of double, triple and quadruple zeta valence qualities plus polarization functions augmented with diffuse functions for the atoms from H to Ar was constructed. A systematic study of basis sets required to obtain reliable and accurate values of static dipole polarizabilities of lithium and sodium clusters (n = 2, 4, 6 and 8) at their optimized equilibrium geometries is reported. Three methods are examined: Hartree-Fock (HF), second-order Moeller-Plesset perturbation theory (MP2), and density functional theory (DFT). By direct calculations or by fitting the directly calculated values through one extrapolation scheme, estimates of the HF, MP2 and DFT complete basis set limits were obtained. Comparison with experimental and theoretical data reported previously in the literature is done (author)

  14. Assessment of Kohn-Sham density functional theory and Møller-Plesset perturbation theory for ionic liquids.

    Science.gov (United States)

    Zahn, Stefan; MacFarlane, Douglas R; Izgorodina, Ekaterina I

    2013-08-28

    We present high-level benchmark calculations of interaction energies of 236 ion pair structures of ionic liquids constituting a new IL-2013 set. 33 different approaches using various basis sets are validated against these benchmark data. Overall, traditional functionals like B3LYP, without an explicit dispersion correction, should be avoided when investigating ionic liquids. We can recommend the third version of Grimme's empirical dispersion correction (DFT-D3) and the LC-BOP functional, as well as most functionals of the Minnesota family of the M0X type. Our results highlight the importance of diffuse basis set functions for the accurate prediction of the IL energetics using any DFT functional. The best combination of reasonable accuracy and reasonable cost was found to be the M06-L functional in combination with the 6-31++G** basis set, producing a remarkable mean absolute deviation of only 4.2 kJ mol(-1) and a maximum deviation of -12.5 kJ mol(-1). Second-order Møller-Plesset perturbation theory (MP2) in combination with counterpoise-corrected triple-ζ basis sets can also be recommended for reliable calculations of energetics of ionic liquids.

  15. Common spatial pattern combined with kernel linear discriminate and generalized radial basis function for motor imagery-based brain computer interface applications

    Science.gov (United States)

    Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko

    2018-04-01

    Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.

  16. Management of efficiency of agricultural production on the basis of ...

    African Journals Online (AJOL)

    Management of efficiency of agricultural production on the basis of margin approach. ... Journal of Fundamental and Applied Sciences ... and systematized to the management of production costs of agricultural products, the proposed definition ...

  17. Process modelling on a canonical basis[Process modelling; Canonical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Siepmann, Volker

    2006-12-20

    Based on an equation oriented solving strategy, this thesis investigates a new approach to process modelling. Homogeneous thermodynamic state functions represent consistent mathematical models of thermodynamic properties. Such state functions of solely extensive canonical state variables are the basis of this work, as they are natural objective functions in optimisation nodes to calculate thermodynamic equilibrium regarding phase-interaction and chemical reactions. Analytical state function derivatives are utilised within the solution process as well as interpreted as physical properties. By this approach, only a limited range of imaginable process constraints are considered, namely linear balance equations of state variables. A second-order update of source contributions to these balance equations is obtained by an additional constitutive equation system. These equations are general dependent on state variables and first-order sensitivities, and cover therefore practically all potential process constraints. Symbolic computation technology efficiently provides sparsity and derivative information of active equations to avoid performance problems regarding robustness and computational effort. A benefit of detaching the constitutive equation system is that the structure of the main equation system remains unaffected by these constraints, and a priori information allows to implement an efficient solving strategy and a concise error diagnosis. A tailor-made linear algebra library handles the sparse recursive block structures efficiently. The optimisation principle for single modules of thermodynamic equilibrium is extended to host entire process models. State variables of different modules interact through balance equations, representing material flows from one module to the other. To account for reusability and encapsulation of process module details, modular process modelling is supported by a recursive module structure. The second-order solving algorithm makes it

  18. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cécile

    2012-05-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.

  19. Application of radial basis functions and sinc method for solving the forced vibration of fractional viscoelastic beam

    Energy Technology Data Exchange (ETDEWEB)

    Permoon, M. R.; Haddadpour, H. [Sharif University of Tech, Tehran (Iran, Islamic Republic of); Rashidinia, J.; Parsa, A.; Salehi, R. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2016-07-15

    In this paper, the forced vibrations of the fractional viscoelastic beam with the Kelvin-Voigt fractional order constitutive relationship is studied. The equation of motion is derived from Newton's second law and the Galerkin method is used to discretize the equation of motion in to a set of linear ordinary differential equations. For solving the discretized equations, the radial basis functions and Sinc quadrature rule are used. In order to show the effectiveness and accuracy of this method, some test problem are considered, and it is shown that the obtained results are in very good agreement with exact solution. In the following, the proposed numerical solution is applied to exploring the effects of fractional parameters on the response of the beam and finally some conclusions are outlined.

  20. Antero-medial approach to the wrist: anatomic basis and new application in cases of fracture of the lunate facet.

    Science.gov (United States)

    Uzel, A-P; Bulla, A; Laurent-Joye, M; Caix, P

    2011-08-01

    The Henry approach is the classical anterolateral surgical exposure of the volar aspect of the distal radius. This approach does not allow good access to the medial side of the volar distal radius (lunate facet) and the distal radio-ulnar joint, unless it is extended proximally, retracting the tendons and the median nerve medially, which can cause some trauma. The purpose of our study was to investigate the anatomic basis and to outline the advantages of the unusual anteromedial approach, reporting our experience in the treatment of 4 distal radius fractures, with a 90° or 180° twist of the lunate facet, and 10 wrist dissections on cadavers. The average follow-up was 68.8 months (range 18 to 115 months). In our series, this approach did not cause any nerve injuries or any sensory loss of the distal forearm and the palm. All the fractures of the lunate facet and of the radial styloid process healed. One patient with an ulnar styloid process fracture associated showed pseudarthrosis, but with no instability of the distal radio-ulnar joint or pain on the ulnar side. Using the criteria of Green and O'Brien, modified by Cooney, the results were: excellent in two cases, good in one case, and average in another. The evaluation of arthritis according to Knirk and Jupiter's classification showed grade 0 in three cases and grade 3 in one case with osteochondral sclerosis. We showed that the anteromedial approach is reliable and convenient in the case of fractures situated in the antero-medial portion of the radius, for the double objective of reducing the fracture under direct control and checking the congruence of the distal radio-ulnar joint.