WorldWideScience

Sample records for basins water tanks

  1. Review of seasonal heat storage in large basins: Water tanks and gravel-water pits

    International Nuclear Information System (INIS)

    In order to respond to climatic change, many efforts have been made to reduce harmful gas emissions. According to energy policies, an important goal is the implementation of renewable energy sources, as well as electrical and oil combustion savings through energy conservation. This paper focuses on an extensive review of the technologies developed, so far, for central solar heating systems employing seasonal sensible water storage in artificial large scale basins. Among technologies developed since the late 1970s, the use of underground spaces as an energy storage medium - Underground Thermal Energy Storage (UTES) - has been investigated and closely observed in experimental plants in many countries, most of them, as part of government programmes. These projects attempt to optimise technical and economic aspects within an international knowledge exchange; as a result, UTES is becoming a reliable option to save energy through energy conservation. Other alternatives to UTES include large water tanks and gravel-water pits, also called man-made or artificial aquifers. This implies developing this technology by construction and leaving natural aquifers untouched. The present article reviews most studies and results obtained in this particular area to show the technical and economical feasibility for each system and specifics problems occurred during construction and operation. Advantages and disadvantages are pointed out to compare both alternatives. The projects discussed have been carried out mainly in European states with some references to other countries.

  2. Review of seasonal heat storage in large basins: Water tanks and gravel-water pits

    International Nuclear Information System (INIS)

    In order to respond to climatic change, many efforts have been made to reduce harmful gas emissions. According to energy policies, an important goal is the implementation of renewable energy sources, as well as electrical and oil combustion savings through energy conservation. This paper focuses on an extensive review of the technologies developed, so far, for central solar heating systems employing seasonal sensible water storage in artificial large scale basins. Among technologies developed since the late 1970s, the use of underground spaces as an energy storage medium - Underground Thermal Energy Storage (UTES) - has been investigated and closely observed in experimental plants in many countries, most of them, as part of government programmes. These projects attempt to optimise technical and economic aspects within an international knowledge exchange; as a result, UTES is becoming a reliable option to save energy through energy conservation. Other alternatives to UTES include large water tanks and gravel-water pits, also called man-made or artificial aquifers. This implies developing this technology by construction and leaving natural aquifers untouched. The present article reviews most studies and results obtained in this particular area to show the technical and economical feasibility for each system and specifics problems occurred during construction and operation. Advantages and disadvantages are pointed out to compare both alternatives. The projects discussed have been carried out mainly in European states with some references to other countries. (author)

  3. Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water

    Directory of Open Access Journals (Sweden)

    N. Stashchuk

    2005-01-01

    Full Text Available We present the results of numerical experiments performed with the use of a fully non-linear non-hydrostatic numerical model to study the baroclinic response of a long narrow tank filled with stratified water to an initially tilted interface. Upon release, the system starts to oscillate with an eigen frequency corresponding to basin-scale baroclinic gravitational seiches. Field observations suggest that the disintegration of basin-scale internal waves into packets of solitary waves, shear instabilities, billows and spots of mixed water are important mechanisms for the transfer of energy within stratified lakes. Laboratory experiments performed by D. A. Horn, J. Imberger and G. N. Ivey (JFM, 2001 reproduced several regimes, which include damped linear waves and solitary waves. The generation of billows and shear instabilities induced by the basin-scale wave was, however, not sufficiently studied. The developed numerical model computes a variety of flows, which were not observed with the experimental set-up. In particular, the model results showed that under conditions of low dissipation, the regimes of billows and supercritical flows may transform into a solitary wave regime. The obtained results can help in the interpretation of numerous observations of mixing processes in real lakes.

  4. Integrated Surface and Ground Water modeling of a tank cascaded sub basin using physically based model in a semi-arid region

    Science.gov (United States)

    Ilampooranan, I.; Muthiah, K.; Athikesavan, R.

    2013-05-01

    Hydrological Modeling of tank (small reservoirs) cascaded sub-basin of a semi-arid region is a complex process. Physically based approach can simulate the various processes in surface, unsaturated and saturated ground water zones of such sub basin in an integrated manner. The objectives of the study are (i) to characterize the study area to replicate the physical conditions of surface and saturated zones (ii) to carryout overland flow routing of a tank cascaded basin using physically based modular approach (iii) To simulate the ground water levels in the unconfined aquifer (iv) to study the surface and groundwater dynamics on incorporation of tank cascades in the integrated model. An integrated, physically based model MIKE 11 & MIKE SHE was applied to study the hydrological processes of a tank cascaded semi-arid basin in which flow through tanks were modeled using MIKE 11 and coupled with MIKE SHE in-order to best represent the surface water dynamics in a distributed manner. Sindapalli Uppodai sub-basin, Southern Tamilnadu, India is chosen as study area. There are 15 tanks connected in series forming a tank cascade. Other tanks and depressions in the sub basin are also considered for the study and their effectiveness were analysed. DEM was obtained from SRTM data. The maps such as drainage network, land use and soil are prepared. Soil sampling was carried out. The time series data of rainfall and climate parameters are given as input. The characterization of unconfined aquifer formation was done by Geo-Resistivity survey. 71 observation and pumping wells are monitored within and periphery of sub basin which are used for calibration of the model. The flow routing over the land is done by MIKE SHE's Overland Flow Module, using the diffusive wave approximation of the Saint Venant equation. The hydrograph of routed runoff from the tank cascaded catchment was obtained. The spatial and temporal variation of hydraulic head of the saturated ground water zone is simulated

  5. SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS

    International Nuclear Information System (INIS)

    In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

  6. 49 CFR 230.115 - Feed water tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Feed water tanks. 230.115 Section 230.115... Tenders Steam Locomotive Tanks § 230.115 Feed water tanks. (a) General provisions. Tanks shall be... water. Feed water tanks shall be equipped with a device that permits the measurement of the quantity...

  7. K Basins sludge removal temporary sludge storage tank system

    International Nuclear Information System (INIS)

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A recommendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge

  8. K Basins sludge removal temporary sludge storage tank system

    Energy Technology Data Exchange (ETDEWEB)

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  9. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...

  10. Corrosion Fatigue in District Heating Water Tanks

    DEFF Research Database (Denmark)

    Maahn, Ernst Emanuel

    1996-01-01

    Three candidate materials for construction of buffer tanks for district heating water have been tested for corrosion fatigue properties in a district heating water environment. The investigation included Slow Strain Rate Testing of plain tensile specimens, crack initiation testing by corrosion...

  11. Remote decontamination system for contaminated water tanks

    International Nuclear Information System (INIS)

    Based on the experience of decontamination works and achievements of construction with remote- handling/unmanned technologies, Obayashi Corporation has developed technologies for the decontamination of contaminated water tanks at the Fukushima Daiichi NPS as an entity to implement with subsidies the 'Validation of technologies for contaminated water management' project in the FY2013 Supplementary Budget. Our remote decontamination system requires no manned operation inside tanks during decontamination work and contributes to exposure reduction. The decontamination performance and system practicality have been confirmed by full-scale demonstration test. This report describes the technology outline of present system and its demonstration test results. (author)

  12. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated by...... computational fluid dynamics (CFD) calculations and by thermal measurements. A tank with uniform temperatures and thermal stratification is studied. The distribution of the heat loss coefficient for the different parts of the tank is measured by tests and used as input to the CFD model. The investigations focus...... on the natural buoyancy resulting in downward flow along the tank side walls due to heat loss of the tank and the influence on thermal stratification of the tank by the downward flow and the corresponding upward flow in the central parts of the tank. Water temperatures at different levels of the tank...

  13. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    This paper presents numerical investigations of thermal stratification in a vertical cylindrical hot water tank established by standby heat loss from the tank. The transient fluid flow and heat transfer in the tank during cooling caused by standby heat loss are calculated by means of validated...

  14. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    Energy Technology Data Exchange (ETDEWEB)

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  15. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    International Nuclear Information System (INIS)

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective

  16. Utilities:Water:Water Tanks at Pipe Spring National Monument, Arizona (Utilities.gdb:Water:tanks)

    Data.gov (United States)

    National Park Service, Department of the Interior — This feature class represents tanks at Pipe Spring National Monument, Arizona. It consists of 2 polygons representing the Tunnel Spring Division Tank and the 1/2...

  17. Heat exchanger and water tank arrangement for passive cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

  18. Water Tank with Capillary Air/Liquid Separation

    Science.gov (United States)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  19. Maintaining of the demineralized water quality in storage tanks

    International Nuclear Information System (INIS)

    Two processes for maintaining the quality of the mineralized water in storage tanks are considered. A slight overpressure of nitrogen can be created above the water, or the air flowing in the tank can be cleaned by passing it through a soda-containing lime filter

  20. Inspection and in situ impedance measurements for ballast water tanks

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.; Ferrari, G.; Prent, C.S.W.

    2012-01-01

    The application of coatings in ballast water tanks is critical for the safety of cargo ships. International Maritime Organization (IMO) has delivered a standard for the protection of water ballast tanks in which new built cargo vessels have to comply with {resolution MSC.215(82)}. In case the proced

  1. Thermal stratification in a hot water tank established by heat loss from the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2009-01-01

    Results of experimental and numerical investigations of thermal stratification and natural convection in a vertical cylindrical hot water tank during standby periods are presented. The transient fluid flow and heat transfer in the tank during cooling caused by heat loss are investigated by...

  2. Reduction of mixing in jet-fed water storage tanks

    OpenAIRE

    Martinson, Brett; Lucey, A.

    2004-01-01

    Contrary to usual mains-water practice, mixing in water storage tanks used in rainwater harvesting systems is undesirable because pathogen die-off can occur in the unmixed water prior to its extraction for use. The principal cause of mixing in these tanks is the momentum of the inflow during a rainfall event. We investigate the effect of inflow-jet configuration on the proportion of stored water in a tank which mixes with the slightly cooler inflow of rooftop water. Scale experiments are cond...

  3. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren;

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  4. Microbial water quality in clean water tanks following inspection and cleaning

    OpenAIRE

    Christensen, Sarah Christine Boesgaard; Esbjørn, Anne; Albrechtsen, Hans-Jørgen

    2014-01-01

    Increased bacterial counts are often registered in drinking water leaving clean water tanks after the tanks have been emptied, inspected and cleaned by flushing. To investigate the reason for the increased bacterial concentrations and consequently limit it, samples from two clean water tanks before, during and after cleaning of the tanks were analysed. Bacteria were quantified, the dominating bacterial groups were identified and re-growth potential in the water was estimated. Bacterial counts...

  5. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    Science.gov (United States)

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  6. Novel high effective waste water equalization tank

    International Nuclear Information System (INIS)

    The new solution of the circle shape wastewater equalization tank for petrochemical industry with pointwise sewage inlet and its discharge by system of two immersed perforated pipes on the circumference of the tank was proposed. The tank simultaneously realizes averaging of waste flow rate, chemical composition of sewage and discharge of sediment from bottom of tank and organic phase from liquid surface. The radiotracer examination of the tank flow dynamic in Mazovian Petrochemical Factory, Plock, was carried out. The 60% reduction of COD and 90% reduction of total sediment contents were obtained. The 20% rate of zone of flow stagnation in scraper region was located. The significant averaging of flow rate in the tank was observed. (author). 4 refs, 3 figs, 1 tab

  7. KE Basin water dispositioning engineering study

    International Nuclear Information System (INIS)

    This engineering study is a feasibility study of KE Basin water treatment to an acceptable level and dispositioning the treated water to Columbia River, ground through ETF or to air through evaporation

  8. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    1999-06-04

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined.

  9. Environmental and geometric optimisation of cylindrical drinking water storage tanks

    OpenAIRE

    Sanjuan Delmás, David; Gabarrell Durany, Xavier; Rieradevall, Joan; Hernando-Canovas, Elena; Pujadas, Pablo; De la Fuente, Albert; Josa Garcia-Tornel, Alejandro

    2015-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-015-0963-y Purpose: Urban water cycle construction processes are an important element to consider when assessing the sustainability of urban areas. The present study focuses on a structural and environmental analysis of cylindrical water tanks. The goal is to optimise cylindrical water tanks from both an environmental (environmental impacts due of life cycle assessment (LCA)) and a geometric perspective (bu...

  10. Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank

    Directory of Open Access Journals (Sweden)

    Bharti Tekwani

    2016-05-01

    Full Text Available This paper compares the results of Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank carried out in accordance with IS: 1893- 1984 and IS: 1893-2002 (Part-2 draft code. The analysis is carried out for shaft supported water tank of 500,750 and 1000 Cu.m capacity, located in four seismic zones (Zone-II, Zone -III, Zone-IV, Zone-V and on three different soil types (Hard rock, Medium soil, Soft soil. Further, 1000 kl tank for conditions - tank full, tank empty are also considered in this study. The analysis was performed using MAT LAB. The parameters of comparison include base shears, base moments and time history analysis. The above models are analyzed for different time history data such as El Centro, Kobe, Ji-Ji, Erzincan. The comparison is made between the structural responses of one mass and two mass models of above capacity.

  11. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    Science.gov (United States)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  12. Water Tanks, tank txt, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'tank txt'. The...

  13. Water Tanks, wtr tank, Published in 2008, 1:24000 (1in=2000ft) scale, Box Elder County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2008. It is described as 'wtr tank'. The...

  14. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  15. Klamath Basin Water Rights Place of Use

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  16. Development of a hot water tank simulation program with improved prediction of thermal stratification in the tank

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Yue, Hongqiang

    2015-01-01

    A simulation program SpiralSol was developed in previous investigations to calculate thermal performance of a solar domestic hot water (SDHW) system with a hot water tank with a built-in heat exchanger spiral [1]. The simulation program is improved in the paper in term of prediction of thermal...... stratification in the tank. The transient fluid flow and heat transfer in the hot water tank during cooling caused by standby heat loss are investigated by validated computational fluid dynamics (CFD) calculations. Detailed CFD investigations are carried out to determine the influence of thickness and material...... property of the tank wall on thermal stratification in the tank. It is elucidated how thermal stratification in the tank is influenced by the natural convection and how the heat loss from the tank sides will be distributed at different levels of the tank at different thermal conditions. The existing...

  17. Microbial water quality in clean water tanks following inspection and cleaning

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine Boesgaard; Esbjørn, Anne; Albrechtsen, Hans-Jørgen

    Increased bacterial counts are often registered in drinking water leaving clean water tanks after the tanks have been emptied, inspected and cleaned by flushing. To investigate the reason for the increased bacterial concentrations and consequently limit it, samples from two clean water tanks before......, during and after cleaning of the tanks were analysed. Bacteria were quantified, the dominating bacterial groups were identified and re-growth potential in the water was estimated. Bacterial counts did not exceed drinking water guideline values but ATP concentrations in the water were high right after...... start-up of the tanks, which may indicate that a substantial part of the bacteria in the drinking water leaving the tanks originated from the sand filter. This was supported by 16S DNA analyses....

  18. Safety evaluation for adding water to tank 101-SY

    International Nuclear Information System (INIS)

    This document provides a new water limit for Tank 241-SY-101. The original limit was set at 9600 gallons. The new limit is now 20,000 gallons. There are various activities that require the use of additional water to the tank. The main activity is the removal of the temporary mixer pump. This requires a large amount of water which will exceed the original limit. Also, other activities such as flushing, adding a viscometer, and adding a void fraction meter requires additional water. The new limit safely incorporates these activities and allows room for more future activities

  19. Dynamic modeling of stratification for chilled water storage tank

    International Nuclear Information System (INIS)

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  20. Corrosion rate of carbon steel in NS tank water

    International Nuclear Information System (INIS)

    Neutron shield tank (NST) is an open tank 12.5 meters in height and 12 meters dia constructed around the research reactor. It is filled with water to (i) provide shielding from the neutron radiation, (ii) to remove the heat from the Pressure suppression system during LOCA and (iii) to act as a heat sink. NST is made of IS2062 carbon steel and it contains the stainless steel tanks, CS support structures, forged carbon steel gas cylinders, steel containment and its supports and emergency cooling down system condensers made of ASTM 350 grade LF2 carbon steel. All the equipments/systems located inside NST are painted with epoxy paint. NST is filled up 12 meters ie with 1200 m3 of water. The water chemistry parameters and microbiological parameters and corrosion rate of carbon steel materials in NST water at various water chemistry and various depths are discussed in the paper. (author)

  1. Changes in Septic Tank Effluent Due to Water Softener Use

    OpenAIRE

    Hogan, Patrick Lynn

    2012-01-01

    The compatibility of home water softeners and septic tanks is of concern for the on-site wastewater treatment community. Research has shown that high sodium levels in activated sludge plants can lead to deflocculation and poor effluent quality. Therefore, it is logical to assume that high sodium levels that result from the exchange of calcium and magnesium for sodium in home softeners could give rise to poor effluent quality from septic tanks, leading to shortened lives of drain fields. Addit...

  2. Filamentous fungi occurrence in free water and biofilms from drinking water storage tanks

    OpenAIRE

    Silva, P. B. R.; Oliveira, H. M. B.; Santos, Cledir; Gusmão, N. B.; Lima, Nelson

    2015-01-01

    In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water a...

  3. Application of Tank Model for Predicting Water Balance and Flow Discharge Components of Cisadane Upper Catchment

    OpenAIRE

    Nana Mulyana Arifjaya; Cecep Kusmana; Kamarudin Abdulah; Lilik Budi Prasetyo; Budi Indra Setiawan

    2012-01-01

    The concept of hydrological tank model was well described into four compartments (tanks). The first tank (tank A) comprised of one vertical (qA0) and two lateral (qA1 and qA2) water flow components and tank B comprised of one vertical (qB0) and one lateral (qB1) water flow components. Tank C comprised of one vertical (qC0) and one lateral (qC1) water flow components, whereas tank D comprised of one lateral water flow component (qD1).  These vertical water flows would also contribute to the de...

  4. Commissioning and cross-comparison of four scanning water tanks

    Directory of Open Access Journals (Sweden)

    Daniel Saenz

    2016-03-01

    Full Text Available Purpose: Water scanning systems are commonly used for data collection to characterize dosimetric properties of photon and electron beams, and the commissioning of such systems has been previously described. The aim in this study, however, was to investigate tank-specific dependencies as well as conduct a dosimetric comparison between four distinct water scanning systems.Methods: Four water scanning systems were studied including the PTW MP3-M Phantom Tank, the Standard Imaging DoseView 3D, the IBA Blue Phantom, and the Sun Nuclear 3D Scanner. Mechanical accuracy and reproducibility was investigated by driving the chamber holder to nominal positions relative to a zero point and using a leveled caliper with 30 cm range to measure the actual position. Dosimetric measurements were also performed not only to compare percent-depth-dose (PDD curves and profiles between tanks but also to assess dependencies such as directionality, scanning speed, and reproducibility for each tank individually. A PTW Semiflex 31010 ionization chamber with a sensitive volume of 0.125 cc was used at a Varian Clinac 2300 linear accelerator.Results: Mechanical precision was ensured to within 0.1 mm with the standard deviation (SD of reproducibility <0.1 mm for measurements made with calipers. Dependencies on scanning direction and speed are presented. 6 MV PDDs between tanks agreed to within 0.6% relative to an averaged PDD beyond dmax and within 2.5% in the build-up region. Specifically, the maximum difference was 1.0% between MP3-M and Blue Phantom at 6.1 cm depth. Lateral profiles agreed between tanks within 0.5% in the central 80% of the field. 6 MeV PDD maximum difference was 1.3% occurring at the steepest portion, where the R50 was nevertheless within 0.6 mm across tanks. Setup uncertainties estimated at ≤1 mm are presumed to have contributed some of the difference between water tank data.Conclusion: Modern water scanning systems have achieved high accuracy across

  5. Estimation of Catchment Transit Time in Fuji River Basin by using an improved Tank model

    Science.gov (United States)

    Wenchao, M.; Yamanaka, T.; Wakiyama, Y.; Wang, P.

    2013-12-01

    As an important parameter that reflects the characteristics of catchments, the catchment transit time (CTT) has been given much more widely attentions especially in recent years. The CTT is defined as the time water spends travelling through a catchment to the stream network [1], and it describes how catchments retain and release water and solutes and thus control geochemical and biogeochemical cycling and contamination persistence [2]. The objectives of the present study are to develop a new approach for estimating CTT without prior information on such TTD functions and to apply it to the Fuji River basin in the Central Japan Alps Region. In this study, an improved Tank model was used to compute mean CTT and TTD functions simultaneously. It involved water fluxes and isotope mass balance. Water storage capacity in the catchment, which strongly affects CTT, is reflected in isotope mass balance more sensitively than in water fluxes. A model calibrated with observed discharge and isotope data is used for virtual age tracer computation to estimate CTT. This model does not only consider the hydrological data and physical process of the research area but also reflects the actual TTD with considering the geological condition, land use and the other catchment-hydrological conditions. For the calibration of the model, we used river discharge record obtained by the Ministry of Land, Infrastructure and Transportation, and are collecting isotope data of precipitation and river waters monthly or semi-weekly. Three sub-catchments (SC1~SC3) in the Fuji River basin was selected to test the model with five layers: the surface layer, upper-soil layer, lower-soil layer, groundwater aquifer layer and bedrock layer (Layer 1- Layer 5). The evaluation of the model output was assessed using Nash-Sutcliffe efficiency (NSE), root mean square error-observations standard deviation ratio (RSR), and percent bias (PBIAS). Using long time-series of discharge records for calibration, the simulated

  6. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based on...

  7. The biological treatment of petroleum tank draw waters

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose L. [Envirosystems Supply, Inc., Hollywood, FL (United States); Stephens, Greg [Plantation Pipeline, Atlanta, GA (United States)

    1993-12-31

    This work reviews and summarizes the performance of a biological process (followed by the state-of-the-art) for the removal of organic compounds in petroleum tank draw waters. Trickling filter and the extended aeration modification of activated sludge were selected as the biological processes tested in pilot units. 4 refs., 2 figs., 3 tabs.

  8. Observatories for integrated water basin science

    Science.gov (United States)

    James, L. Douglas

    2012-03-01

    For more than 30 years, with the last 20 years at the U.S. National Science Foundation (NSF), I have been immersed in community efforts to focus water resources research on growing societal needs. Past strategies have stumbled, but creative thinking on basin function offers a way out. The following ideas are mine and are not necessarily shared by NSF.

  9. Macroalgal survival in ballast water tanks

    International Nuclear Information System (INIS)

    Despite a large amount of research into invasive species and their introductions, there have been no studies focused on macroalgal transport in ballast water. To address this, we collected replicate samples of ballast water from 12 ships in two Mediterranean harbours (Naples and Salerno). Filtered samples were kept in culture for a month at Mediterranean mean conditions (18 deg. C, 12:12 h LD, 60 μmol photons m-2 s-1). Fifteen macroalgal taxa were cultured and differed according to the geographic origin of the ballast water. Most of the cultured algae were widely distributed species (e.g. Ulva spp. and Acinetospora-phase). However, Ulva ohnoi Hiraoka and Shimada, described from Japan, was hitherto unknown in the Mediterranean Sea. We show for the first time that ballast water can be an important vector for the transport of microscopic stages of macroalgae and that this can be a vector for the introduction of alien species

  10. Macroalgal survival in ballast water tanks

    Energy Technology Data Exchange (ETDEWEB)

    Flagella, Maria Monia [Benthic Ecology Laboratory, Stazione Zoologica A. Dohrn, P.ta S.Pietro, 80077, Ischia, Naples (Italy)], E-mail: flagella@szn.it; Verlaque, Marc [UMR 6540 DIMAR, COM, Universite de la Mediterranee, 13288 Marseille Cedex 9 (France); Soria, Alessio; Buia, Maria Cristina [Benthic Ecology Laboratory, Stazione Zoologica A. Dohrn, P.ta S.Pietro, 80077, Ischia, Naples (Italy)

    2007-09-15

    Despite a large amount of research into invasive species and their introductions, there have been no studies focused on macroalgal transport in ballast water. To address this, we collected replicate samples of ballast water from 12 ships in two Mediterranean harbours (Naples and Salerno). Filtered samples were kept in culture for a month at Mediterranean mean conditions (18 deg. C, 12:12 h LD, 60 {mu}mol photons m{sup -2} s{sup -1}). Fifteen macroalgal taxa were cultured and differed according to the geographic origin of the ballast water. Most of the cultured algae were widely distributed species (e.g. Ulva spp. and Acinetospora-phase). However, Ulva ohnoi Hiraoka and Shimada, described from Japan, was hitherto unknown in the Mediterranean Sea. We show for the first time that ballast water can be an important vector for the transport of microscopic stages of macroalgae and that this can be a vector for the introduction of alien species.

  11. Tow Tank #1

    Science.gov (United States)

    1930-01-01

    Digging the channel for the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' The tank was dedicated on May 27, 1931. In 1936 the tank was extended to a total length of 2,960 feet. In 1959 the facility was turned over to the U.S. Navy.Published in NACA TR No. 470, 'The N.A.C.A. Tank: A High-Speed Towing Basin for Testing Models of Seaplane Floats,' by Starr Truscott, 1933.

  12. Deductive Reasoning Under Uncertainty: A Water Tank Analogy

    OpenAIRE

    Politzer, Guy

    2015-01-01

    This paper describes a cubic water tank equipped with a movable partition receiving various amounts of liquid used to represent joint probability distributions. This device is applied to the investigation of deductive inferences under uncertainty. The analogy is exploited to determine by qualitative reasoning the limits in probability of the conclusion of twenty basic deductive arguments (such as Modus Ponens, And-introduction, Contraposition, etc.) often used as benchmark problems by the var...

  13. Deductive Reasoning Under Uncertainty Using a Water Tank Analogy

    OpenAIRE

    Politzer, Guy

    2014-01-01

    This paper describes a cubic water tank equipped with a movable partition receiving various amounts of liquid used to represent joint probability distributions. This device is applied to the investigation of deductive inferences under uncertainty. The analogy is exploited to determine by qualitative reasoning the limits in probability of the conclusion of twenty basic deductive arguments (such as Modus Ponens, And-introduction, Contraposition, etc.) often used as benchmark problems by the var...

  14. Parametric study and optimization of water-tanks

    OpenAIRE

    Hernando Cánovas, Elena

    2014-01-01

    The study aims to improve the optimization of the resources required to the design and construction of water tanks. The criteria and methodology proposed by the standards and studies is analyzed and have contributed to develop the structural design and the associated parametric study. Likewise, the methodology applied to develop the environmental analysis; Life Cycle Assessment (LCA) is addressed. The present work consists of two studies that has been developed at the same time an...

  15. Modelling Water Trade in the Southern Murray-Darling Basin

    OpenAIRE

    Peterson, D.; Dwyer, G.; D. Appels; Fry, J

    2005-01-01

    This Productivity Commission staff working paper, 'Modelling Water Trade in the Southern Murray-Darling Basin', was released in November 2004. It examines the likely economic impacts of expanding water trade in the southern Murray-Darling Basin. The paper uses TERM-Water, a bottoms-up regional CGE model of the Australian economy, to examine the regional effects of expanding trade of irrigation water in the southern Murray-Darling Basin. The study finds that water trading dampens the impact of...

  16. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  17. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    International Nuclear Information System (INIS)

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve 'clean closure' of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems

  18. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State... water resource problems in the basin. The YRBWEP was charged with developing a plan to achieve...

  19. Pitting corrosion in austenitic stainless steel water tanks of hotel trains

    International Nuclear Information System (INIS)

    The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. (Author) 18 refs.

  20. Water Tanks, Water Tanks in Irwin County, GA, Published in 1999, 1:1200 (1in=100ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 1999. It is described as 'Water...

  1. Water Tanks, Water Tanks in Brooks County, GA, Published in 1999, 1:1200 (1in=100ft) scale, Southern Georgia Regional Commission.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 1999. It is described as 'Water...

  2. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow is...

  3. The fate of evaporated water from the Ganges basin

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Kabat, P.

    2012-01-01

    This research studies river basin moisture recycling rates in order to determine the atmospheric part of the water cycle and the influence of the land surface there on. For river basins in India (Ganges and Indus), the fraction of evaporation that falls again as precipitation in the same river basin

  4. Regrowth in ship's ballast water tanks: Think again!

    Science.gov (United States)

    Grob, Carolina; Pollet, Bruno G

    2016-08-15

    With the imminent ratification of the International Maritime Organisation's Ballast Water Management Convention, ship owners and operators will have to choose among a myriad of different Ballast Water Treatment Systems (BWTS) and technologies to comply with established discharge standards. However, it has come to our attention that decision-makers seem to be unaware of the problem of regrowth occurring in ballast water tanks after treatment. Furthermore, the information available on the subject in the literature is surprisingly and unfortunately very limited. Herein we summarise previous research findings that suggest that regrowth of bacteria and phytoplankton could occur 18h to 7days and 4 to 20days after treatment, respectively. By highlighting the problem of regrowth, we would like to encourage scientists and engineers to further investigate this issue and to urge ship owners and ship operators to inform themselves on the risks of regrowth associated with the implementation of different BWTS. PMID:27184126

  5. NACA Tow Tank

    Science.gov (United States)

    1930-01-01

    L4695 shows the interior view of construction of the Tow Tank. In the late 1920s, the NACA decided to investigate the aero/hydro dynamics of floats for seaplanes. A Hydrodynamics Branch was established in 1929 and special towing basin was authorized in March of that same year. Starr Truscott (the first head of the new division) described the tank in NACA TR 470: 'The N.A.C.A. tank is of the Froude type; that is, the model which is being tested is towed through still water at successive constant speeds from a carriage spanning the tank. At each constant speed the towing pull is measured, the trim and the rise, or change of draft, are recorded and, if the model is being towed at a fixed trim, the moment required to hold it there is measured and recorded.' 'The reinforced concrete basin containing the water has the following dimensions: (1) Length on water, extreme, 2,020 feet; (2) Normal width of water surface, 24 feet; (3) Normal depth of water, 12 feet; (4) Length of 12 foot depth, 1,980 feet.' This picture shows the tank before the coving was added. This brought the rails for the carriage closer together and helped suppress waves produced by the models. The finished tank would be filled with approximately 4 million gallons of salt water pumped in from the Back River. The tank was covered by a shelter which protected the water surface. The tank was dedicated on May 27, 1931. In 1936 the tank was extended to a total length of 2,960 feet. In 1959 the facility was turned over to the U.S. Navy.

  6. Water, Communities and Development in the Lake Victoria Basin.

    OpenAIRE

    Muyodi, F.J.; Semili, P.; Maturwe, B.N.; Okungu, J.O.; Semalulu, O.; Wanda, F.; Odong, R.; Okwerede, L.; Chebwek, N.J.; Wambede, J.; Yobterik, A.C.; Lupeja, P.; Kitamirike, J.M.; Hecky, R. E.

    2005-01-01

    The impact of water quality changes in the Lake Victoria basin on beneficial uses is discussed. Beneficial uses of resources from the lake basin are very significant for the livelihoods of the riparian communities and the respective countries. The basin is also a source of fish and fish-products to national and international markets. The relationships between water quality, ecosystem health and socio-economic implications and human health are manifold and complex. Valuation of impacts and nee...

  7. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    OpenAIRE

    P. Karimi; W. G. M. Bastiaanssen; Molden, D.; M. J. M. Cheema

    2013-01-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted ...

  8. Corrosion analysis of decommissioned carbon steel waste water tanks at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    A corrosion analysis was carried out on available sections of carbon steels taken from two decommissioned radioactive waste water tanks at Brookhaven National Laboratory. One of the 100,000 gallon tanks suffered from a pinhole failure in the wall which was subsequently patched. From the analysis it was shown that this leak, and two adjacent leaks were initiated by a discarded copper heating coil that had been dropped into the tank during service. The failure mechanism is postulated to have been galvanic attack at points of contact between the tank structure and the coil. Other leaks in the two tanks are also described in this report

  9. Corrosion analysis of decommissioned carbon steel waste water tanks at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Soo, P.; Roberts, T.C.

    1995-07-01

    A corrosion analysis was carried out on available sections of carbon steels taken from two decommissioned radioactive waste water tanks at Brookhaven National Laboratory. One of the 100,000 gallon tanks suffered from a pinhole failure in the wall which was subsequently patched. From the analysis it was shown that this leak, and two adjacent leaks were initiated by a discarded copper heating coil that had been dropped into the tank during service. The failure mechanism is postulated to have been galvanic attack at points of contact between the tank structure and the coil. Other leaks in the two tanks are also described in this report.

  10. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  11. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  12. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    International Nuclear Information System (INIS)

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  13. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H2O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  14. AP 600 - In containment refueling water storage tank (IRWST) hydrodynamic analysis

    International Nuclear Information System (INIS)

    The AP600 is a 600 MWe Advanced Light Water Reactor that is being designed with passive safety features including an automatic depressurization system (ADS). During emergency conditions some of the ADS valves discharge into the in-containment refueling water storage tank (IRWST) under water through a sparger, producing hydrodynamic loads on the tank walls and equipment. The purpose of this paper is to present the IRWST hydrodynamic analyses, jointly performed by Ansaldo and Westinghouse, as part of the AP600 program, under Westinghouse's overall leadership, in conjunction with sparger tests conducted on a test tank model. An analytical procedure to predict hydrodynamic loads imposed on the AP600 IRWST tank from ADS discharges has been validated by a comparison with test tank measurements; the appropriate inclusion of fluid structure interaction effects allows significant pressure attenuations from the discharge region and indicates that relatively low structural effects are produced on tank main structures from induced wall pressures

  15. WATER-LEVEL MONITOR FOR BOREWELL AND WATER TANK BASED ON GSM

    Directory of Open Access Journals (Sweden)

    R.Ramani

    2012-10-01

    Full Text Available Now a days, home automation & remote control and monitoring systems have seen a rapid growth in terms of technology. Apparently there is no early warning system to monitor the tank water level and bore well water level when it has reached the critical level. In this paper we have provided water level monitoring in the tank as well as in the bore well. If the water level in a bore well drops below the threshold level for pumping its pump motor may get air locked or more burn out due to dry running. It is awkward for farmers to walk all the way to their fields at night just to switch the pump motor off. Besides, he may never get to identify the problem. This problem can be solved by using this GSM based system that will automatically make a call to the user mobile phone, when the water Level in the bore well drops threshold below or rises to the threshold level for pumping. The user can also remotely switch on or off the pump motor by sending a SMS from his mobile phone. The system is simple, reliable, portable and affordable. We proposed the work in which, Whenever water level in the tankdrops below the required level the system try to fill the tank by switching on the bore well motor to pump the water into the tank It is must to have enough water in the bore well to avoid the formation of air gap or empty running of bore well motor. High precision water level sensor is used to identify the reference water level to activate and deactivate the motor and system properly by interfacing the sensor devices into the well definedembedded system.

  16. Water Allocation Challenges in Rural River Basins: A Case Study from the Walawe River Basin,Sri Lanka

    OpenAIRE

    Weragala, D. K. Neelanga

    2010-01-01

    This dissertation evaluates the water allocation challenges in the rural river basins of the developing world, where demands are growing and the supply is limited. While many of these basins have yet to reach the state of closure, their water users are already experiencing water shortages. Agricultural crop production in rural river basins of the developing world plays a major role in ensuring food security. However, irrigation as the major water consumer in these basins has low water use eff...

  17. Shedding the waters : institutional change and water control in the Lerma-Chapala Basin, Mexico

    OpenAIRE

    Wester, P.

    2008-01-01

    Water resources development has led to water overexploitation in many river basins around the world. This is clearly the case in the Lerma-Chapala Basin in central Mexico, where excessive surface water use nearly resulted in the drying up of Lake Chapala, one of the world’s largest shallow lakes. It is also a basin in which many of the policies prescribed in international water debates were pioneered. This thesis investigates the histories and relationships between water overexploitation, wat...

  18. Columbia Basin residents' view on water : final report

    International Nuclear Information System (INIS)

    Currently, there is no strategic plan for water management in the Columbia Basin to ensure that long-term water quality and quantity issues are addressed according to residents' values and views. The Columbia Basin Trust was therefore created to address water management issues. It devised a comprehensive water information questionnaire and sent it to a broad range of respondents that fell within the Canadian portion of the Columbia Basin. These included municipal, regional, provincial and federal government agencies; community and watershed groups; industry and agriculture groups; recreation and tourism groups; and, First Nations groups. The most prevalent concern among the respondents pertained to issues surrounding domestic water consumption, and the most widespread water issue in the Columbia Basin was that of water conservation. The state of aquatic ecosystems was also of significant importance to respondents. Respondents also expressed concern for the cost of providing potable water and for the sustainability of rivers and their tributaries within the Basin. The survey also found a concern for the fluctuating reservoir levels within the Basin and the protection of drinking water from contamination. In order to address the wide range of water related issues, respondents indicated that an education program should be implemented to address the general nature of the hydrologic cycle; how much water is being used for toilets, lawn watering, and showers; the cost of potable water; the importance of water on a local and global level; the importance and nature of watersheds; the ways people influence and pollute water; the challenges of cleaning up contaminated water sources; the community's water sources; the role of water in sustaining food growth; and, challenges and consequences of other communities that experience severe water quality and quantity issues. It was suggested that the education program should address a water conservation plan, including conservation

  19. Mapping the water chemistry of the Clyde Basin drainage network

    OpenAIRE

    Bearcock, Jenny; Smedley, Pauline; Everett, Paul; Ander, Louise; Fordyce, Fiona

    2014-01-01

    Mapping the chemistry of stream and river water across the Clyde Basin serves both to characterise the water quality and assess the dominant controls. Surveys of the Clyde drainage network, undertaken between 2003 and 2010, have generated data encompassing rural and urban streams, rivers, and estuarine water. Mapping displays the large spatial variability in chemical composition across the Basin and the varying influences of controls such as rainfall, land cover and geology. They also display...

  20. History of Tank 23, 1962 through 1974

    International Nuclear Information System (INIS)

    Tank 23 was placed in service in April 1964 receiving contaminated water from Buildings 244-H, the Receiving Basin for Off-Site Fuel (RBOF), and 245-H, the Resin Regeneration Facility (RRF). Tank 23 also provided emergency storage space for 500,000 gallons in the event of a severe contamination incident in Building 244-H. The tank has remained in this service since that time. The Tank 23 waste was processed initially by the 242-H evaporator, but since mid-1966 the waste has been processed through a zeolite bed to remove 137C and other radioisotopes by ion exchange, and discarded to seepage basins. Inspections of the tank interior were made by using a 40-ft optical periscope and the thickness of the steel bottom of the tank was measured ultrasonically. Samples of the waste in the tank and liquid collected in the side wall and bottom sumps were analyzed. Several equipment modifications and repairs were made

  1. The role of upstream water use on water stress in transboundary river basins: a global analysis

    OpenAIRE

    Munia, Hafsa

    2014-01-01

    Upstream-downstream relationship remains one of the many challenges of transboundary water management. Water use of upstream countries has always impact on the downstream water availability and in some cases it might lead to increased water scarcity in downstream part of a basin. In this study, aim is to assess the change in water stress level due to water use of upstream countries in the world’s transboundary river basins. Water stress level was first calculated considering only own water us...

  2. [Algolization of drinkable water basins in Nizhny Tagil industrial complex].

    Science.gov (United States)

    Kul'nev, V V; Pochechun, V A

    2016-01-01

    The article covers experience of biologic rehabilitation through correction of algocenosis (algolization) of drinkable water basins in Nizhny Tagil industrial complex. Biologic rehabilitation of Chernoistochnik and Verhne-Vyisky drinkable water basins in 2011-2012 considerably improved water quality in ecologic hydrochemical and hydrobiologic parameters--that was proved by absent water contamination with blue-green algae, lower saprobiont index. Results also are significant lower concentration of pollutants--heavy metals (ferrum, manganese, copper), oil products, decreased odor and and better water quality in hydrochemical parameters to second class according to water pollution index. PMID:27048137

  3. Stilling the waters: Stilling basin design for stepped chutes

    Science.gov (United States)

    Energy dissipation is a desired feature of stepped chute design because it may lead to a shorter length of stilling basin than that of a traditional smooth chute design. Design parameters for stilling basins include Froude number, clear water flow depth, the sequent flow depth, and tailwater. Rese...

  4. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    International Nuclear Information System (INIS)

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms

  5. Klamath Basin Restoration Agreement Off-Project Water Program Sub-basin Analysis Flow Statistics

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — VERSION 5/15/2012 HYDROLOGICAL INFORMATION PRODUCTS FOR THE OFF-PROJECT WATER PROGRAM OF THE KLAMATH BASIN RESTORATION AGREEMENT By Daniel T. Snyder, John C....

  6. Klamath Basin Restoration Agreement Off-Project Water Program Sub-basin Analysis Flow Statistics

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  7. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has n

  8. CONSTRUCTION AND TESTING OF A WATER TANK WITH RECYCLABLE MATERIAL

    Directory of Open Access Journals (Sweden)

    ARIANE FARINASSO RODRIGUES

    2010-06-01

    Full Text Available The use of electric power became a factor of citizenship and quality of life, but most of this energy comes from energy sources that cause serious damage to the environment and its use depends on the socioeconomic characteristics of the population. The cost of energy offered by the utilities is still significant, and equipment used to capture alternative sources are still expensive. Therefore, many studies are being conducted in this area, seeking new technologies and alternative ways to reduce those costs. From this need, we developed a reservoir for hot water by using recycled materials in order to preserve the temperature of water heated by solar collectors, in order to achieve efficiency similar to equipment found in the market, but with an affordable cost to lowincome. Manual method was used to construct the reservoir, using materials easily found in our market. The tests were performed by comparing the thermal inertia between the reservoirs and proposed commercial and the results were presented in graphical and tabular. Proposals submitted with thermal efficiency exceeding 20% over the proposal without thermal insulation. Regarding the financial part of the proposed system represents an investment of one tenth of the trading system and the rate of return of the complete system (plate + tank is around 11 months.

  9. Pakistan: Indus Basin Water Strategy – Past, Present and Future

    OpenAIRE

    Shahid Amjad Chaudhry

    2010-01-01

    This paper looks at the Indus Basin Water Strategy for Pakistan. It begins with a historical overview of the Indus Basin Irrigation System (IBIS), the Indus Basin Replacement Works (1960-1980) and the Indus Basin Salinity Control Efforts (1960-2000). The paper then looks at the IBIS irrigation and salinity control investments that have taken place over the last decade (2000-2010). The paper goes on to look at the present situation of the IBIS as well as discuss an IBIS strategy for the next d...

  10. The agricultural water footprint of EU river basins

    Science.gov (United States)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  11. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  12. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  13. Water Availability for Shale Gas Development in Sichuan Basin, China.

    Science.gov (United States)

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin. PMID:26881457

  14. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    NARCIS (Netherlands)

    Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.; Cheema, M.J.M.

    2013-01-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpira

  15. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  16. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  17. 2012 Water Levels - Mojave River and the Morongo Groundwater Basins

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — During 2012, the U.S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and Morongo groundwater basins....

  18. The water footprint of agricultural products in European river basins

    International Nuclear Information System (INIS)

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996–2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London–Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max −32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max −46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed. (letters)

  19. The water footprint of agricultural products in European river basins

    Science.gov (United States)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  20. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The

  1. Sampling and Analysis Plan for the 105-N Basin Water

    Energy Technology Data Exchange (ETDEWEB)

    R.O. Mahood

    1997-12-31

    This sampling and analysis plan defines the strategy, and field and laboratory methods that will be used to characterize 105-N Basin water. The water will be shipped to the 200 Area Effluent Treatment Facility for treatment and disposal as part of N Reactor deactivation. These analyses are necessary to ensure that the water will meet the acceptance criteria of the ETF, as established in the Memorandum of Understanding for storage and treatment of water from N-Basin (Appendix A), and the characterization requirements for 100-N Area water provided in a letter from ETF personnel (Appendix B)

  2. Experimental Validation of a Domestic Stratified Hot Water Tank Model in Modelica for Annual Performance Assessment

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2015-01-01

    The use of stratified hot water tanks in solar energy systems - including ORC systems - as well as heat pump systems is paramount for a better performance of these systems. However, the availability of effective and reliable models to predict the annual performance of stratified hot water tanks...... direct inlet and outlet and immersed heat exchangers. Results of experimental and numerical investigations in a residential hot water tank with two immersed heat exchangers, one inlet and one outlet are presented and the performance of the model is assessed....

  3. Overflow of Radioactive Water from K Basins

    International Nuclear Information System (INIS)

    This report documents the dose calculations for the postulated K Basin overflow accident using current methods to model the environmental doses for radioactive releases into the Columbia River and the air

  4. INFLUENCE FISH FARMING IN TANKS ON STRUCTURAL AND FUNCTIONAL CHARACTERISTICS AND ACCUMULATION OF SEDIMENTS IN THE BASIN-COOLER

    Directory of Open Access Journals (Sweden)

    N. Starkо

    2013-09-01

    Full Text Available Purpose. Establishing change the basic structural and functional characteristics of the sediments under the influence of waste going fish farming in tanks. Methodology. Bottom sediment samples were collected using a 1 m of dirt tube (SOI-1, according to the standard requirements. Water-physical properties of sediments were investigated in accordance the recommendations of B. Novikov (1985 and A. Denisova et al. (1987. Determination of the gross content of organic matter carried by loss after calcining. Oxygen consumption in sediments was studied by the method V. І. Romanenko and V. A. Romanenko (1969. Determination of the amount of sediments, which are formed from waste fish farming, carried out in two different ways: by calculating the income from tanks suspended solids and by direct determination of the sediment under the tanks. Findings. Was established that intensive fish farming waste flow predetermines a significant (up to 4 increase the organic matter content. Thus, even 2 years after the reduction of volumes of fish farming tanks and even remove volumetric mass of the skeleton to the initial values of deposits are not refundable. The concentration of organic substances in the zone of the tanks lines causes increased intake of dissolved oxygen, which leads to deterioration in gas mode, especially in the bottom layers of water and may cause suffocation situations. According to our research, the role of tanks lines in shaping total volume of sediment rather low (up to 2%, but their effect on the structural characteristics of sediments allows to evaluate the role of this activity in the overall balance of production-destruction processes as significant. Originality. Was first quantified the role of fish farming in tanks on the quantitative and qualitative characteristics of sediments cooling ponds Zmievsk TPР and Kursk NPP. Practical value. The results will be used in the development of water conservation measures in the integrated use of

  5. Water Resources Data, Texas Water Year 1998, Volume 1. Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, Trinity River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 112 gaging stations; stage only at 5 gaging stations; stage and contents at 33 lakes and reservoirs; water quality at 65 gaging stations; and data for 12 partial-record stations comprised of 7 flood-hydrograph, 2 low-flow, and 3 creststage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  6. Water Resources Data, Texas Water Year 1998, Volume 3. Colorado River Basin, Lavaca River Basin, Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 126 gaging stations; stage only at 3 gaging stations; stage and contents at 15 lakes and reservoirs; water quality at 62 gaging stations; and data for 35 partial-record stations comprised of 8 flood-hydrograph, 14 low-flow, and 18 creststage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  7. Changing Water Environment in the Greater Jakarta Basins

    Science.gov (United States)

    Pawitan, H.; Delinom, R.; Lubis, R. F.

    2014-12-01

    Recent rapid economic development in the greater Jakarta areas has caused not only increased water resources demands but also affects the water environment due to population increase and land use changes, that further causes land degradation, and changes in hydrologic regimes and environmental qualities. In the present study, the water environmental capacities as indicated by the changing landscapes in the greater Jakarta basins were investigated to understand the role of land use management and its impact on water resources, ecosystem and environmental services. The Ciliwung river basin where rapid population increases and progresses of the land use/cover changes occurring was selected as a representative basin, and 41 water samplings were taken at different time of Jan. 08, Apr. 08, Jul. 08, and Oct. 08 during 2009 to understand the effect of rainfall variation on water quality, and clarify the characteristics of hydrological cycle. Landuse changes of the upper basins as can be seen for the upper basin indicated the expansion of settlements during 1990 to 2004 from 4.1% to 17.6% or in acreage increased almost five times, not only converting forested area, but mostly taking place from paddy fields that contributed about 50% of the additional land for new settlements. Urbanization expanding around the greater Jakarta basins, is closely related to the increased fluctuations of river discharges in recent years, with recurrence floods quickly after heavy rainfall events. Furthermore, the study results indicated that water quality of Ciliwung river, especially the loading concentrations of nitric acid closely reflects the population densities of the watershed. These results suggest that the land use/cover changes of the greater Jakarta basins affect largely the change of water environment of the areas and resulting a deteriorated factor for water resources, ecosystems and environmental services in both of quantity and quality

  8. Shedding the waters : institutional change and water control in the Lerma-Chapala Basin, Mexico

    NARCIS (Netherlands)

    Wester, P.

    2008-01-01

    Water resources development has led to water overexploitation in many river basins around the world. This is clearly the case in the Lerma-Chapala Basin in central Mexico, where excessive surface water use nearly resulted in the drying up of Lake Chapala, one of the world’s largest shallow lakes. It

  9. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    OpenAIRE

    Munia, H.; Guillaume, J.H.A.; Mirumachi, N; Porkka, M.; Wada, Y.; M. Kummu

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world'...

  10. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    OpenAIRE

    Munia, H.; Guillaume, J.H.A.; Mirumachi, N; Porkka, M.; Wada, Y.; M. Kummu

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’...

  11. Water reform in the Murray-Darling Basin

    Science.gov (United States)

    Connell, Daniel; Grafton, R. Quentin

    2011-12-01

    In Australia's Murray-Darling Basin the Australian and state governments are attempting to introduce a system of water management that will halt ongoing decline in environmental conditions and resource security and provide a robust foundation for managing climate change. This parallels similar efforts being undertaken in regions such as southern Africa, the southern United States, and Spain. Central to the project is the Australian government's Water Act 2007, which requires the preparation of a comprehensive basin plan expected to be finalized in 2011. This paper places recent and expected developments occurring as part of this process in their historical context and examines factors that could affect implementation. Significant challenges to the success of the basin plan include human resource constraints, legislative tensions within the Australian federal system, difficulties in coordinating the network of water-related agencies in the six jurisdictions with responsibilities in the Murray-Darling Basin, and social, economic, and environmental limitations that restrict policy implementation.

  12. Evaluation of the ground water resources within the Lewiston basin

    International Nuclear Information System (INIS)

    The Lewiston Basin located in North Idaho covers approximately 550 square miles and includes the cities of Lewiston, Idaho and Clarkston, Washington. The deep aquifer in the Lewiston Basin has been declared a sole source aquifer. This system provides the primary water supply for the City of Clarkston Washington and a partial water supply for the City of Lewiston and the Lewiston Orchards Irrigation District. Questions have been raised relative to the maximum yield of the aquifer system with the continued growth of the area. This study addresses the hydrogeology of the basin, along with the locations and mechanisms for recharge and discharge. The geology of the Lewiston Basin consist of Miocene-Pliocene basalt flows overlain by quaternary sediments. The basalt flows were structurally deformed during and after emplacement, thus creating a structural basin with numerous faults. The lower most basalt unit of the Lewiston Basin is the Imnaha Basalt, which is overlain by the Grande Ronde and Wanapum Basalts. The boundaries of the ground water flow system are the same as the structural basin. 7 refs., 4 figs

  13. Organic Tank Safety Project: Effect of water partial pressure on the equilibrium water content of waste samples from Hanford Tank 241-U-105

    International Nuclear Information System (INIS)

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the U.S. Department of Energy''s Hanford Site. Because of water''s importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory to investigate the effect of water partial pressure (PH2O) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, PH2O is the most susceptible to being controlled by the and Hanford Site''s environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. Webb et al. identified Tank U-105 as a Conditionally Safe saltcake tank. A Conditionally Safe waste is one that is currently safe based on waste classification criteria but could, if dried, be classified as open-quotes Unsafe.close quotes To provide information on the behavior of organic-bearing wastes, the Westinghouse Hanford Company provided us with four waste samples taken from Tank 241-U-105 (U-105) to determine the effect of PH2O on their equilibrium water content

  14. Analysis of nonlinear shallow water waves in a tank by concentrated mass model

    Science.gov (United States)

    Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro; Yamamura, Satoshi

    2016-06-01

    The sloshing of liquid in a tank is an important engineering problem. For example, liquid storage tanks in industrial facilities can be damaged by earthquakes, and conversely liquid tanks, called tuned liquid damper, are often used as passive mechanical dampers. The water depth is less often than the horizontal length of the tank. In this case, shallow water wave theory can be applied, and the results indicate that the surface waveform in a shallow excited tank exhibits complex behavior caused by nonlinearity and dispersion of the liquid. This study aims to establish a practical analytical model for this phenomenon. A model is proposed that consists of masses, connecting nonlinear springs, connecting dampers, base support dampers, and base support springs. The characteristics of the connecting nonlinear springs are derived from the static and dynamic pressures. The advantages of the proposed model are that nonlinear dispersion is considered and that the problem of non-uniform water depth can be addressed. To confirm the validity of the model, numerical results obtained from the model are compared with theoretical values of the natural frequencies of rectangular and triangular tanks. Numerical results are also compared with experimental results for a rectangular tank. All computational results agree well with the theoretical and experimental results. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear shallow water wave problems.

  15. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  16. STS-55 crewmembers repair waste water tank under OV-102's middeck subfloor

    Science.gov (United States)

    1993-01-01

    STS-55 Pilot Terence T. Henricks uses a spotlight and pen to point out a possible problem area on a waste water tank in the bilge area below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 1 (MS1) and Payload Commander (PLC) Jerry L. Ross records the activity with a video camcorder. The crewmembers are participating in an inflight maintenance (IFM) exercise to counter problems experienced with the waste water tank.

  17. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  18. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  19. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2013-07-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007) showed that total annual water depletion in the basin (501 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The water storage systems that were effected are groundwater storage (30 km3), surface water storage (9 km3), and glaciers and snow storage (2 km3). Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion). "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion). Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.

  20. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available The paper demonstrates the application of a new water accounting plus (WA+ framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E, transpiration (T, interception (I and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007 showed that total annual water depletion in the basin (501 km3 plus outflows (21 km3 exceeded total precipitation (482 km3. The water storage systems that were effected are groundwater storage (30 km3, surface water storage (9 km3, and glaciers and snow storage (2 km3. Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion. "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion. Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3 was through irrigated agriculture and the remaining 15% (44 km3 through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.

  1. Water Pricing Policy in Tarim Basin of China

    Institute of Scientific and Technical Information of China (English)

    施祖麟; 许丽芬

    2001-01-01

    China ranks the thirteenth among countries with serious water shortage problems in the world. The average amount of water owned per person is only 2400 m3/year, which is about 1/4 of the world average. But unfortunately, the efficiency of water use, especially in agriculture in some arid areas, is very low, only 20% -30% in some areas. The main reason is that water prices are too iow to protect the water resources. In this paper, the Tarim Basin of southern Xinjiang is selected to study the water supply costs and farmer's tolerance of water expenses based on a great amount of data collected in the four prefectures in the Tarim Basin. Then, three steps are suggested for water pricing reform in the Tarim Basin. Finally, several possible water pricing patterns are presented, such as water coupons, seasonal floating prices, and water price counting in kind but paying in currency. The conclusion is that the present water price system should be reformed and the water price can be increased to some extent for agricultural use even in Xinjiang, a developing area in China.

  2. Water Accounting Plus for Water Resources Reporting and River Basin Planning

    OpenAIRE

    P. Karimi

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a standardized way of data collection and a presentation system that describes the overall land and water management situation in complex river basins. WA+ tracks water depletions rather than withdrawals...

  3. The Water Footprint of Agriculture in Duero River Basin

    Directory of Open Access Journals (Sweden)

    Ángel de Miguel

    2015-05-01

    Full Text Available The aim of this paper is to evaluate the green, blue and grey water footprint (WF of crops in the Duero river basin. For this purpose CWUModel was developed. CWUModel is able to estimate the green and blue water consumed by crops and the water needed to assimilate the nitrogen leaching resulting from fertilizer application. The total WF of crops in the Spanish Duero river basin was simulated as 9473 Mm3/year (59% green, 20% blue and 21% grey. Cultivation of crops in rain-fed lands is responsible for 5548 Mm3/year of the WF (86% green and 14% grey, whereas the irrigated WF accounts for 3924 Mm3/year (20% green, 47% blue and 33% grey. Barley is the crop with the highest WF, with almost 37% of the total WF for the crops simulated for the basin, followed by wheat (17%. Although maize makes up 16% of the total WF of the basin, the blue and grey components comprise the 36% of the total blue and grey WF in the basin. The relevance of green water goes beyond the rain-fed production, to the extent that in long-cycle irrigated cereals it accounts for over 40% of the total water consumed. Nonetheless, blue water is a key component in agriculture, both for production and economically. The sustainability assessment shows that the current blue water consumption of crops causes a significant or severe water stress level in 2–5 months of the year. The anticipated expansion of irrigation in the coming years could hamper water management, despite the Duero being a relatively humid basin.

  4. Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Prairie, J. R.; Jerla, C.

    2012-12-01

    The Colorado River Basin Water Supply & Demand Study (Study), part of the Basin Study Program under the Department of the Interior's WaterSMART Program, is being conducted by the Bureau of Reclamation and agencies representing the seven Colorado River Basin States. The purpose of the Study is to assess future water supply and demand imbalances in the Colorado River Basin over the next 50 years and develop and evaluate options and strategies to resolve those imbalances. The Study is being conducted over the period from January 2010 to September 2012 and contains four major phases: Water Supply Assessment, Water Demand Assessment, System Reliability Analysis, and Development and Evaluation of Opportunities for balancing supply and demand. To address the considerable amount of uncertainty in projecting the future state of the Colorado River system, the Study has adopted a scenario planning approach that has resulted in four water supply scenarios and up to six water demand scenarios. The water supply scenarios consider hydrologic futures derived from the observed historical and paleo-reconstructed records as well as downscaled global climate model (GCM) projections. The water demand scenarios contain differing projections of parameters such as population growth, water use efficiency, irrigated acreage, and water use for energy that result in varying projections of future demand. Demand for outdoor municipal uses as well as agricultural uses were adjusted based on changing rates of evapotranspiration derived from downscaled GCM projections. Water supply and demand scenarios are combined through Reclamation's long-term planning model to project the effects of future supply and demand imbalances on Colorado River Basin resources. These projections lend to an assessment of the effectiveness of a broad range of options and strategies to address future imbalances.

  5. Management of water hyacinth, Eichhornia crassipes, in Lake Victoria Basin

    OpenAIRE

    Twongo, T.K.; Wanda, F.M.

    2004-01-01

    Water hyacinth is a free-floating waterweed native to the Amazon River Basin in South America. In its native range, water hyacinth is not an environmental problem, although the weed is one of the most invasive alien plants in freshwater environments. Water hyacinth has the potential to become invasive through fast vegetative reproduction and rapid growth to accumulate huge biomass and extensive cover in freshwater environments. Over the last 150 years water hyacinth has i...

  6. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively. PMID:23985530

  7. Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?

    Science.gov (United States)

    Carmo, F L; Santos, H F; Peixoto, R S; Rosado, A S; Araujo, F V

    2014-01-01

    The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin. PMID:24948929

  8. Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?

    Directory of Open Access Journals (Sweden)

    F.L. Carmo

    2014-01-01

    Full Text Available The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin.

  9. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  10. Ground-water quality in selected areas serviced by septic tanks, Dade County, Florida

    Science.gov (United States)

    Pitt, William A.; Mattraw, H.C.; Klein, Howard

    1975-01-01

    During 1971-74, the U.S. Geological Survey investigated the chemical, physical, bacteriological, and virological characteristics of the ground water in five selected areas serviced by septic tanks in Dade County, Florida. Periodic water samples were collected from multiple-depth groups of monitor wells ranging in depth from 10 to 60 ft at each of the five areas. Analyses of ground water from base-line water-quality wells in inland areas remote from urban development indicated that the ground water is naturally high in organic nitrogen, ammonia, organic carbon and chemical oxygen demand. Some enrichment of ground water with sodium provided a possible key to differentiating septic-tank effluent from other urban ground-water contaminant sources. High ammonia nitrogen, phosphorus, and the repetitive detection of fecal coliform bacteria were characteristic of two 10-foot monitor wells that consistently indicated the presence of septic-tank effluent in ground water. Dispersion, dilution, and various chemical processes have presumably prevented accumulation of septic-tank effluent at depths greater than 20 ft, as indicated by the 65 types of water analyses used in the investigation. Fecal coliform bacteria were present on one or two occasions in many monitor wells but the highest concentration, 1,600 colonies/100 ml, was related to storm-water infiltration rather than septic-tank discharge. Areal variations in the composition and the hydraulic conductivity of the sand and limestone aquifer had the most noticeable influence on the overall ground-water quality. The ground water in the more permeable limestone in south Dade County near Homestead contained low concentrations of septic-tank related constituents, but higher concentrations of dissolved sulfate and nitrate. The ground water in north Dade County, where the aquifer is less permeable, contained the highest dissolved iron, manganese, COD, and organic carbon.

  11. ALEXI analysis of water consumption in the Nile Basin

    Science.gov (United States)

    Remote sensing can be used to generate diagnostic estimates of evapotranspiration (ET) that provide information regarding consumptive water use across landscapes. These satellite-based assessments can be a valuable complement to prognostic simulations of basin-scale water budgets, providing an inde...

  12. Farmers’ Willingness to Pay for Irrigation Water: A Case of Tank Irrigation Systems in South India

    OpenAIRE

    Karthikeyan Chandrasekaran; Sureshkumar Devarajulu; Palanisami Kuppannan

    2009-01-01

    The economic value of tank irrigation water was determined through Contingency Valuation Method by analyzing farmers’ willingness to pay for irrigation water under improved water supply conditions during wet and dry seasons of paddy cultivation. Quadratic production function was also used to determine the value of irrigation water. The comparison of the economic value of water estimated using different methods strongly suggests that the present water use pattern will not lead to sustainable u...

  13. Recreational Vehicle Water Tanks as a Possible Source for Legionella Infections

    Directory of Open Access Journals (Sweden)

    Christine M. Litwin

    2013-01-01

    Full Text Available We investigated recreational vehicle (RV water reservoirs in response to a case of pneumonia in which Legionella pneumophila was cultured both from the patient and a RV reservoir in which he travelled. Water samples processed and cultured at the CDC according to standard protocol were positive for Legionella spp. in 4/17 (24% faucets, 1/11 (9% water tanks from 4/20 (20% RVs from three different campsites. Legionella spp. that were isolated included L. pneumophila (serogroups 1 and 6, L. anisa, L. feeleii, and L. quateriensis. Environmental controls from the potable water of the three campsites were culture-negative. A survey of maintenance practices by the RV users at the campsites revealed that chlorine disinfection of the water tanks was rarely performed. To prevent the possibility of Legionella infections, RV owners should implement regular chlorine disinfection of their water tanks and follow the recommended maintenance guidelines according to their owner's manuals.

  14. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  15. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    International Nuclear Information System (INIS)

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift

  16. Water Security in the Syr Darya Basin

    OpenAIRE

    Kai Wegerich; Daniel Van Rooijen; Ilkhom Soliev; Nozilakhon Mukhamedova

    2015-01-01

    The importance of water security has gained prominence on the international water agenda, but the focus seems to be directed towards water demand. An essential element of water security is the functioning of public organizations responsible for water supply through direct and indirect security approaches. Despite this, there has been a tendency to overlook the water security strategies of these organizations as well as constraints on their operation. This paper discusses the critical role of ...

  17. Modeling water retention of sludge simulants and actual saltcake tank wastes

    International Nuclear Information System (INIS)

    The Ferrocyanide Tanks Safety Program managed by Westinghouse hanford Company has been concerned with the potential combustion hazard of dry tank wastes containing ferrocyanide chemical in combination with nitrate salts. Pervious studies have shown that tank waste containing greater than 20 percent of weight as water could not be accidentally ignited. Moreover, a sustained combustion could not be propagated in such a wet waste even if it contained enough ferrocyanide to burn. Because moisture content is a key critical factor determining the safety of ferrocyanide-containing tank wastes, physical modeling was performed by Pacific Northwest National laboratory to evaluate the moisture-retaining behavior of typical tank wastes. The physical modeling reported here has quantified the mechanisms by which two main types of tank waste, sludge and saltcake, retain moisture in a tank profile under static conditions. Static conditions usually prevail after a tank profile has been stabilized by pumping out any excess interstitial liquid, which is not naturally retained by the waste as a result of physical forces such as capillarity

  18. Water Security in the Syr Darya Basin

    Directory of Open Access Journals (Sweden)

    Kai Wegerich

    2015-08-01

    Full Text Available The importance of water security has gained prominence on the international water agenda, but the focus seems to be directed towards water demand. An essential element of water security is the functioning of public organizations responsible for water supply through direct and indirect security approaches. Despite this, there has been a tendency to overlook the water security strategies of these organizations as well as constraints on their operation. This paper discusses the critical role of water supply in achieving sustainable water security and presents two case studies from Central Asia on the management of water supply for irrigated agriculture. The analysis concludes that existing water supply bureaucracies need to be revitalized to effectively address key challenges in water security.

  19. Organic tank safety project: Effect of water partial pressure on the equilibrium water contents of waste samples from Hanford Tank 241-BY-108

    International Nuclear Information System (INIS)

    Water content plays a crucial role in the strategy developed by Webb et al. to prevent propagating or sustainable chemical reactions in the organic-bearing wastes stored in the 20 Organic Tank Watch List tanks at the US Department of Energy's Hanford Site. Because of water's importance in ensuring that the organic-bearing wastes continue to be stored safely, Duke Engineering and Services Hanford commissioned the Pacific Northwest National Laboratory (PNNL) to investigate the effect of water partial pressure (PH2O) on the water content of organic-bearing or representative wastes. Of the various interrelated controlling factors affecting the water content in wastes, PH2O is the most susceptible to being controlled by the and Hanford Site's environmental conditions and, if necessary, could be managed to maintain the water content at an acceptable level or could be used to adjust the water content back to an acceptable level. Of the various waste types resulting from weapons production and waste-management operations at the Hanford Site, Webb et al. determined that saltcake wastes are the most likely to require active management to maintain the wastes in a Conditionally Safe condition. A Conditionally Safe waste is one that satisfies the waste classification criteria based on water content alone or a combination of water content and either total organic carbon (TOC) content or waste energetics. To provide information on the behavior of saltcake wastes, two waste samples taken from Tank 241-BY-108 (BY-108) were selected for study, even though BY-108 is not on the Organic Tanks Watch List because of their ready availability and their similarity to some of the organic-bearing saltcakes

  20. Application of Tank Model for Predicting Water Balance and Flow Discharge Components of Cisadane Upper Catchment

    Directory of Open Access Journals (Sweden)

    Nana Mulyana Arifjaya

    2012-01-01

    Full Text Available The concept of hydrological tank model was well described into four compartments (tanks. The first tank (tank A comprised of one vertical (qA0 and two lateral (qA1 and qA2 water flow components and tank B comprised of one vertical (qB0 and one lateral (qB1 water flow components. Tank C comprised of one vertical (qC0 and one lateral (qC1 water flow components, whereas tank D comprised of one lateral water flow component (qD1.  These vertical water flows would also contribute to the depletion of water flow in the related tanks but would replenish tanks in the deeper layers. It was assumed that at all lateral water flow components would finally accumulate in one stream, summing-up of the lateral water flow, much or less, should be equal to the water discharge (Qo at specified time concerns. Tank A received precipitation (R and evapo-transpiration (ET which was its gradientof (R-ET over time would become the driving force for the changes of water stored in the soil profiles and thosewater flows leaving the soil layer.  Thus tank model could describe th vertical and horizontal water flow withinthe watershed. The research site was Cisadane Upper Catchment, located at Pasir Buncir Village of CaringinSub-District within the Regency of Bogor in West Java Province.  The elevations ranged 512 –2,235 m above sealevel, with a total drainage area of 1,811.5 ha and total length of main stream of 14,340.7 m.  The land cover wasdominated by  forest  with a total of 1,044.6 ha (57.67%,  upland agriculture with a total of 477.96 ha (26.38%,mixed garden with a total of 92.85 ha(5.13% and semitechnical irigated rice field with a total of 196.09 ha (10,8%.  The soil was classified as hydraquent (96.6% and distropept (3.4%.  Based on the calibration of tank model application in the study area, the resulting coefficient of determination (R2 was 0.72 with model efficiency (NSEof= 0.75, thus tank model could well illustrate the water flow distribution of

  1. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have

  2. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    Science.gov (United States)

    Taher Kahil, Mohamed; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-04-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. The strength of hydro-economic modeling lies in its capacity to integrate key biophysical and socio-economic components within a unified framework. A major gap in developments on hydro-economic modeling to date has been the weak integration of surface and groundwater flows, based on the theoretically correct Darcy equations used by the hydrogeological community. The modeling approach taken here is integrated, avoiding the single-tank aquifer assumption, avoiding simplified assumptions on aquifer-river linkages, and bypassing iterations among separate hydrological and economic models. The groundwater flow formulation used in this paper harnesses the standard finite difference expressions for groundwater flow and groundwater-surface water exchange developed in the USGS MODFLOW groundwater model. The methodological contribution to previous modeling efforts is the explicit specification of aquifer-river interactions, important when aquifer systems make a sizable contribution to basin resources. The modeling framework is solved completely, and information among the economic and hydrological components over all periods and locations are jointly and simultaneously determined. This novel framework is applied to the Jucar basin (Spain), which is a good experimental region for an integrated basin scale analysis. The framework is used for assessing the impacts of a range of climate change scenarios and policy choices, especially the hydrologic, land use, and economic outcomes. The modeling framework

  3. Releases from the cooling water system in the Waste Tank Farm

    International Nuclear Information System (INIS)

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases

  4. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands

    Directory of Open Access Journals (Sweden)

    Jacobo Porteiro

    2016-03-01

    Full Text Available Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  5. Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India

    Science.gov (United States)

    Ravikumar, P.; Aneesul Mehmood, Mohammad; Somashekar, R. K.

    2013-03-01

    The present work aims at assessing the water quality index (WQI) in the surface water of Sankey tank and Mallathahalli lake situated in Bangalore Urban district by monitoring three sampling locations within Sankey tank (viz., A, B and C) and Mallathahalli lake (viz., Inlet, Centre and outlet) for a period of 3 months from March to May 2012. The surface water samples were subjected to comprehensive physico-chemical analysis involving major cations (Ca2+, Mg2+, Na+, K+, Fe2+), anions (HCO3 -, Cl-, SO4 2-, NO3 -, F-, PO4 3-) besides general parameters (pH, EC, TDS, alkalinity, total hardness, DO, BOD, COD, CO2, SiO2, colour, turbidity). For calculating the WQI, 14 parameters namely, pH, electrical conductivity, total dissolved solids, total hardness, alkalinity, calcium, magnesium, sodium, potassium, chloride, sulphate, nitrate, fluorides and iron were considered. SAR values indicated that both Sankey tank and Mallathahalli lake waters are excellent (S1) for irrigation, while electrical conductivity values classified these lake water, respectively under medium salinity (C2) and high (C3) salinity category. Correlation between SAR and electrical conductivity revealed that Sankey tank water is C2S1 (medium salinity-low sodium) type while Mallathahalli lake water is C3S1 (high salinity-low sodium) type. Sankey tank and Mallathahalli lake water were, respectively hard and very hard in nature. Further, it is apparent from WQI values that Sankey tank water belongs to good water class with WQI values ranging from 50.34 to 63.38. The Mallathahalli lake water with WQI value ranging from 111.69 to 137.09, fall under poor water category.

  6. Evaluation of water resource economics within the Pasco Basin, Washington

    International Nuclear Information System (INIS)

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant

  7. Research to More Effectively Manage Critical Ground-Water Basins

    Science.gov (United States)

    Nickles, James

    2008-01-01

    As the regional management agency for two of the most heavily used ground-water basins in California, the Water Replenishment District of Southern California (WRD) plays a vital role in sheparding the water resources of southern Los Angeles County. WRD is using the results of the U.S. Geological Survey (USGS) studies to help more effectively manage the Central and West Coast basins in the most efficient, cost-effective way. In partnership with WRD, the USGS is using the latest research tools to study the geohydrology and geochemistry of the two basins. USGS scientists are: *Drilling and collecting detailed data from over 40 multiple-well monitoring sites, *Conducting regional geohydrologic and geochemical analyses, *Developing and applying a computer simulation model of regional ground-water flow. USGS science is providing a more detailed understanding of ground-water flow and quality. This research has enabled WRD to more effectively manage the basins. It has helped the District improve the efficiency of its spreading ponds and barrier injection wells, which replenish the aquifers and control seawater intrusion into the ground-water system.

  8. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  9. Practical Significance of Basin Water Market Construction on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of introducing the concept of water market and the water market research in cluding both domestic market and foreign market,the system design features of water market are analyzed.The features include the prior distribution of agricultural water right,the close construction of market structure,reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage.The practical significances of basin water market construction on Chinese agricultural production are revealed,which clover safeguarding the safety of agricultural water;effectively alleviating agricultural drought;saving the agricultural production water and improving the quality of agricultural products.

  10. Sharing water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  11. Water-scarcity patterns : spatiotemporal interdependencies between water use and water availability in a semi-arid river basin

    OpenAIRE

    Oel, van, C.J.

    2009-01-01

    This thesis addresses the interdependencies between water use and water availability and describes a model that has been developed to improve understanding of the processes that drive changes and variations in the spatial and temporal distribution of water resources in a semi-arid river basin. These processes include hydrological processes and water user responses to variations and changes in water availability. The results are relevant for climate change impact assessments and river basin ma...

  12. Energy efficiency of elevated water supply tanks for high-rise buildings

    International Nuclear Information System (INIS)

    Highlights: ► We evaluate energy efficiency for water supply tank location in buildings. ► Water supply tank arrangement in a building affects pumping energy use. ► We propose a mathematical model for optimal design solutions. ► We test the model with measurements in 22 Hong Kong buildings. ► A potential annual energy saving for Hong Kong is up to 410 TJ. -- Abstract: High-rise housing, a trend in densely populated cities around the world, increases the energy use for water supply and corresponding greenhouse gas emissions. This paper presents an energy efficiency evaluation measure for water supply system designs and a mathematical model for optimizing pumping energy through the arrangement of water tanks in a building. To demonstrate that the model is useful for establishing optimal design solutions that integrate energy consumption into urban water planning processes which cater to various building demands and usage patterns, measurement data of 22 high-rise residential buildings in Hong Kong are employed. The results show the energy efficiency of many existing high-rise water supply systems is about 0.25 and can be improved to 0.26–0.37 via water storage tank relocations. The corresponding annual electricity that can be saved is 160–410 TJ, a 0.1–0.3% of the total annual electricity consumption in Hong Kong.

  13. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... COMMISSION Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric... availability was published in the Federal Register on June 22, 2010 (75 FR 35510). The NRC staff has...

  14. 2002 Water-Table Contours of the Mojave River and the Morongo Ground-Water Basins, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a...

  15. Water washes and caustic leaches of sludge from Hanford Tank S-101 and water washes of sludge from Hanford Tank C-103

    International Nuclear Information System (INIS)

    In 1993, the Department of Energy (DOE) selected the enhanced sludge washing (ESW) process as the baseline for pretreatment of Hanford tank sludges. The ESW process uses a series of water washes and caustic leaches to separate nonradioactive components such as aluminum, chromium, and phosphate from the high-level waste sludges. If the ESW process is successful, the volume of immobilized high-level waste will be significantly reduced. The tests on the sludge from Hanford Tank S-101 focused on the effects of process variables such as sodium hydroxide concentration (1 and 3 M), temperature (70 and 95 C), and leaching time (5, 24, 72, and 168 h) on the efficacy of the ESW process with realistic liquid-to-solid ratios. Another goal of this study was to evaluate the effectiveness of water washes on a sludge sample from hanford Tank C-103. The final objective of this study was to test potential process control monitors during the water washes and caustic leaches with actual sludge. Both 137Cs activity and conductance were measured for each of the water washes and caustic leaches. Experimental procedures, a discussion of results, conclusions and recommendations are included in this report

  16. Water resources evolution and social development in Hai River basin, China

    Science.gov (United States)

    Peng, Dingzhi; You, Jinjun

    2010-05-01

    The Hai River basin is one of the three important bread baskets in China. As the rapid economy development in the basin, surface water reduction, groundwater overexploitation and water pollution had caused serious deterioration of the ecological environment. The rainfall, evaporation, surface water, groundwater, water quality, pollution sources, supply and demand of water resources were analyzed and the characteristic of water resources evolution was summarized in Hai River basin. Furthermore, the social and economic development and the relationship between water resources evolution and social development were discussed in the basin. It was found that the human activity is the first impact factor of water cycle in Hai River basin, and the climate change is the second. Finally, the attenuation of water resources in the basin was induced by the two factors together. For sustainable utilization of water resources in the Hai River basin, the unified management and optimal allocation of water resources should be strengthened and promoted.

  17. A dynamic analysis of water footprint of Jinghe River basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water footprint in a region is defined as the volume of water needed for the production of goods and services consumed by the local people. Ecosystem services are a kind of important services, so ecological water use is one necessary component in water footprint. Water footprint is divided into green water footprint and blue water footprint but the former one is often ignored. In this paper water footprint includes blue water needed by agricultural irrigation, industrial and domestic water demand, and green water needed by crops, economic forests, livestock products, forestlands and grasslands. The study calculates the footprint of the Jinghe River basin in 1990,1995, 2000 and 2005 with quarto methods. Results of research show that water footprints reached 164.1 × 108m3, 175.69×108m3 and 178.45×108m3 respectively in 1990, 1995 and 2000 including that of ecological water use, but reached 77.68×108m3, 94.24×108m3, 92.92×108m3 and 111.36×108m3 respectively excluding that of ecological water use. Green water footprint is much more than blue water footprint: thereby, green water plays an important role in economic development and ecological construction. The dynamic change of water footprints stows that blue water use increases rapidly and that the ecological water use is occupied by economic and domestic water use. The change also shows that water use is transferred from primary industry to secondary industry. In primary industry, it is transferred from crops farming to forestry and animal agriculture. The factors impelling the change include development anticipation on economy, government policies, readjustment of the industrial structure, population growth, the raise of urbanization level, and structural change of consumption, low level of water-saving and poor ability of waste water treatment. With blue water use per unit, green water use per unit, blue water use structure and green water use structure, we analyzed the difference of the six ecological

  18. Water and Climate Adaptation Plan for the Sava River Basin

    OpenAIRE

    World Bank Group

    2015-01-01

    This report presents the water and climate adaptation plan (WATCAP) developed for the Sava river basin (SRB) as result of a study undertaken by the World Bank. The WATCAP is intended to help to bridge the gap between the climate change predictions for the SRB and the decision makers in current and planned water management investment projects that will be affected by changing climate trends...

  19. The main factors of water pollution in Danube River basin

    OpenAIRE

    Carmen GASPAROTTI

    2014-01-01

    The paper proposed herewith aims to give an overview on the pollution along the Danube River. Water quality in Danube River basin (DRB) is under a great pressure due to the diverse range of the human activities including large urban center, industrial, agriculture, transport and mining activities. The most important aspects of the water pollution are: organic, nutrient and microbial pollution, , hazardous substances, and hydro-morphological alteration. Analysis of the pressures on the Danube ...

  20. K-Basins particulate water content, and behavior

    International Nuclear Information System (INIS)

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage

  1. Water resources planning for a river basin with recurrent wildfires.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species. PMID:25918888

  2. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  3. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Science.gov (United States)

    2010-04-01

    ... part with the approval of the Director of the Federal Register under 5 U.S.C. 552(a) and 1 CFR part 51... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Basin regulations-Water... Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS;...

  4. Bidet toilet seats with warm-water tanks: residual chlorine, microbial community, and structural analyses.

    Science.gov (United States)

    Iyo, Toru; Asakura, Keiko; Nakano, Makiko; Yamada, Mutsuko; Omae, Kazuyuki

    2016-02-01

    Despite the reported health-related advantages of the use of warm water in bidets, there are health-related disadvantages associated with the use of these toilet seats, and the bacterial research is sparse. We conducted a survey on the hygienic conditions of 127 warm-water bidet toilet seats in restrooms on a university campus. The spray water from the toilet seats had less residual chlorine than their tap water sources. However, the total viable microbial count was below the water-quality standard for tap water. In addition, the heat of the toilet seats' warm-water tanks caused heterotrophic bacteria in the source tap water to proliferate inside the nozzle pipes and the warm-water tanks. Escherichia coli was detected on the spray nozzles of about 5% of the toilet seats, indicating that the self-cleaning mechanism of the spray nozzles was largely functioning properly. However, Pseudomonas aeruginosa was detected on about 2% of the toilet seats. P. aeruginosa was found to remain for long durations in biofilms that formed inside warm-water tanks. Infection-prevention measures aimed at P. aeruginosa should receive full consideration when managing warm-water bidet toilet seats in hospitals in order to prevent opportunistic infections in intensive care units, hematology wards, and other hospital locations. PMID:26837831

  5. A study of the anti-corrosive coating for radioactive waste water storage tanks

    International Nuclear Information System (INIS)

    This paper describes briefly the testing results and method of a kind of anti-corrosive coating, which consisted of bitumen and other chemicals. The coating was tested in several kinds of simulated waste water under γ-irradiation. Some coupons of the coating were γ-irradiated in the air also. The tested coating has been applied to the Low-level radioactive waste water storage tanks, which are made of carbon steel, for more than 15 years. Those storage tanks are being used well now

  6. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2012-11-01

    Full Text Available The paper describes the application of a new Water Accounting Plus (WA+ framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E, transpiration (T, interception (I and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3 plus outflows (21 km3 exceeded total precipitation (482 km3. The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3. The "landscape ET" (depletion directly from rainfall was 344 km3 (69% of total consumption. "Blue water" depletion ("utilized flow" was 158 km3 (31%. Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3, of which 85% (254 km3 was through irrigated agriculture and the remaining 15% (44 km3 through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha−1 and 7.8 t ha−1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast

  7. Water balance of the Drini i Bardh River Basin, Kosova

    Science.gov (United States)

    Avdullahi, Sabri; Fejza, Isalm

    2010-05-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. In the present day world, the problems of too much, too little or too polluted water are increasing at a rapid rate. These problems have become particularly severe for the developing countries, adversely affecting their agriculture, drinking water supply and sanitation. Water recourse management is no more just a challenger it is a declared crises. Water resources in Kosova are relatively small, total amount of water in our country is small around 1600 m3/inhabitant /year Drini i Bardhë river basin is in the western part of Kosova, it is the biggest river basin with surface of 4.289 km2. Drini i Bardhë discharges its water to Albania and finally to the Adriatic Sea. The area consist of several small stream from the mountains, water flows into tributaries and Drini i Bardhë River. In this river basin are based 12 hydrometric stations, 27 manual and 5 automatic rainfall measurements Drini i Bardhe River main basin contain a big number of sub basins from which the most important are: Lumëbardhi i Pejës (503.5km2), Lumëbardhi i Deçanit (278.3km2), Erenikut (515.5km2), Burimi (446.7km2), Klinës (439.0km2), Mirushes (334.5km2), Toplluges (498.2km2), Bistrica e Prizrenit (266.0 km2) and Plava (309 km2) fig 2. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. Protecting from pollution is a very important issue having in consideration that this river discharges its water and outside the territory. Hydrometeorology Institute of Kosova is in charge for monitoring of water quality. Key works: rainfall, flow, evaporation, river, evaporation coefficient (Ke) and feeding coefficient

  8. Deep Water Compositions From the Los Angeles Basin and the Origin of Formation Water Salinity

    Science.gov (United States)

    Boles, J.; Giles, G.; Lockman, D.

    2005-12-01

    Deep basin formation waters represent original depositional waters that have been modified by diagenetic processes at elevated temperatures and pressures. In addition, they may be diluted by meteoric incursion from elevated structural blocks along basin flanks. It has long been thought that deep basin formation waters have salinities greater than sea water due to various processes like clay membrane filtration or other types of water-rock interaction. However, our work and similar studies in the San Joaquin basin show that formation waters in deep basins are more likely to become diluted rather than concentrated in the absence of soluble evaporite deposits that might underlie the basin. The idea of increased salinity with depth arose from studies in which the underpinning of the basin consisted of soluble evaporate deposits such as the Texas Gulf Coast, Illinois, Michigan, and some North Sea areas. There are very few deep formation water analyses from the Los Angeles Basin. Furthermore, very few of the current produced waters from any depth can be considered pristine because of the widespread formation water injection programs and commingling of fluids from different levels. Here, we describe the first analyses from a deep, previously untouched part of the basin that is currently being developed in the Inglewood Oil Field. We have analyzed a suite of formation waters from the mid-Miocene marine Sentous sandstone from sub-sea level depths of 2250 m to 2625 m at temperatures of about 110 to 126°C and pressures of about 27 MPa. The original depositional waters in the Sentous Formation were sea water whereas the sampled waters are diluted by about 20% from sea water and some show as much as 50% dilution. Based on comparison of oxygen and deuterium isotopes between the meteoric water trend and these waters, we conclude that the smectite to illite dehydration reaction is the major cause of dilution to the original formation water. Other notable differences include

  9. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  10. Experimental and Computational Investigations of Baffle Location Effect on the Performance of Oil and Water Separator Tanks

    OpenAIRE

    Abdullah Rozi; Hussein Haitham A.; Md Said Md Azlin

    2016-01-01

    Gravity separator tanks are used to separate oil from water in treatment units. Achieving the best flow uniformity in a separator tank will improve the maximum removal efficiency of oil globules from water. In this study, the effect on hydraulic performance of different baffle structure positions inside a tank was investigated. Experimental data and 2D computation fluid dynamics were used for analysis. In the numerical model, two-phase flow (drift flux model) was used to validate one-phase fl...

  11. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance

    OpenAIRE

    Syed, T. H; J. S. Famiglietti; Chen, J; Rodell, M.; S. I. Seneviratne; Viterbo, P; C. R. Wilson

    2005-01-01

    Freshwater discharge along continental margins is a key Earth system variable that is not well monitored globally. Here we propose a method for estimating monthly river basin outflows based on the use of new GRACE satellite estimates of terrestrial water storage changes in a coupled land-atmosphere water balance. Using GRACE land water storage changes (which include changes in groundwater storage) in the water balance method results in more holistic estimates of basin discharge, which we call...

  12. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  13. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    International Nuclear Information System (INIS)

    Some of Hanford's underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford's organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes' future storage. This work focused on the equilibrium water content and did not investigate the various factors such as at sign ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures

  14. Remote Sensing of Water Quality in the Niger River Basin

    Science.gov (United States)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  15. Carbon-Water-Energy Relations for Selected River Basins

    Science.gov (United States)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  16. Water Accounting Plus for Water Resources Reporting and River Basin Planning

    NARCIS (Netherlands)

    Karimi, P.

    2014-01-01

    This thesis introduces Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. WA+ is a simple, yet comprehensive and understandable water accounting framework that provides a stan

  17. 1994 Water-Table Contours of the Morongo Ground-Water Basin, San Bernardino County, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital water-table contours for the Morongo Basin. The U.S. Geological Survey constructed a water-table map of the Morongo ground-water...

  18. Water grabbing in the Cauca basin

    DEFF Research Database (Denmark)

    Velez Torres, Irene

    2012-01-01

    This article examines water grabbing in the Alto Cauca in Colombia as a form of accumulation through ethnicised and racialised environmental dispossession in the capitalist system. Characterised by privatisation and historical trends of exclusion, this violent accumulation model has shaped...... a particular form of environmental racism leading to negative impacts experienced in historically marginalised Afro-descendant local communities. Analyzing two development projects in the upper watershed of the Cauca river – the Agua Blanca Irrigation District Project and a Project for Diverting the River...

  19. Water Resources Data - Texas Water Year 1999, Volume 1. Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 71 gaging stations; stage only at 3 gaging stations; stage and contents at 23 lakes and reservoirs; water quality at 47 gaging stations; and data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  20. Water Resources Data - Texas Water Year 2000, Volume 1. Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 68 gaging stations; stage only at 3 gaging stations; stage and contents at 37 lakes and reservoirs; water quality at 39 gaging stations; and data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  1. Analysis for the thermal mixing characteristics of steam jet in the subcooled water tank

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. S.; Kim, Y. S.; Chun, H. G.; Yoon, Y. J.; Song, C. H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    The experimental research has been performed to evaluate the steam condensation load and the thermal mixing phenomena in the subcooled water tank when the steam is discharged into the tank through the sparger. The test facility was modified from the previous one by installing several thermocouples around the sparger to measure the temperature of the steam and the entrained water flowing into the steam. Major of objective of this test is to develop a condensation regime map for the design and the operation of APR1400 (Advanced Power Reactor 1400MWe) IRWST(In-containment Refueling Water Storage Tank). A CFD benchmark calculation for the test results has been performed to develop the methodology of a numerical analysis for thermal mixing between the steam and subcooled water. In the CFD analysis, the steam condensation phenomenon is treated by a simple model of the steam condensation region. The CFD analysis results for 30 seconds show a good agreement for the temperature distribution in the tank with those of the experiment.

  2. Processes to improve energy efficiency during pumping and aeration of recirculating water in circular tank systems

    Science.gov (United States)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular tank can interfere with the hydrodynamics of water rotation and the spee...

  3. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  4. A Surface Water Model for the Orinoco river basin

    OpenAIRE

    Schot, P.P.; Poot, A.; Vonk, G.; Peeters, W.H.M.

    2001-01-01

    This report describes the surface water model developed for the Orinoco river basin. In the next chapter hydrology and climate of the study area are presented. In the third chapter the general model concept is described. The fourth chapter describes the effects of various processes in the model on the model results, resulting in the choice of a model with least complexity and maximum efficiency. In the fifth chapter, calibration and verification of the chosen model are discussed. The possibil...

  5. Hazard categorization of K Basin water filtration upgrade project

    International Nuclear Information System (INIS)

    This supporting document provides the hazards categorization for the K Basin Water Filtration Upgrade Project at K East. All activities associated with the project are less than Hazard Category 3, except for the handling of the ECO-ROK liners containing spent filter cartridges. All activities involving the handling of liners, containing spent cartridges, by monorail, forklift or mobile crane are classified as Hazard Category 3

  6. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunfeng, E-mail: zhaowindy@126.com [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China); School of Civil Engineering, Hefei University of Technology, Anhui Province 230009 (China); Chen, Jianyun; Xu, Qiang [Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-12-15

    Graphical abstract: - Highlights: • Water sloshing and oscillation of water tank under earthquake are simulated by FEM. • The influences of various water levels on seismic response are investigated. • ALE algorithm is applied to study the fluid–structure interaction effects. • The effects of different water levels in reducing seismic response are compared. • The optimal water level of water tank under seismic loading is obtained. - Abstract: The gravity water storage tank of AP1000 is designed to cool down the temperature of containment vessel by spray water when accident releases mass energy. However, the influence of fluid–structure interaction between water and water tank of AP1000 on dynamic behavior of shield building is still a hot research question. The main objective of the current study is to investigate how the fluid–structure interaction affects the dynamic behavior of water tank and whether the water sloshing and oscillation can reduce the seismic response of the shield building subjected to earthquake. For this purpose, a fluid–structure interaction algorithm of finite element technique is employed for the seismic analysis of water storage tank of AP1000. In the finite element model, 8 cases height of water, such as 10.8, 9.8, 8.8, 7.8, 6.8, 5.8, 4.8, and 3.8 m, are established and compared with the empty water tank in order to demonstrate the positive effect in mitigating the seismic response. An Arbitrary Lagrangian Eulerian (ALE) algorithm is used to simulate the fluid–structure interaction, fluid sloshing and oscillation of water tank under the El-Centro earthquake. The correlation between seismic response and parameters of water tank in terms of height of air (h{sub 1}), height of water (h{sub 2}), height ratio of water to tank (h{sub 2}/H{sub w}) and mass ratio of water to total structure (m{sub w}/m{sub t}) is also analyzed. The numerical results clearly show that the optimal h{sub 2}, h{sub 2}/H{sub w} and m{sub w}/m{sub t

  7. FSI effects and seismic performance evaluation of water storage tank of AP1000 subjected to earthquake loading

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Water sloshing and oscillation of water tank under earthquake are simulated by FEM. • The influences of various water levels on seismic response are investigated. • ALE algorithm is applied to study the fluid–structure interaction effects. • The effects of different water levels in reducing seismic response are compared. • The optimal water level of water tank under seismic loading is obtained. - Abstract: The gravity water storage tank of AP1000 is designed to cool down the temperature of containment vessel by spray water when accident releases mass energy. However, the influence of fluid–structure interaction between water and water tank of AP1000 on dynamic behavior of shield building is still a hot research question. The main objective of the current study is to investigate how the fluid–structure interaction affects the dynamic behavior of water tank and whether the water sloshing and oscillation can reduce the seismic response of the shield building subjected to earthquake. For this purpose, a fluid–structure interaction algorithm of finite element technique is employed for the seismic analysis of water storage tank of AP1000. In the finite element model, 8 cases height of water, such as 10.8, 9.8, 8.8, 7.8, 6.8, 5.8, 4.8, and 3.8 m, are established and compared with the empty water tank in order to demonstrate the positive effect in mitigating the seismic response. An Arbitrary Lagrangian Eulerian (ALE) algorithm is used to simulate the fluid–structure interaction, fluid sloshing and oscillation of water tank under the El-Centro earthquake. The correlation between seismic response and parameters of water tank in terms of height of air (h1), height of water (h2), height ratio of water to tank (h2/Hw) and mass ratio of water to total structure (mw/mt) is also analyzed. The numerical results clearly show that the optimal h2, h2/Hw and mw/mt to structure are 8.8 m, 0.7458 and 5.7235%, which can reduce the

  8. Laws and Regulations Concerning to Pollution Originating Agricultural Activities in Drinking Water Basin Areas in Turkey

    OpenAIRE

    Y. Ataseven; E. Olhan

    2009-01-01

    Water basins which are used drinking and utility water resource especially for big cities have been polluted as a result of over structuring, industry and agricultural activities. Therefore, it is important to take measures protection measures in water basins for both surface and ground water. It has to been evaluated measures which will be taken regarding pollution originating from agricultural activities.The first pollution originating agricultural activities in drinking water basins is nit...

  9. The socio-ecohydrology of rainwater harvesting in India: understanding water storage and release dynamics at tank and catchment scales

    Directory of Open Access Journals (Sweden)

    K. J. Van Meter

    2015-11-01

    Full Text Available Rainwater harvesting (RWH, the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional RWH systems have fallen into disrepair due to increasing dependence on groundwater. This dependence has contributed to an accelerated decline in groundwater resources, which has in turn led to increased efforts at the state and national levels to revive older RWH systems. Critical to the success of such efforts is an improved understanding of how these ancient systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these RWH "tanks" at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water-level variation to quantify daily fluxes of groundwater, evapotranspiration (ET, and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28 km2. At the tank scale, our results indicate that groundwater recharge and irrigation outflows comprise the largest fractions of the tank water budget, with ET accounting for only 13–22 % of the outflows. At the scale of the cascade, we observe a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflows increasing down the cascade of tanks. The significant magnitude of return flows along the tank cascade leads to the most downgradient tank in the cascade having an outflow-to capacity ratio greater than 2. The presence of tanks in the landscape dramatically alters the catchment water balance, with runoff decreasing by

  10. The socio-ecohydrology of rainwater harvesting in India: understanding water storage and release dynamics at tank and catchment scales

    Science.gov (United States)

    Van Meter, K. J.; Basu, N. B.; McLaughlin, D. L.; Steiff, M.

    2015-11-01

    Rainwater harvesting (RWH), the small-scale collection and storage of runoff for irrigated agriculture, is recognized as a sustainable strategy for ensuring food security, especially in monsoonal landscapes in the developing world. In south India, these strategies have been used for millennia to mitigate problems of water scarcity. However, in the past 100 years many traditional RWH systems have fallen into disrepair due to increasing dependence on groundwater. This dependence has contributed to an accelerated decline in groundwater resources, which has in turn led to increased efforts at the state and national levels to revive older RWH systems. Critical to the success of such efforts is an improved understanding of how these ancient systems function in contemporary landscapes with extensive groundwater pumping and shifted climatic regimes. Knowledge is especially lacking regarding the water-exchange dynamics of these RWH "tanks" at tank and catchment scales, and how these exchanges regulate tank performance and catchment water balances. Here, we use fine-scale water-level variation to quantify daily fluxes of groundwater, evapotranspiration (ET), and sluice outflows in four tanks over the 2013 northeast monsoon season in a tank cascade that covers a catchment area of 28 km2. At the tank scale, our results indicate that groundwater recharge and irrigation outflows comprise the largest fractions of the tank water budget, with ET accounting for only 13-22 % of the outflows. At the scale of the cascade, we observe a distinct spatial pattern in groundwater-exchange dynamics, with the frequency and magnitude of groundwater inflows increasing down the cascade of tanks. The significant magnitude of return flows along the tank cascade leads to the most downgradient tank in the cascade having an outflow-to capacity ratio greater than 2. The presence of tanks in the landscape dramatically alters the catchment water balance, with runoff decreasing by nearly 75 %, and

  11. Effect of temperature on anaerobic treatment of black water in UASB-septic tank systems.

    Science.gov (United States)

    Luostarinen, Sari; Sanders, Wendy; Kujawa-Roeleveld, Katarzyna; Zeeman, Grietje

    2007-03-01

    The effect of northern European seasonal temperature changes and low temperature on the performance of upflow anaerobic sludge blanket (UASB)-septic tanks treating black water was studied. Three UASB-septic tanks were monitored with different operational parameters and at different temperatures. The results indicated the feasibility of the UASB-septic tank for (pre)treatment of black water at low temperatures with respect to removal of suspended solids and dissolved organic material. Inoculum sludge had little effect on COD(ss) removal, though in the start-up phase some poorly adapted inoculum disintegrated and washed out, thus requiring consideration when designing the process. Removal of COD(dis) was at first negative, but improved as the sludge adapted to low temperature. The UASB-septic tank alone did not comply with Finnish or Dutch treatment requirements and should therefore be considered mainly as a pre-treatment method. However, measuring the requirements as mgCOD l(-1) may not always be the best method, as the volume of the effluent discharged is also an important factor in the final amount of COD entering the receiving water bodies. PMID:16765592

  12. Water-conserving Potential for Agriculture in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To satisfy the water demand for Tarim Basin's economic development in the year 2000, about 33.4×108 m3 water needs to be further tapped. Acco rding t o the analysis of the current status of water utilization, it is pointed out th at, to achieve such economic objectives, the policy of emphasizing both water ex ploitation and water conservation with the preference given to conservation meas ures must be followed. For this end, the potentials of exploring new additional sources and strengthening water conservation have been well analyzed, along with the calculation and tech-economic-assessment of some related parameters like the canal transmission efficiency in water delivery systems and the water irrigation effi ciency in the field. The results indicate the potentials of water resource expan sion and conservation are 34×108 m3 and 57×108 m3, respectively. Bas ed on such rese arch outputs, a water conservation program has been developed for the Tarim Basi n, to provide important references and policy recommendations for the decision- makers in Xinjiang agricultural department to implement water utilization measur es.

  13. Water risk assessment for river basins in China based on WWF water risk assessment tools

    Science.gov (United States)

    Wei, N.; Qiu, Y.; Gan, H.; Niu, C.; Liu, J.; Gan, Y.; Zhou, N.

    2014-09-01

    Water resource problems, one of the most important environmental and socio-economic issues, have been a common concern worldwide in recent years. Water resource risks are attracting more and more attention from the international community and national governments. Given the current situations of water resources and the water environment, and the characteristics of water resources management and information statistics of China, this paper establishes an index system for water risk assessment in river basins of China based on the index system of water risk assessment proposed by the World Wide Fund For Nature (WWF) and German Investment and Development Co., Ltd (DEG). The new system is more suitable for Chinese national conditions and endorses the international assessment index. A variety of factors are considered to determine the critical values of classification for each index, and the indexes are graded by means of 5-grade and 5-score scales; the weights and calculation methods of some indexes are adjusted, with the remaining indexes adopting the method of WWF. The Weighted Comprehensive Index Summation Process is adopted to calculate the integrated assessment score of the river basin. The method is applied to the Haihe River basin in China. The assessment shows that the method can accurately reflect the water risk level of different river basins. Finally, the paper discusses the continuing problems in water risk assessment and points out the research required to provide a reference for further study in this field.

  14. Eco-environmental impact of inter-basin water transfer projects: a review.

    Science.gov (United States)

    Zhuang, Wen

    2016-07-01

    The objective reality of uneven water resource distribution and imbalanced water demand of the human society makes it inevitable to transfer water. It has been an age-old method to adopt the inter-basin water transfers (IBTs) for alleviating and even resolving the urgent demand of the water-deficient areas. A number of countries have made attempts and have achieved enormous benefits. However, IBTs inevitably involve the redistribution of water resources in relevant basins and may cause changes of the ecological environment in different basins. Such changes are two-sided, namely, the positive impacts, including adding new basins for water-deficient areas, facilitating water cycle, improving meteorological conditions in the recipient basins, mitigating ecological water shortage, repairing the damaged ecological system, and preserving the endangered wild fauna and flora, as well as the negative impacts, including salinization and aridification of the donor basins, damage to the ecological environment of the donor basins and the both sides of the conveying channel system, increase of water consumption in the recipient basins, and spread of diseases, etc. Because IBTs have enormous ecological risk, it is necessary to comprehensively analyze the inter-basin water balance relationship, coordinate the possible conflicts and environmental quality problems between regions, and strengthen the argumentation of the ecological risk of water transfer and eco-compensation measures. In addition, there are some effective alternative measures for IBTs, such as attaching importance to water cycle, improving water use efficiency, developing sea water desalination, and rainwater harvesting technology, etc. PMID:27178293

  15. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  16. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  17. How market-based water allocation can improve water use efficiency in the Aral Sea basin?

    OpenAIRE

    Bekchanov, Maksud; Bhaduri, Anik; Ringler, Claudia

    2013-01-01

    Increasing water demand due to population growth and economic development under the mounted investment costs for developing new water sources calls for efficient, equitable and sustainable management of water resources in many developing countries. This is more essential in the Aral Sea basin where the tremendous development in irrigation since the 1960s combined with unbalanced water resources management led to the destruction of the ecosystems in the delta zone and the gradual desiccation o...

  18. Analysis of water from K west basin canisters (second campaign)

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and liquid samples have been obtained from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters. The data will provide source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System subproject (Ball 1996) and the K Basins Fuel Retrieval System subproject (Waymire 1996). The barrels of ten canisters were sampled in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results for the gas and liquid samples of the first campaign have been reported (Trimble 1995a; Trimble 1995b; Trimble 1996a; Trimble 1996b). An analysis of cesium-137 (137CS ) data from the second campaign samples was reported (Trimble and Welsh 1997), and the gas sample results are documented in Trimble 1997. This report documents the results of all analytes of liquid samples from the second campaign.

  19. Water Quality Index (WQI Approach to Evaluate the Water Quality of Certain Tank Waters of Tiptur Taluk in Tumkur District, Karnataka, India.

    Directory of Open Access Journals (Sweden)

    A. M. Shivanna

    2015-04-01

    Full Text Available Evaluation of water quality using different parameters is complex and not easy to understand as it is variable by variable discussion. Water quality index is a single value indicator used to evaluate and present the water quality to the public and the related management in precise and understandable manner. Measured values of eleven physico-chemical parameters namely, pH, TDS, TH, Cl-,NO3-,SO42-,HCO3-, Ca2+, Mg2+, Na+ and K+ were used to calculate WQI of six tanks in Tiptur taluk. The study was taken up to understand the impact of agriculture run off from the respective catchment area, domestic sewage input and human activities which contribute to pollution load. During the investigation period from December-2010 to November-2012, it was found that the overall water quality index of the studied tanks ranged from 46.72 to 92.22 indicating the quality ranging from good quality to very poor quality. Values of variables TDS, HCO3-, Na+ and K+exceeded their desirable limits of BIS/ICMR in Karadi, Halkurke and Honnavalli tanks which depend on rain water. Waters in these tanks were of moderately poor to very poor quality. Waters of Canal fed tanks were of good to moderately poor quality.

  20. Radioactive Radon Gas in Ground Water in Songkhla Lake Basin

    International Nuclear Information System (INIS)

    The technique to investigate radon concentration in water, using film C R-39 to detect alpha particle that emitted from radon gas and diffused through the water in close system, has been established. After etching process, alpha tracks were counted under optical microscope. The track density of the film gives the radon concentration level in water. From the calibration curve, the radon concentration is given by the formula. Radon concentration (Bq/m3) = Track density / 0.088137 Testing 271 samples of ground water around Songkhla Lake Basin by this method show that the average of radon concentration is 11,955 ± 24,483 (Bq/m3). The minimum radon concentration is 756 ± 25 (Bq/m3) found at Amphoe Bangkaeo, Changwat Phattalung, and the maximum concentration is 244,552 ± 464 (Bq/m3) found at Amphoe Namom, Changwat Songkhla

  1. Klamath Basin Restoration Agreement Off-Project Water Program Sub-basin Analysis Pour Points v3

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  2. Water Resources Data - Texas Water Year 2000, Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 4 contains records for water discharge at 58 gaging stations; stage only at 2 gaging stations; stage and contents at 14 lakes and reservoirs; water quality at 30 gaging stations; and data for 13 partial-record stations comprised of 5 flood-hydrograph, 5 low-flow, 1 crest-stage, and 2 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  3. Water Resources Data - Texas Water Year 1999, Volume 4. Colorado River Basin, Lavaca River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 4 contains records for water discharge at 61 gaging stations; stage only at 1 gaging station; stage and contents at 11 lakes and reservoirs; water quality at 30 gaging stations; and data for 13 partial-record stations comprised of 6 flood-hydrograph, 5 low-flow, and 2 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic datacollection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  4. Water-scarcity patterns : spatiotemporal interdependencies between water use and water availability in a semi-arid river basin

    NARCIS (Netherlands)

    Oel, van Pieter Richard

    2009-01-01

    This thesis addresses the interdependencies between water use and water availability and describes a model that has been developed to improve understanding of the processes that drive changes and variations in the spatial and temporal distribution of water resources in a semi-arid river basin. These

  5. Uniform and non-uniform inlet temperature of a vertical hot water jet injected into a rectangular tank

    KAUST Repository

    El-Amin, Mohamed

    2010-12-01

    In most of real-world applications, such as the case of heat stores, inlet is not kept at a constant temperature but it may vary with time during charging process. In this paper, a vertical water jet injected into a rectangular storage tank is measured experimentally and simulated numerically. Two cases of study are considered; one is a hot water jet with uniform inlet temperature (UIT) injected into a cold water tank, and the other is a cold water jet with non-uniform inlet temperature (NUIT) injected into a hot water tank. Three different temperature differences and three different flow rates are studied for the hot water jet with UIT which is injected into a cold water tank. Also, three different initial temperatures with constant flow rate as well as three different flow rates with constant initial temperature are considered for the cold jet with NUIT which is injected into a hot water tank. Turbulence intensity at the inlet as well as Reynolds number for the NUIT cases are therefore functions of inlet temperature and time. Both experimental measurements and numerical calculations are carried out for the same measured flow and thermal conditions. The realizable k-ε model is used for modeling the turbulent flow. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank are analyzed. The simulated results are compared to the measured results, and they show a good agreement at low temperatures. © 2010 IEEE.

  6. Determination of the permeability of tank basins with Zangar permeameter; Determinacao de permeabilidade em bacias de tanques com permeametro de Zangar

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Carlos Alberto Rodrigues; Vicente, Ana Paula Camargo de; Lopes, Jorge Antonio; Silveira Filho, Celso Rodrigues da [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    This article addresses a subject that has been target of requirements from environmental agencies for renewal of licenses, expansions, or implementation of new enterprises. That subject refers to the checking of the permeability of tank basins and verifying its adequacy against certain criteria. The Brazilian standard that regulates those criteria is ABNT NBR 17505-2 - Flammable and Combustible Liquid Storage. In order to check compliance with the established criteria, it is best to perform geotechnical tests to check the permeability and main characteristics of the soil. Some difficulties may arise in the execution of those services, as for example, the scarce existence of qualified firms, relative complexity, high cost and considerable time for the execution. In that regard, this article is intended to present a differentiated methodology proposed by Zangar (1953) for the checking of the permeability of the basins and also a practical case applied to a petroleum by-product storage terminal. The methodology is complemented with the presentation of the results obtained in a plant containing iso-value curves, thereby getting a geographic representation of the permeability indexes of the basins. In the case study, 21 tests have been performed encompassing 7 tank basins. As a result therefrom, it was verified that 98.3% of the studied area met the criteria, with an average permeability of 6.84 x 10{sup -5} cm/s. With this paper, one may conclude that the proposed methodology is reliable, quick, low-cost and easily applicable, and may be used for checking the compliance of the tank basin permeability with the criterion of ABNT NBR 17505-2 standard. (author)

  7. A comparative study on water column and bottom feeding habit of tank reared brook trout

    International Nuclear Information System (INIS)

    Feed consumption growth rate and feed conversion were compared for brook trout (Salvelinus fontinalis) feeding in the water column or at the tank bottom. The trial that lasted 120 days was conducted in four 300 L fibreglass tanks with two replicates of fish (mean weight of 45.9 g) in each feeding treatment. Fish fed in the water column exhibited a mean (SD) specific growth rate(SGR) of 0.93 and reached a final mean weight of 138.9 (28.9) g whereas bottom fed fish had a mean SGR of 0.91 and 135.7 (39.2) g body weight. Overall feed conversion ratios (FCR) and condition factors (CF) were assessed as 1.73, 1.22 for the water column and 1.71, 1.25 bottom fed fish. None of these variables showed statistically significant difference between the treatments. thus, it seems that brook trout may feed both in water column and at bottom in tank culture conditions and this habit could be utilised for reducing feed waste in intensive commercial trout culture

  8. Water trading at the margin: The evolution of water markets in the Murray-Darling Basin

    Science.gov (United States)

    Turral, H. N.; Etchells, T.; Malano, H. M. M.; Wijedasa, H. A.; Taylor, P.; McMahon, T. A. M.; Austin, N.

    2005-07-01

    Water trading in Australia is enabled by much historical institutional development, which had other objectives at the time that it was implemented. After 2 decades of institutional reform to enable water markets in the Murray Darling Basin, active markets are reallocating surface water entitlements among irrigation users. However, permanent water trading is currently limited in terms of the volume traded and reallocation among uses. Given these limitations, this paper seeks to assess the success of surface water markets in the Murray-Darling Basin by comparing current practice against the six desirable characteristics for water markets suggested by Howe et al. (1986). Overall, it is argued that, despite the relatively low rate of reallocation, the market performs well against most criteria but that ongoing evolution of institutional arrangements is critical for improved success.

  9. Dealing with variability in water availability: the case of the Verde Grande River basin, Brazil

    OpenAIRE

    Collischonn, B.; Lopes, A. V.; Pante, A. R.

    2014-01-01

    This paper presents a water resources management strategy developed by the Brazilian National Water Agency (ANA) to cope with the conflicts between water users in the Verde Grande River basin, located at the southern border of the Brazilian semi-arid region. The basin is dominated by water-demanding fruit irrigation agriculture, which has grown significantly and without adequate water use control, over the last 30 years. The current water demand for irrigation exceeds water availability (unde...

  10. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  11. Quantitative Analysis of Microbes in Water Tank of G.A. Siwabessy Reactor

    International Nuclear Information System (INIS)

    The quality of water in reactor system has an important role because it could effect the function as a coolant and the operation of reactor indirectly. The study of microbe analyzes has been carried out to detect the existence of microbes in water tank and quantitative analyzes of microbes also has been applied as a continuation of the previous study. The samples is taken out from the end side of reactor GA Siwabessy's tank, inoculated in TSA (Tripcase Soy Agar) medium, put in incubator at 30 - 35 oC for 4 days. The results of experiment show the reconfirmation for the existence of bacteria and the un-existence of yield. The quantitative analysis with TPC method show the growth rate of bacteria is twice in 24 hours. (author)

  12. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    Science.gov (United States)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  13. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  14. Radiotherapy out-of-field dosimetry: Experimental and computational results for photons in a water tank

    International Nuclear Information System (INIS)

    The first objective of this work was to check and select a set of four kinds of passive photon, dosimeters (two thermo-luminescence dosimeter (TLD) types, one radiophotoluminescence (RPL) dosimeter and one optically stimulated luminescence (OSL) dosimeter) together with a common measurement protocol. Dosimeters were calibrated in a reference clinical linear acccelerator beam in a water tank at a reference facility at the Laboratoire National Henri Becquerel (CEA LIST/LNE LNHB, Saclay. Radiation qualities of 6, 12 and 20 MV were used with standard calibration conditions described in IAEA TRS 398 and non-standard conditions. Profile and depth dose ion chamber measurements were also made to provide reference values. Measurements were made in a water tank into which pipes could be inserted which held dosimeters in pre-determined and reproducible positions. The water tank was built to enable investigation of doses up to 60 cm from the beam axis. A first set of experiments was carried out with the beam passing through the tank. From this first experiment, penumbra and out-of-field dose profiles including water and collimator scatter and leakage were found over three orders of magnitude. Two further sets of experiments using the same experimental arrangement with the beam outside the tank, to avoid water scatter, were designed to measure collimator scatter and leakage by closing the jaws of the collimator. Depending on the energy, typical leakage and collimator scatter represents 10–40% and 30–50% of the total out-of-field doses respectively. It was concluded that all dosimeters can be used for out-of-field photon dosimetry. All show good uniformity, good reproducibility, and can be used down to low doses expected at distances remote from the subsequent radiotherapy target volume. -- Highlights: •Dosimeters based on OSL, TLD and RPL have been compared for radiotherapy purposes. •Irradiations have been performed in a water phantom located in and out of the beam.

  15. Phenolic water pollutants in a Malaysian River basin.

    Science.gov (United States)

    Abdullah, P; Nainggolan, H

    1991-10-01

    Phenolic chemicals with their very low taste and odour thresholds, high persistence and toxicity, are of growing concern as water pollutants. The compounds are known to exist in raw water as well as in treated water. The level of phenolic priority pollutants in water within the catchment area of the Linggi River Treatment Plant in Negeri Sembilan, Malaysia, which includes the Linggi river basin, was monitored. The 4-aminoantipyrin colourimetric method was used to determine total phenols whereas capillary column gas chromatography was used to determine the individual compounds. The results show that at most sampling stations, particularly those within the Seremban municipality, the level of phenols was found to exceed the recommended Malaysian standard of 2.0 μg/L(-1) for raw water. This is seen as the direct impact of industrial and urbanization of the area and clearly indicates the unhealthy state of the Linggi river. The results also indicate the need to improve the water quality if the river is going to be used as a source of raw water. PMID:24233958

  16. Integrated Water Resources Management Improving Langat Basin Ecosystem Health

    Directory of Open Access Journals (Sweden)

    Mazlin B. Mokhtar

    2008-01-01

    Full Text Available The ecosystem provides us with all the goods and services that form the base of our economic, social cultural and spiritual life. Good scientific information will be required for managing the environment by using the Ecosystem approach. The groundwater is considered as a possible supplementary of alternative water source, and some factories already started shifting their water source from surface water to groundwater. Uncontrolled use of groundwater, however, may induce serious environmental problems, e.g., land subsidence, saltwater intrusion to the aquifer. The establishment of a balanced multi-sector and integrated groundwater resources and environmental management plan is deemed urgent to attain a sustainable groundwater resources use and to maintain a favorable groundwater quality in the Langat Basin. To achieve sustainable lifestyle in large scale ecosystem requires integrated and holistic approaches from all stakeholders. Through Aquifer Storage Recovery (ASR it was determined a revolutionized water resources management, providing a sustainable supply while minimizing the environmental impact of surface storage. By using underground geologic formations to store water, by integrated water resources management advisory system (IWRMAS aquifer recharge can now easily applied to obviate water resource and environmental problems, including seasonal shortages, emergency storage, ground subsidence and saline intrusion.

  17. STS-55 crewmembers repair waste water tank on OV-102's middeck

    Science.gov (United States)

    1993-01-01

    Three STS-55 crewmembers participate in an inflight maintenance (IFM) exercise to counter problems experienced with a waste water tank below Columbia's, Orbiter Vehicle (OV) 102's, middeck. Mission Specialist 3 (MS3) Bernard A. Harris, Jr, inside the airlock, holds middeck floor access panel MD54G and looks below at Pilot Terence T. Henricks who is in the bilge area. Commander Steven R. Nagel is lying on middeck floor at the left.

  18. High water level installation of monitoring wells for underground storage tanks

    International Nuclear Information System (INIS)

    This paper briefly describes a common monitoring well installation design for shallow ground water contamination resulting from leaky underground storage tanks. The paper describes drilling techniques used in unconsolidated Florida aquifers using hollow-stem augers. It describes methods for the prevention of heaving sands and sand-locking problems. It then goes on to describe the proper well casing placement and sealing techniques using neat cements. The proper sell screen level is also discussed to maximize the detection of floating hydrocarbons

  19. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    Science.gov (United States)

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.

    2015-04-01

    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  20. Effects of inlet momentum and orientation on the hydraulic performance of water storage tanks

    Science.gov (United States)

    Xavier, Manoel Lucas Machado; Janzen, Johannes Gérson

    2016-07-01

    The influence of inlet momentum and inlet orientation on hydraulic performance of cylindrical water process tanks were investigated using a factorial design strategy. The hydraulic performance of the tanks was assessed with a computational fluid dynamics (CFD) model, which calculated the flow fields and the residence time distribution (RTD). RTDs were used to quantify the tanks hydraulic performance using hydraulic indexes that represent short-circuiting, mixing, and moment. These indexes were later associated with the effluent fraction of disinfectant (inlet and outlet disinfectant ratio). For small depth-to-diameter ratios, the inlet orientation and the inlet momentum were the most important factors regarding the hydraulic indexes and the effluent fraction of disinfectant, respectively. A poor correlation was obtained between the hydraulic indexes and the effluent fraction of disinfectant, indicating that they are not good predictors for water quality. For large depth-to-diameter ratios, the inlet orientation had the most significant effect on both the hydraulic indexes and effluent fraction of disinfectant. The short-circuiting and mixing indexes presented a good correlation with water quality for this case.

  1. ANALYSIS OF THE LEACHING EFFICIENCY OF INHIBITED WATER AND TANK SIMULANT IN REMOVING RESIDUES ON THERMOWELL PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; White, T.; Oji, L.; Martino, C.; Wilmarth, B.

    2011-10-20

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to {approx}33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na{sub 3}H(CO{sub 3}){sub 2} (Hydrated Sodium Carbonate, aka: Trona), Al(OH){sub 3} (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO{sub 3} (Sodium Nitrate) and NaNO{sub 2} (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in

  2. Analysis Of The Leaching Efficiency Of Inhibited Water And Tank Simulant In Removing Residues On Thermowell Pipes

    International Nuclear Information System (INIS)

    A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. Video inspection of the tank showed that a film of solid material adhered to the tank internal walls and structures between 69 inch and 150 inch levels. From the video inspection, the solid film thickness was estimated to be 1mm, which corresponds to ∼33 kg of TPB salts (as 20 wt% insoluble solids) (1). This film material is expected to be easily removed by single-rinse, slurry pump operation during Tank 48H TPB disposition via aggregation processing. A similar success was achieved for Tank 49H TPB dispositioning, with slurry pumps operating almost continuously for approximately 6 months, after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids - Na3H(CO3)2 (Hydrated Sodium Carbonate, aka: Trona), Al(OH)3 (Aluminum Hydroxide, aka: Gibbsite), NaTPB (Sodium Tetraphenylborate), NaNO3 (Sodium Nitrate) and NaNO2 (Sodium Nitrite) (2). Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. There is a risk that material on the internal surfaces of Tank 48H could not be easily removed. As a risk mitigation activity, the chemical composition and leachability of the Tank 48H film are being evaluated prior to initiating tank aggregation. This task investigated the dissolution characteristics of Tank 48H solid film deposits in inhibited water and DWPF recycle. To this end, SRNL received four separate 23-inch long thermowell-conductivity pipe samples which were removed from the tank 48H D2 risers in order to determine: (1) the thickness of the solid film deposit, (2) the chemical composition of the film deposits, and (3) the leaching behavior of the solid film deposit in inhibited water (IW) and in DWPF recycle simulant

  3. Water Accounting Plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.

    2013-07-01

    Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i) a resource base sheet, (ii) an evapotranspiration sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change) and internal influences (e.g., infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  4. Water accounting for stressed river basins based on water resources management models.

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. PMID:27161139

  5. Water Accounting Plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.

    2012-11-01

    Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i) a resource base sheet, (ii) a consumption sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change) and internal influences (e.g. infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  6. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    OpenAIRE

    Milanović Ana

    2006-01-01

    Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin). The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out unti...

  7. Modeling Water-Quality Loads to the Reservoirs of the Upper Trinity River Basin, Texas, USA

    OpenAIRE

    Taesoo Lee; Xiuying Wang; Michael White; Pushpa Tuppad; Raghavan Srinivasan; Balaji Narasimhan; Darrel Andrews

    2015-01-01

    The Upper Trinity River Basin (TRB) is the most populated river basin and one of the largest water suppliers in Texas. However, sediment and nutrient loads are reducing the capacity of reservoirs and degrading water quality. The objectives of this study are to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for ten study watersheds within the Upper TRB in order to assess nutrient loads into major reservoirs in the basin and to predict the effects of point source elimina...

  8. Water Tanks, Published in 2000, 1:1200 (1in=100ft) scale, City of Fort Wayne.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Hardcopy Maps information as of 2000. Data by this publisher are...

  9. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  10. Effect of the settlement of sediments on water infiltration in two urban infiltration basins

    OpenAIRE

    Lassabatere, Laurent; Angulo Jaramillo, R.; GOUTALAND, David; Letellier, Laetitia; GAUDET, JP; Winiarski, Thierry; DELOLME, C

    2010-01-01

    The sealing of surfaces in urban areas makes storm water management compulsory. The suspended solids from surface runoff water accumulate in infiltration basins and may impact on water infiltration. This paper describes a study of the effect of the settlement of sedimentary layers on the water infiltration capacity of two urban infiltrations basins. In situ water infiltration experiments were performed (1) to quantify the effect of sediment on water infiltration at local scale and (2) to deri...

  11. Water resources and ecological conditions in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    宋郁东; 王让会; 彭永生

    2002-01-01

    Temporal sequential analyses of the hydrological observational data in the Tarim Ba-sin over the last forty years revealed an annual increase of 2 × 107m3 in the water quantities at thethree headstreams of the upper courses and an annual decrease of 3 × 107m3 in the water flowfrom Alaer, which is on the upper main stream. A prediction of the trends indicates that there canbe severe situations under which intermittent water interceptions occur. By means of approximateestimations on vegetative water consumption through phreatic evaporation combined with a quotaassessment, the ecological water demands required to maintain the ecological environment in themainstream area over the three different targeted years of 2005, 2010 and 2030 are defined asstanding at 31.86× 108m3, 36.27× 108m3 and 41.04× 108m3 respectively. Ecological fragility in-dexes are established on the basis of the selection of environmental sensitivity factors. Rationalevaluations give proof that the lower reaches of the mainstream have already turned into zoneswhere their ecological environments are gravely damaged. Multi-objective optimization should beconducted and protective schemes be framed within the threshold limits of the bearing capacitiesof water resources and the environment.

  12. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  13. Managing Water Resource Challenges in the Congo River Basin

    Science.gov (United States)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  14. Potential for using the Upper Coachella Valley ground-water basin, California, for storage of artificially recharged water

    Science.gov (United States)

    Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.

    1980-01-01

    This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)

  15. Ground-water data, Green River basin, Wyoming

    Science.gov (United States)

    Zimmerman, Everett Alfred; Collier, K.R.

    1985-01-01

    Hydrologic and geologic data collected by the U.S. Geological Survey as part of energy-related projects in the Green River basin of Wyoming are compiled from the files of the Geological Survey and the Wyoming State Engineer as of 1977. The data include well and spring location, well depth, casing diameter, type of lifts, type of power, use of water, rock type of producing zone, owner, and discharge for more than 1,600 sites. Analyses for common chemical constituents, trace elements, and radioactive chemicals are tabulated as well as water temperature and specific conductance measurement data. Lithologic logs of more than 300 wells, test holes, and measured sections constitute much of this report. County maps at a scale of 1:500 ,000 show the locations. (USGS)

  16. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    Directory of Open Access Journals (Sweden)

    R. Kasei

    2009-08-01

    Full Text Available In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP has developed a Volta Basin Water Allocation System (VB-WAS, a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH serve as input data for a river basin management model (MIKE BASIN. MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  17. Optimal operation of water supply systems with tanks based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Ting-chao; ZHANG Tu-qiao; LI Xun

    2005-01-01

    In view of the poor water supply system's network properties, the system's complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm;a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.

  18. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    International Nuclear Information System (INIS)

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude

  19. Balancing Ground-Water Withdrawals and Streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin, Rhode Island

    Science.gov (United States)

    Barlow, Paul M.; Dickerman, David C.

    2001-01-01

    Ground water withdrawn for water supply reduces streamflow in the Hunt-Annaquatucket-Pettaquamscutt Basin in Rhode Island. These reductions may adversely affect aquatic habitats. A hydrologic model was prepared by the U.S. Geological Survey in cooperation with the Rhode Island Water Resources Board, Town of North Kingstown, Rhode Island Department of Environmental Management, and Rhode Island Economic Development Corporation to aid water-resource planning in the basin. Results of the model provide information that helps water suppliers and natural-resource managers evaluate strategies for balancing ground-water development and streamflow reductions in the basin.

  20. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    Science.gov (United States)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  1. An assessment study of septic tank based sewage disposal system on quality of underground water

    International Nuclear Information System (INIS)

    An assessment of septic tank based sewage disposal system made on the basis of quality of underground water is presented. Machrala village is selected as the case study area where an ever-increasing number of septic tanks are posing great health threat to the inhabitants. Both hand pump and tube well water samples are analyzed for toxic trace metals (Mn, Fe, Cd and Co), physico-chemical parameters (pH, turbidity, conductance, total dissolved salts, Ca, Mg, Cl/sup-/ and SO/sub 4//sup -2/) and micro-organism population in terms of total viable count, coliform count, MPN coliform. The metals were analyzed by the flame atomic absorption method using standard procedure. The study shows that the local underground water of the village is being adversely affected by toxic metals and coliform bacteria. In most cases, the latter parameter exceeds 240 counts/ml. Besides, tube well water were found to have higher Pb concentration (0.200 mg/ml) and the overall assessment renders more than 50% of the water samples as unsatisfactory for human consumption. (author)

  2. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  3. Monitoring of dniper water basins according to remote sounding of the earth from companion LANDSAT

    OpenAIRE

    Толстохатько, Виктор Антонович; Антоненко, Любовь Александровна; Шумаков, Федор Терентьевич

    2010-01-01

    Questions of application of means of geoinformation technologies for research space-time dynamics of water bloom in Dniper water basins on pictures which are received at remote sounding of the Earth from the companion are considered. The technique of an operative estimation of a trophic state of water in water basins depending on color of seaweed and the area of water bloom is offered.

  4. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  5. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish.

    Science.gov (United States)

    Tran, Steven; Facciol, Amanda; Gerlai, Robert

    2016-05-01

    The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30min, a 2×2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used. PMID:26921455

  6. Modelling of a Solid Oxide Fuel Cell CHP System Coupled with a Hot Water Storage Tank for a Single Household

    Directory of Open Access Journals (Sweden)

    Vincenzo Liso

    2015-03-01

    Full Text Available In this paper a solid oxide fuel cell (SOFC system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request is low (for instance during the night, taking advantage of thermal stratification to increases the heat recovery performance. A model of the SOFC system is presented to estimate the energy required to meet the average electric energy demand of the residence. Two fuels are considered, namely syngas produced by gasification and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation are used to size the SOFC system and storage heat tank to provide energy for a small household using two different fuels. In particular it was shown that in the case of syngas, due to larger system heat output, a larger tank volume was required in order to accumulate unused heat over the night. The detailed description of the tank model will be useful to energy system modelers when sizing hot water tanks. Problem formulation is reported also using a Matlab script.

  7. Basin Scale Water Infrastructure Investment Evaluation Considering Climate Risk

    Science.gov (United States)

    Kaheil, Y. H.; Lall, U.

    2009-12-01

    Water storage infrastructure has historically been a primary means of addressing vulnerability to climate risk. Rainfall, and streamflow fluctuate at many time scales, rendering supply unreliable unless a mechanism for surface or subsurface storage is provided. Irrigated agriculture typically provides dramatically higher yields relative to rain fed agriculture, by ensuring a regular, when needed water supply. Irrigation is also typically the dominant water user in most parts of the world. Addressing storage-irrigation infrastructure needs is thus a critical piece in developing a strategy for regional water and food security in the face of a changing climate. In the 20th century, large reservoir and canal system projects were funded and developed in many regions. It is argued that these played a significant role in facilitating the Green Revolution in India, Pakistan and elsewhere. However, this notion has been challenged, and many negative environmental and socio-economic impacts of such projects have been highlighted. Governance and maintenance of such hydraulic infrastructure has also been a challenge, and a paradigm of Integrated Water Resources Management (IWRM) and participatory processes has been argued for. In the last decade or so, considerable interest has been directed towards local or on-farm decentralized storage development, i.e., towards small scale reservoir and use systems where governance may be less of an issue. There has been government support of such activities in countries such as India, leading to a rapid proliferation of such systems in some areas. Questions about the effect of such development on the regional hydrologic balance and as to their resilience in a changing climate arise. Further, in the spirit of IWRM, one needs to consider the potential use of water as well as the development and management of supply. In the current context, a central question that can be posed is the identification of the best mix of centralized and

  8. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    Energy Technology Data Exchange (ETDEWEB)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  9. Assessment of Climate Change Effects on Water Resources in the Yellow River Basin, China

    OpenAIRE

    Zhiyong Wu; Heng Xiao; Guihua Lu; Jinming Chen

    2015-01-01

    The water resources in the Yellow River basin (YRB) are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC) macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperat...

  10. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    International Nuclear Information System (INIS)

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP)

  11. Virtual water flows and Water Balance Impacts of the U.S. Great Lakes Basin

    Science.gov (United States)

    Ruddell, B. L.; Mayer, A. S.; Mubako, S. T.

    2014-12-01

    To assess the impacts of human water use and trade on water balances, we estimate virtual water flows for counties in the U.S. portion of the Great Lakes basin. This is a water-rich region, but one where ecohydrological 'hotspots' are created by water scarcity in certain locations (Mubako et al., 2012). Trade shifts water uses from one location to another, causing water scarcity in some locations but mitigating water scarcity in other locations. A database of water withdrawals was assembled to give point-wise withdrawals by location, source, and use category (commercial, thermoelectric power, industrial, agricultural, mining). Point-wise consumptive use is aggregated to the county level, giving direct, virtual water exports by county. A county-level trade database provides import and export data for the various use categories. We link the annual virtual water exported from a county for a given use category to corresponding annual trade exports. Virtual water balances for each county by use category are calculated, and then compared with the renewable annual freshwater supply. Preliminary findings are that overall virtual water balances (imports - exports) are positive for almost all counties, because urban areas import goods and services that are more water intensive than the exported goods and services. However, for some agriculturally-intensive counties, the overall impact of virtual water trade on the water balance is close to zero, and the balance for agricultural sector virtual water trade is negative, reflecting a net impact of economic trade on the water balance in these locations. We also compare the virtual water balance to available water resources, using annual precipitation less evapotranspiration as a crude estimate of net renewable water availability. In some counties virtual water exports approach 30% of the available water resources, indicating the potential for water scarcity, especially from an aquatic ecosystem standpoint.

  12. Availability of fresh and slightly saline ground water in the basins of westernmost Texas

    Science.gov (United States)

    Gates, Joseph Spencer; Stanley, W.D.; Ackermann, H.D.

    1978-01-01

    Significant quantities of fresh ground water occur in the basin fill of the northern Hueco bolson and lower Mesilla Valley and in the Wildhorse Flat, Michigan Flat, Lobo Flat, and Ryan Flat areas of the Salt Basin; and may occur in Red Light Draw, Presidio bolson, and Green River valley. More than 20 million acre-feet of freshwater is estimated to be in storage in the basin fill of westernmost Texas. About 12 million acre-feet, or more than half, is in El Paso County in the Hueco bolson and Mesilla Valley. In addition, the basins contain about 7 million acre-feet of slightly saline water in basin fill, in Rio Grande alluvium in the Hueco bolson and lower Mesilla Valley, and in the Capitan Limestone in the northern Salt Basin. Ground-water pumping for municipal supply and industrial use in the El Paso area caused water-level declines of as much as 74 feet during 1903-73, and pumping for irrigation in the Salt Basin caused a maximum decline of 150 feet at Lobo Flat during 1949-73. Additional development of ground water in westernmost Texas will be accompanied by further declines in water levels, and will probably induce local migration of slightly saline or poorer quality water into freshwater areas. Land-surface subsidence could occur in local areas where water-level declines are large and the basin fill contains large amounts of compressible clay. (Kosco-USGS)

  13. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran

    Science.gov (United States)

    The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...

  14. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    Science.gov (United States)

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  15. Availability of water resources in the rio Bermudez micro-basin. Central Region of Costa Rica

    International Nuclear Information System (INIS)

    The Rio Bermudez micro-basin makes up part of the principal hydrological resource area in the Central Region of Costa Rica. For this reason a study was done to determine the availability of hydrological resources in said micro-basin to identify areas with potential water availability problems. A monthly water balance was calculated using land use, geomorphology and climate parameters. From these water balance studies, the amount of available water was calculated and classified into four categories, however, in this micro-basin, only three categories were identified: high, medium and moderate water availability. No areas were identified with low water availability, indicating availability is sufficient; however, there is increasing demand on water resources because over half of the micro-basin area is classified as having moderate water availability. (Author)

  16. Sustainability of water-supply at military installations, Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Verstraeten, Ingrid M.

    2014-01-01

    The Kabul Basin, including the city of Kabul, Afghanistan, is host to several military installations of Afghanistan, the United States, and other nations that depend on groundwater resources for water supply. These installations are within or close to the city of Kabul. Groundwater also is the potable supply for the approximately four million residents of Kabul. The sustainability of water resources in the Kabul Basin is a concern to military operations, and Afghan water-resource managers, owing to increased water demands from a growing population and potential mining activities. This study illustrates the use of chemical and isotopic analysis, groundwater flow modeling, and hydrogeologic investigations to assess the sustainability of groundwater resources in the Kabul Basin.Water supplies for military installations in the southern Kabul Basin were found to be subject to sustainability concerns, such as the potential drying of shallow-water supply wells as a result of declining water levels. Model simulations indicate that new withdrawals from deep aquifers may have less of an impact on surrounding community water supply wells than increased withdrawals from near- surface aquifers. Higher rates of recharge in the northern Kabul Basin indicate that military installations in that part of the basin may have fewer issues with long-term water sustainability. Simulations of groundwater withdrawals may be used to evaluate different withdrawal scenarios in an effort to manage water resources in a sustainable manner in the Kabul Basin.

  17. Biofuel Expansion and Water Resources in the Ivinhema Basin

    Science.gov (United States)

    Libra, J. M.; King, C.; Xavier, A.; Scanlon, B. R.

    2014-12-01

    Brazil produces approximately a quarter the world's yearly ethanol demand, making it a global leader in biofuel production. The repercussions for local water resources in areas of intensive biofuel expansion, however, remain uncertain. To assess the effects of various land-use change scenarios on water sustainability in Brazil, this study models a small catchment currently experiencing soybean and sugarcane expansion using the Stockholm Environment Institute's Water Evaluation and Planning software (WEAP). The catchment, the Ivinhema basin in Southern Mato Grosso do Sul, has experienced extensive sugarcane expansion since the mid-1990s - a trend that is expected to continue. The model uses climatic data, soil characteristics, and agricultural production trends in the region from 1990 - 2012 to simulate known streamflows, using the WEAP-MABIA method. The model predicts flow impacts under a number of different future climatic and land-use scenarios. The results will be used to inform the ICONE's Brazil Land Use Model (BLUM), which models the economics of land use.

  18. Bacterioneuston control of air-water methane exchange determined with a laboratory gas exchange tank

    Science.gov (United States)

    Upstill-Goddard, Robert C.; Frost, Thomas; Henry, Gordon R.; Franklin, Mark; Murrell, J. Colin; Owens, Nicholas J. P.

    2003-12-01

    The apparent transfer velocities (kw) of CH4, N2O, and SF6 were determined for gas invasion and evasion in a closed laboratory exchange tank. Tank water (pure Milli-RO® water or artificial seawater prepared in Milli-RO®) and/or tank air gas compositions were adjusted, with monitoring of subsequent gas transfer by gas chromatography. Derived kw was converted to "apparent k600," the value for CO2 in freshwater at 20°C. For CH4, analytical constraints precluded estimating apparent k600 based on tank air measurements. In some experiments we added strains of live methanotrophs. In others we added chemically deactivated methanotrophs, non-CH4 oxidizers (Vibrio), or bacterially associated surfactants, as controls. For all individual controls, apparent k600 estimated from CH4, N2O, or SF6 was indistinguishable. However, invasive estimates always exceeded evasive estimates, implying some control of gas invasion by bubbles. Estimates of apparent k600 differed significantly between methanotroph strains, possibly reflecting species-specific surfactant release. For individual strains during gas invasion, apparent k600 estimated from CH4, N2O, or SF6 was indistinguishable, whereas during gas evasion, k600-CH4 was significantly higher than either k600-N2O or k600-SF6, which were identical. Hence evasive k600-CH4/k600-SF6 was always significantly above unity, whereas invasive k600-CH4/k600-SF6 was not significantly different from unity. Similarly, k600-CH4/k600-SF6 for the controls and k600-N2O/k600-SF6 for all experiments did not differ significantly from unity. Our results are consistent with active metabolic control of CH4 exchange by added methanotrophs in the tank microlayer, giving enhancements of ˜12 ± 10% for k600-CH4. Hence reactive trace gas fluxes determined by conventional tracer methods at sea may be in error, prompting a need for detailed study of the role of the sea surface microlayer in gas exchange.

  19. Assessment of surface-water quality and water-quality control alternatives, Johnson Creek Basin, Oregon

    Science.gov (United States)

    Edwards, T.K.

    1994-01-01

    Johnson Creek flows through a basin of approximately 51 square miles with mixed land uses over a reach of approximately 24 river miles from southeast of Gresham, Oregon, to its confluence with the Willamette River in Milwaukie, Oregon. Land uses within the basin include forested and agricultural lands, suburban residential, urban, and light industrial. Surface runoff and ground-water flow from the basin's areas of various land-use contain concentrations of some nutrients, trace elements, and organic compounds at levels exceeding U.S. Environmental Protection Agency (USEPA) criteria. Concentrations of dissolved cadmium, copper, lead, mercury, and silver, total recoverable chlordane, dieldrin, and dichlorodiphenyltrichloroethane (DDT) plus metabolites indicate that sources of at least one or more of these constituents exist in virtually every reach of Johnson Creek. Crystal Springs Creek is a major source of nutrients in lower Johnson Creek. Concentrations of dissolved nitrate and orthophosphorus in Johnson Creek are elevated at low flow, and are reduced by dilution when urban runoff flows into the creek during storms. Total-phosphorus concentrations exceed USEPA criteria at several sites in Johnson Creek during low flow, and at all sites during periods of storm runoff. The low-flow concentration of dissolved silver exceeded the USEPA Fresh Water Chronic Toxicity (FWCT) criterion only in Crystal Springs Creek. Concentrations of dissolved cadmium, copper, lead, and mercury exceeded FWCT criteria at selected sites in Johnson creek basin during storm runoff.

  20. Water balance in the amazon basin from a land surface model ensemble

    OpenAIRE

    Getirana, ACV; E. Dutra; Guimberteau, M.; J. Kam; Li, HY; B. Decharme; Zhang, Z; A. Ducharne; A. Boone; Balsamo, G.; Rodell, M.; Toure, AM; Xue, Y.; Peters-Lidard, CD; Kumar, SV

    2014-01-01

    © 2014 American Meteorological Society. Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. M...

  1. Economic assessment of acquiring water for environmental flows in the Murray Basin

    OpenAIRE

    Qureshi, Muhammad Ejaz; Connor, Jeffery D.; Kirby, Mac; Mainuddin, Mohammed

    2002-01-01

    This article is an economic analysis of reallocating River Murray Basin water from agriculture to the environment with and without the possibility of interregional water trade. Acquiring environmental flows as an equal percentage of water allocations from all irrigation regions in the Basin is estimated to reduce returns to irrigation. When the same volume of water is taken from selected low-value regions only, the net revenue reduction is less. In all scenarios considered, net revenue gains ...

  2. Study of Interval Type-2 Fuzzy Controller for the Twin-tank Water Level System

    Institute of Scientific and Technical Information of China (English)

    赵涛岩; 李平; 曹江涛

    2012-01-01

    For dealing with large static error due to poor immunity of the traditional fuzzy control, a novel interval type-2 fuzzy control system is proposed. By extending the typical membership functions to interval type-2 membership functions, the proposed control system can efficiently reduce the uncertain disturbance from real environment without increasing the design complexity. The simulation results on the water tank level control system showed that the proposed method succeeded in better static and dynamic control with stronger robust performance than the traditional fuzzy control method.

  3. Dynamic remediation test of polluted river water by Eco-tank system.

    Science.gov (United States)

    Xiao, Jibo; Wang, Huiming; Chu, Shuyi; Wong, Ming-Hung

    2013-01-01

    Dynamic remediation of river water polluted by domestic sewage using an aquatic plants bed-based Eco-tank system was investigated. Over a period of 18 days, the test demonstrated that average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total phosphorus (TP) were as low as 17.28, 0.23 and 0.03 mg/L, respectively, under the hydraulic retention time (HRT) of 8.7 d. The average removal efficiencies in terms of COD, NH4(+)-N and TP could reach 71.95, 97.96 and 97.84%, respectively. The loss of both NH4(+)-N and TP was mainly ascribed to the uptake by plants. Hydrocotyle leucocephala was effective in promoting the dissolved oxygen (DO) level, while Pistia stratiotes with numerous fibrous roots was significantly effective for the removal of organic compounds. The net photosynthetic rate, stomatal conductance, transpiration rate and biomass accumulation rate of Myriophyllum aquaticum were the highest among all tested plants. Thus, the Eco-tank system could be considered as an alternative approach for the in situ remediation of polluted river water, especially nutrient-laden river water. PMID:23530371

  4. Development of Fuzzy Controller for Water Level in Stream Boiler Tank

    Directory of Open Access Journals (Sweden)

    Surachai Panich

    2010-01-01

    Full Text Available Problem statement: The process control of steam boiler is very popular used in the industrial. The temperature of the water is transferred directly by electrical heater. The pressure will increase based on the changing of the temperature. The purpose of the control is to change the opening set point for the valve when the temperature and pressure in the tank are changed. For this problem, we develop fuzzy algorithm to adjust the optimal percentage of valve open. Approach: In this study, the fuzzy control application was programmed in fuzzy control language in form of the function block using structure control language. The input information consisted of real variables in the form of measurable process variables, as well as set points. And the output variables were real variables in the form of correcting variables. Results: The fuzzy control was developed, which consists of two input variables, the degree of temperature and pressure in boiler tank measured by sensor. For fuzzy system of water level control, the algorithm is basically implemented in form of the MATLAB code. In the experiment, we assumed that the water level would not effect to the temperature and pressure. Conclusion: The research for the development of the fuzzy logic and the model was tested with the step inputs and the changing of the inputs. The whole simulation process was built to test the behavior of the system when the inputs change.

  5. ADJUSTMENT OF MORPHOMETRIC PARAMETERS OF WATER BASINS BASED ON DIGITAL TERRAIN MODELS

    Directory of Open Access Journals (Sweden)

    Krasil'nikov Vitaliy Mikhaylovich

    2012-10-01

    Full Text Available The authors argue that effective use of water resources requires accurate morphometric characteristics of water basins. Accurate parameters are needed to analyze their condition, and to assure their appropriate control and operation. Today multiple water basins need their morphometric characteristics to be adjusted and properly stored. The procedure employed so far is based on plane geometric horizontals depicted onto topographic maps. It is described in the procedural guidelines issued in respect of the «Application of water resource regulations governing the operation of waterworks facilities of power plants». The technology described there is obsolete due to the availability of specialized software. The computer technique is based on a digital terrain model. The authors provide an overview of the technique implemented at Rybinsk and Gorkiy water basins in this article. Thus, the digital terrain model generated on the basis of the field data is used at Gorkiy water basin, while the model based on maps and charts is applied at Rybinsk water basin. The authors believe that the software technique can be applied to any other water basin on the basis of the analysis and comparison of morphometric characteristics of the two water basins.

  6. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    Science.gov (United States)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  7. Study of the Thermal Behaviour of Water for Residential Use in Tanks of Concrete and Polyethylene in Humid Subtropical Climate

    Directory of Open Access Journals (Sweden)

    Diego-Ayala Ulises

    2015-09-01

    Full Text Available This article presents a comparative study of the thermal behavior of residential water tanks of polyethylene and concrete exposed to the sun over a year in the state of Yucatan. The energy for radiation and their corresponding temperatures in each system were measured. Daily patterns of elevation and reduction of temperature were identified and the amount of energy acquired during the day as well as the heat dissipated overnight were determined, aiming to determine the possibility of using residential water tanks as a source of hot water in residential homes in the Yucatan region. Based on this study it has been found that the periods of the day with hot water temperature for showering with comfort is limited and that, interestingly, both systems show similar temperatures at the bottom of the tanks throughout the year.

  8. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    Science.gov (United States)

    Chang, Heejun; Jung, Il-Won; Strecker, Angela; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; Moradkhani; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  9. Shifting rights and access to irrigation water in a context of growing scarcity: the Krishna Basin, south India1

    OpenAIRE

    Venot, Jean-Philippe

    2016-01-01

    Introduction: are water rights right? In many regions water use for urban, industrial and agricultural growth is approaching, and sometimes even exceeding, the availability of renewable water resources. Conflicts over access and allocation of water become more likely. Intense water development results in over-commitment of water and river basin closure. A generally accepted definition of a closed river basin is a basin where most or all available water is committed and river discharge falls ...

  10. Environmental Isotope Ratios of River Water in the Danube Basin

    International Nuclear Information System (INIS)

    The objectives of the Danube study were documentation of existing data and completion of long term data sets (2H, 3H, 18O), continuation of monthly sampling of river water, investigation of short term influences, and preliminary interpretation of long term isotope records of river water with respect to hydrological processes, meteorological conditions and environmental changes. Furthermore, this report includes the complete 3H and 18O data set for the Danube at Vienna (1963-2005) and a summary of the results from the Joint Danube Survey 2 (2007). δ18O values of JDS2 river water samples ranged from -13.1 per mille (Inn, alpine river) up to -6.4 per mille (River Sio, evap oration influence). The δ18O value of the Danube increased from -10.8 per mille after the confluence of the Inn River with the upper Danube up to -9.6 per mille at the mouth, with a major change after the inflow of Tisa and Sava. The isotopic composition of river water in the Danube Basin is mainly governed by the isotopic composition of precipitation in the catchment area, while evaporation effects play only a minor role. Short term and long term isotope signals from precipitation are thus transmitted through the whole catchment. Tritium concentrations in most parts of the Danube river system lay around 10 TU during the JDS2 period and reflected the actual 3H content of precipitation in Central Europe, but 3H values up to 40 TU in the Danube and up to 250 TU in some tributaries are clear evi dence for discontinuous releases of 3H from local sources (nuclear power plants) into the rivers. (author)

  11. Oxygen and hydrogen isotope exchange of geopressured thermal water in the central Guanzhong basin

    Institute of Scientific and Technical Information of China (English)

    YU Juan; MA Zhi-yuan; WANG Zhao-wei; LI Wei-liang; SU Yan

    2009-01-01

    Geothermal water of Xi'an and Xianyang in the central Guanzhong basin is typically geopressured thermal water in China. δ18O and δD data of geopressured thermal water in Xi'an and Xianyang, combined with data from the perimeter of the basin, are analyzed to study features of hydrogen and oxygen shifts. The results show that 18O exchange of geothermal water at the pc-rimeter of the basin and in the non-geopressured thermal water in the center of the basin is not evident, while in most of the geo-pressured thermal water in the central basin, in cities such as Xi'an and Xianyang, significant oxygen exchange had taken place as well as hydrogen exchange, suggesting that isotope exchanges would slowly move the geothermal water system towards equilib-rium. Thermal water reservoirs in the central basin have passed through significant water-rock reactions. Moreover, the geothermal reservoir of Xianyang city is relatively much more enclosed than that of Xi'an city. It has been observed that the more enclosed the geological environment of geothermal water is, the more obvious the oxygen shifts are. With the increasing of the depth, residence time, total amounts of thssolute solids and temperatures of geothermal waters, the oxygen exchange accelerates.

  12. The responses of hydro-environment system in the Second Songhua River Basin to melt water

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the continuous monitoring data of hydrology and water quality in the period from 1972 to 1997, the responses of hydro-environment system to melt water in the Second Songhua River basin were derived. Because of melt water, the water quality in the Second Songhua River is good and changes very except that the contents of Hg and Mn in the water are higher. The contribution of melt water to the water fluxes in the Second Songhua River basin is distinct: the water flow in April increases remarkably, reaches the peak in the upper reaches. The pollutant contributions and water pollution indices (WPIs) of the Second Songhua River in April are high in the upper reaches while that in the lower reaches are low. The responses of hydro-environment system to melt water of that basin are affected by content of packed snow and the underlining surface systems.

  13. 78 FR 17643 - Greater Mississippi River Basin Water Management Board; Engineer Regulation No. 15-2-13

    Science.gov (United States)

    2013-03-22

    ... Department of the Army, U.S. Army Corps of Engineers Greater Mississippi River Basin Water Management Board... Corps Greater Mississippi River Basin Water Management Board. It is applicable to all Corps offices involved with water management within the Greater Mississippi River Basin. The Board consists of the...

  14. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  15. Water Level Gauging in a Tube by Using a Special Ultrasonic Shoe in an Immersion Tank

    International Nuclear Information System (INIS)

    An ultrasonic pulse travels through the thickness of a material, then finally it is reflected by the back or inside surface, and it can be returned to a transducer. In most applications this time interval is only a few microseconds or less. The measured two-way transit time is divided by two to account for the down-and-back travel path, and then multiplied by the velocity of the sound in a test material. The result is expressed by a well-known relationship as equation. In this experiment, a residual water level measurement in a bellow tube is obtained by using an immersion ultrasonic technique and a special UT probe attachment. This system was designed and fabricated for a convenient control in a water tank, which has a combination of a sensor and a position control function. The shoes are specially made with Lusite material which has the same shape as the bellows tube and then the immersion transducers are controlled by a 3-axis position control system, and it can be operated within a moving distance as small as 0.5mm. Certain specialized applications such as an underwater testing require a long cable between the transducer and the ultrasonic gauging target in an immersion tank

  16. Water Resources Data - Texas Water Year 2000, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 84 gaging stations; stage only at 9 gaging stations; stage and contents at 32 lakes and reservoirs; water quality at 25 gaging stations; and data for 43 partial-record stations comprised of 18 flood-hydrograph, 8 low-flow, 14 crest-stage, and 3 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  17. Water Resources Data - Texas Water Year 1999, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 78 gaging stations; stage only at 7 gaging stations; stage and contents at 28 lakes and reservoirs; water quality at 27 gaging stations; and data for 48 partial-record stations comprised of 19 flood-hydrograph, 8 low-flow, and 17 crest-stage, and 4 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  18. Water Resources Data - Texas Water Year 1999, Volume 5. Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 76 gaging stations; stage only at 1 gaging stations; stage and contents at 4 lakes and reservoirs; water quality at 38 gaging stations; and data for 30 partial-record stations comprised of 3 flood-hydrograph, 14 low-flow, and 8 crest-stage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  19. Water Resources Data - Texas Water Year 2000, Volume 5. Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 71 gaging stations; stage only at 4 gaging stations; stage and contents at 4 lakes and reservoirs; water quality at 29 gaging stations; and data for 23 partial-record stations comprised of 3 flood-hydrograph, 10 low-flow, 6 crest-stage, and 4 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  20. Water Resources Data, Texas Water Year 1998, Volume 2. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 2 contains records for water discharge at 74 gaging stations; stage only at 9 gaging stations; stage and contents at 21 lakes and reservoirs; water quality at 32 gaging stations; and data for 73 partial-record stations comprised of 43 flood-hydrograph, 9 low-flow, and 16 crest-stage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  1. The combined water system as approach for tackling water scarcity in Permilovo groundwater basin

    Science.gov (United States)

    Filimonova, Elena; Baldenkov, Mikhail

    2014-05-01

    The water scarcity accepts now global scales. The depletion of water resources is especially significant for the small stream basins where the water demand is higher than the low-water flow. The application of combined water use is one of the ways to solve this problem. The combined water system (CWS) is a complex technology comprising two separate wells, major catchment-zone wells and compensation pumping wells, located inside a single stream basin. The pumping rate of a major well in a CWS is determined by the difference between the current stream flow and the minimum permissible stream flow (stream flow required for maintenance water budget and for normal living of aquatic and terrestrial ecosystems). The deficiency of the stream flow in dry seasons can be compensated for by the short-term pumping of groundwater. The pumping rate of a compensation well (CW) is determined by the difference between water demand and the permissible water withdrawal of the major well. The source for the compensation well is the aquifer storage. Short-term groundwater pumping allows the use of aquifer storage instead of stream flow until drawdowns of groundwater levels do reach the edge of the stream. Some hydrogeological problems exist in the determination of the best location for the compensation well: 1) The delayed stream depletion produced by the CW; 2) The draining of storage recovery due to natural processes or artificial recharge; 3) The delayed effects of CW pumping that cause stream flow depletion, which occurs after pumping during high water level periods. Three typical hydraulic cases of combined water systems were classified depending on their the relationship between surface water and groundwater: (a) perfect hydraulic connection between the stream and aquifer; (b) imperfect hydraulic connection between the stream and aquifer; and (c) essentially imperfect hydraulic connection between the stream and the underlying confined aquifer. The numerical model of Permilovo

  2. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins.

    Science.gov (United States)

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-09-01

    To meet good chemical and ecological status, Member States are required to monitor priority substances and chemicals identified as substances of concern at European Union and local/river-basin/national level, respectively, in surface water bodies, and to report exceedances of the environmental quality standards (EQSs). Therefore, standards have to be set at national level for river basin specific pollutants. Pesticides used in dominant crops of several agricultural areas within the catchment of Mediterranean river basins ('Mondego', 'Sado' and 'Tejo', Portugal) were selected for monitoring, in addition to the pesticides included in priority lists defined in Europe. From the 29 pesticides and metabolites selected for the study, 20 were detected in surface waters of the river basins, seven of which were priority substances: alachlor, atrazine, chlorfenvinphos, chlorpyrifos, endosulfan, simazine and terbutryn, all of which exceeded their respective EQS values. QSs for other specific pollutants were calculated using different extrapolation techniques (i.e. deterministic or probabilistic) largely based on the method described in view of the Water Framework Directive. Non-acceptable aquatic risks were revealed for molinate, oxadiazon, pendimethalin, propanil, terbuthylazine, and the metabolite desethylatrazine. Implications of these findings for the classification of the ecological status of surface water bodies in Portugal and at the European level are discussed. PMID:26002046

  3. Performance of a lab-scale bio-electrochemical assisted septic tank for the anaerobic treatment of black water.

    Science.gov (United States)

    Zamalloa, Carlos; Arends, Jan B A; Boon, Nico; Verstraete, Willy

    2013-06-25

    Septic tanks are used for the removal of organic particulates in wastewaters by physical accumulation instead of through the biological production of biogas. Improved biogas production in septic tanks is crucial to increase the potential of this system for both energy generation and organic matter removal. In this study, the effect on the biogas production and biogas quality of coupling a 20 L lab-scale septic tank with a microbial electrolysis cell (MEC) was investigated and compared with a standard septic tank. Both reactors were operated at a volumetric organic loading rate of 0.5gCOD/Ld and a hydraulic retention time between 20 and 40 days using black water as an input under mesophilic conditions for a period of 3 months. The MEC-septic tank was operated at an applied voltage of 2.0±0.1V and the current experienced ranged from 40 mA (0.9A/m(2) projected electrode area) to 180 mA (5A/m(2) projected electrode area). The COD removal was of the order of 85% and the concentration of residual COD was not different between both reactors. Yet, the total phosphorous in the output was on average 39% lower in the MEC-septic tank. Moreover, the biogas production rate in the MEC-septic tank was a factor of 5 higher than in the control reactor and the H2S concentration in the biogas was a factor of 2.5 lower. The extra electricity supplied to the MEC-septic tank was recovered as extra biogas produced. Overall, it appears that the combination of MEC and a septic tank offers perspectives in terms of lower discharge of phosphorus and H2S, nutrient recuperation and a more reliable supply of biogas. PMID:23403217

  4. Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements

    NARCIS (Netherlands)

    Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.

    2013-01-01

    Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land us

  5. The Indus basin in the framework of current and future water resources management

    OpenAIRE

    A. N. Laghari; D. Vanham; Rauch, W.

    2011-01-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM pr...

  6. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    Science.gov (United States)

    Flug, Marshall; Scott, John F.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  7. Estimating the Agricultural Water Productivity of the Yellow River Basin Based on Remote Sensing Data

    OpenAIRE

    Wang, Guoqiang; Xue, Baolin; Yu, Jingshan; Otsuki, Kyoichi

    2011-01-01

    Water shortage for agricultural water use is a major problem in the Yellow River basin. This research use NDVI value, meteorological data, supervised classification in remote sensing image and actual statistical data to estimate and verify the wheat and maize distribution and the relevant crop water productivity values in the Yellow River basin. The validation of the method is performed by comparing the results with the distribution of CIESIN statistic data for 1990. To obtain the accurate cr...

  8. Transboundary Water Resources Allocation Under Various Parametric Conditions: The Case Of The Euphrates & Tigris River Basin

    OpenAIRE

    Kucukmehmetoglu, Mehmet; Geymen, Abdurrahman

    2012-01-01

    The literature on transboundary water resources allocation modeling is still short in encompassing and analyzing complex geographic multiparty nature of basins. This study elaborates Inter Temporal Euphrates and Tigris River Basin Model (ITETRBM)*, which is a linear programming based transboundary water resources allocation model maximizing net economic benefit from allocation of scarce water resources to energy generation, urban, and agricultural uses. The elaborations can be categorized in ...

  9. ADJUSTMENT OF MORPHOMETRIC PARAMETERS OF WATER BASINS BASED ON DIGITAL TERRAIN MODELS

    OpenAIRE

    Krasil'nikov Vitaliy Mikhaylovich; Sobol' Il'ya Stanislavovich

    2012-01-01

    The authors argue that effective use of water resources requires accurate morphometric characteristics of water basins. Accurate parameters are needed to analyze their condition, and to assure their appropriate control and operation. Today multiple water basins need their morphometric characteristics to be adjusted and properly stored. The procedure employed so far is based on plane geometric horizontals depicted onto topographic maps. It is described in the procedural guidelines issued i...

  10. Cherenkov radiation dosimetry in water tanks – video rate imaging, tomography and IMRT and VMAT plan verification

    International Nuclear Information System (INIS)

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance

  11. Deconvolution of gamma-ray spectra obtained with NAI(Tl) detector in a water tank.

    Science.gov (United States)

    Rahman, M Sohelur; Cho, Gyuseong; Kang, Bo-Sun

    2009-07-01

    Maximum-likelihood fitting by the expectation maximization deconvolution method is presented to analyse gamma-ray spectra recorded using an NaI(Tl) detector for a water monitoring system. The applicability of the method was tested by deconvolving measured spectra taken using an industry standard 3'' x 3'' cylindrical NaI(Tl) detector in a model water tank with several calibration sources. The results show significant removal of the Compton continuum counts and efficient transfer of the counts into the corresponding photo-peaks. The peak-to-total count ratio and the number of counts in the photo-peaks in the deconvolved spectra increased approximately 4.67 and 5.29 times, respectively, compared with those of measured spectra taken using an NaI(Tl) scintillation detector in the case of (137)Cs. PMID:19502359

  12. A stochastic approach for the description of the water balance dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    S. Manfreda

    2008-09-01

    Full Text Available The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.

  13. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-08-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr−1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" (surface- and groundwater component of WF was 811 million m3 yr−1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than "green" (soil water WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  14. Water pollution and environmental governance systems of the Tai and Chao Lake Basins in China in an international perspective

    OpenAIRE

    Qiu, Lei; Dijk, Meine Pieter van; Wang, Huimin

    2015-01-01

    markdownabstractThe Tai and Chao Lake basins are currently facing a serious water pollution crisis associated with the absence of an effective environmental governance system. The water pollution and the water governance system of the two basins will be compared. The reasons for water pollution in both basins are similar, namely the weak current water environmental governance system cannot deal with the consequences of the rapidly growing economy. China’s water governance system is a complica...

  15. Bacterial communities in an ultrapure water containing storage tank of a power plant.

    Science.gov (United States)

    Bohus, Veronika; Kéki, Zsuzsa; Márialigeti, Károly; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Tóth, Erika M

    2011-12-01

    Ultrapure waters (UPWs) containing low levels of organic and inorganic compounds provide extreme environment. On contrary to that microbes occur in such waters and form biofilms on surfaces, thus may induce corrosion processes in many industrial applications. In our study, refined saltless water (UPW) produced for the boiler of a Hungarian power plant was examined before and after storage (sampling the inlet [TKE] and outlet [TKU] waters of a storage tank) with cultivation and culture independent methods. Our results showed increased CFU and direct cell counts after the storage. Cultivation results showed the dominance of aerobic, chemoorganotrophic α-Proteobacteria in both samples. In case of TKU sample, a more complex bacterial community structure could be detected. The applied molecular method (T-RFLP) indicated the presence of a complex microbial community structure with changes in the taxon composition: while in the inlet water sample (TKE) α-Proteobacteria (Sphingomonas sp., Novosphingobium hassiacum) dominated, in the outlet water sample (TKU) the bacterial community shifted towards the dominance of α-Proteobacteria (Rhodoferax sp., Polynucleobacter sp., Sterolibacter sp.), CFB (Bacteroidetes, formerly Cytophaga-Flavobacterium-Bacteroides group) and Firmicutes. This shift to the direction of fermentative communities suggests that storage could help the development of communities with an increased tendency toward corrosion. PMID:22207294

  16. Water governance and adaptation to climate change in the Indus River Basin

    Science.gov (United States)

    Yang, Yi-Chen E.; Brown, Casey; Yu, Winston; Wescoat, James; Ringler, Claudia

    2014-11-01

    Conflicting approaches to water governance at multiple scales within large international river basins may have detrimental effects on the productivity of water resources and consequently the economic activities of the basin. In the Indus River Basin, local scale water productivity decisions are affected by international and intra-national scale water governance. Water availability and productivity is modulated by the Indus Waters Treaty between India and Pakistan, and within Pakistan by the agreements governing water allocation between and within provinces. Much of the literature on governance at multiple scales in the Indus basin, and others, has employed qualitative methods of institutional analysis. This paper extends that approach with quantitative modeling of surface water allocation rules at multiple scales and the consequent economic impact on water use and productivity in the Indus River of Pakistan. The effects of the existing water allocation mechanisms on the ability to adapt to possible future climate conditions are examined. The study is conducted using the Indus Basin Model Revised - Multi-Year (IBMR-MY), a hydro-agro-economic model of the Indus River within Pakistan that simulates river and canal flows, groundwater pumping, water use and economic activities with a distributed, partial equilibrium model of the local scale agro-economic activities in the basin. Results suggest that without changes in response to changing conditions, the current governance mechanisms impede the provinces' ability to adapt to changing climate conditions, in ways that are significant, inflicting economic costs under both high and low flow conditions. However surface water allocation between the provinces does not appear to hinder adaptation. The greatest gains for economic water allocation are achieved at the sub-provincial level. The results imply that adaptive mechanisms for water allocation that allow response to changing climate conditions within provinces may be a

  17. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  18. Water reuse in river basins with multiple users : A literature review

    NARCIS (Netherlands)

    Simons, G. W H (Gijs); Bastiaanssen, W. G M (Wim); Immerzeel, W. W (Walter)

    2015-01-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface w

  19. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...

  20. Project W-519 CDR supplement: Raw water and electrical services for privatization contractor, AP tank farm operations

    International Nuclear Information System (INIS)

    This supplement to the Project W-519 Conceptual Design will identify a means to provide RW and Electrical services to serve the needs of the TWRS Privatization Contractor (PC) at AP Tank Farm as directed by DOE-RL. The RW will serve the fire suppression and untreated process water requirements for the PC. The purpose of this CDR supplement is to identify Raw Water (RW) and Electrical service line routes to the TWRS Privatization Contractor (PC) feed delivery tanks, AP-106 and/or AP-108, and establish associated cost impacts to the Project W-519 baseline

  1. Implications of Climate Change for Water Resources Development in the Ganges Basin

    OpenAIRE

    Jeuland, Marc; Harshadeep, Nagaraja; Escurra, Jorge; Blackmore, Don; Sadoff, Claudia

    2013-01-01

    This paper presents the first basin-wide assessment of the potential impact of climate change on the hydrology and production of the Ganges system, undertaken as part of the World Bank’s Ganges Strategic Basin Assessment. A series of modeling efforts, downscaling of climate projections, water balance calculations, hydrological simulation and economic optimization, inform the assessment. Th...

  2. Development and application of a simple hydrologic model for water simulation for a Brazilian Headwater Basin

    Science.gov (United States)

    Physically based hydrologic models for watershed are important tools to support water resources management and predicting hydrologic impacts produced by land-use change. Rio Grande Basin is located in south of Minas Gerais State, and the Rio Grande is the main tributary of basin which has 2080 km2 d...

  3. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China

    Directory of Open Access Journals (Sweden)

    Z. Zeng

    2012-05-01

    Full Text Available Increasing water scarcity places considerable importance on the quantification of water footprint (WF at different levels. Despite progress made previously, there are still very few WF studies focusing on specific river basins, especially for those in arid and semi-arid regions. The aim of this study is to quantify WF within the Heihe River Basin (HRB, a basin located in the arid and semi-arid northwest of China. The findings show that the WF was 1768 million m3 yr−1 in the HRB over 2004–2006. Agricultural production was the largest water consumer, accounting for 96% of the WF (92% for crop production and 4% for livestock production. The remaining 4% was for the industrial and domestic sectors. The "blue" component of WF was 811 million m3 yr−1. This indicates a blue water proportion of 46%, which is much higher than the world average and China's average, which is mainly due to the aridness of the HRB and a high dependence on irrigation for crop production. However, even in such a river basin, blue WF was still smaller than green WF, indicating the importance of green water. We find that blue WF exceeded blue water availability during eight months per year and also on an annual basis. This indicates that WF of human activities was achieved at a cost of violating environmental flows of natural freshwater ecosystems, and such a WF pattern is not sustainable. Considering the large WF of crop production, optimizing the crop planting pattern is often a key to achieving more sustainable water use in arid and semi-arid regions.

  4. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  5. Intercomparison of CMIP5 simulations of summer precipitation, evaporation, and water vapor transport over Yellow and Yangtze River basins

    Science.gov (United States)

    Bao, Jiawei; Feng, Jinming

    2016-02-01

    Precipitation and other hydrologic variables play important roles in river basins. In this study, summer precipitation, evaporation, and water vapor transport from 16 models that have participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the Yellow River basin (a water-limited basin) and the Yangtze River basin (an energy-limited basin) over the period 1986-2005 are analyzed and evaluated. The results suggest that most models tend to overestimate precipitation in the Yellow River basin, whereas precipitation in the Yangtze River basin is generally well simulated. Models that overestimate precipitation in the Yellow River basin also simulate evaporation with large positive biases. For water vapor transport, models and reanalysis data concur that both basins are moisture sinks in summer. In addition, models that strongly overestimate precipitation in the Yellow River basin tend to produce strong water vapor convergence in that region, which is likely to be related to the situation that the western Pacific subtropical high (WPSH) simulated by these models strengthens and advances further westward and northward, resulting in stronger water vapor convergence in the Yellow River basin. Moreover, convective precipitation biases simulated by the models are also partially responsible for their total precipitation biases. Finally, summer precipitation and evaporation are negatively correlated in the Yangtze River basin, whereas the relation between these variables is weak in the Yellow River basin. In both basins, precipitation and water vapor convergence are positively correlated, which is well simulated by all models.

  6. [Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River basin].

    Science.gov (United States)

    Xu, Hua-Shan; Xu, Zong-Xue; Tang, Fang-Fang; Yu, Wei-Dong; Cheng, Yan-Ping

    2012-02-01

    In this study, several statistical methods including cluster analysis, seasonal Kendall test, factor analysis/principal component analysis and principal component regression were used to evaluate the spatiotemporal variation of water quality and identify the sources of water pollution in the Zhangweinan River basin. Results of spatial cluster analysis and principal component analysis indicated that the Zhangweinan River basin can be classified into two regions. One is the Zhang River upstream located in the northwest of the Zhangweinan River basin where water quality is good. The other one covers the Wei River and eastern plain of the Zhangweinan River basin, where water is seriously polluted. In this region, pollutants from point sources flow into the river and the water quality changes greatly. Results of temporal cluster analysis and seasonal Kendall test indicated that the study periods may be classified into three periods and two different trends were detected during the period of 2002-2009. The first period was the year of 2002-2003, during which water quality had deteriorated and serious pollution was observed in the Wei river basin and eastern plain of the Zhangweinan River basin. The second period was the year of 2004-2006, during which water quality became better. The year of 2007-2009 is the third period, during which water quality had been improved greatly. Despite that water quality in the Zhangweinan River basin had been improved during the period of 2004-2009, the water quality in the Wei River (southwestern part of the basin), the Wei Canal River and the Zhangweixin River (eastern plain of the basin) is still poor. Principal component analysis and multi-linear regression of the absolute principal component scores showed that the main pollutants of the Zhangweinan River basin came from point source discharge such as heavy industrial wastewater, municipal sewage, chemical industries wasterwater and mine drainage in upstream. Non-point source pollution

  7. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    OpenAIRE

    Francisco Suárez; Muñoz, José F.; Bonifacio Fernández; Jean-Marc Dorsaz; Christian K. Hunter; Christos A. Karavitis; Jorge Gironás

    2014-01-01

    Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeho...

  8. Ribeira do Iguape basin water quality assessment for drinking water supply

    International Nuclear Information System (INIS)

    Ribeira do Iguape Basin, located in the Southeast region of Sao Paulo state, is the largest remaining area of Mata Atlantica which biodiversity as rich as Amazon forest , where the readiness of water versus demand is extremely positive. With sparse population density and economy almost dependent on banana agriculture, the region is still well preserved. To water supply SABESP (Sao Paulo State Basic Sanitation Company). Ribeira do Iguape Businesses Unit - RR, uses different types of water supplies. In the present work, in order to ascertain water quality for human consumption, major and minor elements were evaluated in various types of water supply (surface and groundwater's as well as the drinking water supplied). Forty three producing systems were monitored: 18 points of surface waters and treated distributed water, 10 points of groundwater and 15 points of surface water in preserved areas, analyzing 30 elements. Bottom sediments (fraction -1 and 172 μg.g-1, respectively. Data revealed that trace elements concentration in the sediment were below PEL (Probable Effect Level - probable level of adverse effect to the biological community), exception for Pb in Sete Barras and Eldorado. (author)

  9. Surface-water sampling stations, National Water-Quality Assessment, Yellowstone River Basin, Montana, North Dakota, and Wyoming

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — As part of the U.S. Geological Survey's National Water-Quality Assessment Program, an investigation of the Yellowstone River Basin study unit is being conducted to...

  10. A novel method to design water spray cooling system to protect floating roof atmospheric storage tanks against fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-01-01

    Full Text Available Hydrocarbon bulk storage tank fires are not very common, but their protection is essential due to severe consequences of such fires. Water spray cooling system is one of the most effective ways to reduce damages to a tank from a fire. Many codes and standards set requirements and recommendations to maximize the efficiency of water spray cooling systems, but these are widely different and still various interpretations and methods are employed to design such systems. This article provides a brief introduction to some possible design methods of cooling systems for protection of storage tanks against external non-contacting fires and introduces a new method namely “Linear Density Method” and compares the results from this method to the “Average Method” which is currently in common practice. The average Method determines the flow rate for each spray nozzle by dividing the total water demand by the number of spray nozzles while the Linear Density Method determines the nozzle flow rate based on the actual flow over the surface to be protected. The configuration of the system includes a one million barrel crude oil floating roof tank to be protected and which is placed one half tank diameter from a similar adjacent tank with a full surface fire. Thermal radiation and hydraulics are modeled using DNV PHAST Version 6.53 and Sunrise PIPENET Version 1.5.0.2722 software respectively. Spray nozzles used in design are manufactured by Angus Fire and PNR Nozzles companies. Schedule 40 carbon steel pipe is used for piping. The results show that the cooling system using the Linear Density Method consumes 3.55% more water than the design using the average method assuming a uniform application rate of 4.1 liters per minute. Despite higher water consumption the design based on Linear Density Method alleviates the problems associated with the Average Method and provides better protection.

  11. Performance of UASB septic tank for treatment of concentrated black water within DESAR concept.

    Science.gov (United States)

    Kujawa-Roeleveld, K; Fernandes, T; Wiryawan, Y; Tawfik, A; Visser, M; Zeeman, G

    2005-01-01

    Separation of wastewater streams produced in households according to their origin, degree of pollution and affinity to a specific treatment constitutes a starting point in the DESAR concept (decentralised sanitation and reuse). Concentrated black water and kitchen waste carry the highest load of organic matter and nutrients from all waste(water)streams generated from different human activities. Anaerobic digestion of concentrated black water is a core technology in the DESAR concept. The applicability of the UASB septic tank for treatment of concentrated black water was investigated under two different temperatures, 15 and 25 degrees C. The removal of total COD was dependent on the operational temperature and attained 61 and 74% respectively. A high removal of the suspended COD of 88 and 94% respectively was measured. Effluent nutrients were mainly in the soluble form. Precipitation of phosphate was observed. Effective sludge/water separation, long HRT and higher operational temperature contributed to a reduction of E. coli. Based on standards there is little risk of contamination with heavy metals when treated effluent is to be applied in agriculture as fertiliser. PMID:16180443

  12. Characteristics and chemical composition of ground water in Bara basin

    International Nuclear Information System (INIS)

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO3''-''-), nitrite (No2''-), ammonia-nitrogen (NH3-N), fluoride(F), sulphide(S''-''-) and sulphate(SO4''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO3''-''-,HCO3''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from physical and chemical characteristic

  13. Direct and indirect measurement of rain drop size distributions using an acoustic water tank disdrometer

    International Nuclear Information System (INIS)

    Several rain drop size distribution (DSD) point measurement technologies exist, but all are unable to sample either short timescales or the large drop tail of the DSD due to inherent instrumental limitations. The development of an acoustic water tank disdrometer (AWTD) is described, which improves the sampling statistics by increasing the catchment area. This is achieved by distinguishing individual drops, locating them on the surface of the tank then converting the impact pressure into a drop size. Wavelet decomposition is used to distinguish the broadband, short duration impact events and a fast multilateration method is used to position the drop. Issues relating to the different types of noise are also investigated and mitigated. Also, further work on inverting the measured acoustic intensity into a DSD, by fitting sampling distributions, is presented. Six months of data were collected in the Eastern UK. The AWTD then converted the data into DSDs and the results were compared to a commercially available co-located laser precipitation monitor. The sampling errors are far lower due to the increased catchment size, and hence the large drop sized tail of the DSD is greatly improved. DSD results compare favourably to other disdrometers for drop diameters greater than 1.8 mm. Below this size individual drops become increasingly difficult to detect and are underestimated. (paper)

  14. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-11-14

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106.

  15. Health improvement of domestic hot tap water supply Gusev, Kaliningrad Region, Russia. Make-up water tank project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard, Joergen

    1998-07-01

    This report describes the project `Health Improvement of Domestic Hot Tap Water Supply, Gusev, Kaliningrad, Russia`, which was carried out in the autumn of 1996 and financed by the Danish Environmental Protection Agency, the Danish Energy Agency and Gusev Municipality. The project proposal and application outlined the following objectives: Erection of system so that hot tap water, which is tapped directly from the district heating system, obtains an acceptable quality in health terms; Complete training and education, so that the plant can be operated and maintained by the power station`s staff and rehabilitation projects within supply of domestic water and district heating can be promoted to the greatest possible extent; Systems for heat treatment of make-up water were implemented in less than three months; The project was carried out in close Danish-Russian co-operation from the beginning of engineering to the commissioning and resulted in transfer and demonstration of know-how and technology; Information was recorded on the existing domestic water and heat supply systems as well as on the treatment of sewage, and recommendations for rehabilitation projects were made. Previously, when the temperature in the district heating system was relatively high, a heat treatment apparently took place in the district heating system. However, due to the current poor economic situation there are no means with which to buy the fuel quantities necessary to maintain the previously normal district heating temperature. In the new concept the cold make-up water is heated to >80 deg. C as required by the health authorities before it is led to the district heating return system and subsequently heated to the actual supply temperature of 50-60 deg. C. The energy consumption in the two concepts is approximately the same. A 1,000 m{sup 3} tank with heating coils was erected between the make-up water system and the district heating system. The tank should equalise the daily capacity

  16. The Effect of Coriolis Force on the Formation of Dip on the Free Surface of Water Draining from a Tank

    International Nuclear Information System (INIS)

    For the case of RWT (refueling water tank) connecting to the ECC (emergency core cooling) line, it can be surmised that there is a possibility of ECC pump failure due to air ingression into the ECC supply line even before the RWT is drained away. Therefore, it is important to check if the operational limit of the RWT water level is set at a value higher than the critical height that causes a dip formation on the free surface of a draining liquid. In the previous work, such complex unsteady flow fields both in a simple water tank and in the RWT at the Korean standard nuclear power plant have been simulated using the CFX5.10 code which is well-known as one of the well-validated commercial CFD (Computational Fluid Dynamics) codes. However, for the simplicity of those calculations the Coriolis force has not been taken into account. Thus, in the present paper, the effect of Coriolis force-induced vortex flow on the dip formation of dip has been investigated for the simple water tank to confirm validity of the previous work. To do this the unsteady flow fields accompanied by vortex in the simple water tank has been simulated using the CFX5.10 code

  17. Developing the greatest Blue Economy: Water productivity, fresh water depletion, and virtual water trade in the Great Lakes basin

    Science.gov (United States)

    Mayer, Alex; Mubako, Stanley; Ruddell, Benjamin L.

    2016-06-01

    The Great Lakes basin hosts the world's most abundant surface fresh water reserve. Historically an industrial and natural resource powerhouse, the region has suffered economic stagnation in recent decades. Meanwhile, growing water resource scarcity around the world is creating pressure on water-intensive human activities. This situation creates the potential for the Great Lakes region to sustainably utilize its relative water wealth for economic benefit. We combine economic production and trade datasets with water consumption data and models of surface water depletion in the region. We find that, on average, the current economy does not create significant impacts on surface waters, but there is some risk that unregulated large water uses can create environmental flow impacts if they are developed in the wrong locations. Water uses drawing on deep groundwater or the Great Lakes themselves are unlikely to create a significant depletion, and discharge of groundwater withdrawals to surface waters offsets most surface water depletion. This relative abundance of surface water means that science-based management of large water uses to avoid accidentally creating "hotspots" is likely to be successful in avoiding future impacts, even if water use is significantly increased. Commercial water uses are the most productive, with thermoelectric, mining, and agricultural water uses in the lowest tier of water productivity. Surprisingly for such a water-abundant economy, the region is a net importer of water-derived goods and services. This, combined with the abundance of surface water, suggests that the region's water-based economy has room to grow in the 21st century.

  18. Water Resources Inventory and Assessment for Kern National Wildlife Refuge and Tulare Basin Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Kern National Wildlife Refuge and Tulare Basin Wildlife Management Area describes hydrologic information,...

  19. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for May 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  20. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for August 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  1. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for October 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  2. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for September 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  3. Klamath Basin Restoration Agreement Off-Project Water Program Distance to Gaining Streams and Lakes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  4. Klamath Basin Restoration Agreement Off-Project Water Program Distance to Perennial Streams and Lakes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  5. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for July 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  6. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for June 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  7. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for April 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  8. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for April 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  9. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for September 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  10. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for June 2004

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  11. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for July 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  12. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for August 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  13. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for May 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  14. Klamath Basin Restoration Agreement Off-Project Water Program Evapotranspiration Map for October 2006

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199...

  15. A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin

    Institute of Scientific and Technical Information of China (English)

    SONG; Xianfang; LIU; Xiangchao; XIA; Jun; YU; Jingjie; TANG; Changyuan

    2006-01-01

    The surface water and groundwater are important components of water cycle,and the interaction between surface water and groundwater is the important part in water cycle research.As the effective tracers in water cycle research,environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively.The study area is the Huaisha River basin,which is located in Huairou district,Beijing.The field surveying and sampling for spring,river and well water were finished in 2002 and 2003.The hydrogen and oxygen isotopes and water quality were measured at the laboratory.The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed.The altitude effect of oxygen isotope in springs was revealed,and then using this equation,theory foundation for deducing recharge source of spring was estimated.By applying the mass balance method,the annual mean groundwater recharge rate at the catchment was estimated.Based on the groundwater recharge analysis,combining the hydrogeological condition analysis,and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin,part of the runoff in the Huaisha River basin is recharged outside of this basin,in other words,this basin is an un-enclosed basin.On the basis of synthetically analyses,combining the compositions of hydrogen and oxygen isotopes and hydrochemistry,geomorphology,geology,and watershed systems characteristics,the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated,and the interaction between surface water and groundwater was revealed lastly.

  16. The Indus basin in the framework of current and future water resources management

    Directory of Open Access Journals (Sweden)

    A. N. Laghari

    2011-03-01

    Full Text Available The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM within the basin. Sustainable WRM practices include both water supply management and water demand management options.

  17. Scaling and parametric studies of condensation oscillation in an in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. In additon, the results of this study can provide suitable guidelines for sparger design utilized in the IRWST for the Advanced Passive Reactor 1400 (APR 1400). To corroborate the scaling methodology, various experimental tests were conducted. The scaling-related parameters experimentally considered were water temperatures, mass flux, discharge system volumes, tank sizes, source pressure, steam-jetting directions, and numbers of sparger discharge holes. To preserve the scaling similarity, the thickness of the minimum water volume created by the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Four key scaling parameters were identified and empirically correlated with the maximum amplitude of pressure oscillation. They are as follows: Volume of the steam cavity, flow restriction coefficient, discharge hole area, and density ratio of steam to water. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multi-hole sparger with test data from a single-hole sparger

  18. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Shirvill, L.C. [Shell Global Solutions (UK), Chester (United Kingdom)

    2004-03-01

    Liquefied petroleum gas (LPG) storage tanks are often provided with water sprays to protect them in the event of a fire. This protection has been shown to be effective in a hydrocarbon pool fire but uncertainties remained regarding the degree of protection afforded in a jet fire resulting from a liquid or two-phase release of LPG. Two projects, sponsored by the Health and Safety Executive, have been undertaken to study, at full scale, the performance of a water spray system on an empty 13 tonne LPG vessel under conditions of jet fire impingement from nearby releases of liquid propane and butane. The results showed that a typical water deluge system found on an LPG storage vessel cannot be relied upon to maintain a water film over the whole vessel surface in an impinging propane or butane jet fire scenario. The deluge affects the fire itself, reducing the luminosity and smoke, resulting in a lower rate of wall temperature rise at the dry patches, when compared with the undeluged case. The results of these studies will be used by the HSE in assessing the risk of accidental fires on LPG installations leading to boiling liquid expanding vapour explosion (BLEVE) incidents. (Author)

  19. Constraining uncertainties in water supply reliability in a tropical data scarce basin

    Science.gov (United States)

    Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte

    2015-04-01

    Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.

  20. The Indus basin in the framework of current and future water resources management

    OpenAIRE

    Laghari, A. N.; Vanham, D.; W. Rauch

    2012-01-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to...

  1. The Indus basin in the framework of current and future water resources management

    OpenAIRE

    Laghari, A. N.; Vanham, D.; W. Rauch

    2012-01-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 20...

  2. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2006-09-28

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination.

  3. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    OpenAIRE

    Jia, Y.; Ding, X.; C. Qin; Wang, H.

    2009-01-01

    A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interaction between groundwa...

  4. Distributed modeling of landsurface water and energy budgets in the inland Heihe river basin of China

    OpenAIRE

    Jia, Y.; Ding, X.; C. Qin; Wang, H.

    2009-01-01

    A distributed model for simulating the land surface hydrological processes in the Heihe river basin was developed and validated on the basis of considering the physical mechanism of hydrological cycle and the artificial system of water utilization in the basin. Modeling approach of every component process was introduced from 2 aspects, i.e., water cycle and energy cycle. The hydrological processes include evapotranspiration, infiltration, runoff, groundwater flow, interactio...

  5. A stochastic approach for the description of the water balance dynamics in a river basin

    OpenAIRE

    Manfreda, S.; Fiorentino, M

    2008-01-01

    The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption...

  6. EFFICACY OF FILTRATION PROCESSES TO OBTAIN WATER CLARITY AT K EAST SPENT NUCLEAR FUEL (SNF) BASIN

    International Nuclear Information System (INIS)

    The objective is to provide water clarity to the K East Basin via filtration processes. Several activities are planned that will challenge not only the capacity of the existing ion exchange modules to perform as needed but also the current filtration system to maintain water clarity. Among the planned activities are containerization of sludge, removal of debris, and hydrolasing the basin walls to remove contamination

  7. The Narew River Basin: A model for the sustainable management of agriculture, nature and water supply

    OpenAIRE

    Gielczewski, Marek

    2003-01-01

    This thesis is a search for a method of environmental management that may lead to sustainable development in North-eastern Poland and the Warsaw region. The methods studied in this thesis provide the components of a decision support system for managing the water quality of the Narew River Basin. The basin is characterised by high quality environmental, biological and cultural conditions. It has also the potential to solve the problems concerning the drinking water supply for Warsaw. The Narew...

  8. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  9. Comparative Assessment of Irrigation Water Quality in Sri Lanka's Tank-Cascade and Mahaweli Irrigation Schemes

    Science.gov (United States)

    Gunda, T.; Hornberger, G. M.

    2013-12-01

    Two distinct irrigation systems dominate the landscape in the dry zone of Sri Lanka. The tank-cascade system, which originates from third century BC, is a small-scale system that has been the traditional method for communities to meet their farming water needs. The Mahaweli reservoir system, in contrast, is a large-scale irrigation scheme initiated in the 1970s that diverts water across hundreds of kilometers from the headwaters of the Mahaweli River to farmers. Although approximately equal amounts of paddy land are irrigated under these two systems, very little comparative analysis has been conducted on the spatial variation of irrigation water quality in Sri Lanka. An exploratory study was conducted in June 2013 in Anuradhapura district, an area that experiences the highest level of paddy production instability and has had long-standing irrigation water quality issues. A total of 30 water samples from both cascade systems and Mahaweli system H-7 were analyzed for pH, temperature, conductivity, turbidity, and chromatic dissolved organic matter using field instruments. A subset of these samples was further analyzed for nitrate and ammonia using colorimetric methods. While the sparse data from our study revealed some interesting trends, it is difficult to extrapolate in detail. Therefore, we compare inferences drawn about the Sri Lanka data to a more detailed analysis of chromatic dissolved organic matter in a Tennessee watershed. This comparison will provide insight into possible interpretations relative to the water quality data collected in Sri Lanka. As Sri Lanka continues to develop its irrigation resources, water quality assessments such as this one are critical for identifying factors limiting paddy production in the country.

  10. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  11. Indus Basin Waters A Main Resource of Water in Pakistan: An Analytical Approach

    Directory of Open Access Journals (Sweden)

    Muhammad Tayyab Sohail

    2014-12-01

    Full Text Available The agriculture annulus in Pakistan aid 21% towards GDP of the country with mainly agriculture based economy. This ambit represents 45% of the country's labor force. Rivers are the main essence of water in Pakistan. This accounts for agriculture, commercial and domestic use. The veer in the availability of water of Rivers not only affects the economy but also the climate of the country. Water of these Rivers, directly or indirectly affects the lives of people in Pakistan. Indus River is the radical river which flows through the whole country until the brink of Arabian Sea. Indus Basin commences via Tibet flow from Jammu and Kashmir (India to Pakistan. This paper is a descriptive study of water flow in the three giant rivers of Pakistan and conspicuously illustrate the past flow history, present condition and unborn recognition of water resources in the realm. The historical scansion and the unborn prediction of the attainment of water in the kingdom along with its consequences on the economy is also the ingredient of this inquest. The fright of critical water shortage is utterly tedious for Pakistan so there is a heinous exigency of ingenuous endeavors from the governance bodies to cope with these challenges. Notions to address this issue are also presented in this paper.

  12. Investigations of water escape ways in post-floatation basins by determining water microchemism using activation analysis

    International Nuclear Information System (INIS)

    The article deals with a method of investigating water escapes from post-floatation basins. The method is based on differences that occur in the composition of microelements of post-floatation and ground waters in the area of the basins. Some characteristic chemical elements found to occur in post-floatation waters have been used as natural markers for determining their escape ways. The determinations of the selected microelements in water have been made by means of both reactor activation analysis and X-ray fluorescence analysis, with radioisotope induction. (author)

  13. Digital-model study of ground-water hydrology, Columbia Basin Irrigation Project Area, Washington

    Science.gov (United States)

    Tanaka, H.H.; Hansen, A.J., Jr.; Skrivan, J.A.

    1974-01-01

    Since 1952 water diverted from the Columbia River at Grand Coulee Dam has been used to irrigate parts of the Columbia Basin Irrigation Project area in eastern Washington, and as a result ground-water levels generally have risen in the area. The rapid increases in ground-water inflow, outflow, and storage from irrigation have created a need for a better understanding of the ground-water system before and after the start of irrigation to establish guidelines necessary for management of the area's ground-water resource. Data and information from previous geologic and hydrologic studies were used as a basis for quantitative analyses of ground-water inflow and outflow by means of digital computer models representing three major areas--Quincy Basin, Pasco Basin, and Royal Slope.

  14. Enhancing Floodplain Management in the Lower Mekong River Basin Using Vegetation and Water Cycle Satellite Observations

    Science.gov (United States)

    Bolten, J. D.; Spruce, J.; Wilson, R.; Strauch, K.; Doyle, T.; Srinivan, R.; Lakshmi, V.; Gupta, M.

    2014-12-01

    The Lower Mekong River Basin shared by China, Burma, Laos, Thailand, Cambodia, and Vietnam, is considered the lifeblood of Southeast Asia. The Mekong Basin is subject to large hydrological fluctuations on a seasonal and inter-annual basis. The basin remains prone to severe annual floods that continue to cause widespread damage and endanger food security and the livelihood of the millions who dwell in the region. Also the placement of newly planned dams primarily for hydropower in the Lower Mekong Basin may cause damaging social, agriculture and fisheries impacts to the region where we may now likely be at a critical 'tipping point'. The primary goal of this project is to apply NASA and USGS products, tools, and information for improved flood and water management in the Lower Mekong River Basin to help characterize, understand, and predict future changes on the basin. Specifically, we are providing and helping transfer to the Mekong River Commission (MRC) and the member countries of Thailand, Cambodia, Lao, Vietnam, and Burma the enhanced Soil and Water Assessment Tool (SWAT) using remotely sensed surface, ground water, and root zone soil moisture along with improved Land Use and Land Cover (LULC) maps. In order to estimate the flood potential and constrain the SWAT Available Water Capacity model parameter over the region, we are assimilated GRACE Terrestrial Water Storage observations into the Catchment Land Surface Model. In addition, a Graphic Visualization Tool (GVT) as been developed to work in concert with the output of the SWAT model parameterized for the Mekong Basin as an adjunct tool of the MRC Decision Support Framework. The project requires a close coordination of the development and assessment of the enhanced MRC SWAT with the guidance of MRC resource managers and technical advisors. This presentation will evaluate the skill of the enhanced SWAT model using qualitative (i.e., MODIS change detection) and quantitative (e.g., streamflow) metrics over one

  15. Hanford Technology Development (Tank Farms) - 12509

    International Nuclear Information System (INIS)

    soil between the ground surface and the water table 200-to-300 feet below. The project tracks and monitors contamination in the soil. Technologies are being developed and deployed to detect and monitor contaminants. Interim surface barriers, which are barriers put over the single-shell tanks, prevent rain and snow from soaking into the ground and spreading contamination. The impermeable barrier placed over T Farm, which was the site of the largest tank waste leak in Hanford's history, is 60,000 square feet and sloped to drain moisture outside the tank farm. The barrier over TY Farm is constructed of asphalt and drains moisture to a nearby evaporation basin. Our discussion of technology will address the incredible challenge of removing waste from Hanford's single-shell tanks. Under the terms of the Tri-Party Agreement, ORP is required to remove 99 percent of the tank waste, or until the limits of technology have been reached. All pumpable liquids have been removed from the single-shell tanks, and work now focuses on removing the non-pumpable liquids. Waste retrieval was completed from the first single-shell tank in late 2003. Since then, another six single-shell tanks have been retrieved to regulatory standards. (authors)

  16. Effects of Material Choice on Biocide Loss in Orion Water Storage Tanks

    Science.gov (United States)

    Wallace, William T.; Castro-Wallace, Sarah L.; Kuo, C. K. Mike; Loh, Leslie J.; Hudson, Edgar; Gazda, Daniel B.; Lewis, John F.

    2016-01-01

    additional challenges when used in water storage tanks with ionic silver biocide.

  17. Seismic Analysis of Elevated Water Storage Tanks Subjected to Six Correlated Ground Motion Components

    Directory of Open Access Journals (Sweden)

    L. Kalani Sarokolayi

    2013-01-01

    Full Text Available In this work, rotational components of ground motion acceleration were defined according toimproved method from the corresponding available translational components based on transversely isotropicelastic wave propagation in the soil. With such improvement, it becomes possible to consider frequencydependent wave velocities on rotational components of ground motion. For this purpose, three translationalcomponents of El Centro earthquake (24 January 1951 were adopted to generate their relative rotationalcomponents based on SV and SH wave incidence by Fast Fourier transform with 4096 discrete frequencies.The translational and computed rotational motions were then applied to the concrete elevated water storagetanks with different structural characteristics and water elevations. The finite element method is used for thenonlinear analysis of water storage tanks considering the fluid-structure interaction using Lagrangian-Lagrangian approach and the concrete material nonlinearities have been taken into account through William-Warnke model. The nonlinear response of these structures considering the six components of ground motionshowed that the rotational components of ground motion can increase or decrease the maximum displacementand reaction force of the structure. These variations are depending on the frequency of structure andpredominant frequencies of translational and rotational components of ground motion.

  18. An effect of a horizontal buoyant jet on the temperature distribution inside a hot water storage tank

    International Nuclear Information System (INIS)

    Highlights: • A vortex is generated when the buoyant jet impinges the opposite wall linearly. • The vortex height “Zb” is nearly equal to the edge of the temperature gradient layer. • Empirical formulas were proposed between Zb and the buoyant jet’s length scale lM. • A 1D model for simulating temperature distribution was proposed. • The performance of the model was verified by comparing the unsteady test results. -- Abstract: The hot water storage tank (for stratified thermal storage) with a heat pump draws a lot of attention nowadays due to its high performance. In Japan, reheating of the bath is commonly used, and as this mode, the jet injects horizontally at the middle of the tank, so the temperature distribution of the tank changes complexly with time. Hence a model is needed to simulate this phenomenon, precisely. Additionally, in the process of designing a hot water storage system, it is necessary to simulate temperature distribution quickly, since a test run itself is a time consuming process. In this study, visualization experiments were performed using tracer particles and thermo-sensitive liquid crystals. Experiments were also carried out to find the unsteady temperature distribution in a tank when the positively or negatively buoyant jet was injected horizontally in the middle of the tank whose size is limited and has an influence from the opposite wall. If the momentum effect of the buoyant jet is stronger than that of buoyancy, the buoyant jet impinge against the opposite wall of the tank, and a vortex was observed near the opposite wall. Empirical formulas were proposed to predict the height of the vortex “Zb” under various conditions, such as the momentum and the buoyancy of the buoyant jet, and the Prandtl number of the tank water. Furthermore, the 3D-CFD was carried out to supplement the 3D behavior of the inner tank fluid. A one dimensional model, “uniformly distributed injection model”, for simulating temperature

  19. Network Analysis for a Better Water Use Configuration in the Baiyangdian Basin, China

    OpenAIRE

    Xufeng Mao; Donghai Yuan; Xiaoyan Wei; Qiong Chen; Chenling Yan; Liansheng He

    2015-01-01

    Nowadays, an increasing shortage of water resources intensifies the contradiction among different water-using sectors in the social-economic-ecological complex system. To adjust water used configuration in a holistic framework, a water use system (WUS) model was constructed with inclusive five water-using sectors including aquatic systems, primary industry, secondary industry, tertiary industry and resident consumption. The Baiyangdian Basin in Northern China was used as a case area. Six yea...

  20. The dynamic relationship between property rights, water resource management and poverty in the Lake Victoria Basin.

    OpenAIRE

    Orindi, V.; Huggins, C.

    2005-01-01

    This review aims to synthesize information on the dynamic relationships between property rights to land and natural resources, water resource management and poverty in the Lake Victoria Basin of East Africa. It focuses on the way in which water management systems, under the conceptual umbrella of Integrated Water Resources Management (IWRM), address customary claims to land and water. The water sector in all the three countries is being reformed, decentralized and liberalized to improve effic...

  1. Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River Basin

    OpenAIRE

    Zhuo, L.; M. M. Mekonnen; A. Y. Hoekstra

    2013-01-01

    Water Footprint Assessment is a quickly growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of water footprint estimates to changes in important input variables and quantifies the size of uncertainty in water footprint estimates. The study focuses on the green and blue water footprint of producing maize, soybean, rice and wheat in the Yellow River Basin in the period 1996-2005. A grid-based daily water bal...

  2. The last will be first: Water transfers from agriculture to cities in the Pangani river basin, Tanzania

    NARCIS (Netherlands)

    Komakech, H.C.; Van der Zaag, P.; Koppen, B.

    2012-01-01

    Water transfers to growing cities in sub-Sahara Africa, as elsewhere, seem inevitable. But absolute water entitlements in basins with variable supply may seriously affect many water users in times of water scarcity. This paper is based on research conducted in the Pangani river basin, Tanzania. Usin

  3. Analysis of the environmental isotopes in the ground water of the khulais basin; west saudi arabia

    International Nuclear Information System (INIS)

    The city of jeddah depends partially for its water supply on ground water drawn from wells in the wadi khulais basin. Analysis was conducted of environmental isotope contents (oxygen-18, deuterium and tritium of ground water in the eastern part of wadi khulais basin, where the quaternary and the tertiary sedimentary aquifer systems are found. Results show depletion of the stable isotopes (oxygen-18 and deuterium) and extremely low content of tritium. The study points to possible mixing of meteoric and paleo water. 3 figs., 1 tab

  4. Emergence and Evolution of Endogenous Water Institutions in an African River Basin: Local Water Governance and State Intervention in the Pangani River Basin, Tanzania

    NARCIS (Netherlands)

    Komakech, C.H.

    2013-01-01

    Water management challenges in basins of Sub-Saharan Africa and in other parts of the world are increasing due to rapid urbanisation, poverty and food insecurity, energy demands, and climate change. Nearly half of the world population live in cities, and this is estimated to reach two-thirds of the

  5. Nitrogen and Phosphorus Removal in the Recirculating Aquaculture System with Water Treatment Tank containing Baked Clay Beads and Chinese Cabbage

    Directory of Open Access Journals (Sweden)

    Aeknarin Thanakitpairin

    2014-01-01

    Full Text Available This research aims to describe the nitrogen and phosphorus removal in Recirculating Aquaculture System (RAS by crop plants biomass production. The 3 experiment systems consisted of 1 treatment (fish tank + baked clay beads + Chinese cabbage and 2 controls as control-1 (fish tank only and control-2 (fish tank + baked clay beads, were performed. With all experimental RAS, Nile tilapia (Oreochromis niloticus was cultured at 2 kg/m3 density. The baked clay beads (8-16 mm in diameter were filled as a layer of 10 cm in the water treatment tank of control-2. While in the treatment tank, Chinese cabbage (Brassica pekinensis was planted at 334 plants/m2 in baked clay beads layer. During 35 days of experiment, the average fish wet-weight in control-1, control-2 and treatment systems increased from 16.31±1.49, 15.18±1.28 and 11.31±1.49 g to 29.43±7.06, 28.65±3.12 and 27.20±6.56 g, respectively. It was found that the growth rate of 0.45±0.15 g-wet weight/day in a treatment tank was higher than in those 2 controls, which were rather similar at 0.37±0.16 and 0.38±0.05 g-wet weight/day, respectively. The fish survival rate of all experimental units was 100%. The average Chinese cabbage wet-weight in treatment system increased from 0.15±0.02 g to 1.00±0.38 g. For water quality, all parameters were within the acceptable range for aquaculture. The assimilation inorganic nitrogen in a treatment tank showed a slower rate and lower nitrite accumulation relative to those in control tanks. The nitrogen and phosphorus balance analysis illustrated that most of the nitrogen and phosphorus input in all systems was from feed (82-87% and 21-87% while at the final day of experiments, nitrogen and phosphorus in tilapia culture revealed at 15-19% and 4-13%. The accumulation of nitrogen and phosphorus in the water, up to 56% and 70%, was found in control-1 while water in the tank with baked clay beads had substantial lower nitrogen and phosphorus concentration. The

  6. STUDY ON APPLICATION OF AERATION BIOLOGICAL FLUID TANK TECHNOLGY IN NH4+—N WASTE WATER TREATMENT

    Institute of Scientific and Technical Information of China (English)

    CHENYi; LUJian-guo

    2003-01-01

    This paper introduces an application of "Aeration biological fluid tank"technology (ABFT) for the treatment of waste water containing NH4+-N and high concentrated chemicals.Highlights were focused on the effects of dissolved oxygen,pH,temperature and retention time on waste water bilogical treatment in order to find out a new approach in treatment of waste time on containing high concentrated NH4+-N.

  7. Influence of natural and human factors on pesticide concentrations in surface waters of the White River Basin, Indiana

    Science.gov (United States)

    Crawford, Charles G.

    1996-01-01

    Pesticide concentrations in surface waters of the White River Basin are affected by natural and human factors. For example, concentrations of atrazine, a herbicide widely used on corn in the White River Basin, tended to be higher in an agricultural basin with permeable, welldrained soils, than in an agricultural basin with less permeable, more poorly drained soils. Concentrations of butylate, another herbicide used on corn, were substantially higher in an agricultural basin in the southern part of the White River Basin than in an agricultural basin in the central part of the White River Basin, corresponding to the higher use of this compound in southern Indiana. Concentrations of diazinon were substantially higher in a predominantly urban basin than in two predominantly agricultural basins, corresponding to the common use of this insecticide on lawns and gardens in urban areas.

  8. Designing principles of an ecological water storage basin on coastal saline: a case study

    Institute of Scientific and Technical Information of China (English)

    LIU Ping-ping; YIN Cheng-qing; QU Jiu-hui; ZHANG Guang-yun; FENG Wen-qing; LIU Jun-xin; ZHONG Zhi

    2005-01-01

    The degradation of water source environment becomes serious problems accompanying with rapid urbanization in China.Ecological engineering provides ecologically sound and cost-effective solution to solving this problem. As a case study, a 15 hm2 ecological water storage basin for a water plant was designed and constructed on the TEDA area in Tianjin City. Located on saline, the construction of this project has to face serious difficulties, such as high salinity, scarce seed banks of macrophytes, and strong winds. Freshwater replacement, soil emendation and macrophytes planting at the basinshore, wooden water breaker and plastic membrane installation and other measures were conducted for the assistance of plant community establishment. The result showed that the chloride concentration in the basin water decreased from 11600 mg/L to less than 100 mg/L, and the chloride content in the basin sediment decreased from 2.1% to0.35 % after freshwater soaking. The introduced macrophytes of 8 species all survived and 11 other macrophytes species were occurred in the basin. A new ecosystem was created with increased biological diversity in the original saline, and the water quality was improved. This ecological water storage basin also provided a pleasing landscape for local people.

  9. The Hanford site tank waste remediation system technical strategy

    International Nuclear Information System (INIS)

    The US Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of radioactive tank the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90S and 137Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. A Tank Waste Remediation System Program was established by the US DOE Energy in 1991 to safely manage and immobilize these wastes for permanent disposal of the high-level waste fraction in a geologic repository. The technical strategy to manage and dispose of these wastes has been revised and successfully negotiated with the regulatory agencies

  10. Environmental setting and water-quality issues in the lower Tennessee River basin

    Science.gov (United States)

    Kingsbury, James A.; Hoos, Anne B.; Woodside, M.D.

    1999-01-01

    The goals of the National Water-Quality Assessment Program are to describe current water-quality conditions for a large part of the Nation's water resources, identify water-quality changes over time, and identify the primary natural and human factors that affect water quality. The lower Tennessee River Basin is one of 59 river basins selected for study. The water-quality assessment of the lower Tennessee River Basin study unit began in 1997. The lower Tennessee River Basin study unit encompasses an area of about 19,500 square miles and extends from Chattanooga, Tennessee, to Paducah, Kentucky. The study unit had a population of about 1.5 million people in 1995.The study unit was subdivided into subunits with relatively homogeneous geology and physiography. Subdivision of the study unit creates a framework to assess the effects of natural and cultural settings on water quality. Nine subunits were delineated in the study unit; their boundaries generally coincide with level III and level IV ecoregion boundaries. The nine subunits are the Coastal Plain, Transition, Western Highland Rim, Outer Nashville Basin, Inner Nashville Basin, Eastern Highland Rim, Plateau Escarpment and Valleys, Cumberland Plateau, and Valley and Ridge.The lower Tennessee River Basin consists of predominantly forest (51 percent) and agricultural land (40 percent). Activities related to agricultural land use, therefore, are the primary cultural factors likely to have a widespread effect on surface- and ground-water quality in the study unit. Inputs of total nitrogen and phosphorus from agricultural activities in 1992 were about 161,000 and 37,900 tons, respectively. About 3.7 million pounds (active ingredient) of pesticides was applied to crops in the lower Tennessee River Basin in 1992.State water-quality agencies identified nutrient enrichment and pathogens as water-quality issues affecting both surface and ground water in the lower Tennessee River Basin. Water-quality data collected by State

  11. The role of storage capacity in coping with intra- and inter-annual water variability in large river basins

    Science.gov (United States)

    Gaupp, Franziska; Hall, Jim; Dadson, Simon

    2015-12-01

    Societies and economies are challenged by variable water supplies. Water storage infrastructure, on a range of scales, can help to mitigate hydrological variability. This study uses a water balance model to investigate how storage capacity can improve water security in the world’s 403 most important river basins, by substituting water from wet months to dry months. We construct a new water balance model for 676 ‘basin-country units’ (BCUs), which simulates runoff, water use (from surface and groundwater), evaporation and trans-boundary discharges. When hydrological variability and net withdrawals are taken into account, along with existing storage capacity, we find risks of water shortages in the Indian subcontinent, Northern China, Spain, the West of the US, Australia and several basins in Africa. Dividing basins into BCUs enabled assessment of upstream dependency in transboundary rivers. Including Environmental Water Requirements into the model, we find that in many basins in India, Northern China, South Africa, the US West Coast, the East of Brazil, Spain and in the Murray basin in Australia human water demand leads to over-abstraction of water resources important to the ecosystem. Then, a Sequent Peak Analysis is conducted to estimate how much storage would be needed to satisfy human water demand whilst not jeopardizing environmental flows. The results are consistent with the water balance model in that basins in India, Northern China, Western Australia, Spain, the US West Coast and several basins in Africa would need more storage to mitigate water supply variability and to meet water demand.

  12. Strategies to reduce water stress in Euro-Mediterranean river basins.

    Science.gov (United States)

    Garrote, Luis; Granados, Alfredo; Iglesias, Ana

    2016-02-01

    A portfolio of water management strategies now exists to contribute to reach water demand and supply targets. Among them, integrated water resource management has a large potential for reducing water disagreement in water scarcity regions. Many of the strategies are based on well tested choices and technical know-how, with proven benefits for users and environment. This paper considers water management practices that may contribute to reduce disagreement in water scarcity areas, evaluating the management alternatives in the Mediterranean basins of Europe, a region that exemplifies other water scarcity regions in the world. First, we use a model to compute water availability taking into account water management, temporal heterogeneity, spatial heterogeneity and policy options, and then apply this model across 396 river basins. Second, we use a wedge approach to illustrate policy choices for selected river basins: Thrace (Greece), Guadalquivir, Ebro, Tagus and Duero (Spain), Po (Italy) and Rhone (France). At the wide geographical level, the results show the multi-determinant complexities of climate change impacts and adaptation measures and the geographic nature of water resources and vulnerability metrics. At the local level, the results show that optimisation of water management is the dominating strategy for defining adaptation pathways. Results also show great sensitivity to ecological flow provision, suggesting that better attention should be paid to defining methods to estimate minimum ecological flows in water scarcity regions. For all scales, average water resource vulnerability computed by traditional vulnerability indicators may not be the most appropriate measure to inform climate change adaptation policy. This has large implications to applied water resource studies aiming to derive policy choices, and it is especially interesting in basins facing water scarcity. Our research aims to contribute to shape realistic water management options at the regional

  13. Investigation and optimisation of heat storage tanks for low-flow SDHW systems[Solar Domestic Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Soeren

    2004-07-01

    This thesis, 'Investigation and optimisation of heat storage tanks for low-flow SDHW systems', describes a study of the heat transfer and flow structure in vertical mantle heat exchangers for low-flow Solar Domestic Hot Water (SDHW) systems. The heat storage is a key component in SDHW systems and the vertical mantle heat exchanger is one of the most promising heat storage designs for low-flow SDHW systems. The study was carried out using a combination of experimental and numerical methods. Thermal experiments of mantle heat exchangers with different mantle inlet designs showed that the mantle inlet port with advantage can be located a distance from the top of the mantle. Consequently, the mantle heat exchangers marketed today can be improved by changing the mantle inlet position. The heat transfer and flow structure in mantle heat exchangers are rather complex and the thermal experiments were followed by investigations by means of advanced experimental and numerical techniques such as Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). Using a transparent glass mantle tank, experimental flow visualisation was carried out with a PIV system. The flow structures inside the mantle and inside the tank were visualised and then compared with the flow structures predicted by CFD-models. The investigations showed that the CFD-models were able to model the flow in the mantle and in the tank correctly. The CFD-models were also validated by means of thermal experiments with a steel mantle tank. With the verified CFD-models, a parameter analysis was carried out for differently designed mantle heat exchangers for different typical conditions to reveal how the mantle tank parameters influence the flow structure and heat transfer in mantle heat exchangers. The heat transfer in the mantle near the mantle inlet port showed to be in the mixed convection regime, and as the distance from the inlet increased, natural convection started to dominate. The

  14. Distribution and Origin of Underground Water Chemical Fields in Songliao Continental Oil—Bearing Sedimentary Basin

    Institute of Scientific and Technical Information of China (English)

    楼章华; 张秉坚; 等

    1999-01-01

    There are many factors affecting ungerground water chemistry of an oil-bearing sedimentary basin.The properties of underground water show variations in the vertical direction, giving rise to a vertical zonation with respect to underground water chemistry,Five zones could be divided downwards,including 1)The freshening zone due to meteoric water leaching (A):2)the evaporation-concentration zone near the surface(B);3) the freshening zone due to stratum compaction-released water(C1)-infiltration-concentration zone during the mudstone compaction and water releasing(C2);4) the freshening zone for clay mineral dehydration(D);and 5)the seepage-concentration zone(E).The hydrodynamic fields in the Songliao Basin are obviously asymmetrical,with the characteristics of gravity-induced centripetal flow recharged by meteoric water along the edge to the inner part of the basin mainly in its northern and eastern regions,centrifugal flow and crossformational flow in the center of the basin,as well as the cross-formation flow-evaporation discharge area in its southern area.Hydrodynamics controls the planar distribution of underground-water chemical fields;1)the freshening area due to penetrating meteoric water generally at the basin edges;2)the freshening area for mudstone compaction-released water at the center of the basin;3) the cross-formational area as the transitional aqrea;and 4)the concentration area by cross-formational flow and evaporation.The mineralization degree and the concentrations of Na+ and Cl- and their salinity coefficeents tend to increase,while the concentrations of(CO32-+HCO3-) and SO42- and the metamorphism and desulfuration coefficients tend to decrease along the centrifugal flow direction caused by mudstone compaction in the depression area.But all of them tend to increase along the gravity-induced centripetal flow direction.

  15. Securing Unlimited Water Supply in Adelaide over the Next Century Balancing Desalinated and Murray-Darling Basin Water

    OpenAIRE

    Michael G. Porter; Zohid Askarov; Sarah Hilborn

    2015-01-01

    This paper assesses the two major water supply options for a growing but relatively dry metropolitan Adelaide – desalination and expanded trading of water from the Murray-Darling Basin (MDB). What we present in this paper is a portfolio approach suggesting a mixed strategy of desalination and water trading to meet growing demand over the hundred year period from 2014. Crucially, the scope for expanding water trading keeps average costs down, for as long as the political agreements work and dr...

  16. A market-based approach to share water and benefits in transboundary river basins

    Science.gov (United States)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-04-01

    The equitable sharing of benefits in transboundary river basins is necessary to reach a consensus on basin-wide development and management activities. Benefit sharing arrangements must be collaboratively developed to be perceived as efficient, as well as equitable, in order to be considered acceptable to all riparian countries. The current literature falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. In this methodology (i) a hydro-economic model is used to efficiently allocate scarce water resources to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges are equitably redistributed as monetary compensation to users. The amount of monetary compensation, for each water user, is determined through the application of a sharing method developed by stakeholder input, based on a stakeholder vision of fairness, using an axiomatic approach. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The technique ensures economic efficiency and may lead to more equitable solutions in the sharing of benefits in transboundary river basins because the definition of the sharing rule is not in question, as would be the case if existing methods, such as game theory, were applied, with their inherent definitions of fairness.

  17. Integrated water resources assessment and management in the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Ibisch, Ralf; Karthe, Daniel; Hofmann, Jürgen; Borchardt, Dietrich

    2016-04-01

    A comprehensive study on hydrology, hydro-morphology, climatology, water physico-chemistry and ecology was conducted in the Kharaa River Basin (Mongolia) between 2006 and 2013. The assessment provided a detailed characterization of water resources for the first time and serves as a scientific basis to develop an integrated water resources management (IWRM) in the region. Following European water management approaches we identified "water bodies" as the smallest management sub-unit within the river basin, based on characteristic abiotic and biocenotic features. Four clearly identifiable water bodies in the Kharaa River main channel and seven water bodies in the tributaries were delineated. In order to achieve a good ecological status of the surface water bodies, type-specific undisturbed reference states of various aquatic ecosystems were identified and current deviations thereof were assessed. Based on the assessment a set of water management measures was developed. With regards to water quality and quantity, the upper reaches of the Kharaa River basin were classified as having a "good" ecological and chemical status. Compared to these natural reference conditions in the upper reaches, the initial risk assessment identified several "hot spot" regions with impacted water bodies in the middle and lower basin. Therefore, the affected water bodies are at risk of not achieving the good ecological and/or chemical status for surface waters. The use of natural references conditions offers a sound scientific base to assess the impact of anthropogenic activities across the Kharaa River basin. Based on the scientific results and practical experiences from a seven-year project in the region, the potentials and limitations of IWRM implementation will be discussed in the presentation.

  18. Water footprint analysis for the Guadiana river basin

    NARCIS (Netherlands)

    Aldaya, M.M.; Llamas, M.R.

    2008-01-01

    In most arid and semiarid countries, water resources management is an issue as important as controversial. Today most water resources experts admit that water conflicts are often not caused by physical water scarcity but poor water management or governance. The virtual-water concept, defined as the

  19. Variability in land water storage from GRACE and ENVISAT, and rainfall in South American river basins

    Science.gov (United States)

    Xavier, L.; Cazenave, A.; Bonnet, M.; Rotunno, O.

    2008-12-01

    Previous work has demonstrated the capability of GRACE to capture important aspects of the hydrological cycle, in particular seasonal and interannual fluctuations in land water storage of large river basins. Part of this behaviour can be immediately assigned to seasonal/interannual fluctuations of precipitation. In this study, we investigate existing correlations between GRACE water storage (two GRACE products are used and compared, the GRGS and GSFC/Mascons solutions), ENVISAT-based surface water levels and precipitation data over four large river basins of South America (Orinoco, Amazon, Tocantins and Parana). At the seasonal time scale, precipitation and total water storage correlate well in the Parana basin, with a few weeks lag of storage with respect to forcing. Over the Amazon, Tocantins and Orinoco, the two variables also correlate well. But in some years, storage response to forcing is enhanced, suggesting that other terms of the water balance (e.g., runoff) play a significant role. To investigate this, discharge data at the most downstream stations in these river basins are analysed, while the water balance is studied using outputs of global hydrological models available over the same time span as GRACE data. We also analyse water level data from ENVISAT altimetry over the main rivers. Finally, we study the interannual connection between rainfall and water storage, using among others, Empirical Orthogonal Functions (EOF). Compared to the seasonal cycle, the interannual signal displays larger regional variability both in precipitation and water storage.

  20. Fuzzy Comprehensive Evaluation Model for Water Resources Carrying Capacity in Tarim River Basin, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    MENG Lihong; CHEN Yaning; LI Weihong; ZHAO Ruifeng

    2009-01-01

    This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature, society, economics and water resources of the Tarim River Basin in 2002, we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively, where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity, 0.620 for Kizilsu Kirgiz Autonomous Prefecture, where water resources carrying capacity is much higher, and in between for Hotan Prefecture and Bayingolin Mongolian Autonomous Prefecture. As a whole, the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus, we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.

  1. Simulation of blue and green water resources in the Wei River basin, China

    Science.gov (United States)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  2. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research.

    Science.gov (United States)

    Stapleton, C M; Wyer, M D; Crowther, J; McDonald, A T; Kay, D; Greaves, J; Wither, A; Watkins, J; Francis, C; Humphrey, N; Bradford, M

    2008-06-01

    Under the EU Water Framework Directive (WFD) 20/60/EC and the US Federal Water Pollution Control Act 2002 management of water quality within river drainage basins has shifted from traditional point-source control to a holistic approach whereby the overall contribution of point and diffuse sources of pollutants has to be considered. Consequently, there is a requirement to undertake source-apportionment studies of pollutant fluxes within catchments. The inclusion of the Bathing Water Directive (BWD), under the list of 'protected areas' in the WFD places a requirement to control sources of faecal indicator organisms within catchments in order to achieve the objectives of both the BWD (and its revision - 2006/7/EC) and the WFD. This study was therefore initiated to quantify catchment-derived fluxes of faecal indicator compliance parameters originating from both point and diffuse sources. The Ribble drainage basin is the single UK sentinel WFD research catchment and discharges to the south of the Fylde coast, which includes a number of high profile, historically non-compliant, bathing waters. Faecal indicator concentrations (faecal coliform concentrations are reported herein) were measured at 41 riverine locations, the 15 largest wastewater treatment works (WwTWs) and 15 combined sewer overflows (CSOs) across the Ribble basin over a 44-day period during the 2002 bathing season. The sampling programme included targeting rainfall-induced high flow events and sample results were categorised as either base flow or high flow. At the riverine sites, geometric mean faecal coliform concentrations showed statistically significant elevation at high flow compared to base flow. The resultant faecal coliform flux estimates revealed that over 90% of the total organism load to the Ribble Estuary was discharged by sewage related sources during high flow events. These sewage sources were largely related to the urban areas to the south and east of the Ribble basin, with over half the

  3. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  4. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, D

    2007-10-30

    The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

  5. Economic Impacts of Water Conservation Measures in Agriculture and Energy Within the Upper Colorado River Basin

    OpenAIRE

    Franklin, Douglas R.

    1982-01-01

    The demand for water is increasing in the western United States. Coupled with growing emphasis on development of the western resources, the limited supply of water will create an expanding competitive market for water by agricultural, energy, industrial and municipal users. The Upper Colorado River Basin is faced with a question of what water conservation measures in the agricultural and energy sectors can be instigated without reducing agricultural output. If the decision is made to adopt wa...

  6. Impact of Inter‐Basin Water Transfer Projects on Regional Ecological Security from a Telecoupling Perspective

    OpenAIRE

    Yuan Quan; Chenxing Wang; Yan Yan; Gang Wu; Hongxun Zhang

    2016-01-01

    Inter‐basin water transfer projects (IBWTPs) offer one of the most important means to solve the mismatch between supply and demand of regional water resources. IBWTPs have impacts on the complex ecosystems of the areas from which water is diverted and to which water is received. These impacts increase damage or risk to regional ecological security and human wellbeing. However, current methods make it difficult to achieve comprehensive analysis of the impacts of whole ecosystems, because of th...

  7. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River Basin

    OpenAIRE

    Zhuo, L.; M. M. Mekonnen; A. Y. Hoekstra

    2014-01-01

    Water Footprint Assessment is a quickly growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of water footprint estimates to changes in important input variables and quantifies the size of uncertainty in water footprint estimates. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat in the Yellow River Basin in the period 1996...

  8. Strategic development of water resources for the Jordan River Basin (Briefing 1.2)

    OpenAIRE

    Onigkeit, Janina

    2013-01-01

    Already today, water management in the Jordan River basin requires enormous efforts to balance water availability and multiple needs of consumers and the environment. To limit the impacts of a growing gap between demand and increasingly unreliable natural water resources will be among the greatest challenges of the coming decades. Brief outlines of four different strategies to cope with problems of water scarcity in the region are presented, covering aspects of future demand as well as supply...

  9. SAFETY ANALYSIS OF WATER RESOURCES AND ECG-ENVIRONMENT IN SHIYANG RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-shi; ZHANG Yong-qiu; PU Rui-feng; CHEN Ren-sheng; CHENG Zhong-shan; WANG Ming-quan

    2005-01-01

    The research on the present situation of soil and water development and utilization in Shiyang River Basin shows that water resources and eco-environment situation in this area are near the edge of collapse. Since the water crises occurred in the 1970s, problems caused by continuous decrease of water resources have been becoming serious year by year and eco-environment crisis occurred as a consequence. Up to now, 10 380ha of irrigated lands have been abandoned due to sand coverage and water shortage in the basin. Ground water was over exploded in Wuwei and Minqin because of water shortage. Ground water table in many places dropped under 5m (which is the ecology water table level), thus about 3000ha ofElaeagnus angustifolia forest come to dead and another 5800ha become feeble, and wind-driff sand near the oasis become alive. According to the current situation, if water utilization scope was not enlarged, a water transfer volume of 600×106m3/a from other areas will be suitable to keep water resources and eco-environment safety in the basin, and also 70× 106m3/a will be left as spare water. Under this condition the water resources and eco-environment of the basin can reach the critical safety line of 2.032× 109m3/a; or if 180× 106m3 of water can be transferred from other areas, the water resources can reach the safety warning line of 1.732× 109m3/a.

  10. Association of Landscape Metrics to Surface Water Biology in the Savannah River Basin

    OpenAIRE

    Nash, Maliha S.; Deborah J. Chaloud; Susan E. Franson

    2005-01-01

    Surface water quality for the Savannah River basin was assessed using water biology and landscape metrics. Two multivariate analyses, partial least square and canonical correlation, were used to describe how the structural variation in landscape metrics may affect surface water biology and to define the key landscape variable(s) that contribute the most to variation in surface water quality. The results showed that the key landscape metrics in this study area were: percent...

  11. Simulation of blue and green water resources in the Wei River basin, China

    OpenAIRE

    Xu, Z.; Zuo, D

    2014-01-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the...

  12. Markets - Water Markets: Australia’s Murray-Darling Basin and the US Southwest

    OpenAIRE

    Gary D. Libecap; R. Quentin Grafton; Clay Landry; J.R. O’Brien

    2009-01-01

    Worldwide supplies of fresh water are increasingly scarce relative to demand. This problem is likely to be exacerbated with climate change. In this paper, we examine water markets in both Australia’s Murray Darling Basin and the western US and their prospects for addressing water scarcity. The two regions share a number of important similarities including: climate variability that requires investment in reservoirs to make water available in low-rainfall periods; the need for internal and cros...

  13. Practical Significance of Basin Water Market Construction on Agricultural Production

    OpenAIRE

    Peng, Xin-yu; Wu, Xux-ian

    2011-01-01

    On the basis of introducing the concept of water market and the water market research including both domestic market and foreign market, the system design features of water market are analyzed. The features include the prior distribution of agricultural water right, the close construction of market structure, reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage. The practica...

  14. Water pollution control in river basin by interactive fuzzy interval multiobjective programming

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.B.; Chen, H.W. [National Cheng-Kung Univ., Tainan (Taiwan, Province of China). Dept. of Environmental Engineering; Shaw, D.G.; Yang, C.H. [Academia Sinica, Taipei (Taiwan, Province of China). Inst. of Economics

    1997-12-01

    The potential conflict between protection of water quality and economic development by different uses of land within river basins is a common problem in regional planning. Many studies have applied multiobjective decision analysis under uncertainty to problems of this kind. This paper presents the interactive fuzzy interval multiobjective mixed integer programming (IFIMOMIP) model to evaluate optimal strategies of wastewater treatment levels within a river system by considering the uncertainties in decision analysis. The interactive fuzzy interval multiobjective mixed integer programming approach is illustrated in a case study for the evaluation of optimal wastewater treatment strategies for water pollution control in a river basin. In particular, it demonstrates how different types of uncertainty in a water pollution control system can be quantified and combined through the use of interval numbers and membership functions. The results indicate that such an approach is useful for handling system complexity and generating more flexible policies for water quality management in river basins.

  15. EVALUATION OF WATER POLLUTION STATUS IN SIRET HYDROGRAPHICAL BASIN (SUCEAVA REGION DUE TO AGRICULTURAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The study presents data concerning the water pollution status of Siret hydrographical basin (i.e. surface and ground waters, lakes in Suceava County area (different controlling/monitoring sections due to agricultural productive activities, especially regarding some quality indicators (nitrogen-based nutrient concentrations evaluated for 2008. These data are recommending the necessity of continuous monitoring of water quality in the Siret River hydrographical basin, in all existing control sections, for identification of any pollution episodes, non-reported by polluters to the local environmental regulators.

  16. Analytical data from phases I and II of the Willamette River basin water quality study, Oregon

    Science.gov (United States)

    Harrison, Howard E.; Anderson, Chauncey W.; Rinella, Frank A.; Gasser, Timothy M.; Pogue, Ted R., Jr.

    1995-01-01

    This report presents trace-element, organic-compound (pesticides, volatile and semivolatile organic compounds, and dioxin and furan compounds), and nutrient concentration data from the analyses of water column, suspended-sediment, and bed-sediment samples collected by the U.S. Geological Survey as part of Phases I and II of the comprehensive Willamette River Basin Water Quality Study in western Oregon. The overall study was designed by the Oregon Department of Environmental Quality to acquire the technical and regulatory knowledge necessary to protect and enhance water quality in the Willamette River Basin.

  17. Towards the response of water balance to sugarcane expansion in the Rio Grande Basin, Brazil

    OpenAIRE

    F. F. Pereira; Tursunov, M.; C. B. Uvo

    2013-01-01

    This study explores the short-, medium- and long-term impacts of expansion of the sugarcane plantation on the water balance of the Rio Grande Basin, Brazil, as estimated by changes in evapotranspiration, soil moisture content and surface runoff calculated by a hydrological model. Twenty years of simulation are made using three different land use scenarios that include the basin area planted with sugarcane in 1993, 2000 and 2007 as estimated from satellite im...

  18. Water resources of the English River, Old Mans Creek, and Clear Creek basins in Iowa

    Science.gov (United States)

    Schwob, H.H.

    1964-01-01

    The surface and ground water resources of a 991 square mile area comprising the drainage basins of English River, Old Mans Creek and Clear Creek are presented. These basins lie to the west and southwest of Iowa City, Iowa, and all three streams are tributary to the Iowa River. The area is comprised of rolling uplands with relatively broad valleys and is devoted mainly to agriculture and livestock farming.

  19. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data

    OpenAIRE

    Jiu Jimmy Jiao; Xiaotao Zhang; Yi Liu; Xingxing Kuang

    2015-01-01

    Groundwater plays a key role in maintaining the ecology and environment in the hyperarid Qaidam Basin (QB). Indirect evidence and data from sparse observation wells suggest that groundwater in the QB is increasing but there has been no regional assessment of the groundwater conditions in the entire basin because of its remoteness and the severity of the arid environment. Here we report changes in the spatial and temporal distribution of terrestrial water storage (TWS) in the northern Tibetan ...

  20. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  1. Subproject plan for demonstration of 3M technology for treatment of N Basin water

    International Nuclear Information System (INIS)

    A dissolved radionuclides removal demonstration is being conducted at the 105-N Basin as part of the 100-N Area Projects' policy of aggressively integrating innovative technologies to achieve more cost effective, faster, and/or safer deactivation operations. This subproject plan demonstrates new technology (marketed by the 3M trademark Company) that absorbs specific ions from water. The demonstration will take place at the spent fuel basin at the N Reactor facility. The 105-N Basin contains 1 million gal of water consisting of approximately 32 Ci of dissolved 90Sr at a concentration of 8.4 uCi/L and 7.3 Ci of dissolved 137Cs at a concentration of 1.92 uCi/L. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [Ecology et al. 1990]) Milestone M-16-01E-T2 requires the initiation of pretreatment and removal of all N Reactor fuel storage basin waters by September 30, 1996, pursuant to the N Reactor Deactivation Program Plan (WHC 1993). 105-N Basin dewatering is on the critical path for overall deactivation of N Reactor by March 1997. The 105-N Basin Deactivation Program Plan (BHI 1995) includes removing debris, hardware, algae and sediment from the basin, followed by pretreatment (filtration) and removal of the 1005-N Basin water. Final water removal is currently scheduled for September 30, 1996. The recommended method of the 105-N Basin water is the treatment of the water at the Effluent Treatment Facility (ETF) in the 200 East Area. The demonstration of the 3M technology could be a feasible treatment alternative to the ETF if the ETF is not available to meet the project schedule or if additional pretreatment is needed to reduce the inventory of radioactive species to be handled at the ETF. Demonstration of this technology could be of value for other fuel basins at the Hanford Site and possibly other US Department of Energy (DOE) sites and non- DOE nuclear power plants

  2. Environmental Isotopes Study on Geothermal Water in Guanzhong Basin, Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    MA Zhi-yuan; WU Wen-di; FAN Ji-jiao; SU Yan

    2007-01-01

    There exists abundant thermal water recourses in Guanzhong basin, Shaanxi province (northwestern China).With the deepening of exploitation for thermal aquifer nowadays, the information about the origin and movement of thermal water is limited by using traditional methods. This paper applies environmental isotope techniques to offer direct constraints on the recharge and movement of thermal water and improve the geological and hydrogeological database in Guanzhong Basin. The research on the environmental isotopes shows that the geothermal water of the area is mainly recharged by meteoric water. The temperature of meteoric water which replenishes geothermal water in the study area is -16℃. The estimated age of recharging the geothermal water is 13.3-28.2 ka based on the isotope analysis, belonging to the last glacial period in Late Quaternary. The source of replenishment of the geothermal water is thought to have been derived from glacial snow-melt water with an elevation higher than 1 500 m (ASL) in the north side of Qinling Mountain. The isotopic analysis denotes that the geothermal water in the southern Guanzhong basin is the mixture of net thermal water and normal temperature groundwater. Based on calculating the percentage of the mixture, nearly half of cold groundwater had participated the circulating of the geothermal water. However, in the center part of the basin, some artificial factors such as mismanage of pumping are probably the reason for the mixturing. The temperature range of the geothermal reservoirs in the basin is estimated at about 80-121℃ based on calculation of both SiO2 geothermometer and thermal water saturation index, which are basically in accordance with the measured temperature of thermal water. Based on the replenishment time and mixture extent with cold water, the thermal water in the studied area can be classified into three parts: mixed thermal water replenished by modern meteoric water; mixed thermal water replenished by both

  3. Contrasting patterns of river runoff and sea-ice melted water in the Canada Basin

    Institute of Scientific and Technical Information of China (English)

    TONG Jinlu; CHEN Min; QIU Yusheng; LI Yanping; CAO Jianping

    2014-01-01

    The fractions of river runoff and sea-ice melted water in the Canada Basin in summer 2003 were determined by the salinity-δ18O system. The fraction of river runoff (fR) was high in the upper 50 m of the water column and decreased with depth and latitude. The signals of the river runoff were confined to water depths above 200 m. The total amount of river runoff in the Canada Basin was higher than that in other arctic seas, indi-cating that the Canada Basin is a main storage region for river runoff. The penetration depth of the sea-ice melted water was less than 50 m to the south of 78°N, while it was about 150 m to the north of 78°N. The total amount of sea-ice melted water was much higher to the north of 78°N than to the south of 78°N, indicating the sea-ice melted waters accumulated on the ice edge. The abundant sea-ice melted water on the ice edge was attributed to the earlier melted water in the southern Canada Basin and transported by the Beaufort Gyre or the reinforced melting of sea ice by solar radiation in the polynya.

  4. SCIENTIFIC AND PRACTICAL ASPECTS OF WATER BASIN CLEANING FROM CHEMICAL WARFARE AGENTS

    OpenAIRE

    T. M. Tiavlovskaya; V. F. Tamelo

    2011-01-01

    The paper contains an analysis of reasons that explain pollution of World Ocean waters by chemical warfare agents and ecological dangers which can arise due to their emission. Possible methods for liquidation of chemical warfare agents and water basin cleaning from them have been considered in the paper.

  5. ASSOCIATION OF LANDSCAPE METRICS TO SURFACE WATER BIOLOGY IN THE SAVANNAH RIVER BASIN

    Science.gov (United States)

    Surface water quality for the Savannah River basin was assessed using water biology and landscape metrics. Two multivariate analyses, partial least square and cannonical correlation, were used to describe how the structural variation in landscape variable(s) that contribute the ...

  6. Prairie stream water quality in sub-basins characterized by differing degrees of wetland drainage

    Science.gov (United States)

    Brunet, N. N.; Westbrook, C. J.

    2010-12-01

    The prairie pothole region is dotted with millions of pothole wetlands. These wetlands provide important habitat for numerous wildlife species. Potholes are small, shallow marshes that typically lack surface water connections and have been shown to trap nutrients, ions, and bacteria from catchment runoff. Approximately 70% of the potholes located in the Canadian prairies have been drained since 1900 to increase agricultural production; recently there have been renewed efforts to drain potholes. Wetland drainage has been shown to increase stream discharge and is perceived to impact downstream water quality as previously isolated wetlands become connected to streams via drainage ditches. Our objective was to determine the extent to which stream water quality was influenced by wetland drainage. We compared time series of water quality for four sub-basins of Smith Creek watershed, southeastern Saskatchewan. The stream drains into the Assiniboine River and then Lake Winnipeg where excessive N and P loadings are causing eutrophication. Wetland distribution in the sub-basins was historically similar, but recently the sub-basins have been subject to differing degrees of drainage (extreme, high, moderately-high, and low). Stream water sampling and discharge measurement occurred daily during peak flow (spring runoff) and weekly during low flows in 2009 at the outlet of each sub-basin. Export coefficients for nutrients, DOC, salts and bacteria were compared among sub-basins. The sub-basin characterized by extreme drainage (81% wetland reduction) had the largest nutrient and DOC export coefficients while the low drainage sub-basin (23% wetland reduction) had the lowest. Concentrations of TP and ortho-P were greater in the moderately-high and high drainage sub-basins than in the low drainage sub-basin during the snowmelt period. TP concentrations exceeded the Saskatchewan Watershed Authority Lake Stewardship Program objective of 0.1 mg/L. N concentrations were greatest in the

  7. Monitoring water level in large trans-boundary ungauged basins with altimetry: the example of ENVISAT over the Amazon basin

    Science.gov (United States)

    Seyler, Frederique; Calmant, Stephane; da Silva, Joecila; Filizola, Naziano; Roux, Emmanuel; Cochonneau, Gerard; Vauchel, Philippe; Bonnet, Marie-Paule

    2009-01-01

    Brasil and Bolivia have water plans projects on the Beni-Madeira river, a major tributary of the Amazon. There are four main tributaries to the Rio Madeira: the Guapore, the Mamore and the Beni rivers into the Bolivian territory, and the Madre de Dios River crossing the North of Bolivia, coming from Peru. Most parts of these rivers are very far from the Andean capital cities of Bolivia and Peru, unreachable for long periods of time. Very few gauging stations are in operation, either for the Bolivian or the Peruvian part, most of them being located at the Andes piedmont or near the confluence at the Brazilian border as they form the Madeira river. This situation is exemplary of large transboundary basins in the tropical part of the world. We have computed 39 water level time series using ENVISAT altimetry data over the four tributaries of the Madeira and the Madeira itself. We present a preliminary study mostly conducted onto the Guapore river, in order to assess the quality of these time series for a variety of situations, but mostly narrow and meandering riverbeds. Comparison between water levels variation in the mainstream and within the inundations plains and lakes are drawn. We conclude by the perspectives offered by the combined use of radar altimetry and SAR imagery for the global monitoring of water resources, in large tropical transboundary basins.

  8. Stream habitat and water-quality information for sites in the Buffalo River Basin and nearby basins of Arkansas, 2001-2002

    Science.gov (United States)

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Stream-habitat and water-quality information are presented for 52 sites in the Buffalo River Basin and adjacent areas of the White River Basin. The information was collected during the summers of 2001 and 2002 to supplement fish community sampling during the same time period.

  9. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactive sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.

  10. Risk determination method for accidental water basin contamination based on risk source coupling with sensitive targets.

    Science.gov (United States)

    Li, Zongfeng; Zeng, Bo; Zhou, Tinggang; Li, Guowei; Zhu, Xiaobo

    2016-01-01

    Accidental water basin pollution seriously threatens human health and ecological security, but rapid, effective methods for evaluating this threat are lacking. This paper aims to develop a risk evaluation method for basin accidents by coupling the risk source with sensitive targets to evaluate the zone accident risk levels of basins and prevent the accidental environmental pollution of water. This method incorporates the interplay between risk sources and sensitive targets by evaluating the zone risk levels of water environments from different sources, effectiveness of the risk source control mechanisms, vulnerability of sensitive targets and spatial and temporal relationships between these sources and targets. Using the Three Gorges Reservoir region as an example, a risk system for water basin pollution incidents consisting of a risk indicator quantification system, a risk zoning method and a verification method for the zoning results is developed and implemented. The results were verified in a field investigation, which showed that the risk zoning model provides rapid, effective and reliable zoning results. This research method could serve as a theoretical reference and technological support for evaluating water basin accident risks. Furthermore, the results are useful for evaluating and protecting the aquatic environments in the Three Gorges Reservoir region. PMID:26207430

  11. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella

    International Nuclear Information System (INIS)

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7 h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events. - Stormwater systems have the potential to have ecotoxicological impact as sediment and water from a retarding basin had a negative impact on Hydra hexactinella

  12. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkrantz, Rikke T. [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, DK-2800 Kgs. Lyngby (Denmark)], E-mail: rtr@env.dtu.dk; Pollino, Carmel A. [Water Studies Centre, PO Box 23, Monash University, Victoria 3800 (Australia); Nugegoda, Dayanthi [School of Applied Science, RMIT University, PO Box 71, Bundoora, Victoria 3083 (Australia); Baun, Anders [Technical University of Denmark, Department of Environmental Engineering, Miljoevej, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2008-12-15

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7 h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events. - Stormwater systems have the potential to have ecotoxicological impact as sediment and water from a retarding basin had a negative impact on Hydra hexactinella.

  13. An evaluation of selenium concentrations in water, sediment, invertebrates, and fish from the Solomon River Basin

    Science.gov (United States)

    May, T.W.; Fairchild, J.F.; Petty, J.D.; Walther, M.J.; Lucero, J.; Delvaux, M.; Manring, J.; Armbruster, M.

    2008-01-01

    The Solomon River Basin is located in north-central Kansas in an area underlain by marine geologic shales. Selenium is an indigenous constituent of these shales and is readily leached into the surrounding groundwater. Portions of the Basin are irrigated primarily through the pumping of selenium-contaminated groundwater from wells onto fields in agricultural production. Water, sediment, macroinvertebrates, and fish were collected from various sites in the Basin in 1998 and analyzed for selenium. Selenium concentrations were analyzed spatially and temporally and compared to reported selenium toxic effect thresholds for specific ecosystem components: water, sediments, food-chain organisms, and wholebody fish. A selenium aquatic hazard assessment for the Basin was determined based on protocol established by Lemly. Throughout the Basin, water, macroinvertebrate, and whole fish samples exceeded levels suspected of causing reproductive impairment in fish. Population structures of several fish species implied that successful reproduction was occurring; however, the influence of immigration of fish from low-selenium habitats could not be discounted. Site-specific fish reproduction studies are needed to determine the true impact of selenium on fishery resources in the Basin. ?? Springer Science+Business Media B.V. 2007.

  14. Parametric and scaling studies of condensation oscillation in subcooled water of the in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Condensation oscillation by jetting the steam into subcooled water through spargers is studied. To provide a suitable guideline for oscillation phenomena in the IRWST of the next generation reactor, scaling methodology is introduced. Through scaling methodology and subsequent tests, it shows that the volume of steam cavity determines the dynamic characteristics of condensation oscillation. The second-order linear differential equation for frequency analysis is derived and its results are compared with those from the test data. Two types of condensation phenomena exist according to steam flow rates. At subsonic jet, condensation interface becomes irregular in shape and upper system volumes affect the dynamic characteristics of condensation oscillation. At sonic jet, a regular steam cavity forms at the exit of discharge holes. Parametric effects and subsequent dynamic responses of the pool tank are investigated through experiments in applicable test ranges. When the temperature of pool water becomes lower, the amplitude becomes larger. Critical parameters are derived from the scaling methodology and are system volume, cavity volume, discharge hole area, and density ration. It is found that system friction factors affect frequency components of condensation oscillation. Oscillations of a steam cavity occur mainly on the face of the axial direction and pressure amplitudes become larger than that of the lateral direction

  15. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. PMID:27405519

  16. Water exchange estimates derived from forcing for the hydraulically coupled basins surrounding Aespoe island and adjacent coastal water

    International Nuclear Information System (INIS)

    A numerical model study based on representative physical forcing data (statistically averaged from approximately 10 years) has been performed of the Aespoe area, subdivided into five separate basins, interconnected by four straits and connected to the Baltic coast through three straits. The water exchange of the shallow Borholmsfjaerden, with comparatively small section areas of its straits, is dominated by the sea level variations while the baroclinic exchange components (estuarine and intermediary circulation) also contribute. The average transit retention time (averaged over the basin volume for a full year cycle) is found to be a little over 40 days for exogenous water (i.e. coastal water and freshwater combined); this measure of the water exchange is comparable to the combined average of an ensemble consisting of 157 similarly analyzed basins distributed along the Swedish east and west coasts. The exchange mechanisms and model assumptions are discussed. The consequences for the retention times by short- and long-term variations of the forcing is also analyzed. The standard deviation (SD) of the retention time during an average year (intra-annual variation) is greater than the SD between years (interannual variation) for all basins except Borholmsfjaerden for which these two measures are in parity. The range of the retention times that results from an extreme combination of forcing factor variation between years is found to be greater the farther a particular basin is located from the coast, measured as the minimal number of separating straits. The results of an earlier investigation are also reviewed

  17. Environmental Monitoring, Water Quality - WATER_QUALITY_STATISTICS_EPA_IN: Water Quality Monitoring and Data Summaries Indiana, Derived from EPA BASINS (United States Environmental Protection Agency, Point Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WATER_QUALITY_STATISTICS_EPA_IN is a point shapefile developed by the USEPA BASINS 3.0 program and edited by Bernardin, Lochmueller and Associates. Points represent...

  18. Water balance in the Amazon basin from a land surface model ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hongyi; Decharme, Bertrand; Zhang, Zhengqiu J.; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Mounirou Toure, Ally; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi Rae; Drapeau, Guillaume; Leung, Lai-Yung R.; Ronchail, Josyane; Sheffield, Justin

    2014-12-06

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaled to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.

  19. Algorithm for Assessing Irrigation Water Use Potential Pertaining Present Water Protection Measures at the Danube and Adriatic Sea River Basins

    Directory of Open Access Journals (Sweden)

    Rozalija Cvejic

    2014-05-01

    Full Text Available The approach for developing a sectoral water use demand plan for irrigation sector is represented in this paper. The aim of the research is to inform implementation of the measure DDU26 set out by the River basin management plan for the Danube and Adriatic Sea river basins. The latter is an umbrella operational plan set out to achieve good status of water bodies under the EU Water Framework Directive (WFD. The aim of the measure DDU26 is to estimate (a available stocks of surface water and groundwater and (b existing and projected water use for the period until 2021. To achieve this all water use sectors (irrigation, domestic use, cooling in electricity production, process water in industry, tourism, etc. need to establish their own water demand plans reflecting their sectoral development programmes. Projections of future irrigation water use show the current water use for irrigation will increase. However no spatial reference on where this development will happen is defined thus the projection poorly informs the DDU26 implementation. To overpass the sectoral gap and inform spatially weighted irrigation development that relates to water source use potential pertaining current protection aspirations under the River Basin Management Plan (RBMP, we document the development of the irrigation water use potential algorithm (IWUP. IWUP is a decision tree that helps choose best suitable irrigation water source of several available. The water sources use suitability is ranked on a scale from highly suitable for use to least suitable for use. Use priority of water sources for irrigation decreases accordingly: surface water stream, reservoir, and groundwater. The IWUP incorporates the WFD relevant variables such as ecologically acceptable flow of surface water streams, quantitative groundwater body status, and multifunctional reservoir use.

  20. Algorithm for Assessing Irrigation Water Use Potential Pertaining Present Water Protection Measures at the Danube and Adriatic Sea River Basins

    Directory of Open Access Journals (Sweden)

    Rozalija Cvejic

    2014-03-01

    Full Text Available The approach for developing a sectoral water use demand plan for irrigation sector is represented in this paper. The aim of the research is to inform implementation of the measure DDU26 set out by the River basin management plan for the Danube and Adriatic Sea river basins. The latter is an umbrella operational plan set out to achieve good status of water bodies under the EU Water Framework Directive (WFD. The aim of the measure DDU26 is to estimate (a available stocks of surface water and groundwater and (b existing and projected water use for the period until 2021. To achieve this all water use sectors (irrigation, domestic use, cooling in electricity production, process water in industry, tourism, etc. need to establish their own water demand plans reflecting their sectoral development programmes. Projections of future irrigation water use show the current water use for irrigation will increase. However no spatial reference on where this development will happen is defined thus the projection poorly informs the DDU26 implementation. To overpass the sectoral gap and inform spatially weighted irrigation development that relates to water source use potential pertaining current protection aspirations under the River Basin Management Plan (RBMP, we document the development of the irrigation water use potential algorithm (IWUP. IWUP is a decision tree that helps choose best suitable irrigation water source of several available. The water sources use suitability is ranked on a scale from highly suitable for use to least suitable for use. Use priority of water sources for irrigation decreases accordingly: surface water stream, reservoir, and groundwater. The IWUP incorporates the WFD relevant variables such as ecologically acceptable flow of surface water streams, quantitative groundwater body status, and multifunctional reservoir use.

  1. Decentralized water resources management in Mozambique: Challenges of implementation at the river basin level

    Science.gov (United States)

    Inguane, Ronaldo; Gallego-Ayala, Jordi; Juízo, Dinis

    In the context of integrated water resources management implementation, the decentralization of water resources management (DWRM) at the river basin level is a crucial aspect for its success. However, decentralization requires the creation of new institutions on the ground, to stimulate an environment enabling stakeholder participation and integration into the water management decision-making process. In 1991, Mozambique began restructuring its water sector toward operational decentralized water resources management. Within this context of decentralization, new legal and institutional frameworks have been created, e.g., Regional Water Administrations (RWAs) and River Basin Committees. This paper identifies and analyzes the key institutional challenges and opportunities of DWRM implementation in Mozambique. The paper uses a critical social science research methodology for in-depth analysis of the roots of the constraining factors for the implementation of DWRM. The results obtained suggest that RWAs should be designed considering the specific geographic and infrastructural conditions of their jurisdictional areas and that priorities should be selected in their institutional capacity building strategies that match local realities. Furthermore, the results also indicate that RWAs have enjoyed limited support from basin stakeholders, mainly in basins with less hydraulic infrastructure, in securing water availability for their users and minimizing the effect of climate variability.

  2. Ten Key Questions About the Management of Water in the Yellow River Basin

    Science.gov (United States)

    Barnett, Jon; Webber, Michael; Wang, Mark; Finlayson, Brian; Dickinson, Debbie

    2006-08-01

    Water is scarce in many regions of the world, clean water is difficult to find in most developing countries, there are conflicts between irrigation needs and urban demands, and there is wide debate over appropriate means of resolving these problems. Similarly, in China, there is limited understanding of the ways in which people, groups, and institutions contribute to, are affected by, and respond to changes in water quantity and quality. We use the example of the Yellow River basin to argue that these social, managerial, and policy dimensions of the present water problems are significant and overshadow the physical ones. Despite this, they receive relatively little attention in the research agenda, particularly of the lead agencies in the management of the Yellow River basin. To this end, we ask ten research questions needed to address the policy needs of water management in the basin, split into two groups of five. The first five relate to the importance of water in this basin and the changes that have affected water problems and will continue to do so. The second five questions represent an attempt to explore possible solutions to these problems.

  3. Preliminary selection of storm-water basins suitable for infiltration of reclaimed water in Nassau County, Long Island, New York

    Science.gov (United States)

    Aronson, D.A.

    1976-01-01

    A survey was made of 205 storm-water basins south of the ground-water divide and north of Hempstead Turnpike in Nassau County, Long Island, N.Y., to determine which would be best suited for infiltration of reclaimed water. Selection depended on infiltration area, location with respect to the ground-water divide and to planned transmission mains, tendency to retain storm runoff, underlying lithology, and depth to water table. The total maximum infiltration area of 14 selected basins is 60.2 acres, or 2,620,900 square feet (0.24 square kilometers). If 5-foot (1.5-meter) -high partitions were constructed in the basins to divide each into approximately equal halves and reclaimed water were applied in half of each basin to a depth of 5 feet (1.5 meters), using an application-rest cycle, a total area of 25.2 acres (0.10 square kilometers) would be available for supplemental recharge; the remaining infiltration area could be used for disposal of storm runoff. (Woodard-USGS)

  4. Development of a CFD Model for Secondary Final Settling Tanks in Water Pollution Control Plants

    Science.gov (United States)

    Gong, Minwei; Xanthos, Savvas; Ramalingam, Krish; Fillos, John

    2007-11-01

    To assess performance and evaluate alternatives to improve efficiency of the New York City the Wards Island Water Pollution Control Plant (WPCP) FSTs at peak loads, a 3D CFD model has been developed. Fluent was utilized as the base platform, where sub-models of the Suspended Solids (SS), settling characteristics, density currents and SS flocculation were incorporated. This was supplemented by field and bench scale experiments to quantify the coefficients integral to the sub-models. Model calibration and validation have been carried out by using the extensive set of data collected. The model can be used to evaluate different modes of operation, alternate hydraulic and solids loading rates, as well as addition of auxiliary components such as baffles to improve process performance. The model is being used to compare potential benefits for different alternatives of design and operation of the existing FSTs. After comparing series of inlet baffles, a baffle with 4 horizontal and 7 vertical slots has been recommended for installation in the FSTs. Additional baffle type, configurations and locations within the tank are also being evaluated to improve the performance of the FSTs especially during periods of poor settling and peak flow conditions.

  5. Measurement of snow water storage in the Lake Saperior basin using aerial gamma-ray spectrometry

    International Nuclear Information System (INIS)

    A pilot project was started in 1977 over the Lake Superior basin to measure water storage on the land area using aerial gamma-ray spectrometry to provide hydrologic information for forecasting inflow to the lake. Two airborne surveys were made, respectively in November 1977 and March 1978 which provided estimates of the increase in snow water equivalent between these surveys. The basin is located on the Canadian Shield and consequently, the gamma radiation count rate is quite variable. The airborne results are compared with ground measurements on selected flight lines and show generally good agreement. Two equipment calibrations in the Ottawa area provided inconsistent parameter values which are consequently also reflected in the results over the Lake Superior basin. The project has demonstrated to-date that the technique can be developed into an operational system for measuring snow cover water equivalent of this vast and remote area by using well calibrated equipment and processing the spectrometric measurements with great care. (Auth.)

  6. Analysis of Origin of Multi-Ring Basins by Theory of Deep Water Waves

    Institute of Scientific and Technical Information of China (English)

    SHI Jian-Chun; MA Yue-Hua; CHEN Dao-Han; BAO Gang

    2008-01-01

    The tsunami model of the origin of multi-ring basins is analysed with the theory of deep water waves generated by an initial surface deformation,which is set as a parabolic crater.We obtain an approximate formula for calculating the ring radius.The formula applied to some multi-ring basins on the Moon,Mercury and Mars gives almost equidistant spacing of the rings within the main ring (the IV ring); this agrees with the previous conclusion that the IV ring marks the end of the fluidized region.Besides this,the theory of deep water waves does not require similar crustal structure at each basin-impact site on all three planets which is required in the theory of shallow water waves.

  7. Expert knowledge based modeling for integrated water resources planning and management in the Zayandehrud River Basin

    Science.gov (United States)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2015-09-01

    This study highlights the need for water resource planning and management using expert knowledge to model known extreme hydrologic variability in complex hydrologic systems with lack of data. The Zayandehrud River Basin in Iran is used as an example of complex water system; this study provides a comprehensive description of the basin, including its water demands (municipal, agricultural, industrial and environmental) and water supply resources (rivers, inter-basin water transfer and aquifers). The objective of this study is to evaluate near future conditions of the basin (from Oct./2015 to Sep./2019) considering the current water management policies and climate change conditions, referred as Baseline scenario. A planning model for the Zayandehrud basin was built to evaluate the Baseline scenario, the period of hydrologic analysis is 21 years, (from Oct./1991 to Sep./2011); it was calibrated for 17 years and validated for 4 years using a Historic scenario that considered historic water supply, infrastructure and hydrologic conditions. Because the Zayandehrud model is a planning model and not a hydrologic model (rainfall-runoff model), an Adaptive Network-based Fuzzy Inference System (ANFIS) is used to generate synthetic natural flows considering temperature and precipitation as inputs. This model is an expert knowledge and data based model which has the benefits of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS). Outputs of the ANFIS model were compared to the Historic scenario results and are used in the Baseline scenario. Three metrics are used to evaluate the goodness of fit of the ANFIS model. Water supply results of the Baseline scenario are analyzed using five performance criteria: time-based and volumetric reliability, resilience, vulnerability and maximum deficit. One index, the Water Resources Sustainability Index is used to summarize the performance criteria results and to facilitate comparison among trade-offs. Results for the Baseline

  8. New technology in laboratory wave test tank

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao Alcino de Andrade [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Naval e Oceanica; Osaka University, Suita (Japan). Naval Architects and Ocean Engineers (NAOE); FAPESP-Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), SP (Brazil)

    2008-07-01

    This paper presents a new technology in testing tank for Naval and Ocean Engineering research. This tank is based on active wave makers all around the perimeter concept (AMOEBA -Advanced Multiple Organized Experimental Basin - Naito et al., 1998) creating a wave field similar to open waters conditions. Measurements have shown that the wave field is homogeneous (R.A.O. +10%) inside 45% diameter and can keep irregular wave amplitude and phase more than 20 minutes, for frequencies from 1.6 Hz up to 3.0 Hz. The experimental results for the diffraction force measured is within {+-}2% deviation band among tests and repetitions and within {+-}7% among present tests and those performed 10 years ago. These results of wave elevations and model force measurements have proved the AMOEBA new wave tank concept usefulness and reliability. (author)

  9. Sources and summaries of water-quality information for the Rapid Creek basin, western South Dakota

    Science.gov (United States)

    Zogorski, John S.; Zogorski, E.M.; McKallip, T.E.

    1990-01-01

    This report provides a compilation of water quality information for the Rapid Creek basin in western South Dakota. Two types of information are included: First, past and current water quality monitoring data collected by the South Dakota Department of Water and Natural Resources, U.S. Forest Service, U.S. Geological Survey, and others are described. Second, a summary is included for all past water quality reports, publications, and theses that could be located during this study. A total of 62 documents were abstracted and included journal articles, abstracts, Federal agency reports and publications, university and State agency reports, local agency reports, and graduate theses. The report should be valuable to water resources managers, regulators, and others contemplating water quality research, monitoring, and regulatory programs in the Rapid Creek basin. (USGS)

  10. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: A paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-12-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotranspiration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404-1905 period for the Upper Colorado River Basin.

  11. Tank waste remediation system: An update

    International Nuclear Information System (INIS)

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90Sr and 137Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  12. Inter-basin water transfer-supply model and risk analysis with consideration of rainfall forecast information

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper develops a new inter-basin water transfer-supply and risk assessment model with consideration of rainfall forecast information. Firstly, based on the current state of reservoir and rainfall forecast information from the global forecast system (GFS), the actual diversion amount can be determined according to the inter-basin water transfer rules with the decision tree method; secondly, the reservoir supply operation system is used to distribute water resource of the inter-basin water transfer reservoir; finally, the integrated risk assessment model is built by selecting the reliability of water transfer, the reliability (water shortage risk), the resiliency and the vulnerability of water supply as risk analysis indexes. The case study shows that the inter-basin water transfer-supply model with rainfall forecast information considered can reduce the comprehensive risk and improve the utilization efficiency of water resource, as compared with conventional and optimal water distribution models.

  13. Ground water distillation by basin type solar still for different basin water depth under the climatic condition of Rewa

    OpenAIRE

    AbhayAgrawal; Rana, R.S.

    2015-01-01

    Adequate quality and reliability of drinking water supply is a fundamental need. Without potable water or drinking water (less than about 500 ppm of salt) human life is not possible. Only 1% of Earth's water is in a fresh, liquid state, and nearly all of this is polluted by both diseases and toxic chemicals. For this reason, purification of water supplies is extremely important. Keeping these things in mind, we have devised a model which will convert the saline ground water into p...

  14. The storage basin Geeste - water resources management for big power stations at small rivers

    International Nuclear Information System (INIS)

    Today, the securing of the additional water supply for cooling towers of big power stations at small rivers is frequently done by the water transfer in ship-canals or the storage in water basins. The combination of wet cooling towers with special measures concerning the water economy has clearly proved to be more economic as compared to the dry cooling. The storage basin Geeste in the proximity of the power station site Lingen at the Ems of Vereinigte Elektrizitaetswerke Westfalen AG can hold 18 million m3 additional water for cooling towers for two 1300 MW nuclear power station blocks. By this, it is possible to bridge over longer periods of low water, too. The basin consists of a ring dam with a length of 6 km and a height of 15 m and is sealed on the inner surface with asphalt fine concrete. Approval by the authorities concerned was given due to the fact that the basin is well fitted into the environment and the artificial lake of nearly 2 km2 is opened to the public as recreation area. 2.3 million m2 forest had to be cut down, but had to be replaced by reforestations and biotopes on a surface of the same size. (orig.)

  15. Intra-annual water store and stable isotope dynamics for Himalayan basins of Nepal

    Science.gov (United States)

    Hannah, D. M.; Fairchild, I. J.; Boomer, I.; Pokhrel, A.; Kansakar, S. R.

    2009-04-01

    Isotope-based hydrograph separations are applied commonly to reveal the sources, mixing-ratios and timing of river flow and so evaluate runoff generation mechanisms. In this context, rivers draining the Himalayas have received limited attention despite their high sensitivity to climate change and their importance for regional and global water budgets and biogeochemical cycles. Seasonal variation in river water isotope compositions is not well documented for this high mountain region. Hence, this research aims to determine the nature and dynamics of water store contributions to river flow for Himalayan basins of Nepal over a hydrological year by undertaking a study of ^18O and ^D variation in river water and rainfall for two sub-basins of the Trishuli river with contrasting hydrology: (a) glacierized Langtang Khola and (b) rain-fed Phalankhu Khola. Weekly water samples were taken from April 2004-March 2005 at 4 river sites (in each sub-basin and above and below their confluences) and from two aggregate rainfall collectors. Sampling locations were paired with river and precipitation gauges. Isotopic data yield tight and internally consistent arrays that facilitate interpretation in relation to rainfall amount and isotopic composition, and river discharge data, and thus quantification of changing water store contributions (i.e. rainfall including summer monsoon, snow- and ice-melt, and groundwater), over the hydrological year, and between basins. This research provides a key baseline study during the current period of Himalayan glacier recession.

  16. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  17. Water budget and its variation in Hutuo River basin predicted with the VIP ecohydrological model

    OpenAIRE

    Huang, F; Mo, X.

    2015-01-01

    Accurate assessment of water budgets is important to water resources management and sustainable development in catchments. Here the VIP (Vegetation Interface Processes) ecohydrological model is used to estimate the water budget and its influence factors in Hutuo River basin, China. The model runs from 1956 to 2010 with a spatial resolution of 1 km, utilizing remotely sensed LAI data of MODIS. During the study period the canopy transpiration takes up 58% of evapotranspiration over the whole ca...

  18. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    OpenAIRE

    Zhuo, L.; M. M. Mekonnen; A. Y. Hoekstra

    2014-01-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t−1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the p...

  19. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River Basin

    OpenAIRE

    Zhuo, L.; M. M. Mekonnen; A. Y. Hoekstra

    2014-01-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t−1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the p...

  20. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    OpenAIRE

    Pan Chen; Lan Li; Hongbin Zhang

    2015-01-01

    Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA), the cluster analysis (CA) and the discriminant analysis (DA) were used to assess the water pollutio...

  1. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    OpenAIRE

    Kahil, Mohamed Taher; Ward, Frank A.; Albiac Murillo, José; Eggleston, Jack; Sanz, David

    2016-01-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. ...

  2. Water allocation policies for the Dong Nai River Basin in Vietnam: an integrated perspective

    OpenAIRE

    Ringler, Claudia; Vu Huy, Nguyen

    2004-01-01

    Recent water sector reforms, increased scarcity and vulnerability of existing water resources, combined with declining public funding available for large-scale infrastructure investment in the sector have led to an increased awareness by the Government of Vietnam for the need to analyze water resource allocation and use in an integrated fashion, at the basin scale, and from an economic efficiency perspective. This paper presents the development, application, and results from an integrated eco...

  3. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i a resource base sheet, (ii an evapotranspiration sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change and internal influences (e.g., infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  4. Water Accounting Plus (WA+ – a water accounting procedure for complex river basins based on satellite measurements

    Directory of Open Access Journals (Sweden)

    D. Molden

    2012-11-01

    Full Text Available Coping with the issue of water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links hydrological flows to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper we introduce Water Accounting Plus (WA+, which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use on the water cycle is described explicitly by defining land use groups with common characteristics. Analogous to financial accounting, WA+ presents four sheets including (i a resource base sheet, (ii a consumption sheet, (iii a productivity sheet, and (iv a withdrawal sheet. Every sheet encompasses a set of indicators that summarize the overall water resources situation. The impact of external (e.g. climate change and internal influences (e.g. infrastructure building can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used for 3 out of the 4 sheets, but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  5. Ground Water Fluctuations In The Kanola Watershed Basin Of Karmala Tahsil, Solapur District, Maharashtra

    Directory of Open Access Journals (Sweden)

    Pandurang Y. Patil

    2013-07-01

    Full Text Available Water level fluctuations and depletion of the groundwater are the major problem in the drought prone area. Just deepening of well with heavy capital investment is not a proper solution. The problem is aggravated especially in the summer season. It has direct bearing on food security and poverty. The present study has attempted to understand fluctuations in the ground water levels in a Kanola watershed basin in the drought affected areas of Maharashtra state. The study concludes that it is necessary to undertake watershed development programmes in the basin taking into account specific site factors to ensure groundwater availability for longer period in a year.

  6. GROUND WATER FLUCTUATIONS IN THE KANOLA WATERSHED BASIN OF KARMALA TAHSIL, SOLAPUR DISTRICT, MAHARASHTRA

    Directory of Open Access Journals (Sweden)

    PANDURANG Y. PATIL

    2013-01-01

    Full Text Available Water level fluctuations and depletion of the groundwater are the major problem in the drought prone area. Just deepening of well with heavy capital investment is not a proper solution. The problem is aggravated especially in the summer season. It has direct bearing on food security and poverty. The present study has attempted to understand fluctuations in the ground water levels in a Kanola watershed basin in the drought affected areas of Maharashtra state. The study concludes that it is necessary to undertake watershed development programmes in the basin taking into account specific site factors to ensure groundwater availability for longer period in a year.

  7. Tank 241-Z-361 process and characterization history

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.A.

    1998-08-06

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people`s recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  8. Water Tanks, MFRDC has WT for some of the counties and cities., Published in 2008, 1:1200 (1in=100ft) scale, Middle Flint RDC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Tanks dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of 2008. It is described as 'MFRDC...

  9. Irrigation efficiency and water-policy implications for river-basin resilience

    Directory of Open Access Journals (Sweden)

    C. A. Scott

    2013-07-01

    Full Text Available Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  10. Examining Riparian Drinking Water Resources in the Danube Basin

    International Nuclear Information System (INIS)

    The importance of the need for high quality drinking water and for its long term secure supply is growing, even in economically medium developed countries. The drinking water requirements of several million people are covered by bank filtered (riparian) groundwater resources along the Danube River and its tributaries. These are very vulnerable water resources, of which exploited water is a mixture of waters coming from a minimum of two, but often from three or four sources as river water, locally infiltrated precipitation, distantly infiltrated precipitation, or infiltrated still water (from lakes or wetlands). The European Union (EU) Water Framework Directive (WFD) requires the setup of protected areas and management plans for groundwater bodies based on conceptual hydrological models. One of the most reliable methods for proving, calibrating or verifying these models is the application of environmental isotope data

  11. The Indus basin in the framework of current and future water resources management

    Science.gov (United States)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use

  12. The Indus basin in the framework of current and future water resources management

    Directory of Open Access Journals (Sweden)

    A. N. Laghari

    2012-04-01

    Full Text Available The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries – Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation. Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions – and especially groundwater extractions – have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer season (as well as sugar cane, cotton, maize and other crops and wheat during the rabi (dry, winter season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1 reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater and water demands; (2 water quality conservation and investment in wastewater infrastructure; (3 the use of alternative water resources like the recycling of wastewater and desalination; (4

  13. Water Markets: Australia's Murray Darling Basin and the US Southwest

    OpenAIRE

    R. Quentin Grafton; Clay Landry; Gary D. Libecap; R. J. (Bob) O'Brien

    2009-01-01

    Fresh water supplies increasingly are under stress in many parts of the world due to rising populations, higher per capita incomes and corresponding consumption, greater environmental concerns, and the effects of climate change. Water rights and markets are part of the institutional menus for responding to these problems. We examine water markets in both Australia's MDB and the western US and their prospects for addressing water scarcity. The two regions share a number of important similariti...

  14. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    Science.gov (United States)

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  15. Challenging Hydrological Panaceas: Water poverty governance accounting for spatial scale in the Niger River Basin

    Science.gov (United States)

    Ward, John; Kaczan, David

    2014-11-01

    Water poverty in the Niger River Basin is a function of physical constraints affecting access and supply, and institutional arrangements affecting the ability to utilise the water resource. This distinction reflects the complexity of water poverty and points to the need to look beyond technical and financial means alone to reduce its prevalence and severity. Policy decisions affecting water resources are generally made at a state or national level. Hydrological and socio-economic evaluations at these levels, or at the basin level, cannot be presumed to be concordant with the differentiation of poverty or livelihood vulnerability at more local levels. We focus on three objectives: first, the initial mapping of observed poverty, using two health metrics and a household assets metric; second, the estimation of factors which potentially influence the observed poverty patterns; and third, a consideration of spatial non-stationarity, which identifies spatial correlates of poverty in the places where their effects appear most severe. We quantify the extent to which different levels of analysis influence these results. Comparative analysis of correlates of poverty at basin, national and local levels shows limited congruence. Variation in water quantity, and the presence of irrigation and dams had either limited or no significant correlation with observed variation in poverty measures across levels. Education and access to improved water quality were the only variables consistently significant and spatially stable across the entire basin. At all levels, education is the most consistent non-water correlate of poverty while access to protected water sources is the strongest water related correlate. The analysis indicates that landscape and scale matter for understanding water-poverty linkages and for devising policy concerned with alleviating water poverty. Interactions between environmental, social and institutional factors are complex and consequently a comprehensive

  16. A hybrid model for chaotic front dynamics: From semiconductors to water tanks

    OpenAIRE

    Amann, A; Peters, K.; Parlitz, U.; Wacker, A.; Schöll, E.

    2003-01-01

    We present a general method for studying front propagation in nonlinear systems with a global constraint in the language of hybrid tank models. The method is illustrated in the case of semiconductor superlattices, where the dynamics of the electron accumulation and depletion fronts shows complex spatio-temporal patterns, including chaos. We show that this behavior may be elegantly explained by a tank model, for which analytical results on the emergence of chaos are available. In particular, f...

  17. Dealing with variability in water availability: the case of the Verde Grande River basin, Brazil

    Science.gov (United States)

    Collischonn, B.; Lopes, A. V.; Pante, A. R.

    2014-09-01

    This paper presents a water resources management strategy developed by the Brazilian National Water Agency (ANA) to cope with the conflicts between water users in the Verde Grande River basin, located at the southern border of the Brazilian semi-arid region. The basin is dominated by water-demanding fruit irrigation agriculture, which has grown significantly and without adequate water use control, over the last 30 years. The current water demand for irrigation exceeds water availability (understood as a 95 % percentile of the flow duration curve) in a ratio of three to one, meaning that downstream water users are experiencing more frequent water shortages than upstream ones. The management strategy implemented in 2008 has the objective of equalizing risk for all water users and consists of a set of rules designed to restrict water withdrawals according to current river water level (indicative of water availability) and water demand. Under that rule, larger farmers have proportionally larger reductions in water use, preserving small subsistence irrigators. Moreover, dry season streamflow is forecasted at strategic points by the end of every rainy season, providing evaluation of shortage risk. Thus, water users are informed about the forecasts and corresponding restrictions well in advance, allowing for anticipated planning of irrigated areas and practices. In order to enforce restriction rules, water meters were installed in all larger water users and inefficient farmers were obligated to improve their irrigation systems' performance. Finally, increases in irrigated area are only allowed in the case of annual crops and during months of higher water availability (November to June). The strategy differs from convectional approached based only on water use priority and has been successful in dealing with natural variability of water availability, allowing more water to be used in wet years and managing risk in an isonomic manner during dry years.

  18. Annual and seasonal water storage changes detected from GRACE data in the La Plata Basin

    Science.gov (United States)

    Pereira, Ayelen; Pacino, María Cristina

    2012-12-01

    The gravity does not remain constant, but changes over time depending on the redistribution of the masses. Aquatic environments, like a river basin, perform important functions in nature such as control of climate, floods and nutrients; and they also provide goods and services for humanity. To monitor these environments at large spatial scales, the satellite gravity mission GRACE provides time-variable gravity field models that reflect the Earth's gravity field variations due to mass transport processes, like continental water storage variations. The La Plata Basin is the second largest in South America and is a sample of the abundance, variety and quality of natural resources and possibilities offered in connection with the production of goods and services. The objective of this work is to analyze GRACE capability to monitor the water storage variations in the La Plata Basin. Firstly, GRACE solutions from four different processing centers are used to estimate the gravity trend and gravity amplitude over this basin. Afterwards, the calculated hydrological signal is used to obtain mass change models over this hydrographic system's area, using two different methods and for the period from 2002 to 2009. Next, the annual and seasonal water storage changes from GRACE solutions are validated in Argentina by rainfall data over the time periods where extreme weather conditions took place. The results indicate that GRACE detected the variations of the continental water storage in the La Plata Basin, and particularly, it detected the important decrease in the South of the basin. Moreover, a coherency between the estimates of water mass changes and rainfall data was found, which shows that GRACE also detected extreme weather events (such as drought and intense rain episodes) that occurred in the 2004-2009 period in Argentina.

  19. Assessment of Climate Change Effects on Water Resources in the Yellow River Basin, China

    Directory of Open Access Journals (Sweden)

    Zhiyong Wu

    2015-01-01

    Full Text Available The water resources in the Yellow River basin (YRB are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperature projected by the RegCM3 high-resolution regional climate model under the IPCC scenario A2. Results show that, under the scenario A2, the mean annual temperature of the basin could increase by 1.6°C, while mean annual precipitation could decrease by 2.6%. There could be an 11.6% reduction in annual runoff in the basin according to the VIC projection. However, there are marked regional variations in these climate change impacts. Reductions of 13.6%, 25.7%, and 24.6% could be expected in the regions of Hekouzhen to Longmen, Longmen to Sanmenxia, and Sanmenxia to Huayuankou, respectively. Our study suggests that the condition of water resources in the YRB could become more severe in the period from 2001 to 2030 under the scenario A2.

  20. Water Governance Decentralisation and River Basin Management Reforms in Hierarchical Systems: Do They Work for Water Treatment Policy in Mexico’s Tlaxcala Atoyac Sub-Basin?

    Directory of Open Access Journals (Sweden)

    Cesar Casiano Flores

    2016-05-01

    Full Text Available In the last decades, policy reforms, new instruments development, and economic resources investment have taken place in water sanitation in Mexico; however, the intended goals have not been accomplished. The percentage of treated wastewater as intended in the last two federal water plans has not been achieved. The creation of River Basin Commissions and the decentralisation process have also faced challenges. In the case of Tlaxcala, the River Basin Commission exists only on paper and the municipalities do not have the resources to fulfil the water treatment responsibilities transferred to them. This lack of results poses the question whether the context was sufficiently considered when the reforms were enacted. In this research, we will study the Tlaxcala Atoyac sub-basin, where water treatment policy reforms have taken place recently with a more context sensitive approach. We will apply the Governance Assessment Tool in order to find out whether the last reforms are indeed apt for the context. The Governance Assessment Tool includes four qualities, namely extent, coherence, flexibility, and intensity. The assessment allows deeper understanding of the governance context. Data collection involved semi-structured in-depth interviews with stakeholders. The research concludes that the observed combination of qualities creates a governance context that partially supports the implementation of the policy. This has helped to increase the percentage of wastewater treated, but the water quality goals set by the River Classification have not been achieved. With the last reforms, in this hierarchical context, decreasing the participation of municipal government levels has been shown to be instrumental for improving water treatment plants implementation policy, although many challenges remain to be addressed.

  1. Water Supply in the Mojave River Ground-Water Basin, 1931-99, and the Benefits of Artificial Recharge

    Science.gov (United States)

    Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2001-01-01

    The Mojave River and the associated aquifer system are important water supplies in the Mojave Desert of southern California. The river and aquifer system are in hydraulic connection in many areas, and when flow conditions change in one, the other usually is affected. The river is an unpredictable source of water; therefore, residents of the basin rely almost entirely on ground water for their water supply. This reliance on ground water has resulted in overdraft conditions that have caused water-level declines, changes in the quantity and spatial distribution of recharge from the Mojave River, and loss of riparian habitat. The U.S. Geological Survey (USGS), in cooperation with the Mojave Water Agency (MWA), has completed several studies to determine the likely effects of overdraft on the ground-water and surface-water relations along the Mojave River. This report summarizes those studies, highlighting some of the simulation results from a ground-water flow model, and describes the ground-water and surface-water conditions of the Mojave River Basin.

  2. The Studies of Regional Water Circulation Patterns in the Yerqiang River Basin

    Institute of Scientific and Technical Information of China (English)

    REN Jiaguo; WU Qianqian; ZHENG Xilai; XU Mo

    2006-01-01

    Based on the characteristic of ‘one river one oasis' in the arid areas, the Yerqiang River Basin, which is the largest irrigated area of Xinjiang, is taken as an example in this paper, and the regional water circulation pattern is investigated through the analysis of 60 groups of isotope data in the basin. From the phreatic evaporation data analysis of different soils, we study the law of phreatic evaporation, complete the research of the main consumption path of the groundwater,and improve the assessment precision of water resources. The transformation mount of regional water resources are predicted by calculation, which provides a scientific basis for water resources assessment and allocation in arid regions, and offers a new method for the study of regional water circulation patterns.

  3. Uranium in spring water and bryophytes at Basin Creek in central Idaho

    International Nuclear Information System (INIS)

    Arkosic sandstones and conglomerates of Tertiary age beneath the Challis Volcanics of Eocene age at Basin Creek, 10 km northeast of Stanley, Idaho, contain uranium-bearing vitrainized carbon fragments. The economic potential of these sandstones and conglomerates is currently being assessed. Water from 22 springs and associated bryophytes were sampled; two springs were found to contain apparently anomalous concentrations (normalized) of uranium. Water from a third spring contained slightly anomalous amounts of uranium, and two species of mosses at the spring contained anomalous uranium and high levels of both cadmium and lead. Water from a fourth spring was normal for uranium, but the moss from the water contained a moderate uranium level and highly anomalous concentrations of lead, germanium, and thallium. These results suggest that, in the Basin Creek area, moss sampling at springs may give a more reliable indication of uranium occurrence than would water sampling. (Auth.)

  4. Water resources optimization and eco-environmental protection in Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to realize sustainable development of the arid area of Northwest China, rational water resources exploitation and optimization are primary prerequisites. Based on the essential principle of sustainable development, this paper puts forward a general idea on water resources optimization and eco-environmental protection in Qaidam Basin, and identifies the competitive multiple targets of water resources optimization. By some qualitative methods such as Input-output Model & AHP Model and some quantitative methods such as System Dynamics Model & Produce Function Model, some standard plans of water resources optimization come into being. According to the Multiple Targets Decision by the Closest Value Model, the best plan of water resources optimization, eco-environmental protection and sustainable development in Qaidam Basin is finally decided.

  5. Preliminary Classification of Water Areas Within the Atchafalaya Basin Floodway System by Using Landsat Imagery

    Science.gov (United States)

    Allen, Yvonne C.; Constant, Glenn C.; Couvillion, Brady R.

    2008-01-01

    The southern portion of the Atchafalaya Basin Floodway System (ABFS) is a large area (2,571 km2) in south central Louisiana bounded on the east and west sides by a levee system. The ABFS is a sparsely populated area that includes some of the Nation's most significant extents of bottomland hardwoods, swamps, bayous, and backwater lakes, holding a rich abundance and diversity of terrestrial and aquatic species. The seasonal flow of water through the ABFS is critical to maintaining its ecological integrity. Because of strong interdependencies among species, habitat quality, and water flow in the ABFS, there is a need to better define the paths by which water moves at various stages of the hydrocycle. Although river level gages have collected a long historical record of water level variation, very little synoptic information has been available regarding the distribution and character of water at more remote locations in the basin. Most water management plans for the ABFS strive to improve water quality by increasing water flow and circulation from the main stem of the Atchafalaya River into isolated areas. To describe the distribution of land and water on a basin-wide scale, we chose to use Landsat 5 and Landsat 7 imagery to determine the extent of water distribution from 1985 to 2006 and at a variety of river stages. Because the visual signature of river water is high turbidity, we also used Landsat imagery to describe the distribution of turbid water in the ABFS. The ability to track water flow patterns by tracking turbid waters will enhance the characterization of water movement and aid in planning.

  6. Estimating water storage changes and sink terms in Volta Basin from satellite missions

    Institute of Scientific and Technical Information of China (English)

    Vagner G. FERREIRA; Samuel Ato ANDAM-AKORFUL; Xiu-feng HE; Ru-ya XIAO

    2014-01-01

    The insufficiency of distributed in situ hydrological measurements is a major challenge for hydrological studies in many regions of the world. Satellite missions such as the Gravity Recovery and Climate Experiment (GRACE) and the Tropical Rainfall Measurement Mission (TRMM) can be used to improve our understanding of water resources beyond surface water in poorly gauged basins. In this study we combined GRACE and TRMM to investigate monthly estimates of evaporation plus runoff (sink terms) using the water balance equation for the period from January 2005 to December 2010 within the Volta Basin. These estimates have been validated by comparison with time series of sink terms (evaporation plus surface and subsurface runoff) from the Global Land Data Assimilation System (GLDAS). The results, for the period under consideration, show strong agreement between both time series, with a root mean square error (RMSE) of 20.2 mm/month (0.67 mm/d) and a correlation coefficient of 0.85. This illustrates the ability of GRACE to predict hydrological quantities, e.g. evaporation, in the Volta Basin. The water storage change data from GRACE and precipitation data from TRMM all show qualitative agreement, with evidence of basin saturation at approximately 73 mm in the equivalent water column at the annual and semi-annual time scales.

  7. Climate change and water resources in the Bagmati River Basin, Nepal

    Science.gov (United States)

    Babel, Mukand S.; Bhusal, Shyam P.; Wahid, Shahriar M.; Agarwal, Anshul

    2014-02-01

    This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.

  8. Sensitivity of water resources in the Delaware River basin to climate variability and change

    Science.gov (United States)

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1993-01-01

    Because of the "greenhouse effect," projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climatic change, and presents the results of sensitivity-analysis studies of the potential effects of climate change on water resources in the Delaware River basin. On the basis of sensitivity analyses, potentially serious shortfalls of certain water resources in the basin could result if some climatic-change scenarios become true. The results of basin streamflow-model simulations in this study demonstrate the difficulty in distinguishing effects of climatic change on streamflow and water supply from effects of natural variability in current climate. The future direction of basin changes in most water resources, furthermore, cannot be determined precisely because of uncertainty in current projections of regional temperature and precipitation. This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant. The sensitivity analyses could be useful in developing contingency plans on how to evaluate and respond to changes, should they occur.

  9. Estimating water storage changes and sink terms in Volta Basin from satellite missions

    Directory of Open Access Journals (Sweden)

    Vagner G. FERREIRA

    2014-01-01

    Full Text Available The insufficiency of distributed in situ hydrological measurements is a major challenge for hydrological studies in many regions of the world. Satellite missions such as the Gravity Recovery and Climate Experiment (GRACE and the Tropical Rainfall Measurement Mission (TRMM can be used to improve our understanding of water resources beyond surface water in poorly gauged basins. In this study we combined GRACE and TRMM to investigate monthly estimates of evaporation plus runoff (sink terms using the water balance equation for the period from January 2005 to December 2010 within the Volta Basin. These estimates have been validated by comparison with time series of sink terms (evaporation plus surface and subsurface runoff from the Global Land Data Assimilation System (GLDAS. The results, for the period under consideration, show strong agreement between both time series, with a root mean square error (RMSE of 20.2 mm/month (0.67 mm/d and a correlation coefficient of 0.85. This illustrates the ability of GRACE to predict hydrological quantities, e.g. evaporation, in the Volta Basin. The water storage change data from GRACE and precipitation data from TRMM all show qualitative agreement, with evidence of basin saturation at approximately 73 mm in the equivalent water column at the annual and semi-annual time scales.

  10. Outline of the water resources of the Status Creek basin, Yakima Indian Reservation, Washington

    Science.gov (United States)

    Molenaar, Dee

    1976-01-01

    On the Yakima Indian Reservation, Washington, only about 5 percent of the Satus Creek basin--in the relatively flat eastern lowland adjacent to and including part of the Yakima River lowland--is agriculturally developed, mostly through irrigation. Because the basin 's streams do not contain adequate water for irrigation, most irrigation is by canal diversion from the adjoining Toppenish Creek basin. Irrigation application of as much as 9.25 acre-feet per acre per year, combined with the presence of poorly drained silt and clay layers in this area, and the natural upward discharge of ground water from deeper aquifers (water-bearing layers), has contributed to a waterlogging problem, which has affected about 10,500 acres, or about 25 percent of the irrigated area. In the upland of the basin, a large average annual base flow of about 30 cubic feet per second in Logy Creek indicates the presence of a potentially highly productive aquifer in young (shallow) basalt lavas underlying the higher western parts of the upland. This aquifer may provide a reservoir from which streamflow may be augmented by ground-water pumping or, alternatively, it may be used as a source of ground water for irrigation of upland areas directly. (Woodard-USGS)

  11. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    Science.gov (United States)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  12. Drought and water scarcity indicators: experience and operational applications in italian basins

    Science.gov (United States)

    Mazzanti, Bernardo; Checcucci, Gaia; Monacelli, Giuseppina; Puma, Francesco; Vezzani, Claudia

    2013-04-01

    In the framework of River Basin Managment Plans (RBMPs), according to the Water Framework Directive, prevention and mitigation of water scarcity and droughts are some of the most challenging tasks. In the last ten years Italy experienced the highest ever observed frequency of occurrence of drought/water scarcity events. As an example, the damages for the latest, country-wide drought event of summer 2012 exceeded one billion euros. On the other hand, according to the more recent reports on the risks of extreme events, there is evidence, providing a basis for medium confidence, that droughts will intensify over the coming century in southern Europe and in the Mediterranean region (IPCC 2012). Monitoring actions are necessary and extremely effective to "feel the pulse of the situation" about both natural availability and anthropic use of freshwater resources. In this context, referring to the Programmes of Measures of RBMPs, italian River Basin Authorities (RBA) are tackling the issue at different spatial scales, planning an operational use of different indicators, between theme the Water Exploitation Index (EEA, 2009) and some statistical indicators. In this context, Po and Arno River Basin authorities, with the support of ISPRA, are directly involved in the experimental application of some significant indicators combining climatic, hydrological and anthropic factors affecting water availability. Planning and operational experiences for the two main basins (Po and Arno) and for a list of smaller scale subbasins are presented, with a detailed description of data needs, range of application, spatial and temporal scale issues, and threshold definition. For each indicator, a critical analysis of strenghts and weaknesses (at data and response level) is reported, with particular regard to the feasibility of its use within water management and water planning actions at the river basin and district scale. Tests were carried out for the whole Po River and Northern Appennines

  13. FUNCTIONING OF RURAL INSTITUTIONS IN THE MODERNIZATION OF RURAL TANKS TOWARDS WATERSHED DEVELOPMENT

    OpenAIRE

    V. K. Joseph Vincent; Balamurugan, P.

    2014-01-01

    Rural Tanks are traditional water storage systems mostly built in all semi-arid and tropical regions of India. These may be a small or large, system or non-system, governmental or zamindhari. They are estimated to be around 2,00,000 in the country. Rural tanks help to maintain ecological maintenance and improve environment. They are fed by their own watersheds but some have supplies augmented from neighbouring basins. Especially for the purpose of irrigation, domestic, flood ...

  14. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  15. Are Small-Scale Irrigators Water Use Efficient? Evidence from Lake Naivasha Basin, Kenya

    Science.gov (United States)

    Njiraini, Georgina W.; Guthiga, Paul M.

    2013-11-01

    With increasing water scarcity and competing uses and users, water use efficiency is becoming increasingly important in many parts of developing countries. The lake Naivasha basin has an array of different water users and uses ranging from large scale export market agriculture, urban domestic water users to small holder farmers. The small scale farmers are located in the upper catchment areas and form the bulk of the users in terms of area and population. This study used farm household data to explore the overall technical efficiency, irrigation water use efficiency and establish the factors influencing water use efficiency among small scale farmers in the Lake Naivasha basin in Kenya. Data envelopment analysis, general algebraic and modeling system, and Tobit regression methods were used in analyzing cross sectional data from a sample of 201 small scale irrigation farmers in the lake Naivasha basin. The results showed that on average, the farmers achieved only 63 % technical efficiency and 31 % water use efficiency. This revealed that substantial inefficiencies occurred in farming operations among the sampled farmers. To improve water use efficiency, the study recommends that more emphasis be put on orienting farmers toward appropriate choice of irrigation technologies, appropriate choice of crop combinations in their farms, and the attainment of desirable levels of farm fragmentation.

  16. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia;

    2015-01-01

    Water scarcity and rapid economic growth have increased the pressure on water resources and environment in Northern China, causing decreased groundwater tables, ecosystem degradation, and direct economic losses due to insufficient water supply. The authors applied the water value method, a variant...... input for the optimization model. This model was used to assess the economic impacts of ecosystem minimum flow constraints, limited groundwater pumping, and the middle route of the South–North Water Transfer Project (SNWTP). A regional climate shift has exacerbated water scarcity and increased water...... values, resulting in stricter water management. The results show that the SNWTP reduces the impacts of water scarcity and impacts optimal water management in the basin. The presented modeling framework provides an objective basis for the development of tools to avoid overpumping groundwater resources at...

  17. Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment

    Science.gov (United States)

    Bolivar Lobato, Martha Isabel; Schneider, Uwe A.

    2014-05-01

    Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling

  18. Water quality monitoring in Lake Abaya and Lake Chamo region : a research based on water resources of the Abaya-Chamo Basin - South Ethiopia

    OpenAIRE

    Teklemariam Tiruneh, Ababu

    2006-01-01

    This study is based on water quality monitoring work of water resources within the Abaya-Chamo basin. The methods, method validation and analysis results have been presented and discussed. Seansonal variation and trends as well as associated water quality management issues are discussed. A water quality monitoring system based on an integrated partial physical orthogonal model has been designed based on data generated within the water resources of the Abaya-Chamo drainage basin. Abstract c...

  19. Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin

    Science.gov (United States)

    Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.

    2014-01-01

    Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

  20. Water balance dynamics of a boreal forest watershed: White Gull Creek basin, 1994-1996

    Science.gov (United States)

    Nijssen, Bart; Lettenmaier, Dennis P.

    2002-11-01

    Field measurements from the Boreal Ecosystem-Atmosphere Study (BOREAS) were combined to calculate the water balance of the White Gull Creek basin for the three year period 1994-1996. Evapotranspiration was mapped from the observations made at the BOREAS flux towers to the basin using a simple evaporation model with a bulk canopy resistance based on tower observations. Runoff ratios were low, and evapotranspiration accounted for most of the precipitation over the area. The accumulated storage change, over the 3 year period, was 47 mm or 3.4% of the total precipitation, but precipitation exceeded the sum of discharge and evapotranspiration by 80 mm or 15% of the precipitation in 1994. Five possible explanations for the discrepancy in the water balance are identified, with the most likely cause an underestimation of the evapotranspiration in 1994, especially during periods when the basin is wet.

  1. Assessing Portuguese Guadiana Basin water management impacts under climate change and paleoclimate variability

    Science.gov (United States)

    Maia, Rodrigo; Oliveira, Bruno; Ramos, Vanessa; Brekke, Levi

    2014-05-01

    The water balance in each reservoir and the subsequent, related, water resource management decisions are, presently, highly information dependent and are therefore often limited to a reactive response (even if aimed towards preventing future issues regarding the water system). Taking advantage of the availability of scenarios for climate projections, it is now possible to estimate the likely future evolution of climate which represents an important stepping stone towards proactive, adaptative, water resource management. The purpose of the present study was to assess the potential effects of climate change in terms of temperature, precipitation, runoff and water availability/scarcity for application in water resource management decisions. The analysis here presented was applied to the Portuguese portion of the Guadiana River Basin, using a combination of observed climate and runoff data and the results of the Global Climate Models. The Guadiana River Basin was represented by its reservoirs on the Portuguese portion of the basin and, for the future period, an estimated value of the inflows originating in the Spanish part of the Basin. The change in climate was determined in terms of relative and absolute variations of climate (precipitation and temperature) and hydrology (runoff and water balance related information). Apart from the previously referred data, an hydrological model and a water management model were applied so as to obtain an extended range of data regarding runoff generation (calibrated to observed data) and water balance in the reservoirs (considering the climate change impacts in the inflows, outflows and water consumption). The water management model was defined in order to represent the reservoirs interaction including upstream to downstream discharges and water transfers. Under the present climate change context, decision-makers and stakeholders are ever more vulnerable to the uncertainties of climate. Projected climate in the Guadiana basin

  2. A wave tank study of the dependence of X band cross sections on wind speed and water temperature

    Science.gov (United States)

    Keller, Mary Ruth; Keller, William C.; Plant, William J.

    1992-01-01

    The effects of varying the water temperature, wind speed, and wind stress on the values of backscatter were investigated using measurements of normalized radar cross sections of wind-generated waves, made at X band for both vertical and horizontal polarization for incidence angles 10, 28, 48, and 68 deg. The experiment was conducted using the Naval Research Laboratory wind-wave tank. Measurements made for a wide range of wind speeds and water temperatures are compared with results of backscattering models currently in use.

  3. Hydrological Impacts of Flood Storage and Management on Irrigation Water Abstraction in Upper Ewaso Ng’iro River Basin, Kenya

    NARCIS (Netherlands)

    Ngigi, S.N.; Savenije, H.H.G.; Gichuki, F.N.

    2008-01-01

    The upper Ewaso Ng’iro basin, which starts from the central highlands of Kenya and stretches northwards transcending different climatic zones, has experienced decreasing river flows for the last two decades. The Naro Moru sub-basin is used to demonstrate the looming water crisis in this water scarce

  4. Effects of Basin Flux on Regional Interactions between Fresh Water and Saline Groundwater

    Science.gov (United States)

    Xie, S.; Murdoch, L. C.; Falta, R. W.

    2013-12-01

    Saline groundwater underlies fresh water aquifers at depths of 100 m or less in the midwestern U.S. to one to several kilometers in coastal areas. The upward migration of the interface between fresh and saline water can degrade freshwater aquifers and threaten aquatic ecosystems if the saline water discharges to surface water. Storage of CO2 in deep saline aquifers is being considered to reduce greenhouse gases in the atmosphere, and this process is expected to increase the pressure in these deep aquifers. One potential consequence of pressurization is an increase in the upward flux of saline water. This research aims to evaluate the risks associated with increasing the flux from saline to fresh water aquifers as a result of CO2 storage. The research approach is to develop and evaluate simulations of fresh water aquifers overlying saline groundwater that is subjected to changes in flux. Computational codes COMSOL, SEAWAT, and TOUGH2 were verified by solving classic benchmark problems of density-dependent flow. The models were then used to analyze idealized 2D and 3D geometries representing the essential details of a shallow, fresh water aquifer underlain by a saline ground water in a sedimentary basin. The effects of saline encroachment are evaluated using a sensitivity analysis of key parameters, and the results are formulated in both dimensioned and dimensionless form. Results indicate that the depth of the saline water-freshwater interface is closely related to the surface water circulation pattern as well as the magnitude and duration of basin encroachment. Increased upward flux of saline water will raise the interface between salt and fresh water, and it will increase the salinity of water discharging to streams. However, the expected magnitudes of these effects appear to be small when the expected changes in flux caused by CO2 storage are considered. Ongoing work is refining these analyses and verify them using field observations to further constrain risks

  5. Testing water demand management scenarios in a water-stressed basin in South Africa: application of the WEAP model

    Science.gov (United States)

    Lévite, Hervé; Sally, Hilmy; Cour, Julien

    Like many river basins in South Africa, water resources in the Olifants river basin are almost fully allocated. Respecting the so-called “reserve” (water flow reservation for basic human needs and the environment) imposed by the Water Law of 1998 adds a further dimension, if not difficulty, to water resources management in the basin, especially during the dry periods. Decision makers and local stakeholders (i.e. municipalities, water users’ associations, interest groups), who will soon be called upon to work together in a decentralized manner within Catchment Management Agencies (CMAs) and Catchment Management Committees (CMCs), must therefore be able to get a rapid and simple understanding of the water balances at different levels in the basin. This paper seeks to assess the pros and cons of using the Water Evaluation and Planning (WEAP) model for this purpose via its application to the Steelpoort sub-basin of the Olifants river. This model allows the simulation and analysis of various water allocation scenarios and, above all, scenarios of users’ behavior. Water demand management is one of the options discussed in more detail here. Simulations are proposed for diverse climatic situations from dry years to normal years and results are discussed. It is evident that the quality of data (in terms of availability and reliability) is very crucial and must be dealt with carefully and with good judgment. Secondly, credible hypotheses have to be made about water uses (losses, return flow) if the results are to be meaningfully used in support of decision-making. Within the limits of data availability, it appears that some water users are not able to meet all their requirements from the river, and that even the ecological reserve will not be fully met during certain years. But the adoption of water demand management procedures offers opportunities for remedying this situation during normal hydrological years. However, it appears that demand management alone will not

  6. Option contracts for allocating water in inter-basin transfers: the case of the Tagus-Segura Transfer in Spain

    Science.gov (United States)

    Rey, Dolores; Garrido, Alberto; Calatraba, Javier

    2014-05-01

    Users in the Mediterranean region face significant water supply risks. Water markets mechanisms can provide flexibility to water systems run in tight situations. The largest water infrastructure in the Iberian Peninsula connects the Segura and Tagus Basins. Stakeholders and politicians in the Tagus Basin have asked that water transfers between the two basins be eventually phased out. The need to increase the statutory minimum environmental flow in the middle Tagus and to meet new urban demands is going to result in a redefinition of the Transfer's management rules, leading to a reduction in the transferable volumes. To minimise the consequences of such restrictions to irrigators in the Segura Basin who depend on the transferred volumes, we propose the establishment of water option contracts between both basins that represents an institutional innovation with respect to previous inter-basin spot market experiences. Based on the draft of the new Tagus Basin Plan, we propose both a modification of the Transfer's management rule and an innovative inter-basin option contract. The main goal of the paper is to define this contract and evaluate it with respect to non-market scenarios. We also assess the resulting impact on environmental flows in the Tagus River and water availability for users in the Segura Basin, together with the economic impacts of such contract on both basins. Our results show that the proposed option contract would reduce the impact of a change in the transfer's management rule, and reduce the supply risks of the recipient area. Keywords: environmental flow, inter-basin transfer, option contracts, Tagus-Segura, water markets, water supply reliability.

  7. CHEMICAL WATER QUALITY INDICATORS IN BASIN FOREST PARCZEW

    Directory of Open Access Journals (Sweden)

    Antoni Grzywna

    2014-10-01

    Full Text Available This paper presents the characteristics of the chemistry of surface and ground water in the bottom of the river valley reclaimed Ochoza. Drained grassland accounts for 20% of the total catchment area and are located on organic soils in the valley Tyśmienica classified to the Natura 2000 sites. Analysis of physico-chemical properties of water are to assess the effects of anthropogenic transformation and identify factors that influence water quality in the study area. Water samples were collected in the years 2011–2012 in several points. The walls were characterized by surface water stagnant in the trenches, in July, blueberry plantation. Characterized by the highest quality of surface water runoff river with the test object. Occurring here throughout the growing season water flow reed growing on the bed and temporary impoundment of water contribute to the self-cleaning effect of water. Conducted at different times of the growing season (winter, spring, summer, autumn of water chemistry analysis allows to assess the impact of vegetation on the process of self-purification of water. Based on the survey it was found that the river is reduced by 26% BOD 5, COD by 37%, 12% phosphate and potassium by 13%. Concurrently, an increase in the content of nitrogen compounds – ammonia at 27% and 15% nitrate. The increase in the content of nitrogen compounds is particularly evident in the bottom of the object, which is probably associated with the deep trench causing excessive drying of the soil. The highest values of pollutants were recorded mostly in the spring probably due to the outflow of water from the drans.

  8. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  9. Reviewing the adoption and impact of water markets in the Murray-Darling Basin, Australia

    Science.gov (United States)

    Wheeler, S.; Loch, A.; Zuo, A.; Bjornlund, H.

    2014-10-01

    Water markets have increasingly been adopted as a reallocation tool around the world as water scarcity intensifies. Water markets were first introduced in Australia in the 1980s, and water entitlement and allocation trade have been increasingly adopted by both private individuals and governments. As well as providing an overview of water policy in Australia since the 1900s, this paper examines the adoption of water trading in the southern Murray-Darling Basin of Australia (the largest hydrologically connected water market in Australia), and investigates the associated social, economic and environmental impacts that have arisen from the implementation of water markets. This study found that up to 86% of irrigators in one state in the southern Murray-Darling Basin had undertaken at least one water market trade by 2010-2011, hence, water market strategies are now a common tool employed by irrigators to assist their farm management. A variety of institutional, policy and informational changes are identified to increase the benefits from water markets in the future. There is no doubt that managing the impact of climate change and water scarcity are intertwined, suggesting that policy, institutional and governance responses should be similarly structured and coordinated.

  10. Water-Energy-Food Nexus in a Transboundary River Basin: The Case of Tonle Sap Lake, Mekong River Basin

    Directory of Open Access Journals (Sweden)

    Marko Keskinen

    2015-10-01

    Full Text Available The water-energy-food nexus is promoted as a new approach for research and policy-making. But what does the nexus mean in practice and what kinds of benefits does it bring? In this article we share our experiences with using a nexus approach in Cambodia’s Tonle Sap Lake area. We conclude that water, energy and food security are very closely linked, both in the Tonle Sap and in the transboundary Mekong River Basin generally. The current drive for large-scale hydropower threatens water and food security at both local and national scales. Hence, the nexus provides a relevant starting point for promoting sustainable development in the Mekong. We also identify and discuss two parallel dimensions for the nexus, with one focusing on research and analysis and the other on integrated planning and cross-sectoral collaboration. In our study, the nexus approach was particularly useful in facilitating collaboration and stakeholder engagement. This was because the nexus approach clearly defines the main themes included in the process, and at the same time widens the discussion from mere water resource management into the broader aspects of water, energy and food security.

  11. Earth Observation Based Assessment of the Water Production and Water Consumption of Nile Basin Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    Wim G.M. Bastiaanssen

    2014-10-01

    Full Text Available The increasing competition for water resources requires a better understanding of flows, fluxes, stocks, and the services and benefits related to water consumption. This paper explains how public domain Earth Observation data based on Moderate Resolution Imaging Spectroradiometer (MODIS, Second Generation Meteosat (MSG, Tropical Rainfall Measurement Mission (TRMM and various altimeter measurements can be used to estimate net water production (rainfall (P > evapotranspiration (ET and net water consumption (ET > P of Nile Basin agro-ecosystems. Rainfall data from TRMM and the Famine Early Warning System Network (FEWS-NET RainFall Estimates (RFE products were used in conjunction with actual evapotranspiration from the Operational Simplified Surface Energy Balance (SSEBop and ETLook models. Water flows laterally between net water production and net water consumption areas as a result of runoff and withdrawals. This lateral flow between the 15 sub-basins of the Nile was estimated, and partitioned into stream flow and non-stream flow using the discharge data. A series of essential water metrics necessary for successful integrated water management are explained and computed. Net water withdrawal estimates (natural and humanly instigated were assumed to be the difference between net rainfall (Pnet and actual evapotranspiration (ET and some first estimates of withdrawals—without flow meters—are provided. Groundwater-dependent ecosystems withdraw large volumes of groundwater, which exceed water withdrawals for the irrigation sector. There is a strong need for the development of more open-access Earth Observation databases, especially for information related to actual ET. The fluxes, flows and storage changes presented form the basis for a global framework to describe monthly and annual water accounts in ungauged river basins.

  12. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels

    OpenAIRE

    Frappart, Frédéric; Seyler, Frédérique; Martinez, Jean-Michel; Leon, Juan Gabriel; A. Cazenave

    2005-01-01

    International audience The objective of this study is to determine spatio-temporal variations of water volume over inundated areas located in large river basins using combined observations from the Synthetic Aperture Radar (SAR) onboard the Japanese Earth Resources Satellite (JERS-1), the Topex/Poseidon (T/P) altimetry satellite, and in-situ hydrographic stations. Ultimately, the goal is to quantify the role of floodplains for partitioning water and sediment fluxes over the great fluvial b...

  13. Available Water Capacity for the Upper Colorado River Basin in Daymet Climate Data resolution (awc_UCRB_Daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — awc_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the available water capacity (AWC) for the Upper Colorado River Basin. AWC (available water...

  14. Temporal and Spatial Variation of Surface Water Stable Isotopes in the Marys River Basin, Oregon

    Science.gov (United States)

    Nickolas, L. B.; Segura, C.; Brooks, J. R.

    2015-12-01

    Understanding the temporal and spatial variability of water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed "rainout effect", which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the Oregon Coastal Range. We hypothesize that catchment orientation, drainage area, geology, and topography act as controlling factors on groundwater flow, storage, and atmospheric moisture cycling, which explain variations in source water contribution. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Preliminary results indicate a significant difference (p<0.001) in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation is the most distinct during the summer when low flows likely reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall & winter) show a greater degree of similarity between the two lithologies. These findings indicate that the more permeable sandstone formations may be hydrologically connected to enriched water sources on the windward side of the Coastal Range that sustain baseflow within catchments on the leeward side, while streams draining basalt catchments are fed by a more depleted source of water (e.g. precipitation originating within the Marys River Basin).

  15. The utilization of water resources and its variation tendency in Tarim River Basin

    Institute of Scientific and Technical Information of China (English)

    YE Mao; XU Hailiang; SONG Yudong

    2006-01-01

    Water resources efficient utilization is the key to ecological improvement and economic development in Tarim River Basin. It is necessary to analyze the water resources utilization and its variation tendency in the whole river basin. Based on the monitored data and formation at eight meteorological stations and fifteen hydrological stations, the method of time series, regression analysis are applied to analyzing the water resources utilization and variation trend in the headstreams and mainstream areas especially in recent 10 years. The quantitative results indicate that inflows of the headstream areas have an increasing trend to different extent in the past 40years. The runoff increasing trend is more significant from1994 to 2002, which show the water resources condition in the headstreams is at an advantage.However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10years, the mainstream water flowing from the headstreams has increased less than 0.9985×108 m3. In addition, the runoff at the different hydrologic stations along the Tarim River has a significant linear decreasing trend. It is shown that the degraded trend of ecological environment in the mainstream areas hardly changes even if the Tarim River Basin is in the special water period for ten consecutive years.

  16. Indus Basin of Pakistan : Impacts of Climate Risks on Water and Agriculture

    OpenAIRE

    Yu, Winston; Yang, Yi-chen; Savitsky, Andre; Alford, Donald; Brown, Casey; Wescoat, James; Debowicz, Dario; Robinson, Sherman

    2013-01-01

    This study, Indus basin of Pakistan: the impacts of climate risks on water and agriculture was undertaken at a pivotal time in the region. The weak summer monsoon in 2009 created drought conditions throughout the country. This followed an already tenuous situation for many rural households faced with high fuel and fertilizer costs and the impacts of rising global food prices. Then catastro...

  17. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  18. Impacts of Land Use Changes on Water Balance of the Amazon Basin Using Remote Sensing

    Science.gov (United States)

    Ribeiro, C. B.; Mohanty, B.

    2013-12-01

    Current problems related to increasing deforestation in Amazon Basin and its impact to climate change are among the major challenges faced by scientific community. This has led us to study the effects of landuse/cover change in Amazonian basin for protection and proper management of water resources. The use of remote sensing data over the amazon basin provides insight into understanding the water cycle and its impact on climate change. Data at different scales are used to evaluate this hypothesis. MODIS data with 1 km resolution is used to study the land use changes from 2001 to 2012. Change detection technique is applied to evaluate time series hydrological behavior of the basin. Data from point scale and regional scale such as MODIS products and Global Land Data Assimilation System (GLDAS) and point scale data available from Experiment and Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA), HidroWeb system, the National Water Agency (ANA) and by the National Institute of Meteorology (INMET), from Brazil are used. This work aims to contribute to the current challenge of sustainability of water resources in the Amazon region because of alterations of the landuse cover.

  19. Tradeoff Analysis Between Economic Development and Climate Change Adaptation Strategies for River Nile Basin Water Resources

    Science.gov (United States)

    Recent Intergovernmental Panel on Climate Change (IPCC) briefings have declared that the growing population in the Nile river basin region (about 160 million, or 57% of the entire population of the basin’s ten riparian countries) is at risk of water scarcity. Adjustment strategies in response to cl...

  20. Large lake basins of the southern High Plains: Ground-water control of their origin

    Energy Technology Data Exchange (ETDEWEB)

    Wood, W.W.; Sanford, W.E. (Geological Survey, Reston, VA (United States)); Reeves, C.C. Jr (Texas Tech. Univ., Lubbock (United States))

    1992-06-01

    The origin of the {approximately}40-50 topographically large lake basins on the southern High Plains of Texas and New Mexico has been an enigma. Previous workers have considered deflation or evaporite dissolution at depth and subsequent collapse as the most probable mechanisms. However, the eolian hypotheses have been unable to provide convincing arguments as to how the wind selectively erodes the thick, deflation-resistant calcrete 'caprock' that is persistent over much of the southern High Plains. Furthermore, recent detailed studies on some of the basins show no significant evaporite dissolution at depth, and neither mechanism offers a satisfactory explanation as to why the basins are almost universally associated with subsurface topographic highs, or why they are absent where the High Plains aquifer thickness exceeds 60 m. The authors address these latter concerns and modify the deflation hypothesis by proposing that the calcrete caprock may never have been deposited in the areas now occupied by the basins. The absence of calcrete deposition is proposed to have resulted from high water tables caused by an increase in hydraulic gradient where aquifers thinned above bedrock highs. A high water table close to an/or intersecting the surface prevents deposition of calcrete, and, thus, the uncemented surface would be more susceptible to deflation than the surrounding calcrete-covered areas after decline of the water table. The rise in water table associated with bedrock highs is documented by numerical simulation using boundary conditions and hydrologic parameters representative of the southern High Plains.