WorldWideScience

Sample records for basinal ore fluids

  1. Late Paleozoic Fluid Systems and Their Ore-forming Effects in the Yuebei Basin, Northern Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on detailed and systematic researches of the geology of ore deposits, fluid inclusions and isotope geochemistry etc., and regarding the Late Paleozoic fluid system of the Yuebei Basin as an integrated object in this paper,we have revealed the temporo-spatial evolution law of the basin's fluid system and discussed its ore-forming effects by simulating and analyzing the distribution of ore-forming elements, the fluid thermodynamics and dynamics of evolution processes of this basin. The results show that Late Paleozoic ore-forming fluid systems of the Yuebei Basin include four basic types as follows. (1) The sea floor volcanic-exhalation system developed during the rapid basin slip-extension stage in the Mid-Late Devonian, which affected the Dabaoshan region. It thus formed the Dabaoshan-type Cu-Pb-Zn-Fe sea floor volcanic-exhalation sedimentary deposits. (2) The compaction fluid system developed during the stable spreading and thermal subsidence-compression stage of the basin in the Mid-Late Devonian. The range of its effects extended all over the whole basin. It resulted in filling-metasomatic deposits, such as the Hongyan-type pyrite deposits and pyrite sheet within the Fankou-type Cu-Pb-Zn-S deposits. (3) The hot water circulation system of sea floor developed during the stage of basin uplifting and micro-aulacogen from the late Late Carboniferous to Middle Carboniferous. The range of its effects covered the Fankou region. It thus formed MVT deposits, such as the main orebody of the Fankou-type Pb-Zn-S deposits.(4) The gravity fluid system developed during the stage of fold uplifting and the basin closed from Middle Triassic to Jurassic, forming groundwater hydrothermal deposits, e.g. the veinlet Pb-Zn-calcite orebodies of the Fankou-type Pb-Zn-S deposits. Migration and concentration of the ore-forming fluids were constrained by the state of temporo-spatial distribution of its fluid potential. Growth faults not only converged the fluids and drove them to

  2. Coupled Heat and Fluid Flow Modeling of the Earth's Largest Zinc Ore Deposit at Red Dog, Alaska: Implications for Structurally-Focused, Free Convection in Submarine Sedimentary Basins

    Science.gov (United States)

    Garven, G.; Dumoulin, J. A.; Bradley, D. A.; Young, L. E.; Kelley, K. D.; Leach, D. L.

    2002-12-01

    Crustal heat flow can provide a strong mechanism for driving groundwater flow, particularly in submarine basins where other mechanisms for driving pore fluid flow such as topography, compaction and crustal deformation are too weak or too slow to have a significant effect on disturbing conductive heat flow. Fault zones appear to play a crucial role in focusing fluid migration in basins, as inferred in ancient rocks by many examples of hydrothermal deposits of sediment-hosted ores worldwide. Many rift-hosted deposits of lead, zinc, and barite ore appear to have formed at or near the seafloor by focused venting of hot basinal fluids and modified seawater, although the geophysical nature of these systems is not so well known. For example, the upper Kuna Formation, a finely laminated, black, organic-rich siliceous mudstone and shale in the Western Brooks Range of northwest Alaska, is host to the largest resources of zinc yet discovered in the Earth's crust, containing ore reserves in excess of 175 Mt averaging about 16% Zn and 5% Pb. Although situated today in a highly-deformed series of structural allocthonous plates thrusted during the Jurassic to Cretaceous Brookian Orogeny, the stratiform ores are thought to have formed much earlier in the anoxic, mud-rich Carboniferous-age Kuna Basin when adjacent carbonate platforms were drowned by rifting and tectonic subsidence. Fluid inclusion studies of ore-stage sphalerite and gangue minerals indicate sub-seafloor mineralization temperatures less than 200oC and most likely between 120 to 150 oC, during a period of sediment diagenesis and extensional faulting. We have constructed fully-coupled numerical models of heat and fluid flow to test hydrologic theories for free convection, submarine venting and subsequent ore formation, as constrained by paleoheat flow and petrologic observations. A finite element grid was designed and adapted for a cross section of the Kuna Basin, geologically restored to latest Mississippian time

  3. Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska: Implications for the genesis of the Red Dog Pb-Zn-Ag-Ba ore district

    Science.gov (United States)

    Garven, G.; Raffensperger, J.P.; Dumoulin, J.A.; Bradley, D.A.; Young, L.E.; Kelley, K.D.; Leach, D.L.

    2003-01-01

    The Red Dog deposit is a giant 175 Mton (16% Zn, 5% Pb), shale-hosted Pb-Zn-Ag-Ba ore district situated in the Carboniferous Kuna Basin, Western Brooks Range, Alaska. These SEDEX-type ores are thought to have formed in calcareous turbidites and black mudstone at elevated sub-seafloor temperatures (120-150??C) within a hydrogeologic framework of submarine convection that was structurally organized by large normal faults. The theory for modeling brine migration and heat transport in the Kuna Basin is discussed with application to evaluating flow patterns and heat transport in faulted rift basins and the effects of buoyancy-driven free convection on reactive flow and ore genesis. Finite element simulations show that hydrothermal fluid was discharged into the Red Dog subbasin during a period of basin-wide crustal heat flow of 150-160 mW/m2. Basinal brines circulated to depths as great as 1-3 km along multiple normal faults flowed laterally through thick clastic aquifers acquiring metals and heat, and then rapidly ascended a single discharge fault zone at rates ??? 5 m/year to mix with seafloor sulfur and precipitate massive sulfide ores. ?? 2003 Elsevier Science B.V. All rights reserved.

  4. Stable isotope characteristics and origin of ore-forming fluids in copper-gold-polymetallic deposits within strike-slip pull-apart basin of Weishan-Yongping continental collision orogenic belt, Yunnan Province, China

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; HOU Zengqian; MO Xuanxue; DONG Fangliu; BI Xianmei; ZENG Pusheng

    2007-01-01

    More than 140 middle-small sized deposits or minerals are present in the Weishan-Yongping ore concentra-tion area which is located in the southern part of a typical Lanping strike-slip and pull-apart basin. It has plenty of mineral resources derived from the collision between the Indian and Asian plates. The ore-forming fluid system in the Weishan-Yongping ore concentration area can be divided into two subsystems, namely, the Zijinshan subsystem and Gonglang arc subsystem. The ore-forming fluids of Cu, Co deposits in the Gonglang arc fluid subsystem have δD values between -83.8‰ and -69%0, δ18O values between 4.17‰ and 10.45‰, and δ13C values between -13.6‰ and 3.7‰,suggesting that the ore-forming fluids of Cu, Co deposits were derived mainly from magmatic water and partly from formation water. The ore-forming fluids of Au, Pb, Zn, Fe deposits in the Zijinshan subsystem have δD values between-117.4‰ and-76‰, δ18O values between 5.32‰ and 9.56‰,and δ13C values between -10.07‰ and -1.5‰. The ore-forming fluids of Sb deposits have 6D values between -95%0 and -78‰, δ18O values between 4.5‰ and 32.3‰, and δ13 Cvalues between -26.4‰ and -1.9‰. Hence, the ore-forming fluids of the Zijinshan subsystem must have been derived mainly from formation water and partly from magmatic water.Affected by the collision between the Indian and Asian plates,ore-forming fluids in Weishan-Yongping basin migrated con-siderably from southwest to northeast. At first, the Gonglang arc subsystem with high temperature and high salinity was formed. With the development of the ore-forming fluids, the Zijinshan subsystem with lower temperature and lower salinity was subsequently formed.

  5. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    Directory of Open Access Journals (Sweden)

    Giordano Thomas H

    2002-09-01

    Full Text Available It is well established through field observations, experiments, and chemical models that oxidation (redox state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT and red-bed related base metal (RBRBM deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354 and G. M. Anderson (Econ. Geol., 1975, 70, 937–942 are capable of transporting sufficient amounts of Pb (up to 10 ppm and Zn (up to 100 ppm in the form of carboxylate

  6. By lithology Zbruch deposits (Lower Sarmatian Nikopol manganese ore Basin

    Directory of Open Access Journals (Sweden)

    Bogdanovich V.V.

    2010-06-01

    Full Text Available Based on lithologic-paleogeographic study Zbruch layers of Nikopol manganese ore Basin sediments described lithological and genetic types of rocks and facies conditions of formation of deposits.

  7. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ 37Cl analysis of fluid inclusions

    Science.gov (United States)

    Richard, Antonin; Banks, David A.; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Cathelineau, Michel

    2011-05-01

    Analyses of halogen concentration and stable chlorine isotope composition of fluid inclusions from hydrothermal quartz and carbonate veins spatially and temporally associated with giant unconformity-related uranium deposits from the Paleoproterozoic Athabasca Basin (Canada) were performed in order to determine the origin of chloride in the ore-forming brines. Microthermometric analyses show that samples contain variable amounts of a NaCl-rich brine (Cl concentration between 120,000 and 180,000 ppm) and a CaCl 2-rich brine (Cl concentration between 160,000 and 220,000 ppm). Molar Cl/Br ratios of fluid inclusion leachates range from ˜100 to ˜900, with most values between 150 and 350. Cl/Br ratios below 650 (seawater value) indicate that the high salinities were acquired by evaporation of seawater. Most δ 37Cl values are between -0.6‰ and 0‰ (seawater value) which is also compatible with a common evaporated seawater origin for both NaCl- and CaCl 2-rich brines. Slight discrepancies between the Cl concentration, Cl/Br, δ 37Cl data and seawater evaporation trends, indicate that the evaporated seawater underwent secondary minor modification of its composition by: (i) mixing with a minor amount of halite-dissolution brine or re-equilibration with halite during burial; (ii) dilution in a maximum of 30% of connate and/or formation waters during its migration towards the base of the Athabasca sandstones; (iii) leaching of chloride from biotites within basement rocks and (iv) water loss by hydration reactions in alteration haloes linked to uranium deposition. The chloride in uranium ore-forming brines of the Athabasca Basin has an unambiguous dominantly marine origin and has required large-scale seawater evaporation and evaporite deposition. Although the direct evidence for evaporative environments in the Athabasca Basin are lacking due to the erosion of ˜80% of the sedimentary pile, Cl/Br ratios and δ 37Cl values of brines have behaved conservatively at the basin

  8. Geothermal and fluid flowing simulation of ore-forming antimony deposits in Xikuangshan

    Institute of Scientific and Technical Information of China (English)

    YANG; Ruiyan; MA; Dongsheng; BAO; Zhengyu; PAN; Jiayong; CAO; Shuanglin

    2006-01-01

    The Xikuangshan Antimony Deposit located in the Mid-Hunan Basin, China, is the largest antimony deposit in the world. Based on the hydrogeological and geochemical data collected from four sections, Xikuangshan-Dajienao (AO), Xikuangshan-Dashengshan (BO), Xikuangshan-Longshan (CO) and Dafengshan (DO) in the Basin, an advanced metallogenic model related to deep-cyclic meteoric water of Xikuangshan Antimony Deposit is put forward in this paper using a model of heat-gravity-driving fluid flow transportation. The simulation results show that the ore-forming fluid of the deposit mainly comes from the Dashengshan and Longshan areas where BO and CO sections are located if the overall basin keeps a constant atmospheric precipitation and infiltration rate during mineralization, and that the average transportation speed of the ore-forming fluids is about 0.2-0.4 m/a.

  9. The Geohydrology of MVT-Ore Genesis in the Canning Basin, Western Australia

    Science.gov (United States)

    Garven, G.; Wallace, M. M.

    2009-05-01

    In the Lennard Shelf, Western Australia, epigenetic MVT-type Pb-Zn mineralization occurs in Middle Devonian evaporitic dolomites which were part of a barrier reef system (Hurley & Lohmann, 1989). Ore mineralization exhibits a strong structural control at the basin scale and normal faults probably controlled pathways for brine and petroleum migration that affected ore deposition (Wallace et al., 1999). For the Canning basin, finite element simulations show that compaction was the most important process for creating overpressures and driving basinal fluids in this thick extensional basin. Basinal fluids are shown to have been driven across the Fitzroy Trough through permeable and deeply buried Silurian-Ordovician aquifer units. The fluids then migrated upwards at rates of m/yr up during periods of episodic extension (Braun, 1992) where fluid flow was channeled by major normal fault zones like the Cadjebut and Pinnacles Faults. Reactive flow simulations test a petroleum-reservoir model for mineralization whereby metal-bearing brines mix with accumulated hydrocarbons (Anderson & Garven, 1987). The results show that compaction-driven flow, as proposed by Beales & Jackson (1966) and Jackson & Beales (1967), works rather well in this ore district--other mechanisms such as sealevel tidal pumping (Cathles, 1988) or topographic drive (Solomon & Groves, 1994) are more tenuous and really unnecessary from a mass transport or geohydrologic basis.

  10. Ore fluid geochemistry of the Jinlongshan Carlin type gold ore belt in Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na+ - Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradu ally decreased, suggesting the gradual intensification of fluid oxidation, the reduction of met allogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold depos its. The CO2 contents and CO2/H2O values of the ore fluid increased from early to late sta ges, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na + , K + ,SO42-, Cl-and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background δ18O and δ13C values of wall rocks resulted in high δ18O and δ13 C values of ore fluid and also high δ 18 O and δ 13 C values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The δ 18O and δ13C values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi source of ore fluid.

  11. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    Science.gov (United States)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  12. Fluid flow and mineralization of Youjiang Basin in the Yunnan-Guizhou-Guangxi area, China

    Institute of Scientific and Technical Information of China (English)

    王国芝; 胡瑞忠; 苏文超; 朱赖民

    2003-01-01

    Comprehensive studies, based on isotope geochemistry of C, H, O, S and Sr, chronology, common element and trace element geochemistry of fluid inclusions for the epithermal Au, As, Sb and Hg deposits in the Youjiang Basin and its peripheral areas, suggested that the ore fluid was the basin fluid with abundant metallic elements and the large-scale fluid flow of the same source in the late Yenshan stage was responsible for huge epithermal mineralization and silicification. The ore fluid flowed from the basin to the platform between the basin and the platform and migrated from the inter-platform basin to the isolated platform in the Youjiang Basin. The synsedimentary faults and paleokast surface acted respectively as main conduits for vertical and lateral fluid flow.

  13. Characteristics and origin of ore-forming fluids of Jinchangqing gold (copper) ore deposit (s) in Xiangyun, Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    HE Mingqin; SONG Huanbin; LIU Jiajun; LI Chaoyang

    2005-01-01

    On the basis of results of the studies of primary fluid inclusions, and the hydrogen and oxygen isotope data, the authors concluded that the early-stage ore-forming fluid from the Jinchangqing gold (copper) ore deposit is a kind of sulfate type hot brine characterized by medium temperature and salinity, genetically related to the late-stage ore-forming fluid derived from an acidic and more reductive environment. However, the late-stage ore-forming fluid is a sort of low temperature and low salinity chloride-type hot brine which originated from a lower pressure, acidic and more oxidative environment. In general, the ore fluids were derived from the late-stage, or largely from the early-stage groundwater-derived meteoric water, which has a 12‰-17‰ heavier oxygen isotopic composition than the original rain water (δ 18 O= -15.3‰ ), and were formed during gold mineralization as a product of oxygen isotope exchange during the reaction between ore-forming fluid and wall rocks under a lower water/rock ratio condition.

  14. Mineralogy and ore fluid chemistry of the Roc Blanc Ag deposit, Jebilet Hercynian massif, Morocco

    Science.gov (United States)

    Essarraj, Samira; Boiron, Marie-Christine; Cathelineau, Michel; Tarantola, Alexandre; Leisen, Mathieu; Hibti, Mohamed

    2017-03-01

    The Roc Blanc Ag deposit is located about 20 km north of Marrakesh city (Morocco) in the Jebilet Hercynian massif. The ore bodies consist of N-S to NE-SW quartz (±carbonates) veins hosted by the Sarhlef marine sediments. These series, deposited in a Devonian-Carboniferous rift basin context, were deformed during the Hercynian orogeny, and submitted to low-grade regional metamorphism. Two major stages of fluid circulation and metal deposition are distinguished on the basis of mineralogical and paleo-fluid studies carried out on quartz and dolomite (microthermometry, Raman spectroscopy, LA-ICP-MS on individual inclusions, and O, H stable isotope data): (i) an early Fe-As stage, characterized by the circulation of metamorphic aqueous-carbonic fluids, under P-T conditions lower than 200 MPa ± 20 MPa and 400 °C respectively, along N-S structures; (ii) the ore stage, characterized by the circulation of a Na-Mg-K ± Ca high salinity brine, poor in gas but rich in metals such as Fe, Sr, Ba, Zn, Pb, ± Cu (salinity ranging from 19.6 wt% to likely more than 30 wt% NaCl equiv.) and the deposition of a sphalerite/dolomite-calcite assemblage; such a fluid likely evolved to a Na-K-(Ca-Mg)-Ag brine, with significant Pb and Sb concentrations and lower Sr, Ba and Zn concentrations than in the preceding fluid (salinity up to 19.4 wt% NaCl equiv.). The Ag content of the second mineralizing brine ranges from 0.9 mmol/kg to 9.4 mmol/kg solution (100 ppm-1000 ppm), whereas the base metal brine is generally Ag poor (up to 1.3 mmol/kg solution: 140 ppm). Dilution of the Ag brine by low salinity fluids (<6 wt% NaCl equiv., and Th from 130° to 230 °C) seems to be the main driving mechanism for the Ag ore deposition at Roc Blanc, with a possible involvement of cooling and reduction reactions in black schists. Base metal and Ag fluids may have circulated at average temperatures around 200 ± 30 °C or slightly higher and under hydrostatic pressures, along dominant E-W structures. The ore

  15. Organic Gases in Fluid Inclusions of Ore Minerals and Their Constraints on Ore Genesis: A Case Study of the Changkeng Au-Ag Deposit, Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hosted precious metal deposit. Most of the previous researchers believed that the deposit was formed by meteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, nine light hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from the Changkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C1-4 and unsaturated alkenes C2-4 and aromatic hydrocarbons, in which the alkanes are predominant, while the contents of alkenes and aromatic hydrocarbons are very low. The Σalka/Σalke ratio of most samples is higher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens in sedimentary rocks caused by water-rock interactions at medium-low temperatures, and the metallogenic processes might have not been affected by magmatic activity. A thermodynamic calculation shows that the light hydrocarbons have reached chemical equilibrium at temperatures higher than 200?C, and they may have been generated in the deep part of sedimentary basins (e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of the basin via a long distance. Most of the organic gases are generated by pyrolysis of the type II kerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. The compositions and various parameters of light hydrocarbons in gold ores are quite similar to those in silver ores, suggesting that the gold and silver ores may have similar metallogenic processes. Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkeng deposit may be of a tectonic setting of continental rift. The results of this study support from one aspect the authors' opinion that the Changkeng deposit is not formed by meteoric water convection, and that its genesis has a close relationship with the evolution of the Sanzhou basin, so

  16. The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China

    Science.gov (United States)

    Leach, David L.; Song, Yu-Cai; Hou, Zeng-Qian

    2017-03-01

    The Jinding Zn-Pb sediment-hosted deposit in western Yunnan, China, is the fourth largest Zn deposit in Asia. Based on field observations of the ore textures, breccias, and the sandstone host rocks, the ores formed in a dome that was created by the diapiric migration of evaporites in the Lanping Basin during Paleogene deformation and thrust loading. Most of the ore occurs in sandstones that are interpreted to be a former evaporite glacier containing a mélange of extruded diapiric material, including breccias, fluidized sand, and evaporites that mixed with sediment from a fluvial sandstone system. A pre-ore hydrocarbon and reduced sulfur reservoir formed in the evaporite glacier that became the chemical sink for Zn and Pb in a crustal-derived metalliferous fluid. In stark contrast to previous models, the Jinding deposit does not define a unique class of ore deposits; rather, it should be classified as MVT sub-type hosted in a diapiric environment. Given that Jinding is a world-class ore body, this new interpretation elevates the exploration potential for Zn-Pb deposit in other diapir regions in the world.

  17. The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China

    Science.gov (United States)

    Leach, David L.; Song, Yu-Cai; Hou, Zeng-Qian

    2016-07-01

    The Jinding Zn-Pb sediment-hosted deposit in western Yunnan, China, is the fourth largest Zn deposit in Asia. Based on field observations of the ore textures, breccias, and the sandstone host rocks, the ores formed in a dome that was created by the diapiric migration of evaporites in the Lanping Basin during Paleogene deformation and thrust loading. Most of the ore occurs in sandstones that are interpreted to be a former evaporite glacier containing a mélange of extruded diapiric material, including breccias, fluidized sand, and evaporites that mixed with sediment from a fluvial sandstone system. A pre-ore hydrocarbon and reduced sulfur reservoir formed in the evaporite glacier that became the chemical sink for Zn and Pb in a crustal-derived metalliferous fluid. In stark contrast to previous models, the Jinding deposit does not define a unique class of ore deposits; rather, it should be classified as MVT sub-type hosted in a diapiric environment. Given that Jinding is a world-class ore body, this new interpretation elevates the exploration potential for Zn-Pb deposit in other diapir regions in the world.

  18. Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland

    Science.gov (United States)

    Kozlowski, A.; Leach, D.L.; Viets, J.G.

    1996-01-01

    Fluid inclusion studies in sphalerite from early-stage Zn-Pb mineralization in the Silesian-Cracow region (southern Poland), yielded homogenization temperatures (Th) from 80 to 158??C. Vertical thermal gradient of the parent fluids was 6 to 10??C, and the ore crystallization temperature ranges varied from recrystallization of ores, and Th distribution in single fissure fillings were considered. The ore-forming fluids were liquid-hydrocarbon-bearing aqueous solutions of Na-Ca-Cl type with lower Ca contents in the south and higher Ca contents in the north of the region. The ore-forming fluids had salinities from nul to about 23 weight percent of NaCl equivalent. Three types of fluids were recognized, that mixed during ore precipitation: a) ascending fluids of low-to-moderate salinity and high, b) formation brines of high salinity and moderate Th, and c) descending waters of low salinity and low-to-moderate Th.

  19. N2-Ar-He systematics and source of ore-forming fluid in Changkeng Au-Ag deposit, central Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    孙晓明; 孙凯; 陈炳辉; 陈敬德; David; I.Norman

    1999-01-01

    Changkeng Au-Ag deposit is a newly-discovered new type precious metal deposit. N2-Ar-He systematics studies and 3He/4He and δD-δ18O composition analyses show that the ore-forming fluid of the deposit is composed mainly of formation water (sedimentary brine) but not of meteoric water, which was thought to be source of the ore-forming fluid by most previous researchers. The content of mantle-derived magmatic water in the ore-forming fluid is quite low, usually lower than 10%. According to the source of the ore-forming fluid, the Changkeng Au-Ag deposit should belong to sedimentary brine transformed deposits. From the Late Jurassic to the Early Cretaceous Period, with deposition and accumulation of thick sediments in Sanzhou Basin, the formation water in the sedimentary layers was expelled from the basin because of overburden pressure and increasing temperature. The expelled fluid moved laterally along sedimentary layers to the margin of the basin, and finally moved upward along a gently-dipping in

  20. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China

    Science.gov (United States)

    Li, Hongying; Ye, Huishou; Wang, Xiaoxia; Yang, Lei; Wang, Xiuyuan

    2014-01-01

    Jinduicheng deposit is a giant Mesozoic porphyry Mo system deposit in the East Qinling molybdenum belt, Shaanxi Province, China. The mineralization is associated with the I-type Jinduicheng granite porphyry. Both the porphyry stock and country rocks underwent intense hydrothermal alteration. The alteration, with increasing distance from the parent intrusion, changes from silicification, through potassic and phyllic assemblages, carbonation, to propylitic assemblages. Molybdenite, the dominant ore mineral, occurs in veinlets, most of which are hosted by the altered country rocks, with less than 25% of the ore in the porphyry body. The hydrothermal system comprises four stages, including pre-ore quartz and K-feldspar; two ore stages of quartz, K-feldspar, molybdenite, and Pb- And Zn-bearing sulfides; and post-ore quartz and carbonate. Six main types of primary fluid inclusions are present in hydrothermal quartz, including two-phase aqueous, one-phase aqueous, three-phase CO2-bearing, CO2-dominated fluid inclusions, gas inclusions, and melt inclusions. The homogenization temperatures of fluid inclusions range from 210 to 290 °C in the pre-ore stage, 150-310 °C in ore stage I, 150-360 °C in the ore stage II, and 195-325 °C in the post-ore stage quartz. Estimated salinities of the ore-forming fluids range from 6.9 to 13.5, 4.3 to 12.3, 6.2 to 12.4, and 3.4 to 9.9 wt.% NaCl equiv. in stages 1-4, respectively. The δ34S values of pyrite in the two ore stages range from 2.8‰ to 4.3‰, whereas the δ34S values of molybdenite range from 2.9‰ to 6.2‰. The data suggest both magmatic and crustal sources of sulfur. The δD and δ18O values for the hydrothermal fluids are -57.2‰ to -84.4‰ and 8.0‰ to -3.2‰, respectively. The fluid inclusion and stable data indicate that the pre-ore hydrothermal fluids were mostly of magmatic origin, but the fluids responsible for ore deposition were mixed magmatic and meteoric, and eventually meteoric water dominated the system

  1. A Study on the Ore-forming Effect of Mantle-derived Fluid

    Institute of Scientific and Technical Information of China (English)

    Meng Qingqiang; Wu Jianfeng; Zhang Liuping

    2007-01-01

    Based on summarizing of the effect of mantle-derived fluid on the formation of ores, especially on gold ore,and with the latest investigations, such as the formation of ore from the action of shallow-deep fluid, the transportation effect of the thermal energy by mantle-derived fluid, this paper mainly aims at the effect of mantle-derived fluid on the generation of hydrocarbons. With the proof from geochemistry and fluid inclusion, it was suggested that the mantle-derived fluid not only supplied source materials for hydrocarbons, but also supplied essential energy and matter necessary for the generation of hydrocarbons. The mantle-derived fluid had a good effect, but at the same time it had an adverse effect under specific conditions, on the formation of reservoirs. This paper also discusses the future direction and significance of studying mantle-derived fluid.

  2. Numerical Modelling of Ore-forming Dynamics of Fractal Dispersive Fluid Systems

    Institute of Scientific and Technical Information of China (English)

    邓军; 方云; 杨立强; 杨军臣; 孙忠实; 王建平; 丁式江; 王庆飞

    2001-01-01

    Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone.

  3. Study on the multi-sources of ore-forming materials and ore-forming fluids in the Huize lead-zinc ore deposit

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenliang; HUANG Zhilong; GUAN Tao; YAN Zaifei; GAO Derong

    2005-01-01

    The Huize large-sized Pb-Zn deposit in Yunnan Province, China, is characterized by favorable metallogenic background and particular geological settings. This suggested that the ore-forming mechanism is relatively unique. On the basis of geological features such as the contents of mineralization elements, the REE concentrations of gangue calcites, the REE concentrations of calcite veins in the NE-trending tectonic zone and the Pb, Sr, C, H and O isotopic compositions of different minerals, this paper presents that the ore-forming materials and ore-forming fluids of the deposit were derived from various types of strata or rocks. This is a very significant conclusion for us to further discuss the mineralization mechanism of the deposit at depth and establish an available genetic model.

  4. Ore-forming material sources of the Baiyangping Cu-Co-Ag polymetallic deposit in the Lanping Basin, western Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    LI Zhiming; LIU Jiajun; ZHANG Changjiang

    2008-01-01

    The ore-forming material sources of the Baiyangping copper-cobalt-silver polymetallic deposit have been studied in view of the S, Pb, C, O and H isotopic characteristics and the ratio of Co/Ni of cohaltite. The results showed that sulfur in metallic sulfides may have come from a mixed sulfur-source consisting of the sulfur-source from metamorphic rocks in the basin basement with basic volcanic rocks and the sulfur-source from basin sulfates;lead in the ores was provided by the sedimentary rocks and basement rocks; CO2 in ore-forming fluids was derived from thermolysis of altered and normal marine facies carbonates and decarboxylation of sedimentary organic matter respectively; the ore-forming fluids belong to the SO4-Cl-Na-Ca-type basin thermal brines derived from paleo-meteoric waters; cobalt in the deposit may also be derived from the metamorphic rocks in the basin basement with basic volcanic rocks.

  5. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    Science.gov (United States)

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  6. Formation of Strata—bound Ore Deposits in China:Studies on Fluid Inclusions

    Institute of Scientific and Technical Information of China (English)

    卢焕章; 刘从强

    1990-01-01

    Fluid inclusion studies were made on the basis of the geological data on the strata-bound ore de-posits of China including those of Pb,Zn,Au,Ag,Sb,U,Hg,W,quartz-crystal and sparry-calcite.An attempt was made to approach the model of formation for each type of ore depos-its by considering the material sources,the migration of fluids and the conditions of mineralization.It is found that ore-forming fluids (especially H2O)originate as heated underground water reacts with the wallrocks and dissolves Na+,Ca2+,K+,Cl+,HCl- and Mg2+ .The ore fluids are mainly of NaCl-Ca-HCO3-H2O system with salinities ranging from 4to 14wt.%.NaCl equivalent and densities ranging from 0.9 to 1.0g/cm3.It may be concluded that the deposits were formed at temperatures ranging from 150 to 250℃ under pressures from 300 to 1000 bars.Ore deposition may have been controlled by temperature and pressure or by the mixing among different fluids.

  7. Ore-forming fluid and mineralization of Caijiaying and Dajing polymetallic ore deposits

    Institute of Scientific and Technical Information of China (English)

    WANG Lijuan; WANG Jingbin; WANG Yuwang; ZHU Heping

    2004-01-01

    Fluid inclusions from the Dajing and Caijiaying deposits have nearly the same homogenization temperature. Correlation between temperature and salinity shows that both Sn- and Cu-bearing fluids Sn and Cu were present in the Dajing deposit but only one kind of fluids continuously evolved in the Caijiaying deposit. Study on rare earth elements (REE) in ancient fluid from the inclusions indicates that the fluid of Sn mineralizing stage in Dajing was derived from remelting magma of the continental crust, and the fluid of Cu-Pb-Zn mineralizing stage in the Dajing deposit and the fluid of Cu-Pb-Zn mineralization in the Caijiaying deposit were derived from the mantle. It is concluded that the Cu-Pb-Zn mineralizations in the Dajing and Caijiaying deposits resulted from the identical tectono-thermal event of magma-fluids induced by Mesozoic tectonic transition and extension in the eastern part of North China Craton.

  8. Geochemical Characteristics and Source of Ore-Forming Fluid of Duolanasayi Gold Deposit, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    肖惠良; 周济元; 王鹤年; 董永观; 季俊峰; 赵宇

    2003-01-01

    The Duolanasayi gold deposit, 60 km NW of Habahe County in Xinjiang, is a medi-um-large scale gold deposit controlled by the coupled ore-forming processes involving brittle-duc-tile shearing, albitite veins, and post-stage magma solution. Fluid inclusion studies indicate thatthe homogenization temperatures range from 160℃ to 315℃ with the peak values of 220 -300℃. Mineralization pressures are from 21.0 MPa to 64.5 MPa. Ore fluid inclusions containCa2+, K+, Na+, Mg2+; HCO3-, SO242-, HS-, F-, Cl- and Au+( maximum: 5.3 × 10-6),and the mineralizing fluid is a H2O-CO2 system. Sulfur, hydrogen, oxygen and strontium isotop-ic compositions ( δS = - 2.46‰ - - 7.02‰, δ 18 OH2O = 1.65‰ - 12.4‰, δD = - 132.2‰- -51.8‰, (Sr/Sr)i =0.7043 -0.7073) suggest that the ore-forming fluid is the mixture ofmagmatic water, meteoric water, metamorphic water and formation water sealed in rocks andstrata. It is mainly magmatic water in the early stage, and mixing fluid of water, meteoric water,metamorphic water and formation water that occurred in rocks and strata in the major mineraliza-tion stage. The ore-forming materials were derived from the upper mantle or lower crust.

  9. Fluid-solid interaction model for hydraulic reciprocating O-ring seals

    Science.gov (United States)

    Liao, Chuanjun; Huang, Weifeng; Wang, Yuming; Suo, Shuangfu; Liu, Ying

    2013-01-01

    Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.

  10. Properties and Evolution of Ore-Forming Fluid in Liuju Sandstone Type Copper Deposit,Chuxiong Basin in Yunnan Province%楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化

    Institute of Scientific and Technical Information of China (English)

    吴海枝; 韩润生; 吴鹏

    2016-01-01

    Liuju copper deposit is one of the typical terrestrial sandstone‐type deposits ,and w hich is located in the Meso‐Cenozoic red‐bed basin of South China .The mineralization occurred in the interface between the purple and grey beds of medium‐fine grained sandstone strata . Besides , Hematite , chalcocite ,bornite ,chalcopyrite ,and pyrite coexist in this transitional zone from the purple bed to grey bed ,a horizontal metallic mineral zone .Aiming at the ore‐forming fluid evolution and mineralization mechanism ,this paper focuses on the characteristics of fluid inclusions on the basis of mineralization types and mineralizing periods .The fluid mineralization of Liuju deposit can be divided into diagenesis period and tectonic‐reworked period ;the latter can be further divided into early and late stages .In the two stages , fluid inclusions are predominated by pure‐liquid type aqueous inclusions and gas‐liquid aqueous inclusions with rich liquid .The homogenization temperatures of the three stages experienced an evolution trend as follow s :increased from 96 164 ℃ to 108 227 ℃ ,then decreased to 94 159 ℃ ;while the salinities (w (NaCl)) were slightly decreased from 2 .7% 16 .7% to 2 .1% 13 .8% ,then 1 .2% 13 .5% ,showing little difference .Generally ,all the three stages of the ore‐forming fluid were medium‐low temperature and medium‐low salinity basin brine .By the petrographic feature observation and the laser raman spectroscopy test of the gas component in fluid inclusions ,it was confirmed that small amounts of hydrocarbon fluid inclusions were contained in the diagenesis period ;while small amounts of three‐phase CO2 inclusions were found in the tectonic‐reworked period . Besides , their grouped fluid compositions are different .The ore‐forming fluid experienced a trend as follows :the gas component changed from the reducing organic‐rich end (CH4 ) to the relatively oxidizing end (CO2 ) in the N2 CH4 CO2 triangular diagram

  11. Ore genesis constraints on the Idaho Cobalt Belt from fluid inclusion gas, noble gas isotope, and ion ratio analyses

    Science.gov (United States)

    Hofstra, Albert H.; Landis, Gary P.

    2012-01-01

    38Ar produced by nucleogenic production from 41K. In contrast, some ore and gangue minerals yield significant SO2 and have low RH and RS values of a more oxidized fluid. Three extracts from gangue quartz have high helium R/RA values indicative of a mantle source and neon isotope compositions that require nucleogenic production of 22Ne in fluorite from U ± Th decay. Two extracts from gangue quartz have estimated 40K/40Ar that permit a Precambrian age. Extracts from gangue quartz in three different ore zones are biased toward the hypersaline population of inclusions and have a tight range of ion ratios (Na, K, NH4, Cl, Br, F) suggestive of a single fluid. Their Na, Cl, Br ratios suggest this fluid was a mixture of magmatic and basinal brine. Na-K-Ca temperatures (279°-347°C) are similar to homogenization temperatures of hypersaline inclusions. The high K/Na of the brine may be due to albitization of K silicate minerals in country rocks. Influx of K-rich brines is consistent with the K metasomatism necessary to form gangue biotite with high Cl. An extract from a post-ore quartz vein is distinct and has Na, Cl, Br ratios that resemble metamorphic fluids in Cretaceous silver veins of the Coeur d'Alene district in the Belt Basin. The results show that in some samples, for certain components, it is possible to "see through" the Cretaceous metamorphic overprint. Of great import for genetic models, the volatiles trapped in gangue quartz have 3He derived from a mantle source and 22Ne derived from fluorite, both of which may be attributed to nearby ~1377 Ma basalt-rhyolite magmatism. The brine trapped in gangue quartz is a mixture of magmatic fluid and evaporated seawater. The former requires a granitic intrusion that is present in the bimodal intrusive complex, and the latter equatorial paleolatitudes that existed in the Mesoproterozoic. The results permit genetic models involving heat and fluids from the neighboring bimodal plutonic complex and convection of basinal brine

  12. 40Ar-39Ar Dating of Quartz from Ore in the Baiyangping Cu-Co Polymetallic Ore-Concentrated Area, Lanping Basin, Yunnan

    Institute of Scientific and Technical Information of China (English)

    何明勤; 刘家军; 李朝阳; 李志明; 刘玉平; 杨爱平; 桑海清

    2004-01-01

    40Ar-39Ar fast neutron activation age spectrum of quartz in ore collected from the Baiyangping Cu-Co polymetallic ore-concentrated area, Lanping Basin, is saddle-shaped. The plateau age, minimum appearance age and isochron age shown on the spectra are 56.53±0.43 Ma, 55.52±1.78 Ma and 55.90±0.29 Ma respectively. The age data are consistent with each other within 1σ uncertainties. Because the given initial 40Ar/36Ar value of 294.7±1.14 is very close to Nier's value (295.5±5), both plateau and isochron ages may be considered as the forming time of quartz. So the age of 55.90-56.53 Ma represents the forming age of ore deposits. It is obvious that the ore deposits were formed during the Early Himalayan period.

  13. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  14. The composition of fluid inclusions in ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type Zn-Pb deposits Poland: Genetic and environmental implications

    Science.gov (United States)

    Viets, J.G.; Hofstra, A.H.; Emsbo, P.; Kozlowski, A.

    1996-01-01

    The composition of fluids extracted from ore and gangue sulfide minerals that span most of the paragenesis of the Silesian-Cracow district was determined using a newly developed ion chromatographic (IC) technique. Ionic species determined were Na+, NH+4, Ca2+, Mg2+, K+, Rb+, Sr2+, Ba2+, Cl-, Br-, F-, I-, PO3-4, CO2-3, HS-, S2O2-3, SO2-4, NO-3, and acetate. Mineral samples included six from the Pomorzany mine and one from the Trzebionka mine which are hosted in the Triassic Muschelkalk Formation, and two samples of drill core from mineralized Upper Devonian strata. Nine paragenetically identifiable sulfide minerals occur throughout the Silesian-Cracow district. These include from earliest to latest: early iron sulfides, granular sphalerite, early galena, light-banded sphalerite, galena, dark-banded sphalerite, iron sulfides, late dark-banded sphalerite with late galena, and late iron sulfides. Seven of the minerals were sampled for fluid inclusion analysis in this study. Only the early iron sulfides and the last galena stage were not sampled. Although the number of analyses are limited to nine samples and two replicates and there is uncertainty about the characteristics of the fluid inclusions analyzed, the data show clear temporal trends in the composition of the fluids that deposited these minerals. Fluid inclusions in minerals deposited later in the paragenesis have significantly more K+, Br-, NH+4, and acetate but less Sr2+ than those deposited earlier in the paragenesis. The later minerals are also characterized by isotopically lighter sulfur and significantly more Tl and As in the solid minerals. The change in ore-fluid chemistry is interpreted to reflect a major change in the hydrologic regime of the district. Apparently, the migrational paths of ore fluids from the Upper Silesian basin changed during ore deposition and the fluids which deposited early minerals reacted with aquifers with very different geochemical characteristics than those that deposited

  15. Geochemical Features of Ore Fluid for Gold Deposits Related to Alkaline Rocks in China

    Institute of Scientific and Technical Information of China (English)

    齐金忠; 李莉

    2000-01-01

    Fluid inclusion studies of 5 gold deposits connected with alkaline rocks show that quartz separated from auriferous quartz veins contains abundant three-phase CO2-NaCl-H2O inclusions and two-phase CO2-dominated ones,measuring 5-20um in diameter,Homogenization temperatures of the fluid inclusions are mostly within the range of 150-300℃,and the salinities,mainly 0.2wt%-12 wt%(NaCl),Gold mineralizations occurred at depths of 1.4-2.8km,The most striking character of fluid composition is that among the cations,Na+ in dominant,followed by K+,Ca2+,among the anions,Cl- is slightly higher than SO42-,In the evaporate,H2O is dominant,followed by CO2,The pH values are mainly within the range of 6.5-8.5,indicating that the ore-forming solutions are alkaline in nature.The hydrogen and oxygen isotopic ratios indicate that the ore fluid is composed mainly of magmatic water.With the dropping of temperature in the ore fluid,the contents of CO2 decreased while the salinity increased.The relations between Au and other components of the ore fluid are discussed in the paper,and it is concluded that in these deposits,Chlorides,H2S,SiO2,CO2,etc.in the fluid all are involved in the migration and concentration of Au.

  16. Ore-forming fluid and metallization of the Huanggangliang skarn Fe-Sn deposit, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two kinds of inclusions, fluid-melting inclusion and gas-liquid inclusion, are present in the Huanggangliang deposit in eastern Inner Mongolia. Temperature ranges from 1050℃ of fluid-melting inclusion to 150℃ of liquid inclusion. Away from intrusion, the inclusions of orebodies in-tend to be characterized by simpler type, lower temperature and lower salinity, as well as weakened relation to intrusion. The metallization of the Huanggangliang deposit is characterized by multiple activities of ore-forming fluid, multi-source, multi-stage accumulation of ore-forming material, F-rich environment, enrichment of F, organic gas, CO2 and N2, and involving of residual magma.

  17. Geochemistry of ore-forming fluids and geological significance of the Kuoerzhenkuola gold field in Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; SHEN Yuanchao; LIU Tiebing; LI Guangming; ZENG Qingdong

    2005-01-01

    The Kuoerzhenkuola gold field (including the Kuoerzhenkuola and the Buerkesidai gold deposits) is the most important one in the Sawuer gold belt, northern Xinjiang, China. Isotopic studies including D, O, He, C, S, Pb and Sr reveal that the ore-forming fluids of the Kuoerzhenkuola and the Buerkesidai deposits shared the same source: the water of ore fluids was magmatic water and minor meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids incorporated by crust-derived fluid, and meteoric water. Based on these results, combined with the consideration of the tectonic setting and geological features, we suggest that the two gold deposits in the Kuoerzhenkuola gold field, Sawur gold belt share the same genesis, and are volcanogenic hydrothermal gold deposits occurring in the same caldera.

  18. Concentration Mechanism of Ore-Forming Fluid in Huize Lead-Zinc Deposits, Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhenliang; Huang Zhilong; Rao Bing; Guan Tao; Yan Zaifei

    2005-01-01

    The Huize Pb-Zn deposits of Yunnan Province, located in the south-central part of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn multimetal mineralization district (MMD), are strictly controlled by fault zones. The sources of ore-forming fluid in the deposits have been debated for a long time. Calcite, a gangue mineral, has uniform C and O isotopes. The δ13CPDB and δ18OSMOW values vary respectively from -2.1×10-3 to -3.5×10-3 (mean -2.8×10-3) and 16.7×10-3-18.6×10-3 (mean 17.7×10-3). No obvious difference can be found in C and O isotopes among occurrences and elevations and even ore-bodies. Types of inclusions include those of pure liquid (L), liquid-rich gas-liquid (L+V), and three-phase ones containing a daughter mineral (S+L+V) and immiscible CO2 with three-phases (VCO2+LCO2+LH2O). Their homogenization temperatures vary from 110 to 400 ℃, and two peaks are shown. (87Sr/86Sr)0 ratios of calcite in the deposits are higher than those in the mantle and Emeishan basalts, and slightly higher than those in the Baizuo Formation, which the Huize lead-zinc deposits are found in. All of the (87Sr/86Sr)0 are low relative to those in the basement rocks. Fractionation of Sr isotope did not occur in the ore-forming fluid during the precipitation of minerals. The results indicate that the ore-forming fluid is homogeneous and derived from the mixing of different fluids. Gas-liquid inclusions can be separated into two groups in 300-400 ℃ with a salinity of 5 %-6 % and 12 %-16 % NaCl respectively. However, the salinities of inclusions vary from 7 % to 23 % NaCl in 100-300 ℃, especially in 150-250 ℃. The formation pressures of faulted zones are (50-320)×105 Pa. The estimated pressures of the overlying rocks on the ore bodies are 574×105-640×105 Pa. The pressures of ore-forming processes would be 145×105 to 754×105 Pa. Therefore, pressure sharply reduced and boiling occurred when the ore-forming fluid flew into the fault zones. As a result, the ore-forming fluid was

  19. Ore-forming fluids in the Dongping gold deposit, northwestern Hebei Province

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Dongping gold deposit is contained within an inner contacting zone of the Hercynian Shuiquangou alkali syenite. The ores occur as veins or as replacement bodies. Fluid inclusion observation shows that in early and main mineralizing stages inclusion types are gas and gas-liquid inclusions, respectively. Gas inclusions occur in isolation in vein quartz, their homogenization tem-perature is 372-306℃, and salinity 3.7-1.0 wt% NaCl. Gas-liquid inclusions occur in clusters or healed fractures but do not cut quartz boundary with homogenization temperature 342-267℃ and salinity 1.9-0.8 wt% NaCl. Stable isotope measurements show that at main gold mineralization, hydrogen and oxygen isotopic ratios of the mineralizing fluids are -70.8‰- -108.4‰ and 2.44‰-4.05‰, respectively. Primary ore fluids in Dongping are higher temperature and lower salinity NaCl-CO2-H2O fluids, and come from Yanshanian granitic magmatism. Fluid immiscibility, fluid-rock interactions and meteoric water adding were main reasons for gold deposition.

  20. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  1. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    Science.gov (United States)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  2. Sources of ore-forming fluids and metallic materials in the Jinwozi lode gold deposit, eastern Tianshan Mountains of China

    Institute of Scientific and Technical Information of China (English)

    LIU; Wei(刘伟); LI; Xinjun(李新俊); DENG; Jun(邓军)

    2003-01-01

    This paper presents gas compositions and H-, O-isotope compositions of sulfide- and quartz-hosted fluid inclusions, and S-, Pb-isotope compositions of sulfide separates collected from the principal Stage 2 ores in Veins 3 and 210 of the Jinwozi lode gold deposit, eastern Tianshan Mountains of China. Fluid inclusions trapped in quartz and sphalerite are dominantly primary. H- and O-isotopic compositions of pyrite-hosted fluid inclusions indicate two major contributions to the ore-forming fluid that include the degassed magma and the meteoric-derived but rock 18O-buffered groundwater. However, H- and O-isotopic compositions of quartz-hosted fluid inclusions essentially suggest the presence of groundwater. Sulfide-hosted fluid inclusions show considerably higher abundances of gaseous species CO2, N2, H2S, etc. Than quartz-hosted ones. The linear trends among inclusion gaseous species reflect the mixing tendency between the gas-rich magmatic fluid and the groundwater. The relative enrichment of gaseous species in sulfide-hosted fluid inclusions, coupled with the banded ore structure indicating alternate precipitation of quartz with sulfide minerals, suggests that the magmatic fluid has been inputted to the ore-forming fluid in pulsation. Sulfur and lead isotope compositions of pyrite and galena separates indicate an essential magma derivation for sulfur but the multiple sources for metallic materials from the mantle to the bulk crust.

  3. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    Science.gov (United States)

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

  4. Geothermal fluid genesis in the Great Basin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.K.

    1990-01-01

    Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

  5. Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin,western Yunnan Province, Southwest China: Constraints from apatite fission track data

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoming; SONG Yougui

    2006-01-01

    Since the Mesozoic, abundant metal and salt deposits have been formed in the Lanping Basin, western Yunnan Province, Southwest China, constituting a well-known hydrothermal ore belt in China. Most of the deposits are meso-epithermal hydrothermal deposits. This paper preliminarily deals with the mineralization ages of hydrothermal deposits in the Lanping Basin by using the apatite fission track method, and integrates the spatial distribution of the deposits and their regional geological backgrounds, to give the preliminary viewpoints as follows: (1) the apatite fission track ages acquired range from 19.9 Ma to 52.8 Ma, much younger than those of their host strata, so they may be considered to be mineralization ages, which represent the late mineralization period; (2) the apatite fission track ages tend to become younger from the west to the middle of the basin, indicating that the latest evolution of tectono-fluid and/or metallogenic processes of the middle basin ended later than that in the west; (3) in the Paleogene, most of the Cu deposits were formed in the western part of the basin; (4) the major metallogenic processes occur between the Paleogene and the Neogene, because the eastern and western edges of the basin were subducted into and collided with its bilateral continental blocks, respectively, and the central fault was strongly activated, which led to the processes of large-scale ore-forming fluids, and their differentiation and transport because of the variation of their physical and chemical properties. Having been squeezed and uplifted, the Lanping Basin became an intermontane basin that contains many kinds of fluid traps resulting in the formation of different types of ore deposits (for example, Pb-Zn, Cu, Ag) of different scales in the middle of the basin. Simultaneously, the fluids with volatile elements such as Hg, Sb and As were transported upwards along the central fault system and diffused into its subordinate fractures, thus leading to the

  6. Ore-forming fluid constraints on illite crystallinity (IC) at Dexing porphyry copper deposit, Jiangxi Province

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Illite, a distinctive kind of clay minerals of potassiumalteration within the hydrothermal alteration zone, frequently occurs at the Tongchang porphyry copper deposit ore field. The illite crystallinity (IC) value and expandability are mainly affected by water/rock ratio or fluid flux. It was formed by illitization of plagioclase and micas during hydrothermal fluid-rock interaction within the porphyry body and near the contact zone with wall rocks. Moreover, the negative correlation between illite index (IC) and copper grade indicates that within the alteration zone, the smaller the illite crystallinity value, the higher the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are mainly controlled by temperature and time duration.

  7. Microfracturing and fluid mixing in granites: W (Sn) ore deposition at Vaulry (NW French Massif Central)

    Science.gov (United States)

    Vallance, Jean; Cathelineau, Michel; Marignac, Christian; Boiron, Marie-Christine; Fourcade, Serge; Martineau, François; Fabre, Cécile

    2001-07-01

    The Vaulry W-(Sn) mineralisation, located at the eastern boundary of the Blond rare metal leucogranite, is contained in a set of subvertical quartz veins, locally with muscovite and minor quartz selvages. The sequence of deposition was: (1) milky quartz, predominantly as fracture filling, generally affected by subsequent ductile deformation; (2) hyaline quartz-wolframite-cassiterite; (3) minor sulphides. Other sets of quartz veinlets, although generally barren are observed in the Blond massif. Fluid migration at the microscopic scale within the granite and in the vicinity of quartz fractures was constrained by studying the geometry of fluid-inclusion planes and fluid-inclusion chemistry in and outside the mineralised area. Three major sets of subvertical fluid-inclusion planes are recognised: a N050°-060°E set, mostly developed in the veins and in the immediate vicinity, a N110°-130°E set, regionally developed in the granite and a N140-160°E set of local extent. As a whole, the density of FIP decreases from the mineralised zones toward the barren part of the pluton, except for the N140°-160°E set. These are locally abundant around quartz veinlets with similar orientations that form a broad "N-S" band near the Blond locality. Mineralising fluids observed as primary inclusions in cassiterite and in undeformed hyaline quartz are mostly aqueous, with moderate salinity and a minor volatile component, at variance with many other W-(Sn) deposits in the Variscan belt. Ore deposition occurred around 315°C, at an estimated depth of 5.5 km, under hydrostatic to slightly suprahydrostatic pressures. It resulted from fluid mixing, in the central part of a large hydrothermal system, between two end-members: (i) a hot (425-430°C) moderately saline fluid, that contained a diluted volatile component and, although Na-dominated, minor amounts of Li and Ca. The estimated δ18O indicates that this fluid was completely equilibrated with the tectono-magmatic pile (pseudo

  8. Fluid Inclusions of Calcite and Sources of Ore-forming Fluids in the Huize Zn-Pb-(Ag-Ge) District, Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    HAN Runsheng; LIU Congqiang; HUANG Zhilong; MA Deyun; LI Yuan; HU Bin; MA Gengsheng; LEI Li

    2004-01-01

    The Huize Zn-Pb- (Ag-Ge) district is a typical representative of the well-known medium-to large-sized carbonate-hosted Zn-Pb- (Ag-Ge) deposits, occurring in the Sichuan-Yunnan-Guizhou Pb-Zn Ore-forming Zone.Generally, fluid inclusions within calcite, one of the major gangue minerals, are dominated by two kinds of small (1-10μm) inclusions including pure-liquid and liquid. The inclusions exist in concentrated groups along the crystal planes of the calcite. The ore-forming fluids containing Pb and Zn, which belong to the Na+-K+-Ca2+-C1--F--SO42- type, are characterized by temperatures of 164-221 ℃, medium salinity in 5-10.8 wt% NaCl, and medium pressure at 410xl0s to 661 x 10s Pa. The contents of Na+-K+ and Cl--F-, and ratios of Na+/K+-Cl-/F- in fluid inclusions present good linearity. The ratios of Na+/K+ (4.66-6.71) and C1-/F- (1 8.21-31.04) in the fluid inclusions of calcite are relatively high, while those of Na+/K+ (0.29-5.69) and Cl-/F- (5.00-26.0) in the inclusions of sphalerite and pyrite are relatively low. The ratio of Na+/K+increases in accord with those of C1-/F, which indicates that ore-forming fluid of deep source participates in the mineralization. The waters of fluid inclusions have δD values from -43.5‰ to -55.4‰ of calcite. The δ18Ov-sMow values of the ore-forming fluids, calculated values, range from 17.09‰ to 18.56‰ of calcite and 17.80‰ to 23.14‰ for dolomite.δ13 Cv-PDB values range from -1.94‰ to -3.31‰ for calcite and -3.35‰ to 0.85‰ for the ore-bearing dolomite. These data better demonstrate that the ore-forming fluids were mainly derived from metamorphic water and magmatic hot fluid, in relation to the metamorphism of the Kunyang Group in the basement and magmatic hydrothermalism. The deposit itself might have resulted from ascending cycles of ore-forming fluid, enriched in Pb and Zn. The Huize Zn-Pb- (Ag-Ge)deposits related to carbonate-hosted Zn-Pb sulphides.

  9. Fluid inclusions and biomarkers in the Upper Mississippi Valley zinc-lead district; implications for the fluid-flow and thermal history of the Illinois Basin

    Science.gov (United States)

    Rowan, E. Lanier; Goldhaber, Martin B.

    1996-01-01

    The Upper Mississippi Valley zinc-lead district is hosted by Ordovician carbonate rocks at the northern margin of the Illinois Basin. Fluid inclusion temperature measurements on Early Permian sphalerite ore from the district are predominantly between 90?C and I50?C. These temperatures are greater than can be explained by their reconstructed burial depth, which was a maximum of approximately 1 km at the time of mineralization. In contrast to the temperatures of mineral formation derived from fluid inclusions, biomarker maturities in the Upper Mississippi Valley district give an estimate of total thermal exposure integrated over time. Temperatures from fluid inclusions trapped during ore genesis with biomarker maturities were combined to construct an estimate of the district's overall thermal history and, by inference, the late Paleozoic thermal and hydrologic history of the Illinois Basin. Circulation of groundwater through regional aquifers, given sufficient flow rates, can redistribute heat from deep in a sedimentary basin to its shallower margins. Evidence for regional-scale circulation of fluids is provided by paleomagnetic studies, regionally correlated zoned dolomite, fluid inclusions, and thermal maturity of organic matter. Evidence for igneous acti vity contemporaneous with mineralization in the vicinity of the Upper Mississippi Valley district is absent. Regional fluid and heat circulation is the most likely explanation for the elevated fluid inclusion temperatures (relative to maximum estimated burial depth) in the Upper Mississippi Valley district. One plausible driving mechanism and flow path for the ore-forming fluids is groundwater recharge in the late Paleozoic Appalachian-Ouachita mountain belt and northward flow through the Reelfoot rift and the proto- Illinois Basin to the Upper Mississippi Valley district. Warm fluid flowing laterally through Cambrian and Ordovician aquifers would then move vertically upward through the fractures that control

  10. Ore-forming fluids in the Dongping gold deposit, northwestern Hebei Province

    Institute of Scientific and Technical Information of China (English)

    FAN; Hongrui

    2001-01-01

    : 1435-1444.[11]Schwartz, M. O., Determining phase volumes of mixed CO2-H2O inclusions using microthermometric measurements, Mineral Deposita, 1989, 24: 43-47.[12]Brown, P. E., Hagemann, S. G., MacFlincor and its application to fluids in Archean lode-gold deposits, Geochimica et Cosmochimica Acta, 1995, 59: 3943-3952.[13]Fan Hongrui, Xie Yihan, Zhao Rui et al., Dual origins of Xiaoqinling gold-bearing quartz veins: Fluid inclusion evidences, Chinese Science Bulletin, 2000, 45(15): 1424-1430.[14]Chen Yanjing, Li Chao, Zhang Jing et al., Sr and O isotopic characteristics of porphyries in the Qinling molybdenum de-posit belt and their implication to genetic mechanism and type, Science in China, Ser. D, 2000, 43 (supp.): 82-94.[15]Zhang Fuxin, Chen Yanjing, Li Chao et al., Geological and geochemical character and genesis of the Jinlongshan-Qiuling gold deposits in Qinling orogen: Metallogenic mechanism of the Qinling-pattern Carlin-type gold deposits, Science in China, Ser. D, 2000, 43(supp.): 95-107.[16]Chen Yanjing, Guo Guangjun, Li Xin, Metallogenic geodynamic background of gold deposits in Granite-greenstone ter-rains of North China craton, Science in China Ser. D, 1998, 41(2): 113-120.[17]Clayton, R. N., Oxygen isotope exchange between quartz and water, J. Geophys. Res., 1972, 77: 3057-3607.[18]Zhang Ligang, Cheng Zhengshen, Liu Jingxiu et al., Two Stage Water-rock Interaction and Prospecting Cases, Beijing: Geological Publishing House, 1995, 1-231.[19]Jiang Sihong, Nie Fengjun, 40Ar-39Ar geochronology of the Shuiquangou alkaline complex and related gold deposits, Northwestern Hebei, China, Geological Review, 2000, 46(6): 621-627.[20]Taylor, H. P., Oxygen and hydrogen isotope relationships, in Barnes H L(ed.), Geochemistry of Hydrothermal Ore Depos-its, 2nd ed., New York: John Wiley & Sons, 1979, 236-277.[21]Yardley, B. W. D., Post-metamorphic gold-quartz veins from N.W Italy: The composition and origin of the ore fluid, Min

  11. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    Science.gov (United States)

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  12. Helium and argon isotope trace in ore-forming fluid of Sawuer gold belt in Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; SHEN Yuanchao; ZENG Qingdong; LIU Tiebing; LI Guangming

    2004-01-01

    The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt, northern Xinjiang. The results show that fluidinclusion 3He/4He ratios are 0.64 Ra-4.25 Ra and 1.16 Ra 9.48 Ra, 40Ar/36Ar ratios are 282-359 and 312-525 for Kuoerzhenkuola and Buerkesidai gold deposits respectively.The ore-forming fluids of two deposits possessed the same source and derived mainly from mantle beneath the island arc (including oceanic crust and oceanic sediments by subduction of oceanic plate). They were diluted by incorporating meteoric water to form a mixture of mantle- and partial meteoric water-derived fluid. The ore-forming fluids of two deposits are of the same evolutionary histories. From the early to the late mineralization stages, the ratios of meteoric water/mantle- derived fluid in ore-forming fluid increased gradually. Based on these results and detailed geological and geochemical studies on the two deposits, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits occurring in the same volcanic apparatus.

  13. Advanced Workflows for Fluid Transfer in Faulted Basins.

    OpenAIRE

    Thibaut Muriel; Jardin Anne; Faille Isabelle; Willien Françoise; Guichet Xavier

    2014-01-01

    modélisation de bassin ; faille ; logiciel ;; International audience; The traditional 3D basin modeling workflow is made of the following steps: construction of present day basin architecture, reconstruction of the structural evolution through time, together with fluid flow simulation and heat transfers. In this case, the forward simulation is limited to basin architecture, mainly controlled by erosion, sedimentation and vertical compaction. The tectonic deformation is limited to vertical sli...

  14. Ore-forming mechanism for the Xiaoxinancha Au-rich Cu deposit in Yanbian, Jilin Province, China: Evidence from noble gas isotope geochemistry of fluid inclusions in minerals

    Institute of Scientific and Technical Information of China (English)

    SUN JingGui; ZHAO JunKang; CHEN JunQiang; KEISUKE Nagao; HIROCHiKA Sumino; SHEN Kun; MEN LanJing; CHEN Lei

    2008-01-01

    The Xiaoxinancha Au-rich copper deposit is one of important Au-Cu deposits along the continental margin in Eastern China. The deposit consists of two sections: the Beishan mine (North), composed of altered rocks with veinlet-dissemination sulfides and melnicovite-dominated sulfide-quartz veins, and the Nanshan mine (South), composed of pyrrhotite-dominated sulfide-quartz veins and pure sulfide veins. The isotope compositions of noble gases extracted from fluid inclusions in ore minerals, i.e. ratios of 3He/4He, 20Ne/22Ne and 40Ar/36Ar are in the ranges of 4.45-0.08 Ra, 10.2-8.8 and 306-430, respectively. Fluid inclusions in minerals from the Nanshan mine have higher 3He/4He and 20Ne/22Ne ratios whereas those from the Beishan mine have lower 3He/4He ratios. The analysis of origin, and evolution of the ore fluids and its relations with the ore-forming stages and the ages of mineralization suggests that the initial hydrothermal fluids probably come from the melts generated by partial melting of oceanic crust with the participation of fluids from the mantle (mantle-plume type)/aesthenosphere. This also corresponds to the continental margin settings during the subduction of Izanagi ocaneic plate towards the palaeo-Asian continent (123-102 Ma). The veinlet-dissemination ore bodies of the Beishan mine were formed through replacement and crystallization of the mixed fluids generated by mixing of the ascending high-temperature boiling fluid with young crustal fluid whereas the melnicovite-dominated sulfide-quartz veins were formed subsequently by filling of the high-temperature ore fluid in fissures. Pyrrhotite-dominated sulfide-quartz veins in the Nanshan mine were formed by filling-deposition- crystallization of the moderate-temperature ore fluids and the pure sulfide veins were formed later by filling-deposition-crystallization of ore substance-rich fluids after boiling of the moderate-temperature ore fluids. The metallogenic dynamic processes can be summarized as: (1

  15. Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives

    Science.gov (United States)

    Lüders, Volker

    2016-11-01

    During the past two decades, several studies of fluid inclusions hosted in some opaque ore minerals using near-infrared microscopy have been performed. Results indicated that this method can be applied to several sulfidic ores and metal oxides depending on their electronic band structures and infrared-active vibration modes. Infrared transmittance of individual ore minerals can be best characterized using Fourier transform infrared spectroscopy. Infrared microscopic observations are limited to the near-infrared region to about 2.3 μm depending on the IR sensitivity of the IR camera. The trace element content in ore minerals can be another limiting factor for optical observations in near-infrared light. Still, IR transmittance gradually decreases upon heating caused by shifting of IR absorption edges for higher wavelengths. Possibilities and limitations of studying fluid inclusions hosted in opaque minerals by near-infrared light microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are discussed.

  16. Theoretical calculation of equilibrium copper (I) isotope fractionations in ore-forming fluid

    Science.gov (United States)

    Seo, J.; Lee, I.; Lee, S.

    2006-05-01

    Equilibrium isotope fractionation of Cu (I) complexes in hydrothermal ore-forming fluid is calculated. Ab-initio quantum calculation of molecular structures and vibrational frequencies is conducted by Density Functional Theory (DFT) and Hartree-Fock Self Consistent Field (HF-SCF) method. Cu isotope (65Cu, 63Cu) exchange is expressed as reduced partition function ratios, 103·ln(β65-63), for liquid phase complexes (copper chlorides, copper hydrosulfides), and vapor phase complexes (hydrated copper chloride). Isodensity Polarizable Continuum Model (IPCM) is applied to the liquid complexes, whereas the vapor complexes are calculated in vacuo. Large fractionation (more than 2‰ at 25°C) is predicted between coexisting phases without changing oxidation state. CuCl(H2O)2 (vapor phase) is enriched in 65Cu better than any other studied complexes, whereas [CuCl3]2- (liquid phase) is mostly depleted. Heavy copper isotope is favor to partition into vapor phase complexes than coexisting liquid phase complexes. In the sea-floor hydrothermal system, after separation of phases into vapor and brine, vapor phase (CuCl(H2O)2) and chlorine-rich brine ([CuCl3]2-) will show +0.418‰ and -0.688‰ deviation from [CuCl2]1- at 150°C, respectively. However, most of the dominant copper-bearing species in hydrothermal condition, [CuCl2]1- and [Cu(HS)2]1-, fractionate at almost the same degree. Possible ranges of copper isotope ratio, δ65Cu, can be constrained from the calculated equilibrium isotope fractionation. Changes of oxidation state in low-temperature (e.g. supergene formation) have been thought to trigger most copper isotope fractionations, so far. However, measurable Cu isotope fractionation (1.106‰ at 150°C and 0.615‰ at 300°C) in hydrothermal ore-forming fluid is predicted within +1 valence state by theoretical study. Molecular structures and vibrational frequencies are compared with measured data. However, there is no experimental or theoretical work of some molecules

  17. Advanced Workflows for Fluid Transfer in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Thibaut Muriel

    2014-07-01

    Full Text Available The traditional 3D basin modeling workflow is made of the following steps: construction of present day basin architecture, reconstruction of the structural evolution through time, together with fluid flow simulation and heat transfers. In this case, the forward simulation is limited to basin architecture, mainly controlled by erosion, sedimentation and vertical compaction. The tectonic deformation is limited to vertical slip along faults. Fault properties are modeled as vertical shear zones along which rock permeability is adjusted to enhance fluid flow or prevent flow to escape. For basins having experienced a more complex tectonic history, this approach is over-simplified. It fails in understanding and representing fluid flow paths due to structural evolution of the basin. This impacts overpressure build-up, and petroleum resources location. Over the past years, a new 3D basin forward code has been developed in IFP Energies nouvelles that is based on a cell centered finite volume discretization which preserves mass on an unstructured grid and describes the various changes in geometry and topology of a basin through time. At the same time, 3D restoration tools based on geomechanical principles of strain minimization were made available that offer a structural scenario at a discrete number of deformation stages of the basin. In this paper, we present workflows integrating these different innovative tools on complex faulted basin architectures where complex means moderate lateral as well as vertical deformation coupled with dynamic fault property modeling. Two synthetic case studies inspired by real basins have been used to illustrate how to apply the workflow, where the difficulties in the workflows are, and what the added value is compared with previous basin modeling approaches.

  18. Characteristics and evolution of ore-forming fluids of the Chongjiang copper deposit in the Gangdise porphyry copper belt, Tibet

    Institute of Scientific and Technical Information of China (English)

    Yuling Xie; Jiuhua Xu; Guangming Li; Zhiming Yang; Longsheng Yi

    2007-01-01

    Petrography, microthermometry, and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) studies were performed on the fluid inclusions in the ore-bearing quartz veins and quartz phenocrysts in the porphyry of the Chongjiang porphyry copper deposit. The analyses of the fluid inclusions indicate that the ore-forming fluids were exsolved from magma. They are near-saturated, supercritical, rich in volatile constituents, and have the capture temperature of 362-389°C and salinities of 17.7wt%-18.9wt% NaCl eq. With the decreasing of temperature and pressure, the supercritical fluids were separated into a low salinity vapor phase and a high salinity liquid phase. During quartz-sericitization, the high salinity fluid boiled and separated into a low salinity vapor phase and a high salinity liquid phase. The high salinity inclusions that formed in the boiling process had daughter mineral melting temperatures higher than the homogenization temperatures of the vapor and liquid phases. The late fluids that are responsible for argillization are of lower temperature and salinity.

  19. Fluid mixing as the mechanism of formation of the Dajing Cu-Sn-Ag-Pb-Zn ore deposit, Inner Mongolia--Fluid inclusion and stable isotope evidence

    Institute of Scientific and Technical Information of China (English)

    刘伟; 李新俊; 谭骏

    2003-01-01

    Dajing Cu-Sn-Ag-Pb-Zn ore deposit, in the Inner Mongolia Autonomous Region of China, is a fissure-filling hydrothermal ore deposit. The δD values of quartz-hosted inclusion water are centered at -100‰ - -130‰. Theδ34S values of sulfide ore minerals andδ13C values of carbonate gangue minerals vary from -0.3‰ to 2.6‰ and from -2.9‰ to -7.0‰, respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric-derived groundwater, and sulfur and carbon species from hypogene magma. Linear trends are exhibited on the gaseous H2O versus CO2 plot, and plots of CO, N2, CH4, and C2H6. It is shown by quantitative simulation that magma degassing cannot explain the linear trends. Hence, these linear trends are interpreted in terms of mixing of CO2-rich magmatic fluid with meteoric-derived groundwater. The groundwater circulated in Paleozoic sedimentary rocks and absorbed CO, N2, CH4, C2H6 and radiogenic Ar from organic matter. Cooling effects resulting from mixing have caused the precipitation of ore minerals.

  20. Ore-forming fluid and metallization of the Huanggangliang skarn Fe-Sn deposit, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    WANG; Lijuan

    2001-01-01

    [1]Rui Zongyao, Shi Lindao, Fang Ruhuan, Geology of Nonferrous Metallic Deposits in Northern Margin of North China Landmass (in Chinese), Beijing: Geological Publishing House, 1994, 314-362, 528-533.[2]Zhao Yiming, Zhang Dequan, Metallogenic Regularity and Prospective Value 1997 (in Chinese), Beijing: Seismology Press, 1997, 125-144.[3]Wang Lijuan, Wang Yuwang, Wang Jingbin et al., Study on fluid-melting inclusions of the Huanggangliang skarn Fe-Sn Deposit, Acta Geologica Sinica, 2001, 1(2): 75.[4]Shao, J. A., Han, Q. J., Early Mesozoic mantle-crust transition zone in eastern Inner-Mongolia: Evidence from measure-ments of compreessional velocities of xenoliths at high pressure and high temperature, Science in China, Ser. D, 43 (sup-plement): 253-261.[5]Shao, J. A., Mu, B. L., He, G. Q., Geological effects in tectonic superposition of Paleo-Pacific domain and paleo-Asia do-main in northern part of North China, Science in China, Ser. D, 1997, 40(6): 634-640.[6]Shao Ji'an, Zhang Fuqiao, Mu Baolei, Tectono-thermal evolution of middle-south section of the Da Hinggan Mountains, Science in China, Ser. D, 1998, 41(6): 570-579.[7]Zhai Mingguo, Bian Aiguo, Zhao Taiping, The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic, Science in China, Ser. D, 43 (supple-ment): 219-232.[8]Chen Yanjing, Skarn gold deposits in China, Resource Geology, 1996, 46(6): 369-376.[9]Chen Yanjing, Shan, Q., Xin, L., Chron, spare, geodynamic setting and mode for metallogenization of Chinese skarn type gold deposit, Journal of Peking University, 1997, 33(4): 456-466.[10]Li Yinqing, Melting and fluid inclusions of some mid-acid intrusions and volcanic rocks in Yulong, Bulletin of Chinese Academy of Geological Sciences, 1984, 2: 85-106.[11]Lu Huanzhang, Melting inclusions of fluid, Geochemistry, 1990, 3: 225-229.[12]Lu Huanzhang, Ore-forming Fluid

  1. Syntectonic fluid flow and fluid compartmentalization in a compressive basin: Example of the Jaca basin (Southwest Pyrenees, Spain)

    Science.gov (United States)

    Lacroix, Brice; Travé, Anna; Buatier, Martine; Labaume, Pierre

    2013-04-01

    During compressive events, deformation in sedimentary basins is mainly accommodated by thrust faults emplacement and related fold growth. In such a structure, thrust faults are generally rooted in the basement and may act as conduits or barriers for crustal fluid flow. However, most of recent studies suggest that fluid flow through such discontinuities is not so evident and depends on the structural levels of the thrust inside the fold-and-thrust belt. In order to constrain the paleofluid flow through the Jaca thrust-sheet-top basin (Paleogene southwest-Pyrenean fold-and-thrust belt) we focus our study on different thrust faults located at different structural levels. The microstructures observed in the different studied fault zones are similar and consist of pervasive cleavage, calcite shear and extension veins and late dilatation veins. In order to constrain the nature and the source of fluids involved in fluid-rock interactions in fault zones, a geochemical approach, based on oxygen and carbon stable isotopes and trace elements on calcite, was adopted on the different vein generations and host rocks. The results suggest a high complexity in the paleo-hydrological behaviors of thrust faults evidencing a fluid-flow compartmentalization of the basin. North of the Jaca basin, previous studies in the southern part of the Axial Zones showed the contribution of deep metamorphic water, probably derived from the Paleozoic basement, along along fault zones related the major Gavarnie thrust. Contrarily, in the northern part of the Jaca basin, we evidence the contribution of formation water during the Monte Perdido thrust fault activity. These data suggest a closed hydrological fluid system where distance of fluid flow did not exceeded 70 m. On the other hand, the Jaca and Cotiella thrust faults, both located more to the south in the basin, are characterized by a composite fluid flow system. Indeed, stable isotopes and trace elements compositions of the first generation of

  2. Evolution of ore-forming fluids in the Sawayaerdun gold deposit in the Southwestern Chinese Tianshan metallogenic belt, Northwest China

    Science.gov (United States)

    Chen, Huayong; Chen, Yanjing; Baker, Michael J.

    2012-04-01

    The Sawayaerdun gold deposit was discovered in the early 1990s and is the largest orogenic-gold deposit in the Chinese Tianshan. Gold mineralization occurs in quartz veins, which are hosted in carbonaceous metasediments and controlled by faults and fractures. Three major hydrothermal events can be identified at Sawayaerdun: An early barren quartz vein stage, middle stage quartz veins with pyrite and gold mineralization and late carbonate (-quartz) veins. Fluid inclusion studies of quartz, pyrite and carbonate formed during the major hydrothermal stages show distinct changes in fluid, temperature, composition and redox conditions occurred during fluid evolution. Three types of fluid inclusions have been identified at Sawayaerdun: H2O + NaCl (L + V), H2O + NaCl + CO2 (L + V) and CO2 (L + V). Fluids trapped in early barren quartz have high temperatures (280-420 °C), low salinities (quartz formation, resulting in the generation of coexisting fluid inclusions with distinguishable vapor/liquid ratios and salinities. The compositional difference between fluids trapped in pyrite and quartz indicate fluid mixing may have occurred during the mineralization stage. The oxidized fluids, probably a mixture of meteoric water and fluids generated during water-host rock interaction, emerged into the ore-forming system to generate extensive metals precipitation. The fluid immiscibility and fluid mixing are most likely caused by pressure decrease during Late Paleozoic uplift and erosion in the Chinese Southern Tianshan area. Comparison of fluids between four major mineralization zones at Sawayaerdun indicate that zone II is similar to the most important zone IV and the order of similarity is probably zone II > XI > I, which could be applied to the future mineral exploration in this area.

  3. Sedimentary basin geochemistry and fluid/rock interactions workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.

  4. Origin of gray-green sandstone in ore bed of sandstone type uranium deposit in north Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Dongsheng sandstone-type uranium deposit is located in the northern part of Ordos Basin, occurring in the transitional zones between gray-green and gray sandstones of Jurassic Zhiluo Formation. Sandstones in oxidized zone of the ore bed look gray-green, being of unique signature and different from one of ordinary inter-layered oxidation zone of sandstone-type uranium deposits. The character and origin of gray-green sandstones are systematically studied through their petrology, mineralogy and geochemistry. It is pointed out that this color of sandstones is originated from secondary oil-gas reduction processes after paleo-oxidation, being due to acicular-leaf chlorite covering surfaces of the sandstone grains. To find out the origin of gray-green sandstone and recognize paleo-oxidation zones in the ore bed are of not only theoretical significance for understanding metallogenesis of this kind of sandstone-type uranium deposit, but also very importantly practical significance for prospecting for similar kind of sandstone-type uranium deposit.

  5. Origin and evolution of ore-forming fluids in the Hemushan magnetite-apatite deposit, Anhui Province, Eastern China, and their metallogenic significance

    Science.gov (United States)

    Luo, Gan; Zhang, Zhiyu; Du, Yangsong; Pang, Zhenshan; Zhang, Yanwen; Jiang, Yongwei

    2015-12-01

    The Middle-Lower Yangtze River Metallogenic Belt in the northern Yangtze Block is one of the most important economic mineral districts in China. The Hemushan deposit is a medium-class Fe deposit located in the southern part of the Ningwu iron ore district of the Middle-Lower Yangtze River Metallogenic Belt. The Fe-orebodies are mainly hosted in the contact zone between diorite and Triassic marble. The actinolite-phlogopite-apatite-magnetite ore shows metasomatic/filling textures and disseminated/mesh-vein structures. Based on evidences and petrographic observations, the ore-forming process can be divided into three distinct periods-the early metallogenic period (albite-diopside stage), the middle metallogenic period (magnetite stage and hematite stage), and the late metallogenic period (quartz-pyrite stage and carbonate stage). Fluid inclusion studies show four types of inclusions: type I daughter mineral-bearing three-phase inclusions (L + V + S), type II vapor-rich two-phase inclusions (L + V), type III liquid-rich two phase inclusions (L + V), and minor type IV liquid-phase inclusions (L). Apatites from the magnetite stage contain type I, type II and type III inclusions; anhydrites from the hematite stage mainly contain abundant type II inclusions and relatively less type I inclusions; quartz and calcite from the late metallogenic stage are mainly characterized by type III inclusions. Laser Raman spectroscopy and microthermometry of fluid inclusions show that the ore-forming fluids broadly correspond to unsaturated NaCl-H2O system. From the magnetite stage to the carbonate stage, the ore-forming fluids evolved from moderate-high temperature (average 414 °C), moderate salinity (average 25.01 wt.% NaCl equiv.) conditions to low temperature (average 168 °C), low salinity (average 6.18 wt.% NaCl equiv.) conditions. Hydrogen and oxygen isotopic studies indicate that the ore-forming fluid during the early stage of middle metallogenic period was mainly of magmatic

  6. Ore-fluid evolution at the Sasa Pb-Zn skarn deposit, Republic of Macedonia

    OpenAIRE

    Strmić Palinkas, Sabina; Tasev, Goran; Serafimovski, Todor; Palinkas, Ladislav; Šmajgl, Daniela; Peltekovski, Zlatko

    2013-01-01

    The Sasa Pb-Zn skarn deposit is located in the Serbo-Macedonian massif approximately 100 km east from Skopje, Republic of Macedonia. Ore reserves are estimated at 10 million metric tons with 7.5% lead and zinc. The deposit is hosted by the Lower Palaeozoic metamorphic complex composed of gneisses, marbles and quartz-graphite schists. The mineralisation is spatially and temporary related to Tertiary calc-alkaline magmatism. The volcanic rocks in the area are mostly quartz latite an...

  7. Isotopic indication to source of ore materials and fluids of the Wangfeng gold deposit in Tianshan: A case study of metallogenesis during collisional orogenesis

    Institute of Scientific and Technical Information of China (English)

    陈华勇; 鲍景新; 张增杰; 刘玉琳; 倪培; 凌洪飞

    2000-01-01

    The Wangfeng gold deposit is one of the five most important gold deposits in the Tian-shan. Studies of its metallogenic time, space, geodynamic background, ore feature and ore fluid have proved that the deposit formed in the late Paleozoic continental collision, and consequently is a suitable delegate to probe mineralizing regularities during collisiona! orogenesis. Isotopic studies including O, D, C, S, Pb and Sr reveal ore materials derived from sedimentary association (including carbonate and sulfate), which further refers to the Hercynian carbonate-silicolite-argillite formation north to Wangfeng camp. At the end of Paleozoic, the southward intracontinental subduction of Hercynian synthem along the Hongwuyueqiao fault down to the Central Tianshan terrane induced large-scale fluidization which extracted and out-transported ore materials from Hercynian synthem upto shallow fair positions, and finally resulted in the formation of the Wangfeng deposit. This study excludes the possibility of other tecton

  8. Ore Characteristics and Fluid Inclusion of the Base Metal Vein Deposit in Moncong Bincanai Area, Gowa, South Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    Asmariyadi Asmariyadi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v7i4.146This paper is dealing with ore characteristics and fluid inclusion of the Moncong Bincanai, Biringbulu Subregency of Gowa Regency, South Sulawesi Province, Indonesia. The mineralization is a vein type, with the orientation of N170oE /65oSW, hosted in open-space filling within basalt. The mineralization consists of galena, sphalerite, chalcopyrite, and pyrite. Vein thickness ranges from 5 - 17 cm, showing a crustiform banding texture, with a sequence from outer to centre: quartz, carbonate (siderite, sulphide. The quartz displays primary growth textures such as comb, crystalline, saccharoidal, and colloform. Analytical methods applied include AAS and fluid inclusion microthermometry. Chemical composition of the vein indicates an average of Pb = 47.92%, Cu = 1.27%, Zn = 1.02%, and Fe = 9.46%, which shows a significant concentration of Pb. Fluid inclusion microthermometry results indicate a range of formation temperature of 240 - 250C and salinity of the responsible hydrothermal fluid of 2.1 - 2.5 wt.% NaCl eq. The deposit is categorized into low-sulfidation epithermal deposits, which was formed within a range of 410 - 440 m below paleosurface.

  9. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U Pb geochronology of hydrothermal xenotime

    Science.gov (United States)

    Rasmussen, Birger; Fletcher, Ian R.; Muhling, Janet R.; Thorne, Warren S.; Broadbent, Graeme C.

    2007-06-01

    Absolute ages for hydrothermal mineralization and fluid flow are critical for understanding the geological processes that concentrate metals in the Earth's crust, yet many ore deposits remain undated because suitable mineral chronometers have not been found. The origin of giant hematite ore deposits, which are hosted in Precambrian banded-iron formations (BIFs), remains contentious. Several models have been formulated based on different sources and timing for the mineralizing fluids; supergene-metamorphic, syn-orogenic, late-orogenic extensional collapse and syn-extensional. Precise geochronology of the ore offers a means of discriminating between these models. In this study, two U-Pb chronometers, xenotime and monazite, have been identified in high-grade hematite ore bodies from the Mount Tom Price mine in the Hamersley Province, northwestern Australia. Both phosphate minerals occur as inclusions within the hematite ore and as coarser crystals intergrown with martite (hematite pseudomorph after magnetite) and microplaty hematite, indicating that the xenotime and monazite precipitated during mineralization. In situ U-Pb dating by ion microprobe indicates that both phosphate minerals grew during multiple discrete events. Our results suggest that ore genesis may have commenced as early as ˜ 2.15 Ga, with subsequent hydrothermal remobilization and/or mineralization at ˜ 2.05 Ga, ˜ 1.84 Ga, ˜ 1.67 Ga, ˜ 1.59 Ga, ˜ 1.54 Ga, ˜ 1.48 Ga and ˜ 0.85 Ga. The location of the ore bodies along ancient fault systems, and the coincidence of at least some of the U-Pb phosphate dates with episodes of tectonothermal activity in the adjacent Proterozoic Capricorn Orogen, implies that fluids were channelled through major structures in the southern Pilbara Craton during discrete phases of tectonic compression and extension. Our results show that the hematite ore bodies formed at sites of repeated focussed hydrothermal fluid flow. In contrast to the aforementioned models, our

  10. Minimum critical thickness of dike for ore-bearing fluid injection: A new approach applied to the Shihu gold deposit, Hebei Province, North China

    Directory of Open Access Journals (Sweden)

    Dedong Li

    2012-09-01

    Full Text Available According to the metallogenic theory by transmagmatic fluid (TMF, one magmatic intrusion is a channel of ore-bearing fluids, but not their source. Therefore, it is possible to use TMF’s ability for injection into and for escaping from the magmatic intrusion to evaluate its ore-forming potential. As the ore-bearing fluids cannot effectively inject into the magmatic intrusion when the magma fully crystallized, the cooling time and rates viscosity varied can be used to estimate the minimum critical thickness of the intrusion. One dimensional heat transfer model is used to determine the cooling time for three representative dikes of different composition (granite porphyry, quartz diorite and diabase in the Shihu gold deposit. It also estimated the rates viscosity varied in these time interval. We took the thickness of dike at the intersection of the cooling time – thickness curve and the rates viscosity varied versus thickness curve as the minimum critical thickness. For the ore-bearing fluids effectively injecting into the magma, the minimum critical thicknesses for the three representative dikes are 33.45 m for granite porphyry, 8.22 m for quartz diorite and 1.02 m for diabase, indicating that ore-bearing dikes must be thicker than each value. These results are consistent with the occurrence of ore bodies, and thus they could be applied in practice. Based on the statistical relationship between the length and the width of dikes, these critical thicknesses are used to compute critical areas: 0.0003–0.0016 km2 for diabase, 0.014–0.068 km2 for quartz diorite and 0.011–0.034 km2 for granite porphyry. This implies that ore-bearing minor intrusions have varied areas corresponding to their composition. The numerical simulation has provided the theoretical threshold of exposed thickness and area of the ore-bearing intrusion. These values can be used to determine the ore-forming potentials of dikes.

  11. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    Science.gov (United States)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and

  12. Chemical and stable isotopic geochemical characteristics of ore-forming fluid of the Shizishan copper and gold ore-field, Tongling, China%铜陵狮子山铜金矿田成矿流体成分及稳定同位素地球化学

    Institute of Scientific and Technical Information of China (English)

    陆三明; 徐晓春; 谢巧勤; 楼金伟; 储国正; 熊亚平

    2007-01-01

    Shizishan ore-field is a nonferrous and noble metal ore-field which is most rich in copper and gold. There are many types of fluid inclusions in minerals of the deposits. The homogeneous temperatures and the salinities of the fluid inclusions in main mineralization stages have wide ranges, while the different types of the fluid inclusions existed together and their homogeneous temperatures are almost identical in the same mineralization stage, which indicates that the ore-forming process has great relation with the fluid boiling. The gas and liquid chemical compositions and the carbon, hydrogen and oxygen isotopic compositions of the fluid inclusions show that the ore-forming fluids of copper-gold deposits have the same characteristics and evolution tendency, which reflects that the ore-forming material mainly came from the magmatism. The stratigraphic component and the meteoric water may mix in oreforming fluids in the later mineralization stages. Furthermore, with the fall of the ore-forming temperature the ratios of water and rock decreased. The characteristics of chemical composition and carbon isotopic composition of fluid inclusions indicate that CH4 may play an important role for separating copper and gold in the ore-forming process.

  13. Fluid Dynamic Field in Bozhong Depression, Bohai Bay Basin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The data from regional geology, boreholes, geophysics and tests are integrated to analyze the fluid dynamic field in the Bozhong depression, Bohai Bay basin. The current geothermal gradient is determined to be about 2.95 ℃/100 m by integrating 266 drill-stem test (DST) measurements and comparing with the global average value. The paleogeothermal gradients are calculated from the homogenization temperatures of saline inclusions, which vary both laterally and vertically. The data from sonic logs, well tests and seismic velocities are used to investigate the pressure variations in the study area. The mudstone compaction is classified as three major types: normal compaction and normal pressure, under-compaction and overpressure, and past-compaction and under-overpressure. The current pressure profile is characterized by normal pressure, slight pressure and intense overpressure from top to bottom. The faults, unconformity surfaces and interconnecting pores constitute a complex network of vertical and horizontal fluid flows within the depression. The fluid potential energy profiles present a “double-deck” structure. The depocenters are the area of fluids supply, whereas the slopes and uplifts are the main areas of fluids charge.

  14. Geochemistry of Brines from Salt Ore Deposits in Western Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    马万栋; 马海州; 谭红兵; 董亚萍; 张西营; 孙国芳

    2004-01-01

    In the geological evolution of the Tarim Basin, many transgressions and relictions happened. So there have been plentiful sources of salt. Moreover, because of uttermost drought, a lot of salt has been deposited. It is possible to find potash salt in this area. In our fieldwork, we have found salt and brine in western Tarim Basin. Based on a geological survey and the characteristics of sedimentary facies and paleogeography, this paper deals with the geochemical parameters and discusses the possibility of formation of potash salt in terms of the chemical analyses of samples collected from western Tarim Basin. Results of brine analysis lead to some conclusions: most of these salt brines have eluviated from very thick halite beds, mainly chloride-type salt and this kind of halite does not reach the stage of potash deposition in all aspects; WKSL (Wukeshalu) occupies a noticeable place, and we should attach importance to this district because there have been some indicators of the occurrence of potash deposits as viewed from the contents of Br and K. Finally, low Br contents are recognized in the Tarim Basin as a result of salt aggradation, and this point of view has been proved by the results of this experiment and the data available. It cannot depend upon the index of Br to judge the evolution stage of halite. We must look for other facies of potash except marine facies.

  15. Geologic and geochemical features of the volatile-rich ore fluid and its tracing and dating in the Xuebaoding Beryl-Scheelite Vein Deposit,China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Laser Raman spectrochemical analysis on single inclusion reveals that multi-phase fluid inclusions exist in the Xuebaoding Beryl-Scheelite Vein Deposit.Besides the solid daughter mineral,there are vapor CO2,liquid CO2,water-deficient CO2 and salt water solution from its center to the border.A close study on the fluid inclusion components and carbon,oxygen,helium and argon isotope tracing and dating suggests that the volatile-rich ore fluid might derive from postmagmatic fluid and rare element enrichment is the result of the mixture of the plutonic alkali granite with crustal material.

  16. Geologic and geochemical features of the volatile-rich ore fluid and its tracing and dating in the Xuebaoding Beryl-Scheelite Vein Deposit, China

    Institute of Scientific and Technical Information of China (English)

    曹志敏; 任建国; 郑建斌; 徐仕进; 李佑国; 王汝成; T.SHOJ; H.KANEDA; S.KABAYASHI

    2002-01-01

    Laser Raman spectrochemical analysis on single inclusion reveals that multi-phase fluid inclusions exist in the Xuebaoding Beryl- Scheelite Vein Deposit. Besides the solid daughter mineral, there are vapor CO2, liquid CO2, water-deficient CO2 and salt water solution from its center to the border. A close study on the fluid inclusion components and carbon, oxygen, helium and argon isotope tracing and dating suggests that the volatile-rich ore fluid might derive from postmagmatic fluid and rare element enrichment is the result of the mixture of the plutonic alkali granite with crustal material.

  17. 河南罗山金城金矿成矿流体性质及演化%ORIGIN AND EVOLUTION OF ORE-FORMING FLUIDS IN JINCHENG GOLD ORE DEPOSIT, LUOSHAN,HENAN

    Institute of Scientific and Technical Information of China (English)

    刘洪; 吕新彪; 刘阁; 尚世超; 李春诚; 柯昌辉; 王玉奇; 胡庆成

    2012-01-01

    河南省罗山县金城金矿位于桐柏-大别造山带北侧,矿体受北西西向韧性剪切带控制,呈脉状、透镜状产于中元古界浒湾组变质岩中.根据矿物共生组合和脉体穿插关系,将热液成矿作用分为3个阶段:石英-金-黄铁矿阶段、石英-金-多金属硫化物阶段、石英萤石-碳酸盐矿物阶段.本文在详细分析金城金矿床成矿地质背景、矿床地质特征的基础上,研究该矿床各阶段石英和萤石中流体包裹体,以及石英的氢、氧同位素特征.包裹体研究表明该金矿床的成矿流体分3个阶段,为中低温、中低盐度、低密度体系.成矿流体的δD为-72.0‰~-86.6‰(均值-79.0‰),δ18O值为-5.98‰~+-4.1‰(均值-0.32%),氢氧同位素分析表明初始成矿流体来源自岩浆热液,后期有大气降水成分加入.各阶段的流体具有沿韧性剪切带从深部到浅部,从高温到低温,从高压到低压运移和演化的趋势,最终在浅部构造有利的导矿-容矿构造逐渐富集成矿.%The Jincheng gold deposit lies in the north of Tongbai-Dabie orogenic belt in the Lu-oshan County of the Henan Province. Ore bodies of veins and lens are controlled by ductile shear zone,and are hosted by metamorphic rocks of upper Proterozoic Huwangang Formation. In accordance with paragenetic association of minerals and intercalation relationship of different veins, hydrothermal ore-forming period can be divided into 3 stages, quartz-gold-pyrite stage, quartz-polymetallic sulfides stage and quartz-carbonate stage respectively. Based on the geological setting ore formation and the geologic feature of deposit,we further investigate the fluid inclusions in the quartz and the fluorite of each ore-forming stage as well as the oxygen and hydrogen isotope composition of the quartz are studied. It shows that the ore-forming of the gold deposit is characterized by medium to low temperature,medium to low salinity and low density system. The S18O

  18. Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes

    Science.gov (United States)

    Sánchez-España, Javier; Velasco, Francisco; Boyce, Adrian J.; Fallick, Anthony E.

    2003-08-01

    A fluid inclusion and stable isotopic study has been undertaken on some massive sulphide deposits (Aguas Teñidas Este, Concepción, San Miguel, San Telmo and Cueva de la Mora) located in the northern Iberian Pyrite Belt. The isotopic analyses were mainly performed on quartz, chlorite, carbonate and whole rock samples from the stockworks and altered footwall zones of the deposits, and also on some fluid inclusion waters. Homogenization temperatures of fluid inclusions in quartz mostly range from 120 to 280 °C. Salinity of most fluid inclusions ranges from 2 to 14 wt% NaCl equiv. A few cases with Th=80-110 °C and salinity of 16-24 wt% NaCl equiv., have been also recognized. In addition, fluid inclusions from the Soloviejo Mn-Fe-jaspers (160-190 °C and ≈6 wt% NaCl equiv.) and some Late to Post-Hercynian quartz veins (130-270 °C and ≈4 wt% NaCl equiv.) were also studied. Isotopic results indicate that fluids in equilibrium with measured quartz (δ18Ofluid ≈-2 to 4‰), chlorites (δ18Ofluid ≈8-14‰, δDfluid ≈-45 to -27‰), whole rocks (δ18Ofluid ≈4-7‰, δDfluid ≈-15 to -10‰), and carbonates (δ18Oankerite ≈14.5-16‰, δ13Cfluid =-11 to -5‰) evolved isotopically during the lifetime of the hydrothermal systems, following a waxing/waning cycle at different temperatures and water/rock ratios. The results (fluid inclusions, δ18O, δD and δ13C values) point to a highly evolved seawater, along with a variable (but significant) contribution of other fluid reservoirs such as magmatic and/or deep metamorphic waters, as the most probable sources for the ore-forming fluids. These fluids interacted with the underlying volcanic and sedimentary rocks during convective circulation through the upper crust.

  19. Triassic fluid mobilization and epigenetic lead-zinc sulphide mineralization in the Transdanubian Shear Zone (Pannonian Basin, Hungary

    Directory of Open Access Journals (Sweden)

    Benkó Zsolt

    2014-06-01

    Full Text Available A combined fluid inclusion, fluid inclusion plane, lead isotope and K/Ar radiometric age dating work has been carried out on two lead-zinc mineralizations situated along the Periadriatic-Balaton Lineament in the central part of the Pannonian Basin, in order to reveal their age and genetics as well as temporal-spatial relationships to other lead-zincfluorite mineralization in the Alp-Carpathian region. According to fluid inclusion studies, the formation of the quartzfluorite- galena-sphalerite veins in the Velence Mts is the result of mixing of low (0-12 NaCl equiv. wt. % and high salinity (10-26 CaCl2 equiv. wt. % brines. Well-crystallized (R3-type illite associated with the mineralized hydrothermal veins indicates that the maximum temperature of the hydrothermal fluids could have been around 250 °C. K/Ar radiometric ages of illite, separated from the hydrothermal veins provided ages of 209-232 Ma, supporting the Mid- to Late-Triassic age of the hydrothermal fluid flow. Fluid inclusion plane studies have revealed that hydrothermal circulation was regional in the granite, but more intensive around the mineralized zones. Lead isotope signatures of hydrothermal veins in the Velence Mts (206Pb/204Pb = 18.278-18.363, 207Pb/204Pb = 15.622-15.690 and 208Pb/204Pb = 38.439-38.587 and in Szabadbattyán (206Pb/204Pb = 18.286-18.348, 207Pb/204Pb = 15.667-15.736 and 208Pb/204Pb = 38.552-38.781 form a tight cluster indicating similar, upper crustal source of the lead in the two mineralizations. The nature of mineralizing fluids, age of the fluid flow, as well as lead isotopic signatures of ore minerals point towards a genetic link between epigenetic carbonate-hosted stratiform-stratabound Alpine-type lead-zinc-fluorite deposits in the Southern and Eastern Alps and the studied deposits in the Velence Mts and at Szabadbattyán. In spite of the differences in host rocks and the depth of the ore precipitation, it is suggested that the studied deposits along the

  20. Ore-forming mechanism for the Xiaoxinancha Au-rich Cu deposit in Yanbian,Jilin Province,China:Evidence from noble gas isotope geochemistry of fluid inclusions in minerals

    Institute of Scientific and Technical Information of China (English)

    KEISUKE; Nagao; HIROCHIKA; Sumino

    2008-01-01

    The Xiaoxinancha Au-rich copper deposit is one of important Au-Cu deposits along the continental margin in Eastern China. The deposit consists of two sections: the Beishan mine (North), composed of altered rocks with veinlet-dissemination sulfides and melnicovite-dominated sulfide-quartz veins, and the Nanshan mine (South), composed of pyrrhotite-dominated sulfide-quartz veins and pure sulfide veins. The isotope compositions of noble gases extracted from fluid inclusions in ore minerals, i.e. ratios of 3He/4He, 20Ne/22Ne and40Ar/36Ar are in the ranges of 4.45―0.08 Ra, 10.2―8.8 and 306―430, respectively. Fluid inclusions in minerals from the Nanshan mine have higher 3He/4He and 20Ne/22Ne ratios whereas those from the Beishan mine have lower 3He/4He ratios. The analysis of origin, and evolution of the ore fluids and its relations with the ore-forming stages and the ages of mineralization suggests that the initial hydrothermal fluids probably come from the melts generated by partial melting of oceanic crust with the participation of fluids from the mantle (mantle-plume type)/aesthenosphere. This also corresponds to the continental margin settings during the subduction of Izanagi ocaneic plate towards the palaeo-Asian continent (123―102 Ma). The veinlet-dissemination ore bodies of the Beishan mine were formed through replacement and crystallization of the mixed fluids generated by mixing of the ascending high-temperature boiling fluid with young crustal fluid whereas the melnicovite-dominated sulfide-quartz veins were formed subsequently by filling of the high-temperature ore fluid in fissures. Pyrrhotite-dominated sulfide-quartz veins in the Nanshan mine were formed by filling-deposition-crystallization of the moderate-temperature ore fluids and the pure sulfide veins were formed later by filling-deposition-crystallization of ore substance-rich fluids after boiling of the moderate-temperature ore fluids. The metallogenic dynamic processes can be summarized as

  1. Characteristics of polymetallic ore-forming fluid and metallogenesis of the Xiangshan ore-field in Jiangxi%江西相山矿田多金属成矿流体特征与成矿作用

    Institute of Scientific and Technical Information of China (English)

    聂江涛; 李子颖; 王健; 郭建

    2015-01-01

    Fluid inclusions of polymetallic mineralization in the Xiangshan uranium orefield were studied for the first time in this pa⁃per. A large number of polymetallic mineralizations were discovered recently with the deepening of geological exploration in the Xiangshan uranium orefield and the implementation of uranium scientific deep drilling. Based on studying petrography, microther⁃mometry, pressure of ore-forming processes, composition and metallogenic depth of fluid inclusions as well as sulfur, carbon, oxygen isotopic composition, the authors hold that the lead and zinc ore-forming temperatures are mainly concentrated on 230~300℃, the metallogenic pressures are concentrated on 12~51MPa, and the salinities are concentrated on 4%~12%NaCleqv. The fluid inclusions are enriched in CO2 and to a lesser extent in CH4 and N2. The mineral assemblage is mainly sphalerite+gelenite+pyrite. The cop⁃per ore-forming temperatures are mainly concentrated on 320~380℃,metallogenic pressures on 33~95MPa , and salinities on 4%~12%NaCleqv. The fluid inclusions are enriched in CO2 and to a lesser extent in CH4 and N2. The mineral assemblage is mainly chal⁃copyrite+pyrrhotite+arsenikstein. All these data indicate that ore-forming fluids were characterized by medium-high temperature, high pressure, medium-high salinity, low oxygen fugacity and high content of CO 2. The lead, zinc, copper and uranium ore-form⁃ing fluids were characterized by deep source, but there were obvious different in stage, space, alteration and fluid inclusion characteris⁃tics of lead, zinc, copper and uranium mineralization, so they were formed in different ore-forming stages and occurred in different separate hydrothermal mineralization processes in early-middle Cretaceous in South China.%随着相山铀矿矿田勘探深度的增加和铀矿科学深钻的实施,在矿田内揭露了大量多金属矿化,流体包裹体和地球化学研究表明,铅锌矿成矿期温度集中在230~300

  2. 滇西北兰坪盆地白秧坪多金属矿床成矿物质来源:C、H、O、S和Pb同位素制约%Sources of the Ore-forming Material of the Baiyangping Poly-metallic Deposit in Lanping Basin, Northwestern Yunnan: Constraints from C, H, O, S and Pb Isotope Geochemistry

    Institute of Scientific and Technical Information of China (English)

    薛伟; 薛春纪; 李洪军; 池国祥; 曾荣

    2012-01-01

    Baiyangping poly-metallic deposit, located in the central, slightly north of the Lanping Mesozoic-Ce-nozoic sedimentary basin, is one of important deposits in the famous Sanjiang metallogenic belt. C, H, 0, S and Pb isotope geochemistry are discussed in this paper in order to find out sources of the ore-forming material and characteristics of ore-fluids. The δ34S value of poly-metallic ore in Baiyangping deposit is between -5. 6%c and 11. 2‰, with the property of thermal-chemic reduction of Mesozoic to Cenozoic evaporite sulfate in Lanping Basin. Moreover, the composition of Pb isotope in ores and sedimentary rocks of Mesozoic to Cenozoic is also very similar, which illustrates that ore-forming metal elements derive from the sedimentary rocks of the basin. The δDV_SMOW and δ8Ov-SM0W of the ore-forming fluids are between - 122‰ to - 86‰ and - 4. 52‰ to -15. 34‰, respectively, showing that they come from basinal hot brine, supplied by precipitation. The δ13 CV_PDB and δ18 Ov-smow value of dolomite formed in early hydrothermal ore-forming stage are between -3. 4‰to 0. 5‰and 4. 8‰to 20. 3‰ Respectively, while the corresponding values in late hydrothermal ore-forming stage are between -3. l‰to 0. 5‰and 4.1‰to 18. 6‰ Respectively, all of which indicate that CO2 of the ore-forming fluids derive from the solution of the limestone.%白秧坪多金属矿床位于滇西兰坪中一新生代沉积盆地中北部,是在著名的三江成矿带内新近发现的重要矿床之一.为确定该矿床成矿流体特征和成矿金属元素来源,对白秧坪多金属矿床开展了系统的C、H、O、S和Pb同位素地球化学研究.白秧坪多金属矿石硫化物δ34S为-5.6‰~11.2‰,具有兰坪盆地中一新生界蒸发岩硫酸盐的热化学还原性质;矿石与盆地中一新生界沉积岩铅同位素组成相似,成矿金属源于盆地沉积地层.成矿流体中水的δDV- SMOW =-122‰~-86‰,δ18OV-SMOW=-4.52‰~-15.34‰,

  3. Ore fluid of the Tieluping silver deposit of Henan Province and its illustration of the tectonic model for collisional petrogenesis, metallogenesis and fluidization

    Institute of Scientific and Technical Information of China (English)

    隋颖慧; 王海华; 高秀丽; 陈华勇; 李震

    2000-01-01

    The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong’er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373℃, 223℃ and 165℃ respectively. With δD=90‰, δ13CCo2 =2.0‰ and δ18O=8.94‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=-70‰, δ13CCo2 =-1.2‰, δ18O=-1,89‰, was meteoric hydrothermal solution; and the middle, δD=-109‰, δl3CCO2=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontin

  4. Regional Fluid Flow and Basin Modeling in Northern Alaska

    Science.gov (United States)

    Kelley, Karen D.

    2007-01-01

    INTRODUCTION The foothills of the Brooks Range contain an enormous accumulation of zinc (Zn) in the form of zinc sulfide and barium (Ba) in the form of barite in Carboniferous shale, chert, and mudstone. Most of the resources and reserves of Zn occur in the Red Dog deposit and others in the Red Dog district; these resources and reserves surpass those of most deposits worldwide in terms of size and grade. In addition to zinc and lead sulfides (which contain silver, Ag) and barite, correlative strata host phosphate deposits. Furthermore, prolific hydrocarbon source rocks of Carboniferous and Triassic to Early Jurassic age generated considerable amounts of petroleum that may have contributed to the world-class petroleum resources of the North Slope. Deposits of Zn-Pb-Ag or barite as large as those in the Brooks Range are very rare on a global basis and, accordingly, multiple coincident favorable factors must be invoked to explain their origins. To improve our understanding of these factors and to contribute to more effective assessments of resources in sedimentary basins of northern Alaska and throughout the world, the Mineral Resources Program and the Energy Resources Program of the U.S. Geological Survey (USGS) initiated a project that was aimed at understanding the petroleum maturation and mineralization history of parts of the Brooks Range that were previously poorly characterized. The project, titled ?Regional Fluid Flow and Basin Modeling in Northern Alaska,? was undertaken in collaboration with industry, academia, and other government agencies. This Circular contains papers that describe the results of the recently completed project. The studies that are highlighted in these papers have led to a better understanding of the following: *The complex sedimentary facies relationships and depositional settings and the geochemistry of the sedimentary rocks that host the deposits (sections 2 and 3). *The factors responsible for formation of the barite and zinc deposits

  5. Control of relay structure on mineralization of sedimentaryexhalative ore deposit in growth faults of graben systems

    Institute of Scientific and Technical Information of China (English)

    XI Xiao-shuang; TANG Jing-ru; KONG Hua; HE Sho-xun

    2005-01-01

    Based on the study of ore deposits and orebody structures of two sedimentary-exhalative ore deposits,i. e. , Changba and Xitieshan Ore Deposits, it is found that the structural patterns of metallogenic basin of seafloor exhalative sulfide deposits in the ancient graben systems are controlled by relay structures in normal faults. The shapes of metallogenic basins are composed of tilting ramp, fault-tip ramp and relay ramp, which dominate migration of gravity current of ore-hosted fluid and shape of orebody sedimentary fan in the ramp. By measuring and comparing the difference of length-to-thickness ratios of orebody sedimentary fan, the result shows that the occurrence of the ramp has a remarkable impact on the shape of orebody.

  6. Sulfur isotope geochemistry of ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type ore district, Poland

    Science.gov (United States)

    Leach, D.L.; Vets, J.G.; Gent, C.A.

    1996-01-01

    Studies of the sulfur isotopic composition of ore and gangue minerals from the Silesian-Cracow Zn-Pb district were conducted to gain insights into processes that controlled the location and distribution of the ore deposits. Results of this study show that minerals from the Silesian-Cracow ore district have the largest range of sulfur isotope compositions in sulfides observed from any Mississippi Valley-type ore district in the world. The ??34S values for sulfide minerals range from +38 to -32 per mil for the entire paragenetic sequence but individual stages exhibit smaller ranges. There is a well developed correlation between the sulfur isotope composition and paragenetic stage of ore deposition. The first important ore stage contains mostly positive ??34S values, around 5 per mil. The second stage of ore formation are lower, with a median value of around -5 to -15 per mil, and with some values as low as -32 per mil. Late stage barite contains isotopically heavy sulfur around +32 per mil. The range in sulfur isotope compositions can be explained by contributions of sulfur from a variety of source rocks together with sulfur isotope fractionations produced by the reaction paths for sulfate reduction. Much of the variation in sulfur isotope compositions can be explained by bacterial reduction of sedimentary sulfate and disequilibrium reactions by intermediate-valency sulfur species, especially in the late-stage pyrite and sphalerite. Organic reduction of sulfate and thermal release of sulfur from coals in the Upper Silesian Coal Basin may have been important contributors to sulfur in the ore minerals. The sulfur isotopic data, ore mineral textures, and fluid inclusion data, are consistent with the hypothesis that fluid mixing was the dominant ore forming mechanism. The rather distinct lowering of ?? 34S values in sulfides from stage 2 to stage 3 is believed to reflect some fundamental change in the source of reduced sulfur and/or hydrology of the ore

  7. Thermicity and fluid flow related to the evolution of the South Pyrenean Foreland Basin (SPFB)

    Science.gov (United States)

    Crognier, Nemo; Hoareau, Guilhem; Lacroix, Brice; Aubourg, Charles; Dubois, Michel; Lahfid, Abdeltif; Labaume, Pierre; Suarez-Ruiz, Isabel

    2015-04-01

    The East-West trending South Pyrenean Foreland Basin (SPFB), formed during the upper Cretaceous and the early Miocene due to the collision between Iberian and European plates, is filled by marine to continental deposits affected by a set of successive southvergent thrusts. In the western part of the SPFB (Jaca basin, Spain), from the North to the South the basin is subdivided into four parts: the internal Sierras, the turbiditic basin, the molassic basin and the external Sierras. In order to better constrain the fluid flow dynamic and the thermal regime of the basin during its tectonic evolution, we propose to estimate the temperatures and the O and C isotopic signatures of fluids, as well as the maximum temperatures recorded by pre- to syn-tectonic sediments of the Jaca basin. The C and O isotopic composition has been measured on ~100 veins and host sediment samples. The peak temperatures have also been estimated on 80 bulk rocks and calcite/quartz veins using a combination of several techniques, including Raman Spectroscopy of Carbonaceous Material, vitrinite reflectance, fluid inclusion microthermometry and mass-47 clumped isotopes. We show that in most tectonic fractures, primary fluid inclusions are characterized by moderate salinities (~2.5 wt%) compatible with connate or evolved meteoric waters, with increasing meteoric signature in the south of the basin. As suggested by temperature determinations and stable isotopes, involved fluids were generally in thermal and isotopic equilibrium with the host sediments, suggesting a low fluid-rock ratio (i.e., no significant fluid flow). These results support previous speculations of moderate fluid-flow through thrust faults and the hydrological compartmentalization of the Jaca basin during deformation (Lacroix et al., 2014). In addition we demonstrate that measured peak temperatures rapidly decrease southward, from ~240°C±30°C in Cretaceous to Eocene sediments located in the North of the basin close to the axial

  8. Percolation of diagenetic fluids in the Archaean basement of the Franceville basin

    Science.gov (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François

    2014-01-01

    The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin-basement unconformity have been studied. Dating is based on U-Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment-granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U-Pb isotopic dating outlines three successive events: a 3.0-2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na-Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic-Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga. highly saline diagenetic brines; hydrocarbon-rich fluids derived from organic matter

  9. REE Geochemistry of Fluorite from the Maoniuping REE Deposit, Sichuan Province, China: Implications for the Source of Ore-forming Fluids

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefieid can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maoniuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts.

  10. Application of Fluid Inclusions in the Study of Natural Gas Geology in Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    FAN Ai-ping; YANG Ren-chao; FENG Qiao; LIU Yi-qun; HAN Zuo-zhen

    2006-01-01

    The new recently demonstrated reserves of oil and gas in the Ordos basin are found at the top of petroliferous basins in China. Gas pools discovered in recent years in the Permian system have become the main natural gas resource in the basin. Therefore, synthetic research on fluid inclusions should be done in order to ascertain the pool-forming stage, the maturity of organic matters and the properties of Paleo-fluids. The main types of fluid inclusions in the Permian system in the basin include brine inclusions, carbon dioxide inclusions and organic inclusions. Homogenization temperatures (HT) of brine inclusions can be divided into four intervals: 66-83 ℃, 86-108 ℃, 112-138 ℃ and 142-153 ℃. The fluid inclusions in the interval of 112-138 ℃ are much more than that of other intervals, indicating that the second stage of hydrocarbon migration associated with the third temperature interval is the most important stage of gas pool formations. The fluid inclusion has extensive applications in the study of gas geology, not only in ascertaining the formation stage of gas pools, but also in estimating the maturity of organic matter and restoring Paleo-fluids. The result of testing the HT of brine inclusions shows that there are two stages of gas pool formations in the Permian system occurring ±150 Ma and ±100 Ma. The maturity of organic matter is moderate to high, a conclusion based on the color of fluid inclusions (radiated by fluorescence). The high salinity of Paleo-fluids of the NaCl-H2O and CaCl2-H2O systems shows good preservation conditions of the Paleo-fluids. Two stages of reservoir filling, high maturity of organic matter and good preservation conditions are factors favorable for the formation and preservation of large-scale gas pools in the Permian system in the Ordos basin.

  11. Late Yanshan-Himalayan hydrocarbon reservoir adjustment and hydrotherrnal fluid activity in the central Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The adjustment of primary hydrocarbon reservoirs in marine formations is an important feature of the oil pools in the Tarim Basin. Large-scale hydrocarbon adjustment is related to the strong regional tectonic movements, which is always accompanied by extensive migration of basin fluids including diagenetic and mineralizing fluids. Organic fluid inclusions are well developed in hydrothermal minerals, such as fluorite, which have been found in the dissolution-enlarged fractures or karstification caves in the Ordovician in the central Tarim Basin. Proved by well drilling, the fluorite deposit is good reservoir for oil and gas. So the peculiar accompanied or superimposed relationship between fluorite hydrothermal fluid mineralization and hydrocarbon migration and accumulation exists in the Ordovician in the central Tarim Basin. Considering regional tectonic setting and mineralization condition,through different kinds of analytic methods including electron spin resonance dating, fluid inclusion laser Raman and colonial inclusions hydrocarbon fossil analysis, we proposed that extensive mineralizing fluids and hydrocarbon migration occurred in late Yanshan-Himalayan (110.4-30.8 Ma) period, and Himalayan, especially, is an important period for hydrocarbon accumulation from 34.3 Ma to present.

  12. Fluid dynamics, particulate segregation, chemical processes, and natural ore analog discussions that relate to the potential for criticality in Hanford tanks

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1996-09-27

    This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.

  13. Ore-forming fluid and stable isotope studies of Dazhuangzi gold depositin Jiaodong Peninsula%胶东大庄子金矿成矿流体及稳定同位素研究

    Institute of Scientific and Technical Information of China (English)

    刘玄; 范宏瑞; 胡芳芳; 郑小礼; 蓝廷广; 杨奎锋

    2011-01-01

    胶东大庄子金矿床位于胶北地体西南缘,中生代胶莱盆地北缘,西侧靠近郯庐(沂沭)断裂带.矿体产出在古元古界荆山群变质岩中,发育碎裂(糜棱)蚀变岩型和石英脉型2种矿石.流体包裹体显微测温表明,主成矿期温度为240~280℃,成矿流体盐度w(NaCleq)为7% ~8%,属于H2O-CO2-NaCl体系.包裹体显微测温及岩相学观察发现,成矿期流体发生了相分离作用,这可能是导致矿化的主要原因之一.氢、氧同位素测试显示石英δ18O石英值变化于10.9‰~ 11.8‰之间,石英包裹体δ18OH2o变化于4.3‰~5.2‰,δDH2O变化于-65.8‰~-74.5‰,表明大庄子金矿成矿期流体以岩浆水为主,成矿后期混入了一定量的大气降水,岩浆水可能来自于与基性脉岩同源的基性岩浆的去气作用.硫同位素分析获得硫化物δ 34S值为7.9‰~11.3‰,与围岩荆山群变质岩硫同位素组成非常接近,而与胶东群变质岩和中生代花岗岩的硫同位素组成差别较大,因此认为大庄子金矿床成矿流体中的硫主要来自于荆山群变质岩.%The Dazhuangzi gold deposit lies in Pingdu City, Shandong Province. Tectonically, it is located in the southwestern corner of Jiaobei terrain and on the northern margin of the Mesozoic Jiaolai basin; to the west, it is adjacent to the Yishu fault zone. The ore bodies, which are hosted in metamorphic rocks of Paleoproterozoic Jingshan Group, can be divided into two types, namely the "altered cataclasite or mylonite type" and the "quartz vein type". Microthermometric investigation reveals that gold precipitation occurs at 240 ~ 280℃ from CQ2-rich, low salinity [ω(NaCleq)7%~8%] hydrothermal fluids in which there are no other volatiles except H2O and CQ2. More importantly, phase separation is observed and is firmly believed to be responsible for the main stage mineralization. Results of hydrogen and oxygen isotope studies suggest that ore-forming fluids were a mixture

  14. 白云鄂博矿床碳酸岩墙/脉和赋矿白云岩中流体包裹体研究%Fluid inclusion study of carbonatite dykes/veins and ore-hosted dolostone at the Bayan Obo ore deposit

    Institute of Scientific and Technical Information of China (English)

    秦朝建; 裘愉卓; 周国富; 王中刚; 张台荣; 肖国望

    2007-01-01

    Fluid inclusion study has been carried out for the carbonatite dykes/veins and the ore-hosted dolostone of the Bayan Obo superlarge REE-Fe-Nb deposit in order to provide the evidence and constraint for their origin. Based on the detailed geological observation and mineralogical investigation, the heating and cooling stage and laser Raman spectroscopy were mainly used for the laboratory work of this study. Following results have been obtained: (1) The discovery of melt and melt-fluid inclusions from carbonatite dykes/veins in the Dulahara and Jianshan Mountains, combined with the fine-grained (aplitic) texture of rocks, as well as the types and features of fluid inclusions such as CO2 enrichment, higher homogenization temperature, provides a direct evidence for the magmatic origin of these dykes/veins. (2) The carbonatite dykes/veins distributed in two regions, nearby the axis of the Kuangou anticline and in the east to Bayan Obo town, mainly show coarse-grained texture. No melt inclusion was found, and the fluid inclusions possess features of less CO2, lower homogenization temperature and higher salinity. They are tentatively identified as veins formed by some carbonate-rich hydrothermal solution. (3) Bedding carbonate layers/lens within the hanging wall and foot wall of ore-hosted dolostone, previously recognized as of magmatic origin, mainly composed by dolomite. The existence of single phase pure aqueous inclusions with very low homogenization temperature indicates their sedimentary origin. (4) The ore-hosted dolostone possesses apparent bedding and laminated structures. No melt inclusion was found, but, both single phase pure aqueous inclusions and CO2bearing multi-phase fluid inclusions coexisted in dolostones. In the direction towards ore-bodies, the homogenization temperature and CO2 contents of fluid inclusion show an increasing tendency. It indicates the sedimentary origin of dolostone superimposed by late fluid metasomatism.

  15. 湖南省邵阳盆地锰矿层特征及矿床富集规律探讨%Characteristics of manganese ore bed and enrichment regularity of deposits in Shaoyang Basin of Hunan

    Institute of Scientific and Technical Information of China (English)

    马武良

    2016-01-01

    Shaoyang Basin is a hollow zone formed in late Devonian epoch,and Permian Gufeng Formation is the main manganese-bearing horizon of this area.Ore bed 1-2 of Gufeng Formation has low grade of man-ganese.However,the ore beds are characterized by large ore bed thickness,wide distribution and great re-source potential.Therefore,analysis and summarization of the characteristics of manganese-bearing ore beds and the enrichment regularity of deposits has great implications for next round prospecting works of manga-nese in Shaoyang Basin.%邵阳盆地为泥盆世晚期形成的一凹陷带,二叠系孤峰组为该区主要含锰层位。孤峰组含锰1~2层品位较低,但矿层厚度大,分布面积广,资源潜力大,因此分析总结锰矿层特征、矿床富集规律,对指导邵阳盆地开展新一轮锰矿找矿工作具有重要意义。

  16. Mechanism of diapirism and episodic fluid injections in the Yinggehai Basin

    Institute of Scientific and Technical Information of China (English)

    HAO; Fang

    2002-01-01

    [1]Jackson, M. P. A., Vendeville, B. C., Regional extension as a geologic trigger for diapirism, Geological Society of Ameri-ca Bulletin, 1994, 106(1): 57-73.[2]Pérez-Belzuz, F., Alonso, B., Ercilla, G., History of mud diapirism and trigger mechanisms in the Western Alboran Sea, Tectonophysics, 1996, 282(2): 399-422.[3]Hunt, J. M., Petroleum Geology and Geochemistry, 2nd ed., San Francisco: Freeman and Company, 1996, 743.[4]Gong Zaisheng, Li Sitian, Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South Chi-na Sea (in Chinese), Beijing: Science Press, 1997, 510.[5]Price, L. C., Basin richness and source rock disruption: A fundamental relationship? Journal of Petroleum Geology, 1994, 17(1): 5-38.[6]Roberts, S. J., Nunn, J. A., Episodic fluid expulsion from geopressured sediments, Marine and Petroleum Geology, 1995, 12(2): 195-204.[7]Dewers, T., Ortoleva, P., Nonlinear dynamical aspects of deep basin hydrology: Fluid compartment formation and episodic fluid release, American Journal of Science, 1994, 294(5): 713-755.[8]Dai, J. X., Song, Y., Dai, C. S. et al., Geochemistry and accumulation of carbon dioxide gases in China, AAPG Bulletin, 1996, 80(9): 1615-1626.[9]Hao Fang, Li Sitian, Sun Yongchuan et al., Organic maturation and petroleum generation model in the Yinggehai and Qiongdongnan Basins, Science in China, 1996, 39(6): 650-658.[10]Hao Fang, Li Sitian, Dong Weiliang et al., Abnormal organic matter maturation in the Yinggehai Basin, offshore South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems, Journal of Petroleum Geology, 1998, 21(4): 427-444.[11]Pollastro, R. M., Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age, Clays and Clay Minerals, 1993, 41(2): 119-133.[12]Ko, J., Hesse, R., Illite/smectite diagenesis in the Beaufort-Mackenzie Basin, Arctic Canada

  17. Numerical aspects of modelling of coupled chemical reactions and fluid flow in sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Holstad, Astrid

    1998-01-01

    Simulation of coupled chemical reactions and fluid flow in porous sedimentary basins, through long time periods, is a numerical challenge. In most models available today the equations representing such a physical problem are solved as PDEs (Partial Differential Equation) where efficient time-stepping with controlled error is very difficult. The DAE (Differential Algebraic Equation) system approach is used where robust adaptive time-stepping algorithms are available in solvers. In this report mathematical and numerical models are derived for coupled chemical reactions and fluid flow. The models have several interesting properties which are discussed. The performance of code is tested. 20 refs., 6 figs., 2 tabs.

  18. Kellad orelis

    Index Scriptorium Estoniae

    2000-01-01

    18. VI Tallinna toomkirikus organist Ines Maidre (kaastegev Kristjan Mäeots) kontsert "Kellad orelis". Kontserdiga esitleb I. Maidre ka oma samanimelist CD-d (kujundaja Margus Haavamägi), mis on osaliselt sisse mängitud Tallinna toomkiriku Ladegasti-Saueri orelil. Tänavu tähistatakse toomkiriku Maarja kella ja Lunastaja kella 315. aastapäeva.

  19. Regional fluid flow as a factor in the thermal history of the Illinois basin: Constraints from fluid inclusions and the maturity of Pennsylvanian coals

    Science.gov (United States)

    Rowan, E.L.; Goldhaber, M.B.; Hatch, J.R.

    2002-01-01

    Vitrinite reflectance measurements on Pennsylvanian coals in the Illinois basin indicate significantly higher thermal maturity than can be explained by present-day burial depths. An interval of additional sedimentary section, now removed by erosion, has been suggested to account for the discrepancy. Although burial could indeed account for the observed maturity levels of organic matter, fluid-inclusion temperatures provide a stringent additional constraint. In this article, we combine measurements of coal maturity with fluid-inclusion temperatures from three sites to constrain the basin's thermal and burial history: the Fluorspar district at the Illinois basin's southern margin, the Upper Mississippi Valley zinc district at the basin's northern margin, and a north-central location. Two-dimensional numerical modeling of a north-south cross section through the basin tests scenarios both with and without regional fluid flow. Vitrinite reflectance values can be matched assuming burial by 1.8-2.8 km of southward-thickening additional, post-Pennsylvanian sedimentary section. In the central and northern Illinois basin, however, these burial depths and temperatures are not sufficient to account for the fluid-inclusion data. To account for both parameters with burial alone does not appear feasible. In contrast, our best hypothesis assumes a wedge of post-Pennsylvanian sediment-thickening southward to about 1.2 km and a brief period of magmatism in the Fluorspar district. Significant advective heat redistribution by northward regional fluid flow accounts for fluid-inclusion temperatures and coal maturities throughout the basin. The modeling results demonstrate the potential contribution of advective heat transport to the thermal history of the Illinois basin.

  20. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    Science.gov (United States)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  1. Well successfully drilled with high performance water-based fluid: Santos Basins, offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fornasier, Frank C.; Luzardo, Juan P. [Halliburton Company, Houston, TX (United States); Bishnoi, M.L. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India)

    2012-07-01

    Santos Basin is a 352,260 square kilometers (136,010 sq mi) offshore pre-salt basin. It is located in the South Atlantic Ocean, some 300 kilometers (190 mi) South East of Sao Paulo, Brazil. One of the largest Brazilian sedimentary basins, it is the site of several recent significant oil fields, including Tupi and Jupiter. The criteria for drilling fluid selection is based upon the following factors: maximum cost efficiency, environmental friendliness, optimum borehole stability, and ease of use. The recommended drilling fluid formulation takes into consideration the experience gained during the drilling of wells in the Santos Basin area. The operator wanted to use a high-performance water-based fluid (HPWBF) that could provide shale inhibition, wellbore stability, lubricity and improved rate of penetration (ROP) as an alternative to synthetic-based drilling fluids to present value in terms of economics and environmental friendliness. The HPWBF consists of three synergistic products: a hydration suppressant, a dispersion suppressant, and an accretion suppressant. The system is formulated based on customized solutions for managing the clay reactivity. High logistics costs require drilling fluids that can be prepared with sea water and discharged to the sea without environmental impact. The HPWBF is a clay-free system designed for maximum shale inhibition in highly reactive formations. The system can provide wellbore stability, high rates of penetration, and acceptable rheological properties over a wide range of temperatures, with the added benefit of allowing cuttings discharge based upon water base environmental restrictions. Since no oil is used in the formulation, the HPWBF eliminates the need for cuttings processing and monitoring equipment, and exceeds the environmental requirements by achieving an LC50 value of 345,478.22 ppm in comparison with the minimum requirement (LC50 > 30,000 ppm in 96 hr), permitting use and discharge to the sea. The HPWBF selected

  2. Mechanism of diapirism and episodic fluid injections in the Yinggehai Basin

    Institute of Scientific and Technical Information of China (English)

    郝芳; 李思田; 龚再升; 杨甲明

    2002-01-01

    The diapirism in the Yinggehai Basin is a combined result of strong overpressure caused by rapid sedimentation of fine-grain sediments and the tensile stress field resulting from right-lateral slip of the boundary-fault. The diapirism showed multiple-stage, episodic nature, and caused intermittent counter-direction onlaps and changes in the thickness of strata. The shallow gas reservoirs in the diapir structural zone displayed obvious inter-reservoir compositional heterogeneities, and their filling history could be divided into 4 stages, with gases injected during different stages having different hydrocarbon gas, CO2 and N2 contents and different stable isotope compositions. The multiple-episode, intermittent activities of the diapirs, multiple-stage, non-continuous injections of fluids, and the transient thermal effect of fluid flow as well as the strong migration fractionation reflected episodic fluid injection and natural gas accumulation.

  3. Light Hydrocarbons in Fluid Inclusions and Their Constraints on Ore Genesis:A Case Study of the Songxi Ag(Sb) Deposit,Eastern Guangdong,China

    Institute of Scientific and Technical Information of China (English)

    SUN Xiaoming; David I.NORMAN; SUN Kai; WANG Min; CHEN Binghui; CHEN Jingde; YU Shoujun

    2003-01-01

    The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusions of minerals. These hydrocarbons are mainly composed of C1-C4 saturated alkanes, while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low, suggesting that the metallogenic processes have not been affected by magmatic activities. Chemical equilibrium studies show that these hydrocarbons may be a mixture of organic gases generated by microorganism activity and those by thermal cracking of type-II kerogens (kukersite) in sedimentary host rocks, and the former may constitute more than two-thirds, implying that microorganism might have played an important role in the metallogenesis. The equilibrium temperature of the latter is about 300(C, which is much higher than the geothermal temperature at the estimated depth of metallogenesis. Thus, the light hydrocarbons generated by thermal cracking of kerogens probably originated in the deep part of the sedimentary basins and then migrated through a long distance to shallower horizons of the basin. Based on the composition of light hydrocarbons in fluid inclusions, the authors infer that the Songxi deposit was formed in a continental rift. The analytical data presented in this paper support from one aspect the genetic model that the Songxi deposit may be a sedimentary hot brine transformed deposit instead of a submarine basic volcanic exhalation and low-medium temperature volcanic hydrothermal fluid filling deposit proposed by most previous researchers.

  4. Advances in research of sulphide ore textures and their implications for ore genesis

    Institute of Scientific and Technical Information of China (English)

    GU Lianxing; ZHENG Yuanchuan; TANG Xiaoqian; WU Changzhi; HU Wenxuan

    2006-01-01

    Important advances in research of sulphide ore textures in recent years have deepened our understanding of ore genesis of related mineral deposits. Pressure solution of sulphide minerals has been suggested as a mechanism for remobilization of ore materials,whereas pressure solution of the gangues is believed to raise the grade of the primary ores. We have known that precipitation of base metal sulphides from fluids prefers crystal and crack surfaces of pyrite to form overgrowth. Therefore, pyrite-bearing embryo beds in a sedimentary sequence can be acted as effective crystal seed beds and are favorable for fluid overprinting to form huge statabound deposits. Texture studies of various sulphides can be used to interpret the entire history of sedimentation, diagenesis, deformation and metamorphism of the ores. The study of chalcopyrite disease in sphalerite has brought about the idea of zone refining, and given a new explanation to metal zonation in massive sulphide deposits. Ductile shearing of sulphide ores may form ore mylonites, which will become oreshoots enriched in Cu, Au and Ag during late-stage fluid overprinting. Despite that various modern analytical techniques are being rapidly developed, ore microscopy remains to be an unreplaceable tool for ore geologists. Combined with these modern techniques, this tool will help accelerate the development of theories on ore genesis.

  5. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China

    Science.gov (United States)

    Zhao, Xin-Fu; Zhou, Mei-Fu; Gao, Jian-Feng; Li, Xiao-Chun; Li, Jian-Wei

    2015-10-01

    Apatite is a ubiquitous accessory mineral in a variety of rocks and hydrothermal ores. Strontium isotopes of apatite are well known to retain petrogenetic information and have been widely used to investigate the origin of igneous rocks, but such attempts have rarely been made to constrain ore-forming processes of hydrothermal systems. We here report in situ LA-MC-ICPMS Sr isotope data of apatite from the ~1660-Ma Yinachang Fe-Cu-REE deposit, Southwest China. The formation of this deposit was coeval to the emplacement of regionally distributed doleritic intrusions within a continental-rift setting. The deposit has a paragenetic sequence consisting of sodic alteration (stage I), magnetite mineralization (stage II), Cu sulfide and REE mineralization (stage III), and final barren calcite veining (stage IV). The stage II and III assemblages contain abundant apatite, allowing to investigate the temporal evolution of the Sr isotopic composition of the ore fluids. Apatite of stage II (Apt II) is associated with fluorite, magnetite, and siderite, whereas apatite from stage III (Apt III) occurs intimately intergrown with ankerite and Cu sulfides. Apt II has 87Sr/86Sr ratios varying from 0.70377 to 0.71074, broadly compatible with the coeval doleritic intrusions (0.70592 to 0.70692), indicating that ore-forming fluids responsible for stage II magnetite mineralization were largely equilibrated with mantle-derived mafic rocks. In contrast, Apt III has distinctly higher 87Sr/86Sr ratios from 0.71021 to 0.72114, which are interpreted to reflect external radiogenic Sr, likely derived from the Paleoproterozoic strata. Some Apt III crystals have undergone extensive metasomatism indicated by abundant monazite inclusions. The metasomatized apatite has much higher 87Sr/86Sr ratios up to 0.73721, which is consistent with bulk-rock Rb-Sr isotope analyses of Cu ores with 87Sr/86Sri from 0.71906 to 0.74632. The elevated 87Sr/86Sr values of metasomatized apatite and bulk Cu ores indicate

  6. Fluid inclusion and stable isotope studies of the Mesloula Pb-Zn-Ba ore deposit, NE Algeria: Characteristics and origin of the mineralizing fluids

    Science.gov (United States)

    Laouar, Rabah; Salmi-Laouar, Sihem; Sami, Lounis; Boyce, Adrian J.; Kolli, Omar; Boutaleb, Abdelhak; Fallick, Anthony E.

    2016-09-01

    In the Saharan Atlas (NE Algeria), the Triassic evaporitic formation was brought to the surface through the thick Cretaceous and Tertiary sedimentary cover as diapirs due to the effect of Atlasic tectonic events. The diapir piercing began in the Jurassic and has continued through present day. Many outcrops of several square kilometres are distributed in a large area (approximately 80 km wide) that extends northeasterly over 300 km towards Tunisia. The diapiric evaporitic formation is often accompanied by the emplacement of Pb-Zn-Ba-F mineralization. The Mesloula massif is an example of these deposits. Fluid inclusion and sulphur, carbon and oxygen isotope studies were carried out on Pb-Zn-Ba mineralization and associated gangue carbonates. Gypsum of the Triassic formation was also analysed for its sulphur isotope composition to show the role of evaporates in the generation of this typical peridiapiric deposit. Gypsum from the Triassic formation showed a narrow range of δ34SVCDT values, ranging from +14.6 to +15.5‰ (n = 8). This range is comparable to that of Triassic seawater sulphates. Sulphide minerals yielded δ34SVCDT values between 0 and + 11.7‰ (n = 15), indicating that sulphide sulphur was likely derived from Triassic sulphates through thermochemical sulphate reduction (TSR) because fluid inclusion microthermometric measurements yielded a mean temperature of 150 °C. Residual sulphate in such a system would have been enriched in 34S; this is reflected in the barite δ34SVCDT values, which range from +21.1 to +33.5‰ (n = 5). The δ13CVPDB values of calcite minerals, ranging from +2.1 to +6.3‰ (n = 4), indicate an inorganic carbon origin, likely from the host carbonate rocks. δ18OVSMOW values were between +21.9 and + 24.9‰, indicating that the most likely source of mineralizing fluids was formation water.

  7. Natural gas leakage of Mizhi gas reservoir in Ordos Basin, recorded by natural gas fluid inclusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Abundant natural gas inclusions were found in calcite veins filled in fractures of Central Fault Belt across the centre of Ordos Basin. Time of the calcite veins and characteristics of natural gas fluid inclusion were investigated by means of dating of thermolum luminescence (TL) and analyzing stable isotope of fluid inclusion. Results show that natural gas inclusion formed at 130―140℃ with salinity of 5.5 wt%―6.0 wt% NaCl. It indicates that natural gas inclusion is a kind of thermal hydrocarbon fluid formed within the basin. Method of opening inclusion by heating was used to analyze composition of fluid inclusion online, of which the maximal hydrocarbon gas content of fluid inclusion contained in veins is 2.4219 m3/t rock and the maximal C1/Σci ratio is 91%. Laser Raman spectroscopy (LRS) was used to analyze chemistry of individual fluid inclusion in which the maximal hydrocarbon gas content is 91.6% compared with little inorganic composition. Isotope analysis results of calcite veins show that they were deposited in fresh water, in which the δ13CPDB of calcite veins is from -5.75‰ to 15.23‰ andδ18OSMOW of calcite veins is from 21.33‰ to 21.67‰. Isotope results show thatδ13C1 PDB of natural gas fluid inclusion is from -21.36‰ to -29.06‰ and δDSMOW of that is from -70.89‰ to -111.03‰. It indicates that the gas of fluid inclusion formed from coal source rocks and it is the same as that of natural gas of Mizhi gas reservoir. Results of TL dating show that time of calcite vein is (32.4±3.42)×104 a, which is thought to be formation time of gas inclusion. It indicated that natural gas inclusion contained in calcite veins recorded natural gas leakage from Mizhi gas reservoir through the Central Fault Belt due to Himalayan tectonic movement.

  8. Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin

    Science.gov (United States)

    Lowenstern, J. B.; Bergfeld, D.; Evans, William C.; Hurwitz, S.

    2012-01-01

    We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s−1 of parent thermal water, corresponding to 68 ± 14 MW, or –1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).

  9. Fluid and gasmigration in the southwestern part of the Lower Saxony basin

    Energy Technology Data Exchange (ETDEWEB)

    Lueders, V.; Plessen, B.; Sippel, J. [GeoForschungsZentrum Potsdam (Germany)

    2008-10-23

    Lower Carboniferous and Upper Jurassic sedimentary rocks from wells of the southwestern part of the Lower Saxony Basin (LSB) show locally anomalous maturity reaching 4.5% VRr. The reason for this high maturity is discussed controversy. It may either be related to the intrusions of supposed Late Cretaceous igneous plutons in the area of Bramsche and Vlotho or is explained by models involving deep burial during Early Cretaceous times and uplift during Late Cretaceous/Tertiary times. A fault-slip analysis covering outcrops within the LSB and along the Osning Lineament (OL) has been performed and showed that the area was affected by a stress state with a horizontal N-S- to NE-SW-directed maximum compression ({sigma}1) and a low stress ratio (R=({sigma}2-{sigma}3)/({sigma}1-{sigma}3)) which induced reverse and strike-slip faulting. The regional paleostress field can be related to the Late Cretaceous-Cenozoic intraplate compressional deformation that affected the Alpine foreland as a result of the Alpine orogeny Other stress fields estimated in the study area are much less prevalent. Tectonic activity induced the migration of fluids and let to precipitation of quartz and calcite on veins, fissures and slickensides. Calcite mostly precipitated from local formation waters that were in close equilibrium with the host rocks rather than being derived from a large scale circulating hydrothermal system. Fluid inclusions studies in hydrothermal minerals from wells and outcrops in the study area yield migration of differently composed fluids and gases during stages of burial and uplift. In the vicinity of supposed intrusions the migration of hot fluids (>200 C) is recorded in quartz mineralization that is hosted by Upper Carboniferous to Cretaceous sediments. The salinity of the studied fluid inclusions is highly variable suggesting that different fluid reservoirs were drained. However, fluid entrapment often occurred along with the entrapment of gas mixtures with variable

  10. Multi-origin alkanes related to CO2-rich, mantle-derived fluid in Dongying Sag, Bohai Bay Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the newly obtained carbon isotope data for the natural gas, a pilot study of multiple-sourced alkanes related to the mantled-derived fluid is presented. The carbon isotope values of alkanes in the Dongying Sag possess thefea tures indicating a general organic origin. However, there are two sub-populations in the isotopic data set, which reflect two specific types of origins. In gene ral, the sub-population with high δ13CCH4 values is related to the CO2-rich, mantle-derived fluid, and it is distributed in the belts where mantle-derived fluid flow and basic volcanic activities have occurred. Geological and geochemical studies demonstrate that this variation of methane carbon isotope values in the Dongying Sag is unrelated with the basin bury and thermal histories, types of source rocks, and reactions between basin fluid and rocks. Mixing of mantle-derived fluid and organic sourced hydrocarbons is probably the cause for the variation .

  11. Geochemistry of Rare Earth Elements in Xikeng Ag-Pb-Zn Ore Deposit, South Anhui, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, a comparative study is done on the geochemical charateristics of REE in ore, ore-hosted rocks of Lantian group, granite related to ore deposit, and altered rocks for tracing origin of ore-forming materials. The result indicates that the ore-forming fluid and ore-forming materials for Xikeng silver-polymetallic ore deposit were derived from Yixian granite's magmatic activity. Water-rock reaction of the hydrothermal fluid with the carbonate-rich stratum led the altered rock to relatively enrich in HREE.

  12. A Preliminary Study on Fluid Inclusions and Mineralization of Xitieshan Sedimentary-Exhalative (SEDEX) Lead-Zinc Deposit

    Institute of Scientific and Technical Information of China (English)

    WANG Lijuan; ZHU Xinyou; WANG Jingbin; DENG Jiniu; WANG Yuwang; ZHU Heping

    2008-01-01

    The Xitieshan lead-zinc deposit is located at the northern margin of the Qaidam Basin,Qinghai Province, China, and had developed a complete marine sedimentary-exhalative system. Ourpreliminary study of ore-forming fluids shows that fluid inclusions in quartz from altered stockworkrocks that represent the pipe facies have a wide range of temperature and salinity. The intense fluidactivities are characteristics of the pipe facies of the exhalative system. Fluid inclusions in carbonatesnear the unstratified ore bodies hosted in the thick-bedded marble which represents vent-proximalfacies are large in size and have moderate to high temperatures. They represent unerupted sub-seafloorfluid activity. Fluids in altered stockwork rocks and carbonates have similar H2O-NaCl-CO2 system,both belonging to the sedimentary-exhalative system. The fluids migrate from the pipe facies to theunstratified ore bodies. Boiling of the fluids causes the separation of CO2 vapor and liquid H2O. Whenthe fluids migrate into the unconsolidated thick-bedded marble, the escape of CO2, decreasingtemperature and pressure as well as some involvement of seawater into the fluids result in the unmixingof fluids with high and low salinity and deposition of ore-forming materials. The two unmixed fluids were trapped in unconsolidated carbonates and the ore-forming materials were deposited in theunconsolidated carbonates to form the sedimentary-exhalative type unstratified ore bodies. The ore-forming temperature of unstratified ore bodies is up to high temperature indicating that there is a hugeore-forming potential in its deep.

  13. 江西香炉山钨矿床构造-流体-成矿系统浅析%Analysis the Structure-Fluid-Ore Forming System of the Xianglushan Skarn Tungsten Deposit in Xiushui, Jiangxi Province

    Institute of Scientific and Technical Information of China (English)

    王凯; 李峰; 范敦宾

    2016-01-01

    For the purpose of deepening the understanding of the ore-forming process, and offered the thinking for prospecting work in the future, this paper analyzed the structure and fluid of the Xianglushan tungsten deposit, and the relationship of structure-fluid-ore forming. The Xianglushan tungsten deposit is obviously controlled by the structure, fold, fracture (fault and cleavage), contact zone structure, interlayer fracture zone and wall-rock lithology, which affect the formation of the ore-body. Fluid is also closely related to the formation of the deposit with the phase of the quartz-scheelite and quartz-sulfide-scheelite occuring during metallization period. The structure-fluid-ore forming systems have a high degree of coordination and connection, which is the key to form large scheelite deposit in the Xianglushan.%通过对香炉山钨矿床的构造及流体进行剖析,研究了其构造-流体-成矿系统三者之间的关系,旨在加深对其成矿的过程认识,并为今后矿山的研究及找矿工作提供思路。香炉山夕卡岩型白钨矿床受构造控制明显:隐伏岩体顶面接触带构造为最重要的控矿构造,褶皱控岩,为成矿物质的来源提供保障,裂隙及层间破碎带不仅为成矿物质的运移提供运移通道,也是较重要的储矿场所,但后期发育的裂隙具破矿性;流体与该矿床的形成息息相关,其中的石英-白钨矿阶段及石英-硫化物-白钨矿阶段为矿床的主要成矿期;香炉山夕卡岩型白钨矿床的构造-流体-成矿三者之间具有高度的协调性及关联性,对形成香炉山大型白钨矿床极为有利。

  14. Characteristics of Abnormal Pressure Systems and Their Responses of Fluid in Huatugou Oil Field, Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaozhi; XU Hao; TANG Dazhen; ZHANG Junfeng; HU Xiaolan; TAO Shu; CAI Yidong

    2009-01-01

    Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N_2~1) and the Shangganchaigou Formation (N_1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N_1 and N_2~1 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodeita mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl~- ion and can be categorized as CaCl_2 type with high salinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation.

  15. Deformation and fluid flow in the Huab Basin and Etendeka Plateau, NW Namibia

    Science.gov (United States)

    Salomon, Eric; Koehn, Daniel; Passchier, Cees; Chung, Peter; Häger, Tobias; Salvona, Aron; Davis, Jennifer

    2016-07-01

    The Lower Cretaceous Twyfelfontein sandstone formation in the Huab Basin in NW Namibia shows the effects of volcanic activity on a potential reservoir rock. The formation was covered by the Paraná-Etendeka Large Igneous Province shortly before or during the onset of South-Atlantic rifting. Deformation bands found in the sandstone trend mostly parallel to the continental passive margin and must have formed during the extrusion of the overlying volcanic rocks, indicating that their formation is related to South-Atlantic rifting. 2D-image porosity analysis of deformation bands reveals significant porosity reduction from host rock to band of up to 70%. Cementation of the sandstone, linked to advective hydrothermal flow during volcanic activity, contributes an equal amount to porosity reduction from host rock to band when compared to initial grain crushing. Veins within the basaltic cover provide evidence for hot fluid percolation, indicated by spallation of wall rock and colloform quartz growth, and for a later low-temperature fluid circulation at low pressures indicated by stilbite growth sealing cavities. Sandstone samples and veins in the overlying volcanic rocks show that diagenesis of the Twyfelfontein sandstone is linked to Atlantic rifting and was affected by both hydrothermal and low-thermal fluid circulation.

  16. Geometry and subsidence history of the Dead Sea basin: A case for fluid-induced mid-crustal shear zone?

    Science.gov (United States)

    ten Brink, U.S.; Flores, C.H.

    2012-01-01

    Pull-apart basins are narrow zones of crustal extension bounded by strike-slip faults that can serve as analogs to the early stages of crustal rifting. We use seismic tomography, 2-D ray tracing, gravity modeling, and subsidence analysis to study crustal extension of the Dead Sea basin (DSB), a large and long-lived pull-apart basin along the Dead Sea transform (DST). The basin gradually shallows southward for 50 km from the only significant transverse normal fault. Stratigraphic relationships there indicate basin elongation with time. The basin is deepest (8-8.5 km) and widest (???15 km) under the Lisan about 40 km north of the transverse fault. Farther north, basin depth is ambiguous, but is 3 km deep immediately north of the lake. The underlying pre-basin sedimentary layer thickens gradually from 2 to 3 km under the southern edge of the DSB to 3-4 km under the northern end of the lake and 5-6 km farther north. Crystalline basement is ???11 km deep under the deepest part of the basin. The upper crust under the basin has lower P wave velocity than in the surrounding regions, which is interpreted to reflect elevated pore fluids there. Within data resolution, the lower crust below ???18 km and the Moho are not affected by basin development. The subsidence rate was several hundreds of m/m.y. since the development of the DST ???17 Ma, similar to other basins along the DST, but subsidence rate has accelerated by an order of magnitude during the Pleistocene, which allowed the accumulation of 4 km of sediment. We propose that the rapid subsidence and perhaps elongation of the DSB are due to the development of inter-connected mid-crustal ductile shear zones caused by alteration of feldspar to muscovite in the presence of pore fluids. This alteration resulted in a significant strength decrease and viscous creep. We propose a similar cause to the enigmatic rapid subsidence of the North Sea at the onset the North Atlantic mantle plume. Thus, we propose that aqueous fluid flux

  17. A review ofLA-ICPMS analysis for individual fluid inclusions and its applications in ore deposits%单个流体包裹体成分LA-ICPMS分析与矿床学应用进展

    Institute of Scientific and Technical Information of China (English)

    付乐兵; 魏俊浩; 张道涵; 谭俊; 田宁; 赵志新

    2015-01-01

    LA−ICPMS has become a most powerful technique for the research on ore-forming fluid. Except for the noble gases, F, O, H, N and polyatomic species, all elements and the Sr and Pb isotope compositions of individual fluid inclusion can be analyzed quantitatively by LA−ICPMS. The recent developments about the LA−ICPMS analysis of individual fluid inclusion, including the various aspects of laser ablation, aerosol transport, ICPMS detection and the data reduction were reviewed. Then, the applications of individual fluid inclusion analysis by LA−ICPMS in the ore deposits were summarized. This technique is used in characterizing the mineralization processes, such as tracing the source of ore-forming fluid and metals, and deciphering the processes about fluid transport and metal deposition. The results show that the vapor transport of metals needs to be re-evaluated, and significant future progress can be achieved by combination of the femtosecond-laser and MC−ICPMS based on the detailed field researches and microthermometric measurements.%LA-ICPMS分析技术能准确测量单个流体包裹体中除稀有气体,F,O,H,N与多原子相组分外的所有元素及Sr和Pb同位素组成,是新兴的研究成矿流体特征的重要手段。对近年来测试过程中包裹体剥蚀、气溶胶传输、ICPMS测量及数据处理等4个关键步骤的研究进展进行总结,并就LA−ICPMS分析技术在矿床学研究中的应用进行归纳,其可以精细地刻画多种热液系统中成矿流体与成矿物质的来源、运移、沉淀及富集等地球化学过程。同时指出,金属气相转运机制有待进一步研究,而在野外地质调查及微观热力学测试基础上,飞秒激光与MC−ICPMS联用分析单个流体包裹体成分将是未来矿床学研究的重要突破口。

  18. Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's

    Science.gov (United States)

    Landis, G.P.; Hofstra, A.H.

    1991-01-01

    Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from

  19. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  20. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2D and 3D magnetotelluric modelling

    Science.gov (United States)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-09-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of

  1. Characters of fluid inclusions in quartz veins in pyroclastic rock of Budate Group, Hailar Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-tao; LIU Li; GAO Yu-qiao; SHAO Hong-mei; SHEN Guang-zheng

    2004-01-01

    It was adopted that the fluorescence microscope, Gas-Flow Heating/Freezing System, Laser-Raman Spectroscopy, etc. are the multimedia techniques for analysing fluid inclusions of quartz veins in Budate Group, Hailar Basin.The results show that fluid inclusions in quartz veins are small (1 ~5 μm) monophase, two-phase (liquid+vapour)aqueous inclusions; the two-phase aqueous inclusions homogeniese to the liquid phase between 120 ~ 180℃, two Laser-Raman Spectroscopy show that both gas phase are enriched in CH4 (94.50% ~99.25% ) and C6H6 (0.75% ~2.70%), under these conditions, inclusions may have come from juvenile fliud followingly the quartz veins formation.While the quartz veins exhibiting different striking luminescence has been proved by cathodoluminescence, it would be belong to secondary hydrocarbon inclusions. The oil inclusions of this stage represent mainly the large scale of oil accumulation, located within the quartz microfracture.

  2. Effects of hydrocarbon generation on fluid flow in the Ordos Basin and its relationship to uranium mineralization

    Directory of Open Access Journals (Sweden)

    Chunji Xue

    2011-07-01

    Full Text Available The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sediment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simulation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow.

  3. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—a mesothermal, vein-hosted gold-silver deposit

    Science.gov (United States)

    Yoo, Bong Chul; Lee, Hyun Koo; White, Noel C.

    2010-02-01

    The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C-O-H fluids: CO2-rich, CO2-H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O-NaCl-CO2 fluids (1,500-5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O-NaCl fluids (140-1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O-NaCl-CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O

  4. 青海省兴海县铜峪沟铜矿床成矿物质和流体来源的地球化学探讨%Geochemistry Constraint on Ore-forming Material and Ore-forming Fluids of Tongyugou Copper Deposit in Xinghai County,Qinghai Province

    Institute of Scientific and Technical Information of China (English)

    曾小华; 周宗桂

    2014-01-01

    青海铜峪沟铜矿床位于祁漫塔格-鄂拉山成矿亚带鄂拉山多金属矿带东南段。通过对铜峪沟铜矿床的矿石矿物微量元素地球化学研究及矿石矿物的稳定同位素研究,探讨该矿床的成矿物质及流体来源,确定矿床的成因。从测试结果来看,稀土元素配分模式为轻稀土较富集、重稀土亏损、分馏程度较高、Eu中度-强烈亏损,显示矿石物质来源为混合来源;硫同位素δ34 S测试结果全为负值,属轻硫型,总体上揭示出硫主要来自地层的沉积硫;铅同位素测试数据表明矿石铅部分来自沉积成岩阶段,部分与印支期造山运动有关,表明成矿物质混合来源的特征,富成矿流体在成矿之前存在均一化过程。氢、氧、硅同位素研究表明成矿热液为原生岩浆水和变质热液水,反映成矿物质来源与岩浆热液活动有关。通过研究认为,铜峪沟铜矿床为矽卡岩型铜矿床。%Tongyugou copper deposit is located in the southeast segment of the Elashan polymetallic belt in Qimantage-Elashan ore-forming subzone.Based on the trace element geochemistry and the stable isotopes of Tonyugou copper deposit,this paper studied the source of ore-forming material and ore-forming fluids,identified the genesis of Tongyugou copper deposit.From the test results,the rare earth element distribution patterns are approximately consistent,the REE patterns are enriched in LREE and are depleted in HREE with high fraction-ation and negative Eu anomaly,demonstrating that the ore material comes from multi-source;sulfur isotope compositions δ34S measurement are full-negative,belong to light sulfur type,revealing that the whole S was from the sedimentary sulfur;the demographics of Pb isotopic compositions showing that the lead was mainly from the ore deposition diagenetic stage,and partly from the Indosinian orogeny,which is closely related to Indo-Chinese orogenic movement

  5. On the role of buoyancy force in the ore genesis of SEDEX deposits: Example from Northern Australia

    Institute of Scientific and Technical Information of China (English)

    YANG JianWen; FENG ZuoHai; LUO XianRong; CHEN YuanRong

    2009-01-01

    Finite element modeling on a highly conceptualized 2-D model of fluid flow and heat transport is un-dertaken to simulate the paleo-hydrological system as if the Mount Ise deposits were being formed in the Mount Isa basin, Northern Australia, and to evaluate the potential of buoyancy force in driving ba-sin-scale fluid flow for the formation of sedimentary-exhalative (SEDEX) deposits. Our numerical case studies indicate that buoyancy-driven fluid flow is controlled mainly by the fault penetration depth and its spatial relation with the aquifer. Marine water recharges the basin via one fault and flows through the aquifer where it is heated from below. The heated metalliferous fluid discharges to the basin floor via the other fault. The venting fluid temperatures are computed to be in the range of 115 to 160℃, with fluid velocities of 2.6 to 4.1 m/year over a period of 1 Ma. These conditions are suitable for the formation of a Mount Isa-sized zinc deposit, provided a suitable chemical trap environment is present. Buoyancy force is therefore a viable driving mechanism for basin-scale ore-forming hydrothermal fluid migration, and it is strong enough to lead to the genesis of supergiant SEDEX deposits like the Mount Isa deposit, Northern Australia.

  6. Thermal evolution, fluid flow, and fracture development related to the structuration of the South Pyrenean Foreland Basin

    Science.gov (United States)

    Crognier, N.; Hoareau, G.; Aubourg, C.; Branellec, M.; Dubois, M.; Lahfid, A.; Lacroix, B.; Labaume, P.; Suarez-Ruiz, I.

    2015-12-01

    The E-W trending South Pyrenean Foreland Basin, formed during the upper Cretaceous and the early Miocene due to the collision between Iberian and European plates, is filled by marine to continental deposits affected by a set of successive southvergent thrusts. In order to constrain the links between fracture development, thermal regime, and fluid flow in the basin, we estimated temperatures of formation and C-O isotope signatures of fracture-filling minerals (veins), maximum paleo-temperatures of sediments, and the timing and orientation of major fracture sets. The isotopic composition of 150 veins and sediment samples has been measured. Peak temperatures of 100 bulk rocks and veins have been estimated, using Raman spectroscopy, vitrinite reflectance, fluid inclusion microthermometry and mass-47 clumped isotopes. The orientation of ~5000 joints and veins has been used to link major tectonic events to fracture development. Most primary fluid inclusions show moderate salinities (~2.5 wt%), compatible with connate or evolved meteoric waters. Fluids were generally in thermal and isotopic equilibrium with host sediments, suggesting a low fluid-rock ratio, and thus a limited impact of fractures on fluid-flow. Peak temperatures (T max) decrease southward, from ~240°C in Cretaceous to Eocene sediments close to the axial zone, to ~60°C. In a same location dominant compaction joints were mineralized close to T max, ~40°C higher than tectonic shear veins. All fracture orientations were likely controlled by Pyrenean shortening. Genetic relationships between fracture sets are currently under investigation. Finally, temperatures of 240°C measured in Eocene sediments cannot be explained by balanced cross sections using geothermal gradient expected in foreland basins (20-25°C/km). 1D thermal modeling is being performed to explain this thermal anomaly, which could result from high heat flow following mid-Cretaceous extension, the ingress of hot fluids, or undocumented tectonic

  7. Biomarkers in fluid inclusions: A new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-type deposits

    Science.gov (United States)

    Etminan, Hashem; Hoffmann, Christopher F.

    1989-01-01

    Biomarkers in fluid inclusions can constrain source regimes for hydrocarbons associated with Mississippi Valley-type Pb-Zn deposits. Significant amounts of hydrocarbons have been detected in fluid inclusions in sphalerite and dolomite intimately associated with Pb-Zn sulfides in the Canning Basin, Western Australia. The hydrocarbons are more mature than those in the host rocks to the ore and are therefore derived from an external source. Furthermore, there are differences between the biomarker components of hydrocarbons in inclusions in Pb-Zn prospects, but they are all different from hydrocarbons in organic-rich strata and also in oils from the Canning Basin. Yet, the hydrocarbons are mature and oil-like, suggesting that mature organic-rich strata deeper in the basin, which are less significant as potential source rocks for petroleum generation in the Canning Basin, have contributed to the ore-forming fluids.

  8. Biomarkers in fluid inclusions: A new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-type deposits

    Energy Technology Data Exchange (ETDEWEB)

    Etminan, H.; Hoffmann, C.F. (Bureau of Mineral Resources, Canberra (Australia))

    1989-01-01

    Biomarkers in fluid inclusion s can constrain source regimes for hydrocarbons associated with Mississippi Valley-type Pb-Zn deposits. Significant amounts of hydrocarbons have been detected in fluid inclusions in sphalerite and dolomite intimately associated with Pb-Zn sulfides in the Canning Basin Western Australia. The hydrocarbons are more mature than those in the host rocks to the ore and are therefore derived from an external source. Furthermore, there are differences between the biomarker components of hydrocarbonas in inclusions in Pb-Zn prospects, but they are all different from hydrocarbons in organic-rich strata and also in oils from the Canning Basin. Yet, the hydrocarbons are mature and oil-like, suggesting that mature organic-rich strata deeper in the basin, which are less significant as potential source rocks for petroleum generation in the Canning Basin, have contributed to the ore-forming fluids.

  9. Fluid evolution and mineralogy of Mn-Fe-barite-fluorite mineralizations at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in Germany

    Science.gov (United States)

    Majzlan, Juraj; Brey-Funke, Maria; Malz, Alexander; Donndorf, Stefan; Milovský, Rastislav

    2016-02-01

    Numerous small deposits and occurrences of Mn-Fe-fluorite-barite mineralization have developed at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in central Germany. The studied mineralizations comprise the assemblages siderite+ankerite-calcite-fluorite-barite and hematite-Mn oxides-calcite-barite, with the precipitation sequence in that order within each assemblage. A structural geological analysis places the origin of the barite veins between the Middle Jurassic and Early Cretaceous. Primary fluid inclusions contain water vapour and an aqueous phase with NaCl and CaCl2 as the main solutes, with salinities mostly between 24-27 mass. % CaCl2 eq. Th measurements range between 85 °C and 160 °C in barite, between 139 °C and 163 °C in siderite, and between 80 °C and 130 °C in fluorite and calcite. Stable isotopes (S, O) point to the evaporitic source of sulphur in the observed mineralizations. The S,C,O isotopic compositions suggest that barite and calcite could not have precipitated from the same fluid. The isotopic composition of the fluid that precipitated barite is close to the sea water in the entire Permo-Mesozoic time span whereas calcite is isotopically distinctly heavier, as if the fluids were affected by evaporation. The fluid evolution in the siliciclastic/volcanic Rotliegend sediments (as determined by a number of earlier petrological and geochemical studies) can be correlated with the deposition sequence of the ore minerals. In particular, the bleaching of the sediments by reduced Rotliegend fluids (basinal brines) could be the event that mobilized Fe and Mn. These elements were deposited as siderite+ankerite within the Zechstein carbonate rocks and as hematite+Mn oxides within the oxidizing environment of the Permian volcanic and volcanoclastic rocks. A Middle-Jurassic illitization event delivered Ca, Na, Ba, and Pb from the feldspars into the basinal brines. Of these elements, Ba was deposited as massive barite

  10. Fluid evolution and mineralogy of Mn-Fe-barite-fluorite mineralizations at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in Germany

    Directory of Open Access Journals (Sweden)

    Majzlan Juraj

    2016-02-01

    Full Text Available Numerous small deposits and occurrences of Mn-Fe-fluorite-barite mineralization have developed at the contact of the Thuringian Basin, Thüringer Wald and Thüringer Schiefergebirge in central Germany. The studied mineralizations comprise the assemblages siderite+ankerite-calcite-fluorite-barite and hematite-Mn oxides-calcite-barite, with the precipitation sequence in that order within each assemblage. A structural geological analysis places the origin of the barite veins between the Middle Jurassic and Early Cretaceous. Primary fluid inclusions contain water vapour and an aqueous phase with NaCl and CaCl2 as the main solutes, with salinities mostly between 24–27 mass. % CaCl2 eq. Th measurements range between 85 °C and 160 °C in barite, between 139 °C and 163 °C in siderite, and between 80 °C and 130 °C in fluorite and calcite. Stable isotopes (S, O point to the evaporitic source of sulphur in the observed mineralizations. The S,C,O isotopic compositions suggest that barite and calcite could not have precipitated from the same fluid. The isotopic composition of the fluid that precipitated barite is close to the sea water in the entire Permo–Mesozoic time span whereas calcite is isotopically distinctly heavier, as if the fluids were affected by evaporation. The fluid evolution in the siliciclastic/volcanic Rotliegend sediments (as determined by a number of earlier petrological and geochemical studies can be correlated with the deposition sequence of the ore minerals. In particular, the bleaching of the sediments by reduced Rotliegend fluids (basinal brines could be the event that mobilized Fe and Mn. These elements were deposited as siderite+ankerite within the Zechstein carbonate rocks and as hematite+Mn oxides within the oxidizing environment of the Permian volcanic and volcanoclastic rocks. A Middle-Jurassic illitization event delivered Ca, Na, Ba, and Pb from the feldspars into the basinal brines. Of these elements, Ba was

  11. Characteristics of Fluid Inclusions in Jiama Copper-Pollymetallic Ore Deposit, Tibet and Its Geological Significance%西藏甲玛铜多金属矿床流体包裹体特征及地质意义

    Institute of Scientific and Technical Information of China (English)

    李永胜; 赵财胜; 吕志成; 严光生; 甄世民

    2011-01-01

    The recently discovered Jiama super large copper-polymetallic deposit is located in the middle section of Gangdese metallogenic belt, Tibet. Systematic studies including petrography, microthermometry, laser Raman microprobe and SEM/EDS were carried out on the primary fluid inclusions in metallogentic granite and major ore bodies. The analytical results show that dominant fluid inclusions from skarn ore related to metallogensis include liquid-rich, gas-rich two-phase and daughterminerals bearing polyphase types. Homogenization temperatures of the fluid inclusions range from 225 ℃ to 500 ℃. The average of the salinities of ore-forming fluid is 36. 2% NaCleq and the densities vary from 0.89 to 0.98 g/cm3. The ore-forming fluids belong to NaCl - H2O type characterized by highmoderate temperature, high salinity, low density and strong reduction. Besides H2O, the gas compositions are immiscible system rich in CH4, H2S, CO2 and N2 etc. The occurrence of organic matter, such as CH4, C2H4 and C3H6, suggests that the ore-forming materials were formed in a reduced environment. Based on estimation of mineralization pressure and the relationship between pressure and depth in fracture zones, the mineralization depth is considered to be at 2.2 - 8.3 km. The analytical results of hydrogen and oxygen isotopic elements show that ore-forming fluids are mainly derived from magmatic water mixed with meteoric water later. The coexistence of daughter-minerals bearing multiphase inclusions and those liquid-and gas-rich inclusions with different filling degrees, together with their similar homogenization temperatures and much different salinities, indicates that ore-forming fluids had experienced boiling.%甲玛矿床是位于西藏冈底斯成矿带中段的超大型铜多金属矿床.成矿相关岩体和主矿体中的流体包裹体岩相学、显微测温、激光拉曼探针及扫描电镜/能谱分析结果表明:与成矿有关的流体包裹体主要有富液相、富气相

  12. Geology and isotopic composition of helium, neon, xenon and metallogenic age of the Jinding and Baiyangping ore deposits, northwest Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    XUE; Chunji(薛春纪); CHEN; Yuchuan(陈毓川); WANG; Denghong(王登红); YANG; Jianmin(杨建民); YANG; Weiguang(杨伟光); ZENG; Rong(曾; 荣)

    2003-01-01

    Both the Jinding and Baiyangping ore deposits developed in the Lanping basin, which is a Mesozoic-Cenozoic terrestrial clastic sedimentary basin. Their occurrences can easily lead many people to compare them with the Pb-Zn deposit hosted in sedimentary rocks, such as Mississippian Valley-, Sedex- and sandstone-type Pb-Zn deposits. However, the Lanping basin developed in the settings of strong tectonic activity of the continental crust, which could cause an effective material exchange between the lower crust and the upper mantle. The orebodies are clearly tectonically controlled without syngenetic features, which probably represents a new type of the sedimentary rock-hosted Pb-Zn deposit. The isotopic compositions of noble gases in ore-forming fluids indicate that 2%-32% of helium (3He/4He = 0.19 Ra-1.97 Ra) is derived from the mantle, 50.1% of neon (20Ne/22Ne = 10.45-10.83; 21Ne/22Ne = 0.03) from the mantle, and considerable amount of xenon (129Xe/130Xe = 5.84-6.86; 134Xe/130Xe = 2.26-2.71) from the mantle, which show that mantle fluids played an important role in the ore formation. The ore-forming age of 67-60 Ma obtained by Re-Os and 40Ar-39Ar dating methods is later than the host rock, which is coeval with the Himalayan alkali magmatism of the mantle source and mantle-crust source. In this paper, the mineralization of the Jinding and Baiyangping ore deposits is considered to be related to the mantle fluids which move upward with the magma or along the deep faults, and mix with the meteoritic brine in the crust to result in large-scale deposition.

  13. Ore-forming and Exploration Models of the Baguamiao Gold Deposit, Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Baguamiao superlarge gold deposit in Shaanxi Province is one of the typical cases in China that are hosted by sedimentary rocks. Explorers and researchers have discussed the gold mineralization enrichment conditions by studying sulphur, oxygen, carbon, silicon stable isotopes and mineralizing fluid features of the Baguamiao gold deposit and proposed a hydrothermal sedimentation-magmatic reconstructing gold mineralization model featuring multi-sources of ore-forming materials and multistage mineralizations. In addition, prospecting for "Baguamiao-type"gold deposits was started in the Fengtai Basin and a great number of important prospecting targets such as Tonglinggou, Simaoling, Guoansi and Dachaigou were discovered.

  14. Ice sheet load cycling and fluid underpressures in the Eastern Michigan Basin, Ontario, Canada

    Science.gov (United States)

    Neuzil, Christopher E.; Provost, Alden M.

    2014-01-01

    Strong fluid underpressures have been detected in Paleozoic strata in the eastern Michigan Basin, with hydraulic heads reaching ~400 m below land surface (~4 MPa underpressure) and ~200 m below sea level in strata where unusually low permeabilities (~10−20–10−23 m2) were measured in situ. Multiple glaciations, including three with as much as 3 km of ice cover at the site in the last 120 ka, suggest a causal link with the underpressures. We examined this possibility using a one-dimensional groundwater flow model incorporating mechanical loading from both ice weight and lithospheric flexure. Because hydrologic and mechanical changes during glaciation are not well characterized and subsurface properties are imperfectly known, the model was used inversely to estimate flexural loads and loosely constrained permeabilities by matching observed pressures. Acceptable matches were obtained for a surprisingly wide range of scenarios with permeabilities close to measured values and plausible flexural loads. Matches were not obtained when too many parameters were preselected, or when permeabilities were constrained to be significantly larger than measured values. In successful model runs groundwater expulsion under glacial-mechanical loads caused the underpressuring, and flexural loads were important if aquifer and sub-glacial pressures were significantly elevated during glaciation. Simulated fluid pressures in the low-permeability strata fluctuated by 30–40 MPa during glacial cycles but resulted in advective transport of only tens of meters or less. Although other mechanisms cannot be ruled out, we conclude that glacial-mechanical forcing of a water-saturated system can explain the observed underpressures.

  15. 吉林荒沟山金矿床成矿流体特征%Geochemical Characteristics of Ore-Forming Fluid in Huanggoushan Gold Deposit,Jilin Province

    Institute of Scientific and Technical Information of China (English)

    周向斌; 李剑锋; 王可勇; 梁一鸿; 张淼; 韦烈民; 王志高

    2016-01-01

    荒沟山金矿床为吉南老岭金-多金属成矿带内较具代表性矿床之一,产于元古宇老岭群珍珠门组地层之中,受韧性剪切带构造控制。按地质特征、矿物组合及矿脉之间的穿切关系,将荒沟山金矿床热液成矿作用划分为Ⅰ黄铁矿-毒砂-石英阶段和Ⅱ晚期辉锑矿-乳白色石英两个阶段。系统的流体包裹体岩相学及显微测温研究表明:Ⅰ阶段石英中发育含 CO 2三相、碳质及气液两相3种类型的原生流体包裹体,成矿流体属不混溶的中低温、低盐度 NaCl-H 2 O-CO 2体系热液,在成矿过程中发生过不混溶作用而导致金等有用元素沉淀富集;Ⅱ阶段石英颗粒中主要发育气液两相包裹体,成矿流体属均匀的 NaCl-H 2 O 体系热液。碳、氢、氧同位素研究表明,Ⅰ阶段成矿流体主要来源于岩浆热液,Ⅱ阶段流体除继承早阶段的热液外,还有大气降水的混入;δD 和δ13 CV-PDB 值分析结果证明两个成矿阶段流体均与地层发生过较强的水岩反应。矿床成因属于中温岩浆热液矿床。%Occurred in Zhenzhumen Formation of Laoling Group of Proterozoic Era and controlled by ductile shear belt,the Huanggoushan gold deposit is one of the most representative deposits in Laoling gold-polymetallic metallogenic belt in southern Jilin Province.Based on the geological characteristics,mineral assemblage and the crosscutting relationship between different kinds of veins,the hydrothermal mineralization processes can be divided into two main stages,namely,stageⅠpyrite arseno-pyrite quartz and stageⅡ later stibnite-milky quartz.Systematic study on petrography and microthermometry of fluid inclusions shows that quartz of Stage Ⅰcontains three types of primary fluid inclusions,which are CO 2 bearing three phases,carbonic and aqueous two phases inclusions respectively,and the ore forming fluid is of medium to low temperature and low salinity NaCl-H 2 O-CO 2 kind of

  16. Evolution of Ore-forming Fluids in the Anqing Copper-iron Deposit, Anhui Province, and Its Ore-forming Implications%安徽安庆铜铁矿床成矿流体演化特征及其成矿意义

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

      安庆铜铁矿床是长江中下游成矿带内重要的矽卡岩型矿床之一。本文对该矿床中的成矿流体进行了系统研究,分析了成矿流体性质、来源及其演化过程,探讨了成矿机制。流体包裹体岩相学观察显示,矿床中的包裹体类型有Ⅰ型含子矿物三相包裹体(L+V+S)、Ⅱ型气液两相包裹体(L+V)及少量Ⅲ型气相包裹体(V);气成-高温热液期的透辉石与石榴子石中流体包裹体数量相对较少,以Ⅰ型包裹体为主;而热液期的石英与方解石中流体包裹体大量发育,以Ⅱ型包裹体为主。激光拉曼探针分析和流体包裹体显微测温结果表明,成矿流体可近似地看作不饱和的NaCl-H2O体系。从早矽卡岩阶段至碳酸盐阶段,成矿流体经历了从高温(456.1~578.1℃)、高盐度(39.37%~54.58% NaCleq)向低温(112.3~312.4℃)、低盐度(7.59%~31.75% NaCleq)的持续演化。演化过程中经历了流体沸腾作用和岩浆热液与大气降水的混合作用,其中,早矽卡岩阶段的水-岩作用、沸腾作用与矽卡岩成岩作用有关,水-岩作用,而石英-硫化物阶段的沸腾作用与混合作用可能是铜矿形成的重要机制。氢、氧同位素研究表明气成-高温热液期的成矿流体以岩浆水为主,而在热液期中石英-硫化物阶段至碳酸盐阶段大气降水在成矿流体中的比重逐渐增大。%Anqing copper-iron deposit is one of the most important skarn-type deposits along the Middle and Lower Yangtze River metallogenic belt. In this study, the ore-forming fluids of this deposit are systematically researched by analyzing their properties, and evolution, and discussing the ore-forming mechanism. The petrographic observation of fluid inclusions shows that inclusions of the deposit consist of I-type daughter mineral-bearing three-phase inclusions (L+V+S), II-type gas-liquid two-phase inclusions (L+V), and a few

  17. Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garven, Grant [Tufts University

    2015-08-11

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  18. Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling

    Science.gov (United States)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-12-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike-slip Dead Sea transform (DST) fault splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2-D inversion model is a deep, subvertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid- to low-grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the DSB and the high subsidence rate of basin sediments. 3-D inversion models confirm the existence of a subvertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3-D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3-D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3-D model furthermore contains an E-W elongated conductive structure to the northeast of the DSB. More MT data with better spatial coverage are required, however, to fully constrain the robustness of the above

  19. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  20. Origin and evolution of ore-forming fluids from Jiama copper polymetallic deposit in Tibet%西藏甲玛铜多金属矿床成矿流体来源及演化

    Institute of Scientific and Technical Information of China (English)

    周云; 张继超; 汪雄武; 唐菊兴; 秦志鹏; 彭惠娟; 李爱国; 杨科; 王华; 李炯

    2011-01-01

    A study of the homogenization temperature and characteristics of melt inclusions and fliud inclusions in the Jiama copper polymetallic deposit shows that the formation temperature of the porphyry body was 634~887℃,and the exsolution pressure of the fluids was 59.1 MPa.The temperature of five ore-forming stages was 170~540℃, the salinity concentration was 15%~50%, and the density was 0.9233~1.0805 g/cm3.The oreforming fluids were mainly of the NaCl-H2O system.The early ore pressure was higher than 31.8 MPa, and the early mineralization occurred below 1.1778 km.The ratios and illustration diagrams of ion compositions and gas compositions and the analyses of oxygen and hydrogen isotopes indicate that the ore-forming fluids of the Jiama copper polymetallic deposit were derived from magma, with the mixing of precipitated water in the late period.The formation and evolution of the ore-forming fluids experienced exsolution of magma, phase separation of supercritical fluid, decompression and boiling, the filling or metasomatism between magmatic hydrothermalvolatile fluids and carbonate wall rocks.The metallogenic elements selectively entered the volatile and were transported.The decompression, boiling and mixing resulted in the eventual precipitation of metallogenic elements.The ore deposit is genetically of magmatic-hydrothermal mineralization in the unified porphyry-skam-epithermal ore-forming system.%对斑岩、矽卡岩及角岩矿物中石英的熔融包裹体和流体包裹体进行测温,得到甲玛铜多金属矿床斑岩体形成温度为634~887℃,斑岩体中流体开始出溶的压力为59.1 MPa.从岩浆阶段、岩浆-热液阶段、矽卡岩阶段、矽卡岩退变质阶段到石英-硫化物阶段,温度范围为170~540℃,盐度集中在15%~50%范围内,密度为0.9233~1.0805 g/cm3,成矿流体主要为NaCl-H2O体系.早期最低成矿压力为31.8MPa,最浅成矿深度为1.1778 km.通过流体包裹体的离子成分、气相成

  1. Tectonomagmatic Metallogenic System of Dexing Ore Field, Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    13 ore deposits and a large number of ore occurrences cluster in Dexing ore field which is 20 km long and 12 km wide. The tectonic evolution, magmatism, as well as the metallogeny are controlled by the Northeast Jiangxi deep-seated fracture belt (NJDFB). The source is believed to have been derived from the Meso-Neoproterozoic marine volcanism. The magmatic activity of Mesozoic I-type granite could have provided the metal elements, thermal fluid, heat, and the space for ore-forming processes. A unified geological model is proposed, which combines the tectonism, magmatism and metallogeny as the basic control of the giant metal mineralizations.

  2. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajás Mineral Province, Brazil

    Science.gov (United States)

    Xavier, Roberto; Rusk, Brian; Emsbo, Poul; Monteiro, Lena

    2009-01-01

    The composition and Cl/Br – NaCl ratios of highly saline aqueous inclusions from large tonnage (> 100 t) IOCG deposits (Sossego, Alvo 118, and Igarapé Bahia) and a Paleoproterozoic intrusion-related Cu-Au-(Mo-W-Bi-Sn) deposit (Breves; chromatography. In both Cu-Au systems, brine inclusions are Ca-dominated (5 to 10 times more than in porphyry Cu-Au fluids), and contain percent level concentrations of Na and K. IOCG inclusion fluids, however, contain higher Sr, Ba, Pb, and Zn concentrations, but significantly less Bi, than the intrusion-related Breves inclusion fluids. Cu is consistently below detection limits in brine inclusions from the IOCG and intrusion-related systems and Fe was not detected in the latter. Cl/Br and Na/Cl ratios of the IOCG inclusion fluids range from entirely evaporative brines (bittern fluids; e.g. Igarapé Bahia and Alvo 118) to values that indicate mixing with magma-derived brines. Cl/Br and Na/Cl ratios of the Breves inclusion fluids strongly suggest the involvement of magmatic brines, but that possibly also incorporated bittern fluids. Collectively, these data demonstrate that residual evaporative and magmatic brines were important components of the fluid regime involved in the formation of Cu-Au systems in the Carajás Mineral Province.

  3. Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.

    Science.gov (United States)

    Torres, M E; Cox, T; Hong, W-L; McManus, J; Sample, J C; Destrigneville, C; Gan, H M; Gan, H Y; Moreau, J W

    2015-11-01

    We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.

  4. Source of ore-forming material for the Huangtuliang gold deposit, Hebei Province and ore prospecting in the deep periphery

    Institute of Scientific and Technical Information of China (English)

    NIU Shuyin; SUN Aiqun; WANG Baode; HAN Yuchou; WEI Minghui; ZHANG Hai; ZHANG Ge; SHI Ping; WANG Wenxing

    2008-01-01

    The Huangtuliang gold deposit is characterized by its wide and large ore belt, stable extension and closely spaced orebodies. Unfortunately, no orebody was found by deep drilling. As a result, ore prospecting in this region was once put into dilemma. Detailed analysis of ore-forming and ore-controlling structures in the mining district by the authors has revealed that the ore-forming and ore-controlling structure in this mining district is a steeply dipping (85°-110°/∠70°-85° N-NNE), spade-shaped ductile shear zone, and the ore-controlling structures are a series of nearly erected second-ordered faults which are developed in the upper part of the ductile shear zone, intersecting with the ductile shear zone. Deep cutting of the ductile shear zone made it possible the ascending of ore fluids from the mantle plume at depth and these ore fluids would migrate upwards along the ductile shear zone under certain temperature and pressure conditions. Along their ascending path, the ore fluids would extract ore-forming elements from the country rocks and the extracted ore-forming elements would be deposited as ores in the hanging-wall second-ordered faults. The reason why no orebody was found in early prospecting at depth is that northward-dipping drilling in the southern part of the shear zone extended so deeply as to be beneath the shear zone. Only shallow-level orebodies could be found by southward-dipping drilling practice in the northern part of the shear zone.The location where deep-seated orebodies occurred shifted northwards and the orebodies occurred at greater depth.Therefore, it is natural that no orebody could be found when drill core passed through the shear zone. After the ore-forming and ore-controlling structures were well understood, the focus of ore prospecting was placed on the deep-level, northward-penetrating veins. In this way a number of new blind orebodies of great thickness have been found. On the basis of research development in the mining

  5. Ore genesis constraints on the Idaho cobalt belt from fluid inclusion gas, noble gas isotope, and ion ratio analyses--a reply

    Science.gov (United States)

    Hofstra, Albert H.; Landis, Gary P.

    2013-01-01

    Burlinson (2013) questions the veracity of the H2 concentrations reported for fluid inclusion extracts from minerals in the Idaho cobalt belt (Table 2; Landis and Hofstra, 2012) and suggests that they are an analytical artifact of electron-impact mass spectrometry. He also declares that H2 should not be present in fluid inclusions because it is invariably lost by diffusion and is never detected in fluid inclusions by laser Raman. We welcome this opportunity to reply and maintain that the reported H2 contents are accurate. Below we explain why Burlinson’s criticisms are invalid.

  6. Ores and Climate Change - Primary Shareholders

    Science.gov (United States)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  7. 甘肃拾金坡金矿床成因:来自40Ar/39Ar定年、成矿流体及H-O-S同位素证据%Ore Genesis of the Shijinpo Gold Deposit in Gansu Province, NW China:40Ar/39Ar Dating, Ore-Forming Fluid and H-O-S Isotopes Constrains

    Institute of Scientific and Technical Information of China (English)

    朱江; 吕新彪; 莫亚龙; 曹晓峰; 陈超

    2013-01-01

    , variably coexisting with minor amounts of galena, sphalerite and chalcopyrite. Laser incremental heating 40Ar/39Ar analysis of hydrothermal sericite yields a plateau age of (364. 6 ± 3) Ma (2σ) , which suggests that the gold mineralization took place in the late Devonian period. The comprehensive fluid inclusion study shows that there are three major types of fluid inclusions in the early stage: liquid-rich, gas-rich aqueous and CO2-bearing fluid inclusions, with intermediate homogenization temperature (280 - 325℃) , and low salinity (7. 86%- 9. 21% NaCl eqv). The fluid boiling is evidenced by the co-existence of three types of fluid inclusions with similar homogenization temperatures. There is only liquid-rich aqueous fluid inclusions in the late stage, with hqmogenization temperatures and salinities varying from 160℃ to 230℃ , 9. 47% to 11. 10%Nacl equivalent. Fluid pressures declined from ca. 113 MPa to ca. 11 MPa through the early stage to the late stage, and the ore-forming fluids are assumed to undergo boiling in a transitional setting (from compression to extension). Oxygen and hydrogen isotopic contents in the ore-forming fluid range from 1. 39%o to 3. 39%o and - 71%o to -99%o, respectively, suggesting that the ore-forming fluid was mainly derived from the metamorphic water, and mixed by the meteoric water in the late stage. The measured δ34 S values in sulfide minerals range from 4. 44%o to 11. 33%o. Both the Precambrian metamorphic rock and granitic wall-rock might be the sulfur sources. Based on the paper and the regional geologic data, we conclude that the Shijinpo gold deposit belongs to the orogenic-type gold deposit.

  8. Isotopic Characteristics of Mesozoic Au-Ag Polymetallic Ore Deposits in Northern Hebei and Their Ore-Forming Materials Source

    Institute of Scientific and Technical Information of China (English)

    王宝德; 牛树银; 孙爱群; 李红阳

    2003-01-01

    It has long been a controversy about the source of ore-forming materials of Au-Agpolymetallic deposits both in metallogenic theory and in ore-searching practice. In terms of alarge wealth of the isotopic statistics data from Indosinian-Yanshanian endogenic ore deposits innorthern Hebei (generally referring to the areas along the northern part of Taihang Mountainsand northern Hebei, the same below) , it is considered that the ore-forming materials came fromthe deep interior of the Earth, which had migrated through plumes to the Earth surface while ex-perienced multi-stage evolution and then emplaced progressively in favorable structural loci toform ores. Their isotope data show that 559 sulfur isotopic data from 40 ore deposits are, for themost part, within the range of - 5‰ - 5‰, with a high degree of homogenization, indicatingthat the sulfur is derived mainly from magma; 200 lead isotope data from 37 ore deposits indi-cate that the ore-forming materials are principally of mantle source though some crust-source ma-terial was involved; 96 oxygen, hydrogen and carbon isotope data from 34 ore deposits illustratethat the ore-forming fluids are dominated by magmatic water while other sources of water wouldbe involved. It may therefore be seen that the formation of endogenic deposits has nothing to dowith the strata.

  9. Ore-forming Conditions and Prospecting in the West Kunlun Area, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    DONG Yongguan; GUO Kunyi; XIAO Huiliang; ZHANG Chuanlin; ZHAO Yu

    2004-01-01

    The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Threeriver) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.

  10. Sequential extraction and compositional analysis of oil-bearing fluid inclusions in reservoir rocks from Kuche Depression, Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The free oils, adsorbed oils and oil-bearing fluid inclusions have been extracted separately and analyzed by GC and GC-MS in reservoir rock samples collected from the Kuche Depression. The results demonstrate that the molecular compositions of oil-bearing fluid inclusions are significantly different from those of the free oils (the current oils). Compared with the current oil, the oil-bearing fluid inclusions are characterized by relatively high values of parameters Pr/nC17and Ph/nC18, low values of Pr/Ph, hopanes/steranes, C30-diahopane/C30-hopane and Ts/Tm, low content of C29Ts terpane and high maturities as indicated by C29 steranes 20S/(20R+20S). In addition, the oil-bearing fluid inclusions correlate very well with the oils in northern and central Tarim Basin, which were derived from Cambrian-Ordovician marine source rocks. The adsorbedoils appear to be an intermediate type between free oils and oil-bearing fluid inclusions. The above analytical data indicate that there are at least two oil-charging episodes for these reservoir rock samples. The early charging oils were derived from Cambrian-Ordovician marine source rocks, and the later charging oils, from Triassic-Jurassic terrestrial source rocks. The primary marine oils were overwhelmingly diluted by the following terrestrial oils.

  11. The Vein-type Zn-(Pb, Cu, As, Hg) mineralization at Fedj Hassene ore field, North-Western Tunisia: Mineralogy, Trace Elements, Sulfur Isotopes and Fluid Inclusions; Le champ filonien a Zn-(Pb, Cu, As, Hg) du district minier de Fedj Hassene (Nord Ouest de la Tunisie): Mineralogie, Elements en traces, Isotopes du Soufre et Inclusions Fluides

    Energy Technology Data Exchange (ETDEWEB)

    Bejaouil, J.; Bouhlel, S.; Barca, D.; Braham, A.

    2011-07-01

    The Fedj Hassene district is localized at the edge of the Tuniso-Algerian border 10 km of Ghardimaou area. It consists of a Zn-Pb vein type with minor amounts of Cu-As-Hg. The total Zn reserves are about 370.000t. The mineralization occurs within sub parallel fractures to the Ain El Kohla ESE-WNW fault. Host rocks consist of limestones and marly limestones of the Middle Turonian. In the principal lode of Fedj Hassene, the mineralization occurs as vein filling of massive and brecciated brown sphalerite and minor galena ore with gangue. Other trace minerals are pyrite, chalcopyrite, orpiment, realgar, smithsonite and cerussite. LA-ICP-MS analyses in sphalerites show mean contents of 0,84 wt% Fe, 0,14 wt% Cd and 0,02 wt% Mn Ore. Fluid inclusions study in calcite and sphalerite reveals one mineralizing fluid characterized by an average salinity 23% wt NaCl with decreasing homogenisation temperature. In fact the temperature shows decrease from sphalerite to calcite. The fluid density that corresponds to trapping pressure ranges between 1.00 g/cm{sup 3} and 1.11 g/cm{sup 3} and pressure close to 200 bars. Micro thermometric data in fluid inclusion hosted by gangue mineral presented by calcite show an average temperature of formation around 194 degree centigrade. These inclusions homogenized to the liquid phase between 156 degree centigrade and 210 degree centigrade and salinities values ranging from 22 to 28 wt% NaCl and an average around 23% wt NaCl. The {delta}{sup 3}4S (VCDT) values of sphalerite are in the range of + 4,6% to 6,4% (average=5,6%). Thermochemical reduction of Triassic sulfate by reaction with hydro-carbons is the most probable source for the heavy and the narrow range of the d{delta}{sup 3}4S values. Mineralogical, geochemical of trace elements, fluid inclusions and sulfur isotopes studies allow to include the vein-type ore field of Fedj Hassene in the polymetallic (Pb-Zn-As-Hg) vein mineralization of the nappe zone in northern Tunisia and north eastern

  12. Metallization of oxide-ore-containing wastes with the use of brown coal semicoke from Berezovsky deposit of the Kansk- Achinsk Basin

    Science.gov (United States)

    Anikin, A. E.; Galevsky, G. V.; Nozdrin, E. V.; Rudneva, V. V.; Galevsky, S. G.

    2016-09-01

    The research of the metallization process of the roll scale and sludge after gas treatment in the BOF production with the use of brown coal semicoke mined in Berezovsky field of the Kansk-Achinsk Basin was carried out. A flow diagram of “cold” briquetting using a water-soluble binder was offered. The reduction of iron from its oxide Fe2O3 with brown coal semicoke in the laboratory electric-tube furnace in the argon atmosphere was studied. The mathematical models of dependence of the metallization degree on variable factors were developed. The optimal values of technological factors and essential characteristics of the obtained metallized products were revealed.

  13. Inclusiones fluidas e isotopos estables en la ganga de los yacimientos de manganeso del norte de la provincia de Córdoba Fluid inclusions and stable isotopes in non-ore minerals of the manganese ore deposits in the north of the Córdoba province

    Directory of Open Access Journals (Sweden)

    P.R. Leal

    2002-09-01

    Full Text Available En este trabajo se analizan las características físico-químicas asociadas a la precipitación de la ganga de yacimientos epitermales de manganeso. Estos minerales fueron formados principalmente durante la etapa póstuma del sistema, el cual es posible dividir espacialmente en tres sectores en función del mineral más abundante. En esta oportunidad se estudia el sector austral donde el mineral más común es la calcita. El análisis microtermométrico de las inclusiones fluidas sobre muestras de calcita, baritina y fluorita, hizo posible obtener salinidades del fluido de 2,7 y 4% eq. en peso NaCl y temperaturas inferiores a 100°C. Los estudios de isótopos de 13C, 18O y 34S en calcita y baritina permitieron determinar la fuente meteórica de los fluidos asociados a su precipitación. Al mismo tiempo los valores de d13C en calcita se consideran el resultado de un fluido en equilibrio con CO2 atmosférico y cantidades menores de carbono producto de la disolución de compuestos orgánicos. Por otro lado, los valores de d34S de la baritina pueden ser explicados por un fluido con H2S que resulta de la disolución de sulfuros de las rocas de caja. Finalmente, se postula la presencia de dos fluidos. Un fluido ascendente fue el responsable de la precipitación de la baritina en la zona donde el H2S se oxida a SO4=; al mismo tiempo, éste pudo también formar fluorita y variedades de sílice conforme su temperatura desciende. La existencia de un fluido descendente permite explicar la generación de calcita por calentamiento del mismo.In this paper the non-ore minerals of the southern sector of this deposit are studied. Microthermometric analysis on calcite, barite and fluorite show fluid salinities of 2.7 and 4% wt eq. NaCl, and temperatures below 100°C. Isotopes of 13C, 18O and 34S allow to determine a meteoric source for the fluids associated to their precipitation. The d13C values obtained in calcite are considered the result of a fluid in

  14. Diagenesis and Fluid Flow History in Sandstones of the Upper Permian Black Jack Formation, Gunnedah Basin, Eastern Australia

    Institute of Scientific and Technical Information of China (English)

    BAI Guoping; John B. KEENE

    2007-01-01

    The fluid flow history during diagenesis of sandstones in the Upper Permian Black Jack Formation of the Gunnedah Basin has been investigated through integrated petrographic observations, fluid inclusion investigations and stable isotope analyses. The early precipitation of mixed-layer illite/smectite, siderite, calcite, ankerite and kaolin proceeded at the presence of Late Permian connate meteoric waters at temperatures of up to 60℃. These evolved connate pore waters were also parental to quartz, which formed at temperatures of up to 87℃. The phase of maximum burial was characterized by development of filamentous illite and late calcite at temperatures of up to ~90℃. Subsequent uplifting and cooling led to deep meteoric influx from surface, which in turn resulted in dissolution of labile grains and carbonate cements, and formation of second generation of kaolin. Dawsonite was the last diagenetic mineral precipitated and its formation is genetically related to deep-seated mamagtic sourced CO2.

  15. Methane-rich fluid inclusions and their hosting volcanic reservoir rocks of the Songliao Basin, NE China

    Institute of Scientific and Technical Information of China (English)

    WANG Pu-Jun; HOU Qi-jun; CHENG Ri-hui; LI Quan-lin; GUO Zhen-hua; HUANG Yu-long

    2004-01-01

    Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions.Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ12C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb,suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.

  16. Coincidence or not? Interconnected gas/fluid migration and ocean-atmosphere oscillations in the Levant Basin

    Science.gov (United States)

    Lazar, Michael; Lang, Guy; Schattner, Uri

    2016-08-01

    A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.

  17. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    Science.gov (United States)

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus

  18. Magnitude of fluid movement and rates of cementation associated with reverse faults Examples from the Maracaibo basin, Venezuela

    Science.gov (United States)

    Perez, R. J.; Boles, J. R.

    2002-12-01

    Magnitude of vertical fluid movement and rates of quartz cementation were studied in three cored intervals where reverse faults cut the Eocene Misoa Fm in the Maracaibo basin, Venezuela. The faults are flower type structures, with slips up to 500 meters, generated by an Eocene inversion of Cretaceous-Paleocene normal displacements. The fault zones extend 2.5 meters away from the slip surface and are characterized by extensive quartz and chert precipitation associated with microfractures and cataclasis. Kinetic modeling of quartz precipitation suggests that the rates of microfracture annealing may have been initially up to 0.25 moles/C, lasting approximately 1 my after faulting started (37.5 mya) and subsequently decreasing during uplifting to less than 0.05 moles/C. Kinetic modeling suggests that quartz cementation along these reverse faults may have occurred in short periods of time and at approximately the same or lower rates than intervals away from faults. Minimum vertical distance of fluid flow along one fault zone was calculated with two different approaches. The first method divides the thermal gradient present during faulting (obtained through a thermal reconstruction of the area) by a difference between the host rock maximum burial temperature and fault cements temperatures (obtained from fluid inclusions). The second method integrates an average-weight function of the thermal gradient along the unknown depth. Both methods suggest that hot fluids, present during cementation, ascended a minimum of 450 to 800 meter along the fault zone.

  19. Fluid Flow History in Lower Triassic Bulgo Sandstone, Central Sydney Basin, Australia

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fluid flow history during diagenesis of the Lower Triassic Bulgo sandstone has been investigated through integrated analyses of petrography, stable isotope and fluid inclusion. Combined application of these techniques was intended to constrain the temperature, timing, chemistry and source of pore fluids during diagenetic cementation events in the Lower Triassic Bulgo sandstone. The dlagenesis proceeded in two different flow regimes: early dynamic fluid flow regime and late slow static fluid flow regime. The former was characterized by a slight increase of δ(18O) of pore waters form estimated -15 × 10-3 to -14 × 10-3 with the temperature increasing from ~ 10 ℃ to ~ 75 ℃. During early diagenesis, early clays and pore filling carbonates precipitated from the pore waters. The late slow flow/static fluid regime was characterized by a rapid 18O-enrichment process. δ(18O) of pore waters increased from -14× 10-3 to -5× 10-3 with the temperature increasing from 75 ℃ to 110 ℃. During the late diagenesis, kaolin (generation Ⅲ ), quartz and illite crystallized. Oil migrated to the sandstones of the Bulgo sandstone during quartz cementation.

  20. Fluids preserved in variably altered graphitic pelitic schists in the Dufferin Lake Zone, south-central Athabasca Basin, Canada: implications for graphite loss and uranium deposition

    Science.gov (United States)

    Pascal, Marjolaine; Boiron, Marie-Christine; Ansdell, Kevin; Annesley, Irvine R.; Kotzer, Tom; Jiricka, Dan; Cuney, Michel

    2016-06-01

    The Athabasca Basin (Canada) contains the highest grade unconformity-type uranium deposits in the world. Underlying the Athabasca Group sedimentary rocks of the Dufferin Lake Zone are variably graphitic, pelitic schists (VGPS), altered to chlorite and hematite (Red/Green Zone: RGZ). They were locally bleached near the unconformity during paleoweathering and/or later fluid interaction. Overall, graphite was lost from the RGZ and the bleached zone relative to the original VGPS. Fluid inclusions were examined in different generations of quartz veins, using microthermometry and Raman spectroscopy, to characterize and compare the different fluids that interacted with the RGZ and the VGPS. In the VGPS, CH4-, and N2-rich fluid inclusions, which homogenize into the vapor phase between -100 and -74 °C, and -152 and -125 °C, respectively, and CO2-rich fluid inclusions, homogenizing either into vapor or liquid between 20 and 28 °C, are present. Carbonic fluids could be the result of the breakdown of graphite to CH4 + CO2, whereas N2-rich fluid is interpreted to be the result of breakdown of feldspars/micas to NH4 ++N2. In the RGZ, the presence of fluid inclusions with low ice melting temperature (-38 to -16 °C) reflect the presence of CaCl2, and fluid inclusions with halite daughter minerals that dissolve between 190 and 240 °C indicate the presence of highly saline fluids. These fluids are interpreted to be derived from the Athabasca Basin. The circulation of carbonic fluids and brines occurred during two different events related to different P-T conditions of trapping. The carbonic fluids interacted with basement rocks during retrograde metamorphism of the basement rocks before deposition of the Athabasca Basin, whereas the brines circulated after the deposition of the Athabasca Basin. These latter fluids are similar to brines related to uranium mineralization at McArthur River and thus, in addition to possibly being related to graphite depletion in the RGZ, they could

  1. He-Ar Isotopic Systematics of Fluid Inclusions in Pyrites from PGE-polymetallic Deposits in Lower Cambrian Black Rock Series, South China

    Institute of Scientific and Technical Information of China (English)

    SUN Xiaoming; WANG Min; XUE Ting; MA Mingyang; LI Yinhe

    2004-01-01

    He-Ar isotopic compositions of fluid inclusions trapped in pyrites from some representative PGEpolymetallic deposits in Lower Cambrian black rock series in South China were analyzed by using an inert gas isotopic mass spectrometer. The results show that the ore-forming fluids possess a low 3He/4He ratio, varying from 0.43x10-8 to 26.39×10-8, with corresponding R/Ra value of 0.003-0.189. The 40Ar/36Ar ratios are 258-287, close to those of airsaturated water (ASW). He-Ar isotopic indicator studies show that the ore-forming fluids were mainly derived from the formation water or basinal hot brine and sea water, while the content of mantle-derived fluid or deep-derived magmatic water might be negligible. The PGE-polymetallic mineralization might be related to the evolution of the Caledonian miogeosynclines distributed along the southern margin of the Yangtze Craton. During the Early Cambrian, the formation water or basinal hot brine trapped in Caledonian basins which accumulated giant thick sediments was expelled and migrated laterally along strata because of the pressure generated by overlying sediments. The basinal hot brine ascended along faults, mixed with sea water and finally deposited ore minerals.

  2. Determination of paleo-pressure for a natural gas pool formation based on PVT characteristics of fluid inclusions in reservoir rocks--A case study of Upper-Paleozoic deep basin gas trap of the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    MI Jingkui; XIAO Xianming; LIU Dehan; SHEN Jiagui

    2004-01-01

    It has been proved to be a difficult problem to determine directly trapping pressure of fluid inclusions. Recently, PVT simulation softwares have been applied to simulating the trapping pressure of petroleum inclusions in reservoir rocks, but the reported methods have many limitations in practice. In this paper, a method is suggested to calculating the trapping pressure and temperature of fluid inclusions by combining the isochore equations of a gas-bearing aqueous inclusion with its coeval petroleum inclusions. A case study was conducted by this method for fluid inclusions occurring in the Upper-Paleozoic Shanxi Formation reservoir sandstones from the Ordos Basin. The results show that the trapping pressure of these inclusions ranges from 21 to 32 MPa, which is 6-7 MPa higher than their minimum trapping pressure although the trapping temperature is only 2-3℃ higher than the homogenization temperature. The trapping pressure and temperature of the fluid inclusions decrease from southern area to northern area of the basin.The trapping pressure is obviously lower than the state water pressures when the inclusions formed. These data are consistent with the regional geological and geochemical conditions of the basin when the deep basin gas trap formed.

  3. Thermodynamic Modeling of Fluid-Bearing Natural Gas Inclusions for Geothermometer and Geobarometer of Overpressured Environments in Qiongdongnan Basin, South China Sea

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    It is a very difficult problem to directly determine fluid pressure during hydrocarbon migration and accumulation in sedimentary basins. pVt modeling of coupling hydrocarbon fluid inclusion of its coeval aqueous fluid inclusion provides a powerful tool for establishing the relationship of formation pressure evolution with time. Homogenization temperature of fluid inclusion can routinely be measured under microthermometric microscopy. Crushing technique has been employed to obtain the composition of fluid inclusions, and the commercial software VTFLINC easily and rapidly completes the construction of p-t phase diagram. The minimum trapping pressure of hydrocarbon fluid inclusion would be then determined in the p-t space. In this paper, three samples of YC21-1-1 and YC21-1-4 wells at YC21-1 structural closure, Qiongdongnan basin, South China Sea, were selected for the pVt modeling practice, and the formation pressure coefficient (equals to fluid pressure/hydrostatic pressure) changing trend with time has primarily been established. The modeling results also indicate that the reservoirs of Lingshui and Yacheng formations in YC21-1 structure are within a very high potential system and would have undergone a discharging of thermal fluids through top seal rupture, which depicts that there is a very high risk for natural gas exploration in this area.

  4. Metal-rich fluid inclusions provide new insights into unconformity-related U deposits (Athabasca Basin and Basement, Canada)

    Science.gov (United States)

    Richard, Antonin; Cathelineau, Michel; Boiron, Marie-Christine; Mercadier, Julien; Banks, David A.; Cuney, Michel

    2016-02-01

    The Paleoproterozoic Athabasca Basin (Canada) hosts numerous giant unconformity-related uranium deposits. The scope of this study is to establish the pressure, temperature, and composition (P-T-X conditions) of the brines that circulated at the base of the Athabasca Basin and in its crystalline basement before, during and after UO2 deposition. These brines are commonly sampled as fluid inclusions in quartz- and dolomite-cementing veins and breccias associated with alteration and U mineralization. Microthermometry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data from five deposits (Rabbit Lake, P-Patch, Eagle Point, Millennium, and Shea Creek) complement previously published data for the McArthur River deposit. In all of the deposits investigated, fluid inclusion salinity is between 25 and 40 wt.% NaCl equiv., with compositions displaying a continuum between a "NaCl-rich brine" end-member (Cl > Na > Ca > Mg > K) and a "CaCl2-rich brine" end-member (Cl > Ca ≈ Mg > Na > K). The CaCl2-rich brine has the highest salinity and shows evidence for halite saturation at the time of trapping. The continuum of compositions between the NaCl-rich brine and the CaCl2-rich brine end-members combined with P-T reconstructions suggest anisothermal mixing of the two brines (NaCl-rich brine, 180 ± 30 °C and 800 ± 400 bars; CaCl2-rich brine, 120 ± 30 °C and 600 ± 300 bars) that occurred under fluctuating pressure conditions (hydrostatic to supra-hydrostatic). However, because the two brines were U bearing and therefore oxidized, brine mixing was probably not the driving force for UO2 deposition. Several scenarios are put forward to account for the Cl-Na-Ca-Mg-K composition of the brines, involving combinations of seawater evaporation, halite dissolution, mixing with a halite-dissolution brine, Mg/Ca exchange by dolomitization, Na/Ca exchange by albitization of plagioclase, Na/K exchange by albitization of K-feldspar, and Mg loss by Mg

  5. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China

    Institute of Scientific and Technical Information of China (English)

    ZHU RuKai; ZOU CaiNeng; ZHANG Nai; WANG XueSong; CHENG Rong; LIU LiuHong; ZHOU ChuanMin; SONG LiHong

    2008-01-01

    The reservoirs of the Upper Triassic Xujiahe Formation in Sichuan Basin have the characteristics of low compositional maturity, low contents of cements and medium textural maturity.The general physical properties of the reservoirs are poor, with low porosity and low permeability, and there are only a few reservoirs with medium porosity and low permeability in local areas.Based on the diagenetic mineral association, a diagenetic sequence of cements is established: early calcites (or micrite siderites)→ first quartz overgrowth→chlorite coatings→dissolution of feldspars and debris→chlorite linings→ second quartz overgrowth (quartz widen or filled in remain intergranular pores and solution pores→ dissolution→third quartz overgrowth (quartz filled in intergranular and intragranular solution pores)→ intergrowth (ferro) calcites→dolomites→ferro (calcites) dolomites→later dissolution→veins of quartz and calcites formation.Mechanical compaction is the main factor in making the reservoirs tight in the basin, followed by the second and third quartz overgrowth.In a long-term closed system, only feldspars and some lithic fragments are dissolved by diagenetic fluids, while intergranular cements such as quartz and calcit are not dissolved and thus have little influence on the porosity of the Xujiahe Formation.This is the third factor that may have kept the sandstones of Xujiahe Formation tight finally.The hydrocarbon was extensively generated from organic materials after the second quartz overgrowth, and selectively entered favorable reservoirs to form tight sandstone gas reservoirs.

  6. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The reservoirs of the Upper Triassic Xujiahe Formation in Sichuan Basin have the characteristics of low compositional maturity, low contents of cements and medium textural maturity. The general physical properties of the reservoirs are poor, with low porosity and low permeability, and there are only a few reservoirs with medium porosity and low permeability in local areas. Based on the diagenetic mineral association, a diagenetic sequence of cements is established: early calcites (or micrite siderites) →first quartz overgrowth→chlorite coatings→dissolution of feldspars and debris→chlorite linings→ second quartz overgrowth (quartz widen or filled in remain intergranular pores and solution pores)→dissolution→third quartz overgrowth (quartz filled in intergranular and intragranular solution pores)→intergrowth (ferro) calcites→dolomites→ferro (calcites) dolomites→later dissolution→veins of quartz and calcites formation. Mechanical compaction is the main factor in making the reservoirs tight in the basin, followed by the second and third quartz overgrowth. In a long-term closed system, only feld-spars and some lithic fragments are dissolved by diagenetic fluids, while intergranular cements such as quartz and calcit are not dissolved and thus have little influence on the porosity of the Xujiahe Formation. This is the third factor that may have kept the sandstones of Xujiahe Formation tight finally. The hydrocarbon was extensively generated from organic materials after the second quartz overgrowth, and selectively entered favorable reservoirs to form tight sandstone gas reservoirs.

  7. A case study of waste fluid injection and induced seismicity in the Raton Basin, Trinidad, CO, USA

    Science.gov (United States)

    Weingarten, M. B.; Ge, S.

    2012-12-01

    Waste fluid injection into rock formations has been speculated to cause seismicity. This study analyzed the link between the injection of fluid waste from coal-bed methane production and recent earthquakes swarms around the town of Trinidad, Colorado, USA. The study area is in a relatively quiescent intraplate zone, located in the Mesozoic sedimentary formations of the Raton Basin. Since 1999, when waste fluid injection began in the vicinity of Trinidad, more than 175 earthquakes of greater than M2.5 have occurred, representing a more than 30-fold increase in the number of earthquakes as compared with the previous 3 decades. The vast majority of earthquake epicenters are located within 5 km of one of the 24 injection wells. Two years after waste fluid injection began, an earthquake swarm occurred on a NE-trending fault structure, but a causal relationship between the fluid injection and swarm could not be definitively made. Earthquakes and injection continued and, in 2011, another earthquake swarm occurred, possibly reactivating the same NE-trending fault structure. Due to the lack of robust spatial seismometer coverage, earthquake hypocentral depths often have significant uncertainties, but could be at depths co-located with injection depths. The link between fluid waste injection and seismicity is characterized by spatial and temporal correlations as well as pore pressure changes sufficient to induce seismicity at depth. Pore pressure calculations were performed using a two-dimensional analytical solution for a homogeneous and isotropic aquifer with a hydraulic conductivity of 1.0x10^-7 m/s and storage coefficient of 5.0x10^-5. Reservoir model parameters are representative of the Dakota Sandstone, a fluvial and conglomeratic sandstone sequence, which is the dominant formation for injection. Computed pressure buildup in the aquifer was correlated spatially and temporally to earthquake epicenters. Preliminary results suggest that pore pressure changes in the

  8. Shear Alteration, Mass Transfer and Gold Mineralization: An Example from Jiaodong Ore Deposit Concentrating Area, Shandong, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Taking the gold ore deposit concentrating area of Jiaodong area in Shandong, China for an example, based on geological analysis, and applying Gresens' equation, Grant's isocon diagram and O'hara microelement calculation method, a thorough study on shear alteration, mass transfer and gold mineralization was carried out. The authors also made mathematic simulation and geochemical analysis. The work reveals temporal-spatial changing regularities of temperature field and velocity field of fluids, and also reveals fluid transport-chemical reaction coupling metallogenic dynamics of the Jiaojia gold ore concentrating area. During shear-alteration process of the Jiaodong gold ore concentrating area, all kinds of components transferred with different amounts, fluid-rock ratio was rather high and volume strain was of dilation type. Fast flow of ore-forming fluid favors the occurrence of mixed fluid. Shear-fractured zones are places where there was strong transportationreaction coupling mineralization. Ore bodies were located in dilation space of shear structure where there was the greatest fluid flux. After the emplacement of the rock body, a convex heat field was formed around the rock body. It is one of the main metallogenic forces. The major reason for mineralization is the mobilization, migration and enrichment of ore-forming elements induced by shear compressive-extensional tectonism. Inclusion gold dominant Iow-grade ores were formed in the early ore-forming stage, while high-grade ores, which contained fissure gold and polymetallic veinlets, were formed in late ore-forming stage.

  9. Types, Evolution and Pool-Controlling Significance of Pool Fluid Sources in Superimposed Basins: A Case Study from Paleozoic and Mesozoic in South China

    Institute of Scientific and Technical Information of China (English)

    Xu Sihuang; Mei Lianfu; Yuan Caiping; Ma Yongsheng; Guo Tonglou

    2007-01-01

    Having multiple tectonic evolution stages, South China belongs to a superimposed basin in nature. Most marine gas pools became secondary pools. The pool fluid sources serve as the principal pool-controlling factors. On the basis of eight typical petroleum pools, the type, evolution in time-space,and the controlling of petroleum distribution of pool fluid sources are comprehensively analyzed. The main types of pool fluid sources include hydrocarbon, generated primarily and secondly from source rocks, gas cracked from crude oil, gas dissolved in water, inorganic gas, and mixed gases. In terms of evolution, the primary hydrocarbon was predominant prior to Indosinian; during Indosinian to Yenshanian the secondary gas includes gas cracked from crude oil, gas generated secondarily, gas dissolved in water, and inorganic gas dominated; during Yenshanian to Himalayan the most fluid sources were mixed gases. Controlled by pool fluid sources, the pools with mixed gas sources distributed mainly in Upper Yangtze block, especially Sichuan (四川) basin; the pools with primary hydrocarbon sources distributed in paleo-uplifts such as Jiangnan (江南), but most of these pools became fossil pools; the pools with secondary hydrocarbon source distributed in the areas covered by Cretaceous and Eogene in Middle-Lower Yangtze blocks, and Chuxiong (楚雄), Shiwandashan (十万大山), and Nanpanjiang (南盘江) basins; the pools with inorganic gas source mainly formed and distributed in tensional structure areas.

  10. Salt tectonics and associated fluid migration and entrapment in the western part of the Norwegian-Danish Basin

    Science.gov (United States)

    Sørig, Simon A.; Clausen, Ole R.; Andresen, Katrine J.

    2016-04-01

    The western part of the Norwegian-Danish Basin is part of the Northern Permian Basin and encompasses a variety of Zechstein salt structures (pillows, rollers, diapirs and salt walls). The area has been studied for decades with respect to HC prospectively associated to salt structures as well a focus area for studies on conceptual evolution of salt structures and faults associated with the salt structures. Previous local studies on fluid migration and Direct Hydrocarbon Indicators (DHI's) in the area show a close relation between halo kinetics and local fluid migration. In the present study we have used3D seismic data (approximately 3500 km2) to identify and describe A: large diapirs which have been active until the youngest Cenozoic, B: medium sized diapirs being active until the early Cenozoic, C: salt relicts creating small non active pillows, and D: small satellite structures related to type A. The salt structures are evenly distributed across the studied area, and we conclude that the structures were initiated during the late Triassic due to depositional controlled differential loading combined with differential subsidence. DHI's are identified at various stratigraphic and structural settings associated to the salt structures and each structure type has different types of DHI's associated. The DHIs observed at the type A and B diapirs are located above or at the stem of the diapirs and are here interpreted as classic structural hydrocarbon traps associated with rising salt deforming the strata. However, the DHI's associated to type C salt pillows have a relatively small lateral extent, stratigraphically restricted to the Mesozoic succession; they are located above the apex of the pillow and have in general a seismically disturbed zone located beneath the DHI. The seismically disturbed zone resembles gas chimneys, but may also be related to minor deformation of the Mesozoic strata overlying the type C pillows. A biogenic origin of the gas in at least some of the

  11. 西藏邦铺钼铜矿区He、Ne和Ar同位素及成矿流体示踪%He, Ne and Ar Isotopic Composition and Origin of Ore-forming Fluids of Bangpu Mo-Cu Mine Area, Tibet

    Institute of Scientific and Technical Information of China (English)

    温泉; 温春齐; 霍艳; 周雄; 费光春; 黄于鉴

    2012-01-01

    Bangpu Cu—Mo ore area is located in the east oi the Gangdisi porphyry copper zone in Tibet. It is a typical copper-molybdenum metal ore deposit with large type porphyry. Noble gas isotopes in the fluid inclusions in the molybdenite of Mo-Cu ore body and in the pyrite of Pb-Zn ore body were tested. The results show that the contents of 4He, 20Ne, 40Ar, 34Kr and 132Xe in the fluid inclusions of the molybdenite in Mo-Cu ore body are higher than these of the pyrite in Pb-Zn ore body. The partial ratio in the former is lower than that in the latter, such as 3He/4He is 0.347 and 5.80, 21Ne/22Ne is 0.027 2 and 0.045 8, 40Ar/36Ar is 381.9 and 743.3, respectively. It shows that the fluid of the deposit may belong to crust-mantle mixed source, the fluid source of molybdenite maybe come from the crust-derived fluid or atmospheric water, pyrite fluid source mayhe come from mantle -derived fluid. This result is consistent with the investigation of the quartz fluid inclusions of hydrogen and oxygen isotopes.%邦铺钼铜多金属矿区位于西藏冈底斯斑岩铜矿带东段,是典型的大型斑岩型钼铜多金属矿床.对该矿床钼铜矿体和铅锌矿体的辉钼矿和黄铁矿流体包裹体进行了稀有气体同位素测试.测试显示,辉钼矿流体包裹体中4He,20Ne,40Ar,84Kr和132Xe含量均高于铅锌矿体的黄铁矿;但部分比值前者却低于后者,3He/4He分别为0.347和5.80,21Ne/22Ne分别为0.0272和0.0458,40Ar/36Ar分别为381.9和743.3.研究认为,该矿床流体可能属壳幔混源,辉钼矿流体来源以壳源流体或大气水为主,黄铁矿流体来源以幔源流体为主.这与石英矿物流体包裹体氢氧同位素研究一致.

  12. Fluid inclusion study of the Baishan porphyry Mo deposit in the eastern Tianshan ore field, Xinjiang Province%新疆东天山白山钼矿床流体包裹体研究

    Institute of Scientific and Technical Information of China (English)

    项楠; 杨永飞; 吴艳爽; 周可法

    2013-01-01

    The Baishan Mo deposit in the eastern Tianshan, Xinjiang Province, is a large-giant porphyry deposit discovered in the eastern Jueluotag tectonic belt According to paragenesis and crosscutting relationship of the stockworks, ore-forming veinlets in order from early to late are the early quartz-potassic feldspar veinlets, quartz-potassic feldspar-molybdenite veinlets, quartz-molybdenite veinlets, quartz-polymetallic sulfide veinlets and the late stage quartz-carbonate-fluorite veinlets. The hydrothermal quartz in the early quartz-potassic feldspar veinlets mainly contain pure CH4 (PC-type), CH4-H2O (Cl-type) and NaCl-H2O (W-type); these fluid inclusions mainly homogenize at temperatures of 320℃ to 420℃ , and yield salinities of 1. 98% to 8. 79% NaCleqv. The quartz-potassic feldspar-molybdenite veinlets contain daughter mineral-bearing (S-type) and W-type fluid inclusions, with homogenization temperatures ranging from 260℃ to 400℃ and salinities of 1. 49% to 8. 65% NaCleqv. The quartz-molybdenite veinlets and quartz-polymetallic sulfide veinlets contain W-, S- and C2 (CO2-H2O) types of fluid inclusions that are generally homogenized at temperatures of 200℃ to 240℃ and 140℃ to 240℃ , with salinities of 2. 14% to 8. 10% NaCleqv and 0. 33% to 10. 22% NaCleqv, respectively. The late-stage quartz-carbonate-fluorite veinlets only contain the W-type fluid inclusions mainly which homogenize at l00℃ to 160℃ , yielding salinities of 0. 17% to 4. 86% NaCleqv. The estimated pressures range from 105 ~ 221 MPa for the early-stage veinlets to 15 ~ 285MPa for the quartz-polymetallic sulfide veinlets. In a word, the ore-forming fluids evolve from high temperature, carbonic and reducing magmatic to low temperature and low salinity meteoric. The decrease of temperature and the reduction of high-valent molybdenum of HMoO4- result in the precipitation of molybdenite.%白山钼矿位于东天山觉罗塔格成矿带东段,是新疆极具代表性的大型-超大型斑

  13. Sill intrusion driven fluid flow and vent formation in volcanic basins: Modeling rates of volatile release and paleoclimate effects

    Science.gov (United States)

    Iyer, Karthik; Schmid, Daniel

    2016-04-01

    Evidence of mass extinction events in conjunction with climate change occur throughout the geological record and may be accompanied by pronounced negative carbon isotope excursions. The processes that trigger such globally destructive changes are still under considerable debate. These include mechanisms such as poisoning from trace metals released during large volcanic eruptions (Vogt, 1972), CO2 released from lava degassing during the formation of Large Igneous Provinces (LIPs) (Courtillot and Renne, 2003) and CH4 release during the destabilization of sub-seafloor methane (Dickens et al., 1995), to name a few. Thermogenic methane derived from contact metamorphism associated with magma emplacement and cooling in sedimentary basins has been recently gaining considerable attention as a potential mechanism that may have triggered global climate events in the past (e.g. Svensen and Jamtveit, 2010). The discovery of hydrothermal vent complexes that are spatially associated with such basins also supports the discharge of greenhouse gases into the atmosphere (e.g. Jamtveit et al., 2004; Planke et al., 2005; Svensen et al., 2006). A previous study that investigated this process using a fluid flow model (Iyer et al., 2013) suggested that although hydrothermal plume formation resulting from sill emplacement may indeed release large quantities of methane at the surface, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative δ13C excursions observed in the fossil record over short time scales observed in the fossil record. Here, we reinvestigate the rates of gas release during sill emplacement in a case study from the Harstad Basin off-shore Norway with a special emphasis on vent formation. The presented study is based on a seismic line that crosses multiple sill structures emplaced around 55 Ma within the Lower Cretaceous sediments. A single well-defined vent complex is interpreted above the termination of the

  14. Light Hydrocarbon Composition of Fluid Inclusions and Its Constraints on Ore Genesis:A Case Study of the Songxi Ag(Sb) Deposit,Eastern Guangong%流体包裹体轻烃有机气体组成及对矿床成因的制约——以嵩溪大型银(锑)矿为例

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Songxi is a newly-discovered large-size Ag(Sb) deposit.Using a suite of high vacuum quardrupole gas mass spectrometer systems,the authors recognized many kinds of light hydrocarbons in fluid inclusions of minerals.These hydrocarbons are mainly composed of C1-C4 saturated alkanes,while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low,suggesting that the metallogenic processes seem not to have been affected by magmatic activities.Chemical equilibrium studies show that these hydrocarbons may be mixture of organic gases generated by microorganism activity and thermal cracking of Type Ⅱ kerogens (kukersite) in sedimentary host rocks,and the former may constitute more than two-thirds,implying that microorganism might have played an important role in the metallogenesis.The equilibrium temperature of the latter is about 300℃,which is much higher than the geothermal temperature at the estimated depth of metallogenesis.Thus,the hight hydrocarbons generated by thermal cracking of kerogens probably originated in the deep part of the sedimentary basins and then migrated through a long distance to the shallow position of the basin.The analystical data presented in this paper support from ore aspect the genetic model that Songxi may be a sedimentary hot brine transformed deposit instead of being a submarine basic volcanic exhalation and low-medium temperature volcanic hydrothermal fluid filling deposit proposed by most previous researchers.%嵩溪银(锑)矿是一个新发现的大型独立银矿。矿物流体包裹体超高真空四极气相质谱系统测定显示,该矿成矿流体中存在多种轻烃有机气体,主要由C1-C4饱和烷烃组成,仅含微量C2-C4不饱和烯烃和芳烃,说明成矿过程基本未受到高温岩浆作用的影响。化学平衡研究表明,这些轻烃气体为微生物成因和沉积岩围岩中Ⅱ类干酪根热解成因的混合气体,其中前者占2/3以上,说明成矿中微生物活

  15. Source and evolution of the ore-forming fluid in the Nannihu-Sandaozhuang Mo (W) deposit: Constraints from C-H-O stable isotope data%南泥湖—三道庄钼(钨)矿床成矿流体的碳氢氧同位素研究及其启示

    Institute of Scientific and Technical Information of China (English)

    向君峰; 裴荣富; 叶会寿; 王春毅; 田志恒

    2012-01-01

    The hydrothermal ore-forming process of the Nannihu-Sandaozhuang Mo (W) deposit can be divided into four stages, I.e., from early to late, (1) skarn and hornfels stage, (2) quartz-K-feldspar and retrograde stage, (3) quartz-sulfides stage and (4) quartz-carbonate stage. Based on studies of carbon, hydrogen and oxygen isotopes of different stages, the authors hold that the ore-forming fluid was derived mainly from the magmatic system and subordinately from the carbonate strata with minor organic matter. The atmospheric water probably made very Little contribution to the ore-forming process. From early to late stage, the ore-forming process probably experienced immiscibility between melt and volatile-rich hydrothermal fluid, water-rock reaction, and phase separation of CO2 rich gas from ore fluid caused by sudden decompression.%南泥湖-三道庄钼(钨)矿的成矿阶段从早到晚可以划分为(1)矽卡岩化阶段和角岩化阶段,(2)石英钾长石阶段和退化蚀变作用阶段,(3)石英硫化物阶段以及(4)石英碳酸盐阶段.通过对各阶段流体包裹体的碳、氢和氧稳定同位素研究,认为形成该矿床的成矿流体来源以岩浆源为主,含少量有机质的碳酸盐地层的贡献次之,大气降水可能没有贡献.从矽卡岩阶段到石英硫化物阶段再到石英方解石阶段,成矿流体依次经历了硅酸盐熔体与富挥发分热液流体的不混溶、水岩反应和富气流体的减压沸腾,其中气体的大规模逸出发生在石英方解石阶段.

  16. Physical-chemical conditions of ore deposition

    Science.gov (United States)

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  17. Physical-chemical conditions of ore deposition

    Science.gov (United States)

    Barton, Paul B.

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700°C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S 2 and O 2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  18. Dose calculations for intakes of ore dust

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.S

    1998-08-01

    This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these `ores` contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another `parent` radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures. 15 refs., 14 tabs., 3 figs.

  19. Petroleum migration and mixing in the northwestern Junggar Basin (NW China): constraints from oil-bearing fluid inclusion analyses

    Energy Technology Data Exchange (ETDEWEB)

    Jian Cao; Suping Yao [Nanjing University (China). Dept. of Earth Sciences; Zhijun Jin [Exploration and Production Research Institute, Beijing (CN)] (and others)

    2006-07-15

    Abundant oil-bearing fluid inclusions are present in four reservoir sandstone samples from the slope and fault zone areas in the northwestern margin of the Junggar Basin (NW China). Free oil in intergranular pores, adsorbed oil on grain surfaces, and petroleum in inclusions hosted by mineral grains of these samples were analyzed by gas chromatography and gas chromatography-mass spectrometry. Analytical results indicate similar biomarker distributions in the three bitumen fractions of the samples collected from the slope area, which correlate well with characteristic of the source rocks in the Lower Permian Fengcheng Formation. This is in contrast to the fault zone, where the three bitumen fractions vary significantly in their geochemical signatures, suggesting that all of the three Permian source sequences rocks (including the Lower Permian Jiamuhe and Fengcheng formations, and the Middle Permian Lower Wuerhe Formation) have been mature and contributed to the oils in the fault zone. The presence of an unresolved hydrocarbon hump and a full range of unaltered n-alkanes in the gas chromatograms of samples collected from the fault zone indicate an earlier hydrocarbon biodegradation and subsequent injection of fresh oils, distinctly different from that in the slope area. Petrographic and microthermometric investigations of oil-bearing fluid inclusions suggest a single oil charge in the slope area (to the Lower Triassic reservoir, occurring during the Late Triassic to Early Jurassic time). In the fault zone, oil migration and mixing took place mainly during the Late Triassic to Early Jurassic and Cretaceous, followed by gas migration in the Tertiary period. The different petroleum migration and mixing histories in the slope and fault zones are attributed to the effect of fault-controlled oil and gas migration. (author)

  20. Study on the geology and ore-fluids of the tin deposits in Laoyaquan alkaline granites in eastern Junggar, Xinjiang%新疆东准噶尔老鸦泉富碱花岗岩型锡矿床地质及成矿流体

    Institute of Scientific and Technical Information of China (English)

    王莉娟; 王京彬; 王玉往; 龙灵利; 唐萍芝

    2011-01-01

    Laoyaquan alkaline granite is located in eastern Junggar area, northern Xinjiang. Identification of the rock and minerals in Laoyaquan alkaline granite body and the Kamusite tin deposit and Ganliangzi tin deposit, and the REE geochemical and fluid inclusions studies indicate that all of the granite porphyry, ore-bearing quartzite, greisen body-type tin ore body, and quartz vein-type ore body were the products derived from the same alkali-rich granitic magma. The ore-forming fluid from the Kamusite sin deposit has characteristics of middle-high temperature, low salinity. Large gas-water hydrothermal which was formed in the later evolution stage of alkaline magma were Sn-Si-alkali-F-Cl- SO42 rich and oxygen fugacity-acidity/alkalinity-temperature high. And the hydrothermal lead to auto-metamorphism of the granite, such as silicification, greisen-type alteration, etc. During auto-metamorphism the reduction-oxidation state of ore forming fluid had changed with the dropping of the temperature and pressure, and the escaping of CH4 and CO2. The fluid transformed into relatively high reduction state and strong alkaline environment. Under the new conditions of reduction-oxidation state and acidity-alkalinity, the tin-complex taken by the fluid was decompounded because of its unstabilizing, which lead the tin element to be deposited and form the ore.%老鸦泉碱性花岗岩位于新疆北部东准噶尔地区.老鸦泉碱性花岗岩体及其内卡姆斯特、干梁子锡矿床的矿石和岩石的岩矿鉴定、稀土元素以及流体包裹体的系统研究表明,老鸦泉碱性花岗岩及其内的花岗斑岩及含矿石英岩、云英岩化锡矿体、石英脉锡矿体,实际上是富碱花岗质岩浆逐渐分异演化的同源和最终产物,锡成矿流体为中-高温、低盐度.碱性岩浆晚期分异的大量气水热液富锡、富硅、富碱、富含F、Cl、SO42离子及离子团,其氧逸度高、酸度高、温度高,这种热液引起花岗岩体的

  1. Diagenetic Reactions in Reservoir Strata and Geochemical Properties of Pore Fluid and Its Origin in Songlian Basin

    Institute of Scientific and Technical Information of China (English)

    楼章华; 蔡希源; 等

    1998-01-01

    The reservoirs of the SOngliao Basin are composed of typical unstable sandstones,with high percentages of volcanic fragments and feldspar,In the course of sedimentation and burying,a series of physical and chemical reactions took place between minerals and pore water and water-rock reactions and ion exchange caused changes in ion assemblage of pore water,Hydration-hydrolysis,dissolution and the albitization of feldspar made many ions free from their framework and inter into the pore water,and induced the precipitation of a large amount of authigenic minerals such as smectite and chlorite,During the diagenesis of sandstone.diagenetic reactions involved several stages with increasing depth,and so did the precipitation of authigenic minerals and the transformaiton of minerals.The migration of ions is related with the precipitation,transformation and dissolution of authigenic minerals.Thus,to deepen our study on sandstone diagenesis is an important link for the analysis of ion migration in the evolution of pore water ,the origin and evolution of pore water could be tracked in terms of the geochemistry of fluid inclusions in authigenic minerals.And the isotopic composition of the authigenic mineral calcite can provide its genetic information.

  2. Processing of lateritic ores

    Energy Technology Data Exchange (ETDEWEB)

    Collier, D.E.; Ring, R.J. [Environment Division, Australian Nuclear Science and Technology Organisation, Menai, New South Wales (Australia); McGill, J.; Russell, H. [Energy Resources of Australia Ltd., Ranger Mine, Jabiru, Northern Territory (Australia)

    2000-07-01

    Highly weathered or lateritic ores that contain high proportions of fine clay minerals present specific problems when they are processed to extract uranium. Of perhaps the greatest significance is the potential of the fine minerals to adsorb dissolved uranium (preg-robbing) from leach liquors produced by processing laterites or blends of laterite and primary ores. These losses can amount to 25% of the readily soluble uranium. The clay components can also restrict practical slurry densities to relatively low values in order to avoid rheology problems in pumping and agitation. The fine fractions also contribute to relatively poor solid-liquid separation characteristics in settling and/or filtration. Studies at ANSTO have characterised the minerals believed to be responsible for these problems and quantified the effects of the fines in these types of ores. Processing strategies were also examined, including roasting, resin-in-leach and separate leaching of the laterite fines to overcome potential problems. The incorporation of the preferred treatment option into an existing mill circuit is discussed. (author)

  3. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA

    Science.gov (United States)

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.

  4. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James R. [Univ. of California, Santa Barbara, CA (United States); Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  5. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  6. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes

    Science.gov (United States)

    Saunders, James A.; Mathur, Ryan; Kamenov, George D.; Shimizu, Toru; Brueseke, Matthew E.

    2016-01-01

    New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

  7. 滇中小水井金矿床成矿流体地球化学及成因类型探讨%A tentative discussion on ore-forming fluid geochemistry and genetic type of Xiaoshuijing gold deposit in central Yunnan

    Institute of Scientific and Technical Information of China (English)

    周云满; 张长青; 王树琼; 覃修平

    2012-01-01

    The Xiaoshuijing gold deposit occurs in a ductile-brittle shear zone, with the host rocks being fractured breccia and cataclasite made up of sandstone-mudstone and limestone. Studies of sulfur and carbon isotopic data indicate that the sulfur and carbon in the fluids were mainly derived from the mantle or a deep-seated place. Oxygen-hydrogen stable isotopic data imply that the ore-forming fluids mainly came from the meteoric water through infiltration, circulation and derivation of heat energy from the structural and magmatic activity. Fluid inclusions in minerals are mostly liquid-vapor (aqueous two-phase) inclusions, with minor vapor inclusions. The cations of liquid phase of inclusions in quartz are mainly Na+ and K+ , with Na+/K+ ratio being 3.056 ~ 4.940, while the anions are chiefly Cl- and SO2-4 , characterized by Cl- >SO2-4>F- . The vapor-phase components of inclusions in quartz are composed mainly of H2O and CO2, with minor CH4 and CO. The ore-forming fluids belong to the H2O-CO2-NaCl system. The homogenization temperatures of fluid conclusions at the main metallogenetic stage vary from 180℃ to 260℃ . Metallogenic depth is 1. 0 km. Ore fluid density ranges from 0.65 g/cm3 to 0.9 g/cm3 and the salinity w(NaCleq) ranges from 1.74% to 9.08% , averagely 5.33% . The ore deposit belongs to the structure-controlled alteration rock-type gold deposit. The ore deposit was formed in a ductile-brittle shear zone and resulted from a mixture of low salinity, low density, mesothermal and epithermal hydrothermal fluids cycling at the shallow part of the shear zone. The ore deposit is similar to the orogenic gold deposit in geological and geochemical characteristics, its genetic type can therefore be assigned to the epizonal orogenic subtype defined by Groves, and its industrial type can be assigned to the altered cataclastic-rock type. The formation of the Xiaoshuijing gold deposit experienced four stages as follows: ① the formation of ore source bed by original

  8. Evolution of ore forming fluid of Daping gold deposit in Ailaoshan tectonic zone, Southeast Tibet%青藏高原东南缘哀牢山大坪金矿成矿流体演化

    Institute of Scientific and Technical Information of China (English)

    朱路华; 戚学祥; 彭松柏; 李志群

    2011-01-01

    Daping gold deposit is a large quartz-vein gold deposit in Ailaoshan tectonic zone, made of north and south fields. Fluid inclusion homogenization temperatures range from 187t to 329t (average is 2811) in north field, and from 168℃ to 338℃ (average is 264℃) in south field, respectively. Corresponding, the δDV-SMOW values range from -70‰to -81‰ and from -71‰to-86‰, and the 518OH2O values rang from 2. 9‰ to 9. 8‰ and from 3. 5‰ to 5. 1‰, respectively. All samples plotted at the field between magmatic water and underground water in the plots of 5D vs. δ18OH2O, and that for north field are near magmatic water area, and for south field are near underground water area. The sulfur isotopic compositions (834 S) for north and south fields are 0. 7‰ ~ 15. 5‰ and 10. 6‰ ~ 15. 8‰, respectively. The vapour compositions in fluid inclusions are H2O, CO2 and N2, with a little of CH4 , C2H2, C2H4, C2H6 and CO. The ion compositions in fluid inclusions are K+ , Na+ , Ca2+ , Cl- and SO42- , with a little of NO3 - , F- , Br- and Mg2-. ESR dating data for quartz in gold-bearing quartz veins from north and south fields are 27. 2 - 29. 1 Ma and 17.3~22. 1Ma, respectively. All above show, that the ore forming fluids are mixing of postmagmatic solution and underground water, from north to south, deep to shallow fields and from earlier to later stage, the contents of the postmagmatic solution and sulfur are decreasing, and that of the underground water is increasing, and the age of minerallization is youngling, gradually.%大坪金矿是青藏高原东南缘哀牢山构造带中的大型石英脉型金矿床,由北矿区和南矿区组成.北矿区和南矿区的成矿流体包裹体均一温度及其氢、氧、硫同位素、气液相成份的测试结果表明其成矿温度为:187~329℃(平均为281℃)和168~338℃(平均为264℃)、氢同位素组成(δDV-SMOW)为:-70‰~-81‰和-71‰~-86‰、氧同位素组成(δ18OH2o)为:2.9‰~9.8

  9. Coontail fluorite rhythmites of southern Illinois: evidence for episodic basin dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.A.; Kelly, W.C.; Wilkinson, B.H.

    1985-01-01

    Stratiform coontail ore of the Cave-in-Rock fluorite district, southern Illinois, display conspicuous, rhythmic banded textures similar to those reported in many MVT deposits throughout the world (e.g., east Tennessee, USA; Silesian-Cracow Region, Poland; and northern Baffin Island, Canada). Banding is expressed by the rhythmic alteration of two types of layers: detrital layers of fluorite mottled with particulate gangue dolomite and quartz, and layers of clear, crystalline fluorspar. Both are now composed principally of fluorite but differ in color, fabric and outline. In the past, this rhythmic banding has generally been attributed to fine-scale replacement of a primary host rock stratification or to cyclic replacement of host carbonates by a fluid of oscillating chemistry. Detailed megascopic and microscopic studies of these ores and their carbonate host real that ore bands were not derived by fine-scale in situ limestone replacement. Detrital bands contain hydraulically transported, sorted and graded, allochthonous debris derived by dissolution and disaggregation of host limestone and overlying shale. The banded fabric thus represents a cyclic interplay of chemical and hydraulic processes active during hydrothermal ore mineralization. Coontail ore bodies evidently formed in a hydrothermal spelean system, whose laterally sinuous trace reflects localization of hydrothermal activity where feeder faults intersected relatively impermeable roof-rock shales. The banded nature of these ores testifies to the ability of Mississippi Valley-type hydrothermal solutions to both create and fill their own open spaces. Moreover, the rhythmic nature of coontail ores suggests a prolonged and pulsating mineralization best explained by episodic dewatering of the Illinois Basin.

  10. Primary migration and secondary alteration of the Upper Paleozoic gas reservoir in Ordos Basin,China―Application of fluid inclusion gases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The composition of fluid inclusions(FI)often represents the initial geochemical characteristics of palaeo-fluid in reservoir rock.Influence on composition and carbon isotopic composition of gas during primary migration,reservoir-forming and subsequent secondary alterations are discussed through comparing fluid inclusion gas with coal-formed gas and natural gas in present gas reservoirs in the Ordos Basin.The results show that primary migration of gas has significant effect on the molecular but not on the carbon isotopic composition of methane.Migration and diffusion fractionation took place during the secondary migration of gas in Upper Paleozoic gas reservoir according to carbon isotopic composition of methane in FIs.Composition and carbon isotopic composition of natural gas were nearly unchanged after the gas reservoir forming through comparing the FI gases with the natural gas in present gas reservoir.

  11. Paragenetic and minor- and trace-element studies of Mississippi Valley-type ore deposits of the Silesian-Cracow district, Poland

    Science.gov (United States)

    Viets, J.G.; Leach, D.L.; Lichte, F.E.; Hopkins, R.T.; Gent, C.A.; Powell, J.W.

    1996-01-01

    Paragenetic and minor- and trace-element studies were conducted on samples of epigenetic ore and gangue minerals collected from mines and drill core in the Silesian-Cracow (S-C) district of southern Poland. Four discrete mineral suites representing four mineralizing stages can be identified throughout the district. The earliest epigenetic minerals deposited during stage 1 consist of a late dolomite cement together with minor pyrite and marcasite. Stage 2 was the first ore-forming stage and included repetitive deposition of sphalerite and galena in a variety of morphologies. Stage 3 abruptly followed the first ore stage and deposited marcasite and pyrite with variable amounts of late sphalerite and galena. In the samples studied, minerals deposited during stage 3 are predominately marcasite-pyrite with minor sphalerite and galena in the Pomorzany and Olkusz mines, whereas, at the Trzebionka mine, stage 3 mineralization deposited mostly galena and sphalerite with little marcasite or pyrite. Stage 4 minerals include contains barite, followed by calcite, with very minor pyrite and a rare, late granular sphalerite. Compared to other major Mississippi Valley-type (MVT) districts of the world, the Silesian-Cracow district contains sphalerite with the second largest range in Ag concentrations and the largest range in Fe and Cd concentrations of any district. Unlike in other districts, very wide ranges in minor- and trace-element concentrations are also observed in paragenetically equivalent samples collected throughout the district. This wide range indicates that the minor- and trace-element content of the ore-forming environment was highly variable, both spatially and temporally, and suggests that the hydrologic system that the ore fluids traversed from their basinal source was very complex. Throughout the district, a significant increase in Tl, Ge, and As concentrations is accompanied by a lightening of sulfur isotopes between stage 2 and stage 3 minerals. This change

  12. Therm odynamics of Diagenetic Fluid and Fluid/Mineral Reactions in the Eogene Xingouzui Formation,Oil Field T,Jianghan Basin

    Institute of Scientific and Technical Information of China (English)

    倪师军; 罗扬棣; 等

    1994-01-01

    This study focuses on the thermodynamics of diagenetic fluid from the Eogene Xingouzui Forma-tion which represents the most important reservoir in Field Oil T in the Jianghan Basin.The meas-ured homegenizagion temperatures(110-139℃)of fluid inclusions in diagenetic minerals fall within the range of 67-155℃ at the middle diagenetic stage .The pressure of diagenetic fluid is estimated at 10.2-56 Mpa .The activity of ions in the fluid shows a tendency of Ca2+>Mg2+>Na+>K+>Fe3+>Fe2+ for cations, and HCO3->SO22->F->Cl->CO22- for anions. For the gaseous facies, there is a tendency of CO2>CO>H2S>CH4>H2. According to the thermodynamic calculations,the pH and Eh of the fluid are 5.86-6.47 and -0.73-0.64V, respectively. As a result of the interaction between such a diagenetic fluid and minerals in the sedi-ments,feldspars were dissolved or alterated by other minerals. The clay mineral kaolinite was instable and hence was replaced by illite and chloritoid.

  13. Hunting for Iron Ore Bargains

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One of China’s leading steel mills has turned to smaller mines for long-term, lowcost iron ore supplies china’s oldest steel producer is looking to South America to fulfill its iron ore needs in the face of rising prices from

  14. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    Science.gov (United States)

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    as indicated by the geologic evidence, the source rocks probably contained elevated concentrations of Zn and Pb (75-100 ppm), and relatively low concentrations of U and Th (2 and 8 ppm or less, respectively). The Carboniferous coal-bearing molasse rocks of the Upper Silesian Coal Basin are a prime candidate for such a source region. The presence of ammonia and acetate in the fluid inclusions (Viets et al., 1996a) also indicate that the Carboniferous coal-bearing molasse sequence in the Upper Silesian Coal Basin may have been a suitable pathway for the MVT ore fluids. The lead-isotopic homogeneity, when coupled with the sulfur-isotopic heterogeneity of the ores suggests that mixing of a single metal-bearing fluid with waters from separate aquifers containing variable sulfur-isotopic compositions in karsts in the Muschelkalk Formation of Middle Triassic age may have been responsible for the precipitation of the ores of the Silesian-Cracow district.

  15. Source of ore-forming substances and theoretical problems of metallogeny relevant to the Bayan Obo Fe-REE ore deposits in Inner Mongolia,China

    Institute of Scientific and Technical Information of China (English)

    曹荣龙; 朱寿华; 王俊文

    1995-01-01

    The source of rare earth elements (REE) ore-forming substances is identified to be extremelydistinct from that of iron ores.The Bayan Obo Fe-REE ore deposits were generated by a composite processof both crustal and mantle source mineralization.The original iron bodies are of a sedimentary deposit fromsupergenesis,while the REE ores have been formed by mantle fluid metasomatism superimposed upon thepre-existing iron bodies.It is believed that the REE ore deposit would be controlled by intracontinental hotspot.The H8 dolomite in mine regions belongs to normal sedimentary carbonate rock,its C and O isotopiccomposition rules out the possibility comparable with magrnatic carbonatite.The Sm-Nd isochrons of separatedREE minerals have shown two REE peak mineralization periods:early-middle Proterozoic (1 700 Ma±480 Ma) andCaledonia (424-402 Ma).

  16. “盆”“山”耦合在异常高压盆地流体研究中的应用%Application of basin-orogeny coupling in study of abnormally high pressured basin fluids

    Institute of Scientific and Technical Information of China (English)

    吴根耀; 梁江平; 杨建国; 朱德丰; 陈均亮; 申家年

    2012-01-01

    这是以“盆”“山”耦合理论指导盆地异常高压研究的首次尝试.异常高压的成因和分布特征主要取决于区域构造应力场,在挤压型盆地中形成异常高压的主控因素是挤压应力和天然气(油气)充注,异常高压呈平行造山带的(宽)带状或连续的面状分布;拉张型盆地和剪切—拉分盆地的主控因素是热作用.异常高压在拉张型盆地中为散点状或被分隔的面状分布,在剪切型盆地中呈点状或散点状分布.不同类型的盆地内断裂的产状不同,决定了异常高压有不同的传导方向,挤压—反转时异常高压的保存或释放(泄压)也各具特点.这为“盆”“山”耦合从指导盆地动态演化的研究发展引伸为指导储层和流体动态演化的研究跨出了重要的一步.%The basin-orogeny coupling theory was applied to study the abnormally high pressure in basin for the first time in this paper. The formation and distribution of abnormally high pressure were controlled by regional stress fields. In compressed basins, the key contributing factors for abnormally high pressure were compressive stress and charging of natural gas (or oil-gas), where the abnormally high pressure distributed zonaly or planar-ly. In extended and pull-apart basins, the abnormally high pressure was mainly resulted from thermal activities. In extended basins, the abnormally high pressure distributed in the shape of scattered points or restricted planes, and it distributed pointedly or in the shape of scattered points in sheared basins. The reverse, normal and strike -slip faults had different occurrences, which decided the oblique or vertical conductions of abnormally high pressure. There were different ways for pressure reservation or releasing in compression or reversion. From the dynamic evolution of basin to the dynamic evolution of reservoir and fluid, it was an important step for the application of basin-orogeny coupling theory.

  17. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    Science.gov (United States)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-03-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  18. Green line fracturing systems fluids in Campos Basin, Brazil; Sistemas de fluidos de fraturamento na Bacia de Campos: evolucao em beneficio do meio ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Alexandre B. de; Araujo, Cosme J.C. de; Martinho, Flavio M.; Gaspar, Fernando [BJ Services do Brasil, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The constant demand for Services Companies in Oil and Gas Industry to reduce the environmental impacts has led to a race in search of new cleaner technologies. Fluids with low toxicity are the target of research and development by the companies which are committed to ensure the aspects of quality, health, safety and environment from manufacturing up to the use in the final destination of these products. The replacement of these fluids is happening at a larger speed than in the past on the based in two factors: greater awareness on the part of these companies in relation to the environmental and by new environmental laws. The fluids systems used in fracturing operations are not an exception to this rule. Service companies today are in the process of replacing their formulations with systems less aggressive to the environment so-called 'green' systems. In this context the new technological developments of fracturing fluids are of fundamental importance to assist the new environmental requirements of both operators and government regulatory bodies and also to ensure better effectiveness of these products. This paper reports the research, development and application of new environmentally acceptable fracturing fluids technology, reviews the pioneering case histories in offshore operations and the benefits experienced in the Campos Basin - Brazil. (author)

  19. Preliminary report on fluid inclusions from halites in the Castile and lower Salado formations of the Delaware Basin, southeastern New Mexico. [Freezing-point depression

    Energy Technology Data Exchange (ETDEWEB)

    Stein, C.L.

    1985-09-01

    A suite of samples composed primarily of halite from the upper Castile and lower Salado Formations of the Permian Basin was selected from Waste Isolation Pilot Plant (WIPP) core for a reconnaissance study of fluid inclusions. Volume percent of these trapped fluids averaged 0.7% to 1%. Freezing-point depressions varied widely and appeared to be unrelated to fluid-inclusion type, to sedimentary facies, or to stratigraphic depth. However, because very low freezing points were usually associated with anhydrite, a relation may exist between freezing-point data and lithology. Dissolved sulfate values were constant through the Castile, then decreased markedly with lesser depth in the lower Salado. This trend correlates very well with observed mineralogy and is consistent with an interpretation of the occurrence of secondary polyhalite as a result of gypsum or anhydrite alteration with simultaneous consumption of dissolved sulfate from the coexisting fluids. Together with the abundance and distribution of fluid inclusions in primary or ''hopper'' crystal structures, this evidence suggests that inclusions seen in these halites did not migrate any significant geographical distance since their formation. 28 refs., 17 figs., 2 tabs.

  20. Formation conditions of high-grade gold-silver ore of epithermal Tikhoe deposit, Russian Northeast

    Science.gov (United States)

    Volkov, A. V.; Kolova, E. E.; Savva, N. E.; Sidorov, A. A.; Prokof'ev, V. Yu.; Ali, A. A.

    2016-09-01

    The Tikhoe epithermal deposit is located in the Okhotsk-Chukotka volcanic belt (OChVB) 250 km northeast of Magadan. Like other deposits belonging to the Ivan'insky volcanic-plutonic depression (VTD), the Tikhoe deposit is characterized by high-grade Au-Ag ore with an average Au grade of 23.13 gpt Au and Au/Ag ratio varying from 1: 1 to 1: 10. The detailed explored Tikhoe-1 orebody is accompanied by a thick (20 m) aureole of argillic alteration. Pyrite is predominant among ore minerals; galena, arsenopyrite, sphalerite, Ag sulfosalts, fahlore, electrum, and küstelite are less abundant. The ore is characterized by abundant Sebearing minerals. Cu-As geochemical specialization is noted for silver minerals. Elevated Se and Fe molar fractions of the main ore minerals are caused by their formation in the near-surface argillic alteration zone. The veins and veinlets of the Tikhoe-1 ore zone formed stepwise at a temperature of 230 to 105°C from Nachloride solution enriched in Mg and Ca cations with increasing salinity. The parameters of the ore-forming fluid correspond to those of epithermal low-sulfidation deposits and assume the formation of high-grade ore under a screening unit of volcanic rocks. In general, the composition of the ore-forming fluid fits the mineralogy and geochemistry of ore at this deposit. The similarity of the ore composition and parameters of the ore-forming fluid between the Tikhoe and Julietta deposits is noteworthy. Meanwhile, differences are mainly related to the lower temperature and fluid salinity at the Julietta deposit with respect to the Tikhoe deposit. The fluid at the Julietta deposit is depleted in most components compared with that at the Tikhoe deposit except for Sb, Cd, and Ag. The results testify to a different erosion level at the deposits as derivatives of the same ore-forming system. The large scale of the latter allows us to predict the discovery of new high-grade objects, including hidden mineralization, which is not exposed at

  1. Episodic fluid movements in superimposed basin:Combined evidence from outcrop and fluid inclusions of the Majiang ancient oil reservoir,Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Combined evidence from the outcrop and the fluid inclusion assemblage (FIA) analysis indicates that there exist two episodes of fluid flow controlled by the tectonic activity. The first episode was recorded mainly in the reservoir rock of the Honghuayuan Formation,representing the fluid flow of hydrocarbon charging. The second episode occurred mainly along the fault systems,representing the fluid move-ment when the ancient oil reservoir was destroyed. The host mineral morphology,homogeneous tem-perature,and salinity of the FIAs record an episodic fluid movement. Characters of high homogenous temperature,low salinity and a quick temperature variation of the first episode fluid flow may indicate an early-stage fluid eruption,and correspondingly,fine-grained calcite was formed. Temperature of the erupted fluid tended to decrease during its mixing with the upper formation fluid and finally had the same temperature as the upper formation. From then on,the temperature was rather steady and fa-vored the growth of the coarse calcite. Due to this character of the temperature variation of the episodic fluid flow,we can use the homogenous temperature of the FIA of the coarse calcite to date the forma-tion and the destruction time of the Majiang ancient oil reservoir. Episodic fluid flow was known for its inhomogeneous trapping,which resulted in the failure of dating according to the burial history. But taking a close look at its temperature variation,we think that the latest stage of fluid flow,characterized by steady state temperature and grow of the coarser crystals,can be used for dating. It will be of great value if this method is proved to be effective. The formation and the destruction time of the Majiang ancient oil reservoir were dated to be in the Indosinian Period and the late Yanshan-early Hymalayan Period respectively. This conclusion is in great discrepancy with the common accepted idea that the Majiang ancient oil reservoir was formed and destroyed during the

  2. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    Science.gov (United States)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the

  3. Evidence for metasomatic mantle carbonatitic magma extrusion in Mesoproterozoic ore-hosting dolomite rocks in the middle Kunyang rift, central Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Kunyang rift lying on the western margin of the Yangtze platform is a rare Precambrian Fe-Cu mineralization zone. Wuding- Lufeng basin that is an important part of the zone is located on the west edge in the middle of the rift. The most important ore-hosting rocks are Mesoproterozoic dolomite rocks in the basin controlled by a ring fracture system, which is a fundamental structure of the basin. Plenty of silicate minerals and acicular apatite, feldspar phenocrysts and small vesicular, flown line and flown plane structures, melt inclusion and high temperature fluid inclusion found in most ore-hosting dolomites suggest that this kind of rocks could not be sedimentary dolomite, marble or hydrothermal carbonate rocks. The Zr/Hf and Nb/Ta values of the rocks are identical with those of associated mantle-derived rocks, and vary widely. For the monomineral dolomite, δ18OSMOW‰=+5.99 to +18.4 and δ13CPDB‰=-3.01to+0.94, which fall within the range for all carbonatitic volcanic rocks of the world. As for the accessory minerals, the values of δ18OSMOW‰ of magnetite (=+3.47 to +5.99%0) are close to that of the mantle (<5.7%), and the δ34S‰ values of sulfides (-5.09 to+5.78, averaging+1.50) are close to that of meteorite. For all the ore-bearing dolomite rocks, εNd = +0.19 to +2.27, and the calculated Isr = 0.699143, while for the associated mantle-derived rocks, εNd = +3.18 to +3.72. All the data suggest that the mineral assemblage is not only igneous but also of metasomatic mantle origin. And the presence of acicular apatite indicates that the rocks were formed by magma rapidly cooling. And the phenocryst texture and vesicular, flown and ropy and pyroclastic structures suggest that the igneous rocks were extrusive. Therefore, the ore-bearing dolomite rocks are carbonatitic volcanic rocks. This conclusion implies that most iron and copper ore deposits hosted in the dolomite rocks should be of the carbonatitc type.

  4. Easily altered minerals and reequilibrated fluid inclusions provide extensive records of fluid and thermal history: gypsum pseudomorphs of the Tera Group, Tithonian-Berriasian, Cameros Basin

    Science.gov (United States)

    González-Acebrón, Laura; Goldstein, Robert; Mas, Ramon; Arribas, Jose

    2012-06-01

    This study reports a complex fluid and thermal history using petrography, electron microprobe, isotopic analysis and fluid inclusions in replacement minerals within gypsum pseudomorphs in Tithonian-Berriasian lacustrine deposits in Northern Spain. Limestones and dolostones, formed in the alkaline lakes, contain lenticularly shaped gypsum pseudomorphs, considered to form in an evaporative lake. The gypsum was replaced by quartz and non-ferroan calcite (Ca-2), which partially replaces the quartz. Quartz contains solid inclusions of a preexisting non-ferroan calcite (Ca-1), anhydrite and celestine. High homogenization temperatures (T h) values and inconsistent thermometric behaviour within secondary fluid inclusion assemblages in quartz (147-351°C) and calcite (108-352°C) indicate high temperatures after precipitation and entrapment of lower temperature FIAs. Th are in the same range as other reequilibrated fluid inclusions from quartz veins in the same area that are related to Cretaceous hydrothermalism. Gypsum was replaced by anhydrite, likely during early burial. Later, anhydrite was partially replaced by Ca-1 associated with intermediate burial temperatures. Afterward, both anhydrite and Ca-1 were partially replaced by quartz and this by Ca-2. All were affected during higher temperature hydrothermalism and a CO2-H2O fluid. Progressive heating and hydrothermal pulses, involving a CO2-H2O fluid, produce the reequilibration of the FIAs, which was followed by uplift and cooling.

  5. Computational fluid dynamics modelling of flow and particulate contaminants sedimentation in an urban stormwater detention and settling basin.

    Science.gov (United States)

    Yan, Hexiang; Lipeme Kouyi, Gislain; Gonzalez-Merchan, Carolina; Becouze-Lareure, Céline; Sebastian, Christel; Barraud, Sylvie; Bertrand-Krajewski, Jean-Luc

    2014-04-01

    Sedimentation is a common but complex phenomenon in the urban drainage system. The settling mechanisms involved in detention basins are still not well understood. The lack of knowledge on sediment transport and settling processes in actual detention basins is still an obstacle to the optimization of the design and the management of the stormwater detention basins. In order to well understand the sedimentation processes, in this paper, a new boundary condition as an attempt to represent the sedimentation processes based on particle tracking approach is presented. The proposed boundary condition is based on the assumption that the flow turbulent kinetic energy near the bottom plays an important role on the sedimentation processes. The simulated results show that the proposed boundary condition appears as a potential capability to identify the preferential sediment zones and to predict the trapping efficiency of the basin during storm events.

  6. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    Energy Technology Data Exchange (ETDEWEB)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  7. Understanding CO2 Plume Behavior and Basin-Scale Pressure Changes during Sequestration Projects through the use of Reservoir Fluid Modeling

    Science.gov (United States)

    Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.

    2009-01-01

    Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and

  8. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  9. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  10. An investigation of Water-gas interface migration of the upper Paleozoic gas pool of the Ordos Basin using reservoir fluid inclusion information

    Institute of Scientific and Technical Information of China (English)

    MI Jingkui; XIAO Xianming; LIU Dehan; LI Xianqing; SHEN Jiagui

    2004-01-01

    There is a particular characteristic in the for-mation of the Upper Paleozoic gas pool in the Ordos Basin that is its water-gas interface migrated regional during geological history.However,there has been lack of detailed research on this paper,the formation time of hte fluid inclusions formed in the water-gas transition zone of the gas pool was deduced using their trapping temperatures and combining of the burial with geothermal history of the basin.On the basis of this,the isochrone of water-gas interface migration for the gas pool was mapped .The result shows that the gas pool began to form around the yanan Area at about 165Ma,and then developed and enlarged toward the north direction.The gas pool finally formed at about 129 Ma.Since the basin uplifted from the late Cretaceous and gas supply decreased,the water-gas interface of the gas pool migratec back to the present position.

  11. SOURCES OF ORE-FORMING METALS AND FLUIDS,AND MECHANISM OF MINERALIZATION,MAOZU LARGE CARBONARE-HOSTED LEAD-ZNIC DEPOSIT,NORTHEAST YUNNAN PROVINCE%滇东北茂租大型铅锌矿床成矿物质来源及成矿机制

    Institute of Scientific and Technical Information of China (English)

    周家喜; 黄智龙; 高建国; 王涛

    2012-01-01

    analyzed in this paper. It was showed that δ13CPDB and Δ18OSMOW values of hydrothermal calcites varied in a narrow range of -3. 73%0 to -1. 95%o and +13. 80%o to +14. 95%0, respectively. All the samples are plotted into the field between the marine carbonate and mantle in the diagram of δ13CPDB vs δ18 OsMow,and show a weak negative correlation,implicating that the CO2 in the ore-forming fluids were mainly produced by dissolution of marine carbonate,and contributed by organic and mantle CO2. Δ34SCOT values of sulfides separates range from +13. 35%o to +15. 37%o. It shows that the reduced sulfur in the ore-forming fluids is the production of thermo-chemical sulfate reduction, and added by thermal degradation of sulfur-bearing organic matter. 206Pb/204Pb, 207Pb/204Pb and 208pb/204pb ratios of sujfide separates have a narrow range of 18. 129 to 18. 375,15. 644 to 15. 686 和38. 220 to 38. 577,respectively,which lies in the region between Upper Crust and orogenic Pb area,and plots into the field of basement rocks (Kunyang and Huili Groups) (indicating that the crust source features of ore-forming metals mainly supplied by basement rocks. All the geological and geochemical information show that the source of ore-forming metals and fluids of the Maozu Pb-Zn deposit is mixed product and the mechanism of mineralization could be explained by "fluids mixing" model.

  12. Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian, Western Canada Sedimentary Basin

    Energy Technology Data Exchange (ETDEWEB)

    Machel, H.G. [Alberta Univ., Edmonton, AB (Canada); Mountjoy, E.M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Amthor, J.E. [Shell Internationale Research Maatschappij NV, The Hague (Netherlands)

    1996-09-01

    Flow mechanisms that resulted in regionally pervasive, replacive dolomitization of the Upper Devonian carbonates in the Western Canada Sedimentary Basin (WCSB), were discussed. In critiquing the hydrogeological model proposed by Shields and Brady (1995), these interveners noted three major problems: (1) brine recharge area not isotropic or homogeneous, (2) hydrogeologic model does not match the conceptual geological model, (3) the aspect ratio of the hydrogeologic model is inconsistent with other explanations of brine reflux flushing. While these authors agree that seepage reflux of evaporite brines account for some of the dolomites in the basin, they believe that available geological, petrographic, paragenetic, and geochemical evidence invalidate regional brine reflux as the mechanism of basin-wide pervasive dolomitization, as proposed by Shields and Brady. (A response to this critique from Shields and Brady is presented on pages 572-573 of this issue of the Bulletin). 27 refs., 1 fig.

  13. Abnormal organic-matter maturation in the Yinggehai Basin, South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems

    Science.gov (United States)

    Hao, F.; Li, S.; Dong, W.; Hu, Z.; Huang, B.

    1998-01-01

    Three superimposed pressure systems are present in the Yinggehai Basin, South China Sea. A number of commercial, thermogenic gas accumulations have been found in an area in which shale diapirs occur. Because the reservoir intervals are shallow and very young, they must have filled with gas rapidly. The thick (up to 17 km) Tertiary and Quaternary sedimentary succession is dominated by shales, and is not disrupted by major faulting in the study area, a factor which seems to have had an important effect on both hydrocarbon generation and fluid migration. Organic-matter maturation in the deepest, most overpressured compartment has been significantly retarded as a result of the combined effects of excess pressure, the presence of large volumes of water, and the retention of generated hydrocarbons. This retardation is indicated by both kerogen-related parameters (vitrinite reflectance and Rock-Eval T(max)); and also by parameters based on the analysis of soluble organic matter (such as the C15+ hydrocarbon content, and the concentration of isoprenoid hydrocarbons relative to adjacent normal alkanes). In contrast to this, organic-matter maturation in shallow, normally-pressured strata in the diapiric area has been enhanced by hydrothermal fluid flow, which is clearly not topography-driven in origin. As a result, the hydrocarbon generation 'window' in the basin is considerably wider than could be expected from traditional geochemical modelling. These two unusual and contrasting anomalies in organic-matter maturation, together with other lines of evidence, suggest that there was a closed fluid system in the overpressured compartment until shale diapirs developed. The diapirs developed as a result of the intense overpressuring, and their growth was triggered by regional extensional stresses. They served as conduits through which fluids (both water and hydrocarbons) retained in the closed system could rapidly migrate. Fluid migration led to the modification of the thermal

  14. Strontium isotope geochemistry of the Lemachang independent silver ore deposit, northeastern Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sr isotope geochemical studies (the 87Sr/86Sr and ?18O-87Sr/86Sr systems) on the wall rocks and ores from the Lemachang independent Ag deposit in northeastern Yunnan provide strong evidence that the ore-forming fluids had flown through radiogenetically Sr-enriched rocks or strata prior to their entry into the locus of ore precipitation, and water-rock interaction is the main mechanism of Ag ore precipitation. The radiogenetically Sr-enriched source region may be the Proterozoic basement (the Kunyang and Hekou groups). Moreover, the theoretical modeling of the Sr isotopic system indicates that the ore-forming fluids contain as much as 3×10?6 Sr with isotopic composition of Sr being 0.750 and that of oxygen 7.0‰. The ore-forming temperatures were estimated at 150-250℃ for the carbonate rock-type ores and at 200-260℃ for the clastic rock-type.

  15. Strontium isotope geochemistry of the Lemachang independent silver ore deposit, northeastern Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    邓海琳; 李朝阳; 涂光炽; 周云满; 王崇武

    2000-01-01

    Sr isotope geochemical studies (the 87Sr/86Sr and δ18O-87Sr/86Sr systems) on the wall rocks and ores from the Lemachang independent Ag deposit in northeastern Yunnan provide strong evidence that the ore-forming fluids had flown through radiogenetically Sr-enriched rocks or strata prior to their entry into the locus of ore precipitation, and water-rock interaction is the main mechanism of Ag ore precipitation. The radiogenetically Sr-enriched source region may be the Proterozoic basement (the Kunyang and Hekou groups). Moreover, the theoretical modeling of the Sr isotopic system indicates that the ore-forming fluids contain as much as 3×10-6 Sr with isotopic composition of Sr being 0.750 and that of oxygen 7.0‰. The ore-forming temperatures were estimated at 150-250℃ for the carbonate rock-type ores and at 200-260℃ for the clastic rock-type.

  16. TWO-DIMENSIONAL AXISYMMETRIC MODELING OF COMBUSTION IN AN IRON ORE SINTERING BED

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Davazdah Emami, Mohsen; Panjehpour, Masoud;

    2013-01-01

    A twodimensional model, based on conservation of mass, momentum and energy equations, is represented in this paper in which the coke combustion process, for iron ore sintering in a packed bed, is simulated numerically. The aforementioned packed bed consists of iron ore, coke, limestone and moisture...... of species are solved numerically by using a computational fluid dynamics code in a discrete solving domain. Modeling of iron ore sintering has complex and various features like coke combustion, complicated physical changes of solid phase particles and different modes of heat transfer, for example convection...

  17. Transport network and flow mechanism of shallow ore-bearing magma in Tongling ore cluster area

    Institute of Scientific and Technical Information of China (English)

    DENG; Jun; WANG; Qingfei; HUANG; Dinghua

    2006-01-01

    Abundant studies revealed that shallow intrusions of the Yanshanian epoch resulted in the mass mineralization of the Tongling region. Various evidences showed there existed a concealed magma chamber at -10 km depth in the middle part of this region during Yanshanian epoch, from which the ore-forming magma was generated and then transported to the superficial layer. Yet the transport network and flow mechanism of the shallow ore-bearing magma, the key problem associ- ated with ore-forming process, was relatively little focused on. Integrate analysis of structural me- chanics, statistical fractal and geological facts suggested that NE trending high-angle fold-related thrust faults and the tessellated basement ones served as the main pathways for the shallow magma's transporting, moreover, the saddle void spaces among adjacent strata in the folds upon this fault system provided the place for magma's emplacement. So the folds in the upper part and faults in the lower part of the upper crust constituted the fluid's transport and emplacement network. During the deformation of geologic body with multi-layer structure, the layers in the upper part tended to fold when received the jacking stress from the lower part, while the lower one inclined to fault undergoing loads of the upper part. And the producing probability of this structure assemblage was highly increased in the condition, such as in the Tongling area, that the mechanic rigidity of the lower layers was stronger than that of the upper ones. For the pre-existence of fluid-conducting network, the top magma with high volatile in the magma chamber transported rapidly to the superficial layer in dyking pattern, located in the void spaces of folds, filled and reconstructed them. The sudden drop of pressure caused the fluid unmixing from the magma and mass ore-forming elements concentration. Pulse activity of the dyking may be the principal reason why magmatic bodies in the Tongling area were spatially

  18. METHODS FOR PALEO-FLUID PRESSURE BUILD-UP IN BASINS%盆地中古流体压力的恢复方法

    Institute of Scientific and Technical Information of China (English)

    王爱国

    2011-01-01

    为了优化古流体压力恢复的技术途径,结合国内外的研究进展对盆地中古流体压力的恢复方法进行了梳理、分析和讨论.恢复方法主要包括泥岩声波时差法、盆地模拟法和流体包裹体法.泥岩声波时差法廉价、快速,但只能恢复最大埋深时的古流体压力,而不适于欠压实以外其他异常压力形成机制;盆地模拟方法可恢复压力的演化史,但其地质模型复杂、参数繁多且不确定性较强,结果的准确度较低;流体包裹体法不必考虑复杂的地质历史和压力形成机制,但目前在绝多数情况下获得的是均一压力或最小捕获压力.进一步研究盐水包裹体的等容线,可提高古流体压力的准确度.每种恢复方法都有其优缺点,对其局限性进行了重点讨论,并指出了发展方向.%In order to optimize the technical methods of paleo-fluid pressure build-up, the methods for paleo-fluid build-up in basins are sorted out, compared, analyzed and discussed based on the research progresses at home and abroad. The build-up methods mainly include mudstone acoustic travel time method, basin modeling method and fluid inclusion method. Mudstone acoustic travel time method is cheap and rapid. However, it can only recover the paleo-fluid pressure at the maximum burial depth, and it is not suitable for other abnormal pressure formation mechanism except for uncompaction. Basin modeling method can recover the evolutionary history. But in this method, its geological model is complex and has many parameters, moreover many of which have relatively high uncertainty, therefore the accuracy of result obtained by this method is relatively low. Fluid inclusion method can get paleo-fluid pressure without considering the complex geologic history and pressure formation mechanism. However, in most cases ,this method can only obtain homogeneous pressure or minimum trapping pressure at present. The further study on isometric line of saline

  19. Novel Binders and Methods for Agglomeration of Ore

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore

  20. Uranium mill ore dust characterization

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  1. Venting of carbon dioxide-rich fluid and hydrate formation in mid-okinawa trough backarc basin.

    Science.gov (United States)

    Sakai, H; Gamo, T; Kim, E S; Tsutsumi, M; Tanaka, T; Ishibashi, J; Wakita, H; Yamano, M; Oomori, T

    1990-06-01

    Carbon dioxide-rich fluid bubbles, containing approximately 86 percent CO(2), 3 percent H(2)S, and 11 percent residual gas (CH(4) + H(2)), were observed to emerge from the sea floor at 1335- to 1550-m depth in the JADE hydrothermal field, mid-Okinawa Trough. Upon contact with seawater at 3.8 degrees C, gas hydrate immediately formed on the surface of the bubbles and these hydrates coalesced to form pipes standing on the sediments. Chemical composition and carbon, sulfur, and helium isotopic ratios indicate that the CO(2)-rich fluid was derived from the same magmatic source as dissolved gases in 320 degrees C hydrothermal solution emitted from a nearby black smoker chimney. The CO(2)-rich fluid phase may be separated by subsurface boiling of hydrothermal solutions or by leaching of CO(2)-rich fluid inclusion during posteruption interaction between pore water and volcanogenic sediments.

  2. Fluids in distal Zn-Pb-Ag skarns: Evidence from El Mochito, Honduras

    Science.gov (United States)

    Samson, I. M.; Williams-Jones, A. E.; Ault, K.; Gagnon, J. E.; Fryer, B. J.

    2009-05-01

    Zn-Pb-Ag mantos, chimneys, and skarns represent a spectrum of carbonate-hosted sulfide mineral deposits that have been collectively termed carbonate replacement deposits. Most such deposits cannot be related to plutons and, particularly for distal skarns, the role of magmatic versus other fluids (basinal brines and meteoric waters) has been uncertain. The El Mochito Zn-Pb-Ag deposit, Honduras, is an example of a large distal skarn, and comprises mantos and chimneys hosted mainly by limestones of the Early Cretaceous Tepemechin Formation. Previous isotopic studies indicate a magmatic source for the S and Pb and involvement of both magmatic and meteoric fluids in ore formation. The ore is hosted by garnet, magnetite, and pyroxene skarns, which developed sequentially from grandite- to andradite- to magnetite- and hedenbergite- rich skarns. Sphalerite and argentiferous galena occur interstitially to, or replace, the skarn minerals, with Fe- poor sphalerite (S1) principally associated with garnet skarn and Fe-rich (S2) sphalerite associated with pyroxene. Data from primary fluid inclusions show that the salinity of the mineralizing fluids decreased from ˜10-18 wt. % during the formation of garnet skarn and S1 sphalerite to ˜2-13 wt. % during pyroxene skarn formation and S2 sphalerite precipitation. Early, high-salinity fluids (˜33 wt. %) are represented by rare halite-saturated inclusions in garnet. Temperature increased from ˜ 365°C to ˜ 365°C from garnet/S1 sphalerite to pyroxene/S2 sphalerite, assuming a pressure of 500 bars. GC analyses indicate that the total concentrations of COv(2), CH4, and N2 were < 1 mole %. LA-ICPMS analyses were conducted mainly on inclusions in grandite and S1 sphalerite. The principal dissolved elements in the inclusions are Ca and Na, followed by K and Mn. The ore metals, Zn, Pb, and Ag, are present in high concentrations, with median values of 6000, 900, and 50 ppm, respectively. Element concentrations in fluid inclusions hosted

  3. Simulation of fluid-rock interactions in a geothermal basin. Final report. [QUAGMR (quasi-active geothermal reservoir)

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Blake, T.R.; Brownell, D.H. Jr.; Nayfeh, A.H.; Pritchett, J.W.

    1975-09-01

    General balance laws and constitutive relations are developed for convective hydrothermal geothermal reservoirs. A fully interacting rock-fluid system is considered; typical rock-fluid interactions involve momentum and energy transfer and the dependence of rock porosity and permeability upon the fluid and rock stresses. The mathematical model also includes multiphase (water/steam) effects. A simple analytical model is employed to study heat transfer into/or from a fluid moving in a porous medium. Numerical results show that for fluid velocities typical of geothermal systems (Reynolds number much less than 10), the fluid and the solid may be assumed to be in local thermal equilibrium. Mathematical formalism of Anderson and Jackson is utilized to derive a continuum species transport equation for flow in porous media; this method allows one to delineate, in a rigorous manner, the convective and diffusive mechanisms in the continuum representation of species transport. An existing computer program (QUAGMR) is applied to study upwelling of hot water from depth along a fault; the numerical results can be used to explain local temperature inversions occasionally observed in bore hole measurements.

  4. Characteristics of the ore-forming fluid of typical gold deposits in Xiaoshan area of Henan and their enlightenment to further prospecting works%河南省崤山地区典型金矿床的成矿流体特征及其对进一步找矿工作的启示

    Institute of Scientific and Technical Information of China (English)

    徐文超; 王通; 常云真; 周奇明; 贾慧敏; 赵留升

    2016-01-01

    Xiaoshan area is located inside the middle-west part of Xiaoqinling-Xiaoshan-Xiong’ershan-Waifang-shan Au-Ag-Mo polymetallic metallogenic belt in western Henan.However,the measured reserves of gold ores is far less than that of Xiaoqinling area and eastern Xiong’ershan area.Therefore,the prospecting po-tential in Xiaoshan area attracts great attention of related industrial sectors.Combined with previous work, this paper put forth the theory that the gold ores in the area were predominated by fracture zone alteration rock type and quartz vein type.According to the analysis of typical deposits,the paper concluded that the mineralization of gold ores could be divided into four stages from early to late:(1)quartz-pyrite (arsenopy-rite)stage,(2)pyrite-quartz stage,(3)quartz-polymetallic sulfide stage,and (4)quartz-carbonate stage. Among the four stages,stage (2)and (3)are the main stages of mineralization.The author conducted analy-sis on the content,homogenization temperature and S-H-O-Pb isotope composition of the fluid inclusions in the quartz crystals in each ore-forming stage.It indicates that the fluid was CO 2-rich aqueous fluid with nu-merous dissolved Na+ and Ca2 + ions.The homogenization temperature of fluid inclusions ranges from 243℃to 285℃,and it suggests that the gold deposits in Xiaoshan area are mainly intermediate temperate hydro-thermal deposits being short of fluid inclusions of high temperature stage.The δ34 S value of metal sulfide ranges from -0.5‰ to 5.4‰ and it shows the characteristics of deep source sulfur.And its δ1 8 O H2 O value ranges from 0.1‰ to 9.4‰ and δ1 8 D value ranges from - 134.9‰ to 24.3‰,and it shows that the ore-forming fluid occurs mainly as magmatic water with lesser atmospheric precipitation and metamorphic water. Based on the comparison between outcrop area of granitic intrusive rocks in Xiaoshan area and that in Xiao-qinling area,it appears that the unsatisfactory prospecting results in Xiaoshan area

  5. Tectonic ore-controlling in the middle southern segment of Da Hinggan Ling, Northeast China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies on geotectonic evolution, regionally geological characteristics and ore-forming and ore-controlling structures have shown that since the Mesozoic the Da Hinggan Ling region has entered the typical intercontinental orogenic stage, which appears to be closely related to mantle plume activities. Da Hinggan Ling is a typical mantle branch structure and possesses obvious magmatic-metamorphic complexes in the core, detachment slip beds in the periphery and overlapped fault depression basins. Moreover, all these are the principal factors leading to ore formation and ore controlling in the region. This paper also further explores the mechanism of mineralization in the middle-southern segment of Da Hinggan Ling,summaries the rules of mineralization, puts forward the models of mineralization and points out the oresearch orientations in the future time.

  6. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    Science.gov (United States)

    Harlov, D. E.

    2015-12-01

    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na

  7. Geochemical characteristics of the fluid inclusions in the Gangxi Fault Belt, Huanghua Depression, Bohai Bay Basin, China

    Institute of Scientific and Technical Information of China (English)

    DING Wei-wei; DAI Jin-xing; CHU Feng-you; HAN Xi-qiu

    2007-01-01

    We studied the geochemical characteristics of the fluid inclusions in the Ordovician carbonates and the Oligocene Shahejie Formation sandstones from 15 wells in the Gangxi Fault Belt, Huanghua Depression. The fluid inclusions are all secondary with gas/liquid ratio of 5%~10%. Base on Raman they are mainly composed of H2O, CO2 and CH4. The homogenization temperatures, combined with burial and geothermal history of the host rock, indicate that the fluid flows in the Shahejie Formation and the Ordovician carbonates were trapped in Neocene. Using a VG5400 mass spectrometer, the helium isotopic compositions were analyzed. Interpretation of results suggested a significant amount of mantle-derived helium mainly accumulating in the intersections of the NWW trending Xuzhuangzi and NE trending Gangxi faults. The maturity of hydrocarbon decreases from the intersection to the outside pointing out that the fluid related to the NWW trending Xuzhuangzi and NE trending Gangxi faults.These factors implied the fluid inclusions have a close relationship to the local tectonic setting. Gangxi Fault Belt experienced intensive Neo-tectonic activities in Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its tectonic status of extensional stress field. Mantle uplift caused the movement of magma that carried mantle-derived gases and deep heat flows, the deep-rooted tension faults provided the passages for the gases and heat flows to shallow crust levels.

  8. The distribution and evolution of fluid pressure and its influence on natural gas accumulation in the Upper Paleozoic of Shenmu-Yulin area, Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of measuring the pressure distribution and analyzing its origin in the Carboniferous and Permian of Shenmu-Yulin area, the evolution history of ancient pressure is restored mainly by means of the basin numerical simulation technique, in which the paleo-pressure has been constrained by the compaction restoration and the examination of fluid inclusion temperature and pressure. Then the development and evolution history of abnormal pressure and its effect on gas migration and accumulation are investigated. Studies show that the pressure in southeastern and northwestern parts of studied area is near to hydrostatic pressure, whereas in the remainder vast area the pressure is lower than the hydrostatic pressure, which is caused by difficulty to measure pressure accurately in tight reservoir bed, the calculating error caused by in-coordinate between topography relief and surface of water potential, pressure lessening due to formation arising and erosion. There are geological factors beneficial to forming abnormal high pressure in the Upper Palaeozoic. On the distraction of measured pressure, paleo-pressure data from compaction restoration and fluid inclusion temperature and pressure exa- mining, the evolution history of ancient pressure is restored by the basin numerical simulation technique. It is pointed out that there are at least two high peaks of overpressure in which the highest value of excess pressure could be 5 to 25 MPa. Major gas accumulated in main producing bed of Shanxi Fm (P1s) and lower Shihezi Fm (P2x), because of two-fold control from capillary barrier and overpressure seal in upper Shihezi Fm (P2s). In the middle and southern districts, the two periods of Later Jurassic to the middle of Early Cretaceous, and middle of Later Cretaceous to Palaeocene are main periods of gas migration and accumulation, while they belong to readjustment period of gas reservoirs after middle of Neocene.

  9. Microthermometric measurement of fluid inclusions and its constraints on genesis of PGE-polymetallic deposits in Lower Cambrian black rock series, southern China

    Institute of Scientific and Technical Information of China (English)

    WANG Min; SUN Xiaoming; MA Mingyang

    2005-01-01

    Systematic microthermometric measurements of fluid inclusions in the PGE-polymetallic deposits hosted in the Lower Cambrian black rock series in southern China were performed, and the results suggest: (1) there exist two types of fluid inclusions. TypeⅠis of NaCl-H2O system with low-medium salinity, and its homogenization temperatures (Th) and salinities are 106.9- 286.4℃ and ( 0.8- 21.8) wt%NaCl eq. respectively; TypeⅡ is of CaCl2-NaCl-H2O system with medium-high salinities, and its homogenization temperatures and salinities range from 120.1℃ to 269.6℃ and ( 11.4- 31.4) wt%NaCl eq., respectively. The typeⅡ fluid inclusions have been discovered for the first time in this kind of deposits; (2) two generations of ore-forming fluids were recognized. Characteristics of fluid inclusions in the PGE-polymetallic ores and carbonate-quartz stockworks in the underlying phosphorites are almost of no difference, they may represent ore-forming fluids at the main metallogenic stage. The peak value of homogenization temperature of those fluid inclusions is about 170℃, while their salinities possess a remarkable bimodal distribution pattern with two peak values of (27-31) wt%NaCl eq. and (4-6) wt%NaCl eq. On the contrary, fluid inclusions in the carbonate-quartz veins in the hanging wall may represent ore-forming fluids at the post-metallogenetic stage. The homogenization temperatures and the peak values of salinities are mostly 130-170℃ and (12-14) wt%NaCl eq., respectively; (3) nobel gas isotopic composition analyses in combination with the microthermometric measurements of fluid inclusions suggest that the ore-forming fluids at the main metallogenetic stage were probably derived from mixing of basinal hot brines with the CaCl2-NaCl-H2O system and seawater with the NaCl-H2O system; (4) in the Early Cambrian, the basinal hot brines were trapped in the Caledonian basins, which were distributed along the southern margin of the Yangtze Craton, and where giant thick

  10. Petrophysical analysis of regional-scale thermal properties for improved simulations of geothermal installations and basin-scale heat and fluid flow

    CERN Document Server

    Hartmann, Andreas; Clauser, Christoph

    2008-01-01

    Development of geothermal energy and basin-scale simulations of fluid and heat flow both suffer from uncertain physical rock properties at depth. Therefore, building better prognostic models are required. We analysed hydraulic and thermal properties of the major rock types in the Molasse Basin in Southern Germany. On about 400 samples thermal conductivity, density, porosity, and sonic velocity were measured. Here, we propose a three-step procedure with increasing complexity for analysis of the data set: First, univariate descriptive statistics provides a general understanding of the data structure, possibly still with large uncertainty. Examples show that the remaining uncertainty can be as high as 0.8 W/(m K) or as low as 0.1 W/(m K). This depends on the possibility to subdivide the geologic units into data sets that are also petrophysically similar. Then, based on all measurements, cross-plot and quick-look methods are used to gain more insight into petrophysical relationships and to refine the analysis. Be...

  11. Organic Geochemistry Characteristics in Ores and Host Rocks from Qixiashan Lead-Zinc Deposit, Nanjing, China

    Institute of Scientific and Technical Information of China (English)

    Xie Shucheng; Wang Hongmei; Guo Jianqiu; Liang Bin; Zhou Xiugao

    2003-01-01

    Organic matter, associated with ores, host rocks, ore source rocks and present in fluid inclusions in the Qixiashan lead-zinc polymetallic deposit hosted in Upper Carboniferous dolomites and limestones in East China, was systematically analyzed using Fourier transform infrared spectroscopy, gas chromatography (GC), GC/mass spectrometry and proton-induced X-ray emission. The biomarker ratios of nC-21-/nC+22-alkanes, C23-tricyclic/C30-hopane and the tricyclic terpane parameters including C21/C23, C19-20/C21-29 and C19-25/C26-29 can effectively discriminate ores from host rocks. Extractable organic matter present in fluid inclusions displays similarities to those enclosed in the ore source rocks in the biomarker ratios, suggesting that a proportion of organic matter was introduced into the deposit from the ore source strata. The presence of copper and zinc in stage Ⅱ pyrobitumen indicates that some metals may have been transported by an organic fluid or removed from an aqueous fluid by organic matter.

  12. Research on Magnesite Ore Purification

    Directory of Open Access Journals (Sweden)

    Berisha, K.

    2009-12-01

    Full Text Available Magnesite ore, consisting mainly of magnesite, MgCO3 is a chief mineral source for production of high quality refractory materials based on highly pure MgO. However, the presence of calcium and silicium mineral impurities in the ore adversely affect refractoriness. The removal of silicate minerals is now a routine process but it is not so for calcium minerals impurities. In this work, the new method for the removal of calcium mineral impurities from magnesite ore has been investigated. It is based on extraction of calcium hydroxide from the calcined hydrated ore with the solution of magnesium nitrate. The results show that it is possible to remove up to 65–83 % of calcium oxide (CaO within five minutes, and up to 88–95 % within an hour. The process itself is complex, but mainly under mass transfer control. It is possible to use waste materials produced as fertilizer in agriculture thus helping in environmental protection.

  13. New Understanding of the Source of Ore-Forming Material and Fluid in the Shanggong Gold Deposit, East Qinling%东秦岭上宫金矿成矿流体与成矿物质来源新认识

    Institute of Scientific and Technical Information of China (English)

    胡新露; 何谋春; 姚书振

    2013-01-01

    上宫金矿床位于华北克拉通南缘的熊耳地体之中,是典型的构造蚀变岩型金矿.本文对上宫金矿的同位素地球化学资料进行了系统分析和综合研究,对其成矿物质和成矿流体的来源取得了一些新的认识.氢-氧-碳同位素体系研究表明,成矿流体并非来自燕山期岩浆热液,也不是来自于太华群或者官道口群和栾川群的变质脱水作用,而主要来自深部地幔或者由幔源岩浆派生,并在成矿的过程中逐渐向大气降水演化.硫-铅-锶同位素体系指示成矿物质为壳幔混合来源,地幔和太华群可能均提供了部分成矿物质.印支期华北与扬子板块发生碰撞对接时导致了强烈的壳幔相互作用,并驱动深部流体向上运移,上官金矿正是在这种构造背景下形成的.%The Shanggong gold deposit is typical of tectonic altered rock type gold deposit occurring in the Xiong 'er terrane, southern margin of the North China Craton. The isotopic data about this deposit were systematically analyzed and comprehensively summarized, and some new understanding about the source of ore-forming material and ore-forming fluid were achieved. The D-O-C isotopic system shows that the ore-forming fluid derived neither from the Yanshanian magmatic-hydrothermal solution nor from devolatilization of the Taihua, Guandaokou and Luanchuan groups, but from mantle or mantle-derived magma, and it evolved to meteoric water with development of mineralization. The S-Pb-Sr isotope ratios imply a mixing origin of the materials from crust and mantle, with the mantle and Taihua Group likely contributing partial metallogenic materials. In the Indochina period, the collision of the Yangtze and North China plates may result in the strong interaction between the crust and upper mantle, and drive the deep seated fluid to migrate upward. It is under this tectonic background that the Shanggong gold deposit formed.

  14. Origin of Gold-Bearing Fluid and Its Initiative Localization Mechanism in Xiadian Gold Deposit, Shandong Province

    Institute of Scientific and Technical Information of China (English)

    邓军; 王庆飞; 孙忠实

    2002-01-01

    The composition of quartz inclusions and trace elements in ore indicate that gold bearing fluid in the Xiadian gold deposit, Shandong Province, stemmed from both mantle and magma, belonging to a composite origin. Based on theoretical analysis and high temperature and high pressure experimental studies, gold-bearing fluid initiative localization mechanism and the forming environment of ore-host rocks are discussed in the present paper. The composite fluid extracted gold from rocks because of its expanding and injecting forces and flew through ore-conducive structures, leading to the breakup of rocks. The generation of ore-host faults and the precipitation of gold-bearing fluid occurred almost simultaneously. This study provides further information about the relationships between gold ore veins and basic-ultrabasic vein rocks and intermediate vein rocks, the spatial distribution of gold ore veins and the rules governing the migration of ore fluids.

  15. Sulfide-Sulfate Mineralizations in Verzino Area (Crotone Basin, Southern Italy): New insights on localized hydrothermal fluid circulations and their relationship with tectonics.

    Science.gov (United States)

    Berardi, Gabriele; Lucci, Federico; Cozzupoli, Domenico; Pizzino, Luca; Cantucci, Barbara; Quattrocchi, Fedora

    2010-05-01

    In this early stage of the work we present a preliminary study of hydrothermal mineralizations found in Verzino locality, Crotone Basin, Southern Appennines, (Calabria, Italy). Both geochemical and petrographic investigations were developed with the aim of understanding the genesis of the sulfide-sulfate associations present in the "Argille Marnose del Ponda" formation, deepening their relationship with fluids circulation. These mineralizations have been recognized only in two "Calanchi" morphostructures - Badlands like morphology developed by the differential erosional pattern of the "Argille Marnose del Ponda" fm. - and constituting the northwestern flank of a little valley evolved in the Miocene sedimentary sequence from "Conglomerato di S.Nicola" fm. to "Evaporiti Superiori" fm. The mineralizations are distributed along isooriented centimetric veins (with mean direction of N120) and in nodules diffused close to the veins. These hydrothermal mineralizations are constituted by an associations of Pyrite spherical nodules (millimetric to centimetric in radius with occurrences of well developed octahedral habit single crystals), sulphate crystals (Gypsum, Jarosite, NatroJarosite), Oxides (Goethite mainly), millimetric veins of Barite and micrometric Ankerite specimens. The data (mineral habits, semiquantitative compositions and x-Ray spectra), obtained by an integration of S.E.M and XRD investigations, permit us, at the current stage of the study, to hypothesize a possible hydrothermal origin (whose temperature range estimate needs further investigations) for the sulfide-sulfate mineral phases. At the moment, we exclude their primary or secondary sedimentary provenance. The comparison of our results with the previous scientific literature focused on hydrothermal sulfide-sulfate systems (Vinogradov and Stephanov, 1964; Kostov, 1968; Plummer 1971; Boles, 1978; Ferrini and Moretti 1998) allows us to propose a possible "thermal window" ranging in the interval 50°C-230

  16. Virtual phosphorus ore requirement of Japanese economy.

    Science.gov (United States)

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  17. Joint inversion of PP and PS AVAZ data to estimate the fluid indicator in HTI medium: a case study in Western Sichuan Basin, China

    Science.gov (United States)

    Pan, Bei; Sen, Mrinal K.; Gu, Hanming

    2016-10-01

    The existence of fractures in an otherwise isotropic medium induces anisotropy in the medium. Because of existing in situ stress, most fractures are often aligned close to vertical, rendering a reservoir azimuthally anisotropic in character. Joint interpretation of PP and PS seismic data generally provides greater details in resolution of the estimated subsurface rock properties and geological structures than conventional PP seismic data. Here we report on the applicability of PP and PS azimuthal amplitude variation with offset (AVAZ) data in fracture characterization. The theory is based on a linear slip model and the Born formula such that PP- and PS-reflection coefficients are sensitive to fracture weaknesses. First we demonstrate numerical experiments with synthetic PP-AVAZ, PS-AVAZ and joint inversion to estimate fluid indicator. Results show that when the fractures have low saturation of gas, the fluid indicator estimated from PP-AVAZ data is fairly accurate. However, when gas saturation reaches up to 70%, joint inversion can help to improve the resulting poor quality in PP-AVAZ data inversion. For high values of gas-saturation, both PP inversion and joint inversion are sensitive to errors in background Poisson’s ratio. Based on the result of our numerical experiment with synthetic data, we analyze a field dataset from the Western Sichuan Basin in China. The inversion result is consistent with well log based interpretation. All known reservoirs are accurately depicted by the estimated fluid indicator while the false gas zones interpreted by other methods are eliminated. When displayed as an inline section, the distribution of reservoirs appears consistent with the interpretation of the stratigraphy and geological structures.

  18. Reconstructing fluid-flow events in Lower-Triassic sandstones of the eastern Paris Basin by elemental tracing and isotopic dating of nanometric illite crystals

    Science.gov (United States)

    Blaise, Thomas; Clauer, Norbert; Cathelineau, Michel; Boiron, Marie-Christine; Techer, Isabelle; Boulvais, Philippe

    2016-03-01

    Lower- to Middle-Triassic sandstones from eastern Paris Basin were buried to a maximum depth of 2500 m at a paleo-temperature of about 100 °C. They contain extensive amounts of authigenic platy and filamentous illite particles similar to those reported in reservoirs generally buried at 3000 to -5000 m and subjected to temperatures of 120 to -150 °C. To evaluate this unexpected occurrence, such sandstones were collected from drill cores between 1825 and 2000 m depth, and nanometric-sized sub-fractions were separated. The illite crystals were identified by XRD, observed by SEM and TEM, analyzed for their major, trace, rare-earth elements and oxygen isotope compositions, and dated by K-Ar and Rb-Sr. Illite particles display varied growth features in the rock pore-space and on authigenic quartz and adularia that they postdate. TEM-EDS crystal-chemical in situ data show that the illite lath/fiber and platelet morphologies correspond at least to two populations with varied interlayer charges: between 0.7 and 0.9 for the former and between 0.8 and 1.0 for the latter, the Fe/Fe + Mg ratio being higher in the platelets. Except for the deeper conglomerate, the PAAS-normalized REE patterns of the illite crystals are bell-shaped, enriched in middle REEs. Ca-carbonates and Ca-phosphates were detected together with illite in the separates. These soluble components yield 87Sr/86Sr ratios that are not strictly in chemical equilibrium with the illite crystals, suggesting successive fluids flows with different chemical compositions. The K-Ar data of finer <0.05 μm illite separates confirm two crystallization events at 179.4 ± 4.5 and 149.4 ± 2.5 Ma during the Early and Late Jurassic. The slightly coarser fractions contain also earlier crystallized or detrital K-bearing minerals characterized by lower δ18O values. The δ18O of the finest authigenic illite separates tends to decrease slightly with depth, from 18.2 (±0.2) to 16.3 (±0.2)‰, suggesting different but

  19. Origin and Indicators of Deep-seated Fluids in Sedimentary Basins%盆地深部流体主要来源及判识标志研究

    Institute of Scientific and Technical Information of China (English)

    胡文蠧

    2016-01-01

    Based on the recent research data related to deep-seated fluids in sedimentary basins,three kinds of fluids can be classified:Crustal-derived hydrothermal fluids,hydrocarbon source rock-related fluids and mantle-derived fluids.In this study,the crustal-derived hydrothermal fluid activities related reservoir beds of the Tarim Basin are discussed,and their identification features are summarized.Combined with data from the Wilcox Basin in the Gulf of Mexico,the Norway and Junggar Basins,isotopic characteristics of the hydrocarbon source rock-related fluids and their implication in reservoir beds are addressed.Rift basins in eastern China and the Huangqiao CO2 reservoir are used to constrain the features of man-tle-derived fluids.The role of mantle-derived CO2-rich fluids in the alteration of sandstone of the Huangqiao reservoir bed is discussed as well.%结合近年来的研究资料,将盆地深部流体划分为壳源热流体、烃源热流体和幔源热流体3种类型。结合塔里木盆地的实例,总结讨论了壳源热流体的作用特征和判识标志;结合墨西哥湾 Wilcox 盆地、北海挪威盆地和准噶尔盆地的资料,讨论了“烃源热流体”的同位素特征及其对储集层形成的意义;结合中国东部裂谷盆地资料和江苏黄桥 CO2气田实例,总结了幔源流体基本特点和判识标志,解剖了幔源 CO2流体对黄桥气藏砂岩储集层的改造作用特征。

  20. Rare Earth Elements Geochemistry of Laowan Gold Deposit in Henan Province: Trace to Source of Ore-Forming Materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18×10-6~30.91×10-6, the average of ∑REE is 13.39×10-6, and the average of ∑REE of quartz in the Laowan granite is 6.68×10-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.

  1. Ore—Fluid Systems of Fine Disseminated Gold Deposits Along the Southeastern Margin of the Yangtze Plate

    Institute of Scientific and Technical Information of China (English)

    张景荣; 朱恺军; 等

    1995-01-01

    Fine disseminated gold deposits occurring along the southeastern margin of the Yangtze Plate belong to the epithermal type resulting from different systems of ore-forming fluids.According to their sources, the ore-forming fluids can be divided into four systems: a)meteoric water system; b)oil-brine system; c)basin-brine system;and d)magmatic-formation water system.The four hydrothermal systems are responsible for four types of gold deposits, respectively.The meteoric water system produces hot spring gold deposits. The basin-brines,which are derived from fissure water, structural water and absorbed water sealed up in strata, are responsible for the absin-brine-type deposits.The oil-brine system, having the same source as the bain-brines ,is characterized by the involvement of organic matter and is responsible for the oil-brine-type deposits. Inclusion fluid data show that there are obvious differences in chemical composition and carbon, oxygen,hydrogen and sulfur isotopes for these hydrothermal systems.Different metallogenic provinces, in which one of the four systems is dominant, can be recognized in the region.

  2. 滇西北红山铜矿床成矿流体地球化学特征及矿床成因%Geochemical characteristics of ore-forming fluids and genesis of Hongshan copper deposit in northwestern Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    李文昌; 王可勇; 尹光侯; 秦丹鹤; 余海军; 薛顺荣; 万多

    2013-01-01

    The Hongshan copper deposit is a large porphyry-skarn type polymetallic deposit in northwestern Yunnan Province. It occurred in quartz diorite porphyry of Indo-Chinese Period and quartz monzonite porphyry of Yanshanian Period as well as their neighbouring wall rocks. The formation of it experienced superimposition of mutiphases/stages hydrothermal mineralization. Comprehensive study on petrography, microthermometry and carbon-hydrogen-oxygen isotope of fluid inclusions showed that the ore-forming fluids of early metallogenic stages are of medium to high temperature, high salinity NaCl-H2 O type solutions and mainly came from arc magmatism of Indo-Chinese Period, they were responsible for the formation of skarn type mineralization. The ore-forming fluids of later metallogenic stages are of medium to high temperature, high salinity NaCl-CO2 -H2 O type solutions and mainly came from the buried granitic magmatism of post orogenic extension environment, and they played important role in the formation of porphyry type Cu, Mo and relevant Pb, Zn mineralization. So the Hongshan copper deposit is of superimposed poyphyry-skarn type deposit that originated from the metallogenic superimposition of two phases of magmatic hydrothermal fluids.%红山铜矿床为滇西北地区一大型斑岩-矽卡岩型铜多金属矿床,它产于印支期石英闪长玢岩及燕山期石英二长斑岩体内及其周边地层中,其形成经历了多期次热液叠加成矿作用过程.流体包裹体岩相学、显微测温及碳、氢、氧稳定同位素综合研究表明,矿区早期成矿流体为中高温、高盐度NaCl-H2O体系热液,主要来源于印支晚期岛弧型岩浆活动,对区内矽卡岩型矿化形成起了重要作用;晚期成矿流体为中高温、高盐度NaCl-CO2-H2O体系热液,主要来源于隐伏的燕山期后造山伸展型花岗质岩浆侵入体,形成了区内斑岩型Cu、Mo及相关的Pb、Zn多金属矿化.因此,红山铜矿床是

  3. Fluid-mediated metal transport in subduction zones and its link to arc-related giant ore deposits: Constraints from a sulfide-bearing HP vein in lawsonite eclogite (Tianshan, China)

    Science.gov (United States)

    Li, Ji-Lei; Gao, Jun; John, Timm; Klemd, Reiner; Su, Wen

    2013-11-01

    High-pressure (HP) veins in eclogites provide insight into element mobility during fluid-rock interaction in subduction zones. Here, we present a petrological-geochemical study of a sulfide-bearing HP vein and its massive lawsonite eclogite host rock from the Chinese Tianshan (ultra-)high-pressure/low-temperature metamorphic belt. The omphacite-dominated vein is enveloped by a garnet-poor, sulfide-bearing eclogite-facies reaction selvage. Lawsonite, garnet, omphacite, glaucophane and other HP minerals occur as inclusions in pyrite porphyroblasts of the selvage rock, indicating that the selvage formed prograde under eclogite-facies conditions. Relicts of wall-rock garnet (Grt_I) cores in recrystallized selvage garnet (Grt_II) close to the wall rock and the Ca distribution in Grt_II, which images the overgrown selvage matrix, indicate that the selvage formed due to dissolution-precipitation processes as a consequence of fluid-rock interaction of the wall rock eclogite with the vein-forming fluid. The peak metamorphic P-T conditions of the wall-rock eclogite are estimated at ca. 590 °C and 23 kbar. Mass-balance calculations indicate that the reaction selvage experienced: (1) a depletion of the large-ion lithophile elements (K-Rb-Ba) of up to 100% relative to their concentrations in the wall-rock eclogite; (2) a moderate depletion of the HREE and some transition metal elements including Fe, Cu, Ni, Zn, Co, Cr, and Mn (10-40%); (3) a significant enrichment of CaO (up to 50-80%), Sr (up to ˜200%), Pb (up to ˜170%) and S (up to ˜210%); (4) a slight to moderate enrichment of the LREE (10-20%) and MREE (0-40%); whereas (5) the HFSE show no significant variations.

  4. 3D features of delayed thermal convection in fault zones: consequences for deep fluid processes in the Tiberias Basin, Jordan Rift Valley

    Science.gov (United States)

    Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael

    2015-04-01

    It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient

  5. The source of ore-forming fluids in the Bolong copper mine area, Tibet%西藏波龙铜矿区成矿流体来源示踪

    Institute of Scientific and Technical Information of China (English)

    周玉; 多吉; 温春齐; 费光春; 何阳阳

    2015-01-01

    波龙铜矿床是西藏地质五队近年来在青藏高原中部发现的最大的斑岩型矿床。为了查明波龙铜矿区成矿流体来源,对采自矿区的黄铁矿及石英流体包裹体样品进行了 He、Ar同位素与气相成分测试。测试结果显示黄铁矿流体包裹体3 He/4 He分别为3.03和8.51,40 Ar/36 Ar为214.94和284.23,表明成矿流体可能来源于壳幔混源;石英包裹体气相成分以H2 O为主,次为CO2,还有少量的N2、C H4、C2 H6、H2 S及A r气体,部分样品中还含有O2成分,表明成矿流体中混有高氧逸度组分;结合矿区石英包裹体H‐O同位素显示成矿流体以岩浆源为主、并混有大气成分分析,波龙铜矿区成矿流体应属壳幔混源,早期成矿流体以深源为主,晚期随着流体的演化有部分大气降水的加入。具高氧逸度特征的怒江洋壳俯冲板片携带大量成矿物质俯冲进入羌塘‐三江复合板片南缘深部,熔融交代上覆地幔楔,发生壳幔混合,形成初始岩浆,在上升过程中混染下地壳物质,并受到深循环大气降水的影响最终侵位到上部地壳形成波龙铜矿床。%The Bolong porphyry copper deposit was founded the largest copper deposits in central Tibet Plateau in recent years by No .5 Geological Party ,Tibet Bureau of Geology and Mineral Exploration and Development .In order to identify Source of Ore‐Forming Fluids in the Bolong copper mine and samples of fluid inclusions in pyrite and quartz form Copper Mine Area were Sampled to test their noble gas isotope or gas composition .Testing has shown that 3 He/4 He were 3 .03 and 8 .51 ,and 40 Ar/36 Ar were 214 .94 and 284 .23 ,it showed that ore‐forming fluid may be come from the crust‐mantle mixed source .Gaseous composition of fluid inclusion mainly composed of H 2 O ,followed by CO2 ,in addition to a small amount of N2 ,CH4 ,C2 H6 ,H2 S and Ar ,Portion of the sample composition also contains

  6. Multicomponent CO2-Brine Simulations of Fluid and Heat Transfer in Sedimentary-Basin Geothermal Systems: Expanding Geothermal Energy Opportunities

    Science.gov (United States)

    Saar, M. O.; Randolph, J. B.

    2011-12-01

    In a carbon dioxide plume geothermal (CPG) system, carbon dioxide (CO2) is pumped into existing high-permeability geologic formations that are overlain by a low-permeability caprock. The resulting CO2 plume largely displaces native formation fluid and is heated by the natural in-situ heat and background geothermal heat flux. A portion of the heated CO2 is piped to the surface to produce power and/or to provide heat for direct use before being returned to the geologic reservoir. Non-recoverable CO2 in the subsurface is geologically sequestered, serving as a CO2 sink. As such, this approach results in a geothermal power plant with a negative carbon footprint. We present results of calculations concerning geothermal power plant efficiencies and energy production rates in both traditional reservoir-based systems and engineered geothermal systems (EGS) when CO2, rather than water, is used as the subsurface working fluid. While our previous studies have examined geologic systems with established CO2 plumes, we focus here on multicomponent (CO2 + brine) systems. Numerical simulations (e.g., Randolph and Saar, Geophysical Research Letters, 2011) indicate that CPG systems provide several times the heat energy recovery of similar water-based systems. Furthermore, the CPG method results in higher geothermal heat extraction efficiencies than both water- and CO2-based EGS. Therefore, CPG should further extend the applicability of geothermal energy utilization to regions with subsurface temperatures and heat flow rates that are even lower than those that may be added due to switching from water- to CO2-based EGS. Finally, simulations at present suggest that multicomponent effects - e.g., buoyant flow as CO2 rises over denser brine - may enhance heat extraction in CPG systems compared to traditional water-based geothermal approaches.

  7. Deep-Source Ore-Forming Materials and Prospecting of Gold Deposits in Eastern Hebei, China

    Institute of Scientific and Technical Information of China (English)

    王宝德; 牛树银; 孙爱群; 李红阳

    2003-01-01

    Eastern Hebei Province is one of the important gold mineralization areas in North China, and detailed investigations have been made in this area. Different mineralization models and different ore-forming sources have been proposed for the gold deposits in this area. As more detailed work was made and more information has been accumulated, it is necessary to make a new investigation on gold metallogenesis and its source. This paper presents the data about 13 gold deposits (occurrences). It is concluded that the element gold came from the deep mantle.Different models of metallogenesis substantially describe such processes that ore-forming fluids were involved in metallogenesis in different favorable loci. Gold ore prospecting should be focused on fluid channel ways and favorable structures.

  8. Measurement of moisture in mill feed ore

    Energy Technology Data Exchange (ETDEWEB)

    Timm, A.R.; Moench, P.; Moisel, E. (Council for Mineral Technology, Randburg (South Africa))

    1985-04-01

    The control of the moisture in the feed to a mill is very important for efficient mill operation. Water is added continuously to the ore fed to a mill to maintain a suitable mix of ore and moisture in the mill. However, problems arise because of the large variation in the moisture content of the ore, which affects the efficiency of the grind. If too little moisture is present, the mill is unable to grind the ore finely enough, creating instead a thick 'porridge' that causes the mill to choke up. On the other hand, too much moisture results in inefficient grinding because the ore is flushed through the mill too quickly. Several techniques are available for measuring moisture and Mintek undertook an investigation in an attempt to develop a reliable robust moisture meter suitable for monitoring the moisture content of ore, which include the following: neutron backscattering, infrared absorption, microwaves, capacitance and moisture as a function of conductivity.

  9. Contrast in Fluid Metallogeny between the Tianmashan Au-S Deposit and the Datuanshan Cu Deposit in Tongling, Anhui Province

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A comprehensive contrast of ore-forming geological background and ore-forming fluid features, especially fluid ore-forming processes, has been performed between the Tianmashan and the Datuanshan ore deposits in Tongling, Anhui Province. The major reasons for the formation of the stratabound skarn Au-S ore deposit in Tianmashan and the stratabound skarn Cu ore deposit in Datuanshan are analyzed in accordance with this contrast. The magmatic pluton in Tianmashan is rich in Au and poor in Cu, but that in Datuanshan is rich in Cu and Au. The wallrock strata in Tianmashan contain Au-bearing pyrite layers with some organic substance but those in Datuanshan contain no such layers. Moreover, the ore-forming fluids in Tianmashan are dominantly magmatic ones at the oxide and sulfide stages, but those with high content of Cu in Datuanshan are mainly groundwater fluids. In addition, differences in compositional evolution and physicochemical condition variation of the ore-forming fluids result in gradual dispersion of Cu or Au in the late stage of the fluid ore-forming process. This is also an important metallogenic factor for the stratabound skarn Au-S ore deposit in Tianmashan and stratabound skarn Cu ore deposit in Datuanshan.

  10. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis

    Indian Academy of Sciences (India)

    Subrata Roy; A S Venkatesh

    2009-12-01

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling–Langalata iron ore deposits, Singhbhum–North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.

  11. Evolution of ore deposits on terrestrial planets

    Science.gov (United States)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  12. Up-dated ore composition data (Central ore-field, Kuznetsk Alatau

    Directory of Open Access Journals (Sweden)

    Bushmanov A.

    2016-01-01

    Full Text Available Applying scanning electron microscope (SEM, energy-dispersive microanalyzer and X-ray ray fluorescence microscope the ore mineral composition in Central gold-ore field ore field (Kuznetsk Alatau was investigated. Eleven new minerals were detected in this ore field. The differentiated behavior of mineral formation stages in veinsand near-veined beresites was determined. The composition of native gold was studied, as well as the distribution of trace elements in pyrite.

  13. Ore-forming fluid geochemistry of Yangchang quartz vein molybdenum deposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia%内蒙古西拉沐伦成矿带羊场石英脉型钼矿床成矿流体地球化学特征研究

    Institute of Scientific and Technical Information of China (English)

    张作伦; 刘建明; 褚少雄

    2012-01-01

    The Yangchang Mo deposit is located in the Xilamulun molybdenum metallogenic belt on northern margin of North China Craton, Inner Mongolia. The mineralization is occurred within the NW- to NNW- trending faults and fractures hosted by the Yanshanian biotite monzogranite. The ore-forming hydrothermal process can be subdivided into four stages: quartz vein stage ( Ⅰ ) , quartz-pyrite stage ( Ⅱ -1) , quartz-pyrite-molybdenite-chalcopyrite-galena-sphalerite stage ( Ⅱ -2) and carbonate stage ( Ⅲ ). Three types of fluid inclusions are observed in quartz crystals, I. E. Liquid-rich ( VH2O 94. 39mol% ) , with minor CO2, N2, CH4 , C2H6, Ar, H2S, and Na+ , HS , Cl ions. These suggest the Yangchang Mo deposit was formed in reduction condition and the ore-forming fluids were of the NaCl-H2 O ± CO2 system. Hydrogen and oxygen isotopes of fluid inclusions in various mineralization stages are - 119. 66‰ ~ - 98. 79‰ and - 0. 08‰ ~ 1. 90‰ respectively, indicating that the ore-forming fluids were the mixture of magmatic water and meteoric water. It is suggested that the mixing of different fluids with distinct natures might be responsible for the precipitation of molybdenite.%内蒙古羊场钼矿床产于华北克拉通北缘西拉沐伦钼多金属成矿带内,矿体主要以石英脉形式产于燕山期黑云母二长花岗岩内,受NW、NNW向断裂构造控制.成矿过程包括石英大脉阶段(Ⅰ)、石英-黄铁矿亚阶段(Ⅱ-1)、石英-黄铁矿-辉钼矿-黄铜矿-方铅矿-闪锌矿亚阶段(Ⅱ-2)、碳酸岩化阶段(Ⅲ).流体包裹体研究发现,按照气相比不同可将包裹体分为WL型(<50%)、WV型(50% ~ 90%)、G型(100%).Ⅰ、Ⅱ-1、Ⅱ-2阶段包裹体均一温度分别为173~ 280℃、180 ~467℃、151 ~366℃,不具有继承演化关系,可能是成矿作用过程中加入有岩浆热液的结果;盐度分别为4.03% ~ 10.61% NaCleqv、2.07%~ 10.36% NaCleqv和2.41% ~9.98% NaCleqv.

  14. Hageri alustas oreli taastamisega / Inge Põlma

    Index Scriptorium Estoniae

    Põlma, Inge

    2009-01-01

    1851. aastal eesti orelimeistri Carl Tantoni valmistatud ja 1892. aastal Gustav Terkmanni poolt kohendatud Hageri Lambertuse kiriku oreli restaureerimisest, ekspertiisi tegi rootsi organist Göran Grahn

  15. The uranium ore deposits in Ciudad Rodrigo Phyllites. about the possibility of new deposits; Los yacimientos uraniferos en las pizarras paleozoicas de Ciudad Rodrigo. sobre la posible existencia de nuevas mineralizaciones

    Energy Technology Data Exchange (ETDEWEB)

    Mingarro Martin, E.; Marin Benavente, C.

    1969-07-01

    The main features of the genesis of uranium deposits of the Fe mine type, are discussed in this paper. Pitchblende ore is related with phyllites bearing organic material and with geomorphological level, fossilized by eocene sediments. As a result, new uranium ore deposits are possible under Ciudad Rodrigo tertiary basin, tertiary cover depth being little more than three hundred feet. (Author)

  16. Discovery and Significance of High CH4 Primary Fluid Inclusions in Reservoir Volcanic Rocks of the Songliao Basin, NE China

    Institute of Scientific and Technical Information of China (English)

    WANG Pujun; HOU Qijun; WANG Keyong; CHEN Shumin; CHENG Rihui; LIU Wanzhu; LI Quanlin

    2007-01-01

    Comparing compositions of the fluid inclusions in volcanic rocks to the contents and isotopes of the gases in corresponding volcanic reservoirs using microthermometry, Raman microspectroscopy and mass spectrum analysis, we found that: (1) up to 82 mole% methane exists in the primary inclusions hosted in the reservoir volcanic rocks; (2) high CH4 inclusions recognized in the volcanic rocks correspond to CH4-bearing CO2 reservoirs that are rich in helium and with a high 3He/4He ratio and which show reversed order of δ13C in alkane; (3) in gas reservoirs of such abiotic methane (>80%)and a mix of CH4 and CO2, the enclosed content of CH4 in the volcanic inclusions is usually below 42mole%, and the reversed order of δ13C in alkane is sometimes irregular in the corresponding gas pools;(4) a glassy inclusion with a homogeneous temperature over 900℃ also contains a small portion of CH4although predominantly CO2. This affinity between gas pool and content of inclusion in the same volcanic reservoirs demonstrates that magma-originated gases, both CH4 and CO2, have contributed significantly to the corresponding gas pools and that the assumed hydrocarbon budget of the bulk earth might be much larger than conventionally supposed.

  17. Helium isotopic compositions in fluid inclusions of the Gangxi fault belt in the Huanghua Depression, Bohai Bay Basin

    Institute of Scientific and Technical Information of China (English)

    DING Weiwei; DAI Jinxing; YANG Chiyin; TAO Shizhen; HOU Lu

    2005-01-01

    The authors obtained 30 core samples from 15 wells in Gangxi fault belt, Huanghua Depression. Using a VG5400 mass spectrometer, the helium isotopic compositions in fluid inclusion of these samples were analysed. Interpretation of results suggests a significant amount of mantle-derived helium in the inclusions, which were likely trapped during Neocene. Mantle-derived helium have mostly accumulated in the intersections of the NWW trending Xuzhuangzi and NE trending Gangxi faults, and decreased away from the intersections. This pattern implied a close relationship to the local tectonic setting. Gangxi fault belt experienced intensive neo-tectonic activities in the Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its tectonic status of extensional stress field. Mantle uplift caused the movement of magma that carried mantle-derived gas, and the deep-rooted tension faults provided the passages for the gases to shallow crust levels. High-content abiogenic CO2 pools occurred in the study area, hence, using the helium isotopic compositions is of great significance to the exploration of abiogenic natural gases.

  18. Temporal and spatial distribution of Au-Ag polymetallic ore deposits and source of ore-forming materials in the Zhangjiakou-Xuanhua mantle-branch metallogenetic zone

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Zhangjiakou-Xuanhua area is a mineral resource-concentrated area for gold-silver polymetallic ore deposits. The temporal and spatial distribution and origin of mineral resources have been argued for a long time. Based on the comprehensive studies of geochronology and sulfur, lead, oxygen, carbon and noble gas isotopes, it is considered that the temporal and spatial distribution of mineral resources in this area is obviously controlled by the Zhangjiakou-Xuanhua mantle branch structure, as is reflected by the occurrence of gold deposits in the inner parts and of Ag-Pb-Zn polymetallic ore deposits in the outer parts. The mineralization took place mainly during the Yanshanian period. Ore-forming materials came largely from the deep interior of the Earth, and hydrothermal fluids were derived predominantly from Yanshanian magmatism.

  19. Study on isotope geochemistry compositions of the Baiyangping silver-copper polymetallic ore deposit area, Yunnan Province%云南白秧坪银铜多金属矿集区成矿流体的稳定同位素地球化学研究

    Institute of Scientific and Technical Information of China (English)

    邹志超; 胡瑞忠; 毕献武; 武丽艳; 冯彩霞; 唐永永

    2012-01-01

    siderite of the eastern ore-belt. The results show that CO2 in ore-forming fluids are derived from thermal decomposition of marine carbonates. The C isotopic analyses of the western ore-belt show that the δ13CPDB values range from -5.1‰ to -1.5‰, with limited variations. The carbon isotopic analyses indicate that CO2 in ore-forming fluids of the western ore-belt are derived from deep-seated mantle carbon mixed by crustal carbon. The ore-forming fluids of the western ore-belt were hot brine of basin which may partly derived from deeper sources, and formed the Ag-Cu-Co-Pb-Zn deposit in sandstone and fine-grained sandstone of the Lower Cretaceous Jingxing Formation; the ore-forming fluids of the eastern ore-belt were paleo-meteoric water, and formed the Pb-Zn-Ag-Cu deposit in limestone and dolomite of the Upper Triassic Sanhedong Formation.

  20. A Study on the Geological—Geochemical Dynamics of Hydrothermal Ore Deposition as Exemplified by the Muping—Rushan Gold Deposit Belt,Eastern Shandong,China

    Institute of Scientific and Technical Information of China (English)

    赵伦山; 高太忠; 等

    1996-01-01

    This paper presents a method of establishing a hydrothermal ore-forming reaction system.On the basis of the study of four typical hydrothermal deposits,the following conclusions concerning geochemical dynamic controlling during hydrothermal mineralization have been sions concerning geochemical dynaamic controlling during hydrothermal mineralization have been drawn:(1)The regional tectonic activities control the concentration and dispersion of elements in the ore-forming process in terms of their effects on the thermodynamic nature and conditions of the ore-forming reaction system.(2)During hydrothermal mineralization the activites of ore-bearing faults can be divideb into two stages:the brittle splitting stage and the brittle-tough tensing stage,which would create characteristically different geodynamic conditions for the geochemical thermodynamic ore-forming system.(3)The hydrothermal ore-forming reaaction system is an open dynamic system.At the brittle splitting stage the system was so strongly supersaturated and unequilibrated as to speed up and enhance the crystallization and differentiation of ore-forming fluids.And at the brittle-tough tensing stage,the ore-forming system was in a weak supersaturated state;with decreasing temperature and pressure the crystallization of oreforming material would show down,and it can be regarded as an equilibrated state.(4)In the lates stages of hydrothermal evolution,gold would be concentrated in the residual ore-forming solution.The pulsating fracture activite in this stage led to the crush of pyrite ore and it was then filled with gold-enriched solution,forming high-grage“fissure”gold ore.This ore-forming process could be called the coupling mechanism of ore formation.

  1. Geochemical Characteristics of Two Types of Ores from Jinshan Shear Zone—hosted Gold Deposit,Jiangxi,with a Discussion on the Mechanism of Two—stage Mineralization

    Institute of Scientific and Technical Information of China (English)

    季峻峰; 刘英俊; 等

    1995-01-01

    Two types of gold ores,siliceous mylonite and quartz vein,formed at the first and second stages of mineralization respectively, can be clearly recognized in the shear zone-hosted gold deposit at Jinshan, Jiangxi.Similarity in REE and trace elements between the siliceous mylonite and the country rocks indicates that the ore metals were supplied by the surrounding strata during the first stage of mineralization.On the other hand, as indicated by fluid inclusion data,the ore-forming fluid at the second stage was of meteoric origin and the precipitation of gold was caused by phase separation.

  2. Pressure gradients and boiling as mechanisms for localizing ore in porphyry systems

    Science.gov (United States)

    Cunningham, Charles G.

    1978-01-01

    Fluid inclusions in ore zones of porphyry systems indicate that extensive boiling of hydrothermal fluids accompanies deposition of ore and gangue minerals. The boiling commonly accompanied a change from a lithostatic to a hydrostatic environment during evolution of an epizonal stock. Pressure gradients near the margin of the stock can determine whether ore or only a diffuse zone of mineralization is formed. A sharp drop in pressure in an epizonal environment is more likely to cause extensive boiling than a comparable change in a deeper environment, as the slope of the boiling curve steepens with an increase 'in pressure. The drop in pressure causes the hydrothermal fluids to boil and creates a crackle (stockwork) breccia, which hosts the veinlets of gangue quartz and ore minerals. The boiling selectively partitions CO2, H2S, and HCl into the vapor phase, changing the pH, composition, ionic strength, and thus the solubility product of metal complexes in the remaining liquid and causing the ore and gangue to come out of solution. Fluid inclusions trapped from boiling solutions can exhibit several forms, depending on the physical and chemical conditions of the hydrothermal fluid from which they were trapped. In one case, inclusions when heated can homogenize to either liquid or vapor at the same temperature, which is the true boiling temperature. In another case, homogenization of various inclusions can occur through a range of temperatures. The latter case results from the trapping of mixture of liquid and vapor. Variations in salinity can result from boiling of the hydrothermal fluid, or intermittent incorporation of high-salinity fluids from the magma, or trapping of fluids of varying densities at pressure-temperature conditions above the critical point of the fluid. In places, paleopressure-temperature transition zones can be recognized by fluid-inclusion homogenization temperatures and phase relationships and by the presence of anhydrite daughter minerals

  3. The Luster of Iron Ore Prices

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China battles its way out of an iron ore stalemate by finding alternative supplier After months of seesawing, China’s iron ore negotiators appear to be breaking through the tight encirclement of suppliers. On August 17, the China Iron and Steel Association (CISA) announced that Fortescue

  4. Fuzzy Comprehensive Appraisal of Concealed Ore Deposits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the transformation from the fuzzy to the accurate process is exemplified by the Jiaodong gold ore deposits concentrated region where the mathematical analysis is used to appraise and forecast regional concealed gold ore deposits. In this sense, this paper presents a new way to the appraisal of the non-traditional mineral resources.

  5. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  6. Biomass for iron ore sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zandi, M.; Martinez-Pacheco, M.; Fray, T.A.T. [Corus Research Development & Technology, Rotherham (United Kingdom)

    2010-11-15

    Within an integrated steelworks, iron ore sinter making is an energy intensive process. In recent years, biomass is becoming an attractive alternative source of energy to traditional fossil fuels such as coal. In this study, commercially available biomass materials suited to sinter making have been identified as an alternative source of fuel to coke breeze. Olive residues, sunflower husk pellets, almond shells, hazelnut shells and Bagasse pellets have been characterised and prepared for sintering. A laboratory sinter pot has been employed for studying sintering behaviour of biomass material. On average, the calorific values of selected biomass materials, on a dry basis, are about 65% of dry coke breeze. It was found that less of this energy would be available in sinter making due to the evaporation of some of the volatile matter ahead of the flame front. At a replacement rate of 25%, the crushed sunflower husk pellets showed the closest thermal profile to that of coke breeze alone in the size range of -0.8 to +0.6 mm. A specification of less than 1 mm has been recommended for the studied biomass materials when co-firing biomass with coke breeze for iron ore sintering.

  7. REE Geochemistry of Sulfides from the Huize Zn-Pb Ore Field, Yunnan Province: Implication for the Sources of Ore-forming Metals

    Institute of Scientific and Technical Information of China (English)

    LI Wenbo; HUANG Zhilong; QI Liang

    2007-01-01

    REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ΣREE ranging from 1.6×10-9 to 166.8×10-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The δEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata.

  8. Fault Networks in the Northwestern Albuquerque Basin and Their Potential Role in Controlling Mantle CO2 Degassing and Fluid Migration from the Valles Caldera

    Science.gov (United States)

    Smith, J. R.; Crossey, L. J.; Karlstrom, K. E.; Fischer, T. P.; Lee, H.; McGibbon, C. J.

    2015-12-01

    The Rio Grande rift (RGR) has Quaternary and active volcanism and faulting that provide a field laboratory for examining links between mantle degassing and faults as fluid conduits. Diffuse and spring CO2 flux measurements were taken at 6 sites in the northwestern Albuquerque Basin (NWAB) and Valles caldera geothermal system. All sites progress to the southwest from the 1.25 Ma Valles caldera, down the rift-related Jemez fault network, to intersect with the Nacimiento fault system. Mantle CO2 and He degassing are well documented at 5 of 6 sites, with decreasing 3He/4He ratios away from the caldera. The instrument used to measure CO2 flux was an EGM-4 CO2 gas analyzer (PP systems) with an accumulation chamber. Carbonic springs at Penasco Springs (PS) and San Ysidro (SY), and the carbonate-cemented Sand Hill Fault (SHF) were targeted, all near the western border of the RGR. The SHF has no spring activity, had the smallest maximum flux of all the sites (8 g/m2d), but carbonate along the fault zone (<2 m wide) attest to past CO2 flux. The other two sites are equal distance (30-40 km) between the SHF site and Valles caldera sites. These sites have active carbonic springs that precipitate travertine mounds. Our work suggests these sites reflect intersections of the Nacimiento fault with NE trending faults that connect to the Jemez fault network. The maximum diffuse flux recorded at SY (297 g/m2d) and PS (25 g/m2d) are high, especially along the fault and near springs. At SY and PS the instruments capacity was exceeded (2,400 g/m2d) at 6 of 9 springs. Interpretations indicate a direct CO2 flux through a fault-related artesian aquifer system that is connected to magmatic gases from the caldera. Maximum diffuse flux measurements of Alamo Canyon (20,906 g/m2d), Sulphur Springs (2,400 g/m2d) and Soda Dam (1,882 g/m2d) at Valles caldera geothermal sites are comparable to Yellowstone geothermal systems. We use geospatial analysis and local geologic mapping to examine

  9. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA

    Science.gov (United States)

    Shelton, K. L.; Burstein, I. B.; Hagni, R. D.; Vierrether, C. B.; Grant, S. K.; Hennigh, Q. T.; Bradley, M. F.; Brandom, R. T.

    1995-08-01

    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50 °C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50 °C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary, but in southeast Missouri, evidence exists for structurally controlled MVT fluid movement

  10. Rare Earth Element Geochemistry on Magmatic Rocks and Gold Deposits in Shizishan Ore-Field of Tongling, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    REE geochemical characteristics of the magmatic rocks and gold deposits in Shizishan ore-field of Tongling were studied. Three types of the magmatic rocks have almost the same chondrite-normalized REE patterns, Eu and Ce anomalous values, and ΣREE, ΣLREE/ΣHREE regular changes, which indicates that their magmas come from the same source and their digenetic mechanism is fractional crystallization. In three gold deposits, the mineral ores and related altered rocks have similar chondrite-normalized REE patterns and sharp Eu positive anomalous values. The REE contents reduced from the magmatic rocks to skarnization or alteration magmatic rocks, skarn type ores, sulphide type ores, wall-rocks limestone or marble. The REE geochemical characteristics of the ores and related rocks show that primary fluids originated from magmatic differentiation in lower pressure of shallow crust, ore-forming hydrothermal solutions gained REE and mineralization elements further from leaching the magmatic rocks, then superimposed and reformed the limestones or marbles and deposited ore-forming material.

  11. Ore deposits in Africa and their relation to the underlying mantle

    Science.gov (United States)

    Liu, H.-S.

    1981-01-01

    African magmatism is largely related to the tensional stress regimes of the crust which are induced by the hotter upwelling mantle rocks. These mantle rocks may provide emanating forces and thermal energy for the upward movements of primary ore bodies with fluid inclusions in the tensional stress regimes of the crust. In this paper, the Goddard Earth Gravity Model is used to calculate a detailed subcrustal stress system exerted by mantle convection under Africa. The resulting system is found to be correlated with the African metallogenic provinces. Recognition of the full spectrum of ore deposits in Africa that may be associated with the hotter upwelling mantle rocks has provided an independent evidence to support the hypothesis of mantle-derived heat source for ore deposits.

  12. Origin of the Rubian carbonate-hosted magnesite deposit, Galicia, NW Spain: mineralogical, REE, fluid inclusion and isotope evidence

    Science.gov (United States)

    Kilias, Stephanos P.; Pozo, Manuel; Bustillo, Manuel; Stamatakis, Michael G.; Calvo, José P.

    2006-10-01

    The Rubian magnesite deposit (West Asturian—Leonese Zone, Iberian Variscan belt) is hosted by a 100-m-thick folded and metamorphosed Lower Cambrian carbonate/siliciclastic metasedimentary sequence—the Cándana Limestone Formation. It comprises upper (20-m thickness) and lower (17-m thickness) lens-shaped ore bodies separated by 55 m of slates and micaceous schists. The main (lower) magnesite ore body comprises a package of magnesite beds with dolomite-rich intercalations, sandwiched between slates and micaceous schists. In the upper ore body, the magnesite beds are thinner (centimetre scale mainly) and occur between slate beds. Mafic dolerite dykes intrude the mineralisation. The mineralisation passes eastwards into sequence of bedded dolostone (Buxan) and laminated to banded calcitic marble (Mao). These show significant Variscan extensional shearing or fold-related deformation, whereas neither Rubian dolomite nor magnesite show evidence of tectonic disturbance. This suggests that the dolomitisation and magnesite formation postdate the main Variscan deformation. In addition, the morphology of magnesite crystals and primary fluid inclusions indicate that magnesite is a neoformed hydrothermal mineral. Magnesite contains irregularly distributed dolomite inclusions (modified basinal brines that have reacted and equilibrated with intercalated siliciclastic rocks. Magnesite formation is genetically linked to regional hydrothermal dolomitisation associated with lithospheric delamination, late-Variscan high heat flow and extensional tectonics in the NW Iberian Belt. A comparison with genetic models for the Puebla de Lillo talc deposits suggests that the formation of hydrothermal replacive magnesite at Rubian resulted from a metasomatic column with magnesite forming at higher fluid/rock ratios than dolomite. In this study, magnesite generation took place via the local reaction of hydrothermal dolostone with the same hydrothermal fluids in very high permeability zones at

  13. The solubility of a metallic mineral with other coexisting minerals and the ore-forming processes of metallic sulfides

    Institute of Scientific and Technical Information of China (English)

    岑况; 於崇文

    2001-01-01

    Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.

  14. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast)

    Science.gov (United States)

    Rudmin, M. A.; Mazurov, A. K.

    2016-12-01

    Oolitic iron ores are typified, and their morphology and composition are studied. Special attention is focused on the character of distribution of valuable and harmful admixtures and determination of the principal minerals concentrating these elements. As a result of this study, three types of ores are identified, such as "loose" ores, cemented ores with glauconite-chlorite-clay cement, and well-cemented ores with siderite cement. The morphology and composition of the ore oolites are characterized. The forms of occurrence of calcium phosphates (anapaite) and phosphates of rare-earth elements (monazite, cularite) that are related to the harmful phosphorus admixture are described. According to the analysis of the elemental composition, the fractions of (-1…+0.2) and (-1…+0.1) mm in the western and eastern segments, respectively, may be promising for processing.

  15. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    Science.gov (United States)

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    -ocean waters, and marine transgression. Water depth increased from deposition of the black phyllite sequence through deposition of the Mn mixed-carbonate sequence, then shallowed again during deposition of the overlying dolostone sequence. Bottom waters were mostly dysoxic to suboxic, but fluctuated from oxic to anoxic. Productivity was high during deposition of the black phyllite sequence, increased during precipitation of phosphorite, and then decreased to moderate levels during precipitation of rhodochrostone ores. Biosilica contributions occur in each lithology, but are greatest in rhodochrostone. Changes in sedimentation were determined by changes in water depth, productivity, upwelling, sea-level change, and ventilation of the depositional basin. The source of the phosphorus was organic matter produced in great quantities during deposition of the black phyllite and phosphorite sequences in a zone of coastal upwelling. Organic matter accumulation was rapid. Globally, Mn was supplied by overturn of stagnant, metal-rich deep-ocean waters, which were redistributed to areas of coastal upwelling and seaways; that process may have been initiated by latest Proterozoic glaciations which would have promoted density stratification and accumulation and storage of metals. Regionally, Mn was supplied by terrigenous input into the shallow seaway and hydrothermal input into the deeper water parts of that seaway. Locally, Mn sources included leaching and transport of metals from the sediment column. Manganese was stored locally in low-oxygen (not anoxic) seawater prior to Mn-ore formation. The source of the carbon in the Mn carbonates and dolostones was predominantly seawater bicarbonate and secondarily CO2 derived from the oxidation of organic matter in the bacterially mediated diagenetic zone of sulfate reduction.

  16. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    Science.gov (United States)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  17. Source of Ore-Forming Materials of Tongchang Copper Ore Deposit in Southern Shaanxi Province, China%陕南铜厂铜矿床成矿物质来源探讨

    Institute of Scientific and Technical Information of China (English)

    叶霖; 杨玉龙; 高伟; 刘铁庚

    2012-01-01

    albite rocks in the mine. There are two kinds of chalcopyrites with different REE patterns, one is enriched in LREE and the other has relatively flat REE pattern. The pyrite grains hosted in internal and external contact zones of the diorite intrusion have different Co/Ni ratios, suggesting multiple sources of ore-forrning materials. Analyzing on the background values of those ore-forming elements in various geological bodies indicates that ore-forming material is mainly from the spilite and minor from the diorite. Secondly, the chalcopyrite is characterized by obvious negative Eu anomalies and its δEu value is much lower than those of the diorite and spilite. The depletion of Eu is likely related to greisenization and albitization caused by volatile fluids during mineralization. Furthermore, Y/Ho ratios of the chalcopyrite are similar to those of albite rocks, implying the close relationship between copper mineralization and Na replacement. Thirdly, due to the inheritance of the trace elements feature from source of ore-forming mineralizing materials, the Ni and Co content in the chalcopyrite is n-n×10 times than in the pyrite, corresponding to that in Cu - Ni sulfide type deposit and different from that in skarn-type, porphyry-type, volcanic-subvolcanic hydrothermal type as well as VMS Cu deposit. The metallogenic model of Tongchang copper deposit can be listed as following. During the Hercynian period, with the closure, subduction and collision of Mian-Lue ancient oceanic basin, the dutile-brittle thrusting nappe structure and strike-slip fault were formed in Mian-Lue-Ning area. The metasomatism of mixed hydrothermal by regional metamorphic fluid and rainwater, which rich in Na+ , K+ and CO2, resulted in the translation of ore-forming materials (e. G. Cu and Ni) from strata of Guojiagou Group and spilite (and diorite) to form the metallogenic hydrothermal fluid. The hydrothermal fluid was characterized by low temperature and salinity, and enriched in ore

  18. Endogenic Au-Ag polymetallic ore deposits and ore-bearing potentiality of strata

    Institute of Scientific and Technical Information of China (English)

    WANG Baode; NIU Shuyin; SUN Aiqun; XIE Yan; LUO Yi; LIU Hailong; WANG Yanhua

    2010-01-01

    The problem of ore-bearing potentiality of the strata involves metallogenic theory and ore-search orientation. Studies of the spatial distribution of endogenic Au-Ag polymetallic ore deposits in North Hebei indicated that the strata in which ore deposits occurred range in age from Paleozoic, Proterozoic to Mesozoic. In addition the ore deposits are characterized as being strata-bound in nature. The arise and establishment of "extracting" viewpoint may be attributed to the following three reasons: 1) influence by the idea of "ore-source bed"; 2) limitation of analytical techniques in the 1980s' (especially gold element); and 3) a small number of samples (sampling locations were mostly disturbed by mineralization). Studies have shown that ore-forming materials would most probably come from the deep interior of the Earth. Deep-seated ore-bearing materials including Au-Ag polymetals were brought to the shallow levels by way of mantle plume-mantle sub-plume-mantle branch structure multi-stage evolution, finally leading to the formation of ore deposits.

  19. Geological Characteristics of Epithermal Ore Concentrated Areas and Epithermal Ore Deposits in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and tectonics, and discuss the relationship between distributed characteristics of the epithermal ore deposits and ore-control factors in this paper. It is concluded that the conditions, under which the epithermal ore deposits form, are huge thick basement of Proterozoic, long-time and wide-scope developed capping bed and weak magmatic activity. The basement of Proterozoic that enriches volcanic matters and carbon and the carbonaceous-bearing and paleo-pool-bearing capping bed provides main ore source. The large and deep faults and paleopool accordance with gravity anomaly gradient control the distribution of epithermal ore deposits. The lithologic assembles of microclastic rocks and carbonate rocks in the capping bed provide spaces of ore precipitation and create conditions of ore precipitation. The coincidence of many geological factors above forms the epithermal ore concentrated area.

  20. Research of Geochemical Associations of Nephelin Ores

    Science.gov (United States)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  1. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  2. Mechanism of mechanical activation for sulfide ores

    Institute of Scientific and Technical Information of China (English)

    HU Hui-ping; CHEN Qi-yuan; YIN Zhou-lan; HE Yue-hui; HUANG Bai-yun

    2007-01-01

    Structural changes for mechanically activated pyrite, sphalerite, galena and molybdenite with or without the exposure to ambient air, were systematically investigated using X-ray diffraction analysis(XRD), particle size analysis, gravimetrical method, X-ray photo-electron spectroscopy(XPS) and scanning electron microscopy(SEM), respectively. Based on the above structural changes for mechanically activated sulfide ores and related reports by other researchers, several qualitative rules of the mechanisms and the effects of mechanical activation for sulfide ores are obtained. For brittle sulfide ores with thermal instability, and incomplete cleavage plane or extremely incomplete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with thermal instability, and complete cleavage plane, the mechanism of mechanical activation is that a great amount of surface reactive sites are formed, and lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For brittle sulfide ores with excellent thermal stability, and complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation. The effects of mechanical activation are apparent. For sulfide ores with high toughness, good thermal stability and very excellent complete cleavage plane, the mechanism of mechanical activation is that lattice deformation happens during their mechanical activation, but the lattice deformation ratio is very small. The effects of mechanical activation are worst.

  3. How Many Ore-Bearing Asteroids?

    CERN Document Server

    Elvis, Martin

    2013-01-01

    A simple formalism is presented to assess how many asteroids contain ore, i.e. commercially profitable material, and not merely a high concentration of a resource. I apply this formalism to two resource cases: platinum group metals (PGMs) and water. Assuming for now that only Ni-Fe asteroids are of interest for PGMs, then 1% of NEOs are rich in PGMs. The dearth of ultra-low delta-v (= US$1 B and the population of near-Earth objects (NEOs) larger than 100 m diameter is ~20,000 (Mainzer et al. 2011) the total population of PGM ore-bearing NEOs is roughly 10. I stress that this is a conservative and highly uncertain value. For example, an order of magnitude increase in PGM ore-bearing NEOs occurs if delta-v can as large as 5.7 km s-1. Water ore for utilization in space is likely to be found in ~1/1100 NEOs. NEOs as small as 18 m diameter can be water-ore-bodies because of the high richness of water (~20%) expected in ~25% of carbonaceous asteroids, bringing the number of water-ore-bearing NEOs to ~9000 out of th...

  4. Biomining: metal recovery from ores with microorganisms.

    Science.gov (United States)

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  5. PREDICTION OF LOCATION OF HIDDEN ORE DEPOSITS IN THE AGED ORE FIELDS:AN EXAMPLE FROM FENGHUANGSHAN ORE FIELD,TONGLING,CHINA

    Institute of Scientific and Technical Information of China (English)

    LIU; Liang-ming; PENG; Sheng-lin; YIANG; Qun-zhou; SHAO; Yong-jun; WANG; Zhi-qiang

    2001-01-01

    This paper discusses the strategy for successfully predicting the location of potential hidden ore bodies in aged ore field,and presents the result of location prediction of hidden ore bodies in Fenghuangshan ore field,Tongling.Innovative conceptual targeting procedures based on a genetic understanding of mineralization systems,carefully geological investigation and correct deduction,together with new geochemical and geophysical technology and integrating of comprehensive information are all very important for the successful prediction.In the aged Fenghuangshan ore field,through researching by application of the metallogenic theory of polygenetic compound ore deposits and triple-frequency induced polarization method and exploration tectono-geochemical method,we predicted location and quality of hidden ore bodies.According to the prediction,hidden high quality Cu-Au ore bodies of skarn type and porphyry type have been discovered.

  6. Magmatic Conduit Metallogenic System - A New Model for the Origin of Ore-deposits

    Science.gov (United States)

    Su, S.; Tang, Z.; Wu, G.; Deng, J.; Xiao, Q.; Luo, Z.; Cui, Y.

    2013-12-01

    Origin and emplacement processes of ore-deposits connected with intrusions remains poorly understood. Here we propose a new model 'Magmatic Conduit Metallogenic System' to explain the origin of ore-deposits. Magmatic flow (or Melt-fluid flow) bearing metals will finally settle in the conduits at later stage of magma evolved in magma metallogenic system. Magmatic flow (or Melt-fluid flow) bearing metals include many types, such as sulfide melts and iron melts bearing fluids. Conduits will form along the zones of structural weakness, such as fault zone and interface of two different types of rocks. These conduits are usually very complicated in the magmatic system, exemplified by two typical ore-deposits, detailed as follows. The Jinchuan sulfide deposit, located in Gansu Province, China, is the third largest magmatic Cu-Ni Platinum Group Elements (PGE) in the world. There are mainly four orebodies (orebody 58, 24, 1, and 2) from west to east, with Ni/Cu value at 1.24, 1.56, 1.83 and 2.06 respectively; the content of Pt+Pd ranges from 0.4 to 10.3 ppm, with the highest value occurs in the west. This suggests that the direction of the melt flow bearing sulfide is from west to east and the front of the conduit system is in the east part of the deposit. Sulfide segregation in the magmatic chamber or in the conduits might have caused ore content to change in different part of the conduit systems. Another typical example is the Xishimen iron deposit, which is located in the South of Hebei Province, China. It has been considered as a skarn-type iron deposit conventionally. However, many geological evidence suggests that Xishimen iron deposit is a magmatic iron deposit instead. Such evidence includes: 1. The boundaries between iron orebodies and country rocks are obvious, no transitional relationship; 2. Iron ore body injected into the country rocks (including genesis, diorite, and marble); 3. There are some vesicular in the iron ores; 4. Magnetite as an interstitial mineral

  7. Analysis of the Ore-Controlling Structure of Ductile Shear Zone Type Gold Deposit in Southern Beishan Area, Gansu, Northwest China

    Institute of Scientific and Technical Information of China (English)

    Chen Bailin; Wu Ganguo; Ye Dejin; Liu Xiaochun; Shu Bin; Yang Nong

    2007-01-01

    The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt.The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and control the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Compresso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R'-type and T-type ones. (5) Dynamic differentiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming materials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a negative correlation between the gold abundance and susceptibility anisotropy (P) of the altered mylonlte samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.

  8. Geology and D-O-C Isotope Systematics of the Tieluping Silver Deposit,Henan,China:Implications for Ore Genesis

    Institute of Scientific and Technical Information of China (English)

    CHEN Yanjing; Franco PIRAJNO; SUI Yinghui

    2005-01-01

    The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong'er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90‰,δ13Cco2=2.0‰ and δ18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰,δ13Cco2=-1.3‰ and δ18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰,δ13Cco2=0.1‰ and δ18O=2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong'er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ18O and δ13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong'er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous

  9. Contrasting REE Signatures on Manganese Ores of Iron Ore Group in North Orissa, India

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The distribution pattern of Rare Earth Elements (REE) in three categories of manganese ores viz.stratiform, stratabound-replacement, and detrital of Precambrian Iron Ore Group from north Orissa, India was reported.These categories of Mn-ore differed in their major and trace chemistry and exhibited contrasting REE signature.The stratiform ores were relatively enriched in REE content (697 μg·g-1) and their normalized pattern showed both positive Ce and Eu anomalies, whereas the stratabound-replacement types were comparatively depleted in REE content (211 μg·g-1) and showed negative Ce and flat Eu signatures.The detrital categories showed mixed REE pattern.The data plotted in different discrimination diagrams revealed a mixed volcaniclastic and chemogenic source of material for stratiform categories, and LREE (Light Rare Earth Elements) and HREE (Heavy Rare Earth Elements) are contributed by such sources, respectively.In contrast, the stratabound ore bodies were developed during the remobilization of stratiform ores, and associated Mn-containing rocks under supergene condition followed by the redeposition of circulating mineralized colloidal solutions in structurally favorable zones.During this process, some of the constituents were found only in very low concentration within stratabound ores, and this is attributed to their poor leachability/mobility.The detrital ores did not exhibit any significant characteristic in respect of REE as their development was via a complex combination of processes involving weathering, fragmentation, recementation, and burial under soil cover.

  10. Mobility factors of cracked ore in vibrating-ore draw shafts

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; JIANG Li-chun; CHEN Jia-sheng

    2005-01-01

    The mobile factors of cracked ore in vibrating-ore draw shafts were analyzed. The results show that the mobile coefficient of cracked ores will be mainly influenced by the combination of ore physical factors if the structure dimension and parameters of vibrating ore-draw shafts are sure. It decreases with increasing the cohesion, lump content, lump size and powder content and increases with increasing the porosity. The coefficient decreases with increasing the moisture content, but increases after the moisture content reaches a certain value. Uniform grain leads to better mobility, non-uniform grain leads to worse mobility. The value of the mobile coefficient should be in a range of 0.31.1 when designing the vibrating ore-draw shafts. According to correlation degree of grey system theory, the effects of factors on the mobility of cracked ore are given in the weight decreasing consequence as follows: moisture content, lump content, distribution of grain size, lump size, porosity, cohesion and powder ore content. It is unreasonable to neglect any one because the values of their weights are not obvious.

  11. Geological evidence for fluid overpressure, hydraulic fracturing and strong heating during maturation and migration of hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza Province, Argentina

    Science.gov (United States)

    Zanella, Alain; Cobbold, Peter R.; Ruffet, Gilles; Leanza, Hector A.

    2015-10-01

    In the northern Neuquén Basin of Argentina (especially in Mendoza Province), there is strong geological evidence for fluid overpressure in the past. The evidence takes the form of bitumen veins and bedding-parallel veins of fibrous calcite ('beef'). Such veins are widespread in the fold-and-thrust belt of the Malargűe area, where bitumen mining has been active for a century or so. So as to collect information on the development of fluid overpressure in this part of the Neuquén Basin, several old mines were visited and studied in the Malargűe area. Here the bitumen veins have intruded mainly the Late Jurassic to Early Cretaceous Mendoza Group, but also the Late Cretaceous Neuquén Group. The veins have the forms of bedding-parallel sills or dykes and they are especially thick within anticlines, forming saddle-reefs in several places. Beef veins are also numerous in the Malargűe area. They contain bitumen and therefore seem to have formed at the same time as the bitumen veins. Near many outcrops of bitumen and beef, we have found fine-grained volcanic intrusive bodies. The best examples are from the La Valenciana syncline. According to 39Ar-40Ar dating, these bodies are mainly of Mid-Miocene age. More generally, volcanism, deformation and maturation of source rocks seem to have reached a climax in Miocene times, when the subducting Pacific slab became relatively flat.

  12. Mantle Branch Structure in the South-Central Segment of the Da Hinggan Mts., Inner Mongolia and Its Ore-controlling Role

    Institute of Scientific and Technical Information of China (English)

    NIU Shuyin; SUN Aiqun; WANG Baode; NIE Fengjun; JIANG Sihong; SHAO Jian; GUO Lijun; LIU Jianming

    2009-01-01

    Mantle branch structure is the third tectonic unit of multiple evolution of a mantle branch. It is not only the main mechanism of intercontinental orogeny, but also an important ore-forming and ore-control structure. Studies on geotectonic evolution, regional geological characteristics and ore-forming and ore-control structures have shown that since the Mesozoic the Da Hinggan Mts. region has entered a typical intercontinental orogenic stage, and it is closely related to mantle branch activities. The south-central segment of the Da Hinggan Mts. is a typical mantle branch structure and possesses obvious magmatic-metamorphic complexes in the core, detachment slip beds in the periphery and overlapped fault depression basins. Moreover, all of these are the principal factors leading to ore formation and ore control in the region. This paper also further explores the mechanism of mineralization in the south-central segment of the Da Hinggan, summaries the rules of mineralization, puts forward the models of mineralization and points out future ore-exploring orientation.

  13. Ore genesis at the Monterrosas deposit in the Coastal Batholith, Ica, Peru

    Science.gov (United States)

    Sidder, G. B.

    1984-06-01

    Monterosas is a hydrothermal deposit of copper and for that is hosted by gabbro-diorites of the Upper Cretaceous Patap Superunit within the Coastal Batholith of central Peru. The ore body is localized by fractures and splays related to a nearby regional fault and is composed of massive chalcopyrite, magnetite, and pyrite. Ore and alteration minerals such as actinolite, sodic scapolite, epidotes, sphene, magnetite, apatite, tourmaline, chlorites, hematite, and quartz formed dominantly as replacements of magmatic diosside, labradorite-andesine, and ilmenite. Hydrothermal mineralization was characterized by the exchange of major, minor, and trace elements between hot saline fluids and gabbro-diorite wall rocks. Geochemical data suggest that the ore and gangue minerals were deposited at high temperatures from saline fluids derived from a magma. The evidence includes fluid inclusions within gangue quartz that exhibit homogenization temperatures of 400 to 500 C, salinites of 32 to 56 wt percent NaCl and the halite trend, and magmatic like sulfur isotopic compositions that range from 1.6 to 3.3 permit in gyrite and chalcopyrite.

  14. Aluminum substitution in goethite in lake ore

    Directory of Open Access Journals (Sweden)

    Carlson, L.

    1995-06-01

    Full Text Available The extent of substitution of Fe by Al in goethite in 32 lake ore samples collected from 11 lakes in Finland varied between 0 and 23 mol-%. The data indicated a negative relationship between Al-substitution and the particle size of lake ore. Differences in the Al-substitution were apparent between sampling sites, suggesting that kinetic and environmental variation in lake ore formation influences the substitution. Non-substituted goethite is formed in coarse-grained sediments with locally high concentrations of Fe due to iron-rich springs. Unit cell edge lengths and volumes of goethite varied as function of Al-subsitution but deviated from the Vegard relationship towards higher values.

  15. Ore-controlling Factors and a Metallogenic Model for the Xianglushan Tungsten-Ore Field in Northern Jiangxi Province%赣北香炉山钨矿田矿床控制因素及成矿模式

    Institute of Scientific and Technical Information of China (English)

    陈波; 周贤旭

    2012-01-01

    The Xianglushan tungsten-ore field is part of the Jiuling-Zhanggongshan W-Sn metallogenic belt in northern Jiangxi Province. Combining the ore field exploration in recent years, this paper researches the ore-controlling factors on the basis of geological background of this ore field. The result shows that the impure limestone combination in the Upper Sinian and Cambrian strata is closely related to mineralization in the area. Folds are the major controlling structures in the ore field. Faults and interlayer fracture zones control the ore body position. The Yanshanian magmatic activities provided ore -forming material sources and played an important role in the process of ore fluid migration and deposition. The main ore bodies, hosted in the pyroxene -biotite metamorphic belt, are related to greisenization alteration. This article establishes a metallogenetic model for the Xainghushan tungsten ore field. It may have important guiding significance for the prediction of ore deposit and resources prospecting and exploitation. It can be also used as a reference in searching for similar deposits in the southern margin of the Yangtze Plate.%香炉山矿田是赣北九岭—鄣公山钨锡成矿带的组成部分。本文结合近年来矿田的勘查找矿成果,在分析矿田地质背景的基础上,研究了矿床的控矿因素。认为该区震旦系上统和寒武系地层中的不纯灰岩类组合与成矿关系密切,控制矿田的主体构造是褶皱;断裂及层间破碎带控制矿体的定位,燕山期岩浆活动不仅提供成矿物质来源;同时在矿液的运移和淀积过程中发挥了重要作用,主要矿体均赋存在透辉石—黑云母变质带并与云英岩化等蚀变有关,在此基础上建立了成矿模式。对矿田下步的矿床预测和勘查开发具有重要的指导意义。同时,对扬子板块南缘相似类别矿床的找矿工作起着一定的借鉴作用。

  16. Dual origins of Xiaoqinling gold-bearing quartz veins: Fluid inclusion evidence

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fluid inclusion research in Archean metamorphic rocks, Yanshanian granite and gold-bearing quartz veins shows that regional metamorphic fluids are high temperature and high saline, Yanshanian post-granitic fluids are CO2-bearing low saline, and ore-forming fluids are also CO2-rich low saline. In gold-barren/free parts of quartz veins in gold deposits, daughter mineral-bearing high saline inclusions related with metamorphic fluids remained. This proclaims quartz veins hosting gold ores might have been formed in early metamorphism, and overlapped or mineralized by late Yanshanian gold-bearing fluids.

  17. METALLOGENIC SYSTEM OF DACHANG TINPOLYMETALLIC ORE FIELD

    Institute of Scientific and Technical Information of China (English)

    WU Xiang-bin; DAI Ta-gen; WANG Zhi-bin; FANG Sheng-kui

    2001-01-01

    The Dachang tin-polymetallic ore field in northern Guangxi,China,lies in a mid-late Paleozoic rift that borders up the southern boundary of the Jiangnan-Xuefeng Massif.As a giant ore deposit,it deposited in middle of the Nandang-Hechi metallogenic zone.The orehosting strata are of the Devonion,which shows the evident characteristics of polymetallic elements,i.e: ,Sn,Zn,Pb,Sb,As,Cu,Ag,In,Ge,Cd,et al.,and over 1 000 000 t tin reserves.

  18. A new radiation shielding material: Amethyst ore

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay, E-mail: turgaykorkut@hotmail.co [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Korkut, Hatun [Faculty of Science and Art, Department of Physics, Ibrahim Cecen University, Agri (Turkey); Karabulut, Abdulhalik; Budak, Goekhan [Faculty of Science, Department of Physics, Atatuerk University, Erzurum (Turkey)

    2011-01-15

    This paper describes a new radiation shielding material, amethyst ore. We have determined the elemental composition of amethyst using WDXRF spectroscopy technique. To see the shielding capability of amethyst for several photon energies, these results have been used in simulation process by FLUKA Monte Carlo radiation transport code. Linear attenuation coefficients have been calculated according to the simulation results. Then, these values have been compared to a fine shielding concrete material. The results show that amethyst shields more gamma beams than concrete. This investigation is the first study about the radiation shielding properties of amethyst ore.

  19. The non-destructive analysis of fluid inclusions in minerals using the proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G.; Van Achterbergy, E. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Heinrich, C.A. [ETH Zentrum, Zurich, (Switzerland). Department Erdwissenschaften; Mernagh, T.P. [Max-Planck-Institut fuer Chemie (Otto-Hahn-Institut), Mainz (Germany); Zaw, K. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1996-12-31

    The study of ore forming fluids trapped as fluid inclusions in minerals is the key to understanding fluid flow paths at the time of ore formation and to predicting the location of ore bodies within large-scale magmatic hydrothermal systems. The large penetration depths and the predictable nature of MeV proton trajectories and X-ray absorption enables reliable modelling of PIXE yields and the development of standardless quantitative analytical methods. This permits quantitative microanalysis of minerals at ppm levels, and more recently has enabled the development of methods for quantitative trace-element imaging and the quantitative, non-destructive analysis of individual fluid inclusions. This paper reports on recent developments in Proton Microprobe techniques with special emphasis on ore systems and fluid inclusion analysis. 6 refs., 2 figs.

  20. Partitioning properties of rare earth ores in China

    Institute of Scientific and Technical Information of China (English)

    CHI Ru'an; LI Zhongjun; PENG Cui; ZHU Guocai; XU Shengming

    2005-01-01

    The properties of rare earth partitioning in Chinese industrial rare earth ores were analyzed. Rare earth ores can be divided into the single-mineral type ore with bastnaesite, the multi-mineral type ore with bastnaesite and monazite, and the weathering crust type. Both the Bayan Obo rare earth ore and the Zhushan rare earth ore are a kind of mixed ore, consisting of bastnaesite and monazite. Their rare earth partitionings are strongly enriched in light rare earths, where CeO2 is 50% and the light rare earth partitioning is totally over 95%. The Mianning rare earth ore as well as the Weishan rare earth is a kind of rare earth ore only having bastnaesite. Their rare earth partitionings are also strongly enriched in light rare earths,in which CeO2 is 47% and the light rare earth partitioning is totally over 94%. For the weathering crust type rare earth ore,there are the Longnan rare earth ore, the Xunwu rare earth ore, and the middle yttrium and rich europium ore. In the Longnan rare earth ore, which is strongly enriched in heavy rare earths, Y2O3 is 64.83%, and the heavy and light rare earth partitionings are 89.40% and 10.53%, respectively. In the Xunwu rare earth ore, which is strongly enriched in light rare earths, CeO2 is 47.16%, and the light rare earth partitioning is totally 93.25%. Y and Eu are enriched in the middle yttrium and rich europium ore. Its middle rare earth partitioning is totally over 10%, and Eu2O3 and Y2O3 are over 0.5% and 20%,respectively, which are mainly industrial resources of the middle and the heavy rare earths.

  1. Sintering Properties and Optimal Blending Schemes of Iron Ores

    Institute of Scientific and Technical Information of China (English)

    Dauter0liveira; WUSheng—li; DAIYu—ming; XUJian; CHEN Hong

    2012-01-01

    In order to obtain good sintering performance, it is important to understand sintering properties of iron ores. Sintering properties including chemical composition, granulation and high-temperature behaviors of ores from China, Brazil and Australia. Furthermore, several indices were defined to evaluate sintering properties of iron ores. The results show that: for chemical composition, Brazilian ores present high TFe, low SiOz, and low Alz03 con- tent. For granulation, particle diameter ratio of Brazilian ores are high; particle intermediate fraction of Chinese con- centrates are low; and average particle size and clay type index of Australian ores are high. For high-temperature properties, ores from China, Brazil and Australia present different characteristics. Ores from different origins should be mixed together to obtain good high-temperature properties. According to the analysis of each ore's sintering prop- erties, an ore blending scheme (Chinese concentrates 20 ~-1- Brazilian ores 400//oo -k Australian ores 40 ~) was sugges- ted. Moreover, sinter pot test using blending mix was performed, and the results indicated that the ore blending scheme led to good sintering performance and sinter quality.

  2. Making a black shale shine: the interaction of hydrothermal fluids and diagenetic processes

    Science.gov (United States)

    Gleeson, Sarah; Magnall, Joe; Reynolds, Merilie

    2016-04-01

    Hydrothermal fluids are important agents of mass and thermal transfer in the upper crust. This is exemplified by shale-hosted massive sulphide deposits (SHMS), which are anomalous accumulations of Zn and Pb sulphides (± barite) in sedimentary basins created by hydrothermal fluids. These deposits occur in passive margin settings and, typically, there is no direct evidence of magmatic input. Recent studies of Paleozoic deposits in the North American Cordillera (MacMillan Pass and Red Dog Districts) have shown that the deposits are formed in a sub-seafloor setting, where the potential for thermal and chemical gradients is high. Mineralization is characterized by the replacement and displacement of unconsolidated, partially lithified and lithified biosiliceous mudstones (± carbonates), and commonly the sulphide mineralization post-dates, and replaces, bedded barite units in the sediments. The Red Dog District (Alaska, USA) contain some of the largest Zn-Pb deposits ever discovered. The host-rocks are dominantly carbonaceous mudstones, with carbonate units and some radiolarites. The ore forms massive sulphide bodies that replace pyritized mudstones, barite and carbonate units. Lithological and textural relationships provide evidence that much of the ore formed in bioturbated, biosiliceous zones that may have had high primary porosity and/or permeability. Sediment permeability may have been further modified by aging of the silica rich sediments and the dissolution/replacement of carbonate and barite beds. At the Tom and Jason deposits (MacMillan Pass, Yukon) the fault-controlled hydrothermal upflow zone is uniquely preserved as an unequivocal vent complex. Here, the metal bearing fluids are hot (300°C), low salinity (6 wt% NaCl equiv.) and acidic (pH Red Dog deposits, reduced sulphur was generated during open system diagenesis and euxinic conditions were not present at the time of mineralization. Furthermore, the formation of diagenetic barite provided an important

  3. An approach to the metallogenic mechanism of porphyry copper (molybdenum) deposits and porphyry molybdenum (copper) deposits:Influence of evolving processes of ore-forming fluids and tectonic settings%斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨:流体演化及构造背景的影响

    Institute of Scientific and Technical Information of China (English)

    孙燕; 刘建明; 曾庆栋

    2012-01-01

    斑岩型铜(钼)矿床和斑岩型钼(铜)矿床是世界钼资源最主要的来源,提供的钼金属量相当。对比发现,两类矿床在流体来源-演化以及铜和钼的相关性上较为相似,而在铜/钼比值、品位、矿物共生组合、蚀变类型等方面存在差异,特别是斑岩铜(钼)矿初始出溶流体中的Cl-/F-值、硫的总量、SO2/H2S以及H+/K+比斑岩钼(铜)矿高。流体演化过程中有两方面因素可能影响最终沉淀的铜和钼比值(1)铜和钼在流体中的性质差异,如铜以氯或硫络合物形式运移,沉淀受温度影响比较显著,钼以羟基或氯络合物形式存在,沉淀受压力控制比较明显;(2)流体自身氧逸度、pH、硫逸度的变化以及演化路径的改变。然而,和初始流体性质的差异相比,流体演化过程对最终形成矿床类型的影响是有限的,决定矿床形成斑岩铜(钼)矿化还是钼(铜)矿化的因素可能在流体出溶之前的岩浆起源-演化阶段就存在。斑岩铜(钼)矿常分布在偏挤压的陆缘弧和大陆碰撞造山带环境,基底多为新生或加厚的陆壳,斑岩钼(铜)矿多出现在偏伸展的陆内裂谷、弧后及造山后伸展环境,基底可以为老陆壳或新生的陆壳;上述特征反映物源区或岩浆的起源和演化方式不同可能是制约形成斑岩铜(钼)矿还是钼(铜)矿的主要机制。%Porphyry Cu-Mo deposits and porphyry Mo-Cu deposits are the most important sources of world's Mo resources,each providing comparable Mo reserves.Although sharing the same characteristics in fluid source and evolution pattern and Cu-Mo correlation,those two types of deposits demonstrate many differences in Cu/Mo ratio,ore grade,mineral association,hydrothermal alteration type,and especially in primitive fluid composition,with fluids from porphyry Cu-Mo deposits containing more sulfur and showing higher ratios of Cl-/F-,SO2/H2S,as well as H+/ K

  4. Hydrothermal activity in the Lau back-arc basin: Sulfides and water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Y.; Charlou, J.L.; Donval, J.P.; Foucher, J.P. (Institut Francais de Recherche et d' Exploitation de la Mer, Plouzane (France)); von Stackelberg, U.; Wiedicke, M. (Bundesanstalt fur Geowissenschaften und Rohstoffe, Hannover (Germany)); Erzinger, J. (Justus-Liebig-Universitat, Giessen (Germany)); Herzig, P. (Rheinish-Westfalische Technische Hochschule, Aachen (Germany)); Muhe, R. (Universitat Kiel (Germany)); Soakai, S. (Ministry of Lands Survey and Natural Resources, Nuku' Alofa (Tonga)); Whitechurch, H. (Ecole et Observatoire de Physique du Globe de Strasbourg (France))

    1991-04-01

    The submersible Nautile completed 22 dives during the Nautilau cruise (R/V Nadir, April 17-May 10, 1989) for a detailed investigation of the southern Lau basin near Tonga. The objective of the scientific team from France, Germany, and Tonga was to understand the process of sea-floor ore formation associated with hydrothermal circulation along the Valu Fa back-arc ridge behind the Tonga-Kermadec trench. The four diving areas, between lat21{degree}25'S and 22{degree}40'S in water{approximately}2000 m deep, were selected on the basis of results from cruises of the R/V Jean Charcot and R/V Sonne. The Nadir cruise provided proof of hydrothermal activity-in all for areas, over more than 100 km-as indicated by the widespread occurence of hydrothermal deposits and by heat flow, conductivity, and temperature measurements near the sea bottom. The most spectacular findings were high-temperature white and black smokers and associated fauna and ore deposits. Hydrothermal water chemistry and sulfide composition data presented here indicate that this hydrothermal field is very different from the hydrothermal fields in oceanic ridges. This difference is seen in water chemistry of the hydrothermal fluid (pH=2 and high metal content) and the chemical composition of sulfides (enrichment in Ba, As, and Pb).

  5. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China

    Science.gov (United States)

    Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui

    2015-05-01

    The western Qinling, belonging to the western part of the Qinling-Dabie-Sulu orogen between the North China Block and South China Block, is one of the most important gold regions in China. Isotopic dates suggest that the Mesozoic granitoids in the western Qinling region emplaced during the Middle-Late Triassic, and the deposits formed during the Late Triassic. Almost all gold deposits in the western Qinling region are classified as orogenic, Carlin-type, and Carlin-like gold deposits, and they are the products of Qinling Orogenesis caused by the final collision between the North China Block and the South China Block. The early subduction of the Mian-Lue oceanic crust and the latter collision between South Qinling Terrane and the South China Block along the Mian-Lue suture generated lithosphere-scale thermal anomalies to drive orogen-scale hydrothermal systems. The collision-related magmatism also provided heat source for regional ore-forming fluids in the Carlin-like gold deposits. Orogenic gold deposits such as Huachanggou, Liziyuan, and Baguamiao lie between the Shang-Dan and Mian-Lue sutures and are confined to WNW-trending brittle-ductile shear zones in Devonian and Carboniferous greenschist-facies metasedimentary rocks that were highly-deformed and regionally-metamorphosed. These deposits are typical orogenic gold deposits and formed within a Late Triassic age. The deposits show a close relationship between Au and Ag. Ores contain mainly microscopic gold, and minor electrum and visible gold, along with pyrite. The ore-forming fluids were main metamorphic fluids. Intensive tectonic movements caused by orogenesis created fluid-migrating channels for precipitation locations. Although some orogenic gold deposits occur adjacent to granitoids, mineralization is not synchronous with magmatism; that is, the granitoids have no genetic relations to orogenic gold deposits. As ore-forming fluids converged into dilated fractures during the extension stage of orogenesis

  6. Mining and processing of uranium ores at the Streltsovsky ore field

    Energy Technology Data Exchange (ETDEWEB)

    Ovseytchuk, V.A.; Litvinenko, V.G.; Kultishev, V.I. [Joint Stock Company, Priargunsky Industrial Mining and Chemical Union, Krasnokamensk, Chita Region (Russian Federation)

    2000-07-01

    The uranium deposits of Streltsovsky ore fields provide raw materials for Russian nuclear industry. For this region, it is important to achieve continued and increased activities in the recovery of mineral resources of uranium. Similarly, maintaining the mining and processing of uranium ores ensures the supply of raw materials for the nuclear industry. With the current operations, increasing the mining and processing activities would increase the cost of production of uranium oxides due to decreasing grades of ore body. After a review of the existing economic, technological and natural factors, a solution was proposed based on the joint application of underground mining and ore enrichment and processing with the help of hydrometallurgical process, in-situ leaching. Reduction of operation coasts and creation of radiation-safe working conditions could be achieved with the application of these systems involving concrete hardening in the mines and in-situ leaching of ore. With the help of economic-mathematical modeling, methods for rational application of various technologies could be determined and their processing parameters were specified. A reduction of coasts could be obtained and favorable conditions could be established for improvement in the treatment of lower grade ores by heap leaching. Application of purification of mine waters and tailing pond reduces the influence of the radiation and the impact on the natural environment. (author)

  7. Hydrogen Plasma Processing of Iron Ore

    Science.gov (United States)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-03-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  8. Study on the Physical and Chemical Conditions of Ore Formation of Hetai Ductile Shear Zone-Hosted Gold Deposit and Discovery of Melt Inclusions

    Institute of Scientific and Technical Information of China (English)

    李兆麟; 翟伟; 李文; 石贵勇; 文拥军

    2002-01-01

    The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated fault mylonite zone of the Sinian-Silurian metamorphic rock series. In this study there have been discovered melt inclusions, fluid-melt inclusions and organic inclusions in ore-bearing quartz veins of the ore deposit and mylonite for the first time. The homogenization temperatures of the various types of inclusions are 160℃, 180 - 350℃, 530℃ and 870℃ for organic inclusions, liquid inclusions, two-phase immiscible liquid inclusions and melt inclusions, respectively. Ore fluid is categorized as the neutral to basic K+ -Ca2+ -Mg2+ -Na+ - SO2- 4-HCO3-Cl- system. The contents of trace gases follow a descending order of H2O>CO2>CH4>(or < ) H2>CO>C2H2>C2I-I6>O2>N2.The concentrations of K , Ca2 + ,SO2-4,HCO3-,Cl- H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in ores from different levels of the gold deposit. This is significant for deep ore prospecting in the region. Daughter minerals in melt inclusions were analyzed using SEM. Quartz, orthoclase, wollastonite and other silicate minerals were identified. They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins. Sedimentary metamorphic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism, which possess melt-solution characteristics. Ore formation is related to the multi-stage forming process of silicate melt and fluid.

  9. Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon

    Science.gov (United States)

    Cuney, Michel; Mathieu, Régis

    2000-08-01

    The anomalously high Th/La ratio (˜1.14) of the Early Proterozoic silicified sandstones of the Franceville basin (Gabon), compared to Archean and Proterozoic metasedimentary rocks (Th/La ˜0.27), results from extreme light rare earth element (REE) migration during diagenesis. Monazite, which represents the main light REE-bearing phase in the sandstones, was altered by diagenetic brines at 140 °C and 1 kbar. The alteration phase is a microcrystalline Th-silicate phase, indicating low Th solubility at these conditions. Light REEs are simultaneously leached out together with P and U. The increase in Th/La from detrital monazite to residual Th-silicate phase indicates that about 76% of the light REEs were leached out, corresponding to a global amount of 2.01 × 109 metric tons at the scale of the FA Formation in the Franceville basin. Uranium was also leached during monazite alteration and may have contributed significantly to the genesis of the high-grade uranium deposits of the Franceville basin that host the natural nuclear reaction zones.

  10. Algal—Bacterial Fabrics of Ores and Their Genetic Implications in the Longtang Lead—Zinc Deposit at Yanbian,Sichuan

    Institute of Scientific and Technical Information of China (English)

    帅德权; 张寿庭; 等

    1995-01-01

    The Longtang Pb-Zn deposit occurs in the Upper Sinian Guanyinyan For-mation.The host rocks include sandy shale,cherty limestone and dolomitic limestone.The deposit is a typical one of thallogen origin.The mineral assemblage in the ore is made up of sphalerite, galena, pyrite, enargite, tennantite, seligmannite, asphalt, etc.The ore-forming process is possessed of multi-episode and multi-stage characters. Generally, sphalerites exhibit algal stromatolitic, bac-terial and algal colloidal textures, providing evidence for the direct involvement of alage and bacteria in mineralization of ore-forming elements during sedimentary diagenesis. This is the first transmigration of ore-forming elements.However, pyrite embracing bac-teria and galena replacing/filling trichomes are typical organic textures, which are related to organic carbon and bitumen that can adsorb or reduce ore-forming elements. This is an indirect process of organic mineralization ,ie.,the second transmigration of ore-forming elements.&34S values are all greater than 5%o,indicating the dominance of the heavy sulfur isotopes.The ore-forming temperature deduced from fluid inclusions ranges from 100℃to 150℃±.All this goes to show that the Longtang Pb-Zn deposit is of thallogen origin.

  11. Crust-Mantle Structures and Gold Enrichment Mechanism of Mantle Fluid System

    Institute of Scientific and Technical Information of China (English)

    邓军; 孙忠实; 王庆飞; 韦延光

    2003-01-01

    Gold enrichment mechanism of ore-forming fluid is the essence of gold metallization.This paper summarizes the distinguishing symbols of mantle fluid and effect of crust-mantlestructure on fluid movement. Fluid moving processes include osmosis, surge, gas-liquid alterna-tion and mutation of fluid speed. During fluid movement, gold will be enriched gradually. Final-ly, a layered circulatory system is illustrated in this paper.

  12. S- and Sr-isotopic compositions in barite-silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid

    Science.gov (United States)

    Ray, Durbar; Banerjee, Ranadip; Balakrishnan, S.; Paropkari, Anil L.; Mukhopadhyay, Subir

    2016-08-01

    Isotopic ratios of strontium and sulfur in six layers across a horizontal section of a hydrothermal barite-silica chimney from Franklin Seamount of western Woodlark Basin have been investigated. Sr-isotopic ratios in barite samples (87Sr/86Sr = 0.70478-0.70493) are less radiogenic than seawater (87Sr/86Sr = 0.70917) indicating that substantial leaching of sub-seafloor magma was involved in the genesis of hydrothermal fluid. The SO2 of magma likely contributed a considerable amount of lighter S-isotope in fluid and responsible for the formation of barite, which is isotopically lighter (δ34S = 19.4-20.5 ‰) than modern seawater (δ34S ~ 21 ‰). The systematic changes in isotopic compositions across the chimney wall suggest temporal changes in the mode of mineral formation during the growth of the chimney. Enrichment of heavy S- and Sr-isotopes (δ34S = 20.58 ‰; 87Sr/86Sr = 0.70493) in the outermost periphery of the chimney indicates that, at the initial stage of chimney development, there was a significant contribution of seawater sulfate during barite mineralization. Thereafter, thickening of chimney wall occurred due to precipitation of fluid carrying more magmatic components relative to seawater. This led to a gradual enrichment of lighter isotopes (δ34S = 20.42-19.48 ‰; 87Sr/86Sr = 0.70491-0.704787) toward the inner portion of the chimney wall. In contrast, the innermost layer surrounding the fluid conduit is characterized by heavier and more radiogenic isotopes (δ34S = 20.3 ‰; 87Sr/86Sr = 0.7049). This suggests there was increasing influence of percolating seawater on the mineral paragenesis at the waning phase of the chimney development.

  13. Trace and Rare Earth Element Characteristics in Fe-Mn Carbonates Associated with Stratiform Ag-Pb-Zn Mineraliza-tion from the Lengshuikeng Ore District, Jiangxi Province:Implications for Their Genesis and Depositional Environment

    Institute of Scientific and Technical Information of China (English)

    Qing Li; Shaoyong Jiang

    2016-01-01

    We performed a systematic trace and rare earth element analysis for the bedded Fe-Mn carbonate rocks related to the stratiform Ag-Pb-Zn mineralization in the Lengshuikeng ore district, Jiangxi Province, South China. Three types of Fe-Mn carbonates are distinguished, namely, the massive, breccia, and vein types. Both carbonate and silicate fractions in the samples are analyzed for their trace and rare earth element concentrations using a step acid-leaching technique. Our results show that the carbonate fractions in the massive type samples have the lowest REE concentrations but pronounced positive Eu and Y anomalies with Eu/Eu* value from 1.3 to 6.2 and Y/Ho value from 40.1 to 59.5, and similar characteristics are also shown for the silicate fractions in the massive type samples (Eu/Eu*=1.0–6.7, Y/Ho=20.7–55.1). These REE characteristics are similar to those of Sedex type mas-sive sulfide deposits worldwide, and we suggest that the massive type Fe-Mn carbonate rocks were likely formed from an exhalative volcanic-hydrothermal fluid feeding the depression basin of a volcanic lake. The high concentrations of redox-sensitive elements and ratios such as U/Th, V/Cr and V/(V+Ni) indicate a dysoxic environment for the Fe-Mn carbonate deposition. In contrast, the breccia type and vein type Fe-Mn carbonate samples show different trace and rare earth element features from those of massive type samples, and they are more similar to the volcanic rocks and magmatic-hydrothermal fluids in the Lengshuikeng ore district and may reflect strong overprinting from volcanic and sub-volcanic magmatism related to the porphyry type mineralization in the district.

  14. High-rate behaviour of iron ore pellet

    Directory of Open Access Journals (Sweden)

    Gustafsson Gustaf

    2015-01-01

    Full Text Available Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  15. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    Science.gov (United States)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  16. Zinc-germanium ores of the Tres Marias Mine, Chihuahua, Mexico

    Science.gov (United States)

    Saini-Eidukat, Bernhardt; Melcher, Frank; Lodziak, Jerzy

    2009-04-01

    The Tres Marias carbonate-hosted Zn-Ge deposit in Chihuahua, Mexico contains sphalerite with the highest average Ge (960 ppm) and willemite with the highest reported Ge contents of Mississippi-Valley-type (MVT) deposits worldwide. This has prompted current exploration efforts to focus on the deposit as a high-grade source of germanium. The sulfide-rich ore type (>125,000 t at 20% Zn and 250 g/t Ge) contains Fe-rich botryoidal sphalerite (type I) associated with solid hydrocarbons. This type exhibits distinctive intimately intergrown lamellar texture of high-Fe sphalerite (average 9.9 wt.% Fe and 800 ppm Ge) and a somewhat less Fe-rich sphalerite phase (average 5.5 wt.% Fe and 470 ppm Ge). Reddish-brown banded sphalerite (type II, average 5.7 wt.% Fe and 1,320 ppm Ge) is subordinately followed by galena and pyrite. The sulfide-poor “oxidized” zinc ore (up to 50 wt.% Zn; 250 to 300 ppm Ge) is a fine-grained, often friable, alteration product of the sulfide ore and associated limestone and breccia host. While some areas are dominated by carbonates and sulfates, others are enriched in silicates such as hemimorphite and willemite. The gangue assemblage includes goethite, hematite, and amorphous silica or quartz. Minor wulfenite, greenockite, cinnabar, and descloizite also occur. Willemite occurs as interstitial replacement of sphalerite and fracture fillings in the oxidized ore and can be unusually rich in Pb (up to 2.0 wt.%) and Ge (up to 4,000 ppm). Oscillatory zonation reflects trace element incorporation into willemite from the oxidation of primary Ge-bearing sphalerite and galena by siliceous aqueous fluids. The Tres Marias deposit has hybrid characteristics consisting of a primary low-temperature MVT Ge-rich Zn-Pb sulfide ore body, overprinted by Ge-rich hemimorphite, willemite, and Fe oxide mineralization.

  17. Hydraulic Conductivity of Compacted Laterite Treated with Iron Ore Tailings

    Directory of Open Access Journals (Sweden)

    Umar Sa’eed Yusuf

    2016-01-01

    Full Text Available The objective of this study was to investigate the effect of iron ore tailings (IOT on hydraulic conductivity of compacted laterite. The IOT conforms to ASTM C 618-15 Type F designations. In the present study, soil was admixed with 0–20% IOT and compacted at moulding water content ranging from 10 to 25% using four types of compactive efforts. Hydraulic conductivities of the compacted soil-IOT mixtures were determined using deionized water and municipal solid waste leachate as the permeant fluids, respectively. Deionized water was the reference permeant fluid. Results of this study showed that hydraulic conductivity decreased with increase in IOT content as a result of improvement in mechanical properties of the soil. Permeation of the soil-IOT mixtures with leachate caused the hydraulic conductivity to drop to less than 1 × 10−9 m/s especially at higher compactive efforts. Also, bioclogging of the soil pores due to accumulation of biomass from bacteria and yeast present in the leachate tends to significantly reduce the hydraulic conductivity. From an economic point of view, it has been found from the results of this study that soil specimens treated with up to 20% IOT and compacted at the British Standard Light (BSL compactive effort met the maximum regulatory hydraulic conductivity of less than or equal to 1 × 10−9 m/s for hydraulic barrier system.

  18. Thermochemical sulphate reduction and Huayuan lead-zinc ore deposit in Hunan, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In recent years, some arguments with regard to the organicmineralization of MVT lead-zinc ore deposit are focused on the thermochemical sulphate reduction in the presence of organic matter. Based on the research into the organic geochemistry and C, O, S isotopes of mineralized host rocks, mineral gas fluid inclusion and solid bitumen from Huayuan (W. Hunan, China) lead-zinc ore deposit formed in the algal limestones of Qingxudong formation, Lower Cambrian, the authors consider that a lot of organic matter occurred and participated in mineralization. The organic matter from different sources participated in the mineralization with two main forms: thermochemical sul-phate reduction and thermal degradation which supplied abundant H2S for the precipitation.

  19. Comparison of fluid geochemistry and microbiology of multiple organic-rich reservoirs in the Illinois Basin, USA: Evidence for controls on methanogenesis and microbial transport

    Science.gov (United States)

    Schlegel, Melissa E.; McIntosh, Jennifer C.; Bates, Brittney L.; Kirk, Matthew F.; Martini, Anna M.

    2011-04-01

    Microbial methane in sedimentary basins comprises approximately 20% of global natural gas resources, yet little is known about the environmental requirements and metabolic rates of these subsurface microbial communities. The Illinois Basin, located in the midcontinent of the United States, is an ideal location to investigate hydrogeochemical factors controlling methanogenesis as microbial methane accumulations occur: (1) in three organic-rich reservoirs of different geologic ages and organic matter types - Upper Devonian New Albany Shale (up to 900 m depth), Pennsylvanian coals (up to 600 m depth), and Quaternary glacial sediments (shallow aquifers); (2) across steep salinity gradients; and (3) with variable concentrations of SO42-. For all three organic-rich reservoirs aqueous geochemical conditions are favorable for microbial methanogenesis, with near neutral pH, SO42- concentrations methanogenic systems. Additionally, similar methanogenic communities are present in all three reservoirs with comparable cell counts (8.69E3-2.58E6 cells/mL). TRFLP results show low numbers of archaea species with only two dominant groups of base pairs in coals, shale, and limestone aquifers. These results compare favorably with other methanogen-containing deep subsurface environments. Individual hydrogeochemical parameters that have a Spearman correlation coefficient greater than 0.3 to variations in methanogenic species include stable isotopes of water (δ 18O and δD), type of substrate (i.e. coals versus shale), pH, and Cl - concentration. The matching of variations between methanogenic TRFLP data and conservative tracers suggests that deep circulation of meteoric waters influenced archaeal communities in the Illinois Basin. In addition, coalification and burial estimates suggest that in the study area, coals and shale reservoirs were previously sterilized (>80 °C in nutrient poor environments), necessitating the re-introduction of microbes into the subsurface via groundwater

  20. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite

  1. Evaluating the Consequences of Edifice Instability-Related Processes in Hydrothermal Ore Genesis at Composite Volcanoes

    Science.gov (United States)

    Szakacs, A.

    2009-05-01

    Composite volcanoes intrinsically evolve toward instability, which is resolved through sudden (e.g. flank/edifice failure) or gradual (e.g. volcano-basement interaction) processes. They commonly host hydrothermal systems and related ore deposits within their edifices and shallow basement. The nature and extent of the influence instability-related processes exert on these hydrothermal systems and ore genesis are as yet poorly understood. Short-term effects are basically related to sudden depressurization of the system. The key factors determining the response of the hydrothermal system are its depth and maturity, and amount of depressurization. Deep excavation will lead to evisceration of the edifice-hosted hydrothermal system, dispersion of its volatiles in the atmosphere and incorporation of solid-phase components in the resulting debris avalanche deposit (DAD). When mature, such a system may provide DAD-hosted ore deposits. The fate of the deeper, basement-hosted hydrothermal system depends on its maturity. The evolution of an immature system will be aborted as a consequence of premature depressurization-driven boiling, and no ore-grade mineralization forms. Mature systems, however, will benefit from pressure drop and induced boiling by massive deposition of pressure-sensitive ore minerals and formation of high-grade ore. Long-range effects of edifice-failure are related to increase of the meteoric input into the hydrothermal system due to the formation of a large depression and reorganization of the surface hydrologic regime. Shift from high-T vapor-dominated regime to low-T dilute hydrothermal regime is its expected outcome. The influence of gradual release of edifice instability by volcano spreading and related phenomena on the hydrothermal system has not been studied so far. Deformation induced in both edifice and basement would result in change of fluid pathways according to the shift of local stress regimes between compressional and tensional, in turn

  2. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis

    Directory of Open Access Journals (Sweden)

    Hong-Rui Fan

    2016-05-01

    minerals. Fluids involving in the REE-Nb-Fe mineralization at Bayan Obo might be REE-F-CO2-NaCl-H2O system. The presence of REE-carbonates as an abundant solid in the ores shows that the original ore-forming fluids are very rich in REE, and therefore, have the potential to produce economic REE ores at Bayan Obo. The Bayan Obo deposit is a product of mantle-derived carbonatitic magmatism at ca. 1400 Ma, which was likely related to the breakup of Columbia. Some remobilization of REE occurred due to subduction of the Palaeo-Asian oceanic plate during the Silurian, forming weak vein-like mineralization.

  3. [Spectral characteristics and implications of quartz from Heliao lead-zinc polymetallic ore district in the south of Qinzhou-Hangzhou joint belt].

    Science.gov (United States)

    Lü, Wen-Chao; Yang, Zhi-Jun; Zhou, Yong-Zhang; Li, Hong-Zhong; Zeng, Xiang-Qing; Chen, Qing; Liang, Jin; Zeng, Chang-Yu

    2013-05-01

    The XRD, FTIR and Raman spectrum were employed to study the characters of quartz from three types of rock samples, which are mineralized rock sample, near ore body rock sample and far away from ore body rock sample in Heliao lead-zinc polymetallic ore district. The research shows that the quartz in the mineralized rock and far away from ore body rock is pure, while the quartz in near ore body rock contains a small amount of impurities. But such small amounts of impurities did not cause apparent change in the quartz lattice parameters. From far away from ore body rock-->near ore body rock-->mineralized rock, the crystallinity and order degree of quartz are higher and higher. And the quartz in the mineralized rock has a trend to change into low symmetry quartz. It's a unique to mineralized rock that the quartz's absorption peak at 1 050 cm(-1) was split into two strongest ones. It can be used as the signs of whether exists mineralization. The cause for the quartz microstructure changes may be related to the activities of late mineralized hydrothermal fluids. Late hydrothermal influence was very weak to the quartz far away from ore body rock. And through the impact of the multi-stage hydrothermal effect, the quartz in mineralized rock may be purified by recrystallization and structural adjustment. However the quartz in near ore body rock didn't have enough hydrothermal influence, so it's not pure. Genealogy research technology is a useful technique for in-depth exploration of study area mineralization process and metallogenic regularity.

  4. Vertical mill simulation applied to iron ores

    Directory of Open Access Journals (Sweden)

    Douglas Batista Mazzinghy

    2015-04-01

    Full Text Available The application of vertical mills in regrind circuits is consolidated. This type of mill is now attracting interest in primary grinding applications, due to its higher efficiency when compared to ball mills, which are usually used at this stage. In this study, a coarse sample of iron ore was tested in a pilot scale grinding circuit with a vertical mill. Other three samples of pellet feed had already been tested with the methodology used in this study. The sample of coarse iron ore was characterized in laboratory tests carried out in a small batch ball mill. Selection and breakage function parameters were determined from the laboratory tests. The parameters were then used for simulating the pilot scale tests using Modsim™ software. The model previously implemented in Modsim™ has been successfully applied to represent the vertical mill operated with different ores. The simulations produced particle size distributions that were very close to the actual size distributions, and the predictions were accomplished only by imputing the calibrated parameters from the batch tests, the power draw and the feed size distribution of the pilot tests. The methodology is therefore useful for scale-up and simulation of vertical mills, only requiring laboratory tests that can be carried out in standard laboratory batch ball mills with small amounts of samples.

  5. Thermal Fluid Flow in Sedimentary Basins and Its Significance to Pool-form ing Dynamics%沉积盆地热流体活动及其成藏动力学意义

    Institute of Scientific and Technical Information of China (English)

    叶加仁; 杨香华

    2001-01-01

    Based on the analysis and some typical data of petroleum basins in China and world, it discusses some important expression forms and majo r research methods of thermal fluid flow, and emphasized its enhancement to orga nic-matter maturation and hydrocarbon generation in this paper. According to t he major controlling factor, passage of fluid migration, to thermal fluid flow, it divides thermal fluid flow into four types: (1)lithologic-type, (2)conformity -t ype, (3)fault-type and (4) compound-type. Finally, it also discusses the sign ifi cance of thermal fluid flow to pool-forming dynamics:(1)provides a new ex planation way to abnormal vitrinite reflectance, which can enlarge the fields of hydrocarbon exploration and development; (2)provides some important evidences to research of hydrocarbon migration, which support to choose exploration targ e ts; and (3)provides means to study diagnesis and porosity evolution of reservo ir rocks, which can be used to predict the development units of deep reservoir s.%在分析、总结国内外一些含油气盆地的典型资料的基础上,论述了热流体活动的若干重要表现形式及主要研究方法,强调了热流体活动对有机质热演化和油气生成的强化作用。根据控制热流体活动的主要因素之一--流体活动通道,将沉积盆地内的热流体活动类型划分为岩性型、不整合型、断裂型和复合型四大类。最后,探讨了热流体活动对成藏动力学研究的重要意义,认为其可为有机质演化异常提供新的成因解释途径,扩大油气勘探领域;为油气运移的研究提供线索,优化勘探目标选择;为成岩-孔隙演化的动态研究提供依据,预测深部储层发育层段。

  6. Constraining the period of hydrocarbon accumulation by fluid inclusion, molecular biomarker and ESR dating techniques: A case study from the Tazhong 45 well, Tarim Basin%塔中45井油气藏成藏期的厘定

    Institute of Scientific and Technical Information of China (English)

    张鼐; 张宝收; 赵瑞华; 杨晓光; 南燕云; 赵澄雨

    2012-01-01

    在塔中45井的萤石中发现两期烃包裹体:第Ⅰ期烃包裹体为产于萤石中的发黄色弱荧光的原生液相烃包裹体,沿萤石生长纹分布,与萤石同生;第Ⅱ期烃包裹体为产于萤石中的发蓝白色强荧光的次生气液相烃包裹体,分布在萤石的愈合缝中,晚于萤石形成.烃包裹体组分分析和赋存矿物测年结果表明,第Ⅰ期油来源于中上奥陶统,是一期成熟油的充注;第Ⅱ期油应形成于喜马拉雅期,主要来源于高成熟的寒武系烃源岩,是由寒武系原油裂解后再一次大规模轻质油侵入而形成的,第Ⅱ期是奥陶系萤石层段的油气藏主要成藏期.%Two distinct generations of hydrocarbon inclusions are found in vein fluorite from the Ordovician carbonate reservoirs in the Tazhong 45 well, Tarim Basin. The first generation of inclusions is characterized by weak yellow fluorescence, liquid phase, and distribution along the fluorite growth bands. The second generation of inclusions is of strong white fluorescence, gas-liquid phase, and occurrence in the suture lines of fluorite. Based on an integrated investigation of trapping temperature, formation water salinity, molecular compositions of the aqueous and petroleum fluid inclusions, and isotope and ESR dating of the host minerals, it is concluded that: (1) the fluorite vein was formed by a deep fluoride-rich fluid brought into the Ordovician carbonate formation through deep faults during the Permian; (2) the fluoride-rich fluid was a low temperature hydrothermal fluid probably generated from an acidic magmatic activity in the region during the Late Hercynian; (3) the charge of mature liquid hydrocarbons from the Middle-Upper Ordovician source rock was concomitant with the fluorite crystallization in the Tazhong 45 carbonate reservoirs, which resulted in the formation of the first generation of petroleum inclusions in the fluorite growth bands; (4) the second generation of hydrocarbon inclusions

  7. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    Science.gov (United States)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  8. Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany

    Science.gov (United States)

    Walter, Benjamin F.; Burisch, Mathias; Marks, Michael A. W.; Markl, Gregor

    2017-02-01

    Mixing of sedimentary formation fluids with basement-derived brines is an important mechanism for the formation of hydrothermal veins. We focus on the sources of the sediment-derived fluid component in ore-forming processes and present a comprehensive fluid inclusion study on 84 Jurassic hydrothermal veins from the Schwarzwald mining district (SW Germany). Our data derive from about 2300 fluid inclusions and reveal differences in the average fluid composition between the northern, central, and southern Schwarzwald. Fluids from the northern and southern Schwarzwald are characterised by high salinities (18-26 wt% NaCl+CaCl2), low Ca/(Ca+Na) mole ratios (0.1-0.4), and variable Cl/Br mass ratios (30-1140). In contrast, fluids from the central Schwarzwald show even higher salinities (23-27 wt% NaCl+CaCl2), higher Ca/(Ca+Na) mole ratios (0.2-0.9), and less variable Cl/Br mass ratios (40-130). These fluid compositions correlate with the nature and thickness of the now eroded sedimentary cover rocks. Compared to the northern and the southern Schwarzwald, where halite precipitation occurred during the Middle Triassic, the sedimentary basin in the central Schwarzwald was relatively shallow at this time and no halite was precipitated. Accordingly, Cl/Br ratios of fluids from the central Schwarzwald provide no evidence for the reaction of a sedimentary brine with halite, whereas those from the northern and southern Schwarzwald do. Instead, elevated Ca/(Ca+Na), high SO4 contents, and relatively low Cl/Br imply the presence of a gypsum dissolution brine during vein formation in the central Schwarzwald which agrees with the reconstructed regional Triassic geology. Hence, the information archived in fluid inclusions from hydrothermal veins in the crystalline basement has the potential for reconstructing sedimentary rocks in the former overburden.

  9. Genesis of Gold- Silver Deposits in Qingchengzi Ore Field

    Institute of Scientific and Technical Information of China (English)

    Wei Min

    2001-01-01

    The gold - silver complex ore field of Qingchengzi is located in Liaohe group of Liaodong rift. The gold - silver ore bodies mainly lie in Dashiqiao group and Gaixian group, which provides ore - forming materials for the mineralization. For taking place multi - period and multi - stage magmatic activities, the ore - forming materials in the formation had had dynamothermal metamorphism for a long time and enriched and formed ore bodies after magmatism in Indo- Chinese and Yanshan epoch. The ore bodies are controlled by stratigraphic formation and stored in the interformational faults and schistosity belts. Silicalite is the most important indicator for searching them. Although the Pb - Zn and the gold - silver deposits are the same series of mineralized products, their positions are different, resulting from the differences of elements nature and mineralized conditions. The gold silver deposits belong to strata - bound and hysterogenetic mesothermal - epithermal deposit.

  10. EXPLANATORY MODEL OF SPOT PRICE OF IRON ORE

    Directory of Open Access Journals (Sweden)

    Juan Enrique Villalva A.

    2015-11-01

    Full Text Available The objective of this study was to construct an explanatory model of the spot price of iron ore in the international market. For this, the method of multiple linear regressions was used. As a dependent variable, the spot price of iron ore (62% Fe China Tianjin port was taken, between 2010 and 2013. As independents variables were taken seven variables of international iron ore market. The resulting model includes variables: Iron ore inventory in Chinese ports, Baltic Dry Index (BDI, Iron ore exports from Brazil & Australia and Chinese Rebar Steel Price, as explanatory variables of the behavior of the spot price of iron ore in the international market. The model has an adjusted coefficient of determination R2 of 0.90, and was validated by comparing its predictions vs. known values of 2014.

  11. Study on the Physical and Chemical Conditions of Ore Formation of Hetai Ductile Shear Zone—Hosted Gold Deposit and Discovery of Melt Inclusions

    Institute of Scientific and Technical Information of China (English)

    李兆麟; 翟伟; 等

    2002-01-01

    The Hetai ductile shear zone-hosted gold deposit occurs in the deep-seated falut mylonite zone of the Sinian-Silurian metamorphic rock series.In this study there have been discovered melt inclusions,fluid-melt inclusions and organic inclusions in ore-bearing ruartz veins of the ore deposit and mylonite for the first time.The homogenization temperatures of the various types of inclusions are 160℃,180-350℃,530℃and 870℃ for organic inclusions,liquid inclsions two-phase immiscible liquid inclusions and melt inclusion,respectively,Ore fluid is categoriezed as the neutral to basic K+-Ca2+-Mg2+-Na+-SO42--HCO3-Cl- system.The contents of trace gases follow a descending order of H2O>CO2>CH4>(orCO>C2H2>C2H6>O2>N2.The concentrations of K+,Ca2+,SO42-,HCO3-,Cl-,H2O and C2H2 in fluid inclusions are related to the contents of gold and the Au/Ag ratios in from different levels of the gold deposit.This is significant for deep ore prospecting in the region.Daughter minerals in melt inclusions were analyzed using SEM.Quartz,orthoclase,wollastonite and other silicate minerals were identified.They were formed in different mineral assemblages.This analysis further proves the existence of melt inclusions in ore veins.Sedimentary metamophic rocks could form silicate melts during metamorphic anatexis and dynamic metamorphism,which possess melt-soulution characteristics.Ore formation is related to the multi-stage forming process of silicate melt and fluid.

  12. Radon emanation from low-grade uranium ore.

    Science.gov (United States)

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p 222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body.

  13. Pros and Cons,Iron Ore Price Hikes

    Institute of Scientific and Technical Information of China (English)

    Tang Jingtao

    2008-01-01

    @@ Backaround Baostecl and CVRD reached an agreement on the price hikes of 65 percent and 71 percent in February.And in June Baosteel and Rio Tinto which is the largest iron ore company in Australia reached an agreement on the price hikes of 79.88 percent on the iron ore fines and 96.5 percent on the iron ore lumps.This is the first time that two kinds of the iron ore price grew at the same time in Asian market.

  14. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  15. Helium-argon isotopic tracing for the Pb-Zn-Ag polymetallic ore deposits in the central-south segment of the Da Hinggan Ling Range

    Institute of Scientific and Technical Information of China (English)

    WANG Baode; NIU Shuyin; SUN Aiqun; HU Huabin; LIU Yaming; GUO Lijun; WANG Shuo

    2008-01-01

    In recent years big strides have been made in the exploration of ores in the central-south segment of the Da Hinggan Ling Range, though some debates still exist on the metallogenesis and sources of ore-forming materials.Pyrite and other sulfides in direct relation to the Pb-Zn-Ag ore deposits were chosen for the He and Ar isotopic analysis of ore-forming fluids, and the first He and Ar isotope data have been obtained from the study region.3He/4He ratios in 14 samples collected from 7 mining districts are 2.17x10-6-12.52×10-6, averaging 6.86×10-6 and their R/Ra ratios are 1.56-9.01 Ra, averaging 4.37 Ra. By projecting the data points onto the 3He-4He concentrations diagram, all the points fall near the mantle helium area. The calculated mantle-source helium ratios are within the range of 19.58%-76.96%, with an average of 49.52%. Argon isotopic characteristics are close to those of mantle source, indicating that the ore-forming material was transport upwards via the multi-stage evolution of mantle plume and concentrated as ores in the favorable loci of mantle branch structures.

  16. Remobilisation features and structural control on ore grade distribution at the Konkola stratiform Cu-Co ore deposit, Zambia

    OpenAIRE

    Torremans, K.; Gauquie, J.; Boyce, A. J.; Barrie, C.D.; Sikazwe, O.; Muchez, P.H.

    2013-01-01

    The Konkola deposit is a high grade stratiform Cu–Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper–cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irre...

  17. Deep ancient fluids in the continental crust and their impact on near-surface economic, environmental and biological systems.

    Science.gov (United States)

    Ballentine, Christopher; Warr, Oliver; Sutcliffe, Chelsea; McDermott, Jill; Fellowes, Jonathan; Holland, Greg; Mabry, Jennifer; Sherwood Lollar, Barbara

    2016-04-01

    With a few exceptions the mobility of water, oil and gas, provides for an ephemeral view of subsurface fluids relative to geological or planetary timescales. Aquifers supplying water for drinking and irrigation have mean residence ages from hundreds to tens of thousands of years; Hydrothermal systems can be active for hundreds of thousands to millions of years forming key mineral reserves; Sedimentary basin formation expels fluids during compaction and generates oil and gas on times scales of millions to hundreds of millions of years. Within these exemplar systems biological activity can play a crucial role by mediating system oxidation state: releasing arsenic into shallow groundwaters; precipitating ore bodies; generating methane; and biodegrading oil. It is becoming increasingly apparent that fluids resident in fractures and porespace in the crystalline basement underlying many of these systems can have a mean residence time that ranges from tens to hundreds of millions of years [1,2] to billions of years [3,4]. These fluids are highly saline and trace element rich; they are abundant in nitrogen, hydrogen, methane and helium and can contain microbes that have uniquely adapted to these isolated environments [5]. We are actively expanding discovery of sites with fluids exhibiting extreme age and have recently shown that these systems contribute to half of the terrestrial hydrogen production; a key component in biosphere energy and carbon cycles [6]. Tectonic or thermal release of these fluids can result in helium deposits; possible ore body generation and the inoculation of near-surface systems with microbial biota protected in the deep surface; the controls and rate of fluid release to shallow systems can fundamentally change the nature of some shallow systems. These deep ancient fluids represent a little tapped scientific resource for understanding how life survives and evolves in such isolation, how life is transported and communicates in extremis together and

  18. Isotope Geochemistry of Gold Ore Deposits in the Gezhen Shear Zone, Qiongxi, Hainan Island

    Institute of Scientific and Technical Information of China (English)

    夏勇

    2004-01-01

    Gold deposits hosted in the Gezhen shear zone at Qingxi, Hainan Island occur in the Precambrian metamorphic rock series and are regionally developed in the N-E direction along the tectonic zone. From northeast to southwest are distributed the Tuwaishan-Baoban gold mining district, the Erjia gold mining district and the Bumo gold mining district, making up the most industrially important gold metallogenesis zone on the Hainan Island. Isotope geochemical studies of the typical gold deposits in this metallogenesis zone indicate that their ore-forming materials stemmed largely from the Baoban Group migmatite series, though the involvement of some plutonic materials could not be ruled out. The ore fluids are the mixture of migmatitized hydrothermal solutions and meteoric waters in addition to the involvement of local magmatic hydrothermal solutions. The superimposition of plutonic materials and magmatic hydrothermal solutions is controlled by the deformation environment of the shear zone and later magmatic activities. Obvious variations are noticed in isotopic composition in the region studied, probably related to tectonic deformation, metamorphism and other evolutionary characteristics. This study is of great significance in understanding the relationship between the shear zone and gold metallogenesis, the rules of gold metallogenesis and gold ore prognosis.

  19. Geochemistry and S, Pb isotope of the Yangla copper deposit, western Yunnan, China: Implication for ore genesis

    Science.gov (United States)

    Yang, Xi-An; Liu, Jia-Jun; Cao, Ye; Han, Si-Yu; Gao, Bing-yu; Wang, Huan; Liu, Yue-Dong

    2012-07-01

    The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationships between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3 ± 3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

  20. Origin of Gold—Bearing Fluid and Its Initiative Localization Mechanism in Xiadian Gold Deposit,Shandong Province

    Institute of Scientific and Technical Information of China (English)

    邓军; 孙忠实; 等

    2002-01-01

    The composition of quartz inclusions and trace elements in ore indicate that gold-bearing fluid in the Xiadian gold deposit,Shandong Province,stemmed from both mantle and magma,belonging to a composite origin.Based on theoretical analysis and high temperature and high pressure experimental studies,gold-bearing fluid initiative localization mechanism and the forming environment of ore-host rocks are discussed in the present paper.The composite fluid extracted gold from rocks because of its expanding and injecting forces and injecting forces and flew through ore-conducive structures,leading to the breakup of rocks.The generation of ore-host faults and the precipitation of gold-bearing fluid occurred almost simultaneously.This study provides fur-ther information about the relationships between gold ore veins and basic-ultrabasic vein rocks and intermediate vein rocks,the spatial distribution of gold ore veins and the rules governing the migration of ore fluids.

  1. Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores

    Institute of Scientific and Technical Information of China (English)

    P. A. OLUBAMBI; S. NDLOVU; J. H. POTGIETER; J. O. BORODE

    2008-01-01

    The role that ore mineralogy plays in understanding and optimizing the conditions favouring the bioleaching of complex sulphide ore containing high amounts of siderite was studied using mixed cultures of mesophilic bacteria, with emphasis on zinc,lead and copper recoveries. The influencing parameters investigated include particle size, stirring speed, volume of inoculum, pulp density, and pH. The results show that the mixed mesophilic cultures can extract about two and a half times the amount of zinc than copper over an equivalent period of time. The highest zinc and copper recoveries of 89.2% and 36.4% respectively are obtained at particle size of 75 μm, stirring speed of 150 r/min, pulp density of 10% (w/v), 12% (v/v) inoculum concentration, and a pH of 1.6. Variations in elemental composition within different particle sizes resulting from the mineralogy of the ore account for the bioleaching behaviour at varying particle sizes. The dissolution at varying pulp density, volume of inoculum, solution pH and the low solution potential observed are also influenced by ore mineralogy.

  2. Hydrocarbon-mediated gold and uranium concentration in the Witwatersrand Basin, South Africa

    Science.gov (United States)

    Fuchs, Sebastian; Williams-Jones, Anthony; Schumann, Dirk; Couillard, Martin; Murray, Andrew

    2016-04-01

    The Witwatersrand deposits in South Africa represent the largest repository of gold in the World and a major resource of uranium. The genesis of the gold and uranium ores in the quartz-pebble conglomerates (reefs), however, is still a matter of considerable discussion. Opinion has been divided over whether they represent paleo-placers that have been partly remobilised by hydrothermal fluids or if the mineralisation is entirely hydrothermal in origin. In addition, recently published models have proposed a syngenetic origin for the gold involving bacterially-mediated precipitation from meteoric water and shallow seawater. An important feature of the gold and uranium mineralisation in the reefs is the strong spatial association with organic matter. In some reefs, up to 70% of the gold and almost the entire uranium resource is spatially associated with pyrobitumen seams, suggesting a genetic relationship of the gold-uranium mineralisation with hydrocarbons. Here we report results of a study of the Carbon Leader Reef, using high-resolution scanning and transmission electron microscopy (SEM / TEM) and LA-ICP-MS that provide new insights into the role of hydrocarbons in the concentration of the gold and uranium. A detailed examination revealed gold monocrystals containing numerous rounded or elliptical inclusions filled with pyrobitumen. We interpret these inclusions to record the crystallisation of the gold around droplets of a hydrocarbon liquid that migrated through the Witwatersrand basin, and was converted to pyrobitumen by being heated. We propose that the gold was transported in a hydrothermal fluid as a bisulphide complex and that this fluid mixed with the hydrocarbon liquid to form a water-oil emulsion. The interaction between the two fluids caused a sharp reduction in fO2 at the water-oil interface, which destabilised the gold-bisulphide complexes, causing gold monocrystals to precipitate around the oil droplets. In contrast to the gold, uraninite, the principal

  3. Project StORe: Social Science report

    OpenAIRE

    Burton, Guy

    2006-01-01

    There was widespread support across the social science research community regarding the aims of the StORe Project Nearly half of social science respondents claimed that both source-to-output and out-put-to source repositories would offer a ‘significant advantage to my work’; a third in both cases claimed it would be ‘useful but not of major significance’ Postgraduate students were generally more enthusiastic about source-to-output and output-to-source repositories than acade...

  4. Bioprocessing of ores: Application to space resources

    Science.gov (United States)

    Johansson, Karl R.

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  5. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia

    Science.gov (United States)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.

    2008-06-01

    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  6. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo-U deposit, Transbaikalia

    Science.gov (United States)

    Petrov, V. A.; Rebetsky, Yu. L.; Poluektov, V. V.; Burmistrov, A. A.

    2015-07-01

    The Antei deposit of the southeastern Transbaikalian region is one of the largest uranium mines in Russia. It is hosted by the Late Paleozoic granitic basement of the Streltsovskaya caldera and was formed as a result of Late Mesozoic tectonothermal activity. Vein and stockwork-disseminated molybdenum-uranium mineralization at this deposit is controlled by zones of intense hydrothermal alteration, cataclasis, brecciation, and intense fracturing along steeply dipping faults, which acted as conduits for mineralizing fluids and hosts to the ore bodies. The upper edge of the ore-bearing zone is located at a depth of 400 m, and its lower edge was intersected at a depth of 1300 m from the day surface. The conditions of ore localization were determined using structural-geological and petrophysical studies coupled with numerical modeling of the effects of gravitational body forces at purely elastic and postcritical elastoplastic deformational stages. The dynamics of the tectonic stress field in the rock massif was reconstructed using the results of mapping of morphogenetic and kinematic characteristics of fault and fracture systems, as well as data on petrography and mineralogy of rocks and vein-filling material. It was shown that the fault framework of the deposit was formed in four tectonic stages, three of which took place in the geologic past and one of which reflects recent geologic history. Each tectonic stage was characterized by different parameters of the tectonic stress-strain field, fault kinematics, and conditions of mineral formation. The following types of metasomatic rocks are recognized within the deposit: high-temperature K-feldspar rocks and albitites (formed during the Late Paleozoic as the primary structural elements of a granitic massif) and Late Mesozoic low-temperature preore (hydromicatized rocks), synore (hematite, albite, chlorite, and quartz) and postore (kaolinite-smectite) rocks. The following petrophysical parameters were determined for all

  7. Mixed State and High Effective Utilization of Pilbara Blending Iron Ore Powder%Mixed State and High Effective Utilization of Pilbara Blending Iron Ore Powder

    Institute of Scientific and Technical Information of China (English)

    CAO Yong-guo; WU Sheng-li; HAN Hong-liang; WANG Hong-wei; XUE Fang; LIU Xiao-qin

    2011-01-01

    Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.

  8. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    Science.gov (United States)

    von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.

    2016-11-01

    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean

  9. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  10. PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chong-bin; B.E.Hobbs; H.B.Muhlhaus; A.Ord

    2001-01-01

    @@ Over the past five years,we have been making efforts to develop a practical and predictive tool to explore for giant ore deposits in hydrothermal systems.Towards this goal,a significant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems.

  11. PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Chong-bin; B.E.Hobbs; H.B.Muhlhaus; A.Ord

    2001-01-01

    Over the past five years,we have been making efforts to develop a practical and predictive tool to explore for giant ore deposits in hydrothermal systems.Towards this goal,a significant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems.……

  12. Experimental study of ore gabbro liquid immiscibility

    Institute of Scientific and Technical Information of China (English)

    SANG; Zunan; XIA; Bin; ZHOU; Yongsheng; JIN; Zhenmin

    2005-01-01

    In this paper, the authors present the results of a preliminary experimental study on partial melting of fine-grained gabbro, Panzhihua, Sichuan Province, China. Experiments were conducted under (confining) pressure ranging from 450 to 500 MPa and temperature of 900-1200℃. The results show that the initial melt is distributed along grain boundaries and triple junctions. Liquid immiscibility phenomena are noted in the melt with two compositional different melt phases, i.e. matrix and sphere phases. The matrix phase is relatively rich in Si, Al and K, and is depleted in Mg, Fe, Ca, Na and Ti, whereas the sphere phase shows opposite trends. The calculation of the melt free energy indicates that the liquid immiscibility is governed by the rule of thermodynamics, as the liquid immiscibility would result in the decrease in free energy of the melt system. The field relationships suggest that the liquid immiscibility may have played an important role in the generation of ore magma of Panzhihua V-Ti magnetite ore deposit. This study thus provides experimental constraints on the mechanism of the formation of V-Ti magnetite deposite.

  13. The research and application of the fast drilling fluid technology in Hailaer Basin%快速钻井液技术在海拉尔盆地的应用研究

    Institute of Scientific and Technical Information of China (English)

    杨宇平; 金波; 蒋欢; 于兴东; 张坤; 谈心; 孙金声; 江四清

    2011-01-01

    In Hailaer area there exists serious mud-making in the borehole upper formation and mud ring is easily formed to give rise to serious sticking. The poor drillability and strong abrasiveness in the middle and lower formations lead to the low penetration rate as well as long drilling cycles. It is easy for the well wall to collapse and blocks to fall seriously in the lower formation. All these seriously affect the progress of exploration and development in Hailaer. Therefore, the fast drilling fluid . Technology was adopted to conduct the field test to improve the penetration rate in Well 126-88 of Hailaer Basin. The result showed that the fast drilling agent had a desirable compatibility with the amphoteric compound ion drilling fluid system applied on the spot. The agent had no effect on the normal performance and rheological property of the drilling fluid, thus effectively solving the problems of the instability of the well wall and the sticking in the process of tripping. The borehole of the test section was regular, the average penetration rate was improved by over 23.31% and the drilling cycle was shortened effectively.%海拉尔区域井中上部地层造浆严重,易形成泥环,导致严重阻卡,中下部地层可钻性差,研磨性强,导致钻井机械钻速低、钻井周期长,下部地层易发生井壁垮塌、严重掉块等现象,严重影响海拉尔区域勘探开发进程.为此,采用快速钻井液技术在海拉尔盆地乌126-88井进行了现场提高机械钻速试验.结果表明,快速钻井剂与现场所用的两性复合离子钻井液体系具有良好的配伍性,对钻井液常规性能及流变性没有影响,且有效解决了井壁失稳以及起下钻过程中的阻卡问题,试验井段井径规则,平均机械钻速提高23.31%以上,有效缩短了钻井周期.

  14. Excited response of granular ores in vibrating field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dynamical theory was utilized to probe into the law of the excited response of granular ores generated by the exciting action of exciter and the influence of wave propagation in vibrating field. The exciter with double axes was presented as an example, and the principle of exciter and its mathematical expression of the excitation force were given. The granular ores have viscidity and damping speciality, on the basis of which the motion equation of excited response of ores was established and the approximate expression of mode-displacement by harmonic excitation and the steady effect solution of coordinate response were deduced. Utilizing the step-by-step integration method, the recursion relation matrix of displacement, velocity and acceleration of the excited response of ores were obtained, and the computational flow chart and a computational example were given. The results show that the excited response can change the dynamical character and the flowing characteristic of granular ores.

  15. Summary of the mineralogy of the Colorado Plateau uranium ores

    Science.gov (United States)

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  16. High-temperature performance prediction of iron ore fines and the ore-blending programming problem in sintering

    Institute of Scientific and Technical Information of China (English)

    Bing-ji Yan; Jian-liang Zhang; Hong-wei Guo; Ling-kun Chen; Wei Li

    2014-01-01

    The high-temperature performance of iron ore fines is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effec-tive than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced.

  17. Ceramic colorant from untreated iron ore residue.

    Science.gov (United States)

    Pereira, Oscar Costa; Bernardin, Adriano Michael

    2012-09-30

    This work deals with the development of a ceramic colorant for glazes from an untreated iron ore residue. 6 mass% of the residue was added in suspensions (1.80 g/cm(3) density and 30s viscosity) of white, transparent and matte glazes, which were applied as thin layers (0.5mm) on engobeb and not fired ceramic tiles. The tiles were fired in laboratory roller kiln in a cycle of 35 min and maximum temperatures between 1050 and 1180°C. The residue and glazes were characterized by chemical (XRF) and thermal (DTA and optical dilatometry) analyses, and the glazed tiles by colorimetric and XRD analyses. The results showed that the colorant embedded in the transparent glaze results in a reddish glaze (like pine nut) suitable for the ceramic roof tile industry. For the matte and white glazes, the residue has changed the color of the tiles with temperature.

  18. Improved polynomial remainder sequences for Ore polynomials.

    Science.gov (United States)

    Jaroschek, Maximilian

    2013-11-01

    Polynomial remainder sequences contain the intermediate results of the Euclidean algorithm when applied to (non-)commutative polynomials. The running time of the algorithm is dependent on the size of the coefficients of the remainders. Different ways have been studied to make these as small as possible. The subresultant sequence of two polynomials is a polynomial remainder sequence in which the size of the coefficients is optimal in the generic case, but when taking the input from applications, the coefficients are often larger than necessary. We generalize two improvements of the subresultant sequence to Ore polynomials and derive a new bound for the minimal coefficient size. Our approach also yields a new proof for the results in the commutative case, providing a new point of view on the origin of the extraneous factors of the coefficients.

  19. Exact linear modeling using Ore algebras

    CERN Document Server

    Schindelar, Kristina; Zerz, Eva

    2010-01-01

    Linear exact modeling is a problem coming from system identification: Given a set of observed trajectories, the goal is find a model (usually, a system of partial differential and/or difference equations) that explains the data as precisely as possible. The case of operators with constant coefficients is well studied and known in the systems theoretic literature, whereas the operators with varying coefficients were addressed only recently. This question can be tackled either using Gr\\"obner bases for modules over Ore algebras or by following the ideas from differential algebra and computing in commutative rings. In this paper, we present algorithmic methods to compute "most powerful unfalsified models" (MPUM) and their counterparts with variable coefficients (VMPUM) for polynomial and polynomial-exponential signals. We also study the structural properties of the resulting models, discuss computer algebraic techniques behind algorithms and provide several examples.

  20. Rigid Ideals and Radicals of Ore Extensions

    Institute of Scientific and Technical Information of China (English)

    Chan Yong Hong; Tai Keun Kwak; S. Tariq Rizvi

    2005-01-01

    For an endomorphism σ of a ring R, Krempa called σ a rigid endomorphism if aσ(a) = 0 implies a= 0 for a ∈ R. A ring R is called rigid if there exists a rigid endomorphism of R. In this paper, we extend the σ-rigid property of a ring R to an ideal of R. For a σ-ideal Ⅰ of a ring R, we call Ⅰ a σ-rigid ideal if aσ(a) ∈Ⅰ implies a ∈Ⅰ for a ∈ R. We characterize σ-rigid ideals and study related properties. The connections of the prime radical and the upper nil radical of R with the prime radical and the upper nil radical of the Ore extension R[x; σ, δ], respectively, are also investigated.

  1. Direct Biohydrometallurgical Extraction of Iron from Ore

    Energy Technology Data Exchange (ETDEWEB)

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  2. Super-Enrichment of Dispersed Elements and Associated Ore Deposits

    Institute of Scientific and Technical Information of China (English)

    高振敏; 姚林波

    2004-01-01

    Dispersed elements do not always occur as associated elements in the ore deposits of other elements. Instead, they can constitute independent ore deposits. The focus of this paper is placed on the mechanism of super-enrichment of the four dispersed elements TI, Ge, Se, and Te under favorable geological conditions, where their enrichment coefficients are so high that their abundances can reach n×103-n×104, sometimes even up to n×106 times (e. g. Te) those of the crust. As a result, they can form their independent ore deposits. Studies have shown that such independent ore deposits are mostly distributed in the southwestern part of China, most of which belong to low-temperature ore deposits, ranging in age from Yanshanian to Himalayan(Cretaceous to Cenozoic), with a significant time gap with the host strata. Moreover, this paper also deals with the existing forms (as independent minerals, occurring isomorphously and being adsorbed) of the dispersed elements in those independent ore deposits. The discovery of independent ore deposits of dispersed elements is a great breakthrough in the study of dispersed element metallogenesis.

  3. Leaching hydrodynamics of weathered elution-deposited rare earth ore

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Both porosity (φ) and permeability (k) of the weathered elution-deposited rare earth ores are basic hydrodynamic parameters for RE leaching. The relationship between k and φ of two typical rare earth ores of South China in the packed bed was investigated by measuring the flow (Q) under various leaching pressure difference (Δp). The experimental results show that the relationship between k and φ is unique, moreover the relationship between Q and Δp is in accord with the Darcy's law. The effects of the type of ores, the leaching reagents and its concentration, the granule ore size on the leaching permeability have also been investigated. It is demonstrated that kH (for heavy RE ore, kH=35.98 mm2)>kM-H (for middle-heavy RE ore,kM-H=28.50 mm2), whereas k(NH4NO3)>k(NH4Cl)>k[(NH4)2SO4], and the k value increases with increasing leaching reagents concentration and granule ore size(k0.60~0.75 mm=99.96 mm2,k0.125~0.60 mm=11.83 mm2, k0.074~0.125 mm=0.84 mm2).

  4. Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shihuiding Formation in the Shilu Fe-Co-Cu ore district, Hainan Province, South China

    Science.gov (United States)

    Yu, Liangliang; Zou, Shaohao; Cai, Jianxin; Xu, Deru; Zou, Fenghui; Wang, Zhilin; Wu, Chuanjun; Liu, Meng

    2016-04-01

    The Shihuiding Formation, a subordinate succession hosting the Fe-Co-Cu ores, is a suite of Neoproterozoic terrigenous clastic rocks occurring in the Shilu Fe-Co-Cu ore district of the Hainan Island, South China. Integrated petrographical, geochemical, and Nd isotopic analyses have been carried out on 23 sandstone specimens of the Shihuiding Formation in order to understand their provenance and the tectonic setting of their deposition. The samples can be divided into two groups, quartzose sandstones (13 samples) and ferruginous sandstones (10 samples). The ferruginous sandstones have average SiO2 and Fetotal contents of 77.23 wt.% and 18.09 wt.%, respectively, and this contrasts with the higher average SiO2 (94.04 wt.%) and lower Fetotal (2.67 wt.%) contents of the quartzose sandstones. The bivariant Th/Sc and Zr/Sc ratios indicate a predominantly recycled sedimentary provenance, and the low to medium degrees of weathering are commonly indicated by an average chemical index of maturity (CIM) of 81 and an average chemical index of alteration (CIA) of 68. The Shihuiding Formation sandstones have REE contents of 21-249 ppm, with LREE/HREE = 9.18 and δEu = 0.67. The εNd (970 Ma) values of -5.7 to -3.4, and model (TDM) ages of 2099-1773 Ma are compatible with a source mainly from the Paleo- to Mesoproterozoic Baoban Group, a suite of metamorphosed sedimentary rocks intruded by ca. 1450 Ma granites. Quantitative provenance modeling indicates that the Shihuiding Formation sandstones are best modeled with a mixture of 29% plagioclase-amphibole gneiss (29 P), 38% quartz-muscovite schist (38 Q), and 33% granite (33 G) detritus. Mixing the εNd values of the sandstones, calculated at 970 Ma, indicates that the sediment received 22-47% (average 34%) of its detritus from the Baoban Group quartz-muscovite schists. Components from hydrothermal fluids may also have been involved during deposition of the Shihuiding Formation sandstones, as revealed by a bivariant Al/(Al + Fe + Mn

  5. Amniotic fluid

    Science.gov (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  6. ANALYSIS ON THE ORE-FORMING CONDITIONS OF THE SANDSTONE TYPE URANIUM DEPOSIT IN THE NORTHEAST UPLIFT OF SONGLIAO BASIN%松辽盆地东北隆起区砂岩型铀矿成矿条件分析

    Institute of Scientific and Technical Information of China (English)

    杨海波; 钟延秋

    2011-01-01

    运用水成矿理论,对松辽盆地东北隆起区砂岩型铀矿成矿的铀源、构造、沉积、水文地质、古气候等条件进行了分析,认为该区具有良好的砂岩型铀矿成矿地质条件.具体表现在区内存在受构造运动影响地层隆起遭受剥蚀的构造天窗,在盆地边缘发育向南西倾斜的斜坡带;有利铀成矿的河流相、三角洲相砂体发育;泥岩-砂岩-泥岩结构层发育良好,有含水透水层和隔水层;补-径-排机制较完善,水动力条件较好,具有渗入型自流水盆地特征.该区具有良好的勘探前景.%With the theory of hydrogenic uranium deposit, the conditions of uranium source, geological structure, hydrology, sedimentation and paleo-climate for the metallogenesis of sandstone type uranium deposits in the northeast uplift of Songliao Basin are analyzed. The following geological conditions are considered favorable for the metallogenesis of sandstone type uranium deposits in this area: Influenced by tectonic movements, stratum uplifting and erosion, a structural inlier is formed in the area; A SW-trending slope belt is developed in the margin of the basin; The well developed sand bodies of fluvial facies and delta facies are deposited; an interlayer zone of mudstone-sandstone-mudstone is developed with permeable bed and impermeable bed; The supply-passage-discharge system is complete with favorable hydraulic condition and the characteristics of secondary seeping artesian basin. As a result, the prospects of uranium in the northeast uplift of Songliao Basin are encouraging.

  7. Gold-silver-tellurium mineral assemblages in different ore styles of the Southern Urals VHMS deposits

    Science.gov (United States)

    Maslennikov, V. V.; Zaykov, V. V.; Maslennikova, S. P.; Tesalina, S. G.; Herrington, R. J.; Buschmann, B.; Becker, K.; Petersen, S.; Orgeval, J. J.; Leistel, M.

    2003-04-01

    VMS deposits of the South Urals generally show a continuum in degradation and reworking ranging from pristine steep-sided hydrothermal sulphide mounds to deposits dominated by layered strata of clastic sulphides. Four different deposits with varying degrees of degradation in order of increased reworking: (Yaman-Kasy longrightarrow Molodezhnoe longrightarrow Alexandrinskoe longrightarrow Balta-Tau) have been ranged. The influence of sulphide mound destruction and of sea-floor alteration on mineral assemblages was investigated In the pristine Yaman-Kasy sulphide mound gold and silver occur as altaite+tellurium+hessite-stuetzite+sylvanite and later galena+native gold+pyrite assemblages in chalcopyrite+isocubanite-rich linings of former chimney conduits. Chalcopyrite-dominated conduit fragments in clastic ore facies contain native tellurium+gold intergrowths. In the weakly reworked Molodezhnoe deposit gold-silver assemblages only occur in sea-floor altered clastic sulphides on the slope of massive sulphide mounds in bornite- and tennantite-rich ores in association with Cu-Ag sulfides such as jalpaite, mckinstryite, and stromeyerite and rare Au-Ag-tellurides (petzite). The Alexandrinskoe deposit is dominated by clastic ores and here native gold and rare hessite occur together with galena in tennantite-sphalerite-dominated veins of the footwall as well as in drusy sphalerite forming conduits of vent chimneys. An assemblage of electrum+galena+tennantite was observed in secondary chalcopyrite in the outer walls of chimneys. Native gold+stromeyerite are common in bornite-rich clastic sulphides while an assemblage of Ag-sulphosalts+electrum is common in barite-rich ores. In the reworked Balta-Tau deposit Ag-sulphosalts+electrum-kustelite occur often together with tennantite+galena+barite banded ores. Gold-silver-telluride mineralisation in these VMS deposits changes with degree of reworking from Au-tellurides, and native gold+galena+pyrite in pristine sulphide mounds to

  8. Silver-cobalt mineralization in the Upper Seymchan ore cluster, Northeastern Russia

    Science.gov (United States)

    Goryachev, N. A.; Gamyanin, G. N.; Prokof'ev, V. Yu.; Savva, N. E.; Velivetskaya, T. A.; Ignat'ev, A. V.

    2014-09-01

    Canyon Complex and enriched in the light isotope in its oxygen isotopic composition. The mineralization in the Upper Seymchan ore cluster, which is genetically linked to the Early Cretaceous calc-alkaline dike suite pertaining to the period of postcollision late orogenic extension, is formed from magmatic fluids diluted with meteoric water (salinity reaches 20 wt % NaCl equiv) at temperatures varying from 400-380°C to 220-150°C and under a pressure of 970 to 60 bar. The direct vertical mineral zoning is expressed in the change of mineral species with depth and in variable compositions and properties of particular minerals.

  9. Tourmaline as a recorder of ore-forming processes

    Science.gov (United States)

    Slack, J.F.; Trumbull, R.B.

    2011-01-01

    Tourmaline occurs in diverse types of hydrothermal mineral deposits and can be used to constrain the nature and evolution of ore-forming fl uids. Because of its broad range in composition and retention of chemical and isotopic signatures, tourmaline may be the only robust recorder of original mineralizing processes in some deposits. Microtextures and in situ analysis of compositional and isotopic variations in ore-related tourmaline provide valuable insights into hydrothermal systems in seafl oor, sedimentary, magmatic, and metamorphic environments. Deciphering the hydrothermal record in tourmaline also holds promise for aiding exploration programs in the search for new ore deposits.

  10. Start of exploration and mining of uranium ores in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Mikolay, I.; Szomolanyi, G. (Mecseki Ercbanyaszati Vallalat, Pecs II (Hungary))

    1983-09-01

    The mining of uranium ores is the youngest branch in the history of the Hungarian ore mining. The exploration for uranium ores started in Hungary in the decade from 1947, using simple methods at the beginning to apply more developed technologies later on. From the year 1952 Soviet geologists and geophysicists joined the explorations using the most advanced instruments, in co-operation with the Hungarian experts. From 1953 explorations and developments have been concentrated on the SW area of Mountain Mecsek so that by 1957 the preliminary conditions of a successful Hungarian uranium mining were established.

  11. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of...

  12. 40 CFR 440.10 - Applicability; description of the iron ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... ore subcategory. 440.10 Section 440.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.10 Applicability; description of the iron ore subcategory. The provisions of this subpart...

  13. 40 CFR 440.90 - Applicability; description of the antimony ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... antimony ore subcategory. 440.90 Section 440.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.90 Applicability; description of the antimony ore subcategory. The provisions of...

  14. 40 CFR 440.20 - Applicability; description of the aluminum ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... aluminum ore subcategory. 440.20 Section 440.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.20 Applicability; description of the aluminum ore subcategory. The provisions of...

  15. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... titanium ore subcategory. 440.50 Section 440.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.50 Applicability; description of the titanium ore subcategory. The provisions of...

  16. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions of this...

  17. 40 CFR 440.40 - Applicability; description of the mercury ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... mercury ore subcategory. 440.40 Section 440.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.40 Applicability; description of the mercury ore subcategory. The provisions of subpart...

  18. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of...

  19. Tectonic Dynamic Metallization of Silver-Gold Hydrothermal Fluids in Proterozoic Gneiss Terrene Shear Zones, Suichang, Zhejiang, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Suichang mine is the largest silicified vein-type silver-gold mineralization system in Southeast China, whose ore bodies are controlled by shear zones developing in Lower Proterozoic gneiss terrene with initial migmatization, which is covered by Upper Jurassic and Lower Cretaceous volcanic rock system and cut by acidic igneous veins of Jurassic and Cretaceous. The conclusions are as follows: (1) The ore-forming fluid is defined as superhigh tectonic-metamorphic fluid on the base of: ① δ(D)-δ(18O) values; ② fluid inclusions; ③ trace elements of pyrite from ores. (2) The shear zone silicified orebodies occurred in Proterozoic, Jurassic and Cretaceous, which have been transformed in part by ore-bearing comb quartz vein of volcanism.

  20. Release of beryllium into artificial airway epithelial lining fluid.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2012-01-01

    Inhaled beryllium particles that deposit in the lung airway lining fluid may dissolve and interact with immune-competent cells resulting in sensitization. As such, solubilization of 17 beryllium-containing materials (ore, hydroxide, metal, oxide, alloys, and process intermediates) was investigated using artificial human airway epithelial lining fluid. The maximum beryllium release in 7 days was 11.78% (from a beryl ore melter dust), although release from most materials was beryllium ions may be released in the respiratory tract via dissolution in airway lining fluid. Beryllium-containing particles that deposit in the respiratory tract dissolve in artificial lung epithelial lining fluid, thereby providing ions for absorption in the lung and interaction with immune-competent cells in the respiratory tract.

  1. Mineralogy and fluid inclusion studies in kalchoye Copper- gold deposit, East of Esfahan

    Directory of Open Access Journals (Sweden)

    Rezvan Mehvary

    2009-09-01

    Full Text Available Kalchoye Copper-gold deposit is located about 110 kilometers east of Esfahan province and within the Eocene volcano sedimentary rocks. Sandy tuff and andesite lava are important members of this complex.The form of mineralization in area is vein and veinlet and quartz as the main gangue phase. The main ore minerals are chalcopyrite, chalcocite, galena and weathered minerals such as goethite, iron oxides, malachite and azurite. Studies in area indicate that ore mineralization Kalchoye is low sulfide, quartz type of hydrothermal ore deposits and results of thermometry studies on quartz minerals low- medium fluid with low potential mineralization is responsible for mineralization in this area.

  2. Studies on Sulfating Roasting Process for Mianning Bastnasite and Baotou Mixed RE Concentrate Ore

    Institute of Scientific and Technical Information of China (English)

    Miao Guangli

    2004-01-01

    Some processes of sulfating roasting and water leaching of crude Mianning RE concentrate ore, of fine Mianning RE concentrate ore, of Baotou RE concentrate ore and of their mixture were investigated.The result shows that the mixture of Mianning and Baotou RE concentrate ore has the optimum leaching rate and rate of recovery when the mixture ratio is 1:4.The recovery rate of the mixture is higher by 14.76% than that of crude Mianning RE concentrate ore, by 5.0 % than that of Mianning fine RE concentrate ore and by 2.4 % than that of Baotou RE concentrate ore.

  3. Ore-bearing Formations and Mineral Resource Prospects of the Peripheral Areas of the Tarim Block

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The tectonic development of the Tarim block has experienced four stages, i. e. Earth's core accretion and block formation in the Precambrian, margin splitting, opening-closing and piecing up in the Early Palaeozoic, rift formation and plate unification in the Late Palaeozoic, and basin-mountain coupling and landform shaping in the Meso-Cenozoic, forming six ore-bearing formations and ore deposits of various genetic types in the Tianshan Mountains, Kunlun Mountains and Altun Mountains. In the peripheral areas of Tarim there are four giant intercontinental metallogenic belts passing through, the Central Tianshan and southwestern Tianshan belts in the former USSR and the Qinling-Qilian-Kunlun and Palaeo-Tethys belts in China. According to the macro-analysis on the nearly one thousand known deposits (occurrences) and geophysical-geochemical anomalies, and the information from reconnaissance in some areas, the region has very good prospects for mineral resources. Some of the metallogenic belts may well become the reserve bases for exploration of mineral resources in China.

  4. Mathematical models of hydrocyclone performance in various copper ores preparation circuits

    Directory of Open Access Journals (Sweden)

    Niedoba Tomasz

    2016-01-01

    Full Text Available Copper ores located in the Lubin-Glogow Copper Basin contain three main lithological fractions: sandstone, carbonate and shale. This fact is the basic problem of organization and conducting ore preparation to flotation. The existing circuit of feed preparation contains (in ZG Rudna five classification nodes of hydrocyclones which fit for various purposes. The elaboration of concept of monitoring work of these nodes should be based on appropriate mathematical models of process. It was decided that either regressive or non-dimensional models that is classification according to Svarovsky, and particularly Plitt’s, will be suitable, in the aspects of d50 and partition sharpness. Errors resulting from determination of the features being part of the equations were also important. In this paper the errors were divided into technical and technological. The issue of experiments organization (mineralogical investigation connected with each classification node was also addressed. It is obvious that each classification node must obtain its characteristics because of various comminution products directed to classification.

  5. 安徽池州许桥银矿地质特征及矿区深部找矿方向%Geological features of the Xuqiao silver ore deposit and downward ore-prospecting direction in the ore district,Chizhou,Anhui

    Institute of Scientific and Technical Information of China (English)

    韩长生; 钟国雄

    2013-01-01

    The Xuqiao silver ore deposit is situated in the southeastern part of the Anqing-Guichi mining camp in the mid-lower Yangtze River reaches metallogenetic belt,with silver reserve up to a medium size,mineralization being host-ed in watershed quartz diorite,mainly stratoid ore body occurring in the interlayer fractures of the Ordovician Lunshan Formation and Tangshan Formation. Ore minerals include pyrite,sphalerite,galena,tetrahedrite,chalcopyrite,argentite, natural silver;gangue minerals are quartz and carbonate minerals;ore fabrics are substantially euhedral-anhedral,metaso-matic,sparsely disseminated and stockworked;wall rock alteration is dominated by silication,carbonatation,skarniza-tion and chloritization. The deposit has two mineralization epochs: hydrothermal epoch and supergene epoch,and the former is further divided into three stages,i.e.,skarn stage,quartz-sulfide stage and carbonate-sulfide stage;ore-forming fluid is predominantly magmatic hydrothermal fluid in the early period,and joined by precipitation later. Ore-forming material is mainly derived from magmatic hydrothermal fluid,with some contribution from strata. Ore formed at mid-low temperature(208~259℃)leading to a mid-low hydrothermal silver polymetallic deposit and giving clues for deep-seated ore prospecting in the ore district.%  许桥银矿床位于长江中下游成矿带安庆-贵池矿集区东南部,矿床银储量达到中型规模,成矿岩体为分水岭石英闪长岩,矿体主要呈似层状赋存于分水岭岩体北东侧奥陶系仑山组、汤山组地层层间裂隙中;矿石矿物主要为黄铁矿、闪锌矿、方铅矿、黝铜矿、黄铜矿、辉银矿、自然银,脉石矿物为石英、碳酸盐矿物;矿石组构以自形-他形晶结构、交代结构、稀疏浸染状构造和网脉状构造为主;围岩蚀变类型主要有硅化、碳酸盐化、矽卡岩化、绿泥石化等;许桥银矿床成矿作用经历了两个成矿期:热液期

  6. Experimental study on preferential solution flow during dump leaching of low-grade ores

    Institute of Scientific and Technical Information of China (English)

    YIN Sheng-hua; WU Ai-xiang; SU Yong-ding; ZHANG Jie

    2007-01-01

    The phenomenon of preferential solution flow during dump leaching of low-grade ores was studied. The formative mechanism of preferential solution flow was investigated through analyzing the relationship between permeability and ore diameter,and the relationship between surface tension and ore diameter. The preferential solution flow happened within the fine ore area when the dump was unsaturated. And it could happen within the coarse ore area when the dump became saturated. The results of experiment show that the outflow of coarse ore area increases sharply with higher applied rate. The outflow of fine ore area is greater than that of coarse ore area when the applied rate is below 3.2 L/min, and the preferential solution flow happens in fine ore area. But the preferential solution flow happens in coarse ore area when the applied rate is higher than 3.2 L/min. The result of the experiment is consistent with the mechanism analyzing.

  7. Ore mineralogy of the Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil and implications for ore-forming processes

    Science.gov (United States)

    Berni, Gabriel V.; Heinrich, Christoph A.; Lobato, Lydia M.; Wall, Vic

    2016-08-01

    Serra Pelada is a world-class hydrothermal Au-Pd-Pt deposit located at the eastern border of the Amazon craton, northern Brazil. The rocks at Serra Pelada have experienced intense tropical weathering for about 70 Ma, but drill core samples preserve the primary mineralogy and hydrothermal alteration features, with extreme grades of Au, Pd and Pt individually reaching hundreds of parts per million (ppm) by weight. Mineralization at Serra Pelada occurs in hydrothermally altered metasiltstones and dolomitic metasandstones at the hinge zone of a recumbent syncline, comprising zones of hematite, chlorite-carbon, argillic, and siliceous alteration. The main hydrothermal gangue minerals are quartz, kaolinite, sericite, amesite, hematite, monazite, florencite and variable amounts of highly reflective carbonaceous matter. Hydrothermal carbon input is evident from precipitated carbon occurring along crenulation planes and veinlets associated with the precious metals. Ore and accessory minerals include a variety of sulphide, selenide, arsenide, sulphate and oxide minerals, including gold with variable metal contents, palladian gold, fischesserite, sudovikovite, sperrylite, selenian braggite, isomertieite, mertieite-II and secondary Au-Pt-Pd alloys. The composition of fischesserite varies from the ideal formula (Ag3AuSe2) towards a more Ag-rich composition, indicating a disordered solid solution form that is stable only above 260 °C, consistent with the high thermal maturity of associated carbonaceous matter approaching graphite. Primary ore and gangue minerals at Serra Pelada comprise a suite of elements that are best transported in oxidising conditions and precipitated upon reduction. This suggests that fluid mixing between a highly oxidised (metal carrier) and a reduced fluid was a key process for high-grade noble metal precipitation at Serra Pelada.

  8. Microstructure of bentonite in iron ore green pellets.

    Science.gov (United States)

    Bhuiyan, Iftekhar U; Mouzon, Johanne; Schröppel, Birgit; Kaech, Andres; Dobryden, Illia; Forsmo, Seija P E; Hedlund, Jonas

    2014-02-01

    Sodium-activated calcium bentonite is used as a binder in iron ore pellets and is known to increase strength of both wet and dry iron ore green pellets. In this article, the microstructure of bentonite in magnetite pellets is revealed for the first time using scanning electron microscopy. The microstructure of bentonite in wet and dry iron ore pellets, as well as in distilled water, was imaged by various imaging techniques (e.g., imaging at low voltage with monochromatic and decelerated beam or low loss backscattered electrons) and cryogenic methods (i.e., high pressure freezing and plunge freezing in liquid ethane). In wet iron ore green pellets, clay tactoids (stacks of parallel primary clay platelets) were very well dispersed and formed a voluminous network occupying the space available between mineral particles. When the pellet was dried, bentonite was drawn to the contact points between the particles and formed solid bridges, which impart strength to the solid compact.

  9. ITABIRITE IRON ORE CONCENTRATION BY PNEUMATIC FLOTATION CELL

    Directory of Open Access Journals (Sweden)

    Angelo Quintiliano Nunes da Silva

    2015-06-01

    Full Text Available The main iron ore processing plants in Brazil operate through reverse cationic flotation. Many studies have been conducted in order to improve flotation efficiency by optimization process variables. The pneumatic flotation cell stands out due to the simplicity to and to the intense contact particle/bubble promoted by the pulp feeding system. In this study, laboratory scale and pilot were conducted using a sample of itabirite iron ore. The objectives are evaluating the performance of this device using low grade iron ore, and drawing a comparison with laboratory scale tests on conventional flotation cell. The results indicate the potential application of pneumatic flotation cell to the ore tested. Adjustments in the feed particle size and process optimizations can be performed on the concentrate, reaching Fe and SiO2 grades used by the industry

  10. Radioanalysis of RE enrichment of ion adsorption type RE ores

    CERN Document Server

    Zhao Shu Quan; Hu He Ping; Li Fu Sheng; Chen Ying Min; LiuShiMing

    2002-01-01

    Objective: To analyze the radioactivity in Rare Earth (RE) enrichment of ion adsorption type RE ores. Methods: Using HPGe-gamma spectrometer to analyze the activity ratio of gamma radionuclides in kind of samples, using FJ-2603 low background alpha, beta measurement apparatus to measure their total alpha and total beta activities, and using X-ray fluorescence spectrometer to analyze contents of La sub 2 O sub 3 and Y sub 2 O sub 3 , respectively. Results: HPGe gamma spectroscopy and X-ray fluorescence spectroscopy are simple, convenient and non-destructive methods of analyzing radionuclides and La sub 2 O sub 3 , Y sub 2 O sub 3 in RE enrichment of ion adsorption type RE ores, respectively. Conclusion: The basic data were provided for radiation protection and treatment of gas, liquid and solid waste in RE production of ion adsorption type RE ores; method and experience were provided for studying ion adsorption type RE ores

  11. Evaluation des bassins par modélisation intégrée en deux dimensions des transferts techniques, de l'écoulement des fluides, de la genèse et de la migration des hydrocarbures Basin Evaluation by Integrated Two-Dimensional Modeling of Heat Transfer, Fluid Flow, Hydrocarbon Generation, and Migration

    Directory of Open Access Journals (Sweden)

    Chenet P. Y.

    2006-11-01

    transfer, compaction and water flow, hydrocarbon generation, and two-phase migration of fluids. The model reproduces the influence of conductivity variations and of transient heat transfer on paleotemperatures. Quantitative verification of the paleotemperature reconstruction and of the kinetic model of hydrocarbon generation may be obtained from present temperatures and geochemical data. Compaction-driven flows and overpressures are described by coupling a compaction law with Darcy's law for water flow and a criterion for natural hydraulic fracturing. This formulation allows modeling of overpressures in young deltalic sequences (e. g. , the Mahakam delta, Indonesia as well as in old rift basins (e. g. , the North Sea. An adapted two-phase Darcy's law reproduces primary and secondary migration. In particular, the model helps investigate the role of overpressures and fault behavior on hydrocarbon migration and entrapment. Our results confirm that basin models contribute to the synthesis of geological, geophysical, and geochemical data consistently. By defining parameters for petroleum evaluations, these models increase exploration efficiency.

  12. A geochemical assessment of possible lunar ore formation

    Science.gov (United States)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    The Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 104 times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar resources is

  13. Uranium and thorium recovery in thorianite ore-preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotte, Joao V.M. [Universidade Federal de Alfenas, Pocos de Caldas, MG (Brazil); Villegas, Raul A.S.; Fukuma, Henrique T., E-mail: rvillegas@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas

    2011-07-01

    This work presents the preliminary results of the studies aiming to develop a hydrometallurgical process to produce uranium and thorium concentrates from thorianite ore from Amapa State, Brazil. This process comprises two major parts: acid leaching and Th/U recovery using solvent extraction strategies. Thorianite ore has a typical composition of 60 - 70% of thorium, 8 - 10% lead and 7 - 10% uranium. Sulfuric acid leaching operational conditions were defined as follows: acid/ore ratio 7.5 t/t, ore size below 65 mesh (Tyler), 2 hours leaching time and temperature of 100 deg C. Leaching tests results showed that uranium and thorium recovery exceeded 95%, whereas 97% of lead ore content remained in the solid form. Uranium and thorium simultaneous solvent extraction is necessary due to high sulfate concentration in the liquor obtained from leaching, so the Primene JM-T primary anime was used for this extraction step. Aqueous raffinate from extraction containing sulfuric acid was recycled to the leaching step, reducing acid uptake around 60%, to achieve a net sulfuric acid consumption of 3 t/t of ore. Uranium and thorium simultaneous stripping was performed using sodium carbonate solution. In the aqueous stripped it was added sulfuric acid at pH 1.5, followed by a second solvent extraction step using the tertiary amine Alamine 336. The following stripping step was done with a solution of sodium chloride, resulting in a final solution of 23 g L-1 uranium. (author)

  14. Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province,Western Oinling

    Institute of Scientific and Technical Information of China (English)

    ZHU LaiMin; DING ZhenJu; YAO ShuZhen; ZHANG GuoWei; SONG ShiGang; QU WenJun; GUO Bo; LEE Ben

    2009-01-01

    into the root of the lower crust,which could induce partial melting of the lower crust and generate Mo-enriched granitic magma.The ore-forming elements enriched in the fluid derived from the condensation and fraction of the magma resulted in the Mo mineralization.The Mo deposits in the QOB are mainly formed in two episodes,namely 220±Ma and 140±Ma.The two episodes of metalIogenesis were developed in the tectonic transition settings from compression to extension,but they were in the different stages of the tectonic evolution.The occurrence of the Wenquan Mo-bearing pluton indicates that the Triassic tectonic-magmatic belt of Western Qinling is another favorable region for Mo mineralization in the QOB.Therefore,it is significant to pay more attention to evaluation of the ore-forming potentiality in the Triassic granites in Western Qinling.

  15. KEY ROLE OF METALLOGENIC THEORY OF POLYGENETIC COMPOUND ORE DEPOSITS IN LOCATION PREDICTION OF HIDDEN ORE DEPOSITS IN DIWA REGIONS

    Institute of Scientific and Technical Information of China (English)

    PENG; Sheng-lin; LIU; Liang-ming; LAI; Jian-qing

    2001-01-01

    The metallogenic theory of polygenetic compound ore deposit is the Important basis for location prediction of hidden ore deposits in diwa regions.It can play an important role in each step of prediction research,targeting procedure,acquiring information and integrating information.In this paper,the authors discusses how to construct geological concept by using of the metallogenic theory of polygenetic ore deposits for predicting targeting area,to arrange investigation and detection for getting enough useful information,and to analyze and integrate information for reaching a trustful prediction conclusion.According to these strategies,we conduct a successful prediction of location of hidden ore bodies in the outer of the Fenghuangshan copper mine,a principal producing mine in Tongling Cu-Au district.

  16. Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation

    Science.gov (United States)

    Gruen, Gillian; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; de Ronde, Cornel E. J.

    2014-10-01

    Subduction-related magmas have higher volatile contents than mid-ocean ridge basalts, which affects the dynamics of associated submarine hydrothermal systems. Interaction of saline magmatic fluids with convecting seawater may enhance ore metal deposition near the seafloor, making active submarine arcs a preferred modern analogue for understanding ancient massive sulfide deposits. We have constructed a quantitative hydrological model for sub-seafloor fluid flow based on observations at Brothers volcano, southern Kermadec arc, New Zealand. Numerical simulations of multi-phase hydrosaline fluid flow were performed on a two-dimensional cross-section cutting through the NW Caldera and the Upper Cone sites, two regions of active venting at the Brothers volcanic edifice, with the former hosting sulfide mineralization. Our aim is to explore the flow paths of saline magmatic fluids released from a crystallizing magma body at depth and their interaction with seawater circulating through the crust. The model includes a 3×2 km sized magma chamber emplaced at ∼2.5 km beneath the seafloor connected to the permeable cone via a ∼200 m wide feeder dike. During the simulation, a magmatic fluid was temporarily injected from the top of the cooling magma chamber into the overlying convection system, assuming hydrostatic conditions and a static permeability distribution. The simulations predict a succession of hydrologic regimes in the subsurface of Brothers volcano, which can explain some of the present-day hydrothermal observations. We find that sub-seafloor phase separation, inferred from observed vent fluid salinities, and the temperatures of venting at Brothers volcano can only be achieved by input of a saline magmatic fluid at depth, consistent with chemical and isotopic data. In general, our simulations show that the transport of heat, water, and salt from magmatic and seawater sources is partly decoupled. Expulsion of magmatic heat and volatiles occurs within the first few

  17. Ferrite grade iron oxides from ore rejects

    Indian Academy of Sciences (India)

    K S Rane; V M S Verenkar; P Y Sawant

    2001-06-01

    Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical formulas of iron-oxyhydroxides as -FeOOH.0.3H2O; -FeOOH.0.2H2O and amorphous FeOOH. The thermal products of all these were -Fe2O3 excepting that of -FeOOH.0.3H2O which gave mainly -Fe2O3 and some admixture of -Fe2O3. The hydrazinated iron hydroxides and oxyhydroxides, on the other hand, decomposed autocatalytically to mainly -Fe2O3. Hydrazine method modifies the thermal decomposition path of the hydroxides. The saturation magnetization, s, values were found to be in the range 60–71 emu g–1 which are close to the reported values for -Fe2O3. Mechanism of the -Fe2O3 formation by hydrazine method is discussed.

  18. Sulfate Saturated Hydrous Magmas Associated with Hydrothermal Gold Ores

    Science.gov (United States)

    Chambefort, I.; Dilles, J. H.; Kent, A. J.

    2007-12-01

    -ICP-MS. Yanacocha anhydrite, hosted by amphiboles, are enriched in FeO (up to 0.6 wt%) and present positive anomalies in Eu and SrO (up to 8000ppm in anhydrite blebs hosted by high Al amphibole of the sample RC6). Anhydrite hosted by clinopyroxene (CPx) and low Al amphibole present higher Ce2O3 content (up to 2000ppm in CPx). In comparison, hydrothermal anhydrite analyzed from El Salvador, Butte and Ajo ore deposits contain less SrO (~ 2000 ppm) and no FeO. Pinatubo anhydrite phenocrysts and inclusions from the 1991 Pinatubo dacite yield low FeO contents, except anhydrite included in amphibole. These data suggest FeO in anhydrite is a product of subsolidus diffusion from the host. The breakdown of abundant anhydrite crystals "stored" in the magma may source of SO2-rich hydrothermal fluids that produced the sulfur enrichment (>500 M Tonnes) observed the Yanacocha hydrothermal gold deposits. The two populations of amphibole are evidence of magma mixing in the Yanacocha magmatic rocks. A sulfate-saturated oxidized dacitic magma chamber resided at about 4 to 8 km depth and 800°C was periodically underplated or fed by hydrous sulfate-rich oxidized basaltic-andesite magma. The shape of the irregular anhydrite blebs suggest that these inclusions could have been trapped as an immiscible sulfate- phosphate rich melt, despite the fact that anhydrite normally has a liquidus temperature of 1450°C and the host amphiboles crystallized at no more than 1050°C based on experiments on andesites and dacites.

  19. Fluorosilicone and silicone o-ring aging study.

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Robert; Gillen, Kenneth T.

    2007-10-01

    Fluorosilicone o-ring aging studies were performed. These studies examined the compressive force loss of fluorosilicone o-rings at accelerated (elevated) temperatures and were then used to make predictions about force loss at room temperature. The results were non-Arrhenius with evidence for a lowering in Arrhenius activation energies as the aging temperature was reduced. The compression set of these fluorosilicone o-rings was found to have a reasonably linear correlation with the force loss. The aging predictions based on using the observed curvature of the Arrhenius aging plots were validated by field aged o-rings that yielded degradation values reasonably close to the predictions. Compression set studies of silicone o-rings from a previous study resulted in good correlation to the force loss predictions for the fluorosilicone o-rings from this study. This resulted in a preliminary conclusion that an approximately linear correlation exists between compression set and force decay values for typical fluorosilicone and silicone materials, and that the two materials age at similar rates at low temperatures. Interestingly, because of the observed curvature of the Arrhenius plots available from longer-term, lower temperature accelerated exposures, both materials had faster force decay curves (and correspondingly faster buildup of compression set) at room temperature than anticipated from typical high-temperature exposures. A brief study on heavily filled conducting silicone o-rings resulted in data that deviated from the linear relationship, implying that a degree of caution must be exercised about any general statement relating force decay and compression set.

  20. Trace Elements in Fluid Inclusions in the Carlin-Type Gold Deposits, Southwestern Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    苏文超; 胡瑞忠; 漆亮; 方维萱

    2001-01-01

    Fluid inclusions in quartz from the Lannigou and Yata Carlin-type gold deposits in southwestern Guizhou were analyzed by inductively coupled plasma-mass spectrometry for their trace elements (Co, Ni, Cu, Pb, Zn, Pt, etc. ). The results show that quartz fluid inclusions entrapped at different ore-forming stages contain higher Co, Ni, Cu, Pb and Zn. It has been found for the first time that the ore-forming fluids responsible for the Carlin-type gold deposits are rich in Pt. From this it can be concluded that basic volcanic rocks seem to be one of the im portant sources of ore-forming materials for the Carlin-type gold deposits.

  1. Fluid chemistry evolution and mineral deposition in the main-stage Creede epithermal system

    Science.gov (United States)

    Plumlee, G.S.

    1994-01-01

    This paper presents results of chemical speciation and reaction path calculations that model fluid chemistry evolution and ore deposition in the main-stage Creede, Colorado, epithermal system. An extensive geologic, mineralogic, and geochemical framework for mineralization has been developed by many researchers for the central and southern district vein systems (OH and P veins; central and southern Amethyst and Bulldog Mountain vein systems) and is used to constrain and guide the modeling presented in this paper. Modeling results for Creede and other epithermal fluid compositions show that epithermal ore grades, mineral assemblages, and mineral zoning patterns are strongly influenced by shallow hydrologic processes such as boiling and fluid mixing. As a result, epithermal mineral assemblages and zoning patterns can be used to reconstruct the paleohydrology of the hydrothermal systems from which they were deposited, and thus provide useful tools for epithermal ore exploration -from Author

  2. Evaluation of the Performance of O-rings Made with Different Elastomeric Polymers in Simulated Geothermal Environments at 300°C

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pyatina, Tatiana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Redline, Erica Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McElhanon, James R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This paper aims to evaluate the survival of O-rings made with six different elastomeric polymers, EPDM, type I- and II-FKM, FEPM, FFKM, and FSR, in five different simulated geothermal environments at 300°C. It further defines the relative strengths and weaknesses of the materials in each environment. The environments tested were: 1) non-aerated steam-cooling cycles, 2) aerated steam-cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. Following exposure, the extent of oxidation, oxidationinduced degradation, thermal behaviors, micro-defects, permeation depths of ionic species present in environments throughout the O-ring, silicate-related scale-deposition, and changes in mechanical properties were assessed.

  3. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  4. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  5. Gamma Spectrometric Analysis of Iron Ore Samples of Arak, Iran

    Directory of Open Access Journals (Sweden)

    Reza Pourimani

    2016-09-01

    Full Text Available Introduction Iron ore is one of the most important natural raw materials that is widely used for manufacturing iron and steel. This type of ore contains various amounts of radionuclides; thus, exposing workers handling their extraction, transportation, and processing to radiation. Materials and Methods In this study, 12 ore samples (each mass weighing about 2 kg were collected from the iron ore mining areas of Arak region, Iran. The specific activities of 226Ra, 232Th, and 40K were determined usinggamma-ray spectrometry method employing high-purity germanium (HPGe detector. Results The specific activities of 226Ra, 232Th, and 40K in samples were 9.39-271.70 Bq/kg, -3 Sv/y suggested in International Commission of Radiological Protection (ICRP Publication 82. Conclusion The gamma ray spectrometric analysis showed that the specific activities of natural radionuclides in samples, except for limonite ore, were within the worldwide range. The effective dose received by workers was much lower than the maximum acceptable value (1000 μSv/y; therefore, the level of radiations in this mine had no adverse consequences for public health.

  6. Flotation technology of refractory low-grade molybdenum ore

    Institute of Scientific and Technical Information of China (English)

    Du Shuhua; Luo Zhenfu

    2013-01-01

    Because of the low grade,high oxidation rate and the accumulation of little associated metal sulfide ore in the molybdenum concentrate during flotation,the Qingyang molybdenum ore is difficult to beneflciate.The experimental studies of grinding fineness,the amount of roughing modifier,depressant and collector were completed.In the cleaning process,the contrast experiments of one regrinding.the regrinding and scrubbing,two-stage regrinding was carried.The result shows that the grade of molybdenum ore concentrate is 45.31%,the recovery is 65.98% and the rich ore ratio reaches 20.59% by the regrinding and scrubbing seven cleaning,the regrinding of concentrations from middling of molybdenum-sulfur separation.The regularly-concentrated material from the apparatus was as the middling products.Hence,ideal beneficiation index can be obtained with a rational mineral processing,which offers new beneficiating technology for the refractory low-grade molybdenum ore in China.

  7. On the use of bastnasite ore as a phosphor material

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, M., E-mail: manojm@barc.gov.in; Natarajan, V.; Rajeswari, B.; Dhobale, A.R.; Godbole, S.V.

    2014-01-15

    Bastnasite ore obtained from Indian Rare Earth (IRE) was investigated for its possible use as a phosphor material. The material was characterized by X-ray diffraction (XRD), energy dispersive X-ray fluorescence (EDXRF), photoacoustic spectroscopy (PAS), photoluminescence (PL) and electron paramagnetic resonance spectroscopy (EPR) techniques. XRD studies revealed the semi processed ore to be consisting of single phase CeO{sub 2} with no other impurities. EDXRF studies revealed the presence of ‘Th’ and traces of ‘Sm’ along with ‘Ce’ in the sample. PAS studies revealed the presence of strong charge transfer from oxygen to cerium in the system. PL studies confirmed the presence of at least four trivalent rare earths, viz. Sm, Eu, Dy and Tb in the system in trace quantities. The emission spectrum and decay time data were evaluated. It was observed that the rare earth ions are situated at distorted sites in the system surrounded by defect centers. EPR studies confirmed the presence of Ce{sup 3+}in the system along with electron trapped in oxygen ion vacancies. CIE indices for the ore sample were evaluated and it was seen that the overall emission from the system was in the ‘magenta’ region of the visible spectrum. The emission intensities were also compared with that of commercial samples. -- Highlights: • Characterization of bastnasite ore as a phosphor material. • Role of RE impurities in the luminescence • CIE index of the bastnasite ore.

  8. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    Science.gov (United States)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  9. Existing State and Partitioning of Rare Earth on Weathered Ores

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The existing state and partitioning of rare earth (RE) on weathered ores in Longnan County (LN), Xingfeng County(XF) and Ninghua County(NH) were characterized systematically by standard geological analytical methods. It is found that RE in the weathered rare earth ores exist as four phases: (a) water soluble, (b) ion-exchangeable, (c) colloidal sediment (oxides), (d) minerals, in which mainly as ion exchangeable phase, accounting for nearly 80% of total RE,with about 20% in the form of colloid sediment phase and mineral phase, but very little as aqueous soluble phase. These rare earth partitioning were mainly chosen mid-heavy RE elements, occupying above 60%, but not equal in the four phases. The mid-heavy RE elements were primarily enriched in the ion exchangeable phase up to 40%, while the containment of cerium dioxide is below 2%. The cerium deficiency occurs in the ion exchangeable phase in weathered ore. It results from that the Ce3+ is oxidized into Ce4+ and changes into CeO2. For LN ore, the containment of Y is high in weathered ore because Y-minerals are abundant in original rock.

  10. Deformation and metamorphism of gold-sulphide lodes in the Bhukia–Jagpura gold prospect, Rajasthan: Implications for ore genesis

    Indian Academy of Sciences (India)

    S Deol; A Chattopadhyay; M Deb

    2014-02-01

    The role of polyphase deformation in controlling the emplacement of gold-quartz lodes in dilational regimes is demonstrated from the Proterozoic Bhukia–Jagpura gold prospect in south Rajasthan. Earlier researchers deciphered the gold-sulphide mineralisation event as synchronous to the second phase of deformation (D2) without convincing microstructural or metamorphic evidences. In this contribution, we correlate the deformation and metamorphic imprints in the host rocks with those in the gold-sulphide mineralised zone, and present a new interpretation for the relative timing of gold emplacement vis-á-vis deformation. The ore-forming process first involved layer-parallel influx of ore-bearing hydrothermal fluids along S1 schistosity in the host rocks, synkinematic with respect to the first phase of deformation (D1). This initial ore concentration experienced metamorphism isofacially (∼500° C at 5.3 kb) along with its host rocks during D1, and subsequently underwent extensive remobilisation, giving rise to gold-bearing silicified lodes along the hinges and axial surfaces of F2 folds during D2.

  11. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    evaporation of seawater to halite saturation and requires a dilution of more than two times by meteoric water. The higher K/Na values in fluid inclusions from barite suggest that the brines interacted with K-rich rocks in the basement or siliciclastic sediments in the basin. Carbonate gangue minerals (ankerite and calcite) have δ13C and δ18O values that are close to the carbonate host rock and indicate fluid equilibrium between carbonate host rocks and hydrothermal brines. The δ34S values for sphalerite and galena fall within a narrow range (1 to 10 ‰) with a bulk value of 7.5 ‰, indicating a homogeneous source of sulfur. The δ34S values of barite are also relatively homogeneous (22 ‰), with 6 ‰ higher than the δ34S of local and regional Triassic evaporites (15 ‰). The latter are believed to be the source of sulfate. Temperature of deposition together with sulfur isotope data indicate that the reduced sulfur in sulfides was derived through thermochemical sulfate reduction of Triassic sulfate via hydrocarbons produced probably from Late Cretaceous source rocks. The 87Sr/86Sr ratio in the Bou Jaber barite (0.709821 to 0.711408) together with the lead isotope values of Bou Jaber galena (206Pb/204Pb = 18.699 to 18.737; 207Pb/204Pb = 15.635 to 15.708 and 208Pb/204Pb = 38.321 to 38.947) show that metals were extracted from homogeneous crustal source(s). The tectonic setting of the Bou Jaber ore deposit, the carbonate nature of the host rocks, the epigenetic style of the mineralization and the mineral associations, together with sulfur and oxygen isotope data and fluid inclusion data show that the Bou Jaber lead-zinc mineralization has the major characteristics of a salt diapir-related Mississippi Valley-type (MVT) deposit with superimposed events of fluorite and of barite deposition. Field relations are consistent with mineral deposition during the Eocene-Miocene Alpine orogeny from multiple hydrothermal events: (1) Zn-Pb sulfides formed by mixing of two fluids: one

  12. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study

    Science.gov (United States)

    Bouhlel, Salah; Leach, David; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-01-01

    simply by the evaporation of seawater to halite saturation and requires a dilution of more than two times by meteoric water. The higher K/Na values in fluid inclusions from barite suggest that the brines interacted with K-rich rocks in the basement or siliciclastic sediments in the basin. Carbonate gangue minerals (ankerite and calcite) have δ13C and δ18O values that are close to the carbonate host rock and indicate fluid equilibrium between carbonate host rocks and hydrothermal brines. The δ34S values for sphalerite and galena fall within a narrow range (1 to 10 ‰) with a bulk value of 7.5 ‰, indicating a homogeneous source of sulfur. The δ34S values of barite are also relatively homogeneous (22 ‰), with 6 ‰ higher than the δ34S of local and regional Triassic evaporites (15 ‰). The latter are believed to be the source of sulfate. Temperature of deposition together with sulfur isotope data indicate that the reduced sulfur in sulfides was derived through thermochemical sulfate reduction of Triassic sulfate via hydrocarbons produced probably from Late Cretaceous source rocks. The 87Sr/86Sr ratio in the Bou Jaber barite (0.709821 to 0.711408) together with the lead isotope values of Bou Jaber galena (206Pb/204Pb = 18.699 to 18.737;207Pb/204Pb = 15.635 to 15.708 and 208Pb/204Pb = 38.321 to 38.947) show that metals were extracted from homogeneous crustal source(s). The tectonic setting of the Bou Jaber ore deposit, the carbonate nature of the host rocks, the epigenetic style of the mineralization and the mineral associations, together with sulfur and oxygen isotope data and fluid inclusion data show that the Bou Jaber lead-zinc mineralization has the major characteristics of a salt diapir-related Mississippi Valley-type (MVT) deposit with superimposed events of fluorite and of barite deposition. Field relations are consistent with mineral deposition during the Eocene–Miocene Alpine orogeny from multiple hydrothermal events: (1) Zn

  13. Intermetallic compounds, copper and palladium alloys in Au-Pd ore of the Skaergaard pluton, Greenland

    Science.gov (United States)

    Rudashevsky, N. S.; Rudashevsky, V. N.; Nielsen, T. F. D.

    2015-12-01

    Copper-palladium intermetallic compounds and alloys (2314 grains) from the Au-Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd-Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe-Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe-Cu sulfide phase as Pd-Cu and Cu-Au alloys.

  14. Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy)

    Science.gov (United States)

    Rimondi, V.; Chiarantini, L.; Lattanzi, P.; Benvenuti, M.; Beutel, M.; Colica, A.; Costagliola, P.; Di Benedetto, F.; Gabbani, G.; Gray, John E.; Pandeli, E.; Pattelli, G.; Paolieri, M.; Ruggieri, G.

    2015-01-01

    The Mt. Amiata mining district (Southern Tuscany, Italy) is a world class Hg district, with a cumulate production of more than 100,000 tonnes of Hg, mostly occurring between 1870 and 1980. The Hg mineralization at Mt. Amiata is younger than 0.3 Ma, and is directly related to shallow hydrothermal systems similar to present-day geothermal fields of the region. There is likely a continuum of Hg deposition to present day, because Hg emission from geothermal power plants is on-going. In this sense, the Mt. Amiata deposits present some analogies with “hot-spring type” deposits of western USA, although an ore deposit model for the district has not been established. Specifically, the source of Hg remains highly speculative. The mineralizing hydrothermal fluids are of low temperature, and of essentially meteoric origin.

  15. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    Science.gov (United States)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of

  16. Experimental Study of the Distribution of Au and Cu in Aqueous Vapor Phase at High Temperatures and Its Role on Ore-forming Transportation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ronghua; HU Shumin; ZHANG Xuetong

    2008-01-01

    This study focuses on experiments of Au and Cu dissolved in vapor phase in hydrothernmlfluids. Experiments prove that Au and Cu can re-distribute in vapor phase and liquid phase duringseparation of Au- and Cu-bearing supercriticai fluids to vapor and liquid phases. These experimentalresults can illustrate some ore geneses, where boiling phenomena of ore fluids were found. Au- and Cu-bearing NaHCO3-HCl solutions were heated up to more than 350℃ in the main vessel, and then passedthrough a phase separator in a temperature range from 250oC to 300℃, separated into vapor andliquid phases. We collected and analyzed the liquid and vapor samples separately, and found that Auand Cu dissolved and distributed in vapor phase. In some cases, the concentrations of Au and Cu invapor are higher than those in liquid phase. Those experiments are used to interpret field observationsof fluid inclusion data of some Au and Cu deposits, and demonstrate that some Au and Cu ore depositsare derived from metals transportation in vapor phase.

  17. Treatment of coking wastewater by using manganese and magnesium ores.

    Science.gov (United States)

    Chen, Tianhu; Huang, Xiaoming; Pan, Min; Jin, Song; Peng, Suchuan; Fallgren, Paul H

    2009-09-15

    This study investigated a wastewater treatment technique based on natural minerals. A two-step process using manganese (Mn) and magnesium (Mg) containing ores were tested to remove typical contaminants from coking wastewater. Under acidic conditions, a reactor packed with Mn ore demonstrated strong oxidizing capability and destroyed volatile phenols, chemical oxygen demand (COD)(,) and sulfide from the coking wastewater. The effluent was further treated by using Mg ore to remove ammonium-nitrogen and phosphate in the form of magnesium ammonium phosphate (struvite) precipitates. When pH of the wastewater was adjusted to 1.2, the removal efficiencies for COD, volatile phenol and sulfide reached 70%, 99% and 100%, respectively. During the second step of precipitation, up to 94% of ammonium was removed from the aqueous phase, and precipitated in the form of struvite with phosphorus. The struvite crystals showed a needle-like structure. X-ray diffraction and transmission electron microscopy were used to characterize the crystallized products.

  18. Investigation of chemical suppressants for inactivation of sulfide ores

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to investigate the effective control method of spontaneous combustion in the mining of sulfide ore deposits, This paper presents the testing results of several selected chemicals (water glass, calcium chloride, calcium oxide, magnesium oxide and their composites) as oxidation suppressants for sulfide ores. A weight increment scaling method was used to measure suppressant performance, and this method proved to be accurate, simple and convenient. Based on a large number of experiments, the test results show that four types of chemical mixtures demonstrate a good performance in reducing the oxidation rate of seven active sulfide ore samples by up to 27% to 100% during an initial 76 d period. The mixtures of water glass mixed with calcium chloride and magnesium oxide mixed with calcium chloride can also act as fire suppressants when used with fire sprinkling systems.

  19. Beneficiation of the gold bearing ore by gravity and flotation

    Science.gov (United States)

    Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven

    2012-02-01

    Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.

  20. Calcination-Digestion-Desliming of Phosphorus Ore Bearing Rare Earth

    Institute of Scientific and Technical Information of China (English)

    Zhang Qin; Zhang Jie; Wang Jing; Qiu Yue qin

    2004-01-01

    The recoveries of phosphorus and RE of ore from Zhijin in Guizhou were studied.The influences of the calcination temperature, resident time, the digested time and water volume of the calcinating on concentrate yield by desliming were also investigated by orthogonal design.Appropriate calcination temperature is initial condition that makes carbonate mineral decomposition.The recovery of phosphorus is 83.02% and rare earth is 90.56% in phosphorus concentrate when calcined temperature is 900 ℃, other conditions include: calcined time is 30 min, digestion water volume is 300 ml, digestion time is 20 min.The results show that the pre-treatment of the ore is favorable for the separation and enrichment of rare earth from phosphorus ore, and a process of calcination-digestion-desliming was promised.

  1. A hybrid decision support system for iron ore supply

    Directory of Open Access Journals (Sweden)

    A. Samolejová

    2012-01-01

    Full Text Available Many European metallurgical companies are forced to import iron ore from remote destinations. For these companies it is necessary to determine the amount of iron ore that will have to be ordered and to create such a delivery schedule so that the continuous operation of blast-furnace plant is not disrupted and there is no exceedingly large stock of this raw material. The objective of this article is to design the decision support system for iron ore supply which would effi ciently reduce uncertainty and risk of that decision-making. The article proposes a hybrid intelligent system which represents a combination of diff erent artifi cial intelligence methods with dynamic simulation technique for that purpose.

  2. Fossil bacteria in Xuanlong iron ore deposits of Hebei Province

    Institute of Scientific and Technical Information of China (English)

    DAI Yongding; SONG Haiming; SHEN Jiying

    2004-01-01

    Discovered in Early Proterozoic Xuanlong iron ore deposits are six genera of fossil iron bacteria, i. e. sphere (coenobium of) rod-shaped (monomer) Naumanniella, ellipsoid elliptical Ochrobium, sphere spherical Siderocapsa and chain spherical Siderococcus, chain rod-shaped Leptothrix and Lieskeella, and six genera of fossil blue bacteria, namely sphere spherical Gloeocapsa, Synechocystis and Globobacter, chain spherical Anabaena and Nostoc, and constrictive septate tubular Nodularia. The biomineralized monomers and coenobia of the two categories of bacteria, together with hematite plates made up the bacteria pelletal, bacteria silky,bacteria fibrous and clasty bacteria pelletal textural lamina. The bacteria pelletal laminae combined with other bacteria laminae to make up oncolite, stromatolite and laminate. The precipitation of iron oxide was accelerated due to iron and blue bacteria cohabiting on microbial film or mat. The Xuanlong iron ore deposits are microbial binding ore deposits of ocean source.

  3. 用FeCl3作为反应剂超临界CO2浸取砂岩型铀矿中的铀%Supercritical CO2 fluid leaching of uranium from sandstone type ores using FeCl3 as reactant

    Institute of Scientific and Technical Information of China (English)

    王艳龙; 谭凯旋; 屈慧琼; 李春光; 胡杨; 李咏梅

    2014-01-01

    铀是重要的核能燃料,而超临界CO2是一种新型高效且环境安全性的铀提取方法。在FeCl3作为反应剂的前提下,考察了主要因素压力和时间对浸取效果的影响。恒定时间下随着压力的增加浸出率是先增加后减少,恒定压力下随着时间的增加浸出率是先增加然后是到稳定状态。最佳浸出条件为压力10MPa,浸出率可达90%。与传统的酸碱浸取铀相比,浸取效果要明显高于常规采铀。所以超临界 CO2流体浸取有望应用于低品位砂岩铀矿的地浸采铀中。%Uranium is an important nuclear fuel,and supercritical CO2 fluid leaching is a new,efficient and environmentally safe uranium extraction method. The aim of this experiment was to investigate the impact of pressure and time on uranium leaching efficiency with FeCl3 as reactant. Leaching efficiency first increased and then decreased with the increase of pressure. Under a constant specific pressure leaching efficiency first increased with increasiing time and then stabilized at a fixed value. The optimum leaching pressure was 10MPa,and leaching efficiency could reach 90%. Compared with the traditional acid-alkali leaching of uranium,leaching effect was significantly higher. Supercritical CO2 fluid leaching could be used for in-situ uranium leaching of low grade sandstone-type uranium deposits.

  4. Isolation and identification of iron ore-solubilising fungus

    Directory of Open Access Journals (Sweden)

    Damase Khasa

    2010-09-01

    Full Text Available Potential mineral-solubilising fungi were successfully isolated from the surfaces of iron ore minerals. Four isolates were obtained and identified by molecular and phylogenetic methods as close relatives of three different genera, namely Penicillium (for isolate FO, Alternaria (for isolates SFC2 and KFC1 and Epicoccum (for isolate SFC2B. The use of tricalcium phosphate (Ca3(PO42in phosphate-solubilising experiments confirmed isolate FO as the only phosphate solubiliser among the isolated fungi. The bioleaching capabilities of both the fungus and its spent liquid medium were tested and compared using two types of iron ore materials, conglomerate and shale, from the Sishen Iron Ore Mine as sources of potassium (K and phosphorus (P. The spent liquid medium removed more K (a maximum of 32.94% removal, from conglomerate, than the fungus (a maximum of 21.36% removal, from shale. However, the fungus removed more P (a maximum of 58.33% removal, from conglomerate than the spent liquid medium (a maximum of 29.25% removal, from conglomerate. The results also indicated a potential relationship between the removal of K or P and the production of organic acids by the fungus. A high production of gluconic acid could be related to the ability of the fungus to reduce K and P. Acetic, citric and maleic acids were also produced by the fungus, but in lower quantities. In addition, particle size and iron ore type were also shown to have significant effects on the removal of potassium and phosphorus from the iron ore minerals. We therefore conclude that the spent liquid medium from the fungal isolate FO can potentially be used for biobeneficiation of iron ore minerals.

  5. [Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas].

    Science.gov (United States)

    Ye, Qun-feng; Zhou, Xiao-ling

    2015-07-01

    The contents of. soil total fluorine (TF) and water-soluble fluorine (WF) were measured in fluorite ore areas located in Jinhua City. The single factor index, geoaccumulation index and health risk assessment were used to evaluate fluorine pollution in soil in four fluorite ore areas and one non-ore area, respectively. The results showed that the TF contents in soils were 28. 36-56 052. 39 mg.kg-1 with an arithmetic mean value of 8 325.90 mg.kg-1, a geometric mean of 1 555. 94 mg.kg-1, and a median of 812. 98 mg.kg-1. The variation coefficient of TF was 172. 07% . The soil WF contents ranged from 0. 83 to 74. 63 mg.kg-1 with an arithmetic mean value of 16. 94 mg.kg-1, a geometric mean of 10. 59 mg.kg-1, and a median of 10. 17 mg.kg-1. The variation coefficient of WF was 100. 10%. The soil TF and WF contents were far higher than the national average level of the local fluorine epidemic occurrence area. The fluoride pollution in soil was significantly affected by human factors. Soil fluorine pollution in Yangjia, Lengshuikeng and Huajie fluorite ore areas was the most serious, followed by Daren fluorite ore area, and in non-ore area there was almost no fluorine pollution. Oral ingestion of soils was the main exposure route. Sensitivity analysis of model parameters showed that children's weight exerted the largest influence over hazard quotient. Furthermore, a significant positive correlation was found among the three kinds of evaluation methods.

  6. Challenges facing the North American iron ore industry

    Science.gov (United States)

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  7. Geochemical discrimination of the geotectonic environment of basaltic-andesitic volcanic rocks associated with the Laochang polymetallic ore deposit at Lancang, Yunnan

    Institute of Scientific and Technical Information of China (English)

    GAO Jianguo

    2006-01-01

    The Laochang polymetallic ore deposit at Lancang is one of the well known ancient ore deposits associated with volcanic rocks in the Sanjiang (Tri-river) region of Southwest China. Volcanic rocks are dominated by alkali basalt and trachyte basalt. There has long been a controversy on the environment of formation of basalts. Some scholars hold that the basalts were formed in a continental environment, some thought they were formed in an oceanic environment and others considered that the basalts were emplaced in a back-arc basin. This study focuses on the geochemical characteristics of the basalts on the basis of their major elements, REEs and trace elements. At the same time, strongly incompatible elements such as Ta, Th and Hf and their ratios were used to differentiate the geotectonic settings of basalts. The results showed that the basalts in the region studied were formed in a continental rift environment.

  8. A study of the distribution of rare-metals in kuroko-type ore

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience]|[Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    We have performed PIXE analysis of kuroko-type ore from the JADE hydrothermal site of the Okinawa Trough, Japan using the proton microprobe (PIXEPROBE). We analysed five kinds of ores dredged from the sea floor: (I) barite ore with small sulfide dissemination; (2) sphalerite-pyrite chimney; (3) pyrite ore; (4) sulfide veinlets in strongly altered rock; and (5) pyrite megacrystals in strongly altered rock. The analyses revealed that the trace element distribution is regulated by the occurrence mode of the ore, and within each ore, by the crystal structure. The distribution suggests that the hydrothermal system for kuroko ore formation is quite heterogeneous and its chemistry is controlled by local factors such as difference in temperature, and that in-situ PIXE analyses are essential for effective beneficiation strategy for the rare-metals from kuroko-type ore. (authors). 10 refs., 1 tab.

  9. Bioleaching of copper oxide ore by P seudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    MA Shabani; M Irannajad; AR Azadmehr; M Meshkini

    2013-01-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53%of copper was extracted.

  10. A novel optical granulometry algorithm for ore particles

    Directory of Open Access Journals (Sweden)

    Junhao Y.

    2010-01-01

    Full Text Available This paper proposes a novel algorithm to detect the particle size distribution of ores with irregular shapes and dim edges. This optical granulometry algorithm is particularly suitable for blast furnace process control, so its result can be used directly as a reliable basis for control system dynamics optimization. The paper explains the algorithm and its concept, as well as its method, which consists of five steps to detect ore granularity and distribution. A series of comparative experiments under industrial environments proved that this novel algorithm, compared with conventional ones, improves the accuracy of granulometry.

  11. Mining remittances corresponding to metalliferous ores: regulation and budget impact

    Directory of Open Access Journals (Sweden)

    N. Asaloș

    2016-04-01

    Full Text Available Economic statistics and forecasting show that Romania has a very favourable potential as far as the metalliferous ores are concerned. As these are owned by the state, once they are allowed to be exploited, they generate considerable amounts for the consolidated public budget. The present paper is meant to conduct a synthetic analysis on the topic of mining remittances from an economic perspective, by considering the juridical framework of capitalizing deposits of ferrous and non-ferrous ores, correlated with the general regulations concerning property and the specific existing regulations of the EU and of the countries that have experience and potential in the mining sector.

  12. ECONOMIC EVALUATION OF GOLD-ORE DUMP REPROCESSING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    N. Y. Samsonov

    2010-06-01

    Full Text Available An economic projection is presented in the paper on the heap leaching technology for extracting a residual gold from the gold-ore dumps accumulated at the exploited or closed gold mines. A brief analysis is performed on the legal status of use this source of raw materials, availability and efficiency of the heap leaching method are reviewed, and the potential users of this method are assessed. An investment plan is created for involving anthropogenic dumps of gold-raw materials at one of the ore deposits in Siberia (heap complex of the North-Western flank of the Sovetskoye minefield, Krasnoyarsk region, North-Yenisey area.

  13. Environmental nuclear-geophysical ore monitoring in mines of Corporation Kazakhmys PLC.

    Science.gov (United States)

    Yefimenko, Sergei; Yefimenko, Olga; Makarov, Dmitriy

    2014-01-01

    An environmental monitoring of ore composition in complex deposits of Kazakhstan (the Zhezkazgan, Kusmuryn, Artemjevsk, Kounrad, Taskura and Zhaman-Aibat deposits) is carried out using EDXRF spectrometers RPP-12, RLP-21 and RLP-21T. The monitoring of ore concentrates in Satpaev, Balkhashsk and Zhezkazgan processing plants and in Zhezkazgan copper smelter continues at present time. The monitoring suggests data on new promising elements and environmental pollutants in ores and new trends in distribution of bound elements in ores.

  14. Genesis and formation conditions of deposits in the unique Strel'tsovka Molybdenum-Uranium ore field: New mineralogical, geochemical, and physicochemical evidence

    Science.gov (United States)

    Aleshin, A. P.; Velichkin, V. I.; Krylova, T. L.

    2007-10-01

    The ambiguity of genetic interpretations of uranium ore formation at Mo-U deposits of the Strel’tsovka ore field led us to perform additional geochemical, mineralogical, and thermobarogeochemical studies. As a result, it has been established that closely related U and F were progressively gained in the Late Mesozoic volcanic rocks from the older basic volcanics (170 Ma) to the younger silicic igneous rocks (140 Ma). The Early Cretaceous postmagmatic hydrothermal epoch (140-125 Ma) is subdivided into preore, uranium ore, and first and second postore stages. The primary brannerite-pitchblende ore was formed in association with fluorite. At the first postore stage, this assemblage was replaced by a U-Si metagel, which was previously identified as coffinite. The metagel shows a wide compositional variation; its fine structure has been studied. The preore metasomatic alteration and related veined mineralization were formed under the effect of sodium (bicarbonate)-chloride solution at a temperature of 250-200°C. The uranium ore formation began with albitization and hematitization of rocks affected by supercritical fluid at 530-500°C; brannerite and pitchblende precipitated at 350-300°C. The chondrite-normalized REE patterns of pitchblende hosted in trachybasalt, trachydacite, and granite demonstrate a pronounced Sm-Nd discontinuity and a statistically significant tetrad effect of W type. These attributes were not established in REE patterns of rhyolites derived from the upper crustal magma chamber. This circumstance and a chronological gap of 5 Ma between silicic volcanism and ore formation do not allow us to suggest that uranium was derived from this magma chamber. According to the proposed model, the evolved silicic Li-F magma was a source of uranium. U4+, together with REE, was fractionated into the fluid phase as complex fluoride compounds. The uranium mineralization was deposited at a temperature barrier. It is suggested that hydromica alteration and the