WorldWideScience

Sample records for basin wyoming usa

  1. Exploration and discovery of the Pine Ridge uranium deposits, Powder River Basin, Wyoming, USA

    International Nuclear Information System (INIS)

    Doelger, M.

    2014-01-01

    The Pine Ridge uranium deposits are named for a newly identified area between the Pumpkin Buttes and Southern Powder River Basin (PRB) mining districts. This regional prospect, covering nine contiguous townships, is northwest of the Cameco Smith Ranch mine and west of the Uranium One Allemand-Ross project in Converse County, Wyoming. Surface mapping and 350+ measured sections of well exposed outcrops have identified 250 target sandstones and contributed to a model of the complex braided stream channel architecture within the Eocene Watsatch and Paleocene Fort Union Formations. The uranium-bearing sandstones occur in 3- D bundles of vertically aggrading river systems flowing into the PRB from distant uranium source areas of the Granite Mountains to the west and the northern Laramie Range to the south. Large volumes of mudstone overbank and swamp facies separate the individual river systems laterally, resulting in greater vertical reservoir continuity from sandstones stacking. At least five major paleo river systems have been identified and named. High organic content, within the host formations, and rising veils of hydrocarbon gases from underlying oil and gas deposits have resulted in classic roll front uranium deposits in individual sandstones and intervals. Mineralization in stacked sandstone bundles several hundred feet thick show a crescent-shaped distribution within the shallow mineralized interval “attic”, the “cellar” at the base of the alteration cell, and the furthest basin-ward “front door”. World-class uranium resource potential has been identified along 208 miles of redox boundary string length mapped from the 1522 control points consisting of outcrop data, pre-existing uranium drilling, oil and gas wells, and proprietary drilling in 2012 and 2013 by Stakeholder. All data is managed in ARC VIEW GIS with 3-D capability, which will be demonstrated. Very few restrictions apply to the project area. Uranium holes are permitted solely by the

  2. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    Science.gov (United States)

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  3. Bighorn Basin Coring Project: Palynofloral changes and taphonomy through the Paleocene-Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA

    Science.gov (United States)

    Harrington, G.; Jardine, P.

    2012-12-01

    The early Palaeogene hyperthermals provide an unprecedented opportunity to investigate the biotic responses to rapid and transient global warming events. As part of the Bighorn Basin Coring Project (BBCP), we have analyzed 182 sporomorph (pollen and spore) samples from three newly cored sites in the Bighorn Basin of Wyoming. Two sites, Basin Substation (121 samples) and Polecat Bench (41 samples), contain the Paleocene-Eocene Thermal Maximum (PETM, ETM1), and one early Eocene site, Gilmore Hill (20 samples), contains the ELMO (ETM2) event. We have focused initially on the Basin Substation section, because it is more organic rich, has demonstrated higher sporomorph recovery potential than the other two sites, and is the main focus of complementary geochemical analyses. Below 90 m core depth sporomorph concentrations are typically 1000 - 10 000 grains/gram, but between 90 and 60 m these decline to gymnosperms Cupressacites hiatipites (cypress, Cupressaceae) and bisaccate pollen (Pinaceae and/or Podocarpaceae), and the angiosperm taxa Polyatriopollenites vermontensis (wingnut or wheel wingnut, Juglandaceae), Caryapollenites spp. (hickory, Juglandaceae), and Alnipollenites spp. (alder, Betulaceae). However, samples are heterogeneous in terms of the dominant taxon, with different taxa having the highest relative abundance in different samples. In the upper part of the core, the assemblage is similar to that in the lower part, but with a more consistent dominance of gymnosperm taxa, and with the addition of Eocene marker taxa Intratriporopollenites instructus (linden, Tilioideae) and Celtis spp. (hackberry, Cannabaceae). These both have their first appearance at 56.14 m in the core, just above the zone of low sporomorph recovery. These results point to (a) a decrease in sporomorph preservation that is linked to environmental change during the PETM event, and (b) repeated reorganizations of plant relative abundances prior to the PETM. Current research is focusing on the

  4. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease.

  5. Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis

    Science.gov (United States)

    Bown, Thomas M.; Kraus, M.J.

    1981-01-01

    The lower Eocene Willwood Formation of northwest Wyoming is a 700 m thick accumulation of alluvial floodplain and channel mudstones and sandstones, nearly all of which show paleopedogenic modifications. Pedogenesis of Willwood sandstones is indicated by taproot and vertebrate and invertebrate bioturbation, early local cementation by calcium carbonate, and thin illuviation cutans on clastic grains. Pedogenesis in Willwood mudstones is indicated by plant bioturbation, insect and other invertebrate burrow casts and lebensspuren; free iron, aluminum, and manganese mobilization, including hydromorphic gleying; sesquioxide and calcareous glaebule formation in lower parts of the solum; presence of clay-rich and organic carbon-rich zones; and well differentiated epipedons and albic and spodic horizons. Probable A horizons are also locally well developed.Occurrence of variegated paleosol units in thick floodplain mudstone deposits and their association with thin, lenticular, and unconnected fluvial sandstones in the Willwood Formation of the central and southeast Bighorn Basin suggest that these soils formed during times of rapid sediment accumulation. The tabular geometry and lateral persistence of soil units as well as the absence of catenization indicate that Willwood floodplains were broad and essentially featureless.All Willwood paleosols were developed on alluvial parent materials and are complex in that B horizons of younger paleosols were commonly superimposed upon and mask properties of suspected A and B horizons of the next older paleosols. The soils appear to be wet varieties of the Spodosol and Entisol groups (aquods and ferrods, and aquents, respectively), though thick, superposed and less mottled red, purple, and yellow paleosols resemble some ultisols. Most Willwood paleosols resemble warm temperate to subtropical alluvial soils that form today under alternating wet and dry conditions and (or) fluctuating water tables. The up-section decrease in frequency of

  6. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... Forest Service Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder... Street, Douglas, Wyoming 82633. Comments may also be sent via email to comments-rm-mbr-douglas-thunder... Ranger, Douglas Ranger District, Medicine Bow-Routt National Forests and Thunder Basin National Grassland...

  7. Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A

    Science.gov (United States)

    Rice, C.A.; Flores, R.M.; Stricker, G.D.; Ellis, M.S.

    2008-01-01

    Significant amounts (> 36??million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, ??DH2O and ??18OH2O were measured for 199 of the samples, and ??DCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na-HCO3-type water with low dissolved SO4 content (median oxygen (< 0.15??mg/L), whereas shallow groundwater (depth generally < 120??m) is a mixed Ca-Mg-Na-SO4-HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation-reduction reactions account for high HCO3 (270-3310??mg/L) and low SO4 (median < 0.15??mg/L) values; (4) fractionation between ??DCH4 (- 283 to - 328 per mil) and ??DH2O (- 121 to - 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of ??DH2O and ??18OH2O (- 16 to - 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  8. Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming

    Science.gov (United States)

    Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.

    2011-01-01

    The availability of abundant new borehole data from recent coal bed natural gas development was utilized by the U.S. Geological Survey for a comprehensive evaluation of coal resources and reserves in the southwestern part of the Powder River Basin in Wyoming. This report on the Southwestern Powder River Basin assessment area represents the third area within the basin to be assessed, the first being for coal resources and reserves in the Gillette coal field in 2008, and the second for coal resources and reserves in the northern Wyoming area of the basin in 2010.

  9. Airborne geophysical survey, Wind River Basin area, Wyoming

    International Nuclear Information System (INIS)

    1974-01-01

    Results are reported of AEC-sponsored, high sensitivity, reconnaisance airborne gamma-ray survey of the Wind River Basin area, Wyoming. The objective of the survey was to define those areas showing surface indications of a generally higher uranium content (uraniferous provinces) and where detailed exploration for uranium would most likely be successful. For the data collection tasks, a TI high sensitivity gamma-ray system consisting of seven large-volume NaI detectors, two 400-channel analyzers, and ancillary geophysical and electronic equipment was used. Gamma-ray spectrometric data were processed to correct for variations in atmospheric and flight conditions and statistically evaluated to remove the effect of surface geologic variations. Data were then compared to regional geomorphic lineaments derived from ERTS-1 imagery. Aeromagnetic data were collected simultaneously with the airborne gamma-ray survey and interpreted in terms of regional structure. Ten major anomalous uranium areas and ten less strong anomalous areas were defined within the region surveyed. These anomalies and the known mining districts and uranium occurrences demonstrated good correlation with the ERTS lineaments. The basins were defined by the aeromagnetic data. It is suggested that gamma-ray spectrometer data be supplemented by both the ERTS and aeromagnetic data to best define the targets of greatest potential for further exploration. (U.S.)

  10. Checklist of copepods (Crustacea: Calanoida, Cyclopoida,Harpacticoida) from Wyoming, USA, with new state records

    Science.gov (United States)

    Presentation of a comprehensive checklist of the copepod fauna of Wyoming, USA with 41 species of copepods; based on museum specimens, literature reviews, and active surveillance. Of these species 19 were previously unknown from the state. This checklist includes species in the families Centropagida...

  11. The Earthworms (Oligochaeta: Lumbricidae)of Wyoming, USA, Revisited.

    Science.gov (United States)

    This survey of the earthworms from 22 of the 23 counties of Wyoming recorded 13 species of terrestrial Oligochaeta, all members of the family Lumbricidae. One of these species, Aporrectodea limicola, is reported for the first time from the state. Current nomenclature is applied to historical records...

  12. Nichols Ranch In-Sutu Leach Uranium Mine Wyoming, USA – A Case History

    International Nuclear Information System (INIS)

    Catchpole, G.; Thomas, Glenda

    2014-01-01

    Company Incorporated in 1999 under the name Carleton Ventures Corp. In 2005 Changed name to Uranerz Energy Corporation and adopted the following Business Model: acquire quality uranium properties with the potential of being mined using the ISL extraction method with the objective of achieving uranium production as soon as practical. Focus on production; not grass roots exploration. Primary target area for property acquisition - western U.S.A., specifically Texas and Wyoming

  13. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  14. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    Science.gov (United States)

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined

  15. Regional thermal-inertia mapping from an experimental satellite ( Powder River basin, Wyoming).

    Science.gov (United States)

    Watson, K.

    1982-01-01

    A new experimental satellite has provided, for the first time, thermal data that should be useful in reconnaissance geologic exploration. Thermal inertia, a property of geologic materials, can be mapped from these data by applying an algorithm that has been developed using a new thermal model. A simple registration procedure was used on a pair of day and night images of the Powder River basin, Wyoming, to illustrate the method.-from Author

  16. South Platte River Basin - Colorado, Nebraska, and Wyoming

    Science.gov (United States)

    Dennehy, Kevin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.This description of the environmental setting of the South Platte River Basin and its implications to the water quality will help guide the design of the South Platte NAWQA study. Natural conditions such as physiography, climate, geology, and soils affect the ambient water quality while anthropogenic factors such as water use, population, land use and water-management practices can have a pronounced effect on water quality in the basin. The relative effects of mining, urban, and agricultural land- and water-uses on water-quality constituents are not well understood. The interrelation of the surface-water and ground-water systems and the chemical and biological processes that affect the transport of constituents needs to be addressed. Interactions between biological communities and the water resources also should be considered. The NAWQA program and the South Platte River Basin study will provide information to minimize existing knowledge gaps, so that we may better understand the effect these natural conditions and human factors have on the water-quality conditions in the basin, now and in the future.

  17. An economic framework for analyzing reclamation after energy extraction in the Powder River Basin of Wyoming

    Science.gov (United States)

    Perry, Abby A.

    Wyoming's economy is highly dependent on natural gas and coal production, but energy extraction degrades rangelands. Federal and state laws and policies govern reclamation of disturbed lands. However, establishing sagebrush plant communities is difficult and defining successful reclamation can be challenging. We analyze reclamation costs in the Powder River Basin of northeastern Wyoming using coal company annual reclamation reports. We also construct a probabilistic mathematical programming model that characterizes a coal company's reclamation decision-,making process and proposes a way to incorporate uncertainty into reclamation modeling. We also use results from a plant sciences field experiment to incorporate costs into optimal seed mix and herbicide choice. This thesis also draws attention to the disconnect between the data biologists collect and the data that economists need to model reclamation decision-making.

  18. Draft environmental impact statement. Bison basin project, Fremont County, Wyoming

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Construction and operation of leach uranium mine and recovery plant designed to produce one million lb of U 3 O 8 per year at a rate not to exceed 400,000 lb/y in Fremont County, Wyoming are proposed. The project site would consist of 761 acres lying 50 miles south of Riverton and 30 miles southwest of Jeffery City. The in situ leach process, implemented to mine ore contained in the Laney member of the Green River formation, would involve use of sodium carbonate-bicarbonate solution and an oxidizing agent injected and recovered through a complex of well patterns. Each well pattern would consist of six injection wells surrounding a central production well. Only about 40 acres would be mined, while another 13.5 acres would be excavated for equipment foundations and evaporation ponds. Recycling of mined formation water through a reverse osmosis cleanup system and placing it back into the formation after mining was complete would restore the groundwater system to its former potential. Solid wastes produced by the mining process would be removed to a licensed disposal site. Positive Impacts: Uranium ore produced by the mine and refined by the plant would aid in meeting demand for this resource which is estimated to double to a level of 15,000 tons per year within the next 5 years and to reach 45,000-50,000 tons per year by 1990. Some monetary benefits would accrue to local communities due to local expenditures resulting from construction and operation. Negative Impacts: Project activities would result in displacement of livestock grazing practices from 57 acres of land. Some local deterioration of groundwater quality would be expected, and approximately 240 acre-feet of groundwater would be removed from the aquifer permanently. Radon-222 and other small radioactive emissions would result from the solution mining process

  19. Geologic applications of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    Science.gov (United States)

    Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.

    1979-01-01

    The author has identified the following significant results. After digitization, a noise rejection filter was applied to data obtained by USGS aircraft. An albedo image was formed by combining three bands of visible data. Along with the day and nighttime thermal data, the albedo image was used to construct a relative thermal-inertia image. This image, registered to a topographic base, shows there are thermal property differences in the vicinity of the contact between the Fort Union and Wasatch formations in the Powder River Basin, Wyoming.

  20. Geologic application of thermal-inertia mapping from satellite. [Powder River Basin, Wyoming

    Science.gov (United States)

    Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.

    1980-01-01

    The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located.

  1. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    Science.gov (United States)

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  2. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    Science.gov (United States)

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine

  3. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Science.gov (United States)

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  4. Study of airborne gamma-ray spectrometer data procedures: Wind River Basin, Wyoming, Thermopolis Quadrangle

    International Nuclear Information System (INIS)

    1979-01-01

    This volume contains the following data from the Thermopolis Quadrangle, Wind River Basin, Wyoming: statistical summary tables; flight-line averages; geologic map units; geologic map with record locations; uranium mines and occurrences, uranium location map; eU symbol anomaly map; eU/eTh symbol anomaly map; eU/K symbol anomaly map; eTh symbol anomaly map; K symbol anomaly map; eU profile anomaly map; eU/eTh profile anomaly map; eU/K profile anomaly map; eTh profile anomaly map; K profile anomaly map; eTh/K profile anomaly map; preferred anomaly maps (4- and 7-point), combined 4- and 7-point preferred anomaly map; and stacked significance factor profiles

  5. 78 FR 77644 - Black Hills National Forest, South Dakota; Thunder Basin National Grassland, Wyoming; Teckla...

    Science.gov (United States)

    2013-12-24

    ... Substations in northeastern Wyoming to the Lange Substation in Rapid City, South Dakota. The Bureau of Land...) transmission line between the Teckla and Osage Substations in northeast Wyoming and the Lange Substation in...

  6. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    Science.gov (United States)

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  7. Lithological discrimination using a Wavelet Based Fractal Analysis at the Teapot Dome Field, Wyoming-USA

    Science.gov (United States)

    García, Alejandro; Aldana, Milagrosa; Cabrera, Ana

    2013-04-01

    In this work, we have applied a Wavelet Based Fractal Analysis (WBFA) to well logs and seismic data at the Teapot Dome Field, Natrona Country, Wyoming-USA, trying to characterize a reservoir using fractal parameters, as intercept (b), slope (m) and fractal dimension (D), and to correlate them with the sedimentation processes and/or the lithological characteristics of the area. The WBFA was first applied to the available logs (Gamma Ray, Spontaneous Potential, Density, Neutron Porosity and Deep Resistivity) from 20 wells located at sectors 27, 28, 33 and 34 of the 3D seismic of the Teapot Dome field. Also the WBFA was applied to the calculated curve of water saturation (Sw). At a second step, the method was used to analyze a set of seismic traces close to the studied wells, extracted from the 3D seismic data. Maps of the fractal parameters were obtained. A spectral analysis of the seismic data was also performed in order to identify seismic facies and to establish a possible correlation with the fractal results. The WBFA results obtained for the wells logs indicate a correlation between fractal parameters and the lithological content in the studied interval (i.e. top-base of the Frontier Formation). Particularly, for the Gamma Ray logs the fractal dimension D can be correlated with the sand-shale content: values of D lower than 0.9 are observed for those wells with more sand content (sandy wells); values of D between 0.9 and 1.1 correspond to wells where the sand packs present numerous inter-bedded shale layers (sandy-shale wells); finally, wells with more shale content (shaly wells) have D values greater than 1.1. The analysis of the seismic traces allowed the discrimination of shaly from sandy zones. The D map generated for the seismic traces indicates that this value can be associated with the shale content in the area. The iso-frequency maps obtained from the seismic spectral analysis show trends associated to the lithology of the field. These trends are similar

  8. Extraction of uranium low-grade ores from Great Divide Basin, Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Judd, J.C.; Nichols, I.L.; Huiatt, J.L.

    1983-04-01

    The US Bureau of Mines is investigating the leachability of carbonaceous uranium ore samples submitted by the DOE under an Interagency Agreement. Studies on eight samples from the Great Divide Basin, Wyoming, are the basis of this report. The uranium content of the eight ore samples ranged from 0.003 to 0.03% U 3 O 8 and contained 0.7 to 45% organic carbon. Experiments were performed to determine the feasibility of extracting uranium using acid leaching, roast-acid leaching and pressure leaching techniques. Acid leaching with 600 lb/ton H 2 SO 4 plus 10 lb/ton NaClO 3 for 18 h at 70 0 C extracted 65 to 83% of the uranium. One sample responded best to a roast-leach treatment. When roasting for 4 h at 500 0 C followed by acid leaching of the calcine using 600 lb/ton H 2 SO 4 , the uranium extraction was 82%. Two of the samples responded best to an oxidative pressure leach for 3 h at 200 0 C under a total pressure of 260 psig; uranium extractions were 78 and 82%

  9. Kriging analysis of mean annual precipitation, Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    Karlinger, M.R.; Skrivan, James A.

    1981-01-01

    Kriging is a statistical estimation technique for regionalized variables which exhibit an autocorrelation structure. Such structure can be described by a semi-variogram of the observed data. The kriging estimate at any point is a weighted average of the data, where the weights are determined using the semi-variogram and an assumed drift, or lack of drift, in the data. Block, or areal, estimates can also be calculated. The kriging algorithm, based on unbiased and minimum-variance estimates, involves a linear system of equations to calculate the weights. Kriging variances can then be used to give confidence intervals of the resulting estimates. Mean annual precipitation in the Powder River basin, Montana and Wyoming, is an important variable when considering restoration of coal-strip-mining lands of the region. Two kriging analyses involving data at 60 stations were made--one assuming no drift in precipitation, and one a partial quadratic drift simulating orographic effects. Contour maps of estimates of mean annual precipitation were similar for both analyses, as were the corresponding contours of kriging variances. Block estimates of mean annual precipitation were made for two subbasins. Runoff estimates were 1-2 percent of the kriged block estimates. (USGS)

  10. Are We Having Fun Yet? Hitting the Moving Target of Program Choice, Wyoming, USA.

    Science.gov (United States)

    Heinlein, Ken B.; Campbell, Edward M.; Fortune, Jon; Severance, Don; Fortune, Barbara

    The changes in what people with developmental disabilities wanted and got for living and daytime settings in South Dakota and Wyoming during 1988 were compared to what they wanted and received in 2000. Although the percentage of people in their desired setting rose, there were substantial changes in the types of settings recommended over the…

  11. Coal geology and assessment of coal resources and reserves in the Powder River Basin, Wyoming and Montana

    Science.gov (United States)

    Luppens, James A.; Scott, David C.

    2015-01-01

    This report presents the final results of the first assessment of both coal resources and reserves for all significant coal beds in the entire Powder River Basin, northeastern Wyoming and southeastern Montana. The basin covers about 19,500 square miles, exclusive of the part of the basin within the Crow and Northern Cheyenne Indian Reservations in Montana. The Powder River Basin, which contains the largest resources of low-sulfur, low-ash, subbituminous coal in the United States, is the single most important coal basin in the United States. The U.S. Geological Survey used a geology-based assessment methodology to estimate an original coal resource of about 1.16 trillion short tons for 47 coal beds in the Powder River Basin; in-place (remaining) resources are about 1.15 trillion short tons. This is the first time that all beds were mapped individually over the entire basin. A total of 162 billion short tons of recoverable coal resources (coal reserve base) are estimated at a 10:1 stripping ratio or less. An estimated 25 billion short tons of that coal reserve base met the definition of reserves, which are resources that can be economically produced at or below the current sales price at the time of the evaluation. The total underground coal resource in coal beds 10–20 feet thick is estimated at 304 billion short tons.

  12. Outcrops, Fossils, Geophysical Logs, and Tectonic Interpretations of the Upper Cretaceous Frontier Formation and Contiguous Strata in the Bighorn Basin, Wyoming and Montana

    Science.gov (United States)

    Merewether, E.A.; Cobban, W.A.; Tillman, R.W.

    2010-01-01

    In the Bighorn Basin of north-central Wyoming and south-central Montana, the Frontier Formation of early Late Cretaceous age consists of siliciclastic, bentonitic, and carbonaceous beds that were deposited in marine, brackish-water, and continental environments. Most lithologic units are laterally discontinuous. The Frontier Formation conformably overlies the Mowry Shale and is conformably overlain by the Cody Shale. Molluscan fossils collected from outcrops of these formations and listed in this report are mainly of marine origin and of Cenomanian, Turonian, and Coniacian ages. The lower and thicker part of the Frontier in the Bighorn Basin is of Cenomanian age and laterally equivalent to the Belle Fourche Member of the Frontier in central Wyoming. Near the west edge of the basin, these basal strata are disconformably overlain by middle Turonian beds that are the age equivalent of the Emigrant Gap Member of the Frontier in central Wyoming. The middle Turonian beds are disconformably overlain by lower Coniacian strata. Cenomanian strata along the south and east margins of the basin are disconformably overlain by upper Turonian beds in the upper part of the Frontier, as well as in the lower part of the Cody; these are, in turn, conformably overlain by lower Coniacian strata. Thicknesses and ages of Cenomanian strata in the Bighorn Basin and adjoining regions are evidence of regional differential erosion and the presence of an uplift during the early Turonian centered in northwestern Wyoming, west of the basin, probably associated with a eustatic event. The truncated Cenomanian strata were buried by lower middle Turonian beds during a marine transgression and possibly during regional subsidence and a eustatic rise. An uplift in the late middle Turonian, centered in north-central Wyoming and possibly associated with a eustatic fall, caused the erosion of lower middle Turonian beds in southern and eastern areas of the basin as well as in an adjoining region of north

  13. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: laying a foundation for monitoring

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.

    2012-01-01

    agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.

  14. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 A.D

    Science.gov (United States)

    Gray, S.T.; Fastie, C.L.; Jackson, S.T.; Betancourt, J.L.

    2004-01-01

    Cores and cross sections from 79 Douglas fir (Pseudotsuga menziesii) and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June-June) precipitation spanning 1260-1998 A.D. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past ???750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15-20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Nin??a events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Nin??o events). ?? 2004 American Meteorological Society.

  15. Restoration of groundwater after solution mining at the Highland Uranium Project, Wyoming, USA

    International Nuclear Information System (INIS)

    Hunter, J.; Huffman, L.

    2000-01-01

    The Highland Project, located in Converse County, Wyoming, has had a successful 11 year history of in-situ leach mining of Tertiary roll-front uranium deposits. The uranium ore is oxidized and solubilized by circulating native groundwater, containing additional dissolved O 2 and CO 2 , within confined fluvial aquifers at depths of 200 - 250 m. The changing chemistry of this groundwater during leaching is discussed, as are the various treatment techniques that have been used to restore this fluid at the end of mining. Examples are provided which demonstrate the varying effectiveness of each technique for the reduction of elevated concentrations of different groundwater parameters. The complications arising from the proximity of the earliest wellfields to abandoned, conventional mine workings, as well as unexpected side effects from each restoration method, have combined to make an interesting case history from this long established mining operation. (author)

  16. Restoration of groundwater after solution mining at the Highland Uranium Project, Wyoming, USA

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J. [Waste Technology Group, British Nuclear Fuels PLC, Risley, Warrington (United Kingdom); Huffman, L. [Power Resources Inc., Highland Uranium Mine, Glenrock, Wyoming (United States)

    2000-07-01

    The Highland Project, located in Converse County, Wyoming, has had a successful 11 year history of in-situ leach mining of Tertiary roll-front uranium deposits. The uranium ore is oxidized and solubilized by circulating native groundwater, containing additional dissolved O{sub 2} and CO{sub 2}, within confined fluvial aquifers at depths of 200 - 250 m. The changing chemistry of this groundwater during leaching is discussed, as are the various treatment techniques that have been used to restore this fluid at the end of mining. Examples are provided which demonstrate the varying effectiveness of each technique for the reduction of elevated concentrations of different groundwater parameters. The complications arising from the proximity of the earliest wellfields to abandoned, conventional mine workings, as well as unexpected side effects from each restoration method, have combined to make an interesting case history from this long established mining operation. (author)

  17. Depth of the base of the Jackson aquifer, based on geophysical exploration, southern Jackson Hole, Wyoming, USA

    Science.gov (United States)

    Nolan, Bernard T.; Campbell, David L.; Senterfit, Robert M.

    A geophysical survey was conducted to determine the depth of the base of the water-table aquifer in the southern part of Jackson Hole, Wyoming, USA. Audio-magnetotellurics (AMT) measurements at 77 sites in the study area yielded electrical-resistivity logs of the subsurface, and these were used to infer lithologic changes with depth. A 100-600ohm-m geoelectric layer, designated the Jackson aquifer, was used to represent surficial saturated, unconsolidated deposits of Quaternary age. The median depth of the base of the Jackson aquifer is estimated to be 200ft (61m), based on 62 sites that had sufficient resistivity data. AMT-measured values were kriged to predict the depth to the base of the aquifer throughout the southern part of Jackson Hole. Contour maps of the kriging predictions indicate that the depth of the base of the Jackson aquifer is shallow in the central part of the study area near the East and West Gros Ventre Buttes, deeper in the west near the Teton fault system, and shallow at the southern edge of Jackson Hole. Predicted, contoured depths range from 100ft (30m) in the south, near the confluences of Spring Creek and Flat Creek with the Snake River, to 700ft (210m) in the west, near the town of Wilson, Wyoming. Résumé Une campagne géophysique a été entreprise pour préciser la profondeur du mur de l'aquifère dans le secteur sud de Jackson Hole (Wyoming, États-Unis). Des mesures audio-magnétotelluriques (audio MT) sur 77 sites de ce secteur ont fourni des logs de résistivitéélectrique du sous-sol ; les variations de la lithologie en fonction de la profondeur en ont été déduites. Un niveau géoélectrique à 100-600ohm.m, dénommé "aquifère de Jackson", a servi à définir des dépôts superficiels quaternaires saturés en eau et non consolidés. La profondeur médiane de la base de l'aquifère de Jackson est de l'ordre de 61m, à partir des 62 sites ayant fourni suffisamment de données de résistivité. Les valeurs audio MT mesur

  18. Geology of the Pumpkin Buttes Area of the Powder River Basin, Campbell and Johnson Counties, Wyoming

    Science.gov (United States)

    Sharp, William Neil; White, Amos McNairy

    1956-01-01

    About 200 uranium occurrences have been examined in the Pumpkin Buttes area, Wyoming. Uranium minerals are visible at most of these places and occur in red and buff sandstone lenses in the Wasatch formation of Eocene age. The uranium minerals are disseminated in buff sandstone near red sandstone, and also occur in red sandstone in manganese oxide concretions and uraninite concretions.

  19. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn Basin

    Science.gov (United States)

    Kvale, Erik P.; Mickelson, Debra L.; Hasiotis, Stephen T; Johnson, Gary D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers.

  20. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, William [USDOE Office of Legacy Management, Washington, DC (United States); Price, Jeffrey [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-11-01

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measured at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.

  1. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA.

    Science.gov (United States)

    Ruedig, Elizabeth; Johnson, Thomas E

    2015-12-01

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p mining by about 5.2 mSv y(-1). Higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear. Published by Elsevier Ltd.

  2. Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA

    Science.gov (United States)

    Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.

    1999-01-01

    The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.

  3. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    Science.gov (United States)

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  4. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    Science.gov (United States)

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  5. Element concentrations in bed sediment of the Yellowstone River basin, Montana, North Dakota, and Wyoming; a retrospective analysis

    Science.gov (United States)

    Peterson, D.A.; Zelt, R.B.

    1999-01-01

    Chemical data for bed sediment were analyzed as part of the U.S. Geological Survey National Water-Quality Assessment Program investigation of the Yellowstone River Basin in parts of Montana, North Dakota, and Wyoming. The primary data set consisted of about 13,000 samples collected during 1974-79 for the National Uranium Resource Evaluation program. Data were available for 50 elements, although not all samples were analyzed for all elements. Element concentrations varied spatially and were associated with geologic settings or ecoregions. Factor analysis indicated three groups of associated elements: factor 1 elements were strongly correlated with basaltic rocks, factor 2 elements were strongly correlated with granitic rocks, and factor 3 elements were strongly correlated with carbonate rocks. Scores for factor 1 were highest for bed-sediment samples associated with volcanic rocks of Tertiary and Cretaceous age in the Absaroka volcanic field and crystalline rocks of Precambrian age in the Beartooth Mountains. Scores for factor 2 were highest for samples associated with volcanic rocks of Quaternary age on the Yellowstone Plateau, crystalline rocks of Precambrian age, and sedimentary rocks of Tertiary age in the Wyoming Basin ecoregion. Scores for factor 3 were highest in samples associated with sedimentary rocks of Paleozoic age and volcanic rocks of Cretaceous and Tertiary age. Descriptive statistics are presented to serve as a baseline for element concentrations in bed sediment associated with eight geologic settings or ecoregions in the study unit. Some of the concentrations of chromium, copper, lead, nickel, and zinc in bed-sediment samples from areas of crystalline rocks in the Beartooth Mountains and other formations in the western part of the study unit exceeded sediment-quality assessment values associated with toxic effects to aquatic life.

  6. Infiltration from an impoundment for coal-bed natural gas, Powder River Basin, Wyoming: Evolution of water and sediment chemistry

    Science.gov (United States)

    Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P.

    2008-01-01

    Development of coal-bed natural gas (CBNG) in the Powder River Basin, Wyoming, has increased substantially in recent years. Among environmental concerns associated with this development is the fate of groundwater removed with the gas. A preferred water-management option is storage in surface impoundments. As of January 2007, permits for more than 4000 impoundments had been issued within Wyoming. A study was conducted on changes in water and sediment chemistry as water from an impoundment infiltrated the subsurface. Sediment cores were collected prior to operation of the impoundment and after its closure and reclamation. Suction lysimeters were used to collect water samples from beneath the impoundment. Large amounts of chloride (12,300 kg) and nitrate (13,500 kg as N), most of which accumulated naturally in the sediments over thousands of years, were released into groundwater by infiltrating water. Nitrate was more readily flushed from the sediments than chloride. If sediments at other impoundment locations contain similar amounts of chloride and nitrate, impoundments already permitted could release over 48 x 106 kg of chloride and 52 x 106 kg of nitrate into groundwater in the basin. A solute plume with total dissolved solid (TDS) concentrations at times exceeding 100,000 mg/L was created in the subsurface. TDS concentrations in the plume were substantially greater than those in the CBNG water (about 2300 mg/L) and in the ambient shallow groundwater (about 8000 mg/L). Sulfate, sodium, and magnesium are the dominant ions in the plume. The elevated concentrations are attributed to cation-exchange-enhanced gypsum dissolution. As gypsum dissolves, calcium goes into solution and is exchanged for sodium and magnesium on clays. Removal of calcium from solution allows further gypsum dissolution.

  7. Microclimatic performance of a free-air warming and CO2 enrichment experiment in windy Wyoming, USA.

    Directory of Open Access Journals (Sweden)

    Daniel LeCain

    Full Text Available In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2 on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night and growing season free-air CO2 enrichment (600 ppm in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms(-1 average and significant daily and seasonal temperature fluctuations (as much as 30°C daily but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for

  8. Microclimatic Performance of a Free-Air Warming and CO2 Enrichment Experiment in Windy Wyoming, USA

    Science.gov (United States)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco

    2015-01-01

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO2) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO2 enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms-1 average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO2 had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO2. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the

  9. Effects of lateral confinement in natural and leveed reaches of a gravel-bed river: Snake River, Wyoming, USA

    Science.gov (United States)

    Leonard, Christina M.; Legleiter, Carl; Overstreet, Brandon T.

    2017-01-01

    This study examined the effects of natural and anthropogenic changes in confining margin width by applying remote sensing techniques – fusing LiDAR topography with image-derived bathymetry – over a large spatial extent: 58 km of the Snake River, Wyoming, USA. Fused digital elevation models from 2007 and 2012 were differenced to quantify changes in the volume of stored sediment, develop morphological sediment budgets, and infer spatial gradients in bed material transport. Our study spanned two similar reaches that were subject to different controls on confining margin width: natural terraces versus artificial levees. Channel planform in reaches with similar slope and confining margin width differed depending on whether the margins were natural or anthropogenic. The effects of tributaries also differed between the two reaches. Generally, the natural reach featured greater confining margin widths and was depositional, whereas artificial lateral constriction in the leveed reach produced a sediment budget that was closer to balanced. Although our remote sensing methods provided topographic data over a large area, net volumetric changes were not statistically significant due to the uncertainty associated with bed elevation estimates. We therefore focused on along-channel spatial differences in bed material transport rather than absolute volumes of sediment. To complement indirect estimates of sediment transport derived by morphological sediment budgeting, we collected field data on bed mobility through a tracer study. Surface and subsurface grain size measurements were combined with bed mobility observations to calculate armoring and dimensionless sediment transport ratios, which indicated that sediment supply exceeded transport capacity in the natural reach and vice versa in the leveed reach. We hypothesize that constriction by levees induced an initial phase of incision and bed armoring. Because levees prevented bank erosion, the channel excavated sediment by

  10. Map Showing Principal Coal Beds and Bedrock Geology of the Ucross-Arvada Area, Central Powder River Basin, Wyoming

    Science.gov (United States)

    Molnia, Carol L.

    2013-01-01

    The Ucross-Arvada area is part of the Powder River Basin, a large, north-trending structural depression between the Black Hills on the east and the Bighorn Mountains on the west. Almost all of the study area is within Sheridan and Johnson Counties, Wyoming. Most of the Ucross-Arvada area lies within the outcrop of the Wasatch Formation of Eocene age; the extreme northeast corner falls within the outcrop of the Tongue River Member of the Fort Union Formation of Paleocene age. Within the Powder River Basin, both the Wasatch Formation and the Tongue River Member of the Fort Union Formation contain significant coal resources. The map includes locations and elevations of coal beds at 1:50,000 scale for an area that includes ten 7½-minute quadrangles covering some 500 square miles. The Wasatch Formation coal beds shown (in descending order) are Monument Peak, Walters (also called Ulm 1), Healy (also called Ulm 2), Truman, Felix, and Arvada. The Fort Union Formation coal beds shown (in descending order) are Roland (of Baker, 1929) and Smith.

  11. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    Science.gov (United States)

    Nichols, D.J.; Brown, J.L.; Attrep, M.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  12. Stratigraphic cross sections of the Niobrara interval of the Cody Shale and associated rocks in the Wind River Basin, central Wyoming

    Science.gov (United States)

    Finn, Thomas M.

    2017-02-07

    The Wind River Basin in Wyoming is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny. The basin is nearly 200 miles long, 70 miles wide, and encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek uplift, and southern Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and Wind River Range on the west.Many important conventional oil and gas fields producing from reservoirs ranging in age from Mississippian through Tertiary have been discovered in this basin. In addition, an extensive unconventional overpressured basin-centered gas accumulation has been identified in Cretaceous and Tertiary strata in the deeper parts of the basin. It has long been suggested that various Upper Cretaceous marine shales, including the Cody Shale, are the principal hydrocarbon source rocks for many of these accumulations. With recent advances and success in horizontal drilling and multistage fracture stimulation, there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks.The two stratigraphic cross sections presented in this report were constructed as part of a project carried out by the U.S. Geological Survey to characterize and evaluate the undiscovered continuous (unconventional) oil and gas resources of the Niobrara interval of the Upper Cretaceous Cody Shale in the Wind River Basin in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic relationship of the Niobrara equivalent strata and associated rocks in the lower part of the Cody Shale in the Wind River Basin. These two cross sections were constructed using borehole geophysical logs from 37 wells drilled for oil and gas exploration and production, and one surface section along East Sheep Creek

  13. A point-infiltration model for estimating runoff from rainfall on small basins in semiarid areas of Wyoming

    Science.gov (United States)

    Rankl, James G.

    1990-01-01

    A physically based point-infiltration model was developed for computing infiltration of rainfall into soils and the resulting runoff from small basins in Wyoming. The user describes a 'design storm' in terms of average rainfall intensity and storm duration. Information required to compute runoff for the design storm by using the model include (1) soil type and description, and (2) two infiltration parameters and a surface-retention storage parameter. Parameter values are tabulated in the report. Rainfall and runoff data for three ephemeral-stream basins that contain only one type of soil were used to develop the model. Two assumptions were necessary: antecedent soil moisture is some long-term average, and storm rainfall is uniform in both time and space. The infiltration and surface-retention storage parameters were determined for the soil of each basin. Observed rainstorm and runoff data were used to develop a separation curve, or incipient-runoff curve, which distinguishes between runoff and nonrunoff rainfall data. The position of this curve defines the infiltration and surface-retention storage parameters. A procedure for applying the model to basins that contain more than one type of soil was developed using data from 7 of the 10 study basins. For these multiple-soil basins, the incipient-runoff curve defines the infiltration and retention-storage parameters for the soil having the highest runoff potential. Parameters were defined by ranking the soils according to their relative permeabilities and optimizing the position of the incipient-runoff curve by using measured runoff as a control for the fit. Analyses of runoff from multiple-soil basins indicate that the effective contributing area of runoff is less than the drainage area of the basin. In this study, the effective drainage area ranged from 41.6 to 71.1 percent of the total drainage area. Information on effective drainage area is useful in evaluating drainage area as an independent variable in

  14. Phreatophytic land-cover map of the northern and central Great Basin Ecoregion: California, Idaho, Nevada, Utah, Oregon, and Wyoming

    Science.gov (United States)

    Mathie, Amy M.; Welborn, Toby L.; Susong, David D.; Tumbusch, Mary L.

    2011-01-01

    Increasing water use and changing climate in the Great Basin of the western United States are likely affecting the distribution of phreatophytic vegetation in the region. Phreatophytic plant communities that depend on groundwater are susceptible to natural and anthropogenic changes to hydrologic flow systems. The purpose of this report is to document the methods used to create the accompanying map that delineates areas of the Great Basin that have the greatest potential to support phreatophytic vegetation. Several data sets were used to develop the data displayed on the map, including Shrub Map (a land-cover data set derived from the Regional Gap Analysis Program) and Gap Analysis Program (GAP) data sets for California and Wyoming. In addition, the analysis used the surface landforms from the U.S. Geological Survey (USGS) Global Ecosystems Mapping Project data to delineate regions of the study area based on topographic relief that are most favorable to support phreatophytic vegetation. Using spatial analysis techniques in a GIS, phreatophytic vegetation classes identified within Shrub Map and GAP were selected and compared to the spatial distribution of selected landforms in the study area to delineate areas of phreatophyte vegetation. Results were compared to more detailed studies conducted in selected areas. A general qualitative description of the data and the limitations of the base data determined that these results provide a regional overview but are not intended for localized studies or as a substitute for detailed field analysis. The map is intended as a decision-support aide for land managers to better understand, anticipate, and respond to ecosystem changes in the Great Basin.

  15. Geologic history of natural coal-bed fires, Powder River basin, USA

    Science.gov (United States)

    Heffern, E.L.; Coates, D.A.

    2004-01-01

    Coal-bed fires ignited by natural processes have baked and fused overlying sediments to form clinker, a hard red or varicolored rock, through much of the northern Great Plains of the United States (USA). The gently dipping coal beds in the region burn when regional downwasting brings them above the local water table. The resulting clinker forms a rim along the exposed edge of the coal bed in an ongoing process through geologic time. The resistant clinker is left capping buttes and ridges after the softer unbaked strata erode away. Clinker outcrops cover more than 4100 km2 in the Powder River basin (PRB), which lies in Wyoming (WY) and Montana (MT). The clinker in place records tens of billions of tons of coal that have burned, releasing gases into the atmosphere. The amount of clinker that has eroded away was at least an order of magnitude greater than the clinker that remains in place. Fission-track and uranium-thorium/ helium ages of detrital zircon crystals in clinker, and paleomagnetic ages of clinker, show that coal beds have burned naturally during at least the past 4 million years (Ma). The oldest in-place clinker that has been dated, collected from a high, isolated, clinker-capped ridge, has a fission track age of 2.8??0.6 Ma. Evidence of erosion and downcutting is also preserved by clinker clasts in gravel terraces. One clinker boulder in a terrace 360 m above the Yellowstone River has a fission track age of 4.0??0.7 Ma. Coal-bed fires are caused by lightning, wildfires, spontaneous combustion, or human activity on coal outcrops and in mines. Miners, government agencies, and ranchers have extinguished thousands of coal bed fires, but natural ignition continues where fresh coal has access to air. At any given time, hundreds of fires, mostly small, are burning. In the Powder River basin, the total amount of coal burned by natural fires in the last 2 Ma is one to two orders of magnitude greater than the total amount of coal removed by mining in the past

  16. U.S. Geological Survey and Bureau of Land Management Cooperative Coalbed Methane Project in the Powder River Basin, Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    Introduction: Evidence that earthquakes threaten the Mississippi, Ohio, and Wabash River valleys of the Central United States abounds. In fact, several of the largest historical earthquakes to strike the continental United States occurred in the winter of 1811-1812 along the New Madrid seismic zone, which stretches from just west of Memphis, Tenn., into southern Illinois (fig. 1). Several times in the past century, moderate earthquakes have been widely felt in the Wabash Valley seismic zone along the southern border of Illinois and Indiana (fig. 1). Throughout the region, between 150 and 200 earthquakes are recorded annually by a network of monitoring instruments, although most are too small to be felt by people. Geologic evidence for prehistoric earthquakes throughout the region has been mounting since the late 1970s. But how significant is the threat? How likely are large earthquakes and, more importantly, what is the chance that the shaking they cause will be damaging?The Bureau of Land Management (BLM) Wyoming Reservoir Management Group and the U.S. Geological Survey (USGS) began a cooperative project in 1999 to collect technical and analytical data on coalbed methane (CBM) resources and quality of the water produced from coalbeds in the Wyoming part of the Powder River Basin. The agencies have complementary but divergent goals and these kinds of data are essential to accomplish their respective resource evaluation and management tasks. The project also addresses the general public need for information pertaining to Powder River Basin CBM resources and development. BLM needs, which relate primarily to the management of CBM resources, include improved gas content and gas in-place estimates for reservoir characterization and resource/reserve assessment, evaluation, and utilization. USGS goals include a basinwide assessment of CBM resources, an improved understanding of the nature and origin of coalbed gases and formation waters, and the development of predictive

  17. New Vitrinite Reflectance Data for the Bighorn Basin, North-Central Wyoming and South-Central Montana

    Science.gov (United States)

    Finn, Thomas M.; Pawlewicz, Mark J.

    2007-01-01

    Introduction The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana (fig. 1). Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary (Fox and Dolton, 1989, 1996a, b; De Bruin, 1993). In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs (Johnson and Finn, 1998; Johnson and others, 1999). The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey's assessment of undiscovered oil and gas resources of the Bighorn Basin. These new data supplement previously published data by Nuccio and Finn (1998), and Yin (1997), and lead to a better understanding and characterization of the thermal maturation and burial history of potential source rocks. Eighty-nine samples of Cretaceous and Tertiary strata (fig. 2) were collected and analyzed - 15 samples were from outcrops around the margins of the basin and 74 samples were well cuttings (fig. 1). Forty-one of the samples were shale, two were carbonaceous shale, and the remainder from coal. All samples were analyzed by vitrinite reflectance to determine levels of thermal maturation. Preparation of samples for reflectance analysis required (1) crushing the larger pieces into 0.25-to 1-mm pieces, (2) casting the pieces with epoxy in pre-cut and drilled plugs, and (3) curing the samples overnight. Subsequently, a four-step grinding and polishing process was implemented that included sanding with progressively finer sandpaper (60 and 600 grit) followed with a two-step polishing process (0.3 and 0.05 micron). Vitrinite reflectance measurements were determined at 500 X magnification using plane-polarized incident white light and a 546-nm monochromatic filter in immersion oil. For samples containing

  18. Quality of surface water in the Bear River basin, Utah, Wyoming, and Idaho

    Science.gov (United States)

    Waddell, K.M.; Price, Don

    1972-01-01

    The United States Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Water Rights, began a reconnaissance in 1967 to obtain essential water-quality information for the Bear River basin. The reconnaissance was directed toward defining the chemical quality of the basin’s surface waters, including suitability for specific uses, geology, and general basin hydrology. Emphasis was given to those areas where water-development projects are proposed or being considered.

  19. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING; FINAL

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    A primary objective of the Institute for Energy Research (IER)-Santa Fe Snyder Corporation DOE Riverton Dome project is to test the validity of a new conceptual model and resultant exploration paradigm for so-called ''basin center'' gas accumulations. This paradigm and derivative exploration strategy suggest that the two most important elements crucial to the development of prospects in the deep, gas-saturated portions of Rocky Mountain Laramide Basins (RMLB) are (1) the determination and, if possible, three-dimensional evaluation of the pressure boundary between normal and anomalous pressure regimes (i.e., this boundary is typically expressed as a significant inversion in both sonic and seismic velocity-depth profiles) , and (2) the detection and delineation of porosity/permeability ''sweet spots'' (i.e., areas of enhanced storage capacity and deliverability) in potential reservoir targets below this boundary. There are other critical aspects in searching for basin center gas accumulations, but completion of these two tasks is essential to the successful exploration for the unconventional gas resources present in anomalously pressured rock/fluid systems in the Rocky Mountain Laramide Basins. The southern Wind River Basin, in particular the Riverton Dome and Emigrant areas, is a neat location for testing this exploration paradigm. Preliminary work within the Wind River Basin has demonstrated that there is a regionally prominent pressure surface boundary that can be detected by inversions in sonic velocity depth gradients in individual well log profiles and that can be seen as a velocity inversion on seismic lines. Also, the Wind River Basin in general-and the Riverton Dome area specially-is characterized by a significant number of anomalously pressured gas accumulations. Most importantly, Santa Fe Snyder Corporation has provided the study with sonic logs, two 3-D seismic studies (40 mi(sup 2) and 30 mi(sup 2)) and a variety of other necessary geological and

  20. RIVERTON DOME GAS EXPLORATION AND STIMULATION TECHNOLOGY DEMONSTRATION, WIND RIVER BASIN, WYOMING

    International Nuclear Information System (INIS)

    Dr. Ronald C. Surdam

    1999-01-01

    This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends

  1. Environmental setting of the Yellowstone River basin, Montana, North Dakota, and Wyoming

    Science.gov (United States)

    Zelt, Ronald B.; Boughton, G.K.; Miller, K.A.; Mason, J.P.; Gianakos, L.M.

    1999-01-01

    Natural and anthropogenic factors influence water-quality conditions in the Yellowstone River Basin. Physiography parallels the structural geologic setting that is generally composed of several uplifts and structural basins. Contrasts in climate and vegetation reflect topographic controls and the midcontinental location of the study unit. Surface-water hydrology reflects water surpluses in mountainous areas that are dominated by snowmelt runoff, and arid to semiarid conditions in the plains that are dissected by typically irrigated valleys in the remainder of the study unit. Principal shallow aquifers are Tertiary sandstones and unconsolidated Quaternary deposits. Human population, though sparsely distributed in general, is growing most rapidly in a few urban centers and resort areas, mostly in the northwestern part of the basin. Land use is areally dominated by grazing in the basins and plains and economically dominated by mineral-extraction activities. Forests are the dominant land cover in mountainous areas. Cropland is a major land use in principal stream valleys. Water use is dominated by irrigated agriculture overall, but mining and public-supply facilities are major users of ground water. Coal and hydrocarbon production and reserves distinguish the Yellowstone River Basin as a principal energy-minerals resources region. Current metallic ore production or reserves are nationally significant for platinum-group elements and chromium.The study unit was subdivided as an initial environmental stratification for use in designing the National Water-Quality Assessment Program investigation that began in 1997. Ecoregions, geologic groups, mineral-resource areas, and general land-cover and land-use categories were used in combination to define 18 environmental settings in the Yellowstone River Basin. It is expected that these different settings will be reflected in differing water-quality or aquatic-ecological characteristics.

  2. Analysis of Costs of Services/Supports for People with Developmental Disabilities for Nebraska, South Dakota, and Wyoming, USA.

    Science.gov (United States)

    Campbell, Edward M.; Fortune, Jon; Severance, Donald; Holderegger, John; Fortune, Barbara

    A database was assembled from data collected on all people served by the Developmental Disabilities divisions of Nebraska, South Dakota, and Wyoming, including state institutions and state-funded programs (n=5,928). Information included provider expenditures associated with each individual, allocations made by individual reimbursement rates,…

  3. Geologic application of thermal-inertia mapping from satellite. [Powder River Basin in Wyoming and Montana

    Science.gov (United States)

    Offield, T. W. (Principal Investigator); Miller, S. H.; Watson, K.

    1978-01-01

    The author has identified the following significant results. The proportional and linear relationship between absolute and relative thermal inertia was theoretically evaluated, and a more accurate expression for thermal inertia was proposed. Radiometric and meteorological data from three stations in the Powder River Basin were acquired, as well as 400 miles of low altitude scanner data between July 25-28.

  4. Sedimentation and chemical quality of surface waters in the Wind River basin, Wyoming

    Science.gov (United States)

    Colby, B.R.; Hembree, C.H.; Rainwater, F.H.

    1956-01-01

    This report gives results of an investigation by the U. S. Geological Survey of chemical quality of surface waters and sedimentation in the Wind River Basin, Wyo. The sedimentation study was begun in 1946 to determine the quantity of sediment that is transported by the streams in the basin; the probable sources of the sediment; the effect of large irrigation projects on sediment yield, particularly along Fivemile Creek; and the probable specific weight of the sediment when initially deposited in a reservoir. The study of the chemical quality of the water was begun in 1945 to obtain information on the sources, nature, and amounts of dissolved material that is transported by streams and on the suitability of the waters for different uses. Phases of geology and hydrology pertinent to the sedimentation and chemical quality were studied. Results of the investigation through September 30, 1952, and some special studies that were made during the 1953 and 1954 water years are reported. The rocks in the Wind River Basin are granite, schist, and gneiss of Precambrian age and a thick series of sedimentary strata that range in age from Cambrian to Recent. Rocks of Precambrian and Paleozoic age are confined to the mountains, rocks of Mesozoic age crop out along the flank of the Wind River and Owl Creek Mountains and in denuded anticlines in the floor of the basin, and rocks of Tertiary age cover the greater part of the floor of the basin. Deposits of debris from glaciers are in the mountains, and remnants of gravel-capped terraces of Pleistocene age are on the floor of the basin. The lateral extent and depth of alluvial deposits of Recent age along all the streams are highly variable. The climate of the floor of the basin is arid. The foothills probably receive a greater amount of intense rainfall than the areas at lower altitudes. Most precipitation in the Wind River Mountains falls as snow. The foothill sections, in general, are transitional zones between the cold, humid

  5. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    Science.gov (United States)

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  6. Early successional patterns of arthropod recolonization on reclaimed Wyoming strip mines: the grasshoppers (Orthoptera: Arcrididae) and allied faunas (Orthoptera: Gryllacrididae, Tettigoniidae). [USA - Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Parmenter, R.R.; MacMahon, J.A.; Gilbert, C.A. (Utah State University, Logan, UT (USA). Dept. of Biology)

    1991-02-01

    The colonization and community development of Orthoptera on a series of revegetated surface coal mines in Wyoming was examined. The fauna on an adjacent, undisturbed shrub-steppe site also was sampled. The reclaimed mines represented a series of sites ranging in age (after revegetation) from 0 to 6 year. It was found that the mine sites exhibited lower index values for species richness (R, 6-15), diversity (H{prime}, 0.07-0.68) and evenness (J{prime}, 0.09-0.60) than the undisturbed site (R, 19; H{prime}, 0.79; J{prime}, 0.62). Community similarity indices (Bray-Curtis coefficients) indicated a low similarity between any mine site and the undisturbed shrub-steppe site. Cluster analysis revealed three major faunal assemblages on the mine sites that corresponded closely to vegetational changes: on two young sites dominated by annual forbs ({ge}34% cover) with little grass ({le}12% cover), there existed a depauperate fauna dominated by Ceuthophilus alpinus Scudder (Gryllacrididae); on one site with an even mix of forbs and grasses (33% and 21% cover, respectively), the Acrididae and Gryllacrididae were codominant; and on the four older sites dominated by grasses ({ge}38% cover, virtually no forbs), C. alpinus was again the dominant species, although substantial numbers of acridids were also present. Correlations of Orthoptera species richness and diversity with plant species richness and diversity produced significant positive relationships. It is suggested, that, in the absence of significant grazing by native wildlife or livestock, these herbivorous and omnivorous insects provide an important ecological pathway for energy flow, litter decomposition, and nutrient cycling. 39 refs., 2 figs., 3 tabs.

  7. An empirical method for determining average soil infiltration rates and runoff, Powder River structural basin, Wyoming

    Science.gov (United States)

    Rankl, James G.

    1982-01-01

    This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)

  8. Competitive effects of introduced annual weeds on some native and reclamation species in the Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.B.; Knight, D.H.

    1980-01-01

    Four experiments were conducted to examine the competitive effects of introduced annual weeds on certain native and reclamation species. The first experiment was initiated by discing three sites in the Powder River Basin, Wyoming, at three distances from introduced weed seed sources. Introduced weed colonization was greatest when a seed source was located nearby. Higher weed cover resulted in reductions of percent cover, density, and richness of the native species. The second experiment was conducted in the greenhouse and was designed to determine if there are changes in response of S. kali and the native grasses Agropyron smithii and Bouteloua gracilis to competition and water regime. Both grass species had lower biomass and higher stomatal resistance when growing in mixed culture with S. kali than in pure culture in the dry regime, but there were no significant differences in the wet regime. In general, the difference in plant response between mixed and pure cultures was more pronounced in the dry than in the wet regime. The third study was a greenhouse experiment on germination and competition of S. kali (a C/sub 4/ species) with native species Lepidium densiflorum (C/sub 3/), Chenopodium pratericola (C/sub 3/), A. smithii (C/sub 3/), and B. gracilis (C/sub 4/) under May, June, and July temperature regimes. Salsola kali germinated equally well in all three regimes, but the other C/sub 4/ species had highest germination in the July regime and the C/sub 3/ species in the May and June regimes. The fourth study was designed to examine the effect of weed colonization on the success of mine reclamation. Little effect was observed, but colonization by introduced annuals was very low. (ERB)

  9. Assessment of the Mowry Shale and Niobrara Formation as Continuous Hydrocarbon Systems, Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    Anna, Lawrence O.; Cook, Troy A.

    2008-01-01

    A recent U.S. Geological Survey (USGS) oil and gas assessment of the Powder River Basin , Wyoming and Montana, identified the Upper Cretaceous Mowry Shale and Niobrara Formation as the primary hydrocarbon sources for Cretaceous conventional and unconventional reservoirs. Cumulative Mowry-sourced petroleum production is about 1.2 BBO (billion barrels of oil) and 2.2 TCFG (trillion cubic feet of gas) and cumulative Niobrara-sourced oil production is about 520 MMBO (million barrels of oil) and 0.95 TCFG. Burial history modeling indicated that hydrocarbon generation for both formations started at about 0.60 percent Ro at depths of about 8,000 ft. At maximum depths, Ro for the Mowry is about 1.2 to 1.3 percent and about 0.80 percent for the Niobrara. The Mowry and Niobrara continuous reservoirs were assessed using a cell-based methodology that utilized production data. The size of each cell was based on geologic controls and potential drainage areas in analog fields. Current and historical production data were used to determine the estimated ultimate recovery (EUR) distribution for untested cells. Only production data from unconventional fractured shale reservoirs with vertical wells were used. For the Mowry, the minimum, median, and maximum total recovery volumes per cell for untested cells are (1) 0.002, 0.25, and 0.35 MMBO, respectively; and for the Niobrara (2) 0.002, 0.028, and 0.5 MMBO. Sweet spots were identified by lineaments and faults, which are believed to be areas having the greatest petroleum potential; an upper limit of 8,000 ft depth was defined by overpressuring caused by hydrocarbon generation. Mean estimates of technically recoverable undiscovered continuous resource for the Mowry are 198 MMBO, 198 BCF (billion cubic feet of gas), and 11.9 MMBNGL (million barrels of natural gas liquid), and those for the Niobrara are 227 MMBO, 227 BCFG, and 13.6 MMBNGL.

  10. Tracking solutes and water from subsurface drip irrigation application of coalbed methane-produced waters, Powder River Basin, Wyoming

    Science.gov (United States)

    Engle, M.A.; Bern, C.R.; Healy, R.W.; Sams, J.I.; Zupancic, J.W.; Schroeder, K.T.

    2011-01-01

    One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBMwater (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation.Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water. Copyright ??2011. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  11. Distributions of air pollutants associated with oil and natural gas development measured in the Upper Green River Basin of Wyoming

    Directory of Open Access Journals (Sweden)

    R.A. Field

    2015-10-01

    Full Text Available Abstract Diffusive sampler monitoring techniques were employed during wintertime studies from 2009 to 2012 to assess the spatial distribution of air pollutants associated with the Pinedale Anticline and Jonah Field oil and natural gas (O&NG developments in the Upper Green River Basin, Wyoming. Diffusive sampling identified both the extent of wintertime ozone (O3 episodes and the distributions of oxides of nitrogen (NOx, and a suite of 13 C5+ volatile organic compounds (VOC, including BTEX (benzene, toluene, ethylbenzene and xylene isomers, allowing the influence of different O&NG emission sources to be determined. Concentration isopleth mapping of both diffusive sampler and continuous O3 measurements show the importance of localized production and advective transport. As for O3, BTEX and NOx mixing ratios within O&NG development areas were elevated compared to background levels, with localized hotspots also evident. One BTEX hotspot was related to an area with intensive production activities, while a second was located in an area influenced by emissions from a water treatment and recycling facility. Contrastingly, NOx hotspots were at major road intersections with relatively high traffic flows, indicating influence from vehicular emissions. Comparisons of observed selected VOC species ratios at a roadside site in the town of Pinedale with those measured in O&NG development areas show that traffic emissions contribute minimally to VOCs in these latter areas. The spatial distributions of pollutant concentrations identified by diffusive sampling techniques have potential utility for validation of emission inventories that are combined with air quality modeling.

  12. Water quality in the upper Snake River basin, Idaho and Wyoming, 1992-95

    Science.gov (United States)

    Clark, Gregory M.; Maret, T.R.; Rupert, M.G.; Maupin, M.A.; Low, W.H.; Ott, D.S.

    1998-01-01

    This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Upper Snake River Basin Study Unit and to relate these findings to water-quality issues of regional and national concern. This information is primarily intended for those who are involved in water-resource management. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  13. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    Science.gov (United States)

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  14. Preliminary digital model of ground-water flow in the Madison Group, Powder River Basin and adjacent areas, Wyoming, Montana, South Dakota, North Dakota, and Nebraska

    Science.gov (United States)

    Konikow, Leonard F.

    1976-01-01

    A digital simulation model was used to analyze regional ground-water flow in the Madison Group aquifer in the Powder River Basin in Montana and Wyoming and adjacent areas. Most recharge to the aquifer originates in or near the outcrop areas of the Madison in the Bighorn Mountains and Black Hills, and most discharge occurs through springs and wells. Flow through the aquifer in the modeled areas was approximately 200 cubic feet per second. The aquifer can probably sustain increased ground-water withdrawals of up to several tens of cubic feet per second, but these withdrawals probably would significantly lower the potentiometric surface in the Madison aquifer in a large part of the basin. (Woodard-USGS)

  15. Geohydrology and potential effects of coal mining in 12 coal-lease areas, Powder River structural basin, northeastern Wyoming. Water Resources Investigation

    International Nuclear Information System (INIS)

    Fogg, J.L.; Martin, M.W.; Daddow, P.B.

    1991-01-01

    The purpose of the report is to describe the geohydrology of 12 coal-lease areas in the Powder River structural basin in relation to the mining proposed for each area. The description of the geohydrology of each of the lease areas focuses on the shallow ground-water system and includes identification of recharge and discharge areas, directions of ground-water movement, and potential effects of mining. The shallow ground-water system in the Powder River structural basin is not well defined because of the discontinuous nature of the aquifers in the basin. Understanding the ground-water hydrology of these 12 coal-lease areas will improve understanding of the shallow ground-water system in the basin. The first part of the report is a description of the general geohydrology of the Wyoming part of the Powder River structural basin. The second part of the report is a general discussion of the effects of coal mining on ground-water hydrology. The third part of the report contains site-specific discussions of the ground-water hydrology and potential effects of mining for each of the 12 coal-lease areas

  16. Preliminary applications of Landsat images and aerial photography for determining land-use, geologic, and hydrologic characteristics, Yampa River basin, Colorado and Wyoming

    Science.gov (United States)

    Heimes, F.J.; Moore, G.K.; Steele, T.D.

    1978-01-01

    Expanded energy- and recreation-related activities in the Yampa River basin, Colorado and Wyoming, have caused a rapid increase in economic development which will result in increased demand and competition for natural resources. In planning for efficient allocation of the basin 's natural resources, Landsat images and small-scale color and color-infrared photographs were used for selected geologic, hydrologic and land-use applications within the Yampa River basin. Applications of Landsat data included: (1) regional land-use classification and mapping, (2) lineament mapping, and (3) areal snow-cover mapping. Results from the Landsat investigations indicated that: (1) Landsat land-use classification maps, at a regional level, compared favorably with areal land-use patterns that were defined from available ground information, (2) lineaments were mapped in sufficient detail using recently developed techniques for interpreting aerial photographs, (3) snow cover generally could be mapped for large areas with the exception of some densely forested areas of the basin and areas having a large percentage of winter-season cloud cover. Aerial photographs were used for estimation of turbidity for eight stream locations in the basin. Spectral reflectance values obtained by digitizing photographs were compared with measured turbidity values. Results showed strong correlations (variances explained of greater than 90 percent) between spectral reflectance obtained from color photographs and measured turbidity values. (Woodard-USGS)

  17. Angler survey contributes to socially acceptable modification of harvest regulations to preserve cutthroat trout fishery in Snake River, Wyoming, USA

    Science.gov (United States)

    Hubert, Wayne A.; Gipson, Robert D.

    1996-09-01

    This is a case study that describes a survey of anglers that was used to assist in modifying fishing regulations for indigenous trout in the Snake River, Wyoming. A mail survey of anglers who purchased 1991 Wyoming fishing licenses in the two counties adjacent to the Snake River was conducted during fall 1992. Differences in angler preferences were noted between anglers who purchased licenses in two adjacent counties with different socioeconomic structures, as well as between residents and nonresidents in each county. Anglers who purchased licenses in Teton County, where there is extensive tourism and immigration by relatively wealthy residents, tended to be more specialized and less harvest oriented. Anglers in Lincoln County, which is largely agricultural and has substantially less tourism and immigration of residents, tended to fish in many different ways and indicated more desire to harvest fish. Anglers from the two counties segregated themselves; those from Teton County primarily used the upstream portion of the study reach, and those from Lincoln County primarily used a short downstream portion of the reach. Modification of fishing regulations to reduce harvest of spawning-size cutthroat trout in the Snake River probably was acceptable to most anglers due to spatial segregation and their attitudes toward harvest.

  18. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  19. Water-quality assessment of the upper Snake River basin, Idaho and western Wyoming; summary of aquatic biological data for surface water through 1992

    Science.gov (United States)

    Maret, Terry R.

    1995-01-01

    The 35,800-square-mile upper Snake River Basin in eastern Idaho and western Wyoming was one of 20 areas selected for water-quality study under the National Water-Quality Assessment Program. As part of the initial phase of the study, data were compiled to describe the current (1992) and historical aquatic biological conditions of surface water in the basin. This description of natural and human environmental factors that affect aquatic life provides the framework for evaluating the status and trends of aquatic biological conditions in streams of the basins. Water resource development and stream alterations, irrigated agriculture, grazing, aquaculture, and species introductions have affected stream biota in the upper Snake River Basin. Cumulative effects of these activities have greatly altered cold-water habitat and aquatic life in the middle Snake River reach (Milner Dam to King Hill). Most of the aquatic Species of Special Concern in the basin , consisting of eight native mollusks and three native fish species, are in this reach of the Snake River. Selected long-term studies, including comprehensive monitoring on Rock Creek, have shown reduced pollutant loadings as a result of implementing practice on cropland; however, aquatic life remains affected by agricultural land use. Community level biological data are lacking for most of the streams in the basin, especially for large river. Aquatic life used to assess water quality of the basin includes primarily macroinvertebrate and fish communities. At least 26 different macroinvertebrate and fish community metrics have been utilized to assess water quality of the basin. Eight species of macroinvertebrates and fish are recognized as Species of Special Concern. The native fish faunas of the basin are composed primarily of cold-water species representing 5 families and 26 species. An additional 13 fish species have been introduced to the basin. Concentrations of synthetic organic compounds and trace-element contaminants

  20. ALIEN SPECIES IMPORTANTANCE IN NATIVE VEGETATION ALONG WADEABLE STREAMS, JOHN DAY RIVER BASIN, OREGON, USA

    Science.gov (United States)

    We evaluated the importance of alien species in existing vegetation along wadeable streams of a large, topographically diverse river basin in eastern Oregon, USA; sampling 165 plots (30 × 30 m) across 29 randomly selected 1-km stream reaches. Plots represented eight streamside co...

  1. Stochastic Joint Simulation of Facies and Diagenesis: A Case Study on Early Diagenesis of the Madison Formation (Wyoming, USA Simulation stochastique couplée faciès et diagenèse. L’exemple de la diagenèse précoce dans la Formation Madison (Wyoming, USA

    Directory of Open Access Journals (Sweden)

    Barbier M.

    2011-10-01

    Full Text Available The aim of this paper is to propose an integrated approach to reproduce both facies and diagenetic trends in a static reservoir model based on an outcrop case study. In Wyoming (USA, the Madison Formation (Mississippian is a thick (up to 350 m carbonate series, outcropping in several locations of the Bighorn foreland basin. Within these series, nine sedimentary facies have been identified. Based on their vertical stacking pattern, they are organized in small-scale facies sequences: 1 intertidal to supratidal facies sequence; 2 shallow subtidal to intertidal facies sequence; 3 deep subtidal facies sequence. These facies associations have been integrated in a synthetic depositional model, which corresponds to a carbonate ramp progressively evolving towards the most inner part of a platform. This enables to propose a sequence stratigraphy framework for the studied series, that represents at least six third-order sequences (some of them being locally eroded. The diagenetic study has been focused on the identification of the early diagenetic phases. Results from these analyses show the occurrence of several successive early diagenetic phases (micritization, marine calcite cementation, dolomitization, etc.. For modeling purposes, seven “diagenetic imprints” have been defined, each of them corresponding to a succession of diagenetic phases that can coexist in the same sedimentary facies. Moreover, as each sedimentary facies may be affected by several diagenetic imprints, a quantification of these imprints has been realized. A 3D gridded model designed for geostatistical modeling has been constructed in order to reproduce the facies organization of the three first third-order sequences (that are the best documented. The gridding is then based on the four sequence boundaries which have been recognized on every section. The relationships between sedimentary facies and diagenesis have been used to define lithofacies simulation rules. The simulations

  2. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming, USA-a critical review

    International Nuclear Information System (INIS)

    Burns, Douglas A.

    2004-01-01

    The Rocky Mountains of Colorado and southern Wyoming receive atmospheric nitrogen (N) deposition that ranges from 2 to 7 kg ha -1 yr -1 , and some previous research indicates pronounced ecosystem effects at the highest rates of deposition. This paper provides a critical review of previously published studies on the effects of atmospheric N deposition in the region. Plant community changes have been demonstrated through N fertilization studies, however, N limitation is still widely reported in alpine tundra and subalpine forests of the Front Range, and sensitivity to changes in snow cover alone indicate the importance of climate sensitivity in these ecosystems. Retention of N in atmospheric wet deposition is 3 - concentrations have not been demonstrated, and future trend analyses must consider the role of climate as well as N deposition. Relatively high rates of atmospheric N deposition east of the Divide may have altered nutrient limitation of phytoplankton, species composition of diatoms, and amphibian populations, but most of these effects have been inconclusive to date, and additional studies are needed to confirm hypothesized cause and effect relations. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. - The effects of nitrogen deposition will become more evident as growth increases

  3. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  4. Measurements of Ozone Precursors in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Rayne, S.; Burley, J. D.

    2014-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant environmental pollution problems, including declining water clarity and air quality issues. During the period of July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone and secondary organic aerosol (SOA). Four sites were selected; two were located at high elevations (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period canister samples were collected for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds, PM2.5 Teflon and quartz filter samples for determination of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest at all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the total VOC. All four sites showed maximum ozone concentrations in the range of 60 ppb. However, the lower sites show a pronounced diurnal pattern (i.e. maximum concentrations during the daytime hours, 0900 to 1700, with

  5. Secondary Pollutants in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Zielinska, B.; Bytnerowicz, A.; Gertler, A.; McDaniel, M.; Burley, J. D.

    2013-12-01

    Lake Tahoe, located at 6,225 ft. (1,897 m) in the Sierra Nevada mountain range, is the largest alpine lake in North America. Known for the clarity of its water and the panorama of surrounding mountains on all sides, Lake Tahoe is a prime tourist attraction in the California - Nevada area. However, the Lake Tahoe Basin is facing significant problems in air quality and declining water clarity. In July 21 - 26, 2012, we conducted a field study in the Basin designed to characterize the precursors and pathways of secondary pollutant formation, including ozone, secondary organic aerosol (SOA) and ammonium nitrate. Four strategic sampling sites were selected inside the Basin; two of these sites were located at high elevation (one each on the western and eastern sides of the Basin) and two were positioned near the Lake level. Ozone and NO/NO2 concentrations were continuously measured. With a resolution of several hours over a 6-day sampling period we collected canister samples for detailed speciation of volatile organic compounds (VOC), 2,4-dinitrophenylhydrazine (DNPH) impregnated Sep-Pak cartridges for analysis of carbonyl compounds and honeycomb denuder/filter pack samples for measurement of concentrations of ammonia, nitrous acid, nitric acid, and fine particulate ammonium nitrate. We also collected PM2.5 Teflon and quartz filter samples for measurements of mass, organic and elemental carbon (OC/EC) concentrations and speciation of organic compounds. Whereas the concentrations of lower molecular weight (mw) C2 - C3 hydrocarbons were generally the highest in all sampling sites, ranging from 25 to 76% of the total measured VOC (over 70 species from C2 to C10), the concentrations of biogenic hydrocarbons, isoprene and α-pinene were significant, ranging from 1.4 to 26% and 1.5 to 30%, respectively, of the total VOC, depending on the site and sampling period. For comparison, the sum of benzene, toluene, ethylbenzene and xylenes (BTEX) constituted from 2.5 to 37% of the

  6. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  7. Reservoir characterization of the Mt. Simon Sandstone, Illinois Basin, USA

    Science.gov (United States)

    Frailey, S.M.; Damico, J.; Leetaru, H.E.

    2011-01-01

    The integration of open hole well log analyses, core analyses and pressure transient analyses was used for reservoir characterization of the Mt. Simon sandstone. Characterization of the injection interval provides the basis for a geologic model to support the baseline MVA model, specify pressure design requirements of surface equipment, develop completion strategies, estimate injection rates, and project the CO2 plume distribution.The Cambrian-age Mt. Simon Sandstone overlies the Precambrian granite basement of the Illinois Basin. The Mt. Simon is relatively thick formation exceeding 800 meters in some areas of the Illinois Basin. In the deeper part of the basin where sequestration is likely to occur at depths exceeding 1000 m, horizontal core permeability ranges from less than 1 ?? 10-12 cm 2 to greater than 1 ?? 10-8 cm2. Well log and core porosity can be up to 30% in the basal Mt. Simon reservoir. For modeling purposes, reservoir characterization includes absolute horizontal and vertical permeability, effective porosity, net and gross thickness, and depth. For horizontal permeability, log porosity was correlated with core. The core porosity-permeability correlation was improved by using grain size as an indication of pore throat size. After numerous attempts to identify an appropriate log signature, the calculated cementation exponent from Archie's porosity and resistivity relationships was used to identify which porosity-permeability correlation to apply and a permeability log was made. Due to the relatively large thickness of the Mt. Simon, vertical permeability is an important attribute to understand the distribution of CO2 when the injection interval is in the lower part of the unit. Only core analyses and specifically designed pressure transient tests can yield vertical permeability. Many reservoir flow models show that 500-800 m from the injection well most of the CO2 migrates upward depending on the magnitude of the vertical permeability and CO2 injection

  8. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    Science.gov (United States)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  9. Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming.

    Science.gov (United States)

    Godwin, B L; Albeke, S E; Bergman, H L; Walters, A; Ben-David, M

    2015-11-01

    Exploration and extraction of oil and natural gas have increased in recent years and are expected to expand in the future. Reduction in water quality from energy extraction may negatively affect water supply for agriculture and urban use within catchments as well as down river. We used non-invasive genetic techniques and capture-recapture modeling to estimate the abundance and density of North American river otters (Lontra canadensis), a sentinel species of aquatic ecosystems, in Southwestern Wyoming. While densities in two of three river reaches were similar to those reported in other freshwater systems in the western US (1.45-2.39 km per otter), otters appeared to avoid areas near energy development. We found no strong difference in habitat variables, such as overstory cover, at the site or reach level. Also, fish abundance was similar among the three river reaches. Otter activity in our study area could have been affected by elevated levels of disturbance surrounding the industrial gas fields, and by potential surface water contamination as indicated by patterns in water conductivity. Continued monitoring of surface water quality in Southwestern Wyoming with the aid of continuously recording devices and sentinel species is warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming

    Science.gov (United States)

    Godwin, B.L.; Albeke, S.E.; Bergman, H.L.; Walters, Annika W.; Ben-David, M.

    2015-01-01

    Exploration and extraction of oil and natural gas have increased in recent years and are expected to expand in the future. Reduction in water quality from energy extraction may negatively affect water supply for agriculture and urban use within catchments as well as down river. We used non-invasive genetic techniques and capture–recapture modeling to estimate the abundance and density of North American river otters (Lontra canadensis), a sentinel species of aquatic ecosystems, in Southwestern Wyoming. While densities in two of three river reaches were similar to those reported in other freshwater systems in the western US (1.45–2.39 km per otter), otters appeared to avoid areas near energy development. We found no strong difference in habitat variables, such as overstory cover, at the site or reach level. Also, fish abundance was similar among the three river reaches. Otter activity in our study area could have been affected by elevated levels of disturbance surrounding the industrial gas fields, and by potential surface water contamination as indicated by patterns in water conductivity. Continued monitoring of surface water quality in Southwestern Wyoming with the aid of continuously recording devices and sentinel species is warranted.

  11. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  12. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated

  13. Water Quality of the Snake River and Five Eastern Tributaries in the Upper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002

    Science.gov (United States)

    Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.

    2004-01-01

    downstream sites near the Snake River; however, variations in the major ions and dissolved solids existed between basins. Variations probably result from differences in geology between the tributary basins. Concentrations of dissolved ammonia, nitrite, and nitrate in all samples collected from the Snake River and the five eastern tributaries were less than water-quality criteria for surface waters in Wyoming. Concentrations of total nitrogen and total phosphorus in samples from the Snake River and the tributaries generally were less than median concentrations determined for undeveloped streams in the United States; however, concentrations in some samples did exceed ambient total-nitrogen and total-phosphorus criteria for forested mountain streams in the Middle Rockies ecoregion recommended by the U.S. Environmental Protection Agency to address cultural eutrophication. Sources for the excess nitrogen and phosphorus probably are natural because these basins have little development and cultivation. Concentrations of trace metals and pesticides were low and less than water-quality criteria for surface waters in Wyoming in samples collected from the Snake River and the five eastern tributaries. Atrazine, dieldrin, EPTC, or tebuthiuron were detected in estimated concentrations of 0.003 microgram per liter or less in 5 of 27 samples collected from the Snake River. An estimated concentration of 0.008 microgram per liter of metolachlor was detected in one sample from the Buffalo Fork. The estimated concentrations were less than the reporting levels for the pesticide analytical method. Suspended-sediment concentrations in 43 samples from the upstream site on the Snake River ranged from 1 to 604 milligrams per liter and were similar to suspended-sediment concentrations in 33 samples from the downstream site, which ranged from 1 to 648 milligrams per liter. Suspended-sediment concentrations in 38 samples collected from the tributary streams ranged from 1 t

  14. Water-quality assessment of the upper Snake River basin, Idaho and western Wyoming; environmental setting, 1980-92

    Science.gov (United States)

    Maupin, Molly A.

    1995-01-01

    The 35,800-square-mile upper Snake River Basin is one of 20 areas studied as part of the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey. Objectives of NAWQA are to study ground- and surface-water quality, biology, and their relations to land-use activities. Major land and water uses that affect water quality in the basin are irrigated agriculture, grazing, aquaculture, food processing, and wastewater treatment. Data summarized in this report are used in companion reports to help define the relations among land use, water use, water quality, and biological conditions.

  15. USA

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    http://www.systime.dk/ungdomsuddannelser/almen-studieforberedelse/usa-en-grundbog-i-politik-og-okonomi.html......http://www.systime.dk/ungdomsuddannelser/almen-studieforberedelse/usa-en-grundbog-i-politik-og-okonomi.html...

  16. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    Science.gov (United States)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor faults connect major structures and fluids can flow readily through highly fractured, dilational quadrants, and b) normal fault terminations or tip-lines (22%), where horse-tailing generates closely-spaced faults and increased permeability

  17. HYDRAULICS, CAMPBELL COUNTY, WYOMING, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  18. Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Hart, Charles P.

    2009-01-01

    Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 μM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, of total dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n = 13), DIN concentrations were >300 μM, with pH > 8.5, after 5 km of transport. Ammonium represented 25−30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day−1entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.

  19. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    Science.gov (United States)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  20. Case study Middle Rio Grande Basin, New Mexico, USA: Chapter 12

    Science.gov (United States)

    Plummer, Niel; Sanford, W.

    2013-01-01

    Chemical and isotopic patterns in groundwater can record characteristics of water sources, flow directions, and groundwater-age information. This hydrochemical information can be useful in refining conceptualization of groundwater flow, in calibration of numerical models of groundwater flow, and in estimation of paleo and modern recharge rates. This case study shows how chemical and isotopic data were used to characterize sources and flow of groundwater in the Middle Rio Grande Basin (MRGB) of New Mexico, USA. The 14C model ages of the groundwater samples are on the tens of thousands of year timescale. These data changed some of the prevailing ideas about flow in the MRGB, and were used to improve a numerical model of the aquifer system.

  1. Coal quality controls of the Danville coal in Indiana (Illinois Basin, Central USA)

    Science.gov (United States)

    Mastalerz, Maria; Padgett, P.L.

    2002-01-01

    The Danville Coal Member (Dugger Formation, upper Desmoinesian, Pennsylvanian) is a significant economic coal resource in the Illinois Basin, central USA. Deposition of the Danville Coal (peat) was in coastal environments, varying distances from the coastline and, in turn, variable influences from saline waters. The purpose of this study is to examine the coal quality and petrography of the Danville Coal; and to discuss their relationship with depositional environment as it relates to the final coal product. A medium sulfur (1.0-1.5 wt.%) Danville Coal reserve area (northern Indiana coalfield) was compared to a low sulfur (3 m) of finer-grained clastic sediments atop the Danville, the sulfur and trace elements contents are significantly lower. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. Stages of sedimentary prism development on a convergent margin — Eocene Tyee Forearc Basin, Coast Range, Oregon, USA

    Science.gov (United States)

    Santra, Manasij; Steel, Ronald J.; Olariu, Cornel; Sweet, Michael L.

    2013-04-01

    Architecture of ancient forearc basin successions can be difficult to reconstruct because of the widespread syn-depositional and post-depositional deformations experienced by many forearc basin-fills. For this reason various techniques have been used for reconstructing forearc basin-infill geometry, including geochemical correlation. The Tyee Basin succession exposed in Coast Range of Western Oregon, USA, is an Eocene forearc-fill that includes genetically related non-marine, shallow marine and deepwater clastic deposits and is gently deformed. Reconstruction of the depositional geometry of the Tyee Basin succession from detailed outcrop and subsurface data reveals two distinct stages of development for this active basin-margin. These stages are characterized by two different basin-margin clinoform architectures and also by a pronounced change in the character of the associated deepwater deposits. During the initial stage, the basin-margin clinoforms are smaller ( 500 m), a greater degree of topset aggradation with repeated fluvio-deltaic cycles on the shelf, and well-organized, large turbidite channels on the slope. The turbidite channels supplied medium-grained sands to the extensive, stacked basin-floor fans. The first stage described above marks the early development of a shelf-slope prism on the Tyee continental margin, and has been interpreted by some earlier workers as an unique category of basin-margin architecture, termed as a 'submarine ramp'. However, this was only the initial stage of development of the Tyee margin and it was followed by a period of basin-filling when repeated fluvial and shallow marine shelf-transit cycles fed well-organized turbidite channels on the slope as well as Tyee Basin floor fans. The large volume of sediment deposited during the initial stage, resulted from of the unique geometry of the Tyee Basin, as influenced by the presence of pre-existing topography on the accreted oceanic basement underlying the Tyee succession.

  3. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    OpenAIRE

    Maidment, SCR; Brassey, C; Barrett, PM

    2015-01-01

    Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well...

  4. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    Science.gov (United States)

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  5. Uranium resources in fine-grained carbonaceous rocks of the Great Divide Basin, south-central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Burger, J.A.; Roe, L.M. II; Hacke, C.M.; Mosher, M.M.

    1982-11-01

    The uranium resources of the fine-grained carbonaceous rocks of the Great Divide Basin in southern Wyoming were assessed. The assessment was based primarily on data from some 600 boreholes. The data included information from geophysical logs, lithologic logs and cores, and drill cuttings. The cores and cuttings were analyzed for chemical U 3 O 8 , radiometric U, Th and trace elements. Selected samples were examined by thin section, sieve analysis, x-ray, SEM, ion probe, and alpha track methods. The uranium is associated with fine-grained carbonaceous shales, siltstones, mudstones, and coals in radioactive zones 5 to 50 ft thick that are continuous over broad areas. These rocks have a limited stratigraphic range between the Red Desert tongue of the Wasatch Formation and the lower part of the Tipton tongue of the Green River Formation. Most of this uranium is syngenetic in origin, in part from the chelation of the uranium by organic material in lake-side swamps and in part as uranium in very fine detrital heavy minerals. The uraniferous fine-grained carbonaceous rocks that exceed a cutoff grade of 100 ppM eU 3 O 8 extend over an area of 542 mi 2 and locally to a depth of approximately 2000 ft. The uraniferous area is roughly ellipical and embraces the zone of change between the piedmont and alluvial-fan facies and the lacustrine facies of the intertonguing Battle Spring, Wasatch, and Green River Formations. About 1.05 x 10 6 tons U 3 O 8 , based on gross-gamma logs not corrected for thorium, are assigned to the area in the first 500 ft; an estimated 3.49 x 10 6 tons are assigned to a depth of 1000 ft. These units also contain a substantial thorium resource that is also associated with fine-grained rocks. The thorium-to-uranium ratio generally ranges between 1 and 4. A thorium resource of 3.43 x 10 6 tons to a depth of 500 ft is estimated for the assessment area. 5 figures, 3 tables

  6. Plant-derived terpenoids as paleovegetation proxies: evaluation of the proxy with Paleocene and Eocene megafloras and plant biomarkers in the Bighorn Basin, USA

    Science.gov (United States)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.

    2012-12-01

    Plant terpenoids (defense compounds synthesized from the 5-carbon building block isoprene) have a long history of use as geochemical plant biomarkers, and potentially can be used to reconstruct changes in the abundances of major land plant groups in rocks and sediments that do not preserve plant megafossils or pollen. Pentacyclic triterpenoids are synthesized almost exclusively by angiosperms whereas conifers produce the tricyclic diterpenoids. Many previous studies have focused on the use of di- to triterpenoid ratios to reconstruct floral changes in the geologic past, however few studies have compared terpenoid-based paleoflora proxies to pollen or megafossils. Prior reconstructions also did not take into account differences in biomarker production between plant functional types, such as deciduous and evergreen plants, which can be quite large. To investigate the use of terpenoids as paleoflora proxies, we examined sediments from the Bighorn Basin (Wyoming, USA) where ancient megafloras have been studied in detail. We analyzed di- and triterpenoid abundances as well as plant leaf waxes (n-alkanes) and other biomarkers in a total of 75 samples from 15 stratigraphic horizons from the late Paleocene (62 Ma) to early Eocene (52.5 Ma). By comparing terpenoid ratios with abundances estimated from plant megafossils, we can evaluate the utility of terpenoids as paleovegetation proxies. In nearly all samples, angiosperm triterpenoids are significantly lower in abundance than conifer diterpenoids. This contrasts with leaf fossil data that indicate paleofloras were dominated by angiosperms in both abundance and diversity. Traditional use of terpenoid paleovegetation proxies would therefore significantly overestimate the abundance of conifers, even when accounting for plant production differences. To determine if this overestimate is related to the loss of angiosperm triterpenoids (rather than enhanced production of diterpenoids in the geologic past), we compared angiosperm

  7. Solute concentrations influence microbial methanogenesis in coal-bearing strata of the Cherokee basin, USA

    Directory of Open Access Journals (Sweden)

    Matthew F Kirk

    2015-11-01

    Full Text Available Microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4-1.1 m coalbeds with marginal thermal maturities (0.5-0.7 %Ro that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na-Cl type with total dissolved solids (TDS content ranging from 34.9 to 91.3 g L-1. Gas dryness values [C1/(C2+C3] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65‰ and 183‰. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%, and few archaeal sequences (avg 4.2% were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast, bacterial diversity more strongly correlates with location than solute

  8. Solute Concentrations Influence Microbial Methanogenesis in Coal-bearing Strata of the Cherokee Basin, USA.

    Science.gov (United States)

    Kirk, Matthew F; Wilson, Brien H; Marquart, Kyle A; Zeglin, Lydia H; Vinson, David S; Flynn, Theodore M

    2015-01-01

    Microorganisms have contributed significantly to subsurface energy resources by converting organic matter in hydrocarbon reservoirs into methane, the main component of natural gas. In this study, we consider environmental controls on microbial populations in coal-bearing strata of the Cherokee basin, an unconventional natural gas resource in southeast Kansas, USA. Pennsylvanian-age strata in the basin contain numerous thin (0.4-1.1 m) coalbeds with marginal thermal maturities (0.5-0.7% R o ) that are interbedded with shale and sandstone. We collected gas, water, and microbe samples from 16 commercial coalbed methane wells for geochemical and microbiological analysis. The water samples were Na-Cl type with total dissolved solids (TDS) content ranging from 34.9 to 91.3 g L(-1). Gas dryness values [C1/(C2 + C3)] averaged 2640 and carbon and hydrogen isotope ratios of methane differed from those of carbon dioxide and water, respectively, by an average of 65 and 183‰. These values are thought to be consistent with gas that formed primarily by hydrogenotrophic methanogenesis. Results from cultivation assays and taxonomic analysis of 16S rRNA genes agree with the geochemical results. Cultivable methanogens were present in every sample tested, methanogen sequences dominate the archaeal community in each sample (avg 91%), and few archaeal sequences (avg 4.2%) were classified within Methanosarcinales, an order of methanogens known to contain methylotrophic methanogens. Although hydrogenotrophs appear dominant, geochemical and microbial analyses both indicate that the proportion of methane generated by acetoclastic methanogens increases with the solute content of formation water, a trend that is contrary to existing conceptual models. Consistent with this trend, beta diversity analyses show that archaeal diversity significantly correlates with formation water solute content. In contrast, bacterial diversity more strongly correlates with location than solute content

  9. Mapping and monitoring cheatgrass dieoff in rangelands of the Northern Great Basin, USA

    Science.gov (United States)

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.

    2015-01-01

    Understanding cheatgrass (Bromus tectorum) dynamics in the Northern Great Basin rangelands, USA, is necessary to effectively manage the region’s lands. This study’s goal was to map and monitor cheatgrass performance to identify where and when cheatgrass dieoff occurred in the Northern Great Basin and to discover how this phenomenon was affected by climatic, topographic, and edaphic variables. We also examined how fire affected cheatgrass performance. Land managers and scientists are concerned by cheatgrass dieoff because it can increase land degradation, and its causes and effects are not fully known. To better understand the scope of cheatgrass dieoff, we developed multiple ecological models that integrated remote sensing data with geophysical and biophysical data. The models’ R2 ranged from 0.71 to 0.88, and their root mean squared errors (RMSEs) ranged from 3.07 to 6.95. Validation of dieoff data showed that 41% of pixels within independently developed dieoff polygons were accurately classified as dieoff, whereas 2% of pixels outside of dieoff polygons were classified as dieoff. Site potential, a long-term spatial average of cheatgrass cover, dominated the development of the cheatgrass performance model. Fire negatively affected cheatgrass performance 1 year postfire, but by the second year postfire performance exceeded prefire levels. The landscape-scale monitoring study presented in this paper helps increase knowledge about recent rangeland dynamics, including where cheatgrass dieoffs occurred and how cheatgrass responded to fire. This knowledge can help direct further investigation and/or guide land management activities that can capitalize on, or mitigate the effects of, cheatgrass dieoff.

  10. Analysis of nitrate and volatile organic compound data for ground water in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1980-98

    Science.gov (United States)

    Thiros, Susan A.

    2000-01-01

    In 1995, ground water was the source of drinking water to about 52 percent of the population served by public drinking water systems in the Great Salt Lake Basins study unit, which includes parts of Utah, Idaho, and Wyoming. Existing nitrate and volatile organic compound data for ground water collected in the study unit were compiled and summarized as part of the National Water-Quality Assessment Program’s objective to describe water-quality conditions in the Nation’s aquifers. Prerequisites for the inclusion of nitrate and volatile organic compound data into this retrospective analysis are that the data set is available in electronic form, the data were collected during 1980-98, the data set is somewhat regional in coverage, and the locations of the sampled sites are known. Ground-water data stored in the U.S. Geological Survey’s National Water Information System and the Idaho and Utah Public Drinking Water Systems databases were reviewed. Only the most recent analysis was included in the data sets if more than one analysis was available for a site.The National Water Information System data set contained nitrate analyses for water from 480 wells. The median concentration of nitrate was 1.30 milligrams per liter for the 388 values above minimum reporting limits. The maximum contaminant level for nitrate as established by the U.S. Environmental Protection Agency was exceeded in water from 10 of the 200 wells less than or equal to 150 feet deep and in water from 3 of 280 wells greater than 150 feet deep. The Public Drinking Water Systems data set contained nitrate analyses for water from 587 wells. The median concentration of nitrate was 1.12 milligrams per liter for the 548 values above minimum reporting limits. The maximum contaminant level for nitrate was exceeded at 1 site and 22 sites had concentrations equal to or greater than 5 milligrams per liter. The types of land use surrounding a well and the well depth were related to measured nitrate

  11. A thick lens of fresh groundwater in the southern Lihue Basin, Kauai, Hawaii, USA

    Science.gov (United States)

    Izuka, Scot; Gingerich, Stephen

    2002-11-01

    A thick lens of fresh groundwater exists in a large region of low permeability in the southern Lihue Basin, Kauai, Hawaii, USA. The conventional conceptual model for groundwater occurrence in Hawaii and other shield-volcano islands does not account for such a thick freshwater lens. In the conventional conceptual model, the lava-flow accumulations of which most shield volcanoes are built form large regions of relatively high permeability and thin freshwater lenses. In the southern Lihue Basin, basin-filling lavas and sediments form a large region of low regional hydraulic conductivity, which, in the moist climate of the basin, is saturated nearly to the land surface and water tables are hundreds of meters above sea level within a few kilometers from the coast. Such high water levels in shield-volcano islands were previously thought to exist only under perched or dike-impounded conditions, but in the southern Lihue Basin, high water levels exist in an apparently dike-free, fully saturated aquifer. A new conceptual model of groundwater occurrence in shield-volcano islands is needed to explain conditions in the southern Lihue Basin. Résumé. Dans le sud du bassin de Lihue (Kauai, Hawaii, USA), il existe une épaisse lentille d'eau souterraine douce dans une vaste région à faible perméabilité. Le modèle conceptuel conventionnel pour la présence d'eau souterraine à Hawaii et dans les autres îles de volcans en bouclier ne rend pas compte d'une lentille d'eau douce si épaisse. Dans ce modèle conceptuel, les accumulations de lave dont sont formés la plupart des volcans en bouclier couvrent de vastes régions à relativement forte perméabilité, avec des lentilles d'eau douce peu épaisses. Dans le sud du bassin de Lihue, les laves remplissant le bassin et les sédiments constituent une région étendue à faible conductivité hydraulique régionale, qui, sous le climat humide du bassin, est saturée presque jusqu'à sa surface; les surfaces pi

  12. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    Directory of Open Access Journals (Sweden)

    K. A. Welch

    2012-03-01

    Full Text Available Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi, Ca2+, Mg2+, NO3–, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2 gauged watersheds at the North Appalachian Experimental Watershed (NAEW near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand, mixed agricultural use (corn, forest, pasture, an unimproved pasture, tilled corn, and a recently (−2 yr–1 were similar to the median of annual averages between 1979–2009 for the much larger Ohio-Tennessee River Basin (2560 kg km−2 yr–1. Corn watersheds, which only had surface runoff, had substantially lower DSi yields (−2 yr–1 than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions to the corn watershed and from leaf litter decomposition in the forest. This same relation was observed in the Ohio-Tennessee River Basin where dominant landuse types include both agricultural lands receiving nitrogenous fertilizers and forests. Greater gains in DSi with

  13. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA: I. Low-flow discharge and major solute chemistry

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Holloway, JoAnn M.

    2010-01-01

    The Gibbon River in Yellowstone National Park (YNP) is an important natural resource and habitat for fisheries and wildlife. However, the Gibbon River differs from most other mountain rivers because its chemistry is affected by several geothermal sources including Norris Geyser Basin, Chocolate Pots, Gibbon Geyser Basin, Beryl Spring, and Terrace Spring. Norris Geyser Basin is one of the most dynamic geothermal areas in YNP, and the water discharging from Norris is much more acidic (pH 3) than other geothermal basins in the upper-Madison drainage (Gibbon and Firehole Rivers). Water samples and discharge data were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006. Surface inflows from Norris Geyser Basin were sampled to identify point sources and to quantify solute loading to the Gibbon River. The source and fate of the major solutes (Ca, Mg, Na, K, SiO2, Cl, F, HCO3, SO4, NO3, and NH4) in the Gibbon River were determined in this study and these results may provide an important link in understanding the health of the ecosystem and the behavior of many trace solutes. Norris Geyser Basin is the primary source of Na, K, Cl, SO4, and N loads (35–58%) in the Gibbon River. The largest source of HCO3 and F is in the lower Gibbon River reach. Most of the Ca and Mg originate in the Gibbon River upstream from Norris Geyser Basin. All the major solutes behave conservatively except for NH4, which decreased substantially downstream from Gibbon Geyser Basin, and SiO2, small amounts of which precipitated on mixing of thermal drainage with the river. As much as 9–14% of the river discharge at the gage is from thermal flows during this period.

  14. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    Science.gov (United States)

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  15. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA

    Science.gov (United States)

    Arkle, Robert S.; Pilliod, David S.

    2015-01-01

    A common challenge in the conservation of broadly distributed, yet imperiled species is understanding which factors facilitate persistence at distributional edges, locations where populations are often vulnerable to extirpation due to changes in climate, land use, or distributions of other species. For Columbia spotted frogs (Rana luteiventris) in the Great Basin (USA), a genetically distinct population segment of conservation concern, we approached this problem by examining (1) landscape-scale habitat availability and distribution, (2) water body-scale habitat associations, and (3) resource management-identified threats to persistence. We found that areas with perennial aquatic habitat and suitable climate are extremely limited in the southern portion of the species’ range. Within these suitable areas, native and non-native predators (trout and American bullfrogs [Lithobates catesbeianus]) are widespread and may further limit habitat availability in upper- and lower-elevation areas, respectively. At the water body scale, spotted frog occupancy was associated with deeper sites containing abundant emergent vegetation and nontrout fish species. Streams with American beaver (Castor canadensis) frequently had these structural characteristics and were significantly more likely to be occupied than ponds, lakes, streams without beaver, or streams with inactive beaver ponds, highlighting the importance of active manipulation of stream environments by beaver. Native and non-native trout reduced the likelihood of spotted frog occupancy, especially where emergent vegetation cover was sparse. Intensive livestock grazing, low aquatic connectivity, and ephemeral hydroperiods were also negatively associated with spotted frog occupancy. We conclude that persistence of this species at the arid end of its range has been largely facilitated by habitat stability (i.e., permanent hydroperiod), connectivity, predator-free refugia, and a commensalistic interaction with an ecosystem

  16. Cyberinfrastructure for remote environmental observatories: a model homogeneous sensor network in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty; Slater, David; Fritzinger, Eric; Lyles, Bradley; Kent, Graham; Smith, Kenneth; Dascalu, Sergiu; Harris, Frederick

    2017-04-01

    Sensor-based data collection has changed the potential scale and resolution of in-situ environmental studies by orders of magnitude, increasing expertise and management requirements accordingly. Cost-effective management of these observing systems is possible by leveraging cyberinfrastructure resources. Presented is a case study environmental observation network in the Great Basin region, USA, the Nevada Climate-ecohydrological Assessment Network (NevCAN). NevCAN stretches hundreds of kilometers across several mountain ranges and monitors climate and ecohydrological conditions from low desert (900 m ASL) to high subalpine treeline (3360 m ASL) down to 1-minute timescales. The network has been operating continuously since 2010, collecting billions of sensor data points and millions of camera images that record hourly conditions at each site, despite requiring relatively low annual maintenance expenditure. These data have provided unique insight into fine-scale processes across mountain gradients, which is crucial scientific information for a water-scarce region. The key to maintaining data continuity for these remotely-located study sites has been use of uniform data transport and management systems, coupled with high-reliability power system designs. Enabling non-proprietary digital communication paths to all study sites and sensors allows the research team to acquire data in near-real-time, troubleshoot problems, and diversify sensor hardware. A wide-area network design based on common Internet Protocols (IP) has been extended into each study site, providing production bandwidth of between 2 Mbps and 60 Mbps, depending on local conditions. The network architecture and site-level support systems (such as power generation) have been implemented with the core objectives of capacity, redundancy, and modularity. NevCAN demonstrates that by following simple but uniform "best practices", the next generation of regionally-specific environmental observatories can evolve to

  17. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    Science.gov (United States)

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  18. Collocated cokriging and neural-network multi-attribute transform in the prediction of effective porosity: A comparative case study for the Second Wall Creek Sand of the Teapot Dome field, Wyoming, USA

    Science.gov (United States)

    Moon, Seonghoon; Lee, Gwang H.; Kim, Hyeonju; Choi, Yosoon; Kim, Han-Joon

    2016-08-01

    Collocated cokriging (CCK) and neural-network multi-attribute transform (NN-MAT) are widely used in the prediction of reservoir properties because they can integrate sparsely-distributed, high-resolution well-log data and densely-sampled, low-resolution seismic data. CCK is a linear-weighted averaging method based on spatial covariance model. NN-MAT, based on a nonlinear relationship between seismic attributes and log values, treats data as spatially independent observations. In this study, we analyzed 3-D seismic and well-log data from the Second Wall Creek Sand of the Teapot Dome field, Wyoming, USA to investigate: (1) how CCK and NN-MAT perform in the prediction of porosity and (2) how the number of wells affects the results. Among a total of 64 wells, 25 wells were selected for CCK and NN-MAT and 39 wells were withheld for validation. We examined four cases: 25, 20, 15, and 10 wells. CCK overpredicted the porosity in the validation wells for all cases likely due to the strong influence of high values, but failed to predict very large porosities. Overprediction of CCK porosity becomes more pronounced with decreasing number of wells. NN-MAT largely underpredicted the porosity for all cases probably due to the band-limited nature of seismic data. The performance of CCK appears to be not affected significantly by the number of wells. Overall, NN-MAT performed better than CCK although its performance decreases continuously with decreasing number of wells.

  19. Geology and ground-water resources of the upper Lodgepole Creek drainage basin, Wyoming, with a section on chemical quality of the water

    Science.gov (United States)

    Bjorklund, Louis Jay; Krieger, R.A.; Jochens, E.R.

    1959-01-01

    The principal sources of ground-water supply in the upper Lodgepole Creek drainage basin-the part of the basin west of the Wyoming-Nebraska State line-are the Brule formation of Oligocene age, the Arikaree formation of Miocene age, the Ogallala formation of Pliocene age, and the unconsolidated deposits of Quaternary age. The Brule formation is a moderately hard siltstone that generally is not a good aquifer. However, where it is fractured or where the upper part consists of pebbles of reworked siltstone, it will yield large quantities of water to wells. Many wells in the Pine Bluffs lowland, at the east end of the area, derive water from the Brule. The Arikaree formation, which consists of loosely to moderately cemented fine sand, will yield small quantities of water to wells but is not thick enough or permeable enough to supply sufficient water for irrigation. Only a few wells derive water from it. The Ogallala formation consists of lenticular beds of clay, silt, sand, and gravel which, in part, are cemented with calcium carbonate. Only the lower part of the formation is saturated. Nearly all the wells in the upland part of the area tap the Ogallala, but they supply water in amounts sufficient for domestic and stock use only. Two of the wells have a moderately large discharge, and other wells of comparable discharge probably could be drilled in those parts of the upland where the saturated part of the Ogallala is fairly thick. Most of the unconsolidated deposits of Quaternary age are very permeable and, where a sufficient thickness is saturated, will yield large quantities of water to wells. These deposits are a significant source of water supply in the southeastern part of the area. The Chadron formation of Oligocene age, which underlies the Brule formation, is a medium- to coarse-grained sandstone where it crops out in the Islay lowland. No wells tap the Chadron, but it probably would yield small quantities of water to wells. It lies at a relatively shallow

  20. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    Directory of Open Access Journals (Sweden)

    Susannah Catherine Rose Maidment

    Full Text Available Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well preserved because it was buried rapidly in a pond or body of standing water immediately after death. The quarry is probably located in the middle part of the Morrison Formation, which is believed to be Tithonian in age in this area. The specimen is referable to Stegosaurus stenops based on the possession of an edentulous anterior portion of the dentary and elevated postzygapophyses on the cervical vertebrae. New information provided by the specimen concerns the morphology of the vertebrae, the iliosacral block and dermal armor. Several aspects of its morphology indicate the individual was not fully skeletally mature at the time of death, corroborating a previous histological study.

  1. Persistent U(IV) and U(VI) following in-situ recovery (ISR) mining of a sandstone uranium deposit, Wyoming, USA

    Science.gov (United States)

    Gallegos, Tanya J.; Campbell, Kate M.; Zielinski, Robert A.; Reimus, P.W.; J.T. Clay,; N. Janot,; J. J. Bargar,; Benzel, William M.

    2015-01-01

    Drill-core samples from a sandstone-hosted uranium (U) deposit in Wyoming were characterized to determine the abundance and distribution of uranium following in-situ recovery (ISR) mining with oxygen- and carbon dioxide-enriched water. Concentrations of uranium, collected from ten depth intervals, ranged from 5 to 1920 ppm. A composite sample contained 750 ppm uranium with an average oxidation state of 54% U(VI) and 46% U(IV). Scanning electron microscopy (SEM) indicated rare high uranium (∼1000 ppm U) in spatial association with P/Ca and Si/O attributed to relict uranium minerals, possibly coffinite, uraninite, and autunite, trapped within low permeability layers bypassed during ISR mining. Fission track analysis revealed lower but still elevated concentrations of U in the clay/silica matrix and organic matter (several 10 s ppm) and yet higher concentrations associated with Fe-rich/S-poor sites, likely iron oxides, on altered chlorite or euhedral pyrite surfaces (but not on framboidal pyrite). Organic C (mining, the likely sequestration of uranium within labile iron oxides following mining and sensitivity to changes in redox conditions requires careful attention during groundwater restoration.

  2. The Postcranial Skeleton of an Exceptionally Complete Individual of the Plated Dinosaur Stegosaurus stenops (Dinosauria: Thyreophora) from the Upper Jurassic Morrison Formation of Wyoming, U.S.A.

    Science.gov (United States)

    Maidment, Susannah Catherine Rose; Brassey, Charlotte; Barrett, Paul Michael

    2015-01-01

    Although Stegosaurus is one of the most iconic dinosaurs, well-preserved fossils are rare and as a consequence there is still much that remains unknown about the taxon. A new, exceptionally complete individual affords the opportunity to describe the anatomy of Stegosaurus in detail for the first time in over a century, and enables additional comparisons with other stegosaurian dinosaurs. The new specimen is from the Red Canyon Ranch Quarry, near Shell Wyoming, and appears to have been so well preserved because it was buried rapidly in a pond or body of standing water immediately after death. The quarry is probably located in the middle part of the Morrison Formation, which is believed to be Tithonian in age in this area. The specimen is referable to Stegosaurus stenops based on the possession of an edentulous anterior portion of the dentary and elevated postzygapophyses on the cervical vertebrae. New information provided by the specimen concerns the morphology of the vertebrae, the iliosacral block and dermal armor. Several aspects of its morphology indicate the individual was not fully skeletally mature at the time of death, corroborating a previous histological study.

  3. Assessment of multiple sources of anthropogenic and natural chemical inputs to a morphologically complex basin, Lake Mead, USA

    Science.gov (United States)

    Rosen, Michael R.; Van Metre, P.C.

    2010-01-01

    Lakes with complex morphologies and with different geologic and land-use characteristics in their sub-watersheds could have large differences in natural and anthropogenic chemical inputs to sub-basins in the lake. Lake Mead in southern Nevada and northern Arizona, USA, is one such lake. To assess variations in chemical histories from 1935 to 1998 for major sub-basins of Lake Mead, four sediment cores were taken from three different parts of the reservoir (two from Las Vegas Bay and one from the Overton Arm and Virgin Basin) and analyzed for major and trace elements, radionuclides, and organic compounds. As expected, anthropogenic contaminant inputs are greatest to Las Vegas Bay reflecting inputs from the Las Vegas urban area, although concentrations are low compared to sediment quality guidelines and to other USA lakes. One exception to this pattern was higher Hg in the Virgin Basin core. The Virgin Basin core is located in the main body of the lake (Colorado River channel) and is influenced by the hydrology of the Colorado River, which changed greatly with completion of Glen Canyon Dam upstream in 1963. Major and trace elements in the core show pronounced shifts in the early 1960s and, in many cases, gradually return to concentrations more typical of pre-1960s by the 1980s and 1990s, after the filling of Lake Powell. The Overton Arm is the sub-basin least effected by anthropogenic contaminant inputs but has a complex 137Cs profile with a series of large peaks and valleys over the middle of the core, possibly reflecting fallout from nuclear tests in the 1950s at the Nevada Test Site. The 137Cs profile suggests a much greater sedimentation rate during testing which we hypothesize results from greatly increased dust fall on the lake and Virgin and Muddy River watersheds. The severe drought in the southwestern USA during the 1950s might also have played a role in variations in sedimentation rate in all of the cores. ?? 2009.

  4. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    Science.gov (United States)

    Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.

    2011-01-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.

  5. Shale depositional processes: Example from the Paleozoic Barnett Shale, Fort Worth Basin, Texas, USA

    Science.gov (United States)

    Abouelresh, Mohamed; Slatt, Roger

    2011-12-01

    A long held geologic paradigm is that mudrocks and shales are basically the product of `hemipelagic rain' of silt- and/or clay-sized, detrital, biogenic and particulate organic particles onto the ocean floor over long intervals of time. However, recently published experimental and field-based studies have revealed a plethora of micro-sedimentary features that indicate these common fine-grained rocks also could have been transported and/or reworked by unidirectional currents. In this paper, we add to this growing body of knowledge by describing such features from the Paleozoic Barnett Shale in the Fort Worth Basin, Texas, U.S.A. which suggests transport and deposition was from hyperpycnal, turbidity, storm and/or contour currents, in addition to hemipelagic rain. On the basis of a variety of sedimentary textures and structures, six main sedimentary facies have been defined from four 0.3 meter intervals in a 68m (223 ft) long Barnett Shale core: massive mudstone, rhythmic mudstone, ripple and low-angle laminated mudstone, graded mudstone, clay-rich facies, and spicule-rich facies. Current-induced features of these facies include mm- to cmscale cross- and parallel-laminations, scour surfaces, clastic/biogenic particle alignment, and normal- and inverse-size grading. A spectrum of vertical facies transitions and bed types indicate deposition from waxing-waning flows rather than from steady `rain' of particles to the sea floor. Detrital sponge spicule-rich facies suggests transport to the marine environment as hypopycnal or hyperpycnal flows and reversal in buoyancy by transformation from concentrated to dilute flows; alternatively the spicules could have originated by submarine slumping in front of contemporaneous shallow marine sponge reefs, and then transported basinward as turbidity current flows. The occurrence of dispersed biogenic/organic remains and inversely size graded mudstones also support a hyperpycnal and/or turbidity flow origin for a significant part of

  6. Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow

    Science.gov (United States)

    Plummer, L. Niel; Bexfield, Laura M.; Anderholm, Scott K.; Sanford, Ward E.; Busenberg, Eurybiades

    Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin, evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system. Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the ``modern'' predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm-1 and indicate a recharge rate of about 3 cm year-1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque. Des données sur les éléments chimiques et les isotopes présents dans l'eau souterraine prélevée à divers endroits dans le bassin moyen du Rio Grande, au centre du Nouveau-Mexique (É-U), ont permis de déterminer l'existence et l'étendue de douze sources d'eau régionales dans le bassin, d'évaluer les âges radiocarbones et de raffiner le modèle conceptuel du système aquifère du groupe de Santa Fe. Des zones hydro-chimiques qui représentent l'écoulement de l'eau souterraine depuis des dizaines de milliers d'années peuvent être suivies sur de longues distances à travers l'aquifère principalement siliclastique. La position des

  7. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  8. Identifying local and regional groundwater in basins: chemical and stable isotopic attributes of multivariate classification of hydrochemical data, the Lower Virgin River Basin, Nevada, Arizona and Utah, U.S.A.

    Science.gov (United States)

    Asante, Joseph; Kreamer, David K

    2018-03-20

    In the Basin and Range Province of the Southwestern U.S.A., deep carbonate groundwater has been suggested as a significant source to many overlying basin-fill alluvial aquifer systems. Notwithstanding, testing this hypothesis is limited by obtaining data from such considerable depths and complex geology. This study uses δ 2 H and δ 18 O data from springs, rivers, and wells tapping shallow basin-fill groundwater to test the hydrochemical interpretation of deep regional carbonate groundwater flow into the basin-fill aquifers. Stable isotopic and major ion attributes of hydrochemical facies suggest basin-fill alluvial groundwater of the Lower Virgin River Basin is a mixture of precipitation recharge within the Lower Virgin River Basin or the Clover and Escalante Desert Basin northwards, and the deep carbonate flow. The data support the conclusions that in the Lower Virgin River Basin, deep carbonate groundwater is an important source to the alluvial aquifer system and likely accounts for approximately 50% of the alluvial aquifer groundwater. Na + , K + , and SO 4 2- increase in the basin-fill alluvial groundwaters outside the Virgin River floodplain appears to be related with upwelling of deep regional groundwater, and indicating that the chemical character of the basin-fill alluvial groundwaters are related to the deeper flow systems.

  9. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Science.gov (United States)

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  10. Bivariate Drought Analysis Using Streamflow Reconstruction with Tree Ring Indices in the Sacramento Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2016-03-01

    Full Text Available Long-term streamflow data are vital for analysis of hydrological droughts. Using an artificial neural network (ANN model and nine tree-ring indices, this study reconstructed the annual streamflow of the Sacramento River for the period from 1560 to 1871. Using the reconstructed streamflow data, the copula method was used for bivariate drought analysis, deriving a hydrological drought return period plot for the Sacramento River basin. Results showed strong correlation among drought characteristics, and the drought with a 20-year return period (17.2 million acre-feet (MAF per year in the Sacramento River basin could be considered a critical level of drought for water shortages.

  11. Thermal springs of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  12. Applying downscaled Global Climate Model data to a groundwater model of the Suwannee River Basin, Florida, USA

    Science.gov (United States)

    Swain, Eric D.; Davis, J. Hal

    2016-01-01

    The application of Global Climate Model (GCM) output to a hydrologic model allows for comparisons between simulated recent and future conditions and provides insight into the dynamics of hydrology as it may be affected by climate change. A previously developed numerical model of the Suwannee River Basin, Florida, USA, was modified and calibrated to represent transient conditions. A simulation of recent conditions was developed for the 372-month period 1970-2000 and was compared with a simulation of future conditions for a similar-length period 2039-2069, which uses downscaled GCM data. The MODFLOW groundwater-simulation code was used in both of these simulations, and two different MODFLOW boundary condition “packages” (River and Streamflow-Routing Packages) were used to represent interactions between surface-water and groundwater features.

  13. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  14. Delineating groundwater/surface water interaction in a karst watershed: Lower Flint River Basin, southwestern Georgia, USA

    Directory of Open Access Journals (Sweden)

    Kathleen Rugel

    2016-03-01

    Full Text Available Study region: Karst watershed in Lower Flint River Basin (LFRB, southwestern Georgia, USA. Study focus: Baseflow discharges in the LFRB have declined for three decades as regional irrigation has increased; yet, the location and nature of connectivity between groundwater and surface water in this karstic region are poorly understood. Because growing water demands will likely be met by further development of regional aquifers, an important management concern is the nature of interactions between groundwater and surface water components under natural and anthropogenic perturbations. We conducted coarse and fine-scale stream sampling on a major tributary of the Lower Flint River (Ichawaynochaway Creek in southwestern Georgia, USA, to identify locations and patterns of enhanced hydrologic connectivity between this stream and the Upper Floridan Aquifer. New hydrological insights for the region: Prior water resource studies in the LFRB were based on regional modeling that neglected local heterogeneities in groundwater/surface water connectivity. Our results demonstrated groundwater inputs were concentrated around five of fifty sampled reaches, evidenced by increases in multiple groundwater indicators at these sites. These five reaches contributed up to 42% of the groundwater detected along the entire 50-km sampling section, with ∼24% entering through one groundwater-dominated tributary, Chickasawhatchee Creek. Intermittent flows occurred in two of these upstream reaches during extreme drought and heavy groundwater pumping, suggesting reach-scale behaviors should be considered in resource management and policy. Keywords: Karst hydrogeology, Hydrologic connectivity, Groundwater/surface water interaction, Upper Floridan Aquifer, Groundwater Irrigation

  15. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    Science.gov (United States)

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    greatest impact on reducing nutrient export from the basin. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  16. Subsurface images of the northern Newark basin, New York, USA and their implications for carbon sequestration

    Science.gov (United States)

    Olsen, P. E.; Withjack, M. O.; Schlische, R. W.; Goldberg, D.; Kent, D. V.; Tamulonis, K.; Couëslan, M.; Collins, D. J.

    2011-12-01

    The Triassic-Jurassic Newark rift, a large onshore sedimentary basin close to northeast US metropolitan areas, may have potential for safe geological storage of CO2 in a suitably deep formation overlain by appropriate confining units. Filled with continental synrift sedimentary rocks and CAMP (Central Atlantic Magmatic Province) basaltic intrusions and flows, the basin is bounded on the NW by the NE-striking, SE-dipping Ramapo fault. Funded by the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Carbon Sequestration Program's portion of the American Recovery and Reinvestment Act of 2009 (ARRA) and NYSERDA, the TriCarb Consortium for Carbon Sequestration acquired two seismic-reflection profiles in Rockland County, NY that were processed to obtain depth-migrated images of the basin's subsurface geometry. The E-trending dip profile crosses most of the basin, while the shorter N-trending profile provides a strike-view. Five seismic facies are present: (1) shallow continuous, closely spaced, W-dipping reflections suggestive of lacustrine deposits; (2) short, non-coherent reflections suggestive of conglomeritic fluvial strata; (3) high-amplitude parallel reflections, locally exhibiting reverse separation, suggestive of prerift early Paleozoic strata Cambro-Ordovician carbonates; (4) a facies at the bottom of both lines and the western end of the ESE-trending line that lacks reflections, suggestive of prerift metamorphic rocks such as Precambrian gneiss, and/or highly deformed Taconic (Ordovician) phyllites; and (5) a seismically transparent band commonly bounded by high-amplitude reflections that cuts across the stratigraphy of facies 1-3, suggestive of a scoop-shaped intrusive diabase sheet that projects to the surface to outcrops of the CAMP-related Palisade sill. Basin geometry is well-imaged conforming to a deeply eroded half graben. Reflections of facies 3 are truncated by facies 2 marking the angular pre-rift unconformity. Distinct

  17. Temporal and Seasonal Variations of the Hot Spring Basin Hydrothermal System, Yellowstone National Park, USA

    Directory of Open Access Journals (Sweden)

    Cheryl Jaworowski

    2013-12-01

    Full Text Available Monitoring Yellowstone National Park’s hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park’s Geology program and Utah State University’s Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR camera (8–12 microns provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothermal system. From 2008 to 2011, night-time, airborne thermal infrared image acquisitions during September yielded temperature maps that established the temporal variability of the hydrothermal system. A March 2012 airborne image acquisition provided an initial assessment of seasonal variability. The consistent, high-spatial resolution imagery (~1 m demonstrates that the technique is robust and repeatable for generating corrected (atmosphere and emissivity and calibrated temperature maps of the Hot Spring Basin hydrothermal system. Atmospheric conditions before and at flight-time determine the usefulness of the thermal infrared imagery for geohydrologic applications, such as hydrothermal monitoring. Although these ground-surface temperature maps are easily understood, quantification of radiative heat from the Hot Spring Basin hydrothermal system is an estimate of the system’s total energy output. Area is a key parameter for calculating the hydrothermal system’s heat output. Preliminary heat calculations suggest a radiative heat output of ~56 MW to 62 MW for the central Hot Spring Basin hydrothermal system. Challenges still remain in removing the latent solar component within the calibrated, atmospherically adjusted, and emissivity corrected night-time imagery.

  18. Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA

    Science.gov (United States)

    Rowden, R.D.; Liu, H.; Libra, R.D.

    2001-01-01

    Agricultural practices, hydrology, and water quality of the 267-km2 Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs. ?? Springer-Verlag 2001.

  19. Water quality trends in the Delaware River Basin (USA) from 1980 to 2005.

    Science.gov (United States)

    Kauffman, Gerald J; Homsey, Andrew R; Belden, Andrew C; Sanchez, Jessica Rittler

    2011-06-01

    In 1940, the tidal Delaware River was "one of the most grossly polluted areas in the United States." During the 1950s, water quality was so poor along the river at Philadelphia that zero oxygen levels prevented migration of American shad leading to near extirpation of the species. Since then, water quality in the Delaware Basin has improved with implementation of the 1961 Delaware River Basin Compact and 1970s Federal Clean Water Act Amendments. At 15 gages along the Delaware River and major tributaries between 1980 and 2005, water quality for dissolved oxygen, phosphorus, nitrogen, and sediment improved at 39%, remained constant at 51%, and degraded at 10% of the stations. Since 1980, improved water-quality stations outnumbered degraded stations by a 4 to 1 margin. Water quality remains good in the nontidal river above Trenton and, while improved, remains fair to poor for phosphorus and nitrogen in the tidal estuary near Philadelphia and in the Lehigh and Schuylkill tributaries. Water quality is good in heavily forested watersheds (>50%) and poor in highly cultivated watersheds. Water quality recovery in the Delaware Basin is coincident with implementation of environmental laws enacted in the 1960s and 1970s and is congruent with return of striped bass, shad, blue crab, and bald eagle populations.

  20. Characterization of habitat and biological communities at fixed sites in the Great Salt Lake basins, Utah, Idaho, and Wyoming, water years 1999-2001

    Science.gov (United States)

    Albano, Christine M.; Giddings, Elise M.P.

    2007-01-01

    Habitat and biological communities were sampled at 10 sites in the Great Salt Lake Basins as part of the U.S. Geological Survey National Water-Quality Assessment program to assess the occurrence and distribution of biological organisms in relation to environmental conditions. Sites were distributed among the Bear River, Weber River, and Utah Lake/Jordan River basins and were selected to represent stream conditions in different land-use settings that are prominent within the basins, including agriculture, rangeland, urban, and forested.High-gradient streams had more diverse habitat conditions with larger substrates and more dynamic flow characteristics and were typically lower in discharge than low-gradient streams, which had a higher degree of siltation and lacked variability in geomorphic channel characteristics, which may account for differences in habitat. Habitat scores were higher at high-gradient sites with high percentages of forested land use within their basins. Sources and causes of stream habitat impairment included effects from channel modifications, siltation, and riparian land use. Effects of hydrologic modifications were evident at many sites.Algal sites where colder temperatures, less nutrient enrichment, and forest and rangeland uses dominated the basins contained communities that were more sensitive to organic pollution, siltation, dissolved oxygen, and salinity than sites that were warmer, had higher degrees of nutrient enrichment, and were affected by agriculture and urban land uses. Sites that had high inputs of solar radiation and generally were associated with agricultural land use supported the greatest number of algal species.Invertebrate samples collected from sites where riffles were the richest-targeted habitat differed in species composition and pollution tolerance from those collected at sites that did not have riffle habitat (nonriffle sites), where samples were collected in depositional areas, woody snags, or macrophyte beds

  1. New OSL dates of Sangamon Episode biozones from Raymond Basin, Illinois, USA

    Science.gov (United States)

    Curry, B.; Wang, H.

    2010-12-01

    Pollen and ostracode records from lake sediments spanning from the penultimate to the last glaciation from south-central Illinois provide key evidence for past climates in central North America. The records come from kettle basins formed in Illinois Episode till. The records are sandwiched at the base and top by “glacial” biozones containing Picea pollen and the cryophyllic ostracode Limnocythere friabilis. Evidence of especially warm and moist conditions during the intervening interglacial conditions includes abundant Liquidambar pollen, and the sub-tropical ostracode Heterocypris punctata. The succession of biozones are repeated in the records of three kettle basins (Raymond, Pittsburg, and Balk Knob). The ostensibly coeval vertebrate record at Hopwood Farm, Illinois, does not have similar pollen or ostracode records, but has fossils of Geochelone crassiscutata, an extinct tortoise related to the modern Galapagos species which presumably could not tolerate the prolonged periods of subfreezing winter temperatures typical of Illinois’ present climate. Although attempts have been made, the chronology of these records has not been adequately resolved. One attempt involved wiggle matching of the 2nd DCA axis of the pollen record (ostensibly a proxy of paleoprecipitation) from Raymond Basin of Zhu and Baker (1995) with the δ13C record from Crevice Cave stalagmites (Dorale et al., 1998, and other data). This correlation suggested that the sediment accumulation rate in the basin was slow (about 1 m/yr), and that a key warm/moist period during the Sangamon Episode coincided with the onset of Marine Isotope Stage 4 (about 75,000 yr). We attempted to verify these age assignments using OSL dating of fine sand from a new sediment core from Raymond Basin, and from adjacent ice-contact deposits. The oldest pollen-bearing lake sediment in Raymond Basin core RB-8 (7 m depth) yielded an OSL date of 129,520 ± 7700 yr. This age coincides with the transition from tundra

  2. Estimates of recharge in two arid basin aquifers: a model of spatially variable net infiltration and its implications (Red Light Draw and Eagle Flats, Texas, USA)

    Science.gov (United States)

    Robertson, Wendy Marie; Sharp, John M.

    2013-12-01

    Methods of estimating recharge in arid basin aquifers (such as the 1 % rule, Maxey-Eakin method, storm-runoff infiltration and others) overlook the potential contribution of direct recharge on the basin floors. In the Trans-Pecos region of west Texas, USA, this has resulted in potential recharge and solute flux to basin aquifers being ignored. Observed trends in groundwater nitrate (NO3 -) concentrations and the presence of young (floors. A spatially variable net infiltration model (INFIL 3.0.1) was used to estimate the volume and spatial distribution of potential recharge to two basins: Red Light Draw and Eagle Flats. The INFIL model provides insight into the mechanisms by which recharge and solute flux occurs in arid basin systems. This method demonstrated that recharge is widespread; it is not limited to the mountainous areas and mountain-front recharge mechanisms, and up to 15 % of total potential recharge in these basins occurs across widespread areas of the basin floors. Models such as this should improve scientific understanding and sustainable management of arid basin aquifers in Texas and elsewhere.

  3. Improving sustainable seed yield in Wyoming big sagebrush

    Science.gov (United States)

    Jeremiah C. Armstrong

    2007-01-01

    As part of the Great Basin Restoration Initiative, the effects of browsing, competition removal, pruning, fertilization and seed collection methods on increasing seed production in Wyoming big sagebrush (Artemisia tridentata Nutt. spp wyomingensis Beetle & Young) were studied. Study sites were located in Idaho, Nevada, and Utah. A split-plot...

  4. Diversity and distribution of mayflies (Ephemeroptera), stoneflies (Plecoptera), and caddisflies (Trichoptera) of the South Platte River Basin, Colorado, Nebraska, and Wyoming, 1873-2010

    Science.gov (United States)

    Zuellig, Robert E.; Heinold, Brian D.; Kondratieff, Boris C.; Ruiter, David E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the C.P. Gillette Museum of Arthropod Diversity (Colorado State University, Fort Collins, Colorado), compiled collection record data to document the historical and present-day occurrence of mayfly, stonefly, and caddisfly species in the South Platte River Basin. Data were compiled from records collected between 1873 and 2010 to identify where regional knowledge about species occurrence in the basin is lacking and to encourage future researchers to locate additional populations of these poorly understood but very important organisms. This report provides a description of how data were compiled, a map of approximate collection locations, a listing of the most recent collection records from unique locations, general remarks for each species, a species list with selected summary information, and distribution maps of species collection records.

  5. Landscape controls on total and methyl Hg in the Upper Hudson River basin, New York, USA

    Science.gov (United States)

    Burns, Douglas A.; Riva-Murray, K.; Bradley, P.M.; Aiken, G.R.; Brigham, M.E.

    2012-01-01

    Approaches are needed to better predict spatial variation in riverine Hg concentrations across heterogeneous landscapes that include mountains, wetlands, and open waters. We applied multivariate linear regression to determine the landscape factors and chemical variables that best account for the spatial variation of total Hg (THg) and methyl Hg (MeHg) concentrations in 27 sub-basins across the 493 km2 upper Hudson River basin in the Adirondack Mountains of New York. THg concentrations varied by sixfold, and those of MeHg by 40-fold in synoptic samples collected at low-to-moderate flow, during spring and summer of 2006 and 2008. Bivariate linear regression relations of THg and MeHg concentrations with either percent wetland area or DOC concentrations were significant but could account for only about 1/3 of the variation in these Hg forms in summer. In contrast, multivariate linear regression relations that included metrics of (1) hydrogeomorphology, (2) riparian/wetland area, and (3) open water, explained about 66% to >90% of spatial variation in each Hg form in spring and summer samples. These metrics reflect the influence of basin morphometry and riparian soils on Hg source and transport, and the role of open water as a Hg sink. Multivariate models based solely on these landscape metrics generally accounted for as much or more of the variation in Hg concentrations than models based on chemical and physical metrics, and show great promise for identifying waters with expected high Hg concentrations in the Adirondack region and similar glaciated riverine ecosystems.

  6. Climatic gradients and human development pressure determine spatial patterns of forest fragmentation in the Great Lakes basin, USA

    Science.gov (United States)

    Currie, W. S.; Hart, S.

    2015-12-01

    Over half of temperate forest area globally has been fragmented or deforested by human activities. Our objective was to gain insight into the combination of climatic, ecological, and social factors that control complex spatial patterns of forest cover and fragmentation at the regional scale. Our study area was the US portion of the land area of the Laurentian Great Lakes basin (USGL basin) of the Upper Midwest, USA, covering ca. 300,000 km2 and home to 25 million people. While this region was historically forested, today there are regional gradients in forest cover as well as complex spatial patterns of agriculture, human settlements, and tree cover. This includes large expanses of fragmented forests in the wildland-urban interface or the forest transition zone. We used structural equation modeling to test models of social and climatic-ecological factors to explain spatial patterns of forest cover and fragmentation. This is a model-driven approach to statistical analysis that is used to test proposed causal "structures" of direct and indirect relationships among variables. It is an innovative approach that makes use of large spatial datasets to test understanding. We assembled numerous spatial data layers at 1 km2 resolution across the USGL basin. We found that 64% to 75% of variance in tree cover and forest connectivity was explained through a relatively simple model combining climatic gradients and human development pressure. Human development pressure was best represented as a measurement model that explained 45% of variance in road density and 87% of housing unit density, while significantly explaining patterns of forest fragmentation. Climate could be represented by a single variable, temperature: where temperature was higher, tree cover and forest connectivity was lower due to human land use. Temperatures did not help to explain patterns of human development as roads and housing, but did affect forest fragmentation through land use as cropland. This suggests

  7. Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA

    Science.gov (United States)

    Juracek, K.E.; Ziegler, A.C.

    2009-01-01

    The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance

  8. Watershed Response to Climate Change and Fire-Burns in the Upper Umatilla River Basin, USA

    Directory of Open Access Journals (Sweden)

    Kimberly Yazzie

    2017-02-01

    Full Text Available This study analyzed watershed response to climate change and forest fire impacts in the upper Umatilla River Basin (URB, Oregon, using the precipitation runoff modeling system. Ten global climate models using Coupled Intercomparison Project Phase 5 experiments with Representative Concentration Pathways (RCP 4.5 and 8.5 were used to simulate the effects of climate and fire-burns on runoff behavior throughout the 21st century. We observed the center timing (CT of flow, seasonal flows, snow water equivalent (SWE and basin recharge. In the upper URB, hydrologic regime shifts from a snow-rain-dominated to rain-dominated basin. Ensemble mean CT occurs 27 days earlier in RCP 4.5 and 33 days earlier in RCP 8.5, in comparison to historic conditions (1980s by the end of the 21st century. After forest cover reduction in the 2080s, CT occurs 35 days earlier in RCP 4.5 and 29 days earlier in RCP 8.5. The difference in mean CT after fire-burns may be due to projected changes in the individual climate model. Winter flow is projected to decline after forest cover reduction in the 2080s by 85% and 72% in RCP 4.5 and RCP 8.5, in comparison to 98% change in ensemble mean winter flows in the 2080s before forest cover reduction. The ratio of ensemble mean snow water equivalent to precipitation substantially decreases by 81% and 91% in the 2050s and 2080s before forest cover reduction and a decrease of 90% in RCP 4.5 and 99% in RCP 8.5 in the 2080s after fire-burns. Mean basin recharge is 10% and 14% lower in the 2080s before fire-burns and after fire-burns, and it decreases by 13% in RCP 4.5 and decreases 22% in RCP 8.5 in the 2080s in comparison to historical conditions. Mixed results for recharge after forest cover reduction suggest that an increase may be due to the size of burned areas, decreased canopy interception and less evaporation occurring at the watershed surface, increasing the potential for infiltration. The effects of fire on the watershed system are

  9. Possible extrinsic controls on the Ordovician radiation: Stratigraphic evidence from the Great Basin, western USA

    Energy Technology Data Exchange (ETDEWEB)

    Droser, M.L. (Univ. of California, Riverside, CA (United States). Dept. of Earth Sciences); Fortey, R.A. (Natural History Museum, London (United Kingdom). Dept. of Palaeontology)

    1993-04-01

    The Ordovician radiation has been previously examined by looking at 1/analyses of patterns of diversification within small clades, 2/analyses of large databases to elucidate large-scale paleoecological patterns such as increased tiering and onshore-offshore shifts associated with this radiation. In order to resolve the relationships between these two scales of analysis there is critical need to examine in detail the paleoecology and possible biofacies shifts associated with the Ordovician radiation. The authors have examined the base of the Whiterock Series (Lower-Middle Ordovician) in the Great Basin as it represents one of the most complete records of the Ordovician radiation on the North American continent. Detailed field evidence suggests that the base of the Whiterock does not represent a simple faunal turnover but corresponds with the first occurrences in the region of groups that come to dominate the rest of the Paleozoic. Among the trilobites, this includes the lichides, calymenids, proetides, and phacopides. Similar patterns are found among the dominate Paleozoic bivalve, cephalopod, brachiopod and graptolite clades. Global correlation of this time interval suggests that this pattern of first broad geographic occurrences is not unique to North America. This boundary corresponds with a globally recognized sea level lowstand. In the Great Basin, significant facies shifts are present in shallow and deep water settings. While extrinsic controls are commonly reserved for extinctions, these data suggest that extrinsic factors may have been significant in the timing of the Paleozoic fauna rose to dominance.

  10. Investigation of aquifer-system compaction in the Hueco basin, El Paso, Texas, USA

    Science.gov (United States)

    Heywood, Charles

    1995-01-01

    The Pleistocene geologic history of the Rio Grande valley in the Hueco basin included a cycle of sediment erosion and re-aggradation, resulting in unconformable stratification of sediment of contrasting compressibility and stress history. Since the 1950s large groundwater withdrawals have resulted in significant water-level declines and associated land subsidence. Knowledge of the magnitude and variation of specific storage is needed for developing predictive models of subsidence and groundwater flow simulations. Analyses of piezometric and extensometric data in the form of stress-strain diagrams from a 16 month period yield in situ measurements of aquifer-system compressibility across two discrete aquifer intervals. The linear elastic behaviour of the deeper interval indicates over-consolidation of basin deposits, probably resulting from deeper burial depth before the middle Pleistocene. By contrast, the shallow aquifer system displays an inelastic component, suggesting pre-consolidation stress not significantly greater than current effective stress levels for a sequence of late Pleistocene clay. Harmonic analyses of the piezometric response to earth tides in two water-level piezometers provide an independent estimate of specific storage of aquifer sands.

  11. Water quality and environmental isotopic analyses of ground-water samples collected from the Wasatch and Fort Union Formations in areas of coalbed methane development : implications to recharge and ground-water flow, eastern Powder River basin, Wyoming

    Science.gov (United States)

    Bartos, Timothy T.; Ogle, Kathy Muller

    2002-01-01

    Chemical analyses of ground-water samples were evaluated as part of an investigation of lower Tertiary aquifers in the eastern Powder River Basin where coalbed methane is being developed. Ground-water samples were collected from two springs discharging from clinker, eight monitoring wells completed in the Wasatch aquifer, and 13 monitoring or coalbed methane production wells completed in coalbed aquifers. The ground-water samples were analyzed for major ions and environmental isotopes (tritium and stable isotopes of hydrogen and oxygen) to characterize the composition of waters in these aquifers, to relate these characteristics to geochemical processes, and to evaluate recharge and ground-water flow within and between these aquifers. This investigation was conducted in cooperation with the Wyoming State Engineer's Office and the Bureau of Land Management. Water quality in the different aquifers was characterized by major-ion composition. Samples collected from the two springs were classified as calcium-sulfate-type and calcium-bicarbonate-type waters. All ground-water samples from the coalbed aquifers were sodium-bicarbonate-type waters as were five of eight samples collected from the overlying Wasatch aquifer. Potential areal patterns in ionic composition were examined. Ground-water samples collected during this and another investigation suggest that dissolved-solids concentrations in the coalbed aquifers may be lower south of the Belle Fourche River (generally less than 600 milligrams per liter). As ground water in coalbed aquifers flows to the north and northwest away from an inferred source of recharge (clinker in the study area), dissolved-solids concentrations appear to increase. Variation in ionic composition in the vertical dimension was examined qualitatively and statistically within and between aquifers. A relationship between ionic composition and well depth was noted and corroborates similar observations by earlier investigators in the Powder River

  12. Water-Quality Assessment of the Yellowstone River Basin, Montana and Wyoming-Water Quality of Fixed Sites, 1999-2001

    Science.gov (United States)

    Miller, Kirk A.; Clark, Melanie L.; Wright, Peter R.

    2005-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey initiated an assessment in 1997 of the quality of water resources in the Yellowstone River Basin. Water-quality samples regularly were collected during 1999-2001 at 10 fixed sites on streams representing the major environmental settings of the basin. Integrator sites, which are heterogeneous in land use and geology, were established on the mainstem of the Yellowstone River (4 sites) and on three major tributaries?Clarks Fork Yellowstone River (1 site), the Bighorn River (1 site), and the Powder River (1 site). Indicator sites, which are more homogeneous in land use and geology than the integrator sites, were located on minor tributaries with important environmental settings?Soda Butte Creek in a mineral resource area (1 site), the Tongue River in a forested area (1 site), and the Little Powder River in a rangeland area (1 site). Water-quality sampling frequency generally was at least monthly and included field measurements and laboratory analyses of fecal-indicator bacteria, major ions, dissolved solids, nutrients, trace elements, pesticides, and suspended sediment. Median concentrations of fecal coliform and Escherichia coli were largest for basins that were predominantly rangeland and smallest for basins that were predominantly forested. Concentrations of fecal coliform and Escherichia coli significantly varied by season (p-value geologic terrain in the Yellowstone River Basin. The water type of Soda Butte Creek and the Tongue River was calcium bicarbonate. These two sites are in forested and mountainous areas where igneous rocks and Paleozoic-era and Mesozoic-era sedimentary rocks are the dominant geologic groups. The water type of the Little Powder River was sodium sulfate. The Little Powder River originates in the plains, and geology of the basin is nearly homogenous with Tertiary-period sedimentary rocks. Water type of the Yellowstone River changed from a mixed-cation bicarbonate type

  13. Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  14. Susceptibility of ponderosa pine, Pinus ponderosa (Dougl. Ex Laws.), to mountain pine beetle, Dendroctonus ponderosae Hopkins, attack in uneven-aged stands in the Black Hills of South Dakota and Wyoming USA

    Science.gov (United States)

    Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow

    2008-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...

  15. Micronuclei and other erythrocyte nuclear abnormalities in fishes from the Great Lakes Basin, USA.

    Science.gov (United States)

    Braham, Ryan P; Blazer, Vicki S; Shaw, Cassidy H; Mazik, Patricia M

    2017-10-01

    Biological markers (biomarkers) sensitive to genotoxic and mutagenic contamination in fishes are widely used to identify exposure effects in aquatic environments. The micronucleus assay was incorporated into a suite of indicators to assess exposure to genotoxic and mutagenic contamination at five Great Lakes Areas of Concern (AOCs), as well as one non-AOC (reference) site. The assay allowed enumeration of micronuclei as well as other nuclear abnormalities for both site and species comparisons. Erythrocyte abnormality data was also compared to skin and liver tumor prevalence and hepatic transcript abundance. Erythrocyte abnormalities were observed at all sites with variable occurrence and severity among sites and species. Benthic-oriented brown bullhead (Ameiurus nebulosus) and white sucker (Catostomus commersonii) expressed lower rates of erythrocyte abnormalities, but higher rates of skin and liver neoplasms, when compared to pelagic-oriented largemouth bass (Micropterus salmoides) or smallmouth bass (Micropterus dolomieu) at the same site. The reduced erythrocyte abnormalities, increased transcript abundance associated with Phase I and II toxicant responsive pathways, and increased neoplastic lesions among benthic-oriented taxa may indicate the development of contaminant resistance of these species to more acute effects. Environ. Mol. Mutagen. 58:570-581, 2017. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  16. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  17. Evaluating methods to establish habitat suitability criteria: A case study in the upper Delaware River Basin, USA

    Science.gov (United States)

    Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.

    2016-01-01

    Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  18. Optimization of a Radiative Transfer Forward Operator for Simulating SMOS Brightness Temperatures over the Upper Mississippi Basin, USA

    Science.gov (United States)

    Lievens, H.; Verhoest, N. E. C.; Martens, B.; VanDenBerg, M. J.; Bitar, A. Al; Tomer, S. Kumar; Merlin, O.; Cabot, F.; Kerr, Y.; DeLannoy, G. J. M.; hide

    2014-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission is routinely providing global multi-angular observations of brightness temperature (TB) at both horizontal and vertical polarization with a 3-day repeat period. The assimilation of such data into a land surface model (LSM) may improve the skill of operational flood forecasts through an improved estimation of soil moisture (SM). To accommodate for the direct assimilation of the SMOS TB data, the LSM needs to be coupled with a radiative transfer model (RTM), serving as a forward operator for the simulation of multi-angular and multi-polarization top of atmosphere TBs. This study investigates the use of the Variable Infiltration Capacity (VIC) LSM coupled with the Community Microwave Emission Modelling platform (CMEM) for simulating SMOS TB observations over the Upper Mississippi basin, USA. For a period of 2 years (2010-2011), a comparison between SMOS TBs and simulations with literature-based RTM parameters reveals a basin averaged bias of 30K. Therefore, time series of SMOS TB observations are used to investigate ways for mitigating these large biases. Specifically, the study demonstrates the impact of the LSM soil moisture climatology in the magnitude of TB biases. After CDF matching the SM climatology of the LSM to SMOS retrievals, the average bias decreases from 30K to less than 5K. Further improvements can be made through calibration of RTM parameters related to the modeling of surface roughness and vegetation. Consequently, it can be concluded that SM rescaling and RTM optimization are efficient means for mitigating biases and form a necessary preparatory step for data assimilation.

  19. Anoxia pre-dates Frasnian–Famennian boundary mass extinction horizon in the Great Basin, USA

    Science.gov (United States)

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  20. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    Science.gov (United States)

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  1. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L.; Cully, Jack F.

    2008-01-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  2. Prevalence of Yersinia pestis in rodents and fleas associated with black-tailed prairie dogs (Cynomys ludovicianus) at Thunder Basin National Grassland, Wyoming.

    Science.gov (United States)

    Thiagarajan, Bala; Bai, Ying; Gage, Kenneth L; Cully, Jack F

    2008-07-01

    Rodents (and their fleas) that are associated with prairie dogs are considered important for the maintenance and transmission of the bacterium (Yersinia pestis) that causes plague. Our goal was to identify rodent and flea species that were potentially involved in a plague epizootic in black-tailed prairie dogs at Thunder Basin National Grassland. We collected blood samples and ectoparasites from rodents trapped at off- and on-colony grids at Thunder Basin National Grassland between 2002 and 2004. Blood samples were tested for antibodies to Y. pestis F-1 antigen by a passive hemagglutination assay, and fleas were tested by a multiplex polymerase chain reaction, for the presence of the plague bacterium. Only one of 1,421 fleas, an Oropsylla hirsuta collected in 2002 from a deer mouse, Peromyscus maniculatus, tested positive for Y. pestis. Blood samples collected in summer 2004 from two northern grasshopper mice, Onychomys leucogaster, tested positive for Y. pestis antibodies. All three positive samples were collected from on-colony grids shortly after a plague epizootic occurred. This study confirms that plague is difficult to detect in rodents and fleas associated with prairie dog colonies, unless samples are collected immediately after a prairie dog die-off.

  3. Chemical and stable isotopic composition of water and gas in the Fort Union Formation of the Powder River Basin, Wyoming and Montana: Evidence for water/rock interaction and the biogenic origin of coalbed natural gas

    Science.gov (United States)

    Rice, Cynthia A.; Flores, Romeo M.; Stricker, Gary D.; Ellis, Margaret S.

    2008-01-01

    Significant amounts (> 36 million m3/day) of coalbed methane (CBM) are currently being extracted from coal beds in the Paleocene Fort Union Formation of the Powder River Basin of Wyoming and Montana. Information on processes that generate methane in these coalbed reservoirs is important for developing methods that will stimulate additional production. The chemical and isotopic compositions of gas and ground water from CBM wells throughout the basin reflect generation processes as well as those that affect water/rock interaction. Our study included analyses of water samples collected from 228 CBM wells. Major cations and anions were measured for all samples, δDH2O and δ18OH2O were measured for 199 of the samples, and δDCH4 of gas co-produced with water was measured for 100 of the samples. Results show that (1) water from Fort Union Formation coal beds is exclusively Na–HCO3-type water with low dissolved SO4 content (median oxygen (< 0.15 mg/L), whereas shallow groundwater (depth generally < 120 m) is a mixed Ca–Mg–Na–SO4–HCO3 type; (2) water/rock interactions, such as cation exchange on clay minerals and precipitation/dissolution of CaCO3 and SO4 minerals, account for the accumulation of dissolved Na and depletion of Ca and Mg; (3) bacterially-mediated oxidation–reduction reactions account for high HCO3 (270–3310 mg/L) and low SO4 (median < 0.15 mg/L) values; (4) fractionation between δDCH4 (− 283 to − 328 per mil) and δDH2O (− 121 to − 167 per mil) indicates that the production of methane is primarily by biogenic CO2 reduction; and (5) values of δDH2O and δ18OH2O (− 16 to − 22 per mil) have a wide range of values and plot near or above the global meteoric water line, indicating that the original meteoric water has been influenced by methanogenesis and by being mixed with surface and shallow groundwater.

  4. Aptian ‘Shale Gas’ Prospectivity in the Downdip Mississippi Interior Salt Basin, Gulf Coast, USA

    Science.gov (United States)

    Hackley, Paul C.; Valentine, Brett J.; Enomoto, Catherine B.; Lohr, Celeste D.; Scott, Krystina R.; Dulong, Frank T.; Bove, Alana M.

    2016-01-01

    This study evaluates regional ‘shale gas’ prospectivity of the Aptian section (primarily Pine Island Shale) in the downdip Mississippi Salt Basin (MSB). Previous work by the U.S. Geological Survey estimated a mean undiscovered gas resource of 8.8 trillion cubic feet (TCF) in the chronostratigraphic-equivalent Pearsall Formation in the Maverick Basin of south Texas, where industry has established a moderately successful horizontal gas and liquids play. Wells penetrating the downdip MSB Aptian section at depths of 12,000-15,000 ft were used to correlate formation tops in a 15-well cross-section extending about 200 miles (mi) east-southeastward from Adams Co. to Jackson Co. Legacy cuttings from these wells were analyzed for thermal maturity and source rock quality. Bitumen reflectance (n=53) increases with increasing present-day burial depth in the east-central study area from 1.0% to 1.7%. As the Aptian section shallows in Adams Co. to the west, bitumen Ro values are higher (1.7-2.0%), either from relatively greater heat flux or greater mid-Cenomanian uplift and erosion in this area. Total organic carbon (TOC) content ranges 0.01-1.21 and averages 0.5 wt.% (n=51); pyrolysis output (S2; n=51) averages 0.40 mg HC/g rock, indicating little present-day hydrocarbon-generative potential. Bitumen reflectance is preferred as a thermal maturity parameter as Tmax values are unreliable. Normalized X-ray diffraction (XRD) mineral analyses (n=26) indicate high average clay abundance (53 wt.%) relative to quartz (29%) and carbonate (18%). Mineral content shows a spatial relationship to an Appalachian orogen clastic sediment source, with proximal high clay and quartz and distal high carbonate content. Clastic influx from the Appalachian orogen is confirmed by detrital zircon U-Pb ages with dominant Grenville and Paleozoic components [105 ages from a Rodessa sandstone and 112 ages from a Paluxy (Albian) sandstone]. Preliminary information from fluid inclusion microthermometry

  5. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    Science.gov (United States)

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  6. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Science.gov (United States)

    Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.

  7. Reconstructing Historical Riparian Conditions of Two River Basins in Eastern Oregon, USA

    Science.gov (United States)

    McAllister, Lynne S.

    2008-09-01

    As land use continues to alter riparian areas, historical information is increasingly needed to help establish reference conditions for monitoring and assessment. I developed and applied a procedure in the John Day and Deschutes river basins of eastern Oregon for synthesizing historical documentary records available across broad spatial areas to reconstruct 19th-century riparian conditions. The study area was stratified by ecoregion and stream physical characteristics to partition regional variability. Three primary data sources—General Land Office survey notes, historical photographs, and written accounts—provided descriptive records, which were grouped by topic to develop common riparian attributes. The number of records for each attribute was tallied by stratum to compare and contrast riparian structure and composition across strata and ecoregions. Detailed descriptions of historical riparian conditions using the original documentary records further illustrated the unique riparian conditions in each stratum. Similarities and differences in historical riparian structure and composition at the stratum and ecoregion levels were evident based on the distributional pattern and numbers of records of attributes across strata. A high number of repeated observations within and among primary data sources helped to corroborate descriptive data. Although these reference data cannot provide the detail needed for rigorous quantitative assessments, they do describe a range of conditions approaching a minimally disturbed condition and provide an important perspective for conducting riparian assessments in highly disturbed regions where least-disturbed reference sites are often poor examples of a desired condition.

  8. Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart F. [Colorado School of Mines, Golden, CO (United States). Geology and Geological Engineering; Spycher, Nicolas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Sonnenthal, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  9. Three-Dimensional Geothermal Fairway Mapping: Examples From the Western Great Basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Siler, Drew L. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology

    2013-09-29

    Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal ‘fairways’, areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

  10. Analysis of data on nutrients and organic compounds in ground water in the upper Snake River basin, Idaho and western Wyoming, 1980-91

    Science.gov (United States)

    Rupert, Michael G.

    1994-01-01

    Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin. Nitrite plus nitrate (as nitrogen; hereafter referred to as nitrate) concentrations exceeded the Federal drinking-water regulation of 10 milligrams per liter in three areas in Idaho" the Idaho National Engineering Laboratory, the area north of Pocatello (Fort Hall area), and the area surrounding Burley. Water from many wells in the Twin Falls area also contained elevated (greater than two milligrams per liter) nitrate concentrations. Water from domestic wells contained the highest median nitrate concentrations; water from industrial and public supply wells contained the lowest. Nitrate concentrations decreased with increasing well depth, increasing depth to water (unsaturated thickness), and increasing depth below water table (saturated thickness). Kjeldahl nitrogen concentrations decreased with increasing well depth and depth below water table. The relation between kjeldahl nitrogen concentrations and depth to water was poor. Nitrate and total phosphorus concentrations in water from wells were correlated among three hydrogeomorphic regions in the upper Snake River Basin, Concentrations of nitrate were statistically higher in the eastern Snake River Plain and local aquifers than in the tributary valleys. There was no statistical difference in total phosphorus concentrations among the three hydrogeomorphic regions. Nitrate and total phosphorus concentrations were correlated with land-use classifications developed using the Geographic Information Retrieval and Analysis System. Concentrations of nitrate were statistically higher in area of agricultural land than in areas of rangeland. There was no statistical difference in concentrations between rangeland and urban land and between urban land

  11. Trace elements and organic compounds in sediment and fish tissue from the Great Salt Lake basins, Utah, Idaho, and Wyoming, 1998-99

    Science.gov (United States)

    Waddell, Kidd M.; Giddings, Elise M.

    2004-01-01

    A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently.Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s.The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining

  12. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  13. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Paradzayi Tagwireyi

    Full Text Available Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation, computed patch metrics (area, density, edge, richness, and shape, and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM], whereas ant diversity (using the Berger-Park Index [DBP] was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57. Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62 whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65. Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64. These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian

  14. Wyoming : ITS/CVO business plan

    Science.gov (United States)

    1997-12-01

    Commercial Vehicle Operations (CVO) in Wyoming are among the safest and most efficient in the United States. This Business Plan recognizes the successes of Wyoming CVO and proposes seven elements to keep Wyoming a trucking leader. The Plan recommends...

  15. Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA.

    Science.gov (United States)

    McMahon, Peter B; Thomas, Judith C; Crawford, John T; Dornblaser, Mark M; Hunt, Andrew G

    2018-04-10

    Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27m from the contaminated monitoring well, had ~1000m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface. Published by Elsevier B.V.

  16. Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA

    Science.gov (United States)

    McMahon, Peter B.; Thomas, Judith C.; Crawford, John T.; Dornblaser, Mark M.; Hunt, Andrew G.

    2018-01-01

    Site-specific and regional analysis of time-series hydrologic and geochemical data collected from 15 monitoring wells in the Piceance Basin indicated that a leaking gas well contaminated shallow groundwater with thermogenic methane. The gas well was drilled in 1956 and plugged and abandoned in 1990. Chemical and isotopic data showed the thermogenic methane was not from mixing of gas-rich formation water with shallow groundwater or natural migration of a free-gas phase. Water-level and methane-isotopic data, and video logs from a deep monitoring well, indicated that a shale confining layer ~125 m below the zone of contamination was an effective barrier to upward migration of water and gas. The gas well, located 27 m from the contaminated monitoring well, had ~1000 m of uncemented annular space behind production casing that was the likely pathway through which deep gas migrated into the shallow aquifer. Measurements of soil gas near the gas well showed no evidence of methane emissions from the soil to the atmosphere even though methane concentrations in shallow groundwater (16 to 20 mg/L) were above air-saturation levels. Methane degassing from the water table was likely oxidized in the relatively thick unsaturated zone (~18 m), thus rendering the leak undetectable at land surface. Drilling and plugging records for oil and gas wells in Colorado and proxies for depth to groundwater indicated thousands of oil and gas wells were drilled and plugged in the same timeframe as the implicated gas well, and the majority of those wells were in areas with relatively large depths to groundwater. This study represents one of the few detailed subsurface investigations of methane leakage from a plugged and abandoned gas well. As such, it could provide a useful template for prioritizing and assessing potentially leaking wells, particularly in cases where the leakage does not manifest itself at land surface.

  17. Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA)

    Science.gov (United States)

    Pas, Damien; Hinnov, Linda; Day, James E. (Jed); Kodama, Kenneth; Sinnesael, Matthias; Liu, Wei

    2018-04-01

    The Late Devonian biosphere was affected by two of the most severe biodiversity crises in Earth's history, the Kellwasser and Hangenberg events near the Frasnian-Famennian (F-F) and the Devonian-Carboniferous (D-C) boundaries, respectively. Current hypotheses for the causes of the Late Devonian extinctions are focused on climate changes and associated ocean anoxia. Testing these hypotheses has been impeded by a lack of sufficient temporal resolution in paleobiological, tectonic and climate proxy records. While there have been recent advances in astronomical calibration that have improved the accuracy of the Frasnian time scale and part of the Famennian, the time duration of the entire Famennian Stage remains poorly constrained. During the Late Devonian, a complete Late Frasnian-Early Carboniferous succession of deep-shelf deposits accumulated in the epieric sea in Illinois Basin of the central North-American mid-continent. A record of this sequence is captured in three overlapping cores (H-30, Sullivan and H-32). The H-30 core section spans the F-F boundary; the Sullivan section spans almost all of the Famennian and the H-32 section sampled spans the interval of the Upper Famennian and the D-C boundary. To have the best chance of capturing Milankovitch cycles, 2000 rock samples were collected at minimum 5-cm-interval across the entire sequence. Magnetic susceptibility (MS) was measured on each sample and the preservation of climatic information into the MS signal was verified through geochemical analyses and low-temperature magnetic susceptibility acquisition. To estimate the duration of the Famennian Stage, we applied multiple spectral techniques and tuned the MS signal using the highly stable 405 kyr cycle for Sullivan and the obliquity cycle for the H-30 and H-32 cores. Based on the correlation between the cores we constructed a Famennian floating astronomical time scale, which indicates a duration of 13.5 ± 0.5 myr. An uncertainty of 0.5 myr was estimated for

  18. Crop classification modelling using remote sensing and environmental data in the Greater Platte River Basin, USA

    Science.gov (United States)

    Howard, Daniel M.; Wylie, Bruce K.; Tieszen, Larry L.

    2012-01-01

    With an ever expanding population, potential climate variability and an increasing demand for agriculture-based alternative fuels, accurate agricultural land-cover classification for specific crops and their spatial distributions are becoming critical to researchers, policymakers, land managers and farmers. It is important to ensure the sustainability of these and other land uses and to quantify the net impacts that certain management practices have on the environment. Although other quality crop classification products are often available, temporal and spatial coverage gaps can create complications for certain regional or time-specific applications. Our goal was to develop a model capable of classifying major crops in the Greater Platte River Basin (GPRB) for the post-2000 era to supplement existing crop classification products. This study identifies annual spatial distributions and area totals of corn, soybeans, wheat and other crops across the GPRB from 2000 to 2009. We developed a regression tree classification model based on 2.5 million training data points derived from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) in relation to a variety of other relevant input environmental variables. The primary input variables included the weekly 250 m US Geological Survey Earth Observing System Moderate Resolution Imaging Spectroradiometer normalized differential vegetation index, average long-term growing season temperature, average long-term growing season precipitation and yearly start of growing season. An overall model accuracy rating of 78% was achieved for a test sample of roughly 215 000 independent points that were withheld from model training. Ten 250 m resolution annual crop classification maps were produced and evaluated for the GPRB region, one for each year from 2000 to 2009. In addition to the model accuracy assessment, our validation focused on spatial distribution and county-level crop area totals in comparison with the

  19. The Cost of Clean Water in the Delaware River Basin (USA

    Directory of Open Access Journals (Sweden)

    Gerald J. Kauffman

    2018-01-01

    Full Text Available The Delaware River has made a marked recovery in the half-century since the adoption of the Delaware River Basin Commission (DRBC Compact in 1961 and passage of the Federal Clean Water Act amendments during the 1970s. During the 1960s, the DRBC set a 3.5 mg/L dissolved oxygen criterion for the river based on an economic analysis that concluded that a waste load abatement program designed to meet fishable water quality goals would generate significant recreational and environmental benefits. Scientists with the Delaware Estuary Program have recently called for raising the 1960s dissolved oxygen criterion along the Delaware River from 3.5 mg/L to 5.0 mg/L to protect anadromous American shad and Atlantic sturgeon, and address the prospect of rising temperatures, sea levels, and salinity in the estuary. This research concludes, through a nitrogen marginal abatement cost (MAC analysis, that it would be cost-effective to raise dissolved oxygen levels to meet a more stringent standard by prioritizing agricultural conservation and some wastewater treatment investments in the Delaware River watershed to remove 90% of the nitrogen load by 13.6 million kg N/year (30 million lb N/year for just 35% ($160 million of the $449 million total cost. The annual least cost to reduce nitrogen loads and raise dissolved oxygen levels to meet more stringent water quality standards in the Delaware River totals $45 million for atmospheric NOX reduction, $130 million for wastewater treatment, $132 million for agriculture conservation, and $141 million for urban stormwater retrofitting. This 21st century least cost analysis estimates that an annual investment of $50 million is needed to reduce pollutant loads in the Delaware River to raise dissolved oxygen levels to 4.0 mg/L, $150 million is needed for dissolved oxygen levels to reach 4.5 mg/L, and $449 million is needed for dissolved oxygen levels to reach 5.0 mg/L.

  20. Two Approaches for Estimating Discharge on Ungauged Basins in Oregon, USA

    Science.gov (United States)

    Wigington, P. J.; Leibowitz, S. G.; Comeleo, R. L.; Ebersole, J. L.; Copeland, E. A.

    2009-12-01

    discharge measurements from 30 long-term US Geological Survey gauge stations. The advantage of this HLR approach is that it can be applied to watersheds or basins in Oregon without additional information. However, results represent monthly averages. In contrast, the approach we demonstrate in the Calapooia provides detailed, daily hydrographs, but requires field measurements over a range of hydrologic conditions for calibration.

  1. Preliminary study of uranium in Pennsylvanian and lower Permian strata in the Powder River Basin, Wyoming and Montana, and the Northern Great Plains

    International Nuclear Information System (INIS)

    Dunagan, J.F. Jr.; Kadish, K.A.

    1977-11-01

    Persistent and widespread radiometric anomalies occur in Pennsylvanian and Lower Permian strata in the subsurface of the northern Great Plains and the Powder River Basin. The primary host lithology of these anomalies is shale interbedded with sandstone, dolomite, and dolomitic sandstone. Samples from the project area indicate that uranium is responsible for some anomalies. In some samples there seems to be a correlation between high uranium content and high organic-carbon content, which possibly indicates that carbonaceous material acted as a trapping mechanism in some strata. The Pennsylvanian and Permian rocks studied are predominantly marine carbonates and clastics, but there are rocks of fluvial origin in the basal Pennsylvanian of Montana, North Dakota, and South Dakota and in the Pennsylvanian and Permian deposits on the east flank of the Laramie Mountains. Fine-grained clastic rocks that flank the Chadron arch in western Nebraska are possibly of continental origin. The trend of the Chadron arch approximately parallels the trend of radiometric anomalies in the subsurface Permian-Pennsylvanian section. Possible source areas for uranium in the sediments studied were pre-Pennsylvanian strata of the Canadian Shield and Precambrian igneous rocks of the Ancestral Rocky Mountains

  2. Distribution and Climatic Relationships of the American Pika (Ochotona princeps) in the Sierra Nevada and Western Great Basin, U.S.A.; Periglacial Landforms as Refugia in Warming Climates

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall

    2010-01-01

    We used a rapid assessment to survey American pika (Ochotona princeps) populations and documented 420 pika site occurrences in southwestern U.S.A. These included 329 sites from the Sierra Nevada (SN), California; 67 from six southwestern Great Basin (swGB) ranges, California and Nevada; 16 from three central Great Basin ranges, Nevada; and 8 from...

  3. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    Science.gov (United States)

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  4. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, C.A.; Katz, B.G.; Hirten, J.J.

    1999-01-01

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). ?? Springer-Verlag.

  5. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei

    2013-01-01

    In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.

  6. Interactive effects of water diversion and climate change for juvenile chinook salmon in the lemhi river basin (USA.).

    Science.gov (United States)

    Walters, Annika W; Bartz, Krista K; McClure, Michelle M

    2013-12-01

    The combined effects of water diversion and climate change are a major conservation challenge for freshwater ecosystems. In the Lemhi Basin, Idaho (U.S.A.), water diversion causes changes in streamflow, and climate change will further affect streamflow and temperature. Shifts in streamflow and temperature regimes can affect juvenile salmon growth, movement, and survival. We examined the potential effects of water diversion and climate change on juvenile Chinook salmon (Oncorhynchus tshawytscha), a species listed as threatened under the U.S. Endangered Species Act (ESA). To examine the effects for juvenile survival, we created a model relating 19 years of juvenile survival data to streamflow and temperature and found spring streamflow and summer temperature were good predictors of juvenile survival. We used these models to project juvenile survival for 15 diversion and climate-change scenarios. Projected survival was 42-58% lower when streamflows were diverted than when streamflows were undiverted. For diverted streamflows, 2040 climate-change scenarios (ECHO-G and CGCM3.1 T47) resulted in an additional 11-39% decrease in survival. We also created models relating habitat carrying capacity to streamflow and made projections for diversion and climate-change scenarios. Habitat carrying capacity estimated for diverted streamflows was 17-58% lower than for undiverted streamflows. Climate-change scenarios resulted in additional decreases in carrying capacity for the dry (ECHO-G) climate model. Our results indicate climate change will likely pose an additional stressor that should be considered when evaluating the effects of anthropogenic actions on salmon population status. Thus, this type of analysis will be especially important for evaluating effects of specific actions on a particular species. Efectos Interactivos de la Desviación del Agua y el Cambio Climático en Individuos Juveniles de Salmón Chinook en la Cuenca del Río Lemhi (E.U.A.). Conservation Biology

  7. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA

    International Nuclear Information System (INIS)

    Peters, Colleen A.; Bratton, Susan P.

    2016-01-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. - Highlights: • Sunfish ingest microplastics and manufactured materials at significant levels. • Local urbanization influences microplastic ingestion. • Sunfish incidentally ingest microplastics during their normal

  8. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA.

    Science.gov (United States)

    Peters, Colleen A; Bratton, Susan P

    2016-03-01

    Microplastics, degraded and weathered polymer-based particles, and manufactured products ranging between 50 and 5000 μm in size, are found within marine, freshwater, and estuarine environments. While numerous peer-reviewed papers have quantified the ingestion of microplastics by marine vertebrates, relatively few studies have focused on microplastic ingestion by freshwater organisms. This study documents microplastic and manufactured fiber ingestion by bluegill (Lepomis macrochirus) and longear (Lepomis megalotis) sunfish (Centrarchidae) from the Brazos River Basin, between Lake Whitney and Marlin, Texas, USA. Fourteen sample sites were studied and categorized into urban, downstream, and upstream areas. A total of 436 sunfish were collected, and 196 (45%) stomachs contained microplastics. Four percent (4%) of items sampled were debris on the macro size scale (i.e. >5 mm) and consisted of masses of plastic, metal, Styrofoam, or fishing material, while 96% of items sampled were in the form of microplastic threads. Fish length was statistically correlated to the number of microplastics detected (p = 0.019). Fish collected from urban sites displayed the highest mean number of microplastics ingested, followed by downstream and upstream sites. Microplastics were associated with the ingestion of other debris items (e.g. sand and wood) and correlated to the ingestion of fish eggs, earthworms, and mollusks, suggesting that sunfish incidentally ingest microplastics during their normal feeding methods. The high frequency of microplastic ingestion suggest that further research is needed to determine the residence time of microplastics within the stomach and gut, potential for food web transfer, and adverse effects on wildlife and ecosystemic health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    Science.gov (United States)

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and

  10. Evaluation of potential gas clogging associated with managed aquifer recharge from a spreading basin, southwestern Utah, U.S.A.

    Science.gov (United States)

    Heilweil, Victor M.; Marston, Thomas

    2013-01-01

    Sand Hollow Reservoir in southwestern Utah, USA, is operated for both surface-water storage and managed aquifer recharge via infiltration from surface basin spreading to the underlying Navajo Sandstone. The total volume of estimated recharge from 2002 through 2011 was 131 Mm3., resulting in groundwater levels rising as much as 40 m. Hydraulic and hydrochemical data from the reservoir and various monitoring wells in Sand Hollow were used to evaluate the timing and location or reservoir recharge moving through the aquifer, along either potential clogging from trapped gases in pore throats, siltation, or algal mats. Several hyrdochemical tracers indicated this recharge had arrived at four monitoring wells located within about 300 m of the reservoir by 2012. At these wells, peak total dissolved-gas pressures exceeded two atmospheres (>1,500 mm mercury) and dissolved oxygen approached three times atmospherically equilibrated concentrations (>25 mg/L). these field parameters indicate that large amounts of gas trapped in pore spaces beneath the water table have dissolved. Lesser but notable increases in these dissolved-gas parameters (without increases in other indicators such as chloride-to-bromide ratios) at monitoring wells farther away (>300 m) indicate moderate amounts of in-situ sir entrapment and dissolution caused by the rise in regional groundwater levels. This is confirmed by hydrochemical difference between these sites and wells closer to the reservoir where recharge had already arrived. As the reservoir was being filled by 2002, managed aquifer recharge rates were initially very high (1.5 x 10-4 cm/s) with the vadose zone becoming saturated beneath and surrounding the reservoir. These rates declined to less than 3.5 x 10-6 cm/s during 2008. The 2002-08 decrease was likely associated with a declining regional hydraulic gradient and clogging. Increasing recharge rates during mid-2009 through 2010 may have been partly caused by dissolution of air bubbles

  11. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    Science.gov (United States)

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  12. Effectiveness of North Carolina phosphate rock and fertilizer tablets in reclaiming disturbed land in Copper Basin, Tennessee, USA

    International Nuclear Information System (INIS)

    Sikora, F.J.; Soileau, J.M.; Maddox, J.J.; Kelsoe, J.J.

    2002-01-01

    Open smelting of copper ore about 100 years ago resulted in approximately 9,300 ha of disturbed land with severely eroded acidic soils at Copper Basin, Tennessee, USA. A field study was initiated in 1992 to compare revegetation from surface application of North Carolina phosphate rock (PR) and triple superphosphate (TSP) at 20, 59, and 295 kg P ha -1 , and determine benefits of fertilizer tablets. Measurements included survival and growth of transplanted pine seedlings, ground cover from an aerially seeded grass/legume mixture, and soil acidity. Tree survival was greater than 87% with no difference among treatments. When fertilizer tablets were not used, tree height and diameter increased with increasing soil P rates with growth maximized at 59 kg P ha -1 . After 96 and 240 d, there was no difference between PR and TSP with respect to growth of loblolly pine. After 960 days, PR caused greater tree growth compared to TSP. Weeping love grass provided the most ground cover, and its growth was stimulated with fertilizer tablets and P application. Fescue, lespedeza, and black locust trees responded more to PR than to TSP. Soil pH increased, and 0.01-M SrCl 2 extractable Al decreased, with increasing rate of PR. The molar ratios of Ca:Al in 0.01-M SrCl 2 soil extracts were also greater with PR compared to TSP. Decreased soil acidity, increased growth of loblolly pines, and increased diversity of ground cover vegetation from PR application makes PR a suitable material for reclaiming extremely acidic soils. Fertilizer tablets had an effect of improving loblolly pine growth when no P was surface applied. However, with surface P application of 59 kg ha -1 as PR, fertilizer tablets did not add any additional benefit to loblolly pine growth. Some improvement in tree growth was observed using fertilizer tablets with P applied as TSP at 59 kg ha -1 . Fertilizer tablets did greatly improve ground coverage of weeping love grass. Use of fertilizer tablets in reclamation efforts in

  13. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  14. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy (EG& G Services); Kuuskraa, Vello; Billingsley, Randy (Advanced Resources International)

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  15. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  16. Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA).

    Science.gov (United States)

    Choi, Woonsup; Deal, Brian M

    2008-09-01

    We connected a cellular, dynamic, spatial urban growth model and a semi-distributed continuous hydrology model to quantitatively predict streamflow in response to possible future urban growth at a basin scale. The main goal was to demonstrate the utility of the approach for informing public planning policy and investment choices. The Hydrological Simulation Program-Fortran (HSPF) was set up and calibrated for the Kishwaukee River basin in the Midwestern USA and was repeatedly run with various land use scenarios generated either by the urban growth model (LEAMluc) or hypothetically. The results indicate that (1) the land use scenarios generated by LEAMluc result in little changes in total runoff but some noticeable changes in surface flow; (2) the argument that low flows tend to decrease with more urbanized areas in a basin was confirmed in this study but the selection of indicators for low flows can result in misleading conclusions; (3) dynamic simulation modeling by connecting a distributed land use change model and a semi-distributed hydrological model can be a good decision support tool demanding reasonable amount of efforts and capable of long-term scenario-based assessments.

  17. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  18. Geological Carbon Sequestration Storage Resource Estimates for the Ordovician St. Peter Sandstone, Illinois and Michigan Basins, USA

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, David; Ellett, Kevin; Leetaru, Hannes

    2014-09-30

    The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of this report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a

  19. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  20. National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana

    International Nuclear Information System (INIS)

    Damp, J.N.; Jennings, M.D.

    1982-04-01

    The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated

  1. Correlation of basinal carbonate cycles to nearshore parasequences in the Late Cretaceous Greenhorn seaway, Western Interior U.S.A.

    Science.gov (United States)

    Elder, William P.; Gustason, Edmund R.; Sageman, Bradley B.

    1994-01-01

    Upper Cretaceous limestone-shale couplets developed within the late transgressive stage of the Greenhorn cyclothem may be correlated from carbonate-dominated (basinal) sequences in central Kansas and Colorado westward to clastic cycles in southern Utah. Six such basinal couplets have been traced to corresponding upward-coarsening progradational cycles developed on the western margin of the Western Interior basin. In the central basin in Colorado and Kansas, these sedimentary cycles are represented by limestone-shale and marlstone-shale couplets ∼0.5-1.0 m in thickness. More calcareous parts of these couplets may be correlated westward into condensed, fossiliferous concretion and shell beds in proximal offshore lithofacies of Arizona and Utah. These concretion and shell beds are physically traceable farther landward (westward) into bioturbated, fossil-rich, transgressive lag deposits that bound 10- to 20-m-thick coarsening-upward progradational strand-plain deposits (parasequences) in southwestern Utah. Thus, the progra-dational phase of parasequence deposition correlates with accumulation of clay-rich sediment in the central basin, and the transgressive phase is characterized by reduced terrigenous input and deposition of carbonate-rich sediment.We consider Milankovitch-style orbital forcing of climate and tectonically induced fluctuations in rates of foredeep basin subsidence as possible forcing mechanisms for these basinwide events. Based on the widespread distribution of the limestone-shale couplets, as well as on estimated sedimentation rates and geochronology, it has been widely speculated that these carbonate cycles reflect Milankovitch cycles with periodicities on the order of 20 k.y. to 100 k.y. If so, then stratigraphic data suggest that orbital forcing of climate affected eustasy and/or sediment input and biogenic production in the Western Interior basin. Alternatively, thrusting events in the Sevier orogenic belt may have produced episodic changes in

  2. U-Pb Dating of Calcite to Constrain Basinal Brine Flux Events: An Example from the Upper Midwest USA

    Science.gov (United States)

    Rasbury, T.; Luczaj, J.

    2017-12-01

    Calcite forms in a variety of settings and can be the product of surface to deep basinal fluids. As such, this mineral can uniquely record details of the fluids responsible for its formation. The forms of calcium carbonates and their stratigraphic relationships from the thin section to the regional scale give important insights on pulses of fluids. A fundamental question is the age of such fluid pulses. While calcite excludes uranium (U) from its crystal structure, some is incorporated and depending on the U/Pb ratio, this provides an opportunity for radiometric dating. Calcite crystals of various sizes and crystal habits are found in Paleozoic carbonate rocks throughout the region from the western Michigan basin to the upper Mississippi valley. These are typically associated with Mississippi Valley-type (MVT) mineralization, including galena, sphalerite, and iron sulfides, but typically post-date the main MVT event. We have analyzed a variety of these calcites and find multiple generations of calcite, separated by tens of millions of years. The initial Pb isotope ratios are similar to the isotope ratios of nearby galena, strongly suggesting a genetic relationship. Our oldest ages are 200 Ma, and we find ages ranging into the Cenozoic. Based on the Paleozoic-hosted galena Pb-isotope isoscapes from the region, the fluids may have been sourced from both the Michigan and Illinois basins. An important and unanswered question is what would cause significant fluid movement out of the basins substantially after Appalachian orogenesis. Noble gas data from brines in the Michigan Basin have a mantle component and have been suggested to be responsible for recognized elevated temperatures across the basin (Ma et al., 2009). Multiple thermal events during the Paleozoic and Mesozoic eras may have an internal heat source related to reactivation of faults of the Keweenawan Rift system below the Michigan Basin. Perhaps a mantle heat source from below episodically fluxes into the

  3. Characterization of Crushed Base Materials in Wyoming

    Science.gov (United States)

    2017-08-01

    To improve the pavement design and construction in Wyoming, the Wyoming Department of Transportation (WYDOT) is adopting the Mechanistic-Empirical Pavement Design Guide (MEPDG). A full implementation of MEPDG requires the characterization of local cr...

  4. A crocodylian trace from the Lance Formation (Upper Cretaceous) of Wyoming

    DEFF Research Database (Denmark)

    Falkingham, Peter L; Milàn, Jesper; Manning, Philip L

    2010-01-01

    A 1.5-m-long double sinusoidal trace from the Lance Formation of Wyoming, U.S.A, is attributed a crocodylian origin. The trace forms part of a diverse tracksite containing dinosaur and bird tracks. The double sinusoidal nature of the trace is suggested to have originated from the dual undulatory...

  5. 77 FR 43611 - Proposed Reinstatement of Terminated Oil and Gas Lease WYW156551, Wyoming

    Science.gov (United States)

    2012-07-25

    ... Bureau of Land Management Proposed Reinstatement of Terminated Oil and Gas Lease WYW156551, Wyoming... from EnCana Oil & Gas (USA) for competitive oil and gas lease WYW156551 for land in Natrona County... lease terminated under the law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L...

  6. Threats of habitat and water-quality degradation to mussel diversity in the Meramec River Basin, Missouri, USA

    Science.gov (United States)

    Hinck, Jo Ellen; Ingersoll, Christopher G.; Wang, Ning; Augspurger, Tom; Barnhart, M. Christopher; McMurray, Stephen E.; Roberts, Andrew D.; Schrader, Lynn

    2011-01-01

    The Meramec River Basin in east-central Missouri is an important stronghold for native freshwater mussels (Order: Unionoida) in the United States. Whereas the basin supports more than 40 mussel species, previous studies indicate that the abundance and distribution of most species are declining. Therefore, resource managers have identified the need to prioritize threats to native mussel populations in the basin and to design a mussel monitoring program. The objective of this study was to identify threats of habitat and water-quality degradation to mussel diversity in the basin. Affected habitat parameters considered as the main threats to mussel conservation included excess sedimentation, altered stream geomorphology and flow, effects on riparian vegetation and condition, impoundments, and invasive non-native species. Evaluating water-quality parameters for conserving mussels was a main focus of this study. Mussel toxicity data for chemical contaminants were compared to national water quality criteria (NWQC) and Missouri water quality standards (MWQS). However, NWQC and MWQS have not been developed for many chemical contaminants and some MWQS may not be protective of native mussel populations. Toxicity data indicated that mussels are sensitive to ammonia, copper, temperature, certain pesticides, pharmaceuticals, and personal care products; these compounds were identified as the priority water-quality parameters for mussel conservation in the basin. Measures to conserve mussel diversity in the basin include expanding the species and life stages of mussels and the list of chemical contaminants that have been assessed, establishing a long term mussel monitoring program that measures physical and chemical parameters of high priority, conducting landscape scale modeling to predict mussel distributions, determining sublethal effects of primary contaminants of concern, deriving risk-based guidance values for mussel conservation, and assessing the effects of wastewater

  7. Association of Enterobacter cloacae and other bacteria with onion bulb rot in the Columbia Basin of Washington and Oregon, USA

    Science.gov (United States)

    Approximately 1.6 million metric tons of onion bulbs are produced annually in the Pacific Northwest USA. Bulb decay can be a major problem and is caused by a variety of plant pathogens. Onion bulbs exhibiting symptoms of bacterial rot were sampled to determine the causal agents. Enterobacter cloacae...

  8. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K. [and others

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  9. Seasonal concentrations of organic contaminants at the fall line of the Susquehanna River basin and estimated fluxes to northern Chesapeake Bay, USA

    Science.gov (United States)

    Foster, G.D.; Lippa, K.A.; Miller, C.V.

    2000-01-01

    Riverine fluxes of several pesticides and other organic contaminants from above the fall line of the Susquehanna River basin to northern Chesapeake Bay, USA, were quantified in 1994. Base flow and storm flow samples collected at the fall line of the river from February to December 1994 were analyzed for both dissolved and particulate phase contaminants. Measured concentrations of the organonitrogen and organophosphorus pesticides varied mainly in response to the timing of their application to agricultural fields. Conversely, the concentrations of the more particle-sorptive contaminants such as polychlorinated biphenyls (PCBs), organochlorine (OC) insecticides, and polycyclic aromatic hydrocarbons (PAHs) were more directly correlated with river flow throughout the year. Annual fluxes were almost entirely in the dissolved phase for the organonitrogen and organophosphorus pesticides, distributed between the dissolved and particulate phases for the PCBs and OC insecticides, and primarily in the particulate phase for the PAHs.

  10. Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA

    Science.gov (United States)

    Crandall, Christy A.; Katz, Brian G.; Hirten, Joshua J.

    Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88m above mean sea level in April 1996 and discharge peaked at 360m3/s. During these high-flow conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and 222Rn; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, 222Rn, HCO3). Résumé Les aquifères karstiques sont particulièrement sensibles à l'infiltration rapide d'eau de rivières, spécialement pendant les périodes de hautes eaux. A la suite d'une période de pluies soutenues sur le bassin de la rivière Suwannee (Floride, États-Unis), le niveau de cette rivière est monté de 3,0 à 5,88m au-dessus du niveau

  11. A hybrid regional approach to model discharge at multiple sub-basins within the Calapooia Watershed, Oregon, USA

    Science.gov (United States)

    Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...

  12. Cold hardiness in Wyoming big sagebrush seedlings: implications for nursery production and outplanting

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis

    2012-01-01

    Throughout much of the interior western United States, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) is a keystone species, serving an important ecological role in sagebrush steppe and Great Basin sagebrush vegetation types (Lysne 2005, Lambrecht et al. 2007). Over the past century, these ecosystems have been degraded by fire, invasive species, and...

  13. Do container volume, site preparation, and field fertilization affect restoration potential of Wyoming big sagebrush?

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; Kent G. Apostol; Olga. A. Kildisheva; Amy L. Ross-Davis; Kas Dumroese

    2016-01-01

    Land management practices, invasive species expansion, and changes in the fire regime greatly impact the distribution of native plants in natural areas. Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis), a keystone species in the Great Basin, has seen a 50% reduction in its distribution. For many dryland species, reestablishment efforts have...

  14. Risk assessment of brine contamination to aquatic resources from energy development in glacial drift deposits: Williston Basin, USA.

    Science.gov (United States)

    Preston, Todd M; Chesley-Preston, Tara L

    2015-03-01

    Contamination to aquatic resources from co-produced water (brine) associated with energy development has been documented in the northeastern portion of the Williston Basin; an area mantled by glacial drift. The presence and magnitude of brine contamination can be determined using the contamination index (CI) value from water samples. Recently, the U.S. Geological Survey published a section (~2.59 km(2)) level risk assessment of brine contamination to aquatic resources for Sheridan County, Montana, using oilfield and hydrogeological parameters. Our goal was to improve the Sheridan County assessment (SCA) and evaluate the use of this new Williston Basin assessment (WBA) across 31 counties mantled by glacial drift in the Williston Basin. To determine if the WBA model improved the SCA model, results from both assessments were compared to CI values from 37 surface and groundwater samples collected to evaluate the SCA. The WBA (R(2)=0.65) outperformed the SCA (R(2)=0.52) indicating improved model performance. Applicability across the Williston Basin was evaluated by comparing WBA results to CI values from 123 surface water samples collected from 97 sections. Based on the WBA, the majority (83.5%) of sections lacked an oil well and had minimal risk. Sections with one or more oil wells comprised low (8.4%), moderate (6.5%), or high (1.7%) risk areas. The percentage of contaminated water samples, percentage of sections with at least one contaminated sample, and the average CI value of contaminated samples increased from low to high risk indicating applicability across the Williston Basin. Furthermore, the WBA performed better compared to only the contaminated samples (R(2)=0.62) versus all samples (R(2)=0.38). This demonstrates that the WBA was successful at identifying sections, but not individual aquatic resources, with an increased risk of contamination; therefore, WBA results can prioritize future sampling within areas of increased risk. Copyright © 2014 Elsevier B

  15. Structural equation model of total phosphorus loads in the Red River of the North Basin, USA and Canada

    Science.gov (United States)

    Ryberg, Karen R.

    2017-01-01

    Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.

  16. The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA

    Directory of Open Access Journals (Sweden)

    M. Zatko

    2016-11-01

    Full Text Available Reactive nitrogen (Nr  =  NO, NO2, HONO and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014, along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3− is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3− measurements range from −5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71  ×  107 molec cm−2 s−1 over the course of the field campaign, with a maximum noontime value of 3.1  ×  109 molec cm−2 s−1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than

  17. Changes in Streamflow and the Flux of Nutrients in the Mississippi-Atchafalaya River Basin, USA, 1980-2007

    Science.gov (United States)

    Battaglin, William A.; Aulenbach, Brent T.; Vecchia, Aldo; Buxton, Herbert T.

    2010-01-01

    Nutrients and freshwater delivered by the Mississippi and Atchafalaya Rivers drive algal production in the northern Gulf of Mexico, which eventually results in the widespread occurrence of hypoxic bottom waters along the Louisiana and Texas coast. Researchers have demonstrated a relation between the extent of the hypoxic zone and the magnitude of streamflow, nutrient fluxes, and nutrient concentrations in the Mississippi River, with springtime streamflows and fluxes being the most predictive. In 1999 the U.S. Geological Survey (USGS) estimated the flux of nitrogen, phosphorus, and silica at selected sites in the Mississippi Basin and to the Gulf of Mexico for 1980-1996. These flux estimates provided the baseline information used by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force to develop an Action Plan for reducing hypoxia in the northern Gulf of Mexico. The primary goal of the Action Plan was to achieve a reduction in the size (areal extent) of the hypoxic zone from an average of approximately 14,000 square kilometers in 1996-2000 to a 5-year moving average of less than 5,000 square kilometers by 2015. Improved statistical models and adjusted maximum likelihood estimation using USGS Load Estimator (LOADEST) software were used to estimate annual and seasonal nutrient fluxes for 1980-2007 at selected sites on the Mississippi River and its tributaries. These data provide a means to evaluate the influence of natural and anthropogenic effects on delivery of water and nutrients to the Gulf of Mexico; to define subbasins that are the most important contributors of nutrients to the gulf; and to investigate the relations among streamflow, nutrient fluxes, and the size and duration of the Gulf of Mexico hypoxic zone. A comparative analysis between the baseline period of 1980-1996 and 5-year moving averages thereafter indicate that the average annual streamflow and fluxes of total nitrogen, nitrate, orthophosphate, and silica to the Gulf of Mexico have

  18. Habitat and fish assemblage associations and current status of northern leatherside chub Lepidomeda copei in western Wyoming

    Science.gov (United States)

    Schultz, Luke; Cavalli, Pete; Sexauer, Hilda; Zafft, David

    2016-01-01

    Human activities have extensively altered native fish assemblages and their habitats in the western United States. Conservation and restoration for long-term persistence of these fishes requires knowledge of their distributional patterns and life history requirements. Northern leatherside chub Lepidomeda copei (hereafter northern leatherside) is a cyprinid native to the Snake and Bear River Basins of Wyoming, Idaho, Nevada, and Utah, and it is believed to have declined in distribution relative to historical records. To address information gaps in the species' ecology and assess its status in the state, the objectives of this study were first to document the distribution (2010–2011) of northern leatherside in Wyoming and then to examine habitat factors related to the entire fish assemblage and to evaluate specific habitat associations of northern leatherside in the Bear River Basin, Wyoming. In the Bear River and Upper Snake River Basins, we documented the distribution of northern leatherside and compared it to the previously known distribution. Across the Bear River Basin, we used habitat measurements to assess abiotic features related to the distribution and abundance of northern leatherside. Northern leatherside was found across the Bear River Basin and was present in 2 streams each in the Upper Snake River and Green River Basins in Wyoming. Populations in Wyoming appear to represent the core of northern leatherside range, and our work provided a finer-scale delineation of the species' occurrence. Northern leatherside was collected from a variety of habitats, but multivariate analyses and occurrence modeling indicated it was associated with increased channel depth and depth variability, and positively associated with other native fishes (including mountain sucker Catostomus platyrhynchus, redside shiner Richardsonius balteatus, and speckled dace Rhinichthys osculus). These findings on the distribution and ecology of northern leatherside provide

  19. Effects of thermal maturation and thermochemical sulfate reduction on compound-specific sulfur isotopic compositions of organosulfur compounds in Phosphoria oils from the Bighorn Basin, USA

    Science.gov (United States)

    Ellis, Geoffrey S.; Said-Ahamed, Ward; Lillis, Paul G.; Shawar, Lubna; Amrani, Alon

    2017-01-01

    Compound-specific sulfur isotope analysis was applied to a suite of 18 crude oils generated from the Permian Phosphoria Formation in the Bighorn Basin, western USA. These oils were generated at various levels of thermal maturity and some experienced thermochemical sulfate reduction (TSR). This is the first study to examine the effects of thermal maturation on stable sulfur isotopic compositions of individual organosulfur compounds (OSCs) in crude oil. A general trend of 34S enrichment in all of the studied compounds with increasing thermal maturity was observed, with the δ34S values of alkyl-benzothiophenes (BTs) tending to be enriched in 34S relative to those of the alkyl-dibenzothiophenes (DBTs) in lower-maturity oils. As thermal maturity increases, δ34S values of both BTs and DBTs become progressively heavier, but the difference in the average δ34S value of the BTs and DBTs (Δ34S BT-DBT) decreases. Differences in the isotopic response to thermal stress exhibited by these two compound classes are considered to be the result of relative differences in their thermal stabilities. TSR-altered Bighorn Basin oils have OSCs that are generally enriched in 34S relative to non-TSR-altered oils, with the BTs being enriched in 34S relative to the DBTs, similar to the findings of previous studies. However, several oils that were previously interpreted to have been exposed to minor TSR have Δ34S BT-DBT values that do not support this interpretation. The δ34S values of the BTs and DBTs in some of these oils suggest that they did not experience TSR, but were derived from a more thermally mature source. The heaviest δ34S values observed in the OSCs are enriched in 34S by up to 10‰ relative to that of Permian anhydrite in the Bighorn Basin, suggesting that there may be an alternate or additional source of sulfate in some parts of the basin. These results indicate that the sulfur isotopic composition of OSCs in oil provides a sensitive indicator for the extent of TSR

  20. Change in the forested and developed landscape of the Lake Tahoe basin, California and Nevada, USA, 1940-2002

    Science.gov (United States)

    Raumann, C.G.; Cablk, Mary E.

    2008-01-01

    The current ecological state of the Lake Tahoe basin has been shaped by significant landscape-altering human activity and management practices since the mid-1850s; first through widespread timber harvesting from the 1850s to 1920s followed by urban development from the 1950s to the present. Consequences of landscape change, both from development and forest management practices including fire suppression, have prompted rising levels of concern for the ecological integrity of the region. The impacts from these activities include decreased water quality, degraded biotic communities, and increased fire hazard. To establish an understanding of the Lake Tahoe basin's landscape change in the context of forest management and development we mapped, quantified, and described the spatial and temporal distribution and variability of historical changes in land use and land cover in the southern Lake Tahoe basin (279 km2) from 1940 to 2002. Our assessment relied on post-classification change detection of multi-temporal land-use/cover and impervious-surface-area data that were derived through manual interpretation, image processing, and GIS data integration for four dates of imagery: 1940, 1969, 1987, and 2002. The most significant land conversion during the 62-year study period was an increase in developed lands with a corresponding decrease in forests, wetlands, and shrublands. Forest stand densities increased throughout the 62-year study period, and modern thinning efforts resulted in localized stand density decreases in the latter part of the study period. Additionally forests were gained from succession, and towards the end of the study period extensive tree mortality occurred. The highest rates of change occurred between 1940 and 1969, corresponding with dramatic development, then rates declined through 2002 for all observed landscape changes except forest density decrease and tree mortality. Causes of landscape change included regional population growth, tourism demands

  1. Peace on the River? Social-Ecological Restoration and Large Dam Removal in the Klamath Basin, USA

    Directory of Open Access Journals (Sweden)

    Hannah Gosnell

    2010-06-01

    Full Text Available This paper aims to explain the multiple factors that contributed to a 2010 agreement to remove four large dams along the Klamath river in California and Oregon and initiate a comprehensive social-ecological restoration effort that will benefit Indian tribes, the endangered fish on which they depend, irrigated agriculture, and local economies in the river basin. We suggest that the legal framework, including the tribal trust responsibility, the Endangered Species Act, and the Federal Power Act, combined with an innovative approach to negotiation that allowed for collaboration and compromise, created a space for divergent interests to come together and forge a legally and politically viable solution to a suite of social and environmental problems. Improved social relations between formerly antagonistic Indian tribes and non-tribal farmers and ranchers, which came about due to a number of local collaborative processes during the early 2000s, were critical to the success of this effort. Overall, we suggest that recent events in the Klamath basin are indicative of a significant power shift taking place between tribal and non-tribal interests as tribes gain access to decision-making processes regarding tribal trust resources and develop capacity to participate in the development of complex restoration strategies.

  2. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    Science.gov (United States)

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  3. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Banking Wyoming big sagebrush seeds

    Science.gov (United States)

    Robert P. Karrfalt; Nancy Shaw

    2013-01-01

    Five commercially produced seed lots of Wyoming big sagebrush (Artemisia tridentata Nutt. var. wyomingensis (Beetle & Young) S.L. Welsh [Asteraceae]) were stored under various conditions for 5 y. Purity, moisture content as measured by equilibrium relative humidity, and storage temperature were all important factors to successful seed storage. Our results indicate...

  5. Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona, USA

    Science.gov (United States)

    Cunningham, Erin E. B.; Long, Austin; Eastoe, Chris; Bassett, R. L.

    Aquifers in the arid alluvial basins of the southwestern U.S. are recharged predominantly by infiltration from streams and playas within the basins and by water entering along the margins of the basins. The Tucson basin of southeastern Arizona is such a basin. The Santa Catalina Mountains form the northern boundary of this basin and receive more than twice as much precipitation (ca. 700mm/year) as does the basin itself (ca. 300mm/year). In this study environmental isotopes were employed to investigate the migration of precipitation basinward through shallow joints and fractures. Water samples were obtained from springs and runoff in the Santa Catalina Mountains and from wells in the foothills of the Santa Catalina Mountains. Stable isotopes (δD and δ18O) and thermonuclear-bomb-produced tritium enabled qualitative characterization of flow paths and flow velocities. Stable-isotope measurements show no direct altitude effect. Tritium values indicate that although a few springs and wells discharge pre-bomb water, most springs discharge waters from the 1960s or later. Résumé La recharge des aquifères des bassins alluviaux arides du sud-ouest des États-Unis est assurée surtout à partir des lits des cours d'eau et des playas dans les bassins, ainsi que par l'eau entrant à la bordure de ces bassins. Le bassin du Tucson, dans le sud-est de l'Arizona, est l'un de ceux-ci. La chaîne montagneuse de Santa Catalina constitue la limite nord de ce bassin et reçoit plus de deux fois plus de précipitations (environ 700mm/an) que le bassin (environ 300mm/an). Dans cette étude, les isotopes du milieu ont été utilisés pour analyser le déplacement de l'eau de pluie vers le bassin au travers des fissures et des fractures proches de la surface. Des échantillons d'eau ont été prélevés dans les sources et dans l'écoulement de surface de la chaîne montagneuse et dans des puits au pied de la chaîne. Les isotopes stables (δD et δ18O) et le tritium d

  6. Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Engelm.) across fine spatial scales of the Lake Tahoe Basin, USA.

    Science.gov (United States)

    Lind, Brandon M; Friedline, Christopher J; Wegrzyn, Jill L; Maloney, Patricia E; Vogler, Detlev R; Neale, David B; Eckert, Andrew J

    2017-06-01

    Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (n = 116 231 SNPs) to describe signatures of fine-scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (F ST  = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine-scale adaptation. © 2017 John Wiley & Sons Ltd.

  7. Sediment Sources, Depositional Environment, and Diagenetic Alteration of the Marcellus Shale, Appalachian Basin, USA: Nd, Sr, Li and U Isotopic Constraints

    Science.gov (United States)

    Phan, T. T.; Capo, R. C.; Gardiner, J. B.; Stewart, B. W.

    2017-12-01

    The organic-rich Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, is a major target of natural gas exploration. Constraints on local and regional sediment sources, depositional environments, and post-depositional processes are essential for understanding the evolution of the basin. In this study, multiple proxies, including trace metals, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U and Li isotopes were applied to bulk rocks and authigenic fractions of the Marcellus Shale and adjacent limestone/sandstone units from two locations separated by 400 km. The range of ɛNd values (-7.8 to -6.4 at 390 Ma) is consistent with a clastic sedimentary component derived from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt. The Sm-Nd isotope system and bulk REE distributions appear to have been minimally affected by post-depositional processes, while the Rb-Sr isotope system shows evidence of limited post-depositional redistribution. While REE are primarily associated with silicate minerals (80-95%), REE patterns of sequentially extracted fractions reflect post-depositional alteration at the intergranular scale. Although the chemical index of alteration (CIA = 54 to 60) suggests the sediment source was not heavily weathered, Li isotope data are consistent with progressively increasing weathering of the source region during Marcellus Shale deposition. δ238U values in bulk shale and reduced phases (oxidizable fraction) are higher than those of modern seawater and upper crust. The isotopically heavy U accumulated in these authigenic phases can be explained by the precipitation of insoluble U in anoxic/euxinic bottom water. Unlike carbonate cement within the shale, the similarity between δ238U values and REE patterns of the limestone units and those of modern seawater indicates that the limestone formed under open ocean (oxic) conditions.

  8. Black shale source rocks and oil generation in the Cambrian and Ordovician of the central Appalachian Basin, USA

    Science.gov (United States)

    Ryder, R.T.; Burruss, R.C.; Hatch, J.R.

    1998-01-01

    Nearly 600 million bbl of oil (MMBO) and 1 to 1.5 trillion ft3 (tcf) of gas have been produced from Cambrian and Ordovician reservoirs (carbonate and sandstone) in the Ohio part of the Appalachian basin and on adjoining arches in Ohio, Indiana, and Ontario, Canada. Most of the oil and gas is concentrated in the giant Lima-Indiana field on the Findlay and Kankakee arches and in small fields distributed along the Knox unconformity. Based on new geochemical analyses of oils, potential source rocks, bitumen extracts, and previously published geochemical data, we conclude that the oils in both groups of fields originated from Middle and Upper Ordovician blcak shale (Utica and Antes shales) in the Appalachian basin. Moroever, we suggest that approximately 300 MMBO and many trillions of cubic feet of gas in the Lower Silurian Clinton sands of eastern Ohio originated in the same source rocks. Oils from the Cambrian and Ordovician reservoirs have similar saturated hydrocarbon compositions, biomarker distributions, and carbon isotope signatures. Regional variations in the oils are attributed to differences in thermal maturation rather than to differences in source. Total organic carbon content, genetic potential, regional extent, and bitument extract geochemistry identify the balck shale of the Utica and Antes shales as the most plausible source of the oils. Other Cambrian and Ordovician shale and carbonate units, such as the Wells Creek formation, which rests on the Knox unconformity, and the Rome Formation and Conasauga Group in the Rome trough, are considered to be only local petroleum sources. Tmax, CAI, and pyrolysis yields from drill-hole cuttings and core indicate that the Utica Shale in eastern and central Ohio is mature with respect to oil generation. Burial, thermal, and hydrocarbon-generation history models suggest that much of the oil was generated from the Utica-Antes source in the late Paleozoic during the Alleghanian orogeny. A pervasive fracture network

  9. Stable C, O and clumped isotope systematics and 14C geochronology of carbonates from the Quaternary Chewaucan closed-basin lake system, Great Basin, USA: Implications for paleoenvironmental reconstructions using carbonates

    Science.gov (United States)

    Hudson, Adam M.; Quade, Jay; Ali, Guleed; Boyle, Douglas; Bassett, Scott; Huntington, Katharine W.; De los Santos, Marie G.; Cohen, Andrew S.; Lin, Ke; Wang, Xiangfeng

    2017-09-01

    Isotopic compositions of lacustrine carbonates are commonly used for dating and paleoenvironmental reconstructions. Here we use carbonate δ13C and δ18O, clumped (Δ47), and 14C compositions to better understand the carbonate isotope system in closed-basin lakes and trace the paleohydrologic and temperature evolution in the Chewaucan closed-basin lake system, northern Great Basin, USA, over the Last Glacial/Holocene transition. We focus on shorezone tufas to establish that they form in isotopic equilibrium with lake water and DIC, they can be dated reliably using 14C, and their clumped isotope composition can be used to reconstruct past lake temperature. Calculations of the DIC budget and reservoir age for the lake indicate residence time is short, and dominated by exchange with atmospheric CO2 at all past lake levels. Modern lake DIC and shorezone tufas yield δ13C and 14C values consistent with isotopic equilibrium with recent fossil fuel and bomb-influenced atmospheric CO2, supporting these calculations. δ13C values of fossil tufas are also consistent with isotopic equilibrium with pre-industrial atmospheric CO2 at all shoreline elevations. This indicates that the 14C reservoir effect for this material is negligible. Clumped isotope (Δ47) results indicate shorezone tufas record mean annual lake temperature. Modern (average 13 ± 2 °C) and 18 ka BP-age tufas (average 6 ± 2 °C) have significantly different temperatures consistent with mean annual temperature lowering of 7 ± 3 °C (1 SE) under full glacial conditions. For shorezone tufas and other lake carbonates, including spring mounds, mollusk shells, and ostracod tests, overall δ13C and δ18O values co-vary according to the relative contribution of spring and lacustrine end member DIC and water compositions in the drainage system, but specific isotope values depend strongly upon sample context and are not well correlated with past lake depth. This contrasts with the interpretation that carbonate

  10. Paleoclimate controls on late paleozoic sedimentation and peat formation in the central appalachian basin (U.S.A.)

    Science.gov (United States)

    Cecil, C.B.; Stanton, R.W.; Neuzil, S.G.; Dulong, F.T.; Ruppert, L.F.; Pierce, B.S.

    1985-01-01

    In the central Appalachian basin, at least two major climate changes affected sedimentation during the late Paleozoic. Stratigraphically, these two changes are indicated by the distribution of coal beds, the variation in coal quality, and the variation in rock lithologies. In latest Mississippian or earliest Pennsylvanian time, the climate changed from dry-seasonal tropical to ever-wet (equable) tropical. The equable climate prevailed into the Middle Pennsylvanian, influencing the morphology and geochemistry in peat-forming environments. Many of the peat deposits, which formed under the equable climate, were probably domed (raised bogs); low concentrations of dissolved solids in peat formation water resulted in low buffering capacity. Organic acids caused acidic (pH of mineral matter, minimal degradation of organic matter, and low-ash and low-sulfur peat deposits; the resulting coal beds are also low in ash and sulfur. Associated rocks are noncalcareous and consist of sequences of interbedded shale, siltstone, and sandstone including quartz arenite. Another climate change occurred in late Middle Pennsylvanian time when evapopation periodically exceeded rainfall resulting in an increase of both dissolved solids and pH (4 to ??? 7) in surface and near-surface water. Throughout the remainder of the Pennsylvanian, the surfaces of peat deposits were probably planar (not domed); water in peat-forming and other depositional environments became more nearly neutral. The coal beds derived from these peats are highly variable in both ash and sulfur contents. Drier or more seasonal climates are also indicated by sequences of (1) calcareous sandstone and shale, (2) nonmarine limestone that shows shallow-water and subaerial exposure features, and (3) calcareous paleosols that have caliche characteristics. Our data and observations indicate that physical depositional environment models for the origin of coal do not adequately explain variations in mineral matter content and

  11. Ecological Drought: Accounting for the Non-Human Impacts of Water Shortage in the Upper Missouri Headwaters Basin, Montana, USA

    Directory of Open Access Journals (Sweden)

    Jamie McEvoy

    2018-02-01

    Full Text Available Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM Watershed Assessments or United States Forest Service (USFS Forest Plans identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape.

  12. Ecological drought: Accounting for the non-human impacts of water shortage in the Upper Missouri Headwaters Basin, Montana, USA

    Science.gov (United States)

    McEvoy, Jamie; Bathke, Deborah J.; Burkardt, Nina; Cravens, Amanda; Haigh, Tonya; Hall, Kimberly R.; Hayes, Michael J.; Jedd, Theresa; Podebradska, Marketa; Wickham, Elliot

    2018-01-01

    Water laws and drought plans are used to prioritize and allocate scarce water resources. Both have historically been human-centric, failing to account for non-human water needs. In this paper, we examine the development of instream flow legislation and the evolution of drought planning to highlight the growing concern for the non-human impacts of water scarcity. Utilizing a new framework for ecological drought, we analyzed five watershed-scale drought plans in southwestern Montana, USA to understand if, and how, the ecological impacts of drought are currently being assessed. We found that while these plans do account for some ecological impacts, it is primarily through the narrow lens of impacts to fish as measured by water temperature and streamflow. The latter is typically based on the same ecological principles used to determine instream flow requirements. We also found that other resource plans in the same watersheds (e.g., Watershed Restoration Plans, Bureau of Land Management (BLM) Watershed Assessments or United States Forest Service (USFS) Forest Plans) identify a broader range of ecological drought risks. Given limited resources and the potential for mutual benefits and synergies, we suggest greater integration between various planning processes could result in a more holistic consideration of water needs and uses across the landscape.

  13. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  14. Summer Watering Patterns of Mule Deer in the Great Basin Desert, USA: Implications of Differential Use by Individuals and the Sexes for Management of Water Resources

    Directory of Open Access Journals (Sweden)

    Andrew V. Shields

    2012-01-01

    Full Text Available Changes in the abundance and distribution of free water can negatively influence wildlife in arid regions. Free water is considered a limiting factor for mule deer (Odocoileus hemionus in the Great Basin Desert. Consequently, a better understanding of differential use of water by individuals and the sexes could influence the conservation and management of mule deer and water resources in their habitats. We deployed remote cameras at all known water sources (13 wildlife water developments and 4 springs on one mountain range in western Utah, USA, during summer from 2007 to 2011 to document frequency and timing of water use, number of water sources used by males and females, and to estimate population size from individually identified mule deer. Male and female mule deer used different water sources but visited that resource at similar frequencies. Individual mule deer used few water sources and exhibited high fidelity to that resource. Wildlife water developments were frequently used by both sexes. Our results highlight the differing use of water sources by sexes and individual mule deer. This information will help guide managers when siting and reprovisioning wildlife water developments meant to benefit mule deer and will contribute to the conservation and management of this species.

  15. Meteorite search in the deflation basins in Lea County, New Mexico and Winkler County, Texas, USA: Discovery of Lea County 003 (H4)

    Energy Technology Data Exchange (ETDEWEB)

    Mikouchi, T; Buchanan, P C; Zolensky, M E; Welten, K C; Hutchison, R; Hutchison, M

    2000-01-14

    During the past few decades great numbers of meteorites have been recovered from the ice accumulation zones of Antarctica and from the vast Sahara. Although these two great deserts are the two most productive areas, the Southern High Plains in USA (New Mexico and Texas) and Nullarbor Plain, Western Australia have great potential for meteorite recovery. The number of meteorite finds from Roosevelt County, New Mexico alone exceeds 100 in only approximately 11 km{sup 2} area. Most meteorites from this area have been found on the floors of active deflation basins (blowouts) that have been excavated from a mantle of sand dunes. This area has no apparent fluvial or permafrost activity within the last 50,000 years, suggesting that only prevailing winds and natural aridity aid in the concentration and preservation of meteorites. The authors investigated these deflation surfaces in Lea County (the SE corner of New Mexico) and neighboring Winkler County, Texas following a prior search in this area which found two chondrites. They found a tiny H4 chondrite in this search and here they report its mineralogy and petrology along with preliminary data on its exposure history.

  16. Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.

    2013-01-01

    This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.

  17. Multireaction equilibrium geothermometry: A sensitivity analysis using data from the Lower Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    King, Jonathan M.; Hurwitz, Shaul; Lowenstern, Jacob B.; Nordstrom, D. Kirk; McCleskey, R. Blaine

    2016-01-01

    A multireaction chemical equilibria geothermometry (MEG) model applicable to high-temperature geothermal systems has been developed over the past three decades. Given sufficient data, this model provides more constraint on calculated reservoir temperatures than classical chemical geothermometers that are based on either the concentration of silica (SiO2), or the ratios of cation concentrations. A set of 23 chemical analyses from Ojo Caliente Spring and 22 analyses from other thermal features in the Lower Geyser Basin of Yellowstone National Park are used to examine the sensitivity of calculated reservoir temperatures using the GeoT MEG code (Spycher et al. 2013, 2014) to quantify the effects of solute concentrations, degassing, and mineral assemblages on calculated reservoir temperatures. Results of our analysis demonstrate that the MEG model can resolve reservoir temperatures within approximately ±15°C, and that natural variation in fluid compositions represents a greater source of variance in calculated reservoir temperatures than variations caused by analytical uncertainty (assuming ~5% for major elements). The analysis also suggests that MEG calculations are particularly sensitive to variations in silica concentration, the concentrations of the redox species Fe(II) and H2S, and that the parameters defining steam separation and CO2 degassing from the liquid may be adequately determined by numerical optimization. Results from this study can provide guidance for future applications of MEG models, and thus provide more reliable information on geothermal energy resources during exploration.

  18. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Final technical report, September 15, 1993--October 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, T.L.

    1996-10-01

    This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.

  19. Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, western interior Basin, USA

    Science.gov (United States)

    Meyers, S.R.; Siewert, S.E.; Singer, B.S.; Sageman, B.B.; Condon, D.J.; Obradovich, J.D.; Jicha, B.R.; Sawyer, D.A.

    2012-01-01

    We develop an intercalibrated astrochronologic and radioisotopic time scale for the Cenomanian-Turonian boundary (CTB) interval near the Global Stratotype Section and Point in Colorado, USA, where orbitally influenced rhythmic strata host bentonites that contain sanidine and zircon suitable for 40Ar/ 39Ar and U-Pb dating. Paired 40Ar/ 39Ar and U-Pb ages are determined from four bentonites that span the Vascoceras diartianum to Pseudaspidoceras flexuosum ammonite biozones, utilizing both newly collected material and legacy sanidine samples of J. Obradovich. Comparison of the 40Ar/ 39Ar and U-Pb results underscores the strengths and limitations of each system, and supports an astronomically calibrated Fish Canyon sanidine standard age of 28.201 Ma. The radioisotopic data and published astrochronology are employed to develop a new CTB time scale, using two statistical approaches: (1) a simple integration that yields a CTB age of 93.89 ?? 0.14 Ma (2??; total radioisotopic uncertainty), and (2) a Bayesian intercalibration that explicitly accounts for orbital time scale uncertainty, and yields a CTB age of 93.90 ?? 0.15 Ma (95% credible interval; total radioisotopic and orbital time scale uncertainty). Both approaches firmly anchor the floating orbital time scale, and the Bayesian technique yields astronomically recalibrated radioisotopic ages for individual bentonites, with analytical uncertainties at the permil level of resolution, and total uncertainties below 2???. Using our new results, the duration between the Cenomanian-Turonian and the Cretaceous-Paleogene boundaries is 27.94 ?? 0.16 Ma, with an uncertainty of less than one-half of a long eccentricity cycle. ?? 2012 Geological Society of America.

  20. Wyoming DOE EPSCoR

    Energy Technology Data Exchange (ETDEWEB)

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  1. A comparative study of historical droughts over Texas, USA and Murray-Darling Basin, Australia: Factors influencing initialization and cessation

    Science.gov (United States)

    Verdon-Kidd, Danielle C.; Scanlon, Bridget R.; Ren, Tong; Fernando, D. Nelun

    2017-02-01

    Water availability and food security are tightly coupled on a global scale. The occurrence of drought puts this balance at risk due to reductions in dryland farming production and water allocations to irrigated agriculture. Improved understanding of drought initiation and cessation would therefore be beneficial for drought planning and management. The study objective was to determine factors affecting drought initiation and cessation over the past century in two climatologically similar regions that represent net agricultural exporters; south central U.S. (Texas) and southeast Australia (Murray Darling Basin, MDB). Drought indices included the Standardized Precipitation Index (SPI, 1900-2014) for meteorological drought, the Normalized Difference Vegetation Index (NDVI, 1981-2014) for agricultural drought, and the Streamflow Drought Index (SDI, 1930-2014) for hydrological drought. Results show that meteorological drought tends to develop gradually over a period of up to six months, with agricultural drought developing shortly thereafter (within one month) in both regions. Evidence of hydrological drought was observed within one month (Texas) and within four months (MDB) on average after meteorological drought was established. Further, droughts appear to cease more quickly than they initiate over Texas, whereas rates of drought initiation and cessation are similar over the MDB. Drought breaking rainfall in Texas is generally a result of a southward shift in the Polar Jet Stream or a low-pressure trough over central North America, whereas drought cessation in the MDB is typically associated with a monsoon trough or low-pressure system in the Tasman Sea/Great Australian Bight. Improved knowledge of the climate mechanisms controlling the onset and termination of drought periods should enhance drought forecasts and improve drought management practices, particularly in regions where water security is a primary objective.

  2. Drivers and Effects of Groundwater-Surface Water Interaction in the Karstic Lower Flint River Basin, Southwestern Georgia, USA

    Science.gov (United States)

    Rugel, K.; Golladay, S. W.; Jackson, C. R.; Rasmussen, T. C.; Dowd, J. F.; Mcdowell, R. J.

    2017-12-01

    Groundwater provides the majority of global water resources for domestic and agricultural usage while contributing vital surface water baseflows which support healthy aquatic ecosystems. Understanding the extent and magnitude of hydrologic connectivity between groundwater and surface water components in karst watersheds is essential to the prudent management of these hydraulically-interactive systems. We examined groundwater and surface water connectivity between the Upper Floridan Aquifer (UFA) and streams in the Lower Flint River Basin (LFRB) in southwestern Georgia where development of agricultural irrigation intensified over the past 30 years. An analysis of USGS streamflow data for the pre- and post-irrigation period showed summer baseflows in some Lower Flint River tributaries were reduced by an order of magnitude in the post-irrigation period, reiterating the strong hydraulic connection between these streams and the underlying aquifer. Large and fine-scale monitoring of calcium, nitrate, specific conductance and stable isotopes (δ18O and δD) on 50 km of Ichawaynochaway Creek, a major tributary of the Lower Flint, detected discrete groundwater-surface water flow paths which accounted for 42% of total groundwater contributions in the 50 km study reach. This presentation will highlight a new analysis using the metadata EPA Reach File (1) and comparing stream reach and instream bedrock joint azimuths with stream geochemical results from previous field study. Our findings suggested that reaches with NNW bearing may be more likely to display enhanced groundwater-surface water connectivity. Our results show that local heterogeneity can significantly affect water budgets and quality within these watersheds, making the use of geomorphological stream attributes a valuable tool to water resource management for the prediction and protection of vulnerable regions of hydrologic connectivity in karst catchments.

  3. Paleoshoreline patterns in the transgressive-regressive sequences of Pennsylvanian rocks in the northern Appalachian Basin, U.S.A.

    Science.gov (United States)

    Carlson, Ernest H.

    1994-11-01

    Sheets of sponge spicule flint of Pennsylvanian age (Bashkirian, Moscovian, Kasimovian) that are present in the northern Appalachian Basin of Ohio and adjacent parts of Kentucky, Pennsylvania and West Virginia, are important indicators of paleoshorelines. This flint typically occurs with or occupies the position normally held by shallow-water limestone and contains a normal marine fauna. The flint was deposited above coal or underclay, representing the detritus-starved marine portion of a transgressive-regressive sequence and marking the eastern limit of transgression across a westward-spreading alluvial plain. Flint occurs at several stratigraphic positions in the upper Pottsville-lower Conemaugh interval. The most important are: Boggs, Upper Mercer and Kanawha flints of the upper Pottsville Group; Kilgore-Flint Ridge, Zaleski and Vanport flints of the lower Allegheny Group; and Brush Creek flint of the lower Conemaugh Group. Lithofacies maps of these beds were constructed to show the distribution of the flint. Limestone-hosted flint occurs in long discontinuous chains of sheetlike bodies, whereas shale-hosted flint occurs in single sheets with restricted geographic distribution. Chains of limestone-hosted flint attain maximum dimensions of a few meters in thickness, a few kilometers in width and several hundreds of kilometers in length. The Upper Mercer, Vanport and Brush Creek flints are particularly extensive, forming arcuate shoreline patterns that parallel the fronts of large delta systems. Beds of clay ironstone and/or coal above flint indicate that the lagoonal environment in which flint was deposited was followed closely by a change to stagnant waters. Cementation of flint with silica likely occurred under the lower pH conditions existing at that time and when depths of burial were shallow.

  4. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    Science.gov (United States)

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  5. Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model

    Science.gov (United States)

    Sanford, Ward E.; Plummer, L. Niel; McAda, Douglas P.; Bexfield, Laura M.; Anderholm, Scott K.

    The calibration of a groundwater model with the aid of hydrochemical data has demonstrated that low recharge rates in the Middle Rio Grande Basin may be responsible for a groundwater trough in the center of the basin and for a substantial amount of Rio Grande water in the regional flow system. Earlier models of the basin had difficulty reproducing these features without any hydrochemical data to constrain the rates and distribution of recharge. The objective of this study was to use the large quantity of available hydrochemical data to help calibrate the model parameters, including the recharge rates. The model was constructed using the US Geological Survey's software MODFLOW, MODPATH, and UCODE, and calibrated using 14C activities and the positions of certain flow zones defined by the hydrochemical data. Parameter estimation was performed using a combination of nonlinear regression techniques and a manual search for the minimum difference between field and simulated observations. The calibrated recharge values were substantially smaller than those used in previous models. Results from a 30,000-year transient simulation suggest that recharge was at a maximum about 20,000 years ago and at a minimum about 10,000 years ago. Le calibrage d'un modèle hydrogéologique avec l'aide de données hydrochimiques a démontré que la recharge relativement faible dans le Grand Bassin du Middle Rio est vraisemblablement responsable d'une dépression des eaux souterraines dans le centre du bassin et de la présence d'une quantité substantielle d'eau du Rio Grande dans l'aquifère du Groupe de Santa Fe. Les modèles antérieurs avaient des difficultés à reproduire ses conclusions sans l'aide de données hydrochimiques pour contraindre les taux et la distribution de la recharge. L'objectif de cette étude était d'utiliser une grande quantité de données hydrochimiques permettant de calibrer les paramètres du modèle, et notamment les taux de recharge. Le modèle a

  6. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Science.gov (United States)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  7. Palynology, petrography and geochemistry of the Sewickley coal bed (Monongahela Group, Late Pennsylvanian), Northern Appalachian Basin, USA

    Science.gov (United States)

    Eble, C.F.; Pierce, B.S.; Grady, W.C.

    2003-01-01

    Forty-two bench samples of the Sewickley coal bed were collected from seven localities in the northern Appalachian Basin and analyzed palynologically, petrographically, and geochemically. The Sewickley coal bed occurs in the middle of the Pittsburgh Formation (Monongahela Group) and is of Late Pennsylvanian age. Palynologically, it is dominated by spores of tree ferns. Tree fern spore taxa in the Sewickley include Punctatisporites minutus, Punctatosporites minutus, Laevigatosporites minimus, Spinosporites exiguus, Apiculatasporites saetiger, and Thymospora spp. In fact, Punctatisporites minutus was so abundant that it had to be removed from the standard counts and recorded separately (average 73.2%). Even when Punctatisporites minutus is removed from the counts, tree fern spores still dominate a majority of the assemblages, averaging 64.4%. Among the tree fern spores identified in the Sewickley coal, Thymospora exhibits temporal and spatial abundance variation. Thymospora usually increases in abundance from the base to the top of the bed. Thymospora is also more abundant in columns that are thick (>100 cm) and low in ash yield (< 12.0%, dry basis). Calamite spores (e.g. Calamospora spp., Laevigatosporites minor, and L. vulgaris) are the next most abundant plant group represented in the Sewickley coal, averaging 20%. Contributions from all other plant groups are minor in comparison. Petrographically, the Sewickley coal contains high percentages of vitrinite (average 82.3%, mineral matter-free (mmf)), with structured forms being more common than unstructured forms. In contrast, liptinite and inertinite macerals both occur in low percentages (average 7.7% and 10.0%, respectively). Geochemically, the Sewickley coal has a moderate ash yield (average 12.4%) and high total sulfur content (average 3.4%). Four localities contained a high ash or carbonaceous shale bench. These benches, which may be coeval, are strongly dominated by tree fern spores. Unlike the lower ash

  8. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  9. Characterization of mean transit time at large springs in the Upper Colorado River Basin, USA: A tool for assessing groundwater discharge vulnerability

    Science.gov (United States)

    Solder, John; Stolp, Bernard J.; Heilweil, Victor M.; Susong, David D.

    2016-01-01

    Environmental tracers (noble gases, tritium, industrial gases, stable isotopes, and radio-carbon) and hydrogeology were interpreted to determine groundwater transit-time distribution and calculate mean transit time (MTT) with lumped parameter modeling at 19 large springs distributed throughout the Upper Colorado River Basin (UCRB), USA. The predictive value of the MTT to evaluate the pattern and timing of groundwater response to hydraulic stress (i.e., vulnerability) is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the springs range from 10 to 15,000 years and 90 % of the cumulative discharge-weighted travel-time distribution falls within the range of 2−10,000 years. Historical variability in discharge was assessed as the ratio of 10–90 % flow-exceedance (R 10/90%) and ranged from 2.8 to 1.1 for select springs with available discharge data. The lag-time (i.e., delay in discharge response to drought conditions) was determined by cross-correlation analysis and ranged from 0.5 to 6 years for the same select springs. Springs with shorter MTTs (<80 years) statistically correlate with larger discharge variations and faster responses to drought, indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Results indicate that groundwater discharge to streams in the UCRB will likely respond on the order of years to climate variation and increasing groundwater withdrawals.

  10. Cluster analyses of 20th century growth patterns in high elevation Great Basin bristlecone pine in the Snake Mountain Range, Nevada, USA

    Science.gov (United States)

    Tran, T. J.; Bruening, J. M.; Bunn, A. G.; Salzer, M. W.; Weiss, S. B.

    2015-12-01

    Great Basin bristlecone pine (Pinus longaeva) is a useful climate proxy because of the species' long lifespan (up to 5000 years) and the climatic sensitivity of its annually-resolved rings. Past studies have shown that growth of individual trees can be limited by temperature, soil moisture, or a combination of the two depending on biophysical setting at the scale of tens of meters. We extend recent research suggesting that trees vary in their growth response depending on their position on the landscape to analyze how growth patterns vary over time. We used hierarchical cluster analysis to examine the growth of 52 bristlecone pine trees near the treeline of Mount Washington, Nevada, USA. We classified growth of individual trees over the instrumental climate record into one of two possible scenarios: trees belonging to a temperature-sensitive cluster and trees belonging to a precipitation-sensitive cluster. The number of trees in the precipitation-sensitive cluster outnumbered the number of trees in the temperature-sensitive cluster, with trees in colder locations belonging to the temperature-sensitive cluster. When we separated the temporal range into two sections (1895-1949 and 1950-2002) spanning the length of the instrumental climate record, we found that most of the 52 trees remained loyal to their cluster membership (e.g., trees in the temperature-sensitive cluster in 1895-1949 were also in the temperature sensitive cluster in 1950-2002), though not without exception. Of those trees that do not remain consistent in cluster membership, the majority changed from temperature-sensitive to precipitation-sensitive as time progressed. This could signal a switch from temperature limitation to water limitation with warming climate. We speculate that topographic complexity in high mountain environments like Mount Washington might allow for climate refugia where growth response could remain constant over the Holocene.

  11. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    Science.gov (United States)

    Siade, Adam; Nishikawa, Tracy; Martin, Peter

    2015-09-01

    Groundwater has provided 50-90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court's decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  12. Prior knowledge-based approach for associating contaminants with biological effects: A case study in the St. Croix River basin, MN, WI, USA

    Science.gov (United States)

    Schroeder, Anthony L.; Martinovic-Weigelt, Dalma; Ankley, Gerald T.; Lee, Kathy E.; Garcia-Reyero, Natalia; Perkins, Edward J.; Schoenfuss, Heiko L.; Villeneuve, Daniel L.

    2017-01-01

    Evaluating potential adverse effects of complex chemical mixtures in the environment is challenging. One way to address that challenge is through more integrated analysis of chemical monitoring and biological effects data. In the present study, water samples from five locations near two municipal wastewater treatment plants in the St. Croix River basin, on the border of MN and WI, USA, were analyzed for 127 organic contaminants. Known chemical-gene interactions were used to develop site-specific knowledge assembly models (KAMs) and formulate hypotheses concerning possible biological effects associated with chemicals detected in water samples from each location. Additionally, hepatic gene expression data were collected for fathead minnows (Pimephales promelas) exposed in situ, for 12 d, at each location. Expression data from oligonucleotide microarrays were analyzed to identify functional annotation terms enriched among the differentially-expressed probes. The general nature of many of the terms made hypothesis formulation on the basis of the transcriptome-level response alone difficult. However, integrated analysis of the transcriptome data in the context of the site-specific KAMs allowed for evaluation of the likelihood of specific chemicals contributing to observed biological responses. Thirteen chemicals (atrazine, carbamazepine, metformin, thiabendazole, diazepam, cholesterol, p-cresol, phenytoin, omeprazole, ethyromycin, 17β-estradiol, cimetidine, and estrone), for which there was statistically significant concordance between occurrence at a site and expected biological response as represented in the KAM, were identified. While not definitive, the approach provides a line of evidence for evaluating potential cause-effect relationships between components of a complex mixture of contaminants and biological effects data, which can inform subsequent monitoring and investigation.

  13. Regional variation in the chemical composition of winter snow pack and terricolous lichens in relation to sources of acid emissions in the Usa river basin, northeast European Russia

    International Nuclear Information System (INIS)

    Walker, T.R.; Crittenden, P.D.; Young, S.D.

    2003-01-01

    The chemistry of winter snow pack and terricolous lichens indicate pollution distribution in Arctic Russia. - The chemical composition of snow and terricolous lichens was determined along transects through the Subarctic towns of Vorkuta (130 km west-east), Inta (240 km south-north) and Usinsk (140 km, southwest-northeast) in the Usa river basin, northeast European Russia. Evidence of pollution gradients was found on two spatial scales. First, on the Inta transect, northward decreases in concentrations of N in the lichen Cladonia stellaris (from 0.57 mmol N g -1 at 90 km south to 0.43 mmol N g -1 at 130 km north of Inta) and winter deposition of non-sea salt sulphate (from 29.3 to 12.8 mol ha -1 at 90 km south and 110 km north of Inta, respectively) were attributed to long range transport of N and S from lower latitudes. Second, increased ionic content (SO 4 2- , Ca 2+ , K + ) and pH of snow, and modified N concentration and the concentration ratios K + :Mg 2+ and K + : (Mg 2+ +Ca 2+ ) in lichens (Cladonia arbuscula and Flavocetraria cucullata) within ca. 25-40 km of Vorkuta and Inta were largely attributed to local deposition of alkaline coal ash. Total sulphate concentrations in snow varied from ca. 5 μmol l -1 at remote sites to ca. 19 μmol l -1 near Vorkuta. Nitrate concentration in snow (typically ca. 9 μmol l -1 ) did not vary with proximity to perceived pollution sources

  14. The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA

    Science.gov (United States)

    Burbey, Thomas

    2002-07-01

    The role of horizontal deformation caused by pumping of confined-aquifer systems is recognized as contributing to the development of earth fissures in semiarid regions, including Las Vegas Valley, Nevada. In spite of stabilizing water levels, new earth fissures continue to develop while existing ones continue to lengthen and widen near basin-fill faults. A three-dimensional granular displacement model based on Biot's consolidation theory (Biot, MA, 1941, General theory of three-dimensional consolidation. Jour. Applied Physics 12:155-164) has been used to evaluate the nature of displacement in the vicinity of two vertical faults. The fault was simulated as (1) a low-permeability barrier to horizontal flow, (2) a gap or structural break in the medium, but where groundwater flow is not obstructed, and (3) a combination of conditions (1) and (2). Results indicate that the low-permeability barrier greatly enhances horizontal displacement. The fault plane also represents a location of significant differential vertical subsidence. Large computed strains in the vicinity of the fault may suggest high potential for failure and the development of earth fissures when the fault is assumed to have low permeability. Results using a combination of the two boundaries suggest that potential fissure development may be great at or near the fault plane and that horizontal deformation is likely to play a key role in this development. Résumé. On considère que la déformation horizontale provoquée par un pompage dans un aquifère captif joue un rôle dans le développement des fissures du sol en régions semi-arides, comme la vallée de Las Vegas (Nevada). Malgré des niveaux d'eau stabilisés, de nouvelles fissures du sol continuent de se développer en longueur et en largeur au voisinage de failles dans les bassins sédimentaires. Un modèle de déplacement granulaire tri-dimensionnel, basé sur la théorie de la consolidation de Biot (Biot, M A, 1941, General theory of three

  15. Multiple isotopes (O, C, Li, Sr) as tracers of CO2 and brine leakage from CO2-enhanced oil recovery activities in Permian Basin, Texas, USA

    Science.gov (United States)

    Phan, T. T.; Sharma, S.; Gardiner, J. B.; Thomas, R. B.; Stuckman, M.; Spaulding, R.; Lopano, C. L.; Hakala, A.

    2017-12-01

    Potential CO2 and brine migration or leakage into shallow groundwater is a critical issue associated with CO2 injection at both enhanced oil recovery (EOR) and carbon sequestration sites. The effectiveness of multiple isotope systems (δ18OH2O, δ13C, δ7Li, 87Sr/86Sr) in monitoring CO2 and brine leakage at a CO2-EOR site located within the Permian basin (Seminole, Texas, USA) was studied. Water samples collected from an oil producing formation (San Andres), a deep groundwater formation (Santa Rosa), and a shallow groundwater aquifer (Ogallala) over a four-year period were analyzed for elemental and isotopic compositions. The absence of any change in δ18OH2O or δ13CDIC values of water in the overlying Ogallala aquifer after CO2 injection indicates that injected CO2 did not leak into this aquifer. The range of Ogallala water δ7Li (13-17‰) overlaps the San Andres water δ7Li (13-15‰) whereas 87Sr/86Sr of Ogallala (0.70792±0.00005) significantly differs from San Andres water (0.70865±0.00003). This observation demonstrates that Sr isotopes are much more sensitive than Li isotopes in tracking brine leakage into shallow groundwater at the studied site. In contrast, deep groundwater δ7Li (21-25‰) is isotopically distinct from San Andres produced water; thus, monitoring this intermitted formation water can provide an early indication of CO2 injection-induced brine migration from the underlying oil producing formation. During water alternating with gas (WAG) operations, a significant shift towards more positive δ13CDIC values was observed in the produced water from several of the San Andres formation wells. The carbon isotope trend suggests that the 13C enriched injected CO2 and formation carbonates became the primary sources of dissolved inorganic carbon in the area surrounding the injection wells. Moreover, one-way ANOVA statistical analysis shows that the differences in δ7Li (F(1,16) = 2.09, p = 0.17) and 87Sr/86Sr (F(1,18) = 4.47, p = 0.05) values of

  16. Decadal-scale export of nitrogen, phosphorus, and sediment from the Susquehanna River basin, USA: Analysis and synthesis of temporal and spatial patterns

    Science.gov (United States)

    Zhang, Qian; Ball, William P.; Moyer, Douglas

    2016-01-01

    The export of nitrogen (N), phosphorus (P), and suspended sediment (SS) is a long-standing management concern for the Chesapeake Bay watershed, USA. Here we present a comprehensive evaluation of nutrient and sediment loads over the last three decades at multiple locations in the Susquehanna River basin (SRB), Chesapeake's largest tributary watershed. Sediment and nutrient riverine loadings, including both dissolved and particulate fractions, have generally declined at all sites upstream of Conowingo Dam (non-tidal SRB outlet). Period-of-record declines in riverine yield are generally smaller than those in source input, suggesting the possibility of legacy contributions. Consistent with other watershed studies, these results reinforce the importance of considering lag time between the implementation of management actions and achievement of river quality improvement. Whereas flow-normalized loadings for particulate species have increased recently below Conowingo Reservoir, those for upstream sites have declined, thus substantiating conclusions from prior studies about decreased reservoir trapping efficiency. In regard to streamflow effects, statistically significant log-linear relationships between annual streamflow and annual constituent load suggest the dominance of hydrological control on the inter-annual variability of constituent export. Concentration-discharge relationships revealed general chemostasis and mobilization effects for dissolved and particulate species, respectively, both suggesting transport-limitation conditions. In addition to affecting annual export rates, streamflow has also modulated the relative importance of dissolved and particulate fractions, as reflected by its negative correlations with dissolved P/total P, dissolved N/total N, particulate P/SS, and total N/total P ratios. For land-use effects, period-of-record median annual yields of N, P, and SS all correlate positively with the area fraction of non-forested land but negatively with

  17. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming

    Science.gov (United States)

    Maupin, Molly A.

    1997-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the upper Snake River Basin study unit, land- and water-use data were used to describe activities that have potential effects on water quality, including biological conditions, in the basin. Land-use maps and estimates of water use by irrigated agriculture were needed for Gooding, Jerome, Lincoln, and Minidoka Counties (south-central Idaho), four of the most intensively irrigated counties in the study unit. Land use in the four counties was mapped from Landsat Thematic Mapper imagery data for the 1992 water year using the SPECTRUM computer program. Land-use data were field verified in 108 randomly selected sections (640 acres each); results compared favorably with land-use maps from other sources. Water used for irrigation during the 1992 water year was estimated using land-use and ancillary data. In 1992, a drought year, estimated irrigation withdrawals in the four counties were about 2.9 million acre-feet of water. Of the 2.9 million acre-feet, an estimated 2.12 million acre-feet of water was withdrawn from surface water, mainly the Snake River, and nearly 776,000 acre-feet was withdrawn from ground water. One-half of the 2.9 million acre-feet of water withdrawn for irrigation was considered to be lost during conveyance or was returned to the Snake River; the remainder was consumptively used by crops during the growing season.

  18. High wind warning system for Bordeaux, Wyoming.

    Science.gov (United States)

    2010-07-01

    "The state of Wyoming has frequent severe wind conditions, particularly in the southeast corner of the state along Interstate : 80 and Interstate 25. The high winds are problematic in many ways including, interfering with the performance of the : tra...

  19. Wyoming CV Pilot Traveler Information Message Sample

    Data.gov (United States)

    Department of Transportation — This dataset contains a sample of the sanitized Traveler Information Messages (TIM) being generated by the Wyoming Connected Vehicle (CV) Pilot. The full set of TIMs...

  20. 78 FR 13004 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-02-26

    ... Reclamation and Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601..., Director, Casper Field Office, Office of Surface Mining Reclamation and Enforcement, Dick Cheney Federal...

  1. 76 FR 36040 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-06-21

    ..., Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601-1018. For detailed... of Surface Mining Reclamation and Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B...

  2. 78 FR 16204 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-03-14

    ... Fleischman, Director, Casper Field Office, Office of Surface Mining Reclamation and Enforcement, Dick Cheney... Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601-1018, (307) 261...

  3. 76 FR 80310 - Wyoming Regulatory Program

    Science.gov (United States)

    2011-12-23

    ..., Director, Casper Field Office, Office of Surface Mining Reclamation and Enforcement, Dick Cheney Federal... Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601-1018, (307) 261...

  4. Multispectral processing of ERTS-A (LANDSAT) data for uranium exploration in the Wind River Basin, Wyoming: a visible region ratio to enhance surface alteration associated with roll-type uraium deposits. Final report, June 1974--July 1975

    International Nuclear Information System (INIS)

    Salmon, B.C.; Pillars, W.W.

    1975-07-01

    The purpose of this report is to document possible detection capabilities of the LANDSAT multispectral scanner data for use in exploration for uranium roll-type deposits. Spectral reflectivity, mineralogy, iron content, and color paramenters were measured for twenty natural surface samples collected from a semiarid region. The relationships of these properties to LANDSAT response-weighted reflectances and to reflectance ratios are discussed. It was found that the single ratio technique of multispectral processing is likely to be sensitive enough to separate hematitic stain, but not limonitic. A combination of the LANDSAT R/sub 5,4/ and R/sub 7,6/ ratios, and a processing technique sensitive to vegetative cover is recommended for detecting areas of limonitic stain. Digital level slicing of LANDSAT R/sub 5,4/ over the Wind River Basin, after geometric correction, resulted in adequate enhancement of Triassic redbeds and lighter red materials, but not for limonitic areas. No recommendations for prospects in the area were made. Information pertaining to techniques of evaluating laboratory reflectance spectra for remote sensing applications, ratio processing, and planimetric correction of LANDSAT data is presented qualitatively

  5. Late Pleistocene fishes of the Tennessee River Basin: an analysis of a late Pleistocene freshwater fish fauna from Bell Cave (site ACb-2 in Colbert County, Alabama, USA

    Directory of Open Access Journals (Sweden)

    Stephen J. Jacquemin

    2016-02-01

    Full Text Available The Tennessee River Basin is considered one of the most important regions for freshwater biodiversity anywhere on the globe. The Tennessee River Basin currently includes populations of at least half of the described contemporary diversity of extant North American freshwater fishes, crayfish, mussel, and gastropod species. However, comparatively little is known about the biodiversity of this basin from the Pleistocene Epoch, particularly the late Pleistocene (∼10,000 to 30,000 years B.P. leading to modern Holocene fish diversity patterns. The objective of this study was to describe the fish assemblages of the Tennessee River Basin from the late Pleistocene using a series of faunas from locales throughout the basin documented from published literature, unpublished reports, and an undocumented fauna from Bell Cave (site ACb-2, Colbert County, AL. Herein we discuss 41 unequivocal taxa from 10 late Pleistocene localities within the basin and include a systematic discussion of 11 families, 19 genera, and 24 identifiable species (28 unequivocal taxa specific to the Bell Cave locality. Among the described fauna are several extirpated (e.g., Northern Pike Esox lucius, Northern Madtom Noturus stigmosus and a single extinct (Harelip Sucker Moxostoma lacerum taxa that suggest a combination of late Pleistocene displacement events coupled with more recent changes in habitat that have resulted in modern basin diversity patterns. The Bell Cave locality represents one of the most intact Pleistocene freshwater fish deposits anywhere in North America. Significant preservational, taphonomic, sampling, and identification biases preclude the identification of additional taxa. Overall, this study provides a detailed look into paleo-river ecology, as well as freshwater fish diversity and distribution leading up to the contemporary biodiversity patterns of the Tennessee River Basin and Mississippi River Basin as a whole.

  6. Bacteria and nematodes in the conjunctiva of mule deer from Wyoming and Utah.

    Science.gov (United States)

    Dubay, S A; Williams, E S; Mills, K; Boerger-Fields, A M

    2000-10-01

    Swabs of conjunctiva were collected from 44 live and 226 hunter-harvested mule deer (Odocoileus hemionus) from Wyoming and Utah (USA). We identified 29 gram negative and 22 gram positive bacterial taxonomic categories, but many isolates from hunter-harvested animals were environmental contaminants. Staphylococcus spp. and Micrococcus spp. were the most common gram positive bacteria isolated, and Enterobacter spp., Escherichia coli, and Pseudomonas spp. were common gram negative bacteria isolated. Thelazia californiensis were found in 15% of hunter-harvested deer in Utah in 1994 and in 8% in 1995. Nematodes were found in 40% of live deer in 1995 and 66% in 1996. Three live animals showed clinical signs of infectious keratoconjunctivitis (IKC) in 1996, but pathogenic bacteria were not isolated from these individuals. Hemolytic, non-piliated Moraxella ovis was isolated from two clinically normal live deer in 1996 and isolates were similar to those cultured from IKC cases from Wyoming and Utah.

  7. Long-term trend analysis of reservoir water quality and quantity at the landscape scale in two major river basins of Texas, USA.

    Science.gov (United States)

    Patino, Reynaldo; Asquith, William H.; VanLandeghem, Matthew M.; Dawson, D.

    2016-01-01

    Trends in water quality and quantity were assessed for 11 major reservoirs of the Brazos and Colorado river basins in the southern Great Plains (maximum period of record, 1965–2010). Water quality, major contributing-stream inflow, storage, local precipitation, and basin-wide total water withdrawals were analyzed. Inflow and storage decreased and total phosphorus increased in most reservoirs. The overall, warmest-, or coldest-monthly temperatures increased in 7 reservoirs, decreased in 1 reservoir, and did not significantly change in 3 reservoirs. The most common monotonic trend in salinity-related variables (specific conductance, chloride, sulfate) was one of no change, and when significant change occurred, it was inconsistent among reservoirs. No significant change was detected in monthly sums of local precipitation. Annual water withdrawals increased in both basins, but the increase was significant (P quality data due to the presence of high- and low-salinity reservoirs in both basins. These observations present a landscape in the Brazos and Colorado river basins where, in the last ∼40 years, reservoir inflow and storage generally decreased, eutrophication generally increased, and water temperature generally increased in at least 1 of 3 temperature indicators evaluated. Because local precipitation remained generally stable, observed reductions in reservoir inflow and storage during the study period may be attributable to other proximate factors, including increased water withdrawals (at least in the Colorado River basin) or decreased runoff from contributing watersheds.

  8. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA

    Science.gov (United States)

    Clow, David W.; Rhoades, Charles; Briggs, Jenny S.; Caldwell, Megan K.; Lewis, William M.

    2011-01-01

    Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic, and to identify major controlling influences on stream-water nutrients and C in areas affected by the mountain pine beetle. Soil moisture and soil N increased in soils beneath trees killed by the mountain pine beetle, reflecting reduced evapotranspiration and litter accumulation and decay. No significant changes in stream-water NO3-">NO3- or dissolved organic C were observed; however, total N and total P increased, possibly due to litter breakdown or increased productivity related to warming air temperatures. Multiple-regression analyses indicated that % of basin affected by mountain pine beetles had minimal influence on stream-water NO3-">NO3- and dissolved organic C; instead, other basin characteristics, such as percent of the basin classified as forest, were much more important.

  9. Application of a Nested Modeling Approach Using the Precipitation Runoff Modeling System in the Apalachicola-Chattahoochee-Flint River Basin in the Southeastern USA

    Science.gov (United States)

    Lafontaine, J.; Hay, L.; Viger, R.; Markstrom, S. L.

    2010-12-01

    In order to help environmental resource managers assess potential effects of climate change on ecosystems, the Southeast Regional Assessment Project (SERAP) began in 2009. One component of the SERAP is development and calibration of a set of multi-resolution hydrologic models of the Apalachicola-Chattahoochee-Flint (ACF) River Basin. The ACF River Basin is home to multiple fish and wildlife species of conservation concern, is regionally important for water supply, and has been a recent focus of complementary environmental and climate-change research. Hydrologic models of varying spatial extents and resolutions are required to address varied local to regional water-resource management questions as required by the scope and limits of potential management actions. These models were developed using the U.S. Geological Survey (USGS) Precipitation Runoff Modeling System (PRMS). The coarse-resolution model for the ACF Basin has a contributing area of approximately 19,200 mi2 with the model outlet located at the USGS streamflow gage on the Apalachicola River near Sumatra, Florida. Six fine-resolution PRMS models ranging in size from 153 mi2 to 1,040 mi2 are nested within the coarse-scale model, and have been developed for the following basins: upper Chattahoochee, Chestatee, and Chipola Rivers, Ichawaynochaway, Potato, and Spring Creeks. All of the models simulate basin hydrology using a daily time-step, measured climate data, and basin characteristics such as land cover and topography. Measured streamflow data are used to calibrate and evaluate computed basin hydrology. Land cover projections will be used in conjunction with downscaled Global Climate Model results to project future hydrologic conditions for this set of models.

  10. Wyoming Cloud Lidar: instrument description and applications.

    Science.gov (United States)

    Wang, Zhien; Wechsler, Perry; Kuestner, William; French, Jeffrey; Rodi, Alfred; Glover, Brent; Burkhart, Matthew; Lukens, Donal

    2009-08-03

    The Wyoming Cloud Lidar (WCL), a compact two-channel elastic lidar, was designed to obtain cloud measurements together with the Wyoming Cloud Radar (WCR) on the University of Wyoming King Air and the National Science Foundation/National Center of Atmospheric Research C-130 aircraft. The WCL has been deployed in four field projects under a variety of atmospheric and cloud conditions during the last two years. Throughout these campaigns, it has exhibited the needed reliability for turn-key operation from aircraft. We provide here an overview of the instrument and examples to illustrate the measurements capability of the WCL. Although the WCL as a standalone instrument can provide unique measurements for cloud and boundary layer aerosol studies, the synergy of WCL and WCR measurements coupled with in situ sampling from an aircraft provide a significant step forward in our ability to observe and understand cloud microphysical property evolution.

  11. Greater sage-grouse population trends across Wyoming

    Science.gov (United States)

    Edmunds, David; Aldridge, Cameron L.; O'Donnell, Michael; Monroe, Adrian

    2018-01-01

    The scale at which analyses are performed can have an effect on model results and often one scale does not accurately describe the ecological phenomena of interest (e.g., population trends) for wide-ranging species: yet, most ecological studies are performed at a single, arbitrary scale. To best determine local and regional trends for greater sage-grouse (Centrocercus urophasianus) in Wyoming, USA, we modeled density-independent and -dependent population growth across multiple spatial scales relevant to management and conservation (Core Areas [habitat encompassing approximately 83% of the sage-grouse population on ∼24% of surface area in Wyoming], local Working Groups [7 regional areas for which groups of local experts are tasked with implementing Wyoming's statewide sage-grouse conservation plan at the local level], Core Area status (Core Area vs. Non-Core Area) by Working Groups, and Core Areas by Working Groups). Our goal was to determine the influence of fine-scale population trends (Core Areas) on larger-scale populations (Working Group Areas). We modeled the natural log of change in population size ( peak M lek counts) by time to calculate the finite rate of population growth (λ) for each population of interest from 1993 to 2015. We found that in general when Core Area status (Core Area vs. Non-Core Area) was investigated by Working Group Area, the 2 populations trended similarly and agreed with the overall trend of the Working Group Area. However, at the finer scale where Core Areas were analyzed separately, Core Areas within the same Working Group Area often trended differently and a few large Core Areas could influence the overall Working Group Area trend and mask trends occurring in smaller Core Areas. Relatively close fine-scale populations of sage-grouse can trend differently, indicating that large-scale trends may not accurately depict what is occurring across the landscape (e.g., local effects of gas and oil fields may be masked by increasing

  12. 78 FR 63243 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Science.gov (United States)

    2013-10-23

    ... mitigation initiatives by the University of Wyoming Ruckleshaus Institute, the University of Wyoming Reclamation Center, participation in the University of Wyoming's ``A Landscape Discussion on Energy Law in... be at the University of Wyoming BP Collaboration Center, 1020 East Lewis Street, Laramie, Wyoming...

  13. A new genus and species of entocytherid ostracod (Ostracoda: Entocytheridae) from the John Day River Basin of Oregon, U.S.A., with a key to genera of the subfamily Entocytherinae.

    Science.gov (United States)

    Weaver, Patricia G; Williams, Bronwyn W

    2017-06-07

    Targeted sampling efforts by the authors for the signal crayfish, Pacifastacus leniusculus, from its native range in the John Day River Basin, Oregon, U.S.A. yielded entocytherid ostracods with a male copulatory complex so clearly different from other entocytherines that a new genus, Aurumcythere gen. nov. is proposed to receive them. This newly proposed, apparently nonsclerotized, genus with hook and spur-like prominences of the posteroventral end of the peniferum is the first new genus of the subfamily Entocytherinae named since Hobbs & Peters described Aphelocythere (= Waltoncythere) in 1977. Aurumcythere gen. nov. represents only the second genus of entocytherid known from the Pacific Northwest. Lack of sclerotization in Aurumcythere gen. nov. provides new insight into poorly understood mating behaviors of entocytherid ostracods.

  14. Field guide to Muddy Formation outcrops, Crook County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.

    1993-11-01

    The objectives of this research program are to (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline bamer reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. This report contains the data and analyses collected from outcrop exposures of the Muddy Formation, located in Crook County, Wyoming, 40 miles south of Bell Creek oil field. The outcrop data set contains permeability, porosity, petrographic, grain size and geologic data from 1-inch-diameter core plugs chilled from the outcrop face, as well as geological descriptions and sedimentological interpretations of the outcrop exposures. The outcrop data set provides information about facies characteristics and geometries and the spatial distribution of permeability and porosity on interwell scales. Appendices within this report include a micropaleontological analyses of selected outcrop samples, an annotated bibliography of papers on the Muddy Formation in the Powder River Basin, and over 950 permeability and porosity values measured from 1-inch-diameter core plugs drilled from the outcrop. All data contained in this resort are available in electronic format upon request. The core plugs drilled from the outcrop are available for measurement.

  15. A watershed-based spatially-explicit demonstration of an integrated environmental modeling framework for ecosystem services in the Coal River Basin (WV, USA)

    Science.gov (United States)

    John M. Johnston; Mahion C. Barber; Kurt Wolfe; Mike Galvin; Mike Cyterski; Rajbir Parmar; Luis Suarez

    2016-01-01

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, ...

  16. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  17. Towards a mechanistic understanding of the linkages between PETM climate modulation and stratigraphy, as discerned from the Piceance Basin, CO, USA

    Science.gov (United States)

    Barefoot, E. A.; Nittrouer, J. A.; Foreman, B.; Moodie, A. J.; Dickens, G. R.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was a period of rapid climatic change when global temperatures increased by 5-8˚C in as little as 5 ka. It has been hypothesized that by drastically enhancing the hydrologic cycle, this temperature change significantly perturbed landscape dynamics over the ensuing 200 ka. Much of the evidence documenting hydrological variability derives from studies of the stratigraphic record, which is interpreted to encode a system-clearing event in fluvial systems worldwide during and after the PETM. For example, in the Piceance Basin of Western Colorado, it is hypothesized that intensification of monsoons due to PETM warming caused an increase in sediment flux to the basin. The resulting stratigraphy records a modulation of the sedimentation rate, where the PETM interval is represented by a laterally extensive sheet sand positioned between units dominated by floodplain muds. The temporal interval, the sediment provenance history, as well as the tectonic history of the PETM in the Piceance Basin are all well-constrained, leaving climate as the most significant allogenic forcing in the Piceance Basin during the PETM. However, the precise nature of landscape change that link climate forcing by the PETM to modulation of the sedimentation rate in this basin remains to be demonstrated. Here, we present a simple stratigraphic numerical model coupled with a conceptual source-to-sink framework to test the impact of a suite of changing upstream boundary conditions on the fluvial system. In the model, climate-related variables force changes in flow characteristics such as sediment transport, slope, and velocity, which determine the resultant floodplain stratigraphy. The model is based on mathematical relations that link bankfull geometry and water discharge, impacting the lateral migration rate of the channel, sediment transport rate, and avulsion frequency, thereby producing a cross-section of basin stratigraphy. In this way, we simulate a

  18. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA

    Science.gov (United States)

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.

  19. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA

    OpenAIRE

    Carlson, Chris H; Dobrowski, Solomon Z; Safford, Hugh D

    2012-01-01

    Abstract Background Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as importa...

  20. A framework for identifying water management typologies for agent based modeling of water resources and its application in the Boise River Basin, USA.

    Science.gov (United States)

    Kaiser, K. E.; Flores, A. N.; Hillis, V.; Moroney, J.; Schneider, J.

    2017-12-01

    Modeling the management of water resources necessitates incorporation of complex social and hydrologic dynamics. Simulation of these socio-ecological systems requires characterization of the decision-making process of relevant actors, the mechanisms through which they exert control on the biophysical system, their ability to react and adapt to regional environmental conditions, and the plausible behaviors in response to changes in those conditions. Agent based models (ABMs) are a useful tool in simulating these complex adaptive systems because they can dynamically couple hydrological models and the behavior of decision making actors. ABMs can provide a flexible, integrated framework that can represent multi-scale interactions, and the heterogeneity of information networks and sources. However, the variability in behavior of water management actors across systems makes characterizing agent behaviors and relationships challenging. Agent typologies, or agent functional types (AFTs), group together individuals and/or agencies with similar functional roles, management objectives, and decision-making strategies. AFTs have been used to represent archetypal land managers in the agricultural and forestry sectors in large-scale socio-economic system models. A similar typology of water actors could simplify the representation of water management across river basins, and increase transferability and scaling of resulting ABMs. Here, we present a framework for identifying and classifying major water actors and show how we will link an ABM of water management to a regional hydrologic model in a western river basin. The Boise River Basin in southwest Idaho is an interesting setting to apply our AFT framework because of the diverse stakeholders and associated management objectives which include managing urban growth pressures and water supply in the face of climate change. Precipitation in the upper basin supplies 90% of the surface water used in the basin, thus managers of the

  1. 78 FR 10512 - Wyoming Regulatory Program

    Science.gov (United States)

    2013-02-14

    ... error for grammatical correctness in subsection (c.) by changing the word ``creation'' to ``creating... Wyoming needs to correct a typographical error for grammatical correctness by changing the phrase ``where... proposed language warrants additional grammatical revisions for purposes of clarity and consistency within...

  2. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  3. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... in the possession and control of the University of Wyoming Anthropology Department, Human Remains... made by University of Wyoming, Anthropology Department, Human Remains Repository, professional staff in...

  4. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2010-02-01

    ... Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park Service... funerary objects in the possession and control of the University of Wyoming, Anthropology Department, Human... of Wyoming, Anthropology Department, Human Remains Repository professional staff in consultation with...

  5. Development of Lower Mississippian cyclic carbonates, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Elrich, M.; Read, J.F.

    1989-03-01

    The Lower Mississippian Lodgepole/Madison formations of Wyoming and Montana consist of a 20 to 300-m upward-shallowing sequence of cyclic slope/basin, deep-ramp to shallow-ramp carbonate deposits. Shallow-ramp cycles (1-3 m) are composed of cross-bedded oolitic grainstone and pellet grainstone, overlain by rare algal laminite caps. Deep-ramp cycles (1-10 m) are characterized by thin-bedded, substorm-wave-base limestone/shale, nodular limestone/shale, and storm-deposited limestone overlain by hummocky cross-stratified grainstone caps. Average periods of the cycles range from 35,000 to 110,000 years. Slope/basin deposits are 10 to 20-cm thick couplets of even-bedded, micritic limestone and shale. Computer modeling of the cycles incorporates fluctuating sea level, subsidence, depth-dependent sedimentation, lag time, and platform slope. Data from spectral analysis (basin/slope couplets), Fischer plots (shallow-ramp cycles), computer modeling, and field data suggest (1) subsidence rates across the 700-km wide platform range from 0.01 m/k.y. to 0.12 m/k.y., (2) high-frequency (10/sup 4/-10/sup 5/ years) sea level fluctuations with 15 to 25-m amplitudes affected the platform, and (3) shallow-ramp slopes were less than 2 cm/km and deep-ramp slopes were greater than 10 cm/km. Computer models produce stratigraphic sections (one-dimensional models) that graphically illustrate how input parameters interact through time to produce the cyclic stratigraphic section.

  6. 4D petroleum system model of the Mississippian System in the Anadarko Basin Province, Oklahoma, Kansas, Texas, and Colorado, U.S.A.

    Science.gov (United States)

    Higley, Debra K.

    2013-01-01

    The Upper Devonian and Lower Mississippian Woodford Shale is an important petroleum source rock for Mississippian reservoirs in the Anadarko Basin Province of Oklahoma, Kansas, Texas, and Colorado, based on results from a 4D petroleum system model of the basin. The Woodford Shale underlies Mississippian strata over most of the Anadarko Basin portions of Oklahoma and northeastern Texas. The Kansas and Colorado portions of the province are almost entirely thermally immature for oil generation from the Woodford Shale or potential Mississippian source rocks, based mainly on measured vitrinite reflectance and modeled thermal maturation. Thermal maturities of the Woodford Shale range from mature for oil to overmature for gas generation at present-day depths of about 5,000 to 20,000 ft. Oil generation began at burial depths of about 6,000 to 6,500 ft. Modeled onset of Woodford Shale oil generation was about 330 million years ago (Ma); peak oil generation was from 300 to 220 Ma.Mississippian production, including horizontal wells of the informal Mississippi limestone, is concentrated within and north of the Sooner Trend area in the northeast Oklahoma portion of the basin. This large pod of oil and gas production is within the area modeled as thermally mature for oil generation from the Woodford Shale. The southern boundary of the trend approximates the 99% transformation ratio of the Woodford Shale, which marks the end of oil generation. Because most of the Sooner Trend area is thermally mature for oil generation from the Woodford Shale, the trend probably includes short- and longer-distance vertical and lateral migration. The Woodford Shale is absent in the Mocane-Laverne Field area of the eastern Oklahoma panhandle; because of this, associated oil migrated from the south into the field. If the Springer Formation or deeper Mississippian strata generated oil, then the southern field area is within the oil window for associated petroleum source rocks. Mississippian fields

  7. Developments in technology and markets for Wyoming coal

    International Nuclear Information System (INIS)

    Loomis, M.

    1992-01-01

    The coal industry is making changes in Wyoming. Larger, more efficient equipment allowed Wyoming mines to produce 194 million tons of coal in 1991 and position itself to produce even more if the utilities that have to meet the demands of the 1990 Clean Air Act (CAA) decide to use the vast low sulfur coal deposits of Wyoming to meet the new standards. Wyoming leads the nation in production of coal. The mines in Wyoming are committed to being the best source of low cost, low sulfur coal in the world. With support from the state and reasonable regulations at the state an federal level, Wyoming will continue to be the nation's leader in coal

  8. Pesticides in Wyoming Groundwater, 2008-10

    Science.gov (United States)

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  9. Spatial Trends and Variability of Vertical Accretion Rates in the Barataria Basin, Louisiana, U.S.A. using Pb-210 and Cs-137 radiochemistry

    Science.gov (United States)

    Shrull, S.; Wilson, C.; Snedden, G.; Bentley, S. J.

    2017-12-01

    Barataria Basin on the south Louisiana coast is experiencing some of the greatest amounts of coastal land loss in the United States with rates as high as 23.1 km2 lost per year. In an attempt to help slow or reverse land loss, millions of dollars are being spent to create sediment diversions to increase the amount of available inorganic sediments to these vulnerable coastal marsh areas. A better understanding of the spatial trends and patterns of background accretion rates needs to be established in order to effectively implement such structures. Core samples from 25 Coastwide Reference Monitoring System (CRMS) sites spanning inland freshwater to coastal saline areas within the basin were extracted, and using vertical accretion rates from Cs-137 & Pb-210 radionuclide detection, mineral versus organic sediment composition, grain size distribution, and spatial trends of bulk densities, the controls on the accretion rates of the marsh soils will be constrained. Initial rates show a range from 0.31 cm/year to 1.02 cm/year with the average being 0.79 cm/year. Preliminary results suggest that location and proximity to an inorganic sediment source (i.e. river/tributary or open water) have a stronger influence on vertical accretion rates than marsh classification and salinity, with no clear relationship between vertical accretion and salinity. Down-core sediment composition and bulk density analyses observed at a number of the sites likely suggest episodic sedimentation and show different vertical accretion rates through time. Frequency and length of inundation (i.e. hydroperiod), and land/marsh classification from the CRMS data set will be further investigated to constrain the spatial variability in vertical accretion for the basin.

  10. The late Holocene dry period: multiproxy evidence for an extended drought between 2800 and 1850 cal yr BP across the central Great Basin, USA

    Science.gov (United States)

    Mensing, Scott A.; Sharpe, Saxon E.; Tunno, Irene; Sada, Don W.; Thomas, Jim M.; Starratt, Scott W.; Smith, Jeremy

    2013-01-01

    Evidence of a multi-centennial scale dry period between ∼2800 and 1850 cal yr BP is documented by pollen, mollusks, diatoms, and sediment in spring sediments from Stonehouse Meadow in Spring Valley, eastern central Nevada, U.S. We refer to this period as the Late Holocene Dry Period. Based on sediment recovered, Stonehouse Meadow was either absent or severely restricted in size at ∼8000 cal yr BP. Beginning ∼7500 cal yr BP, the meadow became established and persisted to ∼3000 cal yr BP when it began to dry. Comparison of the timing of this late Holocene drought record to multiple records extending from the eastern Sierra Nevada across the central Great Basin to the Great Salt Lake support the interpretation that this dry period was regional. The beginning and ending dates vary among sites, but all sites record multiple centuries of dry climate between 2500 and 1900 cal yr BP. This duration makes it the longest persistent dry period within the late Holocene. In contrast, sites in the northern Great Basin record either no clear evidence of drought, or have wetter than average climate during this period, suggesting that the northern boundary between wet and dry climates may have been between about 40° and 42° N latitude. This dry in the southwest and wet in the northwest precipitation pattern across the Great Basin is supported by large-scale spatial climate pattern hypotheses involving ENSO, PDO, AMO, and the position of the Aleutian Low and North Pacific High, particularly during winter.

  11. Preliminary analysis of the role of lake basin morphology on the modern diatom flora in the Ruby Mountains and East Humboldt Range, Nevada, USA

    Science.gov (United States)

    Starratt, Scott W.

    2014-01-01

    As paleolimnologists, we often look at the world through a 5-cm-diameter hole in the bottom of a lake, and although a number of studies have shown that a single core in the deepest part of a lake does not necessarily reflect the entire diatom flora, time and money often limit our ability to collect more than one core from a given site. This preliminary study is part of a multidisciplinary research project to understand Holocene climate variability in alpine regions of the Great Basin, and ultimately, to compare these high elevation records to the better studied pluvial records from adjacent valleys, in this case, the Ruby Valley.

  12. Character, origin and occurrence of natural gases in the Anadarko basin, southwestern Kansas, western Oklahoma and Texas Panhandle, U.S.A.

    Science.gov (United States)

    Rice, D.D.; Threlkeld, C.N.; Vuletich, A.K.

    1988-01-01

    Natural gas production in the Anadarko basin comes from three geographically separated areas that can be differentiated by age of reservoir and by inferred nature of organic, thermal origin of the gases. In the central basin, non-associated gases are produced mainly from Upper Mississippian and Pennsylvanian sandstones. Gas samples are from reservoirs as much as 6588 m deep. Gases become isotopically heavier (??13C1-values range from -49.8 to -33.2???) and chemically drier (C2+-values range from 1-33%) with increasing level of thermal maturity. Gases were generated mainly from interbedded shales with type-III kerogen during the mature and post-mature stages of hydrocarbon generation. Deviations from the trend are due to vertical migration and mixing of gases generated at different levels of thermal maturity over the past 250 Myr. In the giant Panhandle-Hugoton field, non-associated gases are generally produced from Permian carbonates at depths of Silurian, Devonian and Mississippian carbonates at depths as great as 2950 m and were generated from type-II kerogen during the mature stage of hydrocarbon generation. Associated oil usually correlates with extracts of the Upper Devonian and Lower Mississippian Woodford Shale. Gases are isotopically lighter (mean ??13C1-value is -43.9???) and chemically wetter (mean C2+ value is 14%) than those derived from type-III kerogen at an equivalent level of thermal maturity. ?? 1988.

  13. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

    Science.gov (United States)

    Robertson, Wendy Marie; Böhlke, John Karl; Sharp, John M.

    2017-01-01

    Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3−concentrations. Median increases in groundwater NO3− (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3− to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3− (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3− increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3− trends can be explained by small volumes of high NO3− modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

  14. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    International Nuclear Information System (INIS)

    Wu, Yiping; Liu, Shuguang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO 2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO 3 –N) load under hypothetical climate-sensitivity scenarios in terms of CO 2 , precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO 2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO 3 –N load to streams, which could be beneficial, but a concomitant increase in NO 3 –N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: ► We used a modified version of SWAT to more accurately simulate the effects of CO 2 . ► Our sensitivity analysis indicated this basin is very responsive to climate change. ► Downscaled GCM outputs showed decreased precipitation and increased temperature. ► There may be large

  15. Spatial and temporal patterns of stream burial and its effect on habitat connectivity across headwater stream communities of the Potomac River Basin, USA

    Science.gov (United States)

    Weitzell, R.; Guinn, S. M.; Elmore, A. J.

    2012-12-01

    The process of directing streams into culverts, pipes, or concrete-lined ditches during urbanization, known as stream burial, alters the primary physical, chemical, and biological processes of streams. Knowledge of the cumulative impacts of reduced structure and ecological function within buried stream networks is crucial for informing management of stream ecosystems, in light of continued growth in urban areas, and the uncertain response of freshwater ecosystems to the stresses of global climate change. To address this need, we utilized recently improved stream maps for the Potomac River Basin (PRB) to describe the extent and severity of stream burial across the basin. Observations of stream burial made from high resolution aerial photographs (>1% of total basin area) and a decision tree using spatial statistics from impervious cover data were used to predict stream burial at 4 time-steps (1975, 1990, 2001, 2006). Of the roughly 95,500 kilometers (km) of stream in the PRB, approximately 4551 km (4.76%) were buried by urban development as of 2001. Analysis of county-level burial trends shows differential patterns in the timing and rates of headwater stream burial, which may be due to local development policies, topographical constraints, and/or time since development. Consistently higher rates of stream burial were observed for small streams, decreasing with stream order. Headwater streams (1st-2nd order) are disproportionately affected, with burial rates continuing to increase over time in relation to larger stream orders. Beyond simple habitat loss, headwater burial decreases connectivity among headwater populations and habitats, with potential to affect a wide range of important ecological processes. To quantify changes to regional headwater connectivity we applied a connectivity model based on electrical circuit theory. Circuit-theoretical models function by treating the landscape as a resistance surface, representing hypothesized relationships between

  16. Evaluating the effect of a changing land-use and climate on the historical and future water budget of the Ipswich River basin, Massachusetts, USA

    Science.gov (United States)

    Claessens, L.; Hopkinson, C.; Rastetter, E.; Vallino, J.; Canfield, S.; Pontius, R. G.

    2001-05-01

    We evaluated the effect of land-use change and climate change on the water budget of the Ipswich River basin in northeastern Massachusetts. In this analysis we used both historical data on land-use and climate, as well as modeled predictions of future changes in land-use and climate. Our goal was to examine the importance of addressing both changes when evaluating human impacts on a river basin. The Ipswich River watershed has undergone major changes in land-use during the 20th century. Agricultural abandonment and forest re-growth dominated the first part of the century, followed by rapid urban expansion since the 1950s. The changing landscape and associated socio-economic activities, together with a changing climate, are having a major impact on the watershed hydrology. An increase in population has led to an increase in net diversions, and the associated summer low-flow conditions led in 1997 to the Ipswich Rivers' designation as one of the 10 most threatened rivers in the US. Precipitation has increased at a rate of 3 mm/year, while streamflow has remained relatively constant, even after correcting for increased net diversions. The long-term water budget indicates an increase in evapotranspiration, replicated by evapotranspiration estimates calculated from meteorological data, using the complementary relationship areal evapotranspiration (CRAE) model. To assess the effect of a changing landscape and a changing climate on regional evapotranspiration, we applied a simple multi-bucket water balance model, calculating evapotranspiration using a Penman-Monteith based resistance approach. In addition we developed a hybrid evapotranspiration model, combining the Penman-Monteith resistance approach with the complementary relationship approach. Results show that during the period 1949-1998, the effect of a changing climate on evapotranspiration is stronger than the effect of a changing land-use. Finally, scenarios of future water budgets are constructed. Future land

  17. Predicting impacts of increased CO{sub 2} and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yiping, E-mail: ywu@usgs.gov [ASRC Research and Technology Solutions, contractor to the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Liu, Shuguang, E-mail: sliu@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States); Gallant, Alisa L., E-mail: gallant@usgs.gov [U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD 57198 (United States); Geographic Information Science Center of Excellence, South Dakota State University, Brookings, SD 57007 (United States)

    2012-07-15

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO{sub 2} concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO{sub 3}-N) load under hypothetical climate-sensitivity scenarios in terms of CO{sub 2}, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO{sub 2} concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO{sub 3}-N load to streams, which could be beneficial, but a concomitant increase in NO{sub 3}-N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin. - Highlights: Black-Right-Pointing-Pointer We used a modified version of SWAT to more accurately simulate the effects of CO{sub 2}. Black-Right-Pointing-Pointer Our sensitivity analysis indicated this basin is very responsive to climate change. Black

  18. Environmental audit: Fossil energy sites in Wyoming

    International Nuclear Information System (INIS)

    1992-08-01

    This report documents the results of the Comprehensive Baseline Environmental Audit completed for Selected Fossil Energy Sites in Wyoming. During this Audit, facilities, field sites, and activities were investigated and inspected in several areas of Wyoming that are considered to be representative of offsite work falling under the purview of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. Department of Energy (DOE) personnel at METC and at the Liquid Fuels Technology Branch (LFTB) in Laramie, Wyoming were interviewed as were DOE contractors and Federal and state regulators. Extensive document review was also a key part of this Audit. The on-site portion of the Audit occurred in Morgantown from May 18 to 22, 1992, and throughout Wyoming from May 26 through June 10, 1992. EH-24 carries out independent assessments of DOE facilities and DOE-funded off-site activities as part of the Assistant Secretary's Environmental Audit Program. That program is designed to evaluate the status of facilities and activities regarding compliance with environmental laws, regulations, DOE Directives, formal written procedures, compliance agreements, and Best Management Practices (BMPs). This internal oversight function plays an important role in improving the compliance status of DOE operations. The Audit stresses the fact that it is the responsibility of line management to conduct operations in an environmentally sound and safe manner. The scope of this Environmental Audit was comprehensive, covering all areas of environmental activities and waste management operations with the exception of the National Environmental Policy Act (NEPA), which is beyond the purview of EH-24. Specifically included within this Audit were Air, Soils/Sediment/Biota, Surface Water/Drinking Water, Groundwater, Waste Management, Toxic and Chemical Materials, Quality Assurance, Radiation, Inactive Waste Sites, and Environmental Management

  19. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  20. Geochemical and multi-isotopic (87Sr/86Sr, 143Nd/144Nd, 238U/235U) perspectives of sediment sources, depositional conditions, and diagenesis of the Marcellus Shale, Appalachian Basin, USA

    Science.gov (United States)

    Phan, Thai T.; Gardiner, James B.; Capo, Rosemary C.; Stewart, Brian W.

    2018-02-01

    We investigate sediment sources, depositional conditions and diagenetic processes affecting the Middle Devonian Marcellus Shale in the Appalachian Basin, eastern USA, a major target of natural gas exploration. Multiple proxies, including trace metal contents, rare earth elements (REE), the Sm-Nd and Rb-Sr isotope systems, and U isotopes were applied to whole rock digestions and sequentially extracted fractions of the Marcellus shale and adjacent units from two locations in the Appalachian Basin. The narrow range of εNd values (from -7.8 to -6.4 at 390 Ma) is consistent with derivation of the clastic sedimentary component of the Marcellus Shale from a well-mixed source of fluvial and eolian material of the Grenville orogenic belt, and indicate minimal post-depositional alteration of the Sm-Nd system. While silicate minerals host >80% of the REE in the shale, data from sequentially extracted fractions reflect post-depositional modifications at the mineralogical scale, which is not observed in whole rock REE patterns. Limestone units thought to have formed under open ocean (oxic) conditions have δ238U values and REE patterns consistent with modern seawater. The δ238U values in whole rock shale and authigenic phases are greater than those of modern seawater and the upper crust. The δ238U values of reduced phases (the oxidizable fraction consisting of organics and sulfide minerals) are ∼0.6‰ greater than that of modern seawater. Bulk shale and carbonate cement extracted from the shale have similar δ238U values, and are greater than δ238U values of adjacent limestone units. We suggest these trends are due to the accumulation of chemically and, more likely, biologically reduced U from anoxic to euxinic bottom water as well as the influence of diagenetic reactions between pore fluids and surrounding sediment and organic matter during diagenesis and catagenesis.

  1. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    Science.gov (United States)

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016

  2. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    Science.gov (United States)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  3. Predicting Impacts of Increased CO2 and Climate Change on the Water Cycle and Water Quality in the Semiarid James River Basin of the Midwestern USA

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Gallant, Alisa L.

    2012-01-01

    Emissions of greenhouse gases and aerosols from human activities continue to alter the climate and likely will have significant impacts on the terrestrial hydrological cycle and water quality, especially in arid and semiarid regions. We applied an improved Soil and Water Assessment Tool (SWAT) to evaluate impacts of increased atmospheric CO2 concentration and potential climate change on the water cycle and nitrogen loads in the semiarid James River Basin (JRB) in the Midwestern United States. We assessed responses of water yield, soil water content, groundwater recharge, and nitrate nitrogen (NO3–N) load under hypothetical climate-sensitivity scenarios in terms of CO2, precipitation, and air temperature. We extended our predictions of the dynamics of these hydrological variables into the mid-21st century with downscaled climate projections integrated across output from six General Circulation Models. Our simulation results compared against the baseline period 1980 to 2009 suggest the JRB hydrological system is highly responsive to rising levels of CO2 concentration and potential climate change. Under our scenarios, substantial decrease in precipitation and increase in air temperature by the mid-21st century could result in significant reduction in water yield, soil water content, and groundwater recharge. Our model also estimated decreased NO3–N load to streams, which could be beneficial, but a concomitant increase in NO3–N concentration due to a decrease in streamflow likely would degrade stream water and threaten aquatic ecosystems. These results highlight possible risks of drought, water supply shortage, and water quality degradation in this basin.

  4. Modeling winter ozone episodes near oil and natural gas fields in Wyoming

    Science.gov (United States)

    Wu, Yuling; Rappenglück, Bernhard; Pour-Biazar, Arastoo; Field, Robert A.; Soltis, Jeff

    2017-04-01

    Wintertime ozone episodes have been reported in the oil and natural gas (O&NG) producing fields in Uintah Basin, Utah and the Upper Green River Basin (UGRB) in Wyoming in recent years. High concentrations of ozone precursors facilitated by favorable meteorological conditions, including low wind and shallow boundary layer (BL), were found in these episodes, although the exact roles of these precursor species in different O&NG fields are to be determined. Meanwhile, snow cover is also found to play an important role in these winter ozone episodes as the cold snow covered surface enhances the inversion, further limits the BL and the high snow albedo greatly boosts photolysis reactions that are closely related to ozone chemistry. In this study, we utilize model simulation to explore the role of chemical compositions, in terms of different VOC groups and NOx, and that of the enhanced photolysis due to snow cover in the UGRB ozone episodes in the late winter of 2011.

  5. Stratigraphy and structure of the northern and western flanks of the Black Hills Uplift, Wyoming, Montana, and South Dakota

    International Nuclear Information System (INIS)

    Robinson, C.S.; Mapel, W.J.; Bergendahl, M.H.

    1981-01-01

    This report describes the stratigraphy and structure of an area of about 5000 square miles in northeastern Wyoming and adjacent parts of Montana and South Dakota. The area includes the northern end and part of the western side of the Black Hills Uplift and the adjoining part of the Powder River Basin. About 11,000 ft of sedimentary rocks ranging in age from Mississippian to Early Tertiary are exposed in the area, not including surficial deposits of Tertiary (.) and Quaternary age. Oil is produced from several fields on the wet side of the Black Hills Uplift in Wyoming. Bentonite is mined at many places. The Fort Union and Wasatch Formations contain large reserves of sub-bituminous coal, and Lakota Formation contains some bituminous coal

  6. Relationship Between Low-Velocity S-wave Anomalies, Asthenospheric Dynamics and Basaltic Volcanism in the Intraplate Setting of the Basin and Range, USA

    Science.gov (United States)

    Tibbetts, A. K.; Smith, E. I.; Conrad, C. P.; Lee, C.; Plank, T.; Yang, Y.

    2009-12-01

    Pliocene to Recent intraplate mafic volcanic rocks of the Basin and Range Province mostly formed by asthenospheric melting, as determined from calculated melting temperatures ranging from 1249-1521 degrees C. Here asthenosphere is defined by mantle rheology and temperature and not by geochemistry. The duration of melting in a volcanic field may be related to the size and shape of pockets of low velocity asthenosphere moving under the areas of volcanism. Seismic S-wave velocity profiles constrained by ambient noise and earthquake tomography of the mantle (Yang et al., 2008) show low velocity pockets, which may correspond to higher temperatures and/or higher water contents. The lack of wider scale volcanism in the Basin and Range despite large scale anomalies indicates that the anomalies are not the only cause of melting. The observed smaller scale magmatism can be explained by circulatory flow driven by the small scale structure of the anomalies causing localized melting within the anomalies. By applying an asthenospheric shear flow velocity of 0 cm/yr at the base of the lithosphere and 5 cm/yr east at depth (Silver & Holt 2002, Conrad et al., 2007), the distance the mantle has moved since the time of volcanism can be calculated for basalts of known age. Past positions of low-velocity anomalies in the asthenosphere combined with depths and temperatures of melting calculated using the silica-liquid geobarometer (Lee et al., 2009) were used to determine if a low velocity anomaly existed under an area of volcanism at the depth of melting and time of eruption. The data constraints used for calculating depths and temperatures of melting are dry, MgO > 7.5 wt.%, SiO2 > 44 wt.%, and Fe as 90% Fe2+. Depths and temperatures of melting were calculated for San Francisco in AZ; Amboy, Pisgah, Death Valley, Coso, Big Pine, Cima, Long Valley, in CA; Crater Flat, Lunar Crater, Reveille in NV; and Black Rock, Hurricane, Snow Canyon, UT; and others all of which have known ages. Ages

  7. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    International Nuclear Information System (INIS)

    Coxon, T.M.; Odhiambo, B.K.; Giancarlo, L.C.

    2016-01-01

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight 210 Pb and 137 Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. - Highlights:

  8. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA

    Energy Technology Data Exchange (ETDEWEB)

    Coxon, T.M. [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Odhiambo, B.K., E-mail: bkisila@umw.edu [Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Avenue Fredericksburg, Virginia 22401 (United States); Giancarlo, L.C. [Department of Chemistry, University of Mary Washington, Fredericksburg, VA 22401 (United States)

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight {sup 210}Pb and {sup 137}Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments

  9. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    Science.gov (United States)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  10. Wyoming's forest products industry and timber harvest, 2000

    Science.gov (United States)

    Todd A. Morgan; Timothy P. Spoelma; Charles E. Keegan; Alfred L. Chase; Mike T. Thompson

    2005-01-01

    This report traces the flow of Wyoming's 2000 timber harvest through the primary wood-using industries; provides a description of the structure, capacity, and condition of Wyoming's primary forest products industry; and quantifies volumes and uses of wood fiber. Historical wood products industry changes are discussed, as well as changes in harvest, production...

  11. Asset management for Wyoming counties : volume I, II, III.

    Science.gov (United States)

    2011-08-01

    Vol. 1: In the fall of 2003, the Wyoming Department of Transportation (WYDOT) and the Wyoming T2/LTAP Center (T2/LTAP) began planning an asset management program to assist counties impacted by oil and gas drilling with management of their road system...

  12. Effect of fungicides on Wyoming big sagebrush seed germination

    Science.gov (United States)

    Robert D. Cox; Lance H. Kosberg; Nancy L. Shaw; Stuart P. Hardegree

    2011-01-01

    Germination tests of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young [Asteraceae]) seeds often exhibit fungal contamination, but the use of fungicides should be avoided because fungicides may artificially inhibit germination. We tested the effect of seed-applied fungicides on germination of Wyoming big sagebrush at 2 different...

  13. A Comparison of the Impacts of Wind Energy and Unconventional Gas Development on Land-use and Ecosystem Services: An Example from the Anadarko Basin of Oklahoma, USA.

    Science.gov (United States)

    Davis, Kendall M; Nguyen, Michael N; McClung, Maureen R; Moran, Matthew D

    2018-05-01

    The United States energy industry is transforming with the rapid development of alternative energy sources and technological advancements in fossil fuels. Two major changes include the growth of wind turbines and unconventional oil and gas. We measured land-use impacts and associated ecosystem services costs of unconventional gas and wind energy development within the Anadarko Basin of the Oklahoma Woodford Shale, an area that has experienced large increases in both energy sectors. Unconventional gas wells developed three times as much land compared to wind turbines (on a per unit basis), resulting in higher ecosystem services costs for gas. Gas wells had higher impacts on intensive agricultural lands (i.e., row crops) compared to wind turbines that had higher impacts on natural grasslands/pastures. Because wind turbines produced on average less energy compared to gas wells, the average land-use-related ecosystem cost per gigajoule of energy produced was almost the same. Our results demonstrate that both unconventional gas and wind energy have substantial impacts on land use, which likely affect wildlife populations and land-use-related ecosystem services. Although wind energy does not have the associated greenhouse gas emissions, we suggest that the direct impacts on ecosystems in terms of land use are similar to unconventional fossil fuels. Considering the expected rapid global expansion of these two forms of energy production, many ecosystems are likely to be at risk.

  14. Evaluation of airborne thermal infrared imagery for locating mine drainage sites in the Lower Kettle Creek and Cooks Run Basins, Pennsylvania, USA

    Science.gov (United States)

    Sams, James I.; Veloski, Garret

    2003-01-01

    High-resolution airborne thermal infrared (TIR) imagery data were collected over 90.6 km2 (35 mi2) of remote and rugged terrain in the Kettle Creek and Cooks Run Basins, tributaries of the West Branch of the Susquehanna River in north-central Pennsylvania. The purpose of this investigation was to evaluate the effectiveness of TIR for identifying sources of acid mine drainage (AMD) associated with abandoned coal mines. Coal mining from the late 1800s resulted in many AMD sources from abandoned mines in the area. However, very little detailed mine information was available, particularly on the source locations of AMD sites. Potential AMD sources were extracted from airborne TIR data employing custom image processing algorithms and GIS data analysis. Based on field reconnaissance of 103 TIR anomalies, 53 sites (51%) were classified as AMD. The AMD sources had low pH (<4) and elevated concentrations of iron and aluminum. Of the 53 sites, approximately 26 sites could be correlated with sites previously documented as AMD. The other 27 mine discharges identified in the TIR data were previously undocumented. This paper presents a summary of the procedures used to process the TIR data and extract potential mine drainage sites, methods used for field reconnaissance and verification of TIR data, and a brief summary of water-quality data.

  15. Using tracer-derived groundwater transit times to assess storage within a high-elevation watershed of the upper Colorado River Basin, USA

    Science.gov (United States)

    Georgek, Jennifer L.; Kip Solomon, D.; Heilweil, Victor M.; Miller, Matthew P.

    2018-03-01

    Previous watershed assessments have relied on annual baseflow to evaluate the groundwater contribution to streams. To quantify the volume of groundwater in storage, additional information such as groundwater mean transit time (MTT) is needed. This study determined the groundwater MTT in the West Fork Duchesne watershed in Utah (USA) with lumped-parameter modeling of environmental tracers (SF6, CFCs, and 3H/3He) from 21 springs. Approximately 30% of the springs exhibited an exponential transit time distribution (TTD); the remaining 70% were best characterized by a piston-flow TTD. The flow-weighted groundwater MTT for the West Fork watershed is about 40 years with approximately 20 years in the unsaturated zone. A cumulative distribution of these ages revealed that most of the groundwater is between 30 and 50 years old, suggesting that declining recharge associated with 5-10-year droughts is less likely to have a profound effect on this watershed compared with systems with shorter MTTs. The estimated annual baseflow of West Fork stream flow based on chemical hydrograph separation is 1.7 × 107 m3/year, a proxy for groundwater discharge. Using both MTT and groundwater discharge, the volume of mobile groundwater stored in the watershed was calculated to be 6.5 × 108 m3, or 20 m thickness of active groundwater storage and recharge of 0.09 m/year (assuming porosity = 15%). Future watershed-scale assessments should evaluate groundwater MTT, in addition to annual baseflow, to quantify groundwater storage and more accurately assess watershed susceptibility to drought, groundwater extraction, and land-use change.

  16. Assessment of undiscovered conventional oil and gas resources in the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah, 2017

    Science.gov (United States)

    Schenk, Christopher J.; Mercier, Tracey J.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Brownfield, Michael E.; Le, Phuong A.; Klett, Timothy R.; Gaswirth, Stephanie B.; Finn, Thomas M.; Marra, Kristen R.; Leathers-Miller, Heidi M.

    2018-02-16

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 26 million barrels of oil and 700 billion cubic feet of gas in the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah.

  17. Assessment of continuous gas resources in the Phosphoria Formation of the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah, 2017

    Science.gov (United States)

    Schenk, Christopher J.; Mercier, Tracey J.; Tennyson, Marilyn E.; Woodall, Cheryl A.; Finn, Thomas M.; Pitman, Janet K.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phuong A.; Klett, Timothy R.; Leathers-Miller, Heidi M.

    2018-04-13

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 198 billion cubic feet of continuous gas in the Phosphoria Formation of the Wyoming Thrust Belt Province, Wyoming, Idaho, and Utah.

  18. Petrography and microanalysis of Pennsylvanian coal-ball concretions (Herrin Coal, Illinois Basin, USA): Bearing on fossil plant preservation and coal-ball origins

    Science.gov (United States)

    Siewers, Fredrick D.; Phillips, Tom L.

    2015-11-01

    Petrographic analyses of 25 coal balls from well-studied paleobotanical profiles in the Middle Pennsylvanian Herrin Coal (Westphalian D, Illinois Basin) and five select coal balls from university collections, indicate that Herrin Coal-ball peats were permineralized by fibrous and non-fibrous carbonates. Fibrous carbonates occur in fan-like to spherulitic arrays in many intracellular (within tissue) pores, and are best developed in relatively open extracellular (between plant) pore spaces. Acid etched fibrous carbonates appear white under reflected light and possess a microcrystalline texture attributable to abundant microdolomite. Scanning electron microscopy, X-ray diffraction, and electron microprobe analysis demonstrate that individual fibers have a distinct trigonal prism morphology and are notable for their magnesium content (≈ 9-15 mol% MgCO3). Non-fibrous carbonates fill intercrystalline spaces among fibers and pores within the peat as primary precipitates and neomorphic replacements. In the immediate vicinity of plant cell walls, non-fibrous carbonates cut across fibrous carbonates as a secondary, neomorphic phase attributed to coalification of plant cell walls. Dolomite occurs as diagenetic microdolomite associated with the fibrous carbonate phase, as sparite replacements, and as void-filling cement. Maximum dolomite (50-59 wt.%) is in the top-of-seam coal-ball zone at the Sahara Mine, which is overlain by the marine Anna Shale. Coal-ball formation in the Herrin Coal began with the precipitation of fibrous high magnesium calcite. The trigonal prism morphology of the carbonate fibers suggests rapid precipitation from super-saturated, meteoric pore waters. Carbonate precipitation from marine waters is discounted on the basis of stratigraphic, paleobotanical, and stable isotopic evidence. Most non-fibrous carbonate is attributable to later diagenetic events, including void-fill replacements, recrystallization, and post-depositional fracture fills. Evidence

  19. Typical aqueous rare earth element behavior in co-produced Brines, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Charles; Quillinan, Scott [UNIVERSIty of Wyoming; McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-10-24

    Normalization of Rare Earth Elements (REEs) is important to remove the distracting effects of the Oddo–Harkins rule and provide a meaningful baseline. Normalizations for rocks are well developed and include chondritic meteorites, UCC, PM, PAAS, and NASC. However normalizations for aqueous REEs are limited to oceanic regions such as the North Pacific Deep Water or North Atlantic Surface Water. This leaves water in contact with continental lithologies without a suitable normalization. We present a preliminary continental aqueous REE normalization derived from 38 deep basin hydrocarbon brines in Wyoming. The REEs in these waters are seven orders of magnitude more dilute than NASC but with significant europium enrichment. Gromet 1984 reports NASC Eu/Eu* is 0.2179, whereas in the normalization offered here, Eu/Eu* is 3.868. These waters also are free from the distracting reduction-oxidation cerium behavior found in ocean normalizations. Because these samples exhibit both the uniform behavior of NASC and the absolute concentration of seawater, a normalization based upon them offers a unique combination of the advantages of both. We used single-peak gaussian analysis to quantify the mean values for each REE and estimate the distribution variability. Additional sample collection during the last year revealed that the Powder River Basin (PRB) is atypical relative to the other sampled basins of Wyoming. Those other basins are the Wind River Basin (WRB) Green River Basin (GRB) and Wamsutter Area (WA). A pre-normalization gadolinium anomaly (Gd/Gd*) of between 4 and 23 with a mean of 11.5, defines the PRB samples. Other basins in this study range from 1 to 7 with a mean of 2.8. Finally, we present a preliminary model for ligand-based behavior of REEs in these samples. This model identifies bicarbonate, bromide, and chloride as forming significant complexes with REEs contributing to REE solubility. The ligand model explains observed REEs in the sampled Cretaceous and

  20. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA

    Science.gov (United States)

    2012-01-01

    Background Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. Results We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10–35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Conclusions Our ability to predict the response of forest

  1. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA.

    Science.gov (United States)

    Carlson, Chris H; Dobrowski, Solomon Z; Safford, Hugh D

    2012-06-28

    Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10-35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Our ability to predict the response of forest carbon resources to anthropogenic and

  2. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA

    Directory of Open Access Journals (Sweden)

    Carlson Chris H

    2012-06-01

    Full Text Available Abstract Background Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. Results We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10–35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. Conclusions Our ability to predict

  3. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L{sup −1}) to 4070 μg L{sup −1}, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO{sub 3} inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO{sub 3} application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential

  4. Wyoming Carbon Capture and Storage Institute

    Energy Technology Data Exchange (ETDEWEB)

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  5. Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach

    Science.gov (United States)

    Lewicki, Jennifer L.; Kelly, Peter; Bergfeld, Deborah; Vaughan, R. Greg; Lowenstern, Jacob B.

    2017-01-01

    We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from − 56 to 885 g m− 2 d− 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2emission rate from the study area ranged from 8.6 t d− 1 based on eddy covariance measurements to 9.8 t d− 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m− 2 d− 1. Nighttime H and LEwere considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m− 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The

  6. Monitoring gas and heat emissions at Norris Geyser Basin, Yellowstone National Park, USA based on a combined eddy covariance and Multi-GAS approach

    Science.gov (United States)

    Lewicki, J. L.; Kelly, P. J.; Bergfeld, D.; Vaughan, R. G.; Lowenstern, J. B.

    2017-11-01

    We quantified gas and heat emissions in an acid-sulfate, vapor-dominated area (0.04-km2) of Norris Geyser Basin, located just north of the 0.63 Ma Yellowstone Caldera and near an area of anomalous uplift. From 14 May to 3 October 2016, an eddy covariance system measured half-hourly CO2, H2O and sensible (H) and latent (LE) heat fluxes and a Multi-GAS instrument measured (1 Hz frequency) atmospheric H2O, CO2 and H2S volumetric mixing ratios. We also measured soil CO2 fluxes using the accumulation chamber method and temperature profiles on a grid and collected fumarole gas samples for geochemical analysis. Eddy covariance CO2 fluxes ranged from - 56 to 885 g m- 2 d- 1. Using wavelet analysis, average daily eddy covariance CO2 fluxes were locally correlated with average daily environmental parameters on several-day to monthly time scales. Estimates of CO2 emission rate from the study area ranged from 8.6 t d- 1 based on eddy covariance measurements to 9.8 t d- 1 based on accumulation chamber measurements. Eddy covariance water vapor fluxes ranged from 1178 to 24,600 g m- 2 d- 1. Nighttime H and LE were considered representative of hydrothermal heat fluxes and ranged from 4 to 183 and 38 to 504 W m- 2, respectively. The total hydrothermal heat emission rate (H + LE + radiant) estimated for the study area was 11.6 MW and LE contributed 69% of the output. The mean ± standard deviation of H2O, CO2 and H2S mixing ratios measured by the Multi-GAS system were 9.3 ± 3.1 parts per thousand, 467 ± 61 ppmv, and 0.5 ± 0.6 ppmv, respectively, and variations in the gas compositions were strongly correlated with diurnal variations in environmental parameters (wind speed and direction, atmospheric temperature). After removing ambient H2O and CO2, the observed variations in the Multi-GAS data could be explained by the mixing of relatively H2O-CO2-H2S-rich fumarole gases with CO2-rich and H2O-H2S-poor soil gases. The fumarole H2O/CO2 and CO2/H2S end member ratios (101.7 and 27

  7. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    Science.gov (United States)

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Endemic chronic wasting disease causes mule deer population decline in Wyoming.

    Directory of Open Access Journals (Sweden)

    Melia T DeVivo

    Full Text Available Chronic wasting disease (CWD is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus, mule deer (Odocoileus hemionus, Rocky Mountain elk (Cervus elaphus nelsoni, and moose (Alces alces shirasi in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ. Mule deer were captured from 2010-2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ = 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

  9. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-01-01

    This report summarizes activities that have taken place in the last 6 months (July 2004-December 2004) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the US: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico.

  10. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  11. Mid-Tertiary magmatism of the Toquima caldera complex and vicinity, Nevada: development of explosive high-K, calc-alkaline magmas in the central Great Basin, USA

    Science.gov (United States)

    Boden, David R.

    1994-04-01

    granodioritic stock and a northeast-trending dike swarm at 37 34 Ma. The dikes are broadly bimodal assemblage of silicic andesite and rhyolite. Voluminous ash-flow-tuff magmatism commenced at 32.3 Ma and persisted for ˜9 m.y. without eruption of intermediate to mafic magmas (TCC is probably a remnant of a more extensive complex of calderas whose identities are obscured by recurrent volcanism and by late Tertiary basin-range block faulting. The change from small-volume, broadly bimodal volcanism to voluminous outpourings of silicic magma is similar to that which occurred in east-central Nevada, where magmatism and rapid crustal extension overlapped in space and time. Although supracrustal extension at the time of formation of the TCC apears limited, the comparable magmatic histories and compositional characteristics of rocks erupted from east-central Nevada and the TCC suggest that fundamentally similar magmatic processes acted at depth and that extension may have been more pronounced in the lower and middle crust below the TCC and vicinity. Because strain is partitioned heterogeneously in the upper crust, the magmatic record, rather than surface structural features, may reflect better the actual state of crustal stress during volcanism. Mid-Tertiary magmatism in the TCC and vicinity probably began with intrusion of mantle-derived basalt into the lower crust, which led to crustal heating, local partial melting of crustal rocks, and intrusion of rhyolitic melts and contaminated basaltic differentiates (alkalirich andesite) into the upper crust. With time, intrusion to extrusion ratios increased as silicic melts retarded the rise of mafic magmas and mixing between mafic magmas and crustal partial melts occurred. The oxidized, water-rich, and low-temperature nature of these magmas reflects protracted crustal residence and interaction prior to eruption. The resulting hybridized and differentiated magmas ultimately erupted to form extensive deposits of silicic ash-flow tuff. By

  12. Responses of soil and water chemistry to mountain pine beetle induced tree mortality in Grand County, Colorado, USA

    Science.gov (United States)

    David W. Clow; Charles C. Rhoades; Jennifer Briggs; Megan Caldwell; William M. Lewis

    2011-01-01

    Pine forest in northern Colorado and southern Wyoming, USA, are experiencing the most severe mountain pine beetle epidemic in recorded history, and possible degradation of drinking-water quality is a major concern. The objective of this study was to investigate possible changes in soil and water chemistry in Grand County, Colorado in response to the epidemic,...

  13. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  14. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    Science.gov (United States)

    Wilson, Anna B.

    2015-10-20

    Wyoming has led the nation as the producer of uranium ore since 1995 and contains the largest reserves of any state. Approximately one third of Wyoming’s total production came from deposits in, or immediately adjacent to, the Wyoming Landscape Conservation Initiative (WLCI) study area in the southwestern corner of the state including all of Carbon, Lincoln, Sublette, Sweetwater, Uinta, and parts of southern Fremont Counties. Conventional open-pit and underground mining methods were employed in the study area until the early 1990s. Since the early 1990s, all uranium mining has been by in-situ recovery (also called in-situ leach). It is estimated that statewide remaining resources of 141,000 tonnes of uranium are about twice the 84,000 tonnes of uranium that the state has already produced.

  15. Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains

    Science.gov (United States)

    Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.

    2006-01-01

    Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.

  16. CV pilot deployment concept phase 1, outreach plan -- ICF Wyoming.

    Science.gov (United States)

    2016-06-24

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  17. Wyoming Department of Transportation geographic information system implementation project

    Science.gov (United States)

    2000-01-01

    A geographic information system (GIS) was needed by the Wyoming Department of Transportation (WYDOT) to complement existing information management procedures and leverage the spatial components of its data. WYDOT contracted with Environmental Systems...

  18. Digital representation of oil and natural gas well pad scars in southwest Wyoming: 2012 update

    Science.gov (United States)

    Garman, Steven L.; McBeth, Jamie L.

    2015-01-01

    The recent proliferation of oil and natural gas energy development in the Greater Green River Basin of southwest Wyoming has accentuated the need to understand wildlife responses to this development. The location and extent of surface disturbance that is created by oil and natural gas well pad scars are key pieces of information used to assess the effects of energy infrastructure on wildlife populations and habitat. A digital database of oil and natural gas pad scars had previously been generated from 1-meter (m) National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7-million hectare (ha) (19,026,700 acres) region of southwest Wyoming. Scars included the pad area where wellheads, pumps, and storage facilities reside and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. This report updates the digital database for the five counties of southwest Wyoming (Carbon, Lincoln, Sublette, Sweetwater, Uinta) within the Wyoming Landscape Conservation Initiative (WLCI) study area and for a limited portion of Fremont, Natrona, and Albany Counties using 2012 1-m NAIP imagery and 2012 oil and natural gas well permit information. This report adds pad scars created since 2009, and updates attributes of all pad scars using the 2012 well permit information. These attributes include the origination year of the pad scar, the number of active and inactive wells on or near each pad scar in 2012, and the overall status of the pad scar (active or inactive). The new 2012 database contains 17,404 pad scars of which 15,532 are attributed as oil and natural gas well pads. Digital data are stored as shapefiles projected to the Universal Transverse Mercator (zones 12 and 13) coordinate system. These data are available from the U.S. Geological Survey (USGS) at http://dx.doi.org/10

  19. Geothermal energy in Wyoming: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    James, R.W.

    1979-04-01

    An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

  20. Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue

    Science.gov (United States)

    Schaffers, William Clemens

    Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.

  1. The role of extremophile in the redox reaction of Fe and As relating with the formation of secondary phase mineral in extreme environment, Norris Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Koo, T. H.; Kim, J. Y.; Park, K. R.; Jung, D. H.; Geesey, G. G.; Kim, J. W.

    2015-12-01

    Redox reaction associated with microbial elemental respiration is a ubiquitous process in sediments and suspended particles at various temperatures or pH/Eh conditions. Particularly, changes in elemental redox states (structural or dissolved elemental form) induced by microbial respiration result in the unexpected biogeochemical reactions in the light of biotic/abiotic mineralization. The objective of the present study is, therefore to investigate the secondary phase mineralization through a-/biogeochemical Fe and As redox cycling in the acido-hyperhtermal Norris Geyser Basin (NGB) in Yellowstone National Park, USA, typical of the extreme condition. X-ray diffraction, scanning electron microscope with energy dispersive x-ray spectroscopy, X-ray absorption near edge structure, inductively coupled plasma-atomic emission spectrometer and liquid chromatography with ICP-mass spectroscopy with filtrated supernatant were performed for the mineralogical and hydro-geochemical analysis. The clay slurry collected from the active hot-spring of the NGB area (pH=3.5 and Temperature=78 ℃) was incubated with ("enrichment") or without the growth medium ("natural"). The control was prepared in the same condition except adding the glutaraldehyde to eliminate the microbial activity. The secondary phase mineral formation of the oxidative phase of Fe and As, and K identified as 'Pharmacosiderite' only appeared in the enrichment set suggesting a role of extremophiles in the mineral formation. The considerable population of Fe-oxidizer (Metallosphera yellowstonensis MK-1) and As-oxidizer (Sulfurihydrogenibium sp.) was measured by phylogenetic analysis in the present study area. The inhibition of As-oxidation in the low pH conditions was reported in the previous study, however the As-redox reaction was observed and consequently, precipitated the Pharmacosiderite only in the enrichment set suggesting a biotic mineralization. The present study collectively suggests that the microbial

  2. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  3. 76 FR 14057 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Science.gov (United States)

    2011-03-15

    ...: University of Wyoming, Anthropology Department, Human Remains Repository, Laramie, WY AGENCY: National Park... Anthropology Department, Human Remains Repository, Laramie, WY. The human remains and associated funerary... the human remains was made by University of Wyoming, Anthropology Department, Human Remains Repository...

  4. 30 CFR 950.30 - Approval of Wyoming abandoned mine land reclamation plan.

    Science.gov (United States)

    2010-07-01

    ..., Department of Environmental Quality, Abandoned Mine Lands Division, Herschler Building, Third Floor West, 122... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Wyoming abandoned mine land... § 950.30 Approval of Wyoming abandoned mine land reclamation plan. The Wyoming Abandoned Mine Land...

  5. Angiostrongylus cantonensis Meningitis and Myelitis, Texas, USA.

    Science.gov (United States)

    Al Hammoud, Roukaya; Nayes, Stacy L; Murphy, James R; Heresi, Gloria P; Butler, Ian J; Pérez, Norma

    2017-06-01

    Infection with Angiostrongylus cantonensis roundworms is endemic in Southeast Asia and the Pacific Basin. A. cantonensis meningitis and myelitis occurred in summer 2013 in a child with no history of travel outside of Texas, USA. Angiostrongyliasis is an emerging neurotropic helminthic disease in Texas and warrants increased awareness among healthcare providers.

  6. Wyoming Landscape Conservation Initiative Science and Management Workshop Proceedings, May 12-14, 2009, Laramie, Wyoming

    Science.gov (United States)

    Nuccio, Vito F.; D'Erchia, Frank D.; Parady, K.(compiler); Mellinger, A.

    2010-01-01

    The U.S. Geological Survey (USGS) hosted the second Wyoming Landscape Conservation Initiative (WLCI) Science and Management Workshop at the University of Wyoming Conference Center and Hilton Garden Inn on May 12, 13, and 14, 2009, in Laramie, Wyo. The workshop focused on six topics seen as relevant to ongoing WLCI science and management activities: mapping and modeling resources for decisionmaking; data information and management; fish and wildlife research; changing landscapes; monitoring; and reclamation and offsite mitigation. Panelists gave presentations on ongoing research in these six areas during plenary sessions followed by audience discussions. Three breakout groups focused on discussing wildlife, reclamation, and monitoring. Throughout the plenary sessions, audience discussions, and breakout groups, several needs were repeatedly emphasized by panelists and workshop participants: developing a conservation plan and identifying priority areas and species for conservation actions; gaining a deeper understanding of sagebrush ecology; identifying thresholds for wildlife that can be used to create an 'early warning system' for managers; continuing to collect basic data across the landscape; facilitating even greater communication and partnership across agencies and between scientists and land managers; and engaging proactively in understanding new changes on the landscape such as wind energy development and climate change. Detailed proceedings from the workshop are captured and summarized in this report.

  7. Geochemical, biogeochemical, and sedimentological studies of the Green River Formation. Wyoming, Utah, and Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, M.L.

    1991-01-01

    The report contains the following sections: Introduction; Sulfur geochemistry and isotopy of the Green River Formation, Wyoming, Utah, and Colorado; A preliminary study of the carbon and nitrogen isotopic biogeochemistry of lacustrine sedimentary rocks from the Green River Formation, Wyoming, Utah, and Colorado; Trace elements in pyrites of the Green River Formation oil shales, Wyoming, Utah, and Colorado; An experimental study of goethite sulfidization--Relationships to the diagenesis of iron and sulfur; Effects of source, depositional environment, and diagenesis on characteristics of organic matter in oil shale from the Green River Formation, Wyoming, Utah, and Colorado; Petrography of iron sulfide minerals in the Green River Formation of Wyoming, Utah, and Colorado.

  8. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  9. Spatial mapping and attribution of Wyoming wind turbines

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2010-01-01

    This Wyoming wind-turbine data set represents locations of wind turbines found within Wyoming as of August 1, 2009. Each wind turbine is assigned to a wind farm. For each turbine, this report contains information about the following: potential megawatt output, rotor diameter, hub height, rotor height, land ownership, county, wind farm power capacity, the number of units currently associated with its wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some attributes are estimates based on information that was obtained through the American Wind Energy Association and miscellaneous online reports. The locations are derived from August 2009 true-color aerial photographs made by the National Agriculture Imagery Program; the photographs have a positional accuracy of approximately ?5 meters. The location of wind turbines under construction during the development of this data set will likely be less accurate than the location of turbines already completed. The original purpose for developing the data presented here was to evaluate the effect of wind energy development on seasonal habitat used by greater sage-grouse. Additionally, these data will provide a planning tool for the Wyoming Landscape Conservation Initiative Science Team and for other wildlife- and habitat-related projects underway at the U.S. Geological Survey's Fort Collins Science Center. Specifically, these data will be used to quantify disturbance of the landscape related to wind energy as well as quantifying indirect disturbances to flora and fauna. This data set was developed for the 2010 project 'Seasonal predictive habitat models for greater sage-grouse in Wyoming.' This project's spatially explicit seasonal distribution models of sage-grouse in Wyoming will provide resource managers with tools for conservation planning. These

  10. Re-Os systematics and geochemistry of cobaltite (CoAsS) in the Idaho cobalt belt, Belt-Purcell Basin, USA: Evidence for middle Mesoproterozoic sediment-hosted Co-Cu sulfide mineralization with Grenvillian and Cretaceous remobilization

    Science.gov (United States)

    Saintilan, N.J.; Creaser, R.A.; Bookstrom, Arthur A.

    2017-01-01

    We report the first study of the Re-Os systematics of cobaltite (CoAsS) using disseminated grains and massive sulfides from samples of two breccia-type and two stratabound deposits in the Co-Cu-Au Idaho cobalt belt (ICB), Lemhi subbasin to the Belt-Purcell Basin, Idaho, USA. Using a 185Re + 190Os spike solution, magnetic and non-magnetic fractions of cobaltite mineral separates give reproducible Re-Os analytical data for aliquot sizes of 150 to 200 mg. Cobaltite from the ICB has highly radiogenic 187Os/188Os ratios (17–45) and high 187Re/188Os ratios (600–1800) but low Re and total Os contents (ca. 0.4–4 ppb and 14–64 ppt, respectively). Containing 30 to 74% radiogenic 187Os, cobaltite from the ICB is amenable to Re-Os age determination using the isochron regression approach.Re-Os data for disseminated cobaltite mineralization in a quartz-tourmaline breccia from the Haynes-Stellite deposit yield a Model 1 isochron age of 1349 ± 76 Ma (2σ, n = 4, mean squared weighted deviation MSWD = 2.1, initial 187Os/188Os ratio = 4.7 ± 2.2). This middle Mesoproterozoic age is preserved despite a possible metamorphic overprint or a pulse of metamorphic-hydrothermal remobilization of pre-existing cobaltite that formed along fold cleavages during the ca. 1190–1006 Ma Grenvillian orogeny. This phase of remobilization is tentatively identified by a Model 3 isochron age of 1132 ± 240 Ma (2σ, n = 7, MSWD = 9.3, initial 187Os/188Os ratio of 9.0 ± 2.9) for cobaltite in the quartz-tourmaline breccia from the Idaho zone in the Blackbird mine.All Mesoproterozoic cobaltite mineralization in the district was affected by greenschist- to lower amphibolite-facies (garnet zone) metamorphism during the Late Jurassic to Late Cretaceous Cordilleran orogeny. However, the fine- to coarse-grained massive cobaltite mineralization from the shear zone-hosted Chicago zone, Blackbird mine, is the only studied deposit that has severely disturbed Re

  11. Endemic chronic wasting disease causes mule deer population decline in Wyoming

    Science.gov (United States)

    DeVivo, Melia T.; Edmunds, David R.; Kauffman, Matthew J.; Schumaker, Brant A.; Binfet, Justin; Kreeger, Terry J.; Richards, Bryan J.; Schatzl, Hermann M.; Cornish, Todd

    2017-01-01

    Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), Rocky Mountain elk (Cervus elaphus nelsoni), and moose (Alces alces shirasi) in North America. In southeastern Wyoming average annual CWD prevalence in mule deer exceeds 20% and appears to contribute to regional population declines. We determined the effect of CWD on mule deer demography using age-specific, female-only, CWD transition matrix models to estimate the population growth rate (λ). Mule deer were captured from 2010–2014 in southern Converse County Wyoming, USA. Captured adult (≥ 1.5 years old) deer were tested ante-mortem for CWD using tonsil biopsies and monitored using radio telemetry. Mean annual survival rates of CWD-negative and CWD-positive deer were 0.76 and 0.32, respectively. Pregnancy and fawn recruitment were not observed to be influenced by CWD. We estimated λ= 0.79, indicating an annual population decline of 21% under current CWD prevalence levels. A model derived from the demography of only CWD-negative individuals yielded; λ = 1.00, indicating a stable population if CWD were absent. These findings support CWD as a significant contributor to mule deer population decline. Chronic wasting disease is difficult or impossible to eradicate with current tools, given significant environmental contamination, and at present our best recommendation for control of this disease is to minimize spread to new areas and naïve cervid populations.

  12. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  13. Wyoming greater sage-grouse habitat prioritization: A collection of multi-scale seasonal models and geographic information systems land management tools

    Science.gov (United States)

    O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.

    2015-01-01

    With rapidly changing landscape conditions within Wyoming and the potential effects of landscape changes on sage-grouse habitat, land managers and conservation planners, among others, need procedures to assess the location and juxtaposition of important habitats, land-cover, and land-use patterns to balance wildlife requirements with multiple human land uses. Biologists frequently develop habitat-selection studies to identify prioritization efforts for species of conservation concern to increase understanding and help guide habitat-conservation efforts. Recently, the authors undertook a large-scale collaborative effort that developed habitat-selection models for Greater Sage-grouse (Centrocercus urophasianus) across large landscapes in Wyoming, USA and for multiple life-stages (nesting, late brood-rearing, and winter). We developed these habitat models using resource selection functions, based upon sage-grouse telemetry data collected for localized studies and within each life-stage. The models allowed us to characterize and spatially predict seasonal sage-grouse habitat use in Wyoming. Due to the quantity of models, the diversity of model predictors (in the form of geographic information system data) produced by analyses, and the variety of potential applications for these data, we present here a resource that complements our published modeling effort, which will further support land managers.

  14. Digital Learning Compass: Distance Education State Almanac 2017. Wyoming

    Science.gov (United States)

    Seaman, Julia E.; Seaman, Jeff

    2017-01-01

    This brief report uses data collected under the U.S. Department of Education's National Center for Educational Statistics (NCES) Integrated Postsecondary Education Data System (IPEDS) Fall Enrollment survey to highlight distance education data in the state of Wyoming. The sample for this analysis is comprised of all active, degree-granting…

  15. Food habits of Northern Goshawks nesting in south central Wyoming

    Science.gov (United States)

    John R. Squires

    2000-01-01

    Northern Goshawks (Accipiter gentiles) nesting in south central Wyoming consumed at least 33 species of prey; 14 were mammals and 19 were birds. Based on percent occurrence in regurgitated pellets, dominant (>10% frequency) prey species included: red squirrel (Tamiasciurus hudsonicus; present in 50% of pellets), Northern Flicker (Colaptes auratus; 34...

  16. 76 FR 64099 - Notice of Competitive Coal Lease Sale, Wyoming

    Science.gov (United States)

    2011-10-17

    ... natural gas wells have been drilled on the tract. The estimate of the bonus value of the coal lease will...] Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the...

  17. Effects of ugulate browsing on aspen regeneration in northwestern Wyoming

    Science.gov (United States)

    Bruce L. Smith; J. Scott Dieni; Roxane L. Rogers; Stanley H. Anderson

    2001-01-01

    Although clearcutting has been demonstrated to be an effective means to regenerate aspen, stand replacement may be retarded under conditions of intense browsing of regeneration, such as that experienced near elk feedgrounds in northwestern Wyoming. We studied the effects of ungulate browsing on regenerating aspen following clearcutting on the National Elk Refuge. Nine...

  18. Wyoming Landscape Conservation Initiative data management and integration

    Science.gov (United States)

    Latysh, Natalie; Bristol, R. Sky

    2011-01-01

    Six Federal agencies, two State agencies, and two local entities formally support the Wyoming Landscape Conservation Initiative (WLCI) and work together on a landscape scale to manage fragile habitats and wildlife resources amidst growing energy development in southwest Wyoming. The U.S. Geological Survey (USGS) was tasked with implementing targeted research and providing scientific information about southwest Wyoming to inform the development of WLCI habitat enhancement and restoration projects conducted by land management agencies. Many WLCI researchers and decisionmakers representing the Bureau of Land Management, U.S. Fish and Wildlife Service, the State of Wyoming, and others have overwhelmingly expressed the need for a stable, robust infrastructure to promote sharing of data resources produced by multiple entities, including metadata adequately describing the datasets. Descriptive metadata facilitates use of the datasets by users unfamiliar with the data. Agency representatives advocate development of common data handling and distribution practices among WLCI partners to enhance availability of comprehensive and diverse data resources for use in scientific analyses and resource management. The USGS Core Science Informatics (CSI) team is developing and promoting data integration tools and techniques across USGS and partner entity endeavors, including a data management infrastructure to aid WLCI researchers and decisionmakers.

  19. Mitigation Strategies to Reduce Truck Crash Rates on Wyoming Highways

    Science.gov (United States)

    2017-05-04

    M Mahdi Rezapour Mashhadi (ORCID iD: 0000-0003-0774-737X); Promothes Saha, Ph.D., P.E. (ORCID iD: 0000-0003-3298-8327); Trenna Terrill (ORCID iD: 0000-0002-5239-6380); Khaled Ksaibati, Ph.D., P.E. (ORCID iD: 0000-0003-3532-6839) Wyoming has one of th...

  20. Investigating the Multicultural Competency of a Sample of Wyoming Educators

    Science.gov (United States)

    Kern, Stacey L.

    2016-01-01

    The literature on disproportionality indicates a generally held belief that disproportionality endures, in part, because of the lack of multicultural competency in today's educators. Yet, there is a dearth of empirical evidence to support this belief. This study examined the multicultural competency of a sample of Wyoming educators in order to…

  1. A HANDBOOK FOR TEACHERS OF MIGRANT CHILDREN IN WYOMING, 1967.

    Science.gov (United States)

    BENITENDI, WILMA LEE; AND OTHERS

    A SURVEY MADE DURING THE SUMMER OF 1967 SHOWED THAT ALMOST ONE THOUSAND SCHOOL-AGE MIGRANT CHILDREN WERE IN THE STATE OF WYOMING FOR 6 TO 8 WEEKS DURING THE SUGAR BEET SEASON. THIS HANDBOOK, PREPARED FOR THE USE OF THOSE TEACHERS AND ADMINISTRATORS WHO WORK IN SUMMER SCHOOL PROGRAMS, IS DIVIDED INTO FIVE CHAPTERS. CHAPTERS 1 AND 2 DEAL WITH THE…

  2. Bird-habitat relationships in riparian communities of southeastern Wyoming

    Science.gov (United States)

    Deborah M. Finch

    1987-01-01

    Bird-habitat relationships along a riparian gradient in southeastern Wyoming were examined from 1982 to 1984. Breeding birds were spot-mapped on ten study grids established over an elevational cline of 933 m. Habitat analyses indicated significant trends of decreasing vegetational complexity from low to high elevations, with declines in number of habitat layers, and...

  3. Woody fuels reduction in Wyoming big sagebrush communities

    Science.gov (United States)

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle & Young) ecosystems historically have been subject to disturbances that reduce or remove shrubs primarily by fire, although insect outbreaks and disease have also been important. Depending on site productivity, fire return in...

  4. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    Science.gov (United States)

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  5. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Peggy Robinson

    2003-07-25

    This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

  6. Synchronizing early Eocene deep-sea and continental records - cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores

    Science.gov (United States)

    Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.

    2018-03-01

    A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a second generation of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.

  7. Environmental Assessment Bird Damage Management in the Wyoming Wildlife Services Program

    OpenAIRE

    United States Department of Agriculture; Animal and Plant Health Inspection Service; Wildlife Services

    2007-01-01

    The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services (WS), U.S. Fish and Wildlife Service (USFWS), Federal Aviation Administration (FAA); Wyoming Game and Fish Department (WGFD), and Wyoming Department of Health (WDH) propose to continue the current bird damage management program in Wyoming. WS, USFWS, FAA, WGFD, and WDH use an adaptive integrated wildlife damage management (IWDM) approach to reduce bird damage to property,...

  8. Employment Discrimination Based on Sexual Orientation and Gender Identity in Wyoming

    OpenAIRE

    Mallory, Christy; Sears, Brad

    2015-01-01

    About 8,900 LGBT workers in Wyoming are not explicitly protected from discrimination under state or federal laws. Discrimination against LGBT employees in Wyoming has recently been documented in surveys, court cases, and other sources. Many corporate employers and public opinion in the state support protections for LGBT people in the workplace. If sexual orientation and gender identity were added to existing statewide non-discrimination laws, four more complaints would be filed in Wyoming eac...

  9. Pleistocene glaciation of the Jackson Hole area, Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Good, John M.; Jaworowski, Cheryl

    2018-01-24

    Pleistocene glaciations and late Cenozoic offset on the Teton fault have played central roles in shaping the scenic landscapes of the Teton Range and Jackson Hole area in Wyoming. The Teton Range harbored a system of mountain-valley glaciers that produced the striking geomorphic features in these mountains. However, the comparatively much larger southern sector of the Greater Yellowstone glacial system (GYGS) is responsible for creating the more expansive glacial landforms and deposits that dominate Jackson Hole. The glacial history is also inextricably associated with the Yellowstone hotspot, which caused two conditions that have fostered extensive glaciation: (1) uplift and consequent cold temperatures in greater Yellowstone; and (2) the lowland track of the hotspot (eastern Snake River Plain) that funneled moisture to the Yellowstone Plateau and the Yellowstone Crescent of High Terrain (YCHT).The penultimate (Bull Lake) glaciation filled all of Jackson Hole with glacial ice. Granitic boulders on moraines beyond the south end of Jackson Hole have cosmogenic 10Be exposure ages of ~150 thousand years ago (ka) and correlate with Marine Isotope Stage 6. A thick loess mantle subdues the topography of Bull Lake moraines and caps Bull Lake outwash terraces with a reddish buried soil near the base of the loess having a Bk horizon that extends down into the outwash gravel. The Bull Lake glaciation of Jackson Hole extended 48 kilometers (km) farther south than the Pinedale, representing the largest separation of these two glacial positions in the Western United States. The Bull Lake is also more extensive than the Pinedale on the west (22 km) and southwest (23 km) margins of the GYGS but not on the north and east. This pattern is explained by uplift and subsidence on the leading and trailing “bow-wave” of the YCHT, respectively.During the last (Pinedale) glaciation, mountain-valley glaciers of the Teton Range extended to the western edge of Jackson Hole and built

  10. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative: 2012 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura; Boughton, Gregory K.; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Fedy, Bradford C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Sweat, Michael J.; Wilson, Anna B.

    2014-01-01

    Southwest Wyoming contains abundant energy resources, wildlife, habitat, open spaces, and outdoor recreational opportunities. Although energy exploration and development have been taking place in the region since the late 1800s, the pace of development for fossil fuels and renewable energy increased significantly in the early 2000s. This and the associated urban and exurban development are leading to landscape-level environmental and socioeconomic changes that have the potential to diminish wildlife habitat and other natural resources, and the quality of human lives, in Southwest Wyoming. The potential for negative effects of these changes prompted Federal, State, and local agencies to undertake the Wyoming Landscape Conservation Initiative for Southwest Wyoming.

  11. New records of Coccinellidae (Coleoptera) from Wyoming, U.S.A.

    Science.gov (United States)

    Faunal distributions are dynamic, and the fauna associated with a particular area may change due to accidental or intentional introductions of new species, extinctions, and natural geographic range expansions or contractions of species. Thus, periodic field surveys and collections of fauna are nece...

  12. An exploration systems approach to the Copper Mountain uranium deposits, Wyoming, USA

    International Nuclear Information System (INIS)

    Babcock, L.L.; Sayala, D.

    1982-01-01

    This study of Copper Mountain uranium deposits entailed the examination, interpretation, and synthesis of geological, geochemical, geophysical, and emanometric results. Regional, structural, and metallogenic syntheses yielded criteria concerning the occurrence of anomalously radioactive granites and associated uranium deposits. Geochemical surveys indicated various pathfinder elements for uranium deposits and defined the extent of the anomalous granites. Subsurface spectral radiometrics outlined high K-Th zones which contain secondary uranium deposits. Aerial spectral radiometric and magnetic surveys delineated the Copper Mountain uranium district. Ground water helium and U-234/U-238 activity ratios are the most effective emanometric and isotopic techniques. Based on the systems approach employed and logistical considerations, a five-phase exploration strategy is suggested for Copper Mountain-type deposits

  13. ReNEW: Wyoming's Answer to Academic Progression in Nursing.

    Science.gov (United States)

    Anderson, Jennifer; Wells, Kathy; Mather, Charlotte; Burman, Mary E

    The aim of the study was to describe Wyoming's approach to academic progression and its projected impact. The collaborative process used to develop the shared statewide BSN curriculum is described along with recommendations. Successful educational models that address the Institute of Medicine's recommendation that 80 percent of RNs have a baccalaureate degree by 2020 face numerous challenges, especially in rural states. ReNEW (Revolutionizing Nursing Education in Wyoming) is a creative solution designed to decrease barriers to BSN education and increase motivation through a streamlined shared curriculum building on a strong community college system and the state's one BSN program. Guiding principles, especially addressing the value of both ADN and BSN education, broad-based coalition development and maintenance, statewide structure, and ongoing funding, were keys to success.

  14. Association of Moraxella ovis with keratoconjunctivitis in mule deer and moose in Wyoming.

    Science.gov (United States)

    Dubay, S A; Williams, E S; Mills, K; Boerger-Fields, A M

    2000-04-01

    Six cases of infectious keratoconjunctivitis (IKC) in mule deer (Odocoileus hemionus) and moose (Alces alces) in Wyoming (USA) were investigated during fall and winter of 1995 and 1996. Excessive lacrimation, mucopurulent conjunctivitis, keratitis, and corneal opacity were observed in mule deer. Moose had severe mucopurulent conjunctivitis, keratitis, and corneal ulceration. Hemolytic, non-piliated Moraxella ovis was isolated from two mule deer and two moose. We attempted to reproduce IKC in three mule deer fawns using an isolate of M. ovis from a clinically affected mule deer. These fawns did not develop clinical signs of infection and the bacterium was not reisolated from inoculated deer. Inoculated deer may not have developed clinical signs because deer were not exposed to ultraviolet light or mechanical insult before inoculation. In addition, the isolate used for inoculation may have lost virulence factors through passage, or M. ovis may not have been the primary pathogen responsible for clinical disease in the natural cases of IKC we investigated. The etiology of IKC in free-ranging wild ruminants remains poorly understood.

  15. Geochemical effects of CO2 injection on produced water chemistry at an enhanced oil recovery site in the Permian Basin of northwest Texas, USA: Preliminary geochemical and Li isotope results

    Science.gov (United States)

    Pfister, S.; Gardiner, J.; Phan, T. T.; Macpherson, G. L.; Diehl, J. R.; Lopano, C. L.; Stewart, B. W.; Capo, R. C.

    2014-12-01

    Injection of supercritical CO2 for enhanced oil recovery (EOR) presents an opportunity to evaluate the effects of CO2 on reservoir properties and formation waters during geologic carbon sequestration. Produced water from oil wells tapping a carbonate-hosted reservoir at an active EOR site in the Permian Basin of Texas both before and after injection were sampled to evaluate geochemical and isotopic changes associated with water-rock-CO2 interaction. Produced waters from the carbonate reservoir rock are Na-Cl brines with TDS levels of 16.5-34 g/L and detectable H2S. These brines are potentially diluted with shallow groundwater from earlier EOR water flooding. Initial lithium isotope data (δ7Li) from pre-injection produced water in the EOR field fall within the range of Gulf of Mexico Coastal sedimentary basin and Appalachian basin values (Macpherson et al., 2014, Geofluids, doi: 10.1111/gfl.12084). Pre-injection produced water 87Sr/86Sr ratios (0.70788-0.70795) are consistent with mid-late Permian seawater/carbonate. CO2 injection took place in October 2013, and four of the wells sampled in May 2014 showed CO2 breakthrough. Preliminary comparison of pre- and post-injection produced waters indicates no significant changes in the major inorganic constituents following breakthrough, other than a possible drop in K concentration. Trace element and isotope data from pre- and post-breakthrough wells are currently being evaluated and will be presented.

  16. Interaction among cervids, fungi, and aspen in northwest Wyoming

    Science.gov (United States)

    John H. Hart; D. L. Hart

    2001-01-01

    Eighty-five 0.02-ha plots in the Gros Ventre River drainage of northwestern Wyoming with high elk usage had 39% fewer aspen stems in 1985 than in 1970. Sixtyfive of these plots were remeasured in 1989 and 53 additional plots established in 1986 on the Hoback River drainage (lower winter elk usage) were remeasured in 1990. Overall mortality (average/year) of aspen stems...

  17. Wyoming big sagebrush seed production from mined and unmined rangelands

    Energy Technology Data Exchange (ETDEWEB)

    Booth, D.T.; Bai, Y.; Roos, E.E. [USDA ARS, Cheyenne, WY (United States). High Plains Grasslands Research Station

    2003-09-01

    Wyoming Coal Rules and Regulations require shrubs be returned to mined land and that revegetation '...be self renewing.' We evaluated seed production and seed quality of Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis (Beetle & Young)) by measuring the effect of mining, herbivory, and environmental modification on seed production at 5 sites on the Dave Johnston Coal Mine near Glenrock, Wyoming. Mined-land stands ranged in age from 5 to {gt} 20 years. Single sagebrush plants on mined, and adjacent unmined land were treated by: (1) fabric mulch around the base, (2) windbreak on the north and west, (3) both mulch and windbreak, and (4) neither windbreak nor mulch. Plants were fenced and compared with unfenced, untreated, neighboring plants. Seeds were harvested for 3 years and data were collected on seed-stalk numbers, bulk weight of seeds produced, and seed quality. Fenced mined-land plants produced several times more seeds than fenced plants on adjacent unmined land. There was no difference in seed quality. Treatments to modify the plant environment resulted in some benefits but fencing had a greater effect on seed-quality parameters than did planned treatments. We conclude the sagebrush seed-production potential on reclaimed lands such as those of the Dave Johnston Coal Mine is equal to, and often several times greater than that of adjacent unmined lands. However, browsing by wild ungulates can eliminate the mined-land yield advantage.

  18. Promoting Art through Technology, Education and Research of Natural Sciences (PATTERNS) across Wyoming, A Wyoming NSF EPSCoR Funded Project

    Science.gov (United States)

    Gellis, B. S.; McElroy, B. J.

    2016-12-01

    PATTERNS across Wyoming is a science and art project that promotes new and innovative approaches to STEM education and outreach, helping to re-contextualize how educators think about creative knowledge, and how to reach diverse audiences through informal education. The convergence of art, science and STEM outreach efforts is vital to increasing the presence of art in geosciences, developing multidisciplinary student research opportunities, expanding creative STEM thinking, and generating creative approaches of visualizing scientific data. A major goal of this project is to train art students to think critically about the value of scientific and artistic inquiry. PATTERNS across Wyoming makes science tangible to Wyoming citizens through K-14 art classrooms, and promotes novel maker-based art explorations centered around Wyoming's geosciences. The first PATTERNS across Wyoming scientific learning module (SIM) is a fish-tank sized flume that recreates natural patterns in sand as a result of fluid flow and sediment transport. It will help promotes the understanding of river systems found across Wyoming (e.g. Green, Yellowstone, Snake). This SIM, and the student artwork inspired by it, will help to visualize environmental-water changes in the central Rocky Mountains and will provide the essential inspiration and tools for Wyoming art students to design biological-driven creative explorations. Each art class will receive different fluvial system conditions, allowing for greater understanding of river system interactions. Artwork will return to the University of Wyoming for a STE{A}M Exhibition inspired by Wyoming's varying fluvial systems. It is our hope that new generations of science and art critical thinkers will not only explore questions of `why' and `how' scientific phenomena occur, but also `how' to better predict, conserve and study invaluable artifacts, and visualize conditions which allow for better control of scientific outcomes and public understanding.

  19. (Dahomey) Basin

    African Journals Online (AJOL)

    Timothy Ademakinwa

    13 km maximum width in the onshore at the basin axis along Nigerian and Republic of Benin boundary. This narrows westwards and eastwards to about 5 km (Coker and Ejedawe, 1987; Coker,. 2002). Detailed geology, evolution, stratigraphy and hydrocarbon occurrence of the basin have been described by Jones and ...

  20. Reserves in western basins: Part 1, Greater Green River basin

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  1. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    International Nuclear Information System (INIS)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment

  2. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

  3. Space Radar Image of Yellowstone Park, Wyoming

    Science.gov (United States)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  4. Ammonia emission inventory for the state of Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Maser, Colette R.; Brown, Nancy J.

    2003-12-17

    Ammonia (NH{sub 3}) is the only significant gaseous base in the atmosphere and it has a variety of impacts as an atmospheric pollutant, including the formation of secondary aerosol particles: ammonium sulfate and ammonium nitrate. NH{sub 3} preferentially forms ammonium sulfate; consequently ammonium nitrate aerosol formation may be limited by the availability of NH{sub 3}. Understanding the impact of emissions of oxides of sulfur and nitrogen on visibility, therefore, requires accurately determined ammonia emission inventories for use in air quality models, upon which regulatory and policy decisions increasingly depend. This report presents an emission inventory of NH{sub 3} for the state of Wyoming. The inventory is temporally and spatially resolved at the monthly and county level, and is comprised of emissions from individual sources in ten categories: livestock, fertilizer, domestic animals, wild animals, wildfires, soil, industry, mobile sources, humans, and publicly owned treatment works. The Wyoming NH{sub 3} inventory was developed using the Carnegie Mellon University (CMU) Ammonia Model as framework. Current Wyoming-specific activity data and emissions factors obtained from state agencies and published literature were assessed and used as inputs to the CMU Ammonia Model. Biogenic emissions from soils comprise about three-quarters of the Wyoming NH{sub 3} inventory, though emission factors from soils are highly uncertain. Published emission factors are scarce and based on limited measurements. In Wyoming, agricultural land, rangeland, and forests comprise 96% of the land area and essentially all of the estimated emissions from soils. Future research on emission rates of NH{sub 3} for these land categories may lead to a substantial change in the magnitude of soil emissions, a different inventory composition, and reduced uncertainty in the inventory. While many NH{sub 3} inventories include annual emissions, air quality modeling studies require finer temporal

  5. Draft environmental statement. Wyoming Mineral Corporation, Irigaray solution mining project (Johnson County, Wyoming)

    International Nuclear Information System (INIS)

    1978-04-01

    The Irigaray project consists of solution mining (in situ leaching) operations involving uranium ore deposits in Johnson County, Wyoming. Solution mining activities will include a processing facility with an annual production of 500,000 lb of U 3 O 8 from up to 50 acres of well fields through the initial license authorization. The Irigaray project has an estimated lifetime of 10 to 20 years with known ore deposits and the current level of solution mining technology. Environmental impacts and adverse effects are summarized. The site is mostly used as grazing land for cattle and sheep. Initiation of the Irigaray project would result in the temporary removal from grazing and the disturbance of approximately 60 acres during operation. All disturbed surface areas will be reclaimed and returned to their original use. Approximately 1.2 x 10 6 m 3 (1000 acre-ft) of water will be withdrawn from the ore zone aquifer. This water will be conveyed to the onsite waste ponds for evaporation. An estimated 4.2 x 10 5 m 3 (340 acre-ft) of groundwater is expected to temporarily contain increased concentrations of radioactive and toxic elements during the operation of each 4-ha (10-acre) well field. Restoration should return this water to a condition that is consistent with its premining use (or potential use). There will be no discharge of liquid effluents from the Irigaray project. Atmospheric effluents will be within acceptable limits. The dose rates of radionuclides in the air at the nearest ranches from the plant site are tabulated. The Irigaray project proposes the production and utilization of 500,000 lb per year of uranium resources. The Irigaray project will not produce any significant socioeconomic impact on the local area because of the small number of employees that will be employed at the project

  6. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Science.gov (United States)

    2013-05-01

    ... Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission.... 47 for its Bear Creek Uranium Mill facility in Converse County, Wyoming. The NRC has prepared an... INFORMATION: I. Background The Bear Creek Uranium Mill operated from September 1977 until January 1986, and...

  7. WyomingView: No-Cost Remotely Sensed Data for Geographic Education

    Science.gov (United States)

    Sivanpillai, Ramesh; Driese, Kenneth L.

    2008-01-01

    Learning enhanced by visual examples and remotely sensed imagery is a valuable classroom resource for teaching students geographic concepts in a meaningful context. Barriers to the use of imagery include difficulty finding appropriate imagery and the cost of moderate resolution satellite imagery. A program in Wyoming called WyomingView and…

  8. Influence of container size on Wyoming big sagebrush seedling morphology and cold hardiness

    Science.gov (United States)

    Kayla R. Herriman; Anthony S. Davis; R. Kasten Dumroese

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata) is a key component of sagebrush steppe ecosystems and is a dominant shrub throughout the western United States. Our objective was to identify the effect of container size on plant morphology of Wyoming big sagebrush. We used three different stocktypes (45/340 ml [20 in3], 60/250 ml [15 in3], 112/105 ml [6....

  9. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  10. Uranium hydrogeochemical and stream sediment reconnaissance of the Arminto NTMS quadrangle, Wyoming, including concentrations of forty-three additional elements

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.L.

    1979-11-01

    During the summers of 1976 and 1977, 570 water and 1249 sediment samples were collected from 1517 locations within the 18,000-km/sup 2/ area of the Arminto NTMS quadrangle of central Wyoming. Water samples were collected from wells, springs, streams, and artifical ponds; sediment samples were collected from wet and dry streams, springs, and wet and dry ponds. All water samples were analyzed for 13 elements, including uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit to 84.60 parts per billion (ppb) with a mean of 4.32 ppb. All water sample types except pond water samples were considered as a single population in interpreting the data. Pond water samples were excluded due to possible concentration of uranium by evaporation. Most of the water samples containing greater than 20 ppb uranium grouped into six clusters that indicate possible areas of interest for further investigation. One cluster is associated with the Pumpkin Buttes District, and two others are near the Kaycee and Mayoworth areas of uranium mineralization. The largest cluster is located on the west side of the Powder River Basin. One cluster is located in the central Big Horn Basin and another is in the Wind River Basin; both are in areas underlain by favorable host units. Uranium concentrations in sediment samples range from 0.08 parts per million (ppm) to 115.50 ppm with a mean of 3.50 ppm. Two clusters of sediment samples over 7 ppm were delineated. The first, containing the two highest-concentration samples, corresponds with the Copper Mountain District. Many of the high uranium concentrations in samples in this cluster may be due to contamination from mining or prospecting activity upstream from the sample sites. The second cluster encompasses a wide area in the Wind River Basin along the southern boundary of the quadrangle.

  11. Synchronizing early Eocene deep-sea and continental records – cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores

    Directory of Open Access Journals (Sweden)

    T. Westerhold

    2018-03-01

    Full Text Available A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56–54 Ma, show the impact of large-scale carbon input into the ocean–atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene–Eocene Thermal Maximum (PETM and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2. Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP. Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ∼ 200 kyr for the carbon isotope excursion and ∼ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ∼ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus–Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4–Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge, major changes in the biota at this time are documented by the radiation of a second generation of apical spine-bearing sphenolith species (e.g., S. radians and S. editus, the emergence of T. orthostylus, and the marked decline of D. multiradiatus.

  12. Asian aridification linked to the first step of the Eocene-Oligocene climate Transition (EOT in obliquity-dominated terrestrial records (Xining Basin, China

    Directory of Open Access Journals (Sweden)

    G. Q. Xiao

    2010-07-01

    Full Text Available Asian terrestrial records of the Eocene-Oligocene Transition (EOT are rare and, when available, often poorly constrained in time, even though they are crucial in understanding the atmospheric impact of this major step in Cenozoic climate deterioration. Here, we present a detailed cyclostratigraphic study of the continuous continental EOT succession deposited between ~35 to 33 Ma in the Xining Basin at the northeastern edge of Tibetan Plateau. Lithology supplemented with high-resolution magnetic susceptibility (MS, median grain size (MGS and color reflectance (a* records reveal a prominent ~3.4 m thick basic cyclicity of alternating playa gypsum and dry mudflat red mudstones of latest Eocene age. The magnetostratigraphic age model indicates that this cyclicity was most likely forced by the 41-kyr obliquity cycle driving oscillations of drier and wetter conditions in Asian interior climate from at least 1 million year before the EOT. In addition, our results suggest a duration of ~0.9 Myr for magnetochron C13r that is in accordance with radiometric dates from continental successions in Wyoming, USA, albeit somewhat shorter than in current time scales. Detailed comparison of the EOT interval in the Tashan section with marine records suggest that the most pronounced lithofacies change in the Xining Basin corresponds to the first of two widely recognized steps in oxygen isotopes across the EOT. This first step precedes the major and second step (i.e. the base of Oi-1 and has recently been reported to be mainly related to atmospheric cooling rather than ice volume growth. Coincidence with lithofacies changes in our Chinese record would suggest that the atmospheric impact of the first step was of global significance, while the major ice volume increase of the second step did not significantly affect Asian interior climate.

  13. Use and availability of continuous streamflow records in Wyoming

    Science.gov (United States)

    Schuetz, J.R.

    1986-01-01

    This report documents a survey that identifies local, State, and Federal uses of data from 139 continuous-record, surface-water stations, presently (1984) operated by the Wyoming District of the U. S. Geological Survey; identifies sources of funding pertaining to collections of streamflow data; and presents frequency of data availability. Uses of data from the 139 stations are categorized into seven classes: Regional Hydrology, Hydrology Systems, Legal Obligations, Planning and Design, Project Operation, Hydrologic Forecasts, and Water Quality Monitoring. Sufficient use of surface water data collected from the stations justifies the continued operation of all stations. (USGS)

  14. Snow Cover, Snowmelt Timing and Stream Power in the Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather, including earlier snowmelt, has been documented in the western United States over at least the last 50 years. Because the majority (is greater than 70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for the management of streamflow. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work, such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud-gap-filled (CGF) map products and 30 years of discharge and meteorological station data are studied. Streamflow data from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period as a whole. The extent of snow-cover (percent of basin covered) derived from the lowest elevation zone (2500-3000 m) of the WRR, using MODIS CGF snow-cover maps, is strongly correlated with maximum monthly discharge on 30 April, where Spearman's Rank correlation, rs,=0.89 for the decade of the 2000s. We also investigated stream power for Bull Lake Creek above Bull Lake; and found a trend (significant at the 90% confidence level) toward reduced stream power from 1970 to 2009. Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature

  15. A method for examining the geospatial distribution of CO2 storage resources applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin, U.S.A

    Science.gov (United States)

    Roberts-Ashby, Tina; Brandon N. Ashby,

    2016-01-01

    This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.

  16. Oil and gas development influences big-game hunting in Wyoming

    Science.gov (United States)

    Dorning, Monica; Garman, Steven L.; Diffendorfer, James E.; Semmens, Darius J.; Hawbaker, Todd J.; Bagstad, Kenneth J.

    2017-01-01

    Development from extracting oil and gas resources can have unintended effects on multiple ecosystem functions, with cascading effects on wildlife, ecosystem services, and local economies. Big-game hunting opportunities may be closely related to these effects, but empirical analyses of impacts of energy development on hunting are limited. We examined the influence of oil and gas development density on harvest efficiency, or harvest per unit of hunter effort, within all hunt areas in Wyoming, USA, from 2008 to 2014 for 3 big-game species: elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana). Using harvest/hunter day as the response variable, we compared linear mixed-effects models for each species that included total well density (i.e., all wells constructed up to the year of record), active well density (i.e., only those wells currently producing oil or gas in that year), or neither as a predictor variable. We used well densities as indicators of development in the absence of data specifying the locations of other oil and gas infrastructure (e.g., roads, well pads). Models also accounted for the fixed effects of road density, hunter density, proportion of the area that is public land with unrestricted hunter access, proportion of the area that is forested, year of observation, and random effects of variation among hunt areas nested within associated game herd units. Presence of oil and gas wells had a positive influence on harvest efficiency for elk and mule deer. Although there was no overall effect to pronghorn, there was a negative influence of wells on juvenile pronghorn harvest efficiency. Changes in harvest efficiency due to expanding oil and gas development could alter the time spent hunting by hunters and their chances of harvesting an animal. This could have subsequent impacts on hunter satisfaction, game populations, and economic revenue generated from recreational hunters.

  17. 78 FR 56650 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-09-13

    ...; 2. Modifying existing management tool options to allow shooting and the use of rodenticides... management tools could include: Approved rodenticides (zinc phosphide); shooting; land exchanges; land... Proposed Action, and analyze the effects of the activities proposed in the alternatives. It will form the...

  18. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7-2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA

    Directory of Open Access Journals (Sweden)

    Yiran eDong

    2014-09-01

    Full Text Available The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40oC (range 20 to 60oC and a salinity of 25 parts per thousand (range 25-75 ppt. This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25-200 ppt, and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir

  19. Exploration of the Pine Ridge Uranium Deposits, Powder River Basin, Wyoming

    International Nuclear Information System (INIS)

    Doelger, Mark J.; Sundell, Kent A.

    2014-01-01

    Summary of Exploration in Pine Ridge District: • Use of outcrop mapping integrated with oil and gas subsurface data and available well logs resulted in a geologic model for this previously unexplored area. • Proprietary drilling by Stakeholder over the past two years has confirmed the geologic model of large mineralized alteration cells in staked fluvial sandstone sequences. • The target-rich area of potential extends over nine contiguous townships where Stakeholder has leased over 70,000 acres. • Adjacent mature in-situ projects provide strong analogs and demonstrate amenability for the ore bodies at shallow, intermediate, and deep depths. • These project attributes, with discoveries by Stakeholder are expected to result in future yellow cake production with partner or successor to Stakeholder, and warrants naming this the Pine Ridge District. • Potential resource is an estimated 66 to 72 million pounds

  20. Det sorte USA

    DEFF Research Database (Denmark)

    Brøndal, Jørn

    Bogen gennemgår det sorte USAs historie fra 1776 til 2016, idet grundtemaet er spændingsforholdet mellem USAs grundlæggelsesidealer og den racemæssige praksis, et spændingsforhold som Gunnar Myrdal kaldte "det amerikanske dilemma." Bogen, der er opbygget som politisk, social og racemæssig historie...

  1. Glemmer USA Afghanistan nu?

    DEFF Research Database (Denmark)

    Jakobsen, Peter Viggo

    2015-01-01

    Hvis Obamas efterfølger kan skrue den rigtige strategiske fortælling sammen så vil USA ikke forlade Afghanistan med udgangen af 2016.......Hvis Obamas efterfølger kan skrue den rigtige strategiske fortælling sammen så vil USA ikke forlade Afghanistan med udgangen af 2016....

  2. Changing Snow Cover and Stream Discharge in the Western United States - Wind River Range, Wyoming

    Science.gov (United States)

    Hall, Dorothy K.; Foster, James L.; DiGirolamo, Nicolo E.; Barton, Jonathan S.; Riggs, George A.

    2011-01-01

    Earlier onset of springtime weather has been documented in the western United States over at least the last 50 years. Because the majority (>70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack has important implications for the management of water resources. We studied ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover products, 40 years of stream discharge and meteorological station data and 30 years of snow-water equivalent (SWE) SNOw Telemetry (SNOTEL) data in the Wind River Range (WRR), Wyoming. Results show increasing air temperatures for.the 40-year study period. Discharge from streams in WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades. Changes in streamflow may be related to increasing air temperatures which are probably contributing to a reduction in snow cover, although no trend of either increasingly lower streamflow or earlier snowmelt was observed within the decade of the 2000s. And SWE on 1 April does not show an expected downward trend from 1980 to 2009. The extent of snow cover derived from the lowest-elevation zone of the WRR study area is strongly correlated (r=0.91) with stream discharge on 1 May during the decade of the 2000s. The strong relationship between snow cover and streamflow indicates that MODIS snow-cover maps can be used to improve management of water resources in the drought-prone western U.S.

  3. Patterns in stream greenhouse gas dynamics from mountains to plains in northcentral Wyoming

    Science.gov (United States)

    Kuhn, C.; Bettigole, C.; Glick, H. B.; Seegmiller, L.; Oliver, C. D.; Raymond, P.

    2017-09-01

    Quantification of small stream contributions to global carbon cycling is key to understanding how freshwater systems transmit and transform carbon between terrestrial and atmospheric pools. To date, greenhouse gas emissions of carbon dioxide and methane from freshwaters, particularly in mountainous regions, remain poorly characterized due to a lack of direct field observations. Using a unique longitudinal approach, we conducted field surveys across two ecoregions (Middle Rockies and Great Plains) in the Clear Creek watershed, a subwatershed of Wyoming's Powder River Basin. We took direct measurements of stream gases using headspace sampling at 30 sites (8 June to 23 October). We observed the lowest and most variable concentrations in headwaters, which flow through a federally designated alpine wilderness area. By contrast, the Great Plains exhibited 1.45 and 4 times higher pCO2 and pCH4 concentrations and the relative contributions of methane increased downstream. Fluxes during snowmelt were 45% and 58% higher for CO2 and CH4 than during base flow but overall were lower than estimates for other systems. Variability for pCO2 was highest during late summer and in the uppermost sections of the headwaters. The high heterogeneity and common undersaturation observed through space and time, especially in the mountains, suggest that downscaled regional estimates may fail to capture variability in fluxes observed at these smaller scales. Based on these results, we strongly recommend higher resolution time series studies and increased scrutiny of systems at near equilibrium, inclusive of winter storage and ice-off events, to improve our understanding of the effects of seasonal dynamics on these processes.

  4. Uranium hydrogeochemical and stream sediment reconnaissance of the thermopolis NTMS Quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Maassen, L.W.

    1980-08-01

    The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium in the Thermopolis National Topographic Map Series quadrangle, Wyoming. Totals of 920 water and 1821 sediment samples were collected from 1977 locations at an average density of one sample location per 9 km 2 over an 18,000-km 2 area. Water samples were collected from streams, springs, and wells; sediment samples were collected from streams and springs. The uranium contents of water samples range from below the detection limit of 0.02 ppB to 307.98 ppB with a median of 0.56 ppB. Six clusters of anomalous water samples were delineated within the Wind River Basin and are associated predominantly with the Wind River formation. Two clusters of anomalous waters were collected on the southern margin of the Bighorn Basin and are associated with sandstone and shales of Permian through Cretaceous age. The uranium contents of sediment samples range from 0.43 to 94.65 ppM with a median of 2.90 ppM. Most sediment samples with uranium concentrations of greater than 12 ppM are underlain by Precambrian crystalline rocks of the Wind River Range; this area contains the highest uranium values found in sediments from the Thermopolis quadrangle. Other samples containing greater than 12 ppM uranium are found associated with the Wind River and Aycross formations along the northern margin of the Wind River Basin, and one sample was collected from Precambrian granitic terrain of the Owl Creek Mountains

  5. Wyoming State Briefing Book for low-level radioactive waste management

    International Nuclear Information System (INIS)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming

  6. 76 FR 68782 - Call for Nominations for the Wyoming Resource Advisory Council

    Science.gov (United States)

    2011-11-07

    .... Nominees must be residents of Wyoming. BLM will evaluate nominees based on their education, training...- to 15-member citizen- based advisory councils that are consistent with the Federal Advisory Committee...

  7. Connected Vehicle Pilot Deployment Concept Phase 1, System Requirements Specification (SyRS), ICF Wyoming.

    Science.gov (United States)

    2016-09-02

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  8. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : ICF/Wyoming : final report.

    Science.gov (United States)

    2016-09-13

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  9. Connected vehicle pilot deployment program phase 1, concept of operations (ConOps), ICF/Wyoming.

    Science.gov (United States)

    2015-12-01

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of : applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology t...

  10. Connected vehicle pilot deployment program phase 1, participant training and education plan - ICF/Wyoming.

    Science.gov (United States)

    2016-06-22

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  11. Connected Vehicle Pilot Deployment Program Phase 1, Performance Measurement and Evaluation Support Plan - ICF/Wyoming.

    Science.gov (United States)

    2016-06-06

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  12. Connected Vehicle Pilot Deployment Program Phase 1, Human Use Approval Summary - ICF/Wyoming.

    Science.gov (United States)

    2016-07-18

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  13. Connected Vehicle Pilot Deployment Concept phase 1 : comprehensive Pilot Deployment Plan : ICF Wyoming : draft final report.

    Science.gov (United States)

    2016-08-11

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  14. Connected Vehicle Pilot Deployment Program phase 1 : partnership status summary : ICF/Wyoming : draft report.

    Science.gov (United States)

    2016-08-12

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  15. CCR Certification Form for Wyoming or EPA R8 Tribal Community Water Systems

    Science.gov (United States)

    The CCR Certification Form can be used to certify that community water systems in Wyoming or on Tribal Lands in EPA Region 8 have completed and distributed their annual Consumer Confidence Report (CCR) or water quality report.

  16. Wyoming State Briefing Book for low-level radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

  17. Resource and Environmental Economics in the Rocky Mountain West: the University of Wyoming.

    Science.gov (United States)

    Crocker, Thomas D.

    1987-01-01

    Describes the academic program in natural resources and environmental economics at the University of Wyoming. Differentiates natural resources economics from general economics. Discusses the emphasis of the program on public policy issues. (TW)

  18. Connected vehicle pilot deployment program phase 1, security management operational concept : ICF/Wyoming.

    Science.gov (United States)

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  19. Short-term regeneration dynamics of Wyoming big sagebrush at two sites in northern Utah

    Science.gov (United States)

    The herbicide tebuthiuron has been used historically to control cover of Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis - complete taxonomic designation), a widespread shrub across the western United States, with the intent of increasing herbaceous plant cover. Although the tebuthiur...

  20. Connected vehicle pilot deployment program phase 1, safety management plan - ICF/Wyoming.

    Science.gov (United States)

    2016-03-14

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  1. Attempting to restore herbaceous understories in Wyoming big sagebrush communities with mowing and seeding

    Science.gov (United States)

    Shrub steppe communities with depleted perennial herbaceous understories need to be restored to increase resilience, provide quality wildlife habitat, and improve ecosystem function. Mowing has been applied to Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis Beetle &Young) steppe...

  2. Assessment of potential effects of water produced from coalbed natural gas development on macroinvertebrate and algal communities in the Powder River and Tongue River, Wyoming and Montana, 2010

    Science.gov (United States)

    Peterson, David A.; Hargett, Eric G.; Feldman, David L.

    2011-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case

  3. Reconstruction of fluid (over-)pressure evolution from sub-seismic fractures in folds and foreland basins

    Science.gov (United States)

    Beaudoin, Nicolas; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2013-04-01

    Deciphering the evolution of pressure, temperature and chemistry of fluids during fold history is a challenging problem. While temperature and chemistry of paleo-fluids can be determined using vein mineralizations in fault zones and/or in diffuse sub-seismic fracture sets, few methods exist to constrain the evolution through time of fluid pressure, especially when no hydrocarbons are encountered. This contribution aims at presenting and discussing a new approach to reconstruct the evolution of fluid pressure based on paleostress analyses. The combination of stress inversion of fault slip data and calcite twin data with rock mechanics data allows determining both the orientations and the magnitudes of principal stresses during basin evolution. Assuming no burial change through time, the comparison of the computed magnitudes of the effective vertical stress with its theoretical value (calculated with respect to the paleo-overburden and hydrostatic fluid pressure) may be used to quantitatively estimate fluid overpressure in limestones at different steps of the tectonic history. Alternatively, if hydrostatic fluid pressure is assumed to prevail in the system from step to step, results likely reflect overburden variations. The application focuses on the diffuse fracture populations observed in limestones of the famous Mississippian-Permian Madison and Phosphoria formations in Laramide basement-cored folds of the Rocky Mountains: the Sheep Mountain and the Rattlesnake Mountain anticlines (Bighorn Basin, Wyoming, USA). The location of these basement-folds on each edge of the Bighorn Basin ensures that depositional and erosional events can be neglected before folding, and thus grants the opportunity to constrain and to discuss the level of fluid overpressure during both the Sevier (thin-skinned) and Laramide (thick-skinned) related Layer-Parallel Shortening (LPS) phases at both fold scale and basin scale. Results highlight an initial fluid overpressure in limestones buried

  4. Prevalence of and risk factors associated with ovine progressive pneumonia in Wyoming sheep flocks.

    Science.gov (United States)

    Gerstner, Shelley; Adamovicz, Jeffrey J; Duncan, John V; Laegreid, William W; Marshall, Katherine L; Logan, James R; Schumaker, Brant A

    2015-10-15

    To determine the prevalence of antibodies against small ruminant lentivirus (SRLV), the causative agent of ovine progressive pneumonia (OPP), and to identify risk factors associated with OPP in Wyoming sheep flocks. Cross-sectional study. 1,415 sheep from 54 flocks in Wyoming. Flocks were surveyed as part of the National Animal Health Monitoring System (NAHMS) 2011 sheep study. Serum samples obtained from sheep in Wyoming were analyzed for anti-SRLV antibodies by use of a competitive-inhibition ELISA. The prevalence of seropositive animals overall and within each flock was calculated. Respective associations between flock OPP status and various demographic and management variables were assessed. The estimated prevalence of sheep seropositive for anti-SRLV antibodies and OPP-infected flocks in Wyoming was 18.0% and 47.5%, respectively. Within OPP-infected flocks, the prevalence of seropositive sheep ranged from 3.9% to 96%. Flocks maintained on nonfenced range were more likely to be infected with OPP than were flocks maintained on fenced range (OR, 3.4; 95% confidence interval, 1.1 to 10.7). The estimated prevalence of OPP-infected flocks in Wyoming did not vary substantially from that at the regional or national level reported in the NAHMS 2001 sheep study. Compared with results of the NAHMS 2011 sheep study, Wyoming producers were more familiar with OPP than were other US sheep producers, but only 61% of Wyoming producers surveyed reported being very or somewhat familiar with the disease. Results indicated that OPP is prevalent in many Wyoming sheep flocks, which suggested that continued efforts are necessary to increase producer knowledge about the disease and investigate practices to minimize economic losses associated with OPP.

  5. Jobs and Economic Development from New Transmission and Generation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Tegen, S.

    2011-03-01

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  6. Jobs and Economic Development from New Transmission and Generation in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-03-31

    This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

  7. JV TASK 7-FIELD APPLICATION OF THE FREEZE-THAW/EVAPORATION (FTE) PROCESS FOR THE TREATMENT OF NATURAL GAS PRODUCED WATER IN WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    James A. Sorensen; John Boysen; Deidre Boysen; Tim Larson

    2002-10-01

    facility was originally owned by the McMurry Oil Company and was later purchased by the Alberta Energy Company (now EnCana). Case 2 summarizes the permitting, design, construction, operation, and performance at a ''commercial'' FTE{reg_sign} facility located in the Great Divide Basin of south central Wyoming. Permits required for the construction and operation of each facility are described in detail. The respective qualities of each feed water, treated water, and concentrate stream are presented along with the relative yields of treated water and concentrate at each facility. Treated water from the owner-operated facility has been beneficially used in drilling and dust abatement, and treated water from the commercial facility has been used for dust abatement, construction, and land application. The permitting requirements and evaluation of beneficial use of the water at each facility are discussed. The results of this research confirm that the FTE{reg_sign} process is economic at a commercial-scale for the treatment and disposal of natural gas produced water in Wyoming. Further, the treated water produced from the process is of a quality suitable for beneficial uses such as irrigation, drilling mix, wildlife or livestock watering, and/or dust abatement on local roads.

  8. Scramble for water: agriculture versus other interests in Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Richard, J.B.

    Several important points about the agricultural water policymaking subsystem can be reiterated: (1) frequently there is a failure to recognize the relatedness of land, water, and other resources (water taken off prime agricultural land takes that land out of production just as effectively as urban development and surface mining itself); (2) balkanization of legal controls over water resources allocation, use, and development have consequences for policymakers; (3) multiplicity of agencies and groups means fragmented and complex administrative approaches to policymaking frustrating rational reallocation of water resources; (4) the cumulative effect of incremental solutions may result in serious water losses for agriculture and gains for industry and municipalities; (5) altering of water uses may have profound effects on style of life; (6) engineering, science, technology, and quasi-scientific techniques such as cost/benefit analysis emphasize economic decisions and cloud political decisions; (7) these problems exist not only in Wyoming but in many other places as well.

  9. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  10. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative—2015 annual report

    Science.gov (United States)

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bartos, Timothy T.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Eddy-Miller, Cheryl; Garman, Steven L.; Germaine, Stephen S.; Homer, Collin G.; Kauffman, Matthew J.; Huber, Christopher C.; Manier, Daniel J.; Melcher, Cynthia P.; Miller, Kirk A.; Norkin, Tamar; Sanders, Lindsey E.; Walters, Annika W.; Wilson, Anna B.; Wyckoff, Teal B.

    2016-09-28

    This is the eighth annual report highlighting U.S. Geological Survey (USGS) science and decision-support activities conducted for the Wyoming Landscape Conservation Initiative (WLCI). The activities address specific management needs identified by WLCI partner agencies. In 2015, USGS scientists continued 24 WLCI projects in 5 categories: (1) acquiring and analyzing resource-condition data to form a foundation for understanding and monitoring landscape conditions and projecting changes; (2) using new technologies to improve the scope and accuracy of landscape-scale monitoring and assessments, and applying them to monitor indicators of ecosystem conditions and the effectiveness of on-the-ground habitat projects; (3) conducting research to elucidate the mechanisms that drive wildlife and habitat responses to changing land uses; (4) managing and making accessible the large number of databases, maps, and other products being developed; and (5) coordinating efforts among WLCI partners, helping them to use USGS-developed decision-support tools, and integrating WLCI outcomes with future habitat enhancement and research projects. Of the 24 projects, 21 were ongoing, including those that entered new phases or more in-depth lines of inquiry, 2 were new, and 1 was completed.A highlight of 2015 was the WLCI science conference sponsored by the USGS, Bureau of Land Management, and National Park Service in coordination with the Wyoming chapter of The Wildlife Society. Of 260 participants, 41 were USGS professionals representing 13 USGS science centers, field offices, and Cooperative Wildlife Research Units. Major themes of USGS presentations included using new technologies for developing more efficient research protocols for modeling and monitoring natural resources, researching effects of energy development and other land uses on wildlife species and habitats of concern, and modeling species distributions, population trends, habitat use, and effects of land-use changes. There was

  11. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  12. USA Hire Testing Platform

    Data.gov (United States)

    Office of Personnel Management — The USA Hire Testing Platform delivers tests used in hiring for positions in the Federal Government. To safeguard the integrity of the hiring processes and ensure...

  13. USA kunstidessant Venemaale

    Index Scriptorium Estoniae

    2007-01-01

    USA kunstnike näitus "Kolm sajandit ameerika kunsti" Moskvas Pushkini muuseumis. Eksponeeritakse Mark Rothko, Jean-Michel Basguiat', Roy Lichtensteini, Robert Rauschenbergi, Georgia O'Keefe'i, Willem de Kooningi töid

  14. Final environmental statement related to the Wyoming Mineral Corporation Irigaray uranium solution mining project (Johnson County, Wyoming)

    International Nuclear Information System (INIS)

    1978-09-01

    The Irigaray project consists of solution mining (in situ leaching) operations involving uranium ore deposits in Johnson County, Wyoming. Solution mining activities will include a processing facility with an annual production of 500,000 lb of U 3 O 8 from up to 50 acres of well fields through the initial license authorization. The Irigaray project has an estimated lifetime of up to 10 to 20 years with known ore deposits and the current level of solution mining technology. The site is mostly used as grazing land for cattle and sheep. Initiation of the Irigaray project would result in the temporary removal from grazing and the disturbance of approximately 60 acres during operation as proposed by the staff. All disturbed surface areas will be reclaimed and returned to their original use. Approximately 1.2 x 10 6 m 3 of water will be withdrawn from the ore zone aquifer. 43 figs, 52 tables

  15. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  16. San Mateo Creek Basin

    Science.gov (United States)

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  17. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  18. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    Science.gov (United States)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  19. Aerial gamma ray and magnetic survey: Powder River R and D Project. Portions of the: Forsyth and Hardin, Montana, and the Sheridan, Arminto, Newcastle, and Gillette, Wyoming Quadrangles. Final report

    International Nuclear Information System (INIS)

    1979-05-01

    During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1 0 x 2 0 NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within the northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects

  20. Multiscale sagebrush rangeland habitat modeling in southwest Wyoming

    Science.gov (United States)

    Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Coan, Michael J.; Bowen, Zachary H.

    2009-01-01

    Sagebrush-steppe ecosystems in North America have experienced dramatic elimination and degradation since European settlement. As a result, sagebrush-steppe dependent species have experienced drastic range contractions and population declines. Coordinated ecosystem-wide research, integrated with monitoring and management activities, would improve the ability to maintain existing sagebrush habitats. However, current data only identify resource availability locally, with rigorous spatial tools and models that accurately model and map sagebrush habitats over large areas still unavailable. Here we report on an effort to produce a rigorous large-area sagebrush-habitat classification and inventory with statistically validated products and estimates of precision in the State of Wyoming. This research employs a combination of significant new tools, including (1) modeling sagebrush rangeland as a series of independent continuous field components that can be combined and customized by any user at multiple spatial scales; (2) collecting ground-measured plot data on 2.4-meter imagery in the same season the satellite imagery is acquired; (3) effective modeling of ground-measured data on 2.4-meter imagery to maximize subsequent extrapolation; (4) acquiring multiple seasons (spring, summer, and fall) of an additional two spatial scales of imagery (30 meter and 56 meter) for optimal large-area modeling; (5) using regression tree classification technology that optimizes data mining of multiple image dates, ratios, and bands with ancillary data to extrapolate ground training data to coarser resolution sensors; and (6) employing rigorous accuracy assessment of model predictions to enable users to understand the inherent uncertainties. First-phase results modeled eight rangeland components (four primary targets and four secondary targets) as continuous field predictions. The primary targets included percent bare ground, percent herbaceousness, percent shrub, and percent litter. The

  1. Australia's uranium resources in the Pacific Basin context

    International Nuclear Information System (INIS)

    Duncan, I.J.

    1994-01-01

    Australia's role as an uranium producer is central to the Pacific Basin nuclear industry. Australia's low cost reserves are the world's largest, perhaps up to two times greater than those of her closest competitor, Canada. In the domain of actual production, however, the nation's uranium output is currently limited by government policy. Nonetheless, in view of the Pacific Basin nations' increasing focus on nuclear energy as an efficient and clean energy source, it is likely that Australian producers will, over the next decades, be long term suppliers of uranium concentrates to Pacific Basin markets such as Japan, Korea, China/Hong Kong, Indonesia, China-Taipei, the USA and even Canada. 1 fig

  2. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Santos, E S; Robinson, K; Geer, K A; Blattspieler, J G

    1982-09-01

    Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.

  3. Hydrology of Park County, Wyoming, exclusive of Yellowstone National Park

    Science.gov (United States)

    Lowry, M.E.; Smalley, M.L.; Mora, K.L.; Stockdale, R.G.; Martin, M.W.

    1993-01-01

    The climate of Park County, Wyoming, ranges from desert to alpine tundra. Average annual precipitation ranges from 6 to 40 inches. Ground water is present throughout most of the county, but supplies adequate for stock or domestic use are not readily available in areas of greatest need. The chemical quality of most of the water sampled was of suitable quality for livestock, but most of the water was not suitable for drinking, and the water from bedrock aquifers generally was not suitable for irrigation. Unconsolidated deposits are a principal source of ground water in the county. However, ground water is found in deposits topographically higher than stream level only where surface water has been applied for irrigation; those unconsolidated deposits beneath areas that are not irrigated, such as Polecat Bench, are dry. The conversion of irrigated land to urban development poses problems in some areas because yields of water-supply wells will be adversely affected by reduced recharge. The trend toward urban development also increases the risk of contamination of the ground water by septic tanks, petroleum products, and toxic and hazardous wastes. Perennial streams originate in the mountains and in areas where drainage from irrigated land is adequate to sustain flow. The average annual runoff from streams originating in the mountains is as large as 598 acre-feet per square mile, and the average annual runoff from streams originating in badlands and plains is as low as 14.8 acre-feet per square mile.

  4. National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota

    International Nuclear Information System (INIS)

    Santos, E.S.; Robinson, K.; Geer, K.A.; Blattspieler, J.G.

    1982-09-01

    Uranium resources of the Newcastle 1 0 x2 0 Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uranium deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group

  5. Outplanting Wyoming big sagebrush following wldfire: stock performance and economics

    Science.gov (United States)

    Dettweiler-Robinson, Eva; Bakker, Jonathan D.; Evans, James R.; Newsome, Heidi; Davies, G. Matt; Wirth, Troy A.; Pyke, David A.; Easterly, Richard T.; Salstrom, Debra; Dunwiddle, Peter W.

    2013-01-01

    Finding ecologically and economically effective ways to establish matrix species is often critical for restoration success. Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis) historically dominated large areas of western North America, but has been extirpated from many areas by large wildfires; its re-establishment in these areas often requires active management. We evaluated the performance (survival, health) and economic costs of container and bare-root stock based on operational plantings of more than 1.5 million seedlings across 2 200 ha, and compared our plantings with 30 other plantings in which sagebrush survival was tracked for up to 5 yr. Plantings occurred between 2001 and 2007, and included 12 combinations of stock type, planting amendment, and planting year.We monitored 10 500 plants for up to 8 yr after planting. Survival to Year 3 averaged 21% and was higher for container stock (30%) than bare-root stock (17%). Survival did not differ among container stock plantings, whereas survival of bare-root stock was sometimes enhanced by a hydrogel dip before planting, but not by

  6. Spatial mapping and attribution of Wyoming wind turbines, 2012

    Science.gov (United States)

    O'Donnell, Michael S.; Fancher, Tammy S.

    2014-01-01

    These data represent locations of wind turbines found within Wyoming as of August 2012. We assigned each wind turbine to a wind farm and, in these data, provide information about each turbine’s potential megawatt output, rotor diameter, hub height, rotor height, the status of the land ownership where the turbine exists, the county each turbine is located in, wind farm power capacity, the number of units currently associated with each wind farm, the wind turbine manufacturer and model, the wind farm developer, the owner of the wind farm, the current purchaser of power from the wind farm, the year the wind farm went online, and the status of its operation. Some of the attributes are estimates based on the information we found via the American Wind Energy Association and other on-line reports. The locations are derived from National Agriculture Imagery Program (2009 and 2012) true color aerial photographs and have a positional accuracy of approximately +/-5 meters. These data will provide a planning tool for wildlife- and habitat-related projects underway at the U.S. Geological Survey’s Fort Collins Science Center and other government and non-government organizations. Specifically, we will use these data to support quantifying disturbances of the landscape as related to wind energy as well as to quantify indirect disturbances to flora and fauna. This data set represents an update to a previous version by O’Donnell and Fancher (2010).

  7. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  8. Rancher and farmer quality of life in the midst of energy development in southwest Wyoming

    Science.gov (United States)

    Allen, Leslie; Montag, Jessica; Lyon, Katie; Soileau, Suzanna; Schuster, Rudy

    2014-01-01

    Quality of life (QOL) is usually defined as a person’s general well-being, and may include individual perceptions of a variety of factors such family, work, finances, local community services, community relationships, surrounding environment, and other important aspects of their life, ultimately leading to life satisfaction. Energy development can have an effect on QOL components for rural residents. Southwest Wyoming is a rural area with a history of ranching and farming which continues today. This area has also seen a “boom” of increasing wind, solar, oil and gas energy developments over the past decade. Wyoming Department of Agriculture, as part of the Wyoming Landscape Conservation Initiative (WLCI), sponsored research to examine the effect of energy development on ranchers’ and farmers’ quality of life.

  9. Baltimaade kunsti turnee USAs

    Index Scriptorium Estoniae

    1998-01-01

    5. nov.-st USA Lõuna-Carolina osariigis Wellington B. Grey galeriis ja Jenkins Fine Art Center's 13 eesti, läti ja leedu kunstniku näitus, mis hakkab kolme aasta jooksul ringlema Ameerikas. Eksponeeritud fotokunst, video, installatsioon, joonistused. Kuraator Peeter Linnap ja Mari Laanemets peavad ettekande näituse avamisega samal ajal toimuval Fotohariduse Ühingu konverentsil

  10. Hydrologic data for the Cache Creek-Bear Thrust environmental impact statement near Jackson, Wyoming

    Science.gov (United States)

    Craig, G.S.; Ringen, B.H.; Cox, E.R.

    1981-01-01

    Information on the quantity and quality of surface and ground water in an area of concern for the Cache Creek-Bear Thrust Environmental Impact Statement in northwestern Wyoming is presented without interpretation. The environmental impact statement is being prepared jointly by the U.S. Geological Survey and the U.S. Forest Service and concerns proposed exploration and development of oil and gas on leased Federal land near Jackson, Wyoming. Information includes data from a gaging station on Cache Creek and from wells, springs, and miscellaneous sites on streams. Data include streamflow, chemical and suspended-sediment quality of streams, and the occurrence and chemical quality of ground water. (USGS)

  11. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    Science.gov (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near

  12. 77 FR 3790 - Notice of Competitive Coal Lease Sale, Wyoming

    Science.gov (United States)

    2012-01-25

    ... Powder River Basin. The tract in this lease offering contains split estate lands. There are qualified... natural gas when the wells are bought out by the coal lessee. Approximately half of the surface estate of... of the ] other half of the surface estate is owned by various private entities with a small amount...

  13. 77 FR 31385 - Notice of Competitive Coal Lease Sale, Wyoming

    Science.gov (United States)

    2012-05-25

    ... out by the coal lessee. The majority of the surface estate of the tract is within the Thunder Basin National Grasslands and managed by the U.S. Forest Service. The remainder of the surface estate is owned by... localized seams or splits containing less than 5 feet of coal. It does not include the adjacent State of...

  14. 77 FR 22607 - Notice of Competitive Coal Lease Sale, Wyoming

    Science.gov (United States)

    2012-04-16

    ... Powder River Basin. The tract in this lease offering contains split estate lands. There are qualified... natural gas when the wells are bought out by the coal lessee. Approximately half of the surface estate of... of the other half of the surface estate is owned by various private entities with a small amount...

  15. Retrospective Analysis of Low Flows at Headwater Watersheds in Wyoming

    Science.gov (United States)

    Voutchkova, D. D.; Miller, S. N.

    2016-12-01

    Understanding summer low-flow variability and change in the mountainous West has important implications for water allocations downstream and for maintaining water availability for drinking water supply, reservoir storage, industrial, agricultural, and ecological needs. Wildfires and insect infestations are classical disturbance hydrology topics. It is unclear, however, what are their effects on streamflow and in particular low-flows, when vegetation disturbances are overlapping in time and combined with highly variable and potentially changing local climate. The purpose of this study, therefore, is to quantify changes in low-flows resulting from disturbance in headwater streams. Here we present a retrospective analysis based on: (1) 49-75 complete water years (wy) of daily streamflow data (USGS) for 14 high-elevation headwater watersheds with varying areas (60-1730 km2, 86-100% of watershed area >2000masl) and evergreen forest cover (15-82%), (2) 25-36 complete wy of daily snow-water equivalent accumulation (SWE) and precipitation data from Wyoming SNOTEL stations, (3) burned area boundaries for 20wy (MTBS project), (4) aerial surveys by R1, R2, R4 Forest Service Regions for 18wy (data on tree mortality). We quantify the change in various low-flow characteristics (e.g. post-snowmelt baseflow, Q90 and Q95, 3-,7-, 30- and 90-day annual minima etc.) while accounting for local inter- and multi-annual climate variability by using SWE accumulation data, as it integrates both temperature and precipitation changes. Our approach differs from typical before-after field-based investigation for paired watersheds, as it provides a synthesis over large temporal and spatial scales, resulting in spectrum of possible hydrologic responses due to varying disturbance severity. Quantifying the changes in low-flows and low-flow variability will improve our understanding and will facilitate water management and planning at local state-wide level.

  16. Immobilization of Wyoming bears using carfentanil and xylazine.

    Science.gov (United States)

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine.

  17. Boron toxicity of coal mining areas in southwestern Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.L. [Idaho Dept. of Health and Welfare, Boise, ID (United States); Smith, P.W. [Wyoming Dept. of Environmental Quality, Cheyenne, WY (United States); Smith, J.A. [Wyoming Dept. of Environmental Quality, Lander, WY (United States)

    1990-12-31

    Boron tolerance of native plant species is not generally known. This study was conducted to determine the B tolerance of thickspike wheatgrass [Agropyron dasystachyum (Hook.) Scribn.], a species commonly used to reclaim minelands in the semiarid and arid West. Pre-germinated thickspike wheatgrass seeds were planted in three soil materials obtained from a coal mine in southwestern Wyoming. Soils were taken from an undisturbed bottomland (clay), a topsoil stockpile (sand), and a carbonaceous shale outcrop (shale) with inherent hot water extractable-B (HWE-B) levels of 2.8, 1.3, and 3.5 mg/kg soil, respectively. Each soil material was treated with boric acid solutions to produce seven different HWE-B levels. B levels ranged from inherent conditions up to 57.9 mg/kg. Plants were grown under greenhouse conditions for 100 days in pots containing 2.9 kg of clay or shale or 3.4 kg sand. Wheatgrass shoot and root dry matter production were measured. Toxicity symptoms (leaf tip necrosis) were observed in all treatments but the controls during the study. Levels of 11.6 and 20.5 mg/kg HWE-B produced an average of 10 and 20% reductions in shoot production, respectively. Ten and 20% reductions in root growth were observed with 3.8 and 6.6 mg/kg HWE-B, respectively. Plants grown in the sand were most B sensitive. This is postulated to be a result of the drier conditions attendant in that soil. Results indicate that thickspike wheatgrass can tolerate HWE-B levels in excess of 5 mg/kg. However, actual field tolerance levels will be dependent on climatic and soil environmental conditions, particularly moisture availability.

  18. Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.R.; Rawn-Schatzinger, V.

    1993-12-01

    The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

  19. U.S. Geological Survey Science for the Wyoming Landscape Conservation Initiative-2010 Annual Report

    Science.gov (United States)

    Edit Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Biewick, Laura; Blecker, Steven W.; Boughton, Gregory K.; Bristol, R. Sky; Carr, Natasha B.; Chalfoun, Anna D.; Chong, Geneva W.; Clark, Melanie L.; Diffendorfer, Jay E.; Fedy, Bradley C.; Foster, Katharine; Garman, Steven L.; Germaine, Stephen S.; Holloway, JoAnn; Homer, Collin G.; Kauffman, Matthew J.; Keinath, Douglas; Latysh, Natalie; Manier, Daniel J.; McDougal, Robert R.; Melcher, Cynthia P.; Miller, Kirk A.; Montag, Jessica; Potter, Christopher J.; Schell, Spencer; Shafer, Sarah L.; Smith, David B.; Stillings, Lisa L.; Tuttle, Michele L.W.; Wilson, Anna B.

    2011-01-01

    This is the third report produced by the U.S. Geological Survey (USGS) for the Wyoming Landscape Conservation Initiative (WLCI) to detail annual work activities. The first report described activities for 2007 and 2008, and the second report covered work activities for FY09. This third report covers work activities conducted in FY2010, and it continues the 2009 approach of reporting on all the individual activities to help give WLCI partners and other readers the full scope of what has been accomplished. New in this year's report is an additional section for each work activity that outlines the work planned for the following fiscal year. In FY2010, there were 35 ongoing/expanded, completed, or new projects conducted under the five major multi-disciplinary science and technical-assistance activities: (1) Baseline Synthesis; (2) Targeted Monitoring and Research; (3) Data and Information Management; (4) Integration and Coordination; and (5) Decisionmaking and Evaluation. The three new work activities were to (1) compile existing water data for the entire WLCI region and (2) develop regional curves (statistical models) for relating bankfull-channel geometry and discharge to drainages in the WLCI region, both of which will help guide long-term monitoring of water resources; and (3) initiate a groundwater-monitoring network to evaluate potential effects of energy-development activities on groundwater quality where groundwater is an important source of public/private water supplies. Results of the FY2009 work to develop methods for assessing soil organic matter and mercury indicated that selenium and arsenic levels may be elevated in the Muddy Creek Basin; thus, the focus of that activity was shifted in FY2010 to evaluate biogeochemical cycling of elements in the basin. In FY2010, two ongoing activities were expanded with the addition of more sampling plots: (a) the study of how greater sage-grouse (Centrocercus urophasianus) use vegetation-treatment areas (sites added to

  20. USA-USSR protocol

    CERN Multimedia

    1970-01-01

    On 30 November the USA Atomic Energy Commission and the USSR State Committee for the Utilization of Atomic Energy signed, in Washington, a protocol 'on carrying out of joint projects in the field of high energy physics at the accelerators of the National Accelerator Laboratory (Batavia) and the Institute for High Energy Physics (Serpukhov)'. The protocol will be in force for five years and can be extended by mutual agreement.

  1. Superimposed versus residual basin: The North Yellow Sea Basin

    Directory of Open Access Journals (Sweden)

    Wenyong Li

    2012-01-01

    Full Text Available The North Yellow Sea Basin is a Mesozoic and Cenozoic basin. Based on basin-margin facies, sedimentary thinning, size and shape of the basin and vitrinite reflectance, North Yellow Sea Basin is not a residual basin. Analysis of the development of the basin’s three structural layers, self-contained petroleum systems, boundary fault activity, migration of the Mesozoic–Cenozoic sedimentation centers, different basin structures formed during different periods, and superposition of a two-stage extended basin and one-stage depression basin, the North Yellow Sea Basin is recognized as a superimposed basin.

  2. Changes in forest structure since 1860 in ponderosa pine dominated forests in the Colorado and Wyoming Front Range, USA

    Science.gov (United States)

    Mike A. Battaglia; Benjamin Gannon; Peter M. Brown; Paula J. Fornwalt; Antony S. Cheng; Laurie S. Huckaby

    2018-01-01

    Management practices since the late 19th century, including fire exclusion and harvesting, have altered the structure of ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) dominated forests across the western United States. These structural changes have the potential to contribute to uncharacteristic wildfire behavior and effects. Locally-...

  3. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    Science.gov (United States)

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  4. Assessing the expected effects of wildfire on vegetation condition on the Bridger-Teton National Forest, Wyoming, USA

    Science.gov (United States)

    J. H. Scott; D. J. Helmbrecht; M. P. Thompson

    2014-01-01

    Characterizing wildfire risk to a fire-adapted ecosystem presents particular challenges due to its broad spatial extent, inherent complexity, and the difficulty in defining wildfire-induced losses and benefits. Our approach couples stochastic wildfire simulation with a vegetation condition assessment framework to estimate the conditional and expected response of...

  5. Home on the Range: Host Families for Developmental Disabilities in Wyoming.

    Science.gov (United States)

    Walling, Teresa; Potts, Bridget; Fortune, Jon; Cobb, Ginny L.; Fortune, Barbara

    This report describes the outcomes of a Wyoming program that provides host families for individuals with developmental disabilities. Host families work with certified Medicaid providers of home and community-based services for people with developmental disabilities and provide residential habilitation to an adult who is accepted as a member of…

  6. Introduction to uranium geology of the Kaycee area in Johnson county, Wyoming

    International Nuclear Information System (INIS)

    Li Wuwei

    2004-01-01

    The geology of the Kaycee uranium deposit is introduced in three aspects: regional setting, stratigraphy and structure. At the same time, uranium and vanadium mineralization of significant economic potential have been reported in the sandstones and conglomerates from Paleocene to Eocene period in the eastern and northeastern part of Kaycee, Wyoming. (authors)

  7. The United State of Wyoming: Teacher-to-Teacher Initiative Boosts Reading Scores Statewide

    Science.gov (United States)

    Lain, Sheryl

    2014-01-01

    When teachers collaborate in schools, taking collective responsibility to improve instruction and achieve goals, student performance improves and good results happen. Wyoming is one example of a state that uses peer-to-peer professional learning with notable results. Teachers joined together to form a statewide professional community and saw the…

  8. 76 FR 23333 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting; Wyoming

    Science.gov (United States)

    2011-04-26

    ... location and entry under the United States mining laws to protect unique topographic characteristics and... action and announces the date, time, and location of a public meeting. DATES: Comments must be received... Caribou Counties, Wyoming, from location and entry under the United States mining laws (30 U.S.C. ch. 2...

  9. Fall frosts effects on the essential oil of “Native” spearmint in Wyoming

    Science.gov (United States)

    “Native” spearmint (Mentha spicata L.) is a widely grown essential oil crop worldwide, and in the Midwest in the United States. There is interest in expanding spearmint production to Wyoming and other states. However, there is no information to determine if spearmints would perform well under the Wy...

  10. Bioclimatic models estimate areas with suitable climate for Armillaria spp. in Wyoming

    Science.gov (United States)

    James T. Blodgett; John W. Hanna; Eric W. I. Pitman; Sara M. Ashiglar; John E. Lundquist; Mee-Sook Kim; Amy L. Ross-Davis; Ned B. Klopfenstein

    2015-01-01

    Armillaria species range from beneficial saprobes to damaging root pathogens, and their ecological roles and impacts vary with environment and host. Armillaria solidipes [pending vote to conserve A. ostoyae . (Redhead et al. 2011 )] is known as an aggressive pathogen of conifers and causes tree mortality and significant growth loss in Wyoming and throughout...

  11. Climate-based species distribution models for Armillaria solidipes in Wyoming: A preliminary assessment

    Science.gov (United States)

    John W. Hanna; James T. Blodgett; Eric W. I. Pitman; Sarah M. Ashiglar; John E. Lundquist; Mee-Sook Kim; Amy L. Ross-Davis; Ned B. Klopfenstein

    2014-01-01

    As part of an ongoing project to predict Armillaria root disease in the Rocky Mountain zone, this project predicts suitable climate space (potential distribution) for A. solidipes in Wyoming and associated forest areas at risk to disease caused by this pathogen. Two bioclimatic models are being developed. One model is based solely on verified locations of A. solidipes...

  12. Ecological types of the eastern slope of the Wind River Range, Shoshone National Forest, Wyoming

    Science.gov (United States)

    Aaron F. Wells; Janis L. Boettinger; Kent E. Houston; David W. Roberts

    2015-01-01

    This guide presents a classification of the Ecological Types of the eastern slope of the Wind River Range (WRR) on the Shoshone National Forest in west-central Wyoming. Ecological Types integrate vegetation and environmental characteristics, including climate, geology, landform, and soils, into a comprehensive ecosystem classification. The three objectives are: (1)...

  13. Assessment of Vaccine Exemptions among Wyoming School Children, 2009 and 2011

    Science.gov (United States)

    Pride, Kerry R.; Geissler, Aimee L.; Kolasa, Maureen S.; Robinson, Byron; Van Houten, Clay; McClinton, Reginald; Bryan, Katie; Murphy, Tracy

    2014-01-01

    During 2010-2011, varicella vaccination was an added requirement for school entrance in Wyoming. Vaccination exemption rates were compared during the 2009-2010 and 2011-2012 school years, and impacts of implementing a new childhood vaccine requirement were evaluated. All public schools, grades K-12, were required to report vaccination status of…

  14. 75 FR 17125 - Foreign-Trade Zone 157-Casper, Wyoming, Application for Expansion

    Science.gov (United States)

    2010-04-05

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 23-2010] Foreign-Trade Zone 157--Casper, Wyoming, Application for Expansion An application has been submitted to the Foreign-Trade Zones Board (the... provisions of the Foreign-Trade Zones Act, as amended (19 U.S.C. 81a- 81u), and the regulations of the Board...

  15. DNA FROM ANCIENT STONE TOOLS AND BONES EXCAVATED AT BUGAS-HOLDING, WYOMING

    Science.gov (United States)

    Traces of DNA may preserve on ancient stone tools. We examined 24 chipped stone artifacts recovered from the Bugas-Holding site in northwestern Wyoming for the presence of DNA residues, and we compared DNA preservation in bones and stone tools from the same stratigraphic context...

  16. Using Egocentric Networks to Illustrate Information Seeking and Sharing by Alfalfa Farmers in Wyoming

    Science.gov (United States)

    Noy, Shiri; Jabbour, Randa

    2017-01-01

    We explored using farmers' egocentric (personal) networks to understand how they seek farming advice and how their advice networks map onto their friendship networks. We examined results from a survey of alfalfa farmers (n = 634) in Wyoming. Farmers reported seeking advice from neighbors and fellow farmers, and most indicated that these people are…

  17. Growing spearmint, thyme, oregano, and rosemary in Northern Wyoming using plastic tunnels

    Science.gov (United States)

    Growing perennial herbs in northern climate such as Northern Wyoming is a challenge. Due to short frost-free period, high wind, and inclement weather it is impossible to harvest any herbs twice a year (summer and late fall) without using any form of season extension methods. Hence, we set up an expe...

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Cheyenne Quadrangle, Wyoming

    International Nuclear Information System (INIS)

    1981-01-01

    Field and laboratory data are presented for 884 water samples and 598 sediment samples from the Cheyenne Quadrangle, Wyoming. Uranium values have been reported by Los Alamos National Laboratory in Report GJBX-106(78). The samples were collected by Los Alamos National Laboratory; laboratory analysis and data reporting were performed by the Uranium Resource Evaluation Project at Oak Ridge, Tennessee

  19. 78 FR 21565 - Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE

    Science.gov (United States)

    2013-04-11

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [MB Docket No. 13-73; RM-11695; DA 13-450] Television Broadcasting Services; Jackson, Wyoming to Wilmington, DE AGENCY: Federal Communications... review Act, see 5 U.S.C. 801(a)(1)(A). List of Subjects in 47 CFR Part 73 Television. Federal...

  20. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  1. Effects of using winter grazing as a fuel treatment on Wyoming big sagebrush plant communities

    Science.gov (United States)

    More frequent wildfires and incidences of mega-fires have increased the pressure for fuel treatments in sagebrush (Artemisia) communities. Winter grazing has been one of many fuel treatments proposed for Wyoming big sagebrush (A. tridentata Nutt. subsp. wyomingensis Beetle and A. Young) communitie...

  2. Wyoming big sagebrush: Efforts towards development of target plants for restoration

    Science.gov (United States)

    Kayla R. Herriman

    2009-01-01

    Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis) is a dominant shrub throughout much of the interior western United States. It is a key component of sagebrush steppe ecosystems, which have been degraded due to European settlement, improper land use, and changing fire regimes resulting from the invasion of exotic...

  3. "Work and Leisure in Country Schools in Wyoming." Country School Legacy: Humanities on the Frontier.

    Science.gov (United States)

    Gulliford, Andrew; And Others

    The country school legacy of Wyoming is rich in history, folklore, and tradition. Materials (many anecdotal) gathered from school records, oral histories, autobiographies, and memoirs provide glimpses into the diverse and demanding role of frontier teachers (who were mostly female and, by contract requirement, usually single) and the work and…

  4. Re-Occupancy of Breeding Territories by Ferruginous Hawks in Wyoming: Relationships to Environmental and Anthropogenic Factors.

    Science.gov (United States)

    Wallace, Zachary P; Kennedy, Patricia L; Squires, John R; Oakleaf, Robert J; Olson, Lucretia E; Dugger, Katie M

    2016-01-01

    Grassland and shrubland birds are declining globally due in part to anthropogenic habitat modification. Because population performance of these species is also influenced by non-anthropogenic factors, it is important to incorporate all relevant ecological drivers into demographic models. We used design-based sampling and occupancy models to test relationships of environmental factors that influence raptor demographics with re-occupancy of breeding territories by ferruginous hawks (Buteo regalis) across Wyoming, USA, 2011-2013. We also tested correlations of territory re-occupancy with oil and gas infrastructure-a leading cause of habitat modification throughout the range of this species of conservation concern. Probability of re-occupancy was not related to any covariates we investigated in 2011, had a strong negative relationship with cover of sagebrush (Artemisia spp.) in 2012, was slightly higher for territories with artificial platforms than other nest substrates in 2013, and had a positive relationship with abundance of ground squirrels (Urocitellus spp.) that was strong in 2012 and weak in 2013. Associations with roads were weak and varied by year, road-type, and scale: in 2012, re-occupancy probability had a weak positive correlation with density of roads not associated with oil and gas fields at the territory-scale; however, in 2013 re-occupancy had a very weak negative correlation with density of oil and gas field roads near nest sites (≤500 m). Although our results indicate re-occupancy of breeding territories by ferruginous hawks was compatible with densities of anthropogenic infrastructure in our study area, the lack of relationships between oil and gas well density and territory re-occupancy may have occurred because pre-treatment data were unavailable. We used probabilistic sampling at a broad spatial extent, methods to account for imperfect detection, and conducted extensive prey sampling; nonetheless, future research using before

  5. Re-Occupancy of Breeding Territories by Ferruginous Hawks in Wyoming: Relationships to Environmental and Anthropogenic Factors

    Science.gov (United States)

    Wallace, Zachary P.; Kennedy, Patricia L.; Squires, John R.; Oakleaf, Robert J.; Olson, Lucretia E.; Dugger, Katie M.

    2016-01-01

    Grassland and shrubland birds are declining globally due in part to anthropogenic habitat modification. Because population performance of these species is also influenced by non-anthropogenic factors, it is important to incorporate all relevant ecological drivers into demographic models. We used design-based sampling and occupancy models to test relationships of environmental factors that influence raptor demographics with re-occupancy of breeding territories by ferruginous hawks (Buteo regalis) across Wyoming, USA, 2011–2013. We also tested correlations of territory re-occupancy with oil and gas infrastructure—a leading cause of habitat modification throughout the range of this species of conservation concern. Probability of re-occupancy was not related to any covariates we investigated in 2011, had a strong negative relationship with cover of sagebrush (Artemisia spp.) in 2012, was slightly higher for territories with artificial platforms than other nest substrates in 2013, and had a positive relationship with abundance of ground squirrels (Urocitellus spp.) that was strong in 2012 and weak in 2013. Associations with roads were weak and varied by year, road-type, and scale: in 2012, re-occupancy probability had a weak positive correlation with density of roads not associated with oil and gas fields at the territory-scale; however, in 2013 re-occupancy had a very weak negative correlation with density of oil and gas field roads near nest sites (≤500 m). Although our results indicate re-occupancy of breeding territories by ferruginous hawks was compatible with densities of anthropogenic infrastructure in our study area, the lack of relationships between oil and gas well density and territory re-occupancy may have occurred because pre-treatment data were unavailable. We used probabilistic sampling at a broad spatial extent, methods to account for imperfect detection, and conducted extensive prey sampling; nonetheless, future research using before

  6. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Schatzinger, R.A.; Tomutsa, L. [BDM Petroleum Technologies, Bartlesville, OK (United States)

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  7. Uranium hydrogeochemical and stream sediment reconnaissance of the Gillette NTMS quadrangle, Wyoming, including concentrations of forty-two additional elements

    International Nuclear Information System (INIS)

    Warren, R.G.; George, W.E.; Minor, M.M.; Simi, O.R.; Talcott, C.L.; Hensley, W.K.; Cheadle, J.M. III.

    1980-08-01

    During 1976 and 1977, 752 water and 843 sediment samples were collected from 1419 locations within the 17 700-km 2 area of the Gillette quadrangle, Wyoming. Water samples were collected primarily from wells, and also from springs, ponds, and streams; sediment samples were collected primarily from stream channels, and also from springs and ponds. Each water sample was analyzed f