WorldWideScience

Sample records for basin western colorado

  1. Holocene valley-floor deposition and incision in a small drainage basin in western Colorado, USA

    OpenAIRE

    Jones, Lawrence S.; Rosenburg, Margaret; del Mar Figueroa, Maria; McKee, Kathleen; Haravitch, Ben; Hunter, Jenna

    2010-01-01

    The valley floor of a 33.9 km^2 watershed in western Colorado experienced gradual sedimentation from before ~ 6765 to ~ 500 cal yr BP followed by deep incision, renewed aggradation, and secondary incision. In contrast, at least four terraces and widespread cut-and-fill architecture in the valley floor downstream indicate multiple episodes of incision and deposition occurred during the same time interval. The upper valley fill history is atypical compared to other drainages in the Colorado Pla...

  2. Study-area boundary for "Structure, outcrop, and subcrop of the bedrock aquifers along the western margin of the Denver Basin, Colorado." Hydrologic Atlas 742

    Science.gov (United States)

    Rafferty, Sharon

    1998-01-01

    This digital geospatial data set consists of outlines of the study area in the report "Structure, Outcrop, and Subcrop of the Bedrock Aquifers Along the Western Margin of the Denver Basin, Colorado" (Robson and others, 1998).

  3. The hydroclimate of the Upper Colorado River Basin and the western United States

    Science.gov (United States)

    Bolinger, Rebecca A.

    Understanding water budget variability of the Upper Colorado River Basin (UCRB) is critical, as changes can have major impacts on the region's vulnerable water resources. Using in situ, reanalysis, and satellite-derived datasets, surface and atmospheric water budgets of the UCRB are analyzed. All datasets capture the seasonal cycle for each water budget component. Most products capture the interannual variability, although there are some discrepancies with atmospheric divergence estimates. Variability and magnitude among storage volume change products also vary widely. With regards to the surface budget, the strongest connections exist between precipitation, evapotranspiration (ET), and soil moisture, while snow water equivalent is best correlated with runoff. Using the most ideal datasets for each component, the atmospheric water budget balances with 73 mm leftover. Increasing the best estimate of ET by 5% leads to a better long-term balance between surface storage changes, runoff, and atmospheric convergence. It also brings long-term atmospheric storage changes to a better balance of 13 mm. A statistical analysis and case study are performed to better understand the variability and predictability of the UCRB's hydroclimate. Results show significant correlations (at the 90% confidence level) between UCRB temperature and precipitation, and El Nino - Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) during the fall. However, correlations are typically not greater than 0.4. ENSO and PDO are associated with the second mode of variability in a Principal Component analysis, while the first mode of variability (57% of variance for precipitation and 74% of variance for temperature) displays a high year-to-year variability. A case study of a wet and a dry year (with similar ENSO/PDO conditions) shows that a few large accumulation events is what drives the seasonal variability. These large accumulation events are more dependent on a variety of more local

  4. Skill evaluation of water supply forecasts in western Sierra Nevada and Colorado River basins

    OpenAIRE

    Harrison, Brent

    2014-01-01

    Runoff records from thirteen major river basins on the western slope of the Sierra Nevada in California were compared to runoff forecasts for those watersheds to determine the skill of those runoff forecasts. The forecasts, some dating back to the 1930's, were made at the beginning of the months of February, March, April and May. An array of summary, correlation and categorical skill measures were computed for each forecast and associated observation. The same array of skill measures were c...

  5. Location of wells shown in "Structure, outcrop,, and subcrop of the bedrock aquifers along the western margin of the Denver Basin, Colorado." Hydrologic Atlas 742

    Science.gov (United States)

    Rafferty, Sharon

    1998-01-01

    This digital geospatial data set consists of locations of coal, oil, gas and water wells shown as data points in the report, "Structure, Outcrop, and Subcrop of the Bedrock Aquifers Along the Western Margin of the Denver Basin, Colorado" (Robson and others, 1998).

  6. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    Energy Technology Data Exchange (ETDEWEB)

    Hoak, T.E.; Decker, A.D.

    1995-10-01

    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  7. Development, evolution, and destruction of the saline mineral area of Eocene Lake Uinta, Piceance Basin, western Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Brownfield, Michael E.

    2015-01-01

    Halite and the sodium bicarbonate mineral nahcolite were deposited in Eocene-age saline Lake Uinta in the Piceance Basin, northwestern Colorado. Variations in the areal extent of saline mineral deposition through time were studied using descriptions of core and outcrop. Saline minerals have been extensively leached by groundwater, and the original extent of saline deposition was determined from the distribution of empty vugs and collapse breccias. Because vugs and breccias strongly influence groundwater movement, determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed.

  8. Structure contours of top of Laramie-Fox Hills aquifer in "Structure, outcrop, and subcrop of the bedrock aquifers along the western margin of Denver Basin, Colorado." Hydrologic Atlas 742

    Science.gov (United States)

    Rafferty, Sharon

    1998-01-01

    This digital geospatial data set consists of structure contours of the top of the Laramie-Fox Hills aquifer along the Front Range of Colorado. The U.S. Geological Survey developed this data set as part of a project described in the report, "Structure, Outcrop, and Subcrop of the Bedrock Aquifers Along the Western Margin of the Denver Basin, Colorado" (Robson and others, 1998).

  9. Structure contours of base of upper Arapahoe aquifer in "Structure, outcrop, and subcrop of the bedrock aquifers along the western margin of the Denver Basin, Colorado." Hydrologic Atlas 742

    Science.gov (United States)

    Rafferty, Sharon

    1998-01-01

    This digital geospatial data set consists of structure contours on the base of the upper member of the Arapahoe aquifer. The U.S. Geological Survey developed this data set as part of a project described in the report,"Structure, Outcrop, and Subcrop of the Bedrock Aquifers Along the Western Margin of the Denver Basin, Colorado" (Robson and others, 1998)

  10. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    Science.gov (United States)

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  11. Analysis of historic agricultural irrigation data from the Natural Resources Conservation Service monitoring and evaluation for Grand Valley, Lower Gunnison Basin, and McElmo Creek Basin, western Colorado, 1985 to 2003

    Science.gov (United States)

    Mayo, John W.

    2015-01-01

    The Natural Resources Conservation Service Monitoring and Evaluation for three salinity control units in western Colorado—Grand Valley, Lower Gunnison, and McElmo Creek—from 1985 to 2003 was a response to the Colorado River Basin Salinity Control Act, Public Law 93–320, July 24, 1974, and its amendments. The Natural Resources Conservation Service evaluated the effects on seasonal irrigation efficiency and deep percolation of irrigation water of various on-farm irrigation system improvements in the three salinity control units, and reported the results in a series of internal Natural Resources Conservation Service annual reports. Because of the large amount of effort and expense that went into the Natural Resources Conservation Service Monitoring and Evaluation and the importance of the data to help quantify the changes to deep percolation, the Natural Resources Conservation Service has determined that having the evaluation results made public through a characterization and analysis of the results by the U.S. Geological Survey could be of use to a wider audience of water managers and the general public.

  12. Groundwater availability of the Denver Basin aquifer system, Colorado

    Science.gov (United States)

    Paschke, Suzanne S., (Edited By)

    2011-01-01

    The Denver Basin aquifer system is a critical water resource for growing municipal, industrial, and domestic uses along the semiarid Front Range urban corridor of Colorado. The confined bedrock aquifer system is located along the eastern edge of the Rocky Mountain Front Range where the mountains meet the Great Plains physiographic province. Continued population growth and the resulting need for additional water supplies in the Denver Basin and throughout the western United States emphasize the need to continually monitor and reassess the availability of groundwater resources. In 2004, the U.S. Geological Survey initiated large-scale regional studies to provide updated groundwater-availability assessments of important principal aquifers across the United States, including the Denver Basin. This study of the Denver Basin aquifer system evaluates the hydrologic effects of continued pumping and documents an updated groundwater flow model useful for appraisal of hydrologic conditions.

  13. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  14. Colorado Basin Structure and Rifting, Argentine passive margin

    Science.gov (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  15. Characterization of salinity loads and selenium loads in the Smith Fork Creek region of the Lower Gunnison River Basin, western Colorado, 2008-2009

    Science.gov (United States)

    Richards, Rodney J.; Linard, Joshua I.; Hobza, Christopher M.

    2014-01-01

    The lower Gunnison River Basin of the Colorado River Basin has elevated salinity and selenium levels. The Colorado River Basin Salinity Control Act of June 24, 1974 (Public Law 93–320, amended by Public Law 98–569), authorized investigation of the Lower Gunnison Basin Unit Salinity Control Project by the U.S. Department of the Interior. The Bureau of Reclamation (Reclamation) and the Natural Resources Conservation Service are responsible for assessing and implementing measures to reduce salinity and selenium loading in the Colorado River Basin. Cost-sharing programs help farmers, ranchers, and canal companies improve the efficiency of water delivery systems and irrigation practices. The delivery systems (irrigation canals) have been identified as potential sources of seepage, which can contribute to salinity loading. Reclamation wants to identify seepage from irrigation systems in order to maximize the effectiveness of the various salinity-control methods, such as polyacrylamide lining and piping of irrigation canals programs. The U.S. Geological Survey, in cooperation with Reclamation, developed a study to characterize the salinity and selenium loading of seven subbasins in the Smith Fork Creek region and identify where control efforts can be maximized to reduce salinity and selenium loading. Total salinity loads ranged from 27.9±19.1 tons per year (t/yr) to 87,500±80,500 t/yr. The four natural subbasins—BkKm, RCG1, RCG2, and SF1—had total salinity loads of 27.9±19.1 t/yr, 371±248 t/yr, 2,180±1,590 t/yr, and 4,200±2,720 t/yr, respectively. The agriculturally influenced sites had salinity loads that ranged from 7,580±6,900 t/yr to 87,500±80,500 t/yr. Salinity loads for the subbasins AL1, B1, CK1, SF2, and SF3 were 7,580±6,900 t/yr; 28,300±26,700 t/yr; 48,700±36,100 t/yr; 87,500±80,900 t/yr; and 52,200±31,800 t/yr, respectively. The agricultural salinity load was separated into three components: tail water, deep percolation, and canal seepage

  16. Western Canada Sedimentary Basin competitiveness

    International Nuclear Information System (INIS)

    Recent dramatic expansion of the natural gas industry in the Western Canada Sedimentary Basin provided ample proof of the potential of this area for further development of natural gas supply. However, the inherent competitive advantages provided by the Western Canada Sedimentary Basin were said to have been offset by low netback prices resulting in poor producer economics when competitiveness is measured by availability of opportunities to find and develop gas supply at costs low enough to ensure attractive returns. Technology was identified as one of the key elements in improving basin competitiveness, but the greatest potential lies in reduced transportation costs and increased access to North American market centres. 8 figs

  17. Reserves in western basins

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, R.H.; Cotton, B.W. [Scotia Group, Dallas, TX (United States)

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  18. Economic Impacts of Water Conservation Measures in Agriculture and Energy Within the Upper Colorado River Basin

    OpenAIRE

    Franklin, Douglas R.

    1982-01-01

    The demand for water is increasing in the western United States. Coupled with growing emphasis on development of the western resources, the limited supply of water will create an expanding competitive market for water by agricultural, energy, industrial and municipal users. The Upper Colorado River Basin is faced with a question of what water conservation measures in the agricultural and energy sectors can be instigated without reducing agricultural output. If the decision is made to adopt wa...

  19. Raton basin coalbed methane production picking up in Colorado

    Science.gov (United States)

    Hemborg, H. Thomas

    1996-01-01

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has gone over pilot testing and entered the development stage which is expected to last several years. The development work is restricted to roughly a 25 mile by 15 mile wide `fairway' centered about 20 miles west of Trinidad, Colorado. At last count, 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin's Raton and Vermejo formation coals.

  20. Uranium deposits: northern Denver Julesburg basin, Colorado

    International Nuclear Information System (INIS)

    The Fox Hills Sandstone and the Laramie Formation (Upper Cretaceous) are the host rocks for uranium deposits in Weld County, northern Denver Julesburg basin, Colorado. The uranium deposits discovered in the Grover and Sand Creek areas occur in well-defined north--south trending channel sandstones of the Laramie Formation whereas the sandstone channel in the upper part of the Fox Hills Sandstone trends east--west. Mineralization was localized where the lithology was favorable for uranium accumulation. Exploration was guided by log interpretation methods similar to those proposed by Bruce Rubin for the Powder River basin, Wyoming, because alteration could not be readily identified in drilling samples. The uranium host rocks consist of medium- to fine-grained carbonaceous, feldspathic fluvial channel sandstones. The uranium deposits consist of simple to stacked roll fronts. Reserve estimates for the deposits are: (1) Grover 1,007,000 lbs with an average grade of 0.14 percent eU3O8,2) Sand Creek 154,000 lbs with an average grade of 0.08 percent eU3O8, and 3) The Pawnee deposit 1,060,000 lbs with an average grade of 0.07 percent eU3O8. The configuration of the geochemical cells in the Grover and Sand Creek sandstones indicate that uraniferous fluids moved northward whereas in the Pawnee sandstone of the Fox Hills uraniferous fluids moved southward. Precipitation of uranium in the frontal zone probably was caused by downdip migration of oxygcnated groundwater high in uranium content moving through a favorable highly carbonaceous and pyritic host sandstone

  1. Natural cultural, and environmental resource values influencing Colorado River Basin management

    International Nuclear Information System (INIS)

    The Colorado River Basin supplies water to the seven western states of Wyoming, Colorado, Utah, Arizona, New Mexico, Nevada, and California, and to Mexico. Originally the Colorado River was developed to help settle the semiarid lands in the west by means of irrigation. Other uses soon evolved for power generation, flood control, domestic and industrial supply, recreation, and fish and wildlife protection. Several large dams and reservoirs can store four times the natural flow of 18.5 GM3 per year. The Federal Government owns over half the lands within the Basin. Management agencies include the National Park, and Fish and Wildlife Services, and the Bureaus of Indian Affairs, Land Management, and Reclamation. Since 1991, agencies are cooperating to understand and manage multiple purposes that include protection of natural, cultural, recreational, and environmental resources, and endangered species for the enjoyment and use by future generations

  2. A model for lignin alteration - Part II: Numerical model of natural gas generation and application to the Piceance Basin, Western Colorado

    Science.gov (United States)

    Payne, D.F.; Ortoleva, P.J.

    2001-01-01

    The model presented here simulates a network of parallel and sequential reactions that describe the structural and chemical transformation of lignin-derived sedimentary organic matter (SOM) and the resulting generation of mobile species from shallow burial to approximately low-volatile bituminous rank. The model is calibrated to the Upper Cretaceous Williams Fork Formation coal of the Piceance Basin at the Multi-Well Experiment (MWX) Site, assuming this coal is largely derived from lignin. The model calculates the content of functional groups on the residual molecular species, C, H, and O elemental weight percents of the residual species, and moles of residual molecular species and mobile species (including components of natural gas) through time. The model is generally more sensitive to initial molecular structure of the lignin-derived molecule and the H2O content of the system than to initial temperature, as the former affect the fundamental reaction paths. The model is used to estimate that a total of 314 trillion cubic feet (tcf) of methane is generated by the Williams Fork coal over the basin history. ?? 2001 Elsevier Science Ltd. All rights reserved.

  3. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data

    OpenAIRE

    Fassnacht, SR; Dressler, KA; Bales, RC

    2003-01-01

    Inverse weighted distance and regression nonexact techniques were evaluated for interpolating methods snow water equivalent (SWE) across the entire Colorado River Basin of the western United States. A 1-km spacing was used for the gridding of snow telemetry (SNOTEL) measurements for the years 1993, 1998, and 1999, which on average, represented higher than average, average, and lower than average snow years. Because of the terrain effects, the regression techniques (hypsometric elevation and m...

  4. Satellite Observations of Drought and Falling Water Storage in the Colorado River Basin and Lake Mead

    Science.gov (United States)

    Castle, S.; Famiglietti, J. S.; Reager, J. T.; Thomas, B.

    2012-12-01

    Over the past decade the Western US has experienced extreme drought conditions, which have affected both agricultural and urban areas. An example of water infrastructure being impacted by these droughts is Lake Mead, the largest reservoir in the United States at its full capacity that provides water and energy for several states in the Western US. Once Lake Mead falls below the critical elevation of 1050 feet above sea level, the Hoover Dam, the structure that created Lake Mead by damming flow within the Colorado River, will stop producing energy for Las Vegas. The Gravity Recovery and Climate Experiment (GRACE) satellites, launched in 2002, have proven successful for monitoring changes in water storage over large areas, and give hydrologists a first-ever picture of how total water storage is changing spatially and temporally within large regions. Given the importance of the Colorado River to meet water demands to several neighboring regions, including Southern California, it is vital to understand how water is transported and managed throughout the basin. In this research, we use hydrologic remote sensing to characterize the human and natural water balance of the Colorado River basin and Lake Mead. The research will include quantifying the amount of Colorado River water delivered to Southern California, coupling the GRACE Total Water Storage signal of the Upper and Lower Colorado River with Landsat-TM satellite imagery and areal extent of Lake Mead water storage, and combining these data together to determine the current status of water availability in the Western US. We consider water management and policy changes necessary for sustainable water practices including human water use, hydropower, and ecosystem services in arid regions throughout the Western US.

  5. Colorado River Basin Water Supply and Demand Study

    Science.gov (United States)

    Prairie, J. R.; Jerla, C.

    2012-12-01

    The Colorado River Basin Water Supply & Demand Study (Study), part of the Basin Study Program under the Department of the Interior's WaterSMART Program, is being conducted by the Bureau of Reclamation and agencies representing the seven Colorado River Basin States. The purpose of the Study is to assess future water supply and demand imbalances in the Colorado River Basin over the next 50 years and develop and evaluate options and strategies to resolve those imbalances. The Study is being conducted over the period from January 2010 to September 2012 and contains four major phases: Water Supply Assessment, Water Demand Assessment, System Reliability Analysis, and Development and Evaluation of Opportunities for balancing supply and demand. To address the considerable amount of uncertainty in projecting the future state of the Colorado River system, the Study has adopted a scenario planning approach that has resulted in four water supply scenarios and up to six water demand scenarios. The water supply scenarios consider hydrologic futures derived from the observed historical and paleo-reconstructed records as well as downscaled global climate model (GCM) projections. The water demand scenarios contain differing projections of parameters such as population growth, water use efficiency, irrigated acreage, and water use for energy that result in varying projections of future demand. Demand for outdoor municipal uses as well as agricultural uses were adjusted based on changing rates of evapotranspiration derived from downscaled GCM projections. Water supply and demand scenarios are combined through Reclamation's long-term planning model to project the effects of future supply and demand imbalances on Colorado River Basin resources. These projections lend to an assessment of the effectiveness of a broad range of options and strategies to address future imbalances.

  6. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 106 cm3/yr. Of this total, about 600 x 106 cm3/yr is runoff; 190 x 106 cm3/yr recharges the upper ground-water system; and an estimated 55 x 106 cm3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  7. Development of streamflow projections under changing climate conditions over Colorado River Basin headwaters

    OpenAIRE

    W. P. Miller; T. C. Piechota; Gangopadhyay, S; T. Pruitt

    2010-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by forecasts determined by the Colorado Basin River Forecast Center (CBRFC). While these forecasts by the CBRFC are useful, water managers within the basin are interested in long-term proj...

  8. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    OpenAIRE

    W. P. Miller; T. C. Piechota; Gangopadhyay, S; T. Pruitt

    2011-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting System (RFS) hydrologic...

  9. Development of streamflow projections under changing climate conditions over Colorado River basin headwaters

    OpenAIRE

    W. P. Miller; T. C. Piechota; Gangopadhyay, S; T. Pruitt

    2011-01-01

    The current drought over the Colorado River Basin has raised concerns that the US Department of the Interior, Bureau of Reclamation (Reclamation) may impose water shortages over the lower portion of the basin for the first time in history. The guidelines that determine levels of shortage are affected by relatively short-term (3 to 7 month) forecasts determined by the Colorado Basin River Forecast Center (CBRFC) using the National Weather Service (NWS) River Forecasting Syste...

  10. Structure contours of top of Laramie-Fox Hills aquifer in "Structure, outcrop, and subcrop of the bedrock aquifers along the western margin of Denver Basin, Colorado." Hydrologic Atlas 742

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set consists of structure contours of the top of the Laramie-Fox Hills aquifer along the Front Range of Colorado. The U.S. Geological...

  11. Hydrogeochemistry and simulated solute transport, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Robson, Stanley G.; Saulnier, George J.

    1980-01-01

    Oil-shale mining activities in Piceance basin in northwestern Colorado could adversely affect the ground- and surface-water quality in the basin. This study of the hydrology and geochemistry of the area used groundwater solute-transport-modeling techniques to investigate the possible impact of the mines on water quality. Maps of the extent and structure of the aquifer were prepared and show that a saturated thickness of 2,000 feet occurs in the northeast part of the basin. Ground-water recharge in the upland areas in the east, south, and west parts of the basin moves down into deeper zones in the aquifer and laterally to the discharge areas along Piceance and Yellow Creeks. The saline zone and the unsaturated zone provide the majority of the dissolved solids found in the ground water. Precipitation, ion-exchange, and oxidation-reduction reactions are also occurring in the aquifer. Model simulations of groundwater pumpage in tracts C-a and C-b indicate that the altered direction of groundwater movement near the pumped mines will cause an improvement in groundwater quality near the mines and a degradation of water quality downgradient from the tracts. Model simulations of mine leaching in tract C-a and C-b indicate that equal rates of mine leaching in the tracts will produce much different effects on the water quality in the basin. Tract C-a, by virtue of its remote location from perennial streams, will primarily degrade the groundwater quality over a large area to the northeast of the tract. Tract C-b, by contrast, will primarily degrade the surface-water quality in Piceance Creek, with only localized effects on the groundwater quality. (USGS)

  12. Seismicity of the Paradox Basin and the Colorado Plateau interior

    International Nuclear Information System (INIS)

    National Waste Terminal Storage Program site qualification criteria require that a nuclear waste repository be located so that ground motion associated with the maximum credible and maximum probable earthquakes or other earthquake-associated effects will not have an unacceptable adverse impact on system performance. To determine whether a potential repository site located in the Paradox salt formation in the Paradox Basin of southeastern Utah satisfies these criteria, seismological studies were undertaken by Woodward-Clyde Consultants (WCC) in March 1978. These studies included: (1) analysis of historical seismicity; (2) analysis of contemporary seismicity and tectonics of both the Paradox Basin and surrounding Colorado Plateau, including an extensive program of microearthquake monitoring; (3) evaluation of the Paradox Basin crustal structure; (4) evaluation of mining-induced seismicity; and (5) characterization of design-related earthquake-induced ground motions pertinent to a potential repository site through studies of attentation and subsurface ground motions. A detailed discussion of the results of the seismological studies performed through December 1980 is contained in WCC (1982). The purpose of this topical report is to update and summarize the studies on the local, regional, and mining-induced seismicity conducted through December 1982. The limitations of any interpretations are also discussed and additional information that remains to be acquired is identified. 56 references, 45 figures, 4 tables

  13. Basin and Range Province, Western US, USGS Grids #3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  14. Bedrock Geology of the turkey Creek Drainage Basin, Jefferson County, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations...

  15. Mahogany Ledge Digital Structure Contour Lines of the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Mahogany ledge structure contour lines were needed to perform overburden calculations in the Piceance Basin, Colorado as part of a 2009 National Oil Shale...

  16. Raster Dataset Model of Overburden Above the Mahogany Zone in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the overburden material above the Mahogany Zone was needed to perform calculations in the Piceance Basin, Colorado as part of a...

  17. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  18. Reporting Polygons to Summarize Overburden Material Above the Mahogany Zone in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Reporting polygons were created to display and quantify overburden material above the Mahogany Zone, by PLSS section, in the Piceance Basin, Colorado as part of a...

  19. TIN Dataset Model of Overburden Above the Mahogany Zone in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the overburden material above the Mahogany Zone was needed to perform calculations in the Piceance Basin, Colorado as part of a 2009...

  20. Raster Dataset Model of Nahcolite Resources in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — ESRI GRID raster datasets were created to display and quantify nahcolite resources for eight oil shale zones in the Piceance Basin, Colorado as part of a 2009...

  1. TIN Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  2. TIN Dataset Model of the Mahogany Bed Structure in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009 National...

  3. Raster Dataset Model of the Mahogany Bed Structure in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the Mahogany bed structure was needed to perform overburden calculations in the Uinta Basin, Utah and Colorado as part of a 2009...

  4. Raster Dataset Model of the Mahogany Zone Structure in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the Mahogany Zone structure was needed to perform overburden calculations in the Piceance Basin, Colorado as part of a 2009...

  5. Raster Dataset Model of Overburden Above the Mahogany Bed in the Uinta Basin, Utah and Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI GRID raster data model of the overburden material above the Mahogany bed was needed to perform calculations in the Uinta Basin, Utah and Colorado as part of...

  6. TIN Dataset Model of the Mahogany Zone Structure in the Piceance Basin, Colorado

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — An ESRI TIN data model of the Mahogany Zone structure was needed to perform overburden calculations in the Piceance Basin, Colorado as part of a 2009 National Oil...

  7. [Draft] Environmental Impact Statement : San Luis Valley Project : Colorado Closed Basin Division

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Closed Basin Division, San Luis Valley Project, Alamosa and Saguache Counties, Colorado, is a multipurpose water resource plan designated to salvage and deliver...

  8. Dust and Black Carbon Radiative Forcing Controls on Snowmelt in the Colorado River Basin

    Science.gov (United States)

    Skiles, Sara McKenzie

    Light absorbing impurities (LAIs), like dust and black carbon (BC), initiate powerful albedo feedbacks when deposited on snow cover, yet due to a scarcity of observations radiative forcing by LAIs is often neglected, or poorly constrained, in climate and hydrological models. This has important consequences for regions like the Colorado River Basin, where dust deposition to mountain snow cover frequently occurs in the upper basin in the springtime, a relatively new phenomenon since western expansion of the US. Previous work showed that dust on snow (DOS) enhances snowmelt by 3-7 weeks, shifts timing and intensity of runoff, and reduces total water yield. Here, advanced methods are presented to measure, model, and monitor DOS in the hydrologically sensitive Colorado River Basin. A multi-year multi-site spatial variability analysis indicates the heaviest dust loading comes from point sources in the southern Colorado Plateau, but also shows that lower levels of dust loading from diffuse sources still advances melt by 3-4 weeks. A high-resolution snow property dataset, including vertically resolved measurements of snow optical grain size and dust/BC concentrations, confirms that impurity layers remain in the layer in which they are deposited and converge at the surface as snow melts: influencing snow properties, rapidly reducing snow albedo, and increasing snowmelt rates. The optical properties of deposited impurities, which are mainly dust, are determined using an inversion technique from measurements of hemispherical reflectance and particle size distributions. Using updated optical properties in the snow+aerosols radiative transfer model SNICAR improves snow albedo modeling over a more general dust characterization, reducing errors by 50% across the full range of snow reflectance. Radiative forcing by LAIs in the CRB, estimated directly from measurements and updated optical properties, is most strongly controlled by dust concentrations in the uppermost surface layer

  9. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  10. Mean Transit Time as a Predictor of Groundwater Discharge Response in the Upper Colorado River Basin

    Science.gov (United States)

    Solder, J. E.; Heilweil, V. M.; Stolp, B. J.; Susong, D.

    2015-12-01

    The Colorado River and its tributaries support 40 million municipal water users and 5.5 million acres of agriculture in the south western United States (U.S. Bureau of Reclamation, 2012). Recent estimates by Rumsey et al. (2015) suggest that a significant portion (about 50 percent) of surface water flow in the Upper Colorado River Basin (UCRB) is sustained by groundwater discharge to streams. Predicted climate variation (Cook et al., 2015) and increased water demand (U.S. Bureau of Reclamation, 2012) within the UCRB suggest future decreases in groundwater discharge, however transient groundwater responses are not well understood. In this study we calculate groundwater mean transit time (MTT) and transit time distribution (TTD) as predictors of the pattern and timing of groundwater response to hydraulic stress. Samples from nineteen large springs within the UCRB were analyzed for environmental tracers to determine MTT and TTD. The predictive value of the MTT is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the 19 springs range from 10 to 15,000 years with a flow-weighted average of 1,650 years. The composite TTD of the 19 springs suggest that flowpaths representing 45 percent of their combined discharge have transit times greater than 100 years. However, spring discharge records indicate that flow responds to drought on much shorter (0.5 - 6 year) time scales, indicative of a hydraulic pressure response. Springs with shorter MTTs (Manga, 1999) has shown groundwater responds on shorter time scales than the MTT, but of interest the results presented here indicate that relatively stable and old springs with long MTTs (> 100) also show a hydraulic pressure response. While not fully representative of the UCRB, results from the 19 springs indicate that groundwater discharge responds to climate variation and water-demand imbalances over a relatively short time period of years.

  11. Radioactivity in the environment: a case study of the Puerco and Little Colorado River Basins, Arizona and New Mexico

    International Nuclear Information System (INIS)

    This report, written for the nontechnical reader, summarizes the results of a study from 1988-91 of the occurrence and transport of selected radionuclides and other chemical constituents in the Puerco and Little Colorado River basins, Arizona and New Mexico. More than two decades of uranium mining and the 1979 failure of an earthen dam containing mine tailings released high levels of radionuclides and other chemical constituents to the Puerco River, a tributary of the Little Colorado River. Releases caused public concern that ground water and streamflow downstream from mining were contaminated. Study findings show which radioactive elements are present, how these elements are distributed between water and sediment in the environment, how concentrations of radioactive elements vary naturally within basins, and how levels of radioactivity have changed since the end of mining. Although levels of radioactive elements and other trace elements measured in streamflow commonly exceed drinking-water standards, no evidence was found to indicate that the high concentrations were still related to uraniurn mining. Sediment radioactivity was higher at sample sites on streams that drain the eastern part of the Little Colorado River basin than that of samples from the western part. Radioactivity of suspended sediment measured in this study, therefore, represents natural conditions for the streams sampled rather than an effect of mining. Because ground water beneath the Puerco River channel is shallow, the aquifer is vulnerable to contamination. A narrow zone of ground water beneath the Puerco River containing elevated uranium concentrations was identified during the study. The highest concentrations were nearest the mines and in samples collected in the first few feet beneath the streambed. Natuxal radiation levels in a few areas of the underlying sedimentary aquifer not connected to the Puerco River also exceeded water quality standards. Water testing would enable those residents

  12. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    OpenAIRE

    E. A. Rosenberg; Clark, E A; Steinemann, A. C.; Lettenmaier, D. P.

    2013-01-01

    We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC) macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwat...

  13. Geochemical variability of soils and biogeochemical variability of plants in the Piceance Basin, Colorado

    Science.gov (United States)

    Tuttle, M.L.; Severson, R.C.; Dean, W.E.; Klusman, R.W.

    1986-01-01

    Geochemical baselines for native soils and biogeochemical baselines for plants in the Piceance basin provide data that can be used to assess geochemical and biogeochemical effects of oil-shale development, monitor changes in the geochemical and biogeochemical environment during development, and assess the degree of success of rehabilitation of native materials after development. Baseline values for 52 properties in native soils, 15 properties in big sagebrush, and 13 properties in western wheatgrass were established. Our Study revealed statistically significant regional variations of the following properties across the basin: in soil&-aluminum, cobalt, copper, iron, manganese, sodium, nickel, phosphorus, lead, scandium, titanium, vanadium, zinc, organic and total carbon, pH, clay, dolomite, sodium feldspar, and DTPA-extractable calcium, cadmium, iron, potassium, manganese, nickel, phosphorus, yttrium, and zinc; in big sagebrush-barium, calcium, copper, magnesium, molybdenum, sodium, strontium, zinc, and ash; and in western wheatgrass-boron, barium, calcium, magnesium, manganese, molybdenum, strontium, zinc, and ash. These variations show up as north-south trends across the basin, or they reflect differences in elevation, hydrology, and soil parent material. Baseline values for properties that do not have statistically significant regional variations can be represented by geometric means and deviations calculated from all values within the basin. Chemical and mineralogical analyses of soil and chemical analyses of western wheatgrass samples from Colorado State University's experimental revegetation plot at Anvil Points provide data useful in assessing potential effects on soil and plant properties when largescale revegetation operations begin. The concentrations of certain properties are related to the presence of topsoil over spent shale in the lysimeters. In soils, calcium, fluorine, lithium, magnesium, sodium, phosphorus, strontium, carbonate and total carbon

  14. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change

    Science.gov (United States)

    Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy

    2015-01-01

    Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.

  15. Classification of Complex Reservoirs in Superimposed Basins of Western China

    Institute of Scientific and Technical Information of China (English)

    PANG Xiongqi; ZHOU Xinyuan; LIN Changsong; HUO Zhipeng; LUO Xiaorong; PANG Hong

    2010-01-01

    Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed basins.The distinct differences between these basins and monotype basins are their discontinuous stratigraphic sedimentation,stratigraphic structure and stratigraphic stress-strain action over geological history.Based on the correlation of chronological age on structural sections,superimposed basins can be divided into five types in this study:(1)continuous sedimentation type superimposed basins,(2)middle and late stratigraphic superimposed basins,(3)early and late stratigraphic superimposed basins,(4)early and middle stratigraphic superimposed basins,and(5)long-term exposed superimposed basins.Multiple source-reservoir-caprock assemblages have developed in such basins.In addition,multi-stage hydrocarbon generation and expulsion,multiple sources,polycyclic hydrocarbon accumulation and multiple-type hydrocarbon reservoirs adjustment,reformation and destruction have occurred in these basins.The complex reservoirs that have been discovered widely in the superimposed basins to date have remarkably different geologic features from primary reservoirs,and the root causes of this are folding,denudation and the fracture effect caused by multiphase tectonic events in the superimposed basins as well as associated seepage,diffusion,spilling,oxidation,degradation and cracking.Based on their genesis characteristics,complex reservoirs are divided into five categories:(1)primary reservoirs,(2)trap adjustment type reservoirs,(3)component variant reservoirs,(4)phase conversion type reservoirs and(5)scale-reformed reservoirs.

  16. Cold and transition season cloud condensation nuclei measurements in western Colorado

    Directory of Open Access Journals (Sweden)

    D. S. Ward

    2011-05-01

    Full Text Available Recent studies have shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud droplet nucleating aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III field campaign. Total particle and cloud condensation nuclei (CCN number concentrations were measured for a 24-day period in Mesa Verde National Park, in September and October 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship was found for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements collected aboard the King Air platform during December 2009. A CCN closure attempt was performed and suggested that the sampled aerosol may have had a low hygroscopicity that changed little with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with CCN number concentrations that varied slowly in time, and little in space along the Western Slope.

  17. Cold and transition season cloud condensation nuclei measurements in western Colorado

    Directory of Open Access Journals (Sweden)

    D. S. Ward

    2010-11-01

    Full Text Available Recent research has shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud-active aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III field campaign. Total particle and cloud condensation nuclei (CCN number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains, in Sept. and Oct. 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements aboard the KingAir platform during December 2009. A CCN closure attempt was performed using the size distribution information and suggested that the sampled aerosol in general had low hygroscopicity that changed slightly with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with a cloud active portion that varied slowly in time, and little in space along the Western Slope.

  18. Adaptation Challenges in Complex River Basins: Lessons Learned and Unlearned for the Colorado

    Science.gov (United States)

    Pulwarty, R. S.

    2008-12-01

    Climate variations affect the function and operation of existing water infrastructure - including hydropower, structural flood defenses, drainage and irrigation systems - as well as water management practices in support of efficiency and environmental needs. Selected basins around the world, including the Colorado, show agreements in model projections of increasing aridity. Adverse effects of climate change on freshwater systems aggravate the impacts of other stresses, such as population growth, changing economic activity, land-use change and urbanization and most importantly upstream-downstream winners and losers. Thus current water management practices may not be robust enough to cope with the impacts of climate change on water supply reliability. In many locations, water management does not even satisfactorily cope with current climate variability, so that large flood and drought-related environmental and economic damages occur on seasonal to decadal timescales. The recently released IPCC Technical Paper notes that adaptation procedures and risk management practices that incorporate projected hydrological changes with related uncertainties are being developed in some countries and regions.In this presentation we will review the challenges and lessons provided in drought and water resources management and optimization in the context of climate variability and projected change in the Western U.S., the European Union (including the Iberian Peninsula), the Murray-Darling Basin, and elsewhere. Since the release of the IPCC report several of the authors (including the presenter) have held meetings on comparative assessments of adaptation and its challenges in interstate and international river basins. As a first step, improved incorporation of information about current climate variability into water-related management could assist adaptation to longer-term climate change impacts. Future adaptations include technical changes that improve water use efficiency, demand

  19. Available Water Capacity for the Upper Colorado River Basin in Daymet Climate Data resolution (awc_UCRB_Daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — awc_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the available water capacity (AWC) for the Upper Colorado River Basin. AWC (available water...

  20. Land Cover Information for the Upper Colorado River Basin in Daymet Climate Data resolution (nlcd_UCRB_daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — nlcd_UCRB_daymet_resolution.txt is an Esri ASCII grid representing land cover information for the Upper Colorado River Basin. The 2011 National Land Cover Database...

  1. Hydrologic Soil Group for the Upper Colorado River Basin in Daymet Climate Data resolution (hsg_UCRB_Daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — hsg_UCRB_Daymet_resolution.txt is an Esri ASCII grid representing the hydrologic soil group (HSG) for the Upper Colorado River Basin. The HSG for an area is...

  2. Coalbed gas potential in the miocene Soma basin (Western Turkey)

    OpenAIRE

    İnan, Sedat; Inan, Sedat; BAYSAL, Mustafa; YÜRÜM, YUDA; Yurum, Yuda

    2010-01-01

    The Neogene Basins of Turkey contain as much as 9 billion tons of lignite-rank coal (Sengiller, 2001; Tuncah et al., 2002). The Miocene Soma Basin, a rift basin trending NE-SW (approximately 20 kilometers by 5 kilometers) in the Aegean Extensional Province (EAP) of Western Turkey, is estimated to contain at the least one billion tons of lignite and about half of this reserve is present at depths greater than 600 m (Turkish Coal Enterprises, 2006). Miocene marillimestone units and Pliocene cla...

  3. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2013-04-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  4. On the contribution of groundwater storage to interannual streamflow anomalies in the Colorado River basin

    Directory of Open Access Journals (Sweden)

    E. A. Rosenberg

    2012-11-01

    Full Text Available We assess the significance of groundwater storage for seasonal streamflow forecasts by evaluating its contribution to interannual streamflow anomalies in the 29 tributary sub-basins of the Colorado River. Monthly and annual changes in total basin storage are simulated by two implementations of the Variable Infiltration Capacity (VIC macroscale hydrology model – the standard release of the model, and an alternate version that has been modified to include the SIMple Groundwater Model (SIMGM, which represents an unconfined aquifer underlying the soil column. These estimates are compared to those resulting from basin-scale water balances derived exclusively from observational data and changes in terrestrial water storage from the Gravity Recovery and Climate Experiment (GRACE satellites. Changes in simulated groundwater storage are then compared to those derived via baseflow recession analysis for 72 reference-quality watersheds. Finally, estimates are statistically analyzed for relationships to interannual streamflow anomalies, and predictive capacities are compared across storage terms. We find that both model simulations result in similar estimates of total basin storage change, that these estimates compare favorably with those obtained from basin-scale water balances and GRACE data, and that baseflow recession analyses are consistent with simulated changes in groundwater storage. Statistical analyses reveal essentially no relationship between groundwater storage and interannual streamflow anomalies, suggesting that operational seasonal streamflow forecasts, which do not account for groundwater conditions implicitly or explicitly, are likely not detrimentally affected by this omission in the Colorado River basin.

  5. Spatiotemporal Assessment of Groundwater Resources in the South Platte Basin, Colorado

    Science.gov (United States)

    Ruybal, C. J.; McCray, J. E.; Hogue, T. S.

    2015-12-01

    The South Platte Basin is one of the most economically diverse and fastest growing basins in Colorado. Strong competition for water resources in an over-appropriated system brings challenges to meeting future water demands. Balancing the conjunctive use of surface water and groundwater from the South Platte alluvial aquifer and the Denver Basin aquifer system is critical for meeting future demands. Over the past decade, energy development in the basin has added to the competition for water resources, highlighting the need to advance our understanding of the availability and sustainability of groundwater resources. Current work includes evaluating groundwater storage changes and recharge regimes throughout the South Platte Basin under competing uses, e.g. agriculture, oil and gas, urban, recreational, and environmental. The Gravity Recovery and Climate Experiment satellites in conjunction with existing groundwater data is used to evaluate spatiotemporal variability in groundwater storage and identify areas of high water stress. Spatiotemporal data will also be utilized to develop a high resolution groundwater model of the region. Results will ultimately help stakeholders in the South Platte Basin better understand groundwater resource challenges and contribute to Colorado's strategic future water planning.

  6. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  7. Can the Gila River reduce risk in the Colorado River Basin?

    Science.gov (United States)

    Wade, L. C.; Rajagopalan, B.; Lukas, J.; Kanzer, D.

    2012-12-01

    The Colorado River is the most important source of water in the southwest United States and Northern Mexico, providing water to approximately 35 million people and 4-5 million acres of irrigated lands. To manage the water resources of the basin, estimated to be about 17 million acre-feet (MAF) of undepleted supplies per year, managers use reservoir facilities that can store more than 60 MAF. As the demands on the water resources of the basin approach or exceed the average annual supply, and with average flow projected to decrease due to climate change, smart water management is vital for its sustainability. To quantify the future risk of depleting reservoir storage, Rajagopalan et al. (2009) developed a water-balance model and ran it under scenarios based on historical, paleo-reconstructed and future projections of flows, and different management alternatives. That study did not consider the impact of the Gila River, which enters the Colorado River below all major reservoirs and U.S. diversions. Due to intensive use in Central Arizona, the Gila only has significant inflows to the Colorado in wet years. However, these irregular inflows could beneficially influence system reliability in the US by helping to meet a portion of the 1.5 MAF delivery obligations to Mexico. To help quantify the potential system reliability benefit of the Gila River, we modify the Rajagopalan et al (2009) model to incorporate simulated Gila River inflows. These new data inputs to the water balance model are based on historical flows and tree-ring reconstructions of flow in the Upper Colorado River Basin (at Lee's Ferry), the Lower Colorado River Basin (tributary inflows), and the intermittent flows from the Gila River which are generated using extreme value analysis methods. Incorporating Gila River inflows, although they are highly variable and intermittent, reduces the modeled cumulative risk of reservoir depletion by 4 to 11% by 2057, depending on the demand schedule, reservoir operation

  8. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  9. Beyond annual streamflow reconstructions for the Upper Colorado River Basin: A paleo-water-balance approach

    Science.gov (United States)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.; Woodhouse, Connie A.

    2015-12-01

    In this paper, we present a methodology to use annual tree-ring chronologies and a monthly water balance model to generate annual reconstructions of water balance variables (e.g., potential evapotranspiration (PET), actual evapotranspiration (AET), snow water equivalent (SWE), soil moisture storage (SMS), and runoff (R)). The method involves resampling monthly temperature and precipitation from the instrumental record directed by variability indicated by the paleoclimate record. The generated time series of monthly temperature and precipitation are subsequently used as inputs to a monthly water balance model. The methodology is applied to the Upper Colorado River Basin, and results indicate that the methodology reliably simulates water-year runoff, maximum snow water equivalent, and seasonal soil moisture storage for the instrumental period. As a final application, the methodology is used to produce time series of PET, AET, SWE, SMS, and R for the 1404-1905 period for the Upper Colorado River Basin.

  10. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    Science.gov (United States)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  11. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    Science.gov (United States)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  12. Reconnaissance-level application of physical habitat simulation in the evaluation of physical habitat limits in the Animas Basin, Colorado

    Science.gov (United States)

    Milhous, Robert T.

    2003-01-01

    The Animas River is in southwestern Colorado and flows mostly to the south to join the San Juan River at Farmington, New Mexico (Figure 1). The Upper Animas River watershed is in San Juan County, Colorado and is located in the San Juan Mountains. The lower river is in the Colorado Plateau country. The winters are cold with considerable snowfall and little snowmelt in the mountains in the upper part of the basin. The lower basin has less snow but the winters are still cold. The streamflows during the winter are low and reasonably stable.

  13. 76 FR 1429 - Loveland Area Projects/Western Area Colorado Missouri Balancing Authority-Rate Order No. WAPA-154

    Science.gov (United States)

    2011-01-10

    ... Area Power Administration Loveland Area Projects/Western Area Colorado Missouri Balancing Authority--Rate Order No. WAPA-154 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Rate Order... through February 28, 2011. 73 FR 48382, August 19, 2008. \\3\\ WAPA-118 was approved by FERC on a...

  14. Comparability among four invertebrate sampling methods, Fountain Creek Basin, Colorado, 2010-2012

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Stogner, Robert W.; Brown, Krystal D.

    2014-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs City Engineering and Colorado Springs Utilities, designed a study to determine if sampling method and sample timing resulted in comparable samples and assessments of biological condition. To accomplish this task, annual invertebrate samples were collected concurrently using four sampling methods at 15 U.S. Geological Survey streamflow gages in the Fountain Creek basin from 2010 to 2012. Collectively, the four methods are used by local (U.S. Geological Survey cooperative monitoring program) and State monitoring programs (Colorado Department of Public Health and Environment) in the Fountain Creek basin to produce two distinct sample types for each program that target single-and multiple-habitats. This study found distinguishable differences between single-and multi-habitat sample types using both community similarities and multi-metric index values, while methods from each program within sample type were comparable. This indicates that the Colorado Department of Public Health and Environment methods were compatible with the cooperative monitoring program methods within multi-and single-habitat sample types. Comparisons between September and October samples found distinguishable differences based on community similarities for both sample types, whereas only differences were found for single-habitat samples when multi-metric index values were considered. At one site, differences between September and October index values from single-habitat samples resulted in opposing assessments of biological condition. Direct application of the results to inform the revision of the existing Fountain Creek basin U.S. Geological Survey cooperative monitoring program are discussed.

  15. Occurrence of disseminated uraninite in Wheeler Basin, Grand County, Colorado

    International Nuclear Information System (INIS)

    Disseminated uraninite occurs in Wheeler Basin, Grand County, Colo., about 5 mi (8 km) southeast of Monarch Lake, in Precambrian metamorphic rocks consisting of migmatized gneiss and mixed gneiss and pegmatite. An intrusion of Precambrian Y Silver Plume Granite lies within 400 ft (122 m) of the occurrence. The disseminated uraninite is confined to parts of the host rock that are rich in biotite; highest grade found was 0.73 percent uranium. The disseminated uraninite occurs as cubes and grains, generally from 0.1 to 0.3 mm across. Unit cell edge of the uraninite, approximately 5.48 A, suggests its pegmatitic origin. The origin of the uraninite disseminations is attributed by us to remobilization and concentration of elements during metamorphism caused by the intrusion of Silver Plume Granite. Uranium and lead isotopic analyses by K. R. Ludwig of uraninite and monazite from biotite concentrations confirm an apparent age of 1,450 +- 20 m.y. for these minerals. This age is equivalent to that reported for the Silver Plume Granite. Although the Wheeler Basin occurrence is small in size, it has many similarities to the Roessing uranium deposit in South-West Africa

  16. Occurrence of disseminated uraninite in Wheeler Basin, Grand County, Colorado

    International Nuclear Information System (INIS)

    Disseminated uraninite occurs in Wheeler Basin. Grand County, Colo., about 5 mi (8 km) southeast of Monarch Lake, in Precambrian metamorphic rocks consisting of migmatized gneiss and pegmatite. An intrusion of Precambrian Y Silver Plume Granite lies within 400 ft (122 m) of the occurrence. The disseminated uraninite is confined to parts of the host rock that are rich in biotite; highest grade found was 0.73 percent uranium. The disseminated uraninite occurs as cubes and grains, generally from 0.1 to 0.3 mm across. Unit cell edge of the uraninite, approx. =5.48 A, suggests its pegmatitic origin. The origin of the uraninite disseminations is attributed by us to remobilization and concentration of elements during metamorphism caused by the intrusion of Silver Plume Granite. Uranium and lead isotopic analyses by K. R. Ludwig of uraninite and monazite from biotite concentrations confirm an apparent age of 1,450 +- 20 m.y. for these minerals. This age is equivalent to that reported for the Silver Plume Granite. Although the Wheeler Basin occurrence is small in size, it has many similarities to the Rossing uranium deposite in South-West Africa

  17. Large scale snow water status monitoring: comparison of different snow water products in the upper Colorado basins

    Science.gov (United States)

    Artan, G.A.; Verdin, J.P.; Lietzow, R.

    2013-01-01

    We illustrate the ability to monitor the status of snowpack over large areas by using a~spatially distributed snow accumulation and ablation model in the Upper Colorado Basin. The model was forced with precipitation fields from the National Weather Service (NWS) Multi-sensor Precipitation Estimator (MPE) and the Tropical Rainfall Measuring Mission (TRMM) datasets; remaining meteorological model input data was from NOAA's Global Forecast System (GFS) model output fields. The simulated snow water equivalent (SWE) was compared to SWEs from the Snow Data Assimilation System (SNODAS) and SNOwpack TELemetry system (SNOTEL) over a~region of the Western United States that covers parts of the Upper Colorado Basin. We also compared the SWE product estimated from the Special Sensor Microwave Imager (SSM/I) and Scanning Multichannel Microwave Radiometer (SMMR) to the SNODAS and SNOTEL SWE datasets. Agreement between the spatial distribution of the simulated SWE with both SNODAS and SNOTEL was high for the two model runs for the entire snow accumulation period. Model-simulated SWEs, both with MPE and TRMM, were significantly correlated spatially on average with the SNODAS (r = 0.81 and r = 0.54; d.f. = 543) and the SNOTEL SWE (r = 0.85 and r = 0.55; d.f. = 543), when monthly basinwide simulated average SWE the correlation was also highly significant (r = 0.95 and r = 0.73; d.f. = 12). The SWE estimated from the passive microwave imagery was not correlated either with the SNODAS SWE or (r = 0.14, d.f. = 7) SNOTEL-reported SWE values (r = 0.08, d.f. = 7). The agreement between modeled SWE and the SWE recorded by SNODAS and SNOTEL weakened during the snowmelt period due to an underestimation bias of the air temperature that was used as model input forcing.

  18. Historical effects of El Nino and La Nina events on the seasonal evolution of the montane snowpack in the Columbia and Colorado River Basins

    Science.gov (United States)

    Clark, M.P.; Serreze, M.C.; McCabe, G.J.

    2001-01-01

    Snow-water equivalent (SWE) data measured at several hundred montane sites in the western United States are used to examine the historic effects of El Nino and La Nina events on seasonal snowpack evolution in the major subbasins in the Columbia and Colorado River systems. Results are used to predict annual runoff. In the Columbia River Basin, there is a general tendency for decreased SWE during El Nino years and increased SWE in La Nina years. However, the SWE anomalies for El Nino years are much less pronounced. This occurs in part because midlatitude circulation anomalies in El Nino years are located 35?? east of those in La Nina years. This eastward shift is most evident in midwinter, at which time, SWE anomalies associated with El Nino are actually positive in coastal regions of the Columbia River Basin. In the Colorado River Basin, mean anomalies in SWE and annual runoff during El Nino years depict a transition between drier-than-average conditions in the north, and wetter-than-average conditions in the southwest. Associations during La Nina years are generally opposite those in El Nino years. SWE anomalies tend to be more pronounced in spring in the Lower Colorado River Basin. Our predictions of runoff reveal modest skill for scenarios using only historic El Nino and La Nina information. Predictions based on the water stored in the seasonal snowpack are, in almost all cases, much higher than those based on El Nino-Southern Oscillation (ENSO) information alone. However, combining observed midwinter snow conditions with information on seasonal snowpack evolution associated with ENSO improves predictions for basins in which ENSO signals exhibit strong seasonality.

  19. Regional heat flow patterns in the Western Canadian Sedimentary Basin

    Science.gov (United States)

    Majorowicz, J. A.; Jessop, A. M.

    1981-04-01

    The regional geothermal pattern of the Western Canadian Sedimentary Basin has been studied using available temperature data from wells. Average heat conductivity for various geological formations has been estimated on the basis of net rock studies by Canadian Stratigraphie Services. These data and observations of temperature made in "shut-in holes" in some of the oil pools have been used in heat flow estimations by the Bullard method. The geothermal gradient and heat flow within the basin are exceptionally high in comparison with the other world wide Precambrian platform areas. Especially high geothermal gradient areas are found in the northwestern part of the Prairies Basin in Alberta and British Columbia and most of southeastern and southwestern Saskatchewan. Areas of low gradient are found mainly in the Disturbed Belt of the Foothills, southern and southeastern Alberta, and the Peace River area in British Columbia. Neither the analysis of regional heat conductivity distribution nor the heat generation distribution of the basement rock of the Prairies Basin evaluated on the basis of U, Th and K data after Burwash (1979), explain the observed heat flow patterns of the Prairies Basin. Comparison of heat flow patterns with some of the hydrogeological phenomena suggests the significant influence of fluid flow in the basin formations on geothermal features. Low geothermal gradient areas coincide with water recharge areas and high hydraulic head distribution regions. The phenomenon of upward water movement in the deep strata and downward flow through much of the Cenozoic and Mesozoic strata seems to control the regional heat flow distribution in the basin. The analyses of coal metamorphism in the upper and middle Mesozoic formations of the Foothills Belt and in the central Prairies Basin suggest that the pre-Laramide paleogeothermal heat flow distribution was different from the present one. It is very probable that the Foothills Belt area was characterized by a higher

  20. Changing Evaporative and ET Demands in the Lower Colorado River Basin Under Different Climate Scenarios

    Science.gov (United States)

    Bunk, D. A.; Piechota, T. C.

    2011-12-01

    Observed and projected trends in free-water evaporation and evapotranspiration (ET) are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering crop patterns; and changing the temporal and spatial distribution of water deliveries through agricultural-urban water transfers. This study uses observations and projections under different climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on free-water evaporation and riparian ET in the lower Colorado River basin. The projected changes in evaporative and ET demands may then accessed to determine their impacts on the reliability of water supplies and reservoir operations in the Colorado River basin under changing climate conditions. Finally, a discussion on the uncertainties in estimating key parameters, such as solar radiation, mean daily dewpoint, and atmospheric resistance, given limitations in the hydroclimatic dataset, will also be provided.

  1. Groundwater Depletion During Drought Threatens Future Water Security of the Colorado River Basin

    Science.gov (United States)

    Castle, Stephanie L.; Thomas, Brian F.; Reager, John T.; Rodell, Matthew; Swenson, Sean C.; Famiglietti, James S.

    2014-01-01

    Streamflow of the Colorado River Basin is the most overallocated in the world. Recent assessment indicates that demand for this renewable resource will soon outstrip supply, suggesting that limited groundwater reserves will play an increasingly important role in meeting future water needs. Here we analyze 9 years (December 2004 to November 2013) of observations from the NASA Gravity Recovery and Climate Experiment mission and find that during this period of sustained drought, groundwater accounted for 50.1 cu km of the total 64.8 cu km of freshwater loss. The rapid rate of depletion of groundwater storage (5.6 +/- 0.4 cu km/yr) far exceeded the rate of depletion of Lake Powell and Lake Mead. Results indicate that groundwater may comprise a far greater fraction of Basin water use than previously recognized, in particular during drought, and that its disappearance may threaten the long-term ability to meet future allocations to the seven Basin states.

  2. Seasonality of Groundwater Recharge in the Basin and Range Province, Western North America

    Science.gov (United States)

    Neff, K. L.; Meixner, T.; Ajami, H.; De La Cruz, L.

    2015-12-01

    For water-scarce communities in the western U.S., it is critical to understand groundwater recharge regimes and how those regimes might shift in the face of climate change and impact groundwater resources. Watersheds in the Basin and Range Geological Province are characterized by a variable precipitation regime of wet winters and variable summer precipitation. The relative contributions to groundwater recharge by summer and winter precipitation vary throughout the province, with winter precipitation recharge dominant in the northern parts of the region, and recharge from summer monsoonal precipitation playing a more significant role in the south, where the North American Monsoon (NAM) extends its influence. Stable water isotope data of groundwater and seasonal precipitation from sites in Sonora, Mexico and the U.S. states of California, Nevada, Utah, Arizona, Colorado, New Mexico, and Texas were examined to estimate and compare groundwater recharge seasonality throughout the region. Contributions of winter precipitation to annual recharge vary from 69% ± 41% in the southernmost Río San Miguel Basin in Sonora, Mexico, to 100% ± 36% in the westernmost Mojave Desert of California. The Normalized Seasonal Wetness Index (NSWI), a simple water budget method for estimating recharge seasonality from climatic data, was shown to approximate recharge seasonality well in several winter precipitation-dominated systems, but less well in basins with significant summer precipitation.

  3. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Science.gov (United States)

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  4. A Multi-Site Streamflow Forecast Framework: Application to the Upper Colorado River Basin

    Science.gov (United States)

    Bracken, C.; Rajagopalan, B.; Prairie, J.

    2007-12-01

    The multi-site streamflow forecast framework is a simple and parsimonious method for incorporating large-scale climate information into basin scale streamflow forecasts. The method is parsimonious because predictors need only be developed at one index gage, which is the sum of the seasonal flows at many spatial locations. In an application to the Upper Colorado River Basin (UCRB), multi-model ensemble (MME) forecasts were made of the seasonal (April-July) flows at the index gage. A K nearest-neighbor (KNN) nonparametric disaggregation technique is implemented which provides seasonal forecasts at four spatial locations and in turn monthly forecasts for the peak flow season (April-July). The predictions made in a retroactive forecast mode were comparable to the Colorado Basin River Forecast Center (CBRFC) predictions which are made using the Ensemble Streamflow Prediction (ESP) model. The earliest forecast of the ESP model is January 1 because of its heavy reliance on snowpack information. The multi-site framework provides skillful predictions as early as November 1 by its inclusion of large scale climate information such as geopotential height, zonal winds, meridional winds and sea surface temperature. It is possible that the ESP model and the multi-site framework could be combined in a Bayesian context that could incorporate professional judgment.

  5. Hydrologic implications of GRACE satellite data in the Colorado River Basin

    Science.gov (United States)

    Scanlon, Bridget R.; Zhang, Zizhan; Reedy, Robert C.; Pool, Donald R.; Save, Himanshu; Long, Di; Chen, Jianli; Wolock, David M.; Conway, Brian D.; Winester, Daniel

    2015-12-01

    Use of GRACE (Gravity Recovery and Climate Experiment) satellites for assessing global water resources is rapidly expanding. Here we advance application of GRACE satellites by reconstructing long-term total water storage (TWS) changes from ground-based monitoring and modeling data. We applied the approach to the Colorado River Basin which has experienced multiyear intense droughts at decadal intervals. Estimated TWS declined by 94 km3 during 1986-1990 and by 102 km3 during 1998-2004, similar to the TWS depletion recorded by GRACE (47 km3) during 2010-2013. Our analysis indicates that TWS depletion is dominated by reductions in surface reservoir and soil moisture storage in the upper Colorado basin with additional reductions in groundwater storage in the lower basin. Groundwater storage changes are controlled mostly by natural responses to wet and dry cycles and irrigation pumping outside of Colorado River delivery zones based on ground-based water level and gravity data. Water storage changes are controlled primarily by variable water inputs in response to wet and dry cycles rather than increasing water use. Surface reservoir storage buffers supply variability with current reservoir storage representing ˜2.5 years of available water use. This study can be used as a template showing how to extend short-term GRACE TWS records and using all available data on storage components of TWS to interpret GRACE data, especially within the context of droughts. This article was corrected on 12 JAN 2016. See the end of the full text for details.

  6. Major controlling factors on hydrocarbon generation and leakage in South Atlantic conjugate margins: A comparative study of Colorado, Orange, Campos and Lower Congo basins

    Science.gov (United States)

    Marcano, Gabriela; Anka, Zahie; di Primio, Rolando

    2013-09-01

    We present a supra-regional comparative study of the major internal and external factors controlling source rock (SR) maturation and hydrocarbon (HC) generation and leakage in two pairs of conjugate margins across the South Atlantic: the Brazil (Campos Basin)-Angola (Lower Congo Basin) margins located in the "central segment", and the Argentina (Colorado Basin)-South Africa (Orange Basin) in the "southern segment". Our approach is based on the analysis and integration of borehole data, 1D numerical modeling, 2D seismic reflection data, and published reports. Coupling of modeling results, sedimentation rate calculation and seal-bypass system analysis reveal that: (1) oil window is reached by syn-rift SRs in the southern segment during the Early to Late Cretaceous when thermal subsidence is still active, while in the central segment they reach it in Late-Cretaceous-Neogene during a salt remobilization phase, and (2) early HC generation from post-rift SRs in the southern segment and from all SRs in the central segment appears to be controlled mainly by episodes of increased sedimentation rates. The latter seems to be associated with the Andes uplift history for the western South Atlantic basins (Campos and Colorado) and to a possibly climate-driven response for the eastern South Atlantic basins (Orange and Lower Congo). Additionally, we observe that the effect of volcanism on SR maturation in the southern segment is very local. The comparison of Cretaceous mass transport deposit (MTD) episodes with HC peak of generation and paleo-leakage indicators in the southern segment revealed the possible causal effect that HC generation and leakage have over MTD development. Interestingly, Paleogene leakage indicators, which were identified in the Argentina-South Africa conjugate margins, occur contemporaneously to low sedimentation rate periods. Nonetheless, present-day leakage indicators which were also identified in both pairs of conjugate margins might be related to seal

  7. Geology and natural gas occurrence, western Williston Basin

    Energy Technology Data Exchange (ETDEWEB)

    McCrae, R.O.; Swenson, R.E.

    1968-01-01

    The W. Williston Basin has produced gas since a 1913 discovery at Cedar Creek anticline, but during the past decade nearly all the gas found has been in solution in oil. In a sedimentary rock section averaging 10,000 ft in thickness, about one-third of the material, in approx. the lower half of the section, consists of carbonate and evaporites. The rest of the beds are principally sandstone and shale of shallow-marine deposition. All commercial gas in Paleozoic rocks is in solution in oil. Small gas reserves have been found in fractured siltstones of the Cretaceous Colorado shale at Hardin, and in the Shannon sandstone at Pumpkin Creek. Most of the gas in the W. Williston Basin is in nonassociated accumulations in and adjacent to the Cretaceous Judith River and Eagle formations. The trapping is related partly to folding, but also is at the extreme seaward limits of sandstone tongues. Porosity of less than 10% and low permeability values are characteristic of the reservoirs and fracturing is regarded as important in improving overall permeability of the reservoirs. At Cedar Creek anticline, 6 million cu ft a day of 90% nitrogen gas was treated in a Cambrian sandstone.

  8. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    Science.gov (United States)

    Deems, J. S.; Painter, T. H.; Barsugli, J. J.; Belnap, J.; Udall, B.

    2013-11-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5-20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005-2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005-2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases with

  9. Combined impacts of current and future dust deposition and regional warming on Colorado River Basin snow dynamics and hydrology

    Science.gov (United States)

    Deems, Jeffrey S.; Painter, Thomas H.; Barsugli, Joseph J.; Belnap, Jayne; Udall, Bradley

    2013-01-01

    The Colorado River provides water to 40 million people in seven western states and two countries and to 5.5 million irrigated acres. The river has long been overallocated. Climate models project runoff losses of 5–20% from the basin by mid-21st century due to human-induced climate change. Recent work has shown that decreased snow albedo from anthropogenic dust loading to the CO mountains shortens the duration of snow cover by several weeks relative to conditions prior to western expansion of the US in the mid-1800s, and advances peak runoff at Lees Ferry, Arizona, by an average of 3 weeks. Increases in evapotranspiration from earlier exposure of soils and germination of plants have been estimated to decrease annual runoff by more than 1.0 billion cubic meters, or ~5% of the annual average. This prior work was based on observed dust loadings during 2005–2008; however, 2009 and 2010 saw unprecedented levels of dust loading on snowpacks in the Upper Colorado River Basin (UCRB), being on the order of 5 times the 2005–2008 loading. Building on our prior work, we developed a new snow albedo decay parameterization based on observations in 2009/10 to mimic the radiative forcing of extreme dust deposition. We convolve low, moderate, and extreme dust/snow albedos with both historic climate forcing and two future climate scenarios via a delta method perturbation of historic records. Compared to moderate dust, extreme dust absorbs 2× to 4× the solar radiation, and shifts peak snowmelt an additional 3 weeks earlier to a total of 6 weeks earlier than pre-disturbance. The extreme dust scenario reduces annual flow volume an additional 1% (6% compared to pre-disturbance), a smaller difference than from low to moderate dust scenarios due to melt season shifting into a season of lower evaporative demand. The sensitivity of flow timing to dust radiative forcing of snow albedo is maintained under future climate scenarios, but the sensitivity of flow volume reductions decreases

  10. Precise age of C33N-C32R magnetic-polarity reversal, San Juan Basin, New Mexico and Colorado

    Science.gov (United States)

    Fassett, James E.; Steiner, Maureen B.

    1997-01-01

    Polarity-chron boundary C33n-C32r has been identified in the Upper Cretaceous continental Farmington Sandstone Member of the Kirtland Shale in Hunter Wash in the southwest part of the San Juan Basin of New Mexico, and in the marine Lewis Shale at Chimney Rock, Colorado, in the northeast part of the basin. Single- and multiple-crystal laser fusion 40Ar/39Ar ages of sanidine crystals from volcanic ash beds bracketing the C33n-C32r polarity reversal at Hunter Wash establish its age as 73.50 ± 0.18 Ma. The reversal apparently occurs within the Baculites compressus Western Interior ammonite zone and within the Edmontonian land-vertebrate faunal zone. An 8 Ma hiatus separates Cretaceous and Tertiary rocks in the southern San Juan Basin. These findings provide a precise new interpolated Late Cretaceous tie point for geologic time scales, provide the basis for the direct correlation of Western Interior ammonite zones to European open-ocean faunal zones, and establish the first direct tie between continental and marine fossil zones within the Western Interior of North America.

  11. Tertiary basin development and tectonic implications, Whipple detachment system, Colorado River extensional corridor, California and Arizona

    Science.gov (United States)

    Nielson, J. E.; Beratan, K. K.

    1990-01-01

    This paper reports on geologic mapping, stratigraphic and structural observations, and radiometric dating of Miocene deposits of the Whipple detachment system, Colorado River extensional corridor of California and Arizona. From these data, four regions are distinguished in the study area that correspond to four Miocene depositional basins. It is shown that these basins developed in about the same positions, relative to each other and to volcanic sources, as they occupy at present. They formed in the early Miocene from a segmentation of the upper crust into blocks bounded by high-angle faults that trended both parallel and perpendicular to the direction of extension and which were terminated at middle crustal depths by a low-angle detachment fault.

  12. Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data

    Science.gov (United States)

    Lee, K. (Principal Investigator); Prost, G. L.; Knepper, D. H.; Sawatzky, D. L.; Huntley, D.; Weimer, R. J.

    1975-01-01

    The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin.

  13. Assessing Potential Implications of Climate Change for Long-Term Water Resources Planning in the Colorado River Basin, Texas

    Science.gov (United States)

    Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.

    2008-12-01

    While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is

  14. Colorado

    Directory of Open Access Journals (Sweden)

    Gerardo Rodríguez Quiroz

    2008-01-01

    Full Text Available La conservación de la biodiversidad cuenta, entre sus principales mecanismos de intervención, con las áreas naturales protegidas. En el alto Golfo de California (AGC se ubica la Reser-va de la Biosfera del Alto Golfo de California y Delta del Río Colorado, en la que subsisten especies de alto valor económico, así como especies en peligro de extinción. Este último factor justificó el establecimiento de la reserva. El estudio analiza la efectividad de la Reserva del Alto Golfo como mecanismo de protección de los recursos naturales, en particular de las que están en riesgo de desaparecer, así como de comprobar si los pescadores han mejorado sus condiciones de vida tras la operación de esa área natural. La exploración se llevó a cabo mediante la aplicación de una encuesta a los pescadores. Se sugiere que es indispensable un gran esfuerzo, de autoridades y grupos organizados, para encontrar soluciones al manejo de la Reserva, a fin fijar un programa que permita la recuperación de las especies en peligro de extinción, elevar la calidad de vida de los pescadores y con ello garantizar un equilibrio entre la conservación y la sustentabilidad de la pesca y de los pescadores en el Alto Golfo de California.

  15. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    Science.gov (United States)

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in

  16. The "Teflon basin" myth: Snow-soil interactions in mountain catchments in the western US

    Science.gov (United States)

    Williams, M. W.; Cowie, R. M.

    2015-12-01

    In much of western North America, snow and snowmelt provide the primary means for storage of winter precipitation, effectively transferring water from the relatively wet winter season to the typically dry summers. A common assumption is that high-elevation catchments in the western United States behave like "Teflon basins" and that water released from seasonal storage in snow packs flows directly into streams with little or no interaction with underlying soils. Here I present information from a variety of catchments in the Colorado Front Range on snowmelt/soil interactions using isotopic, geochemical, nutrient and hydrometric data in 2- and 3- component hydrograph separations, along with end-member mixing analysis (EMMA). For most catchments we measured these parameters in weekly precipitation, the seasonal snowpack, snowmelt before contact with the ground, discharge, springs, soil solution, and groundwater. We ran EMMA at the catchment scale for catchments that represent the rain-snow transition zone in the montane forest, the seasonally snow covered sub-alpine to alpine transition zone, and a high-elevation alpine zone near the continental divide. In all catchments three end-members were the source waters for about 95% of discharge. Two end-members were the same in all catchments, snow and groundwater. For the alpine catchment talus springs was the third water source, while rain was the third water source in the two lower-elevation catchments. For all three catchments, soil solution plotted with stream waters along or near a line connecting the snow and groundwater end-members. Thus, for seasonally snow-covered catchments from montane to alpine ecosystems, snowmelt infiltrates underlying soils before snowmelt recharges groundwater reservoirs and contributes to surface flows. Seasonally snow-covered catchments are not Teflon basins. Rather, snowmelt infiltrates soils where solute concentrations are changed by biological and geochemical processes.

  17. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  18. Characterization of salinity and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2010

    Science.gov (United States)

    Moore, Jennifer L.

    2011-01-01

    Salinity and selenium are naturally occurring and perva-sive in the lower Gunnison River Basin of Colorado, includ-ing the watershed of Montrose Arroyo. Although some of the salinity and selenium loading in the Montrose Arroyo study area is from natural sources, additional loading has resulted from the introduction of intensive irrigation in the water-shed. With increasing land-use change and the conversion from irrigated agricultural to urban land, land managers and stakeholders need information about the long-term effects of land-use change on salinity and selenium loading. In response to the need to advance salinity and selenium science, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, Colorado River Basin Salinity Control Forum, and Colorado River Water Conservation District, developed a study to characterize salinity and selenium loading and how salinity and selenium sources may relate to land-use change in Montrose Arroyo. This report characterizes changes in salinity and selenium loading to Montrose Arroyo from March 1992 to February 2010 and the magnitude of land-use change between unirrigated desert, irrigated agricultural, and urban land-use/land-cover types, and discusses how the respective loads may relate to land-use change. Montrose Arroyo is an approximately 8-square-mile watershed in Montrose County in western Colorado. Salinity and selenium were studied in Montrose Arroyo in a 2001 study as part of a salinity- and selenium-control lateral project. The robust nature of the historical dataset indicated that Montrose Arroyo was a prime watershed for a follow-up study. Two sites from the 2001 study were used to monitor salinity and selenium loads in Montrose Arroyo in the follow-up study. Over the period of 2 water years and respective irrigation seasons (2008-2010), 27 water-quality samples were collected and streamflow measurements were made at the historical sites MA2 and MA4. Salinity and selenium concen-trations, loads

  19. Observations of Sympatric Populations of Least Chipmunks (Tamias minimus) and Hopi Chipmunks (Tamias rufus) in Western Colorado, 1995–2006

    OpenAIRE

    Doty, Jeffrey B.; Jeffrey Root, J.; Calisher, Charles H.

    2009-01-01

    From 1995 through 2006, we studied a rodent community in western Colorado, observing weather conditions and their effects on least chipmunk (Tamias minimus) and Hopi chipmunk (T. rufus) populations. There are few studies that have assessed relative abundances of chipmunks over long durations and none have been conducted on least chipmunks or Hopi chipmunks. This study is unique in that it assesses abundances of sympatric populations of these chipmunks over a 12-year period. We captured 116 le...

  20. Hydrologic Soil Group for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (hsg_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — hsg_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing the hydrologic soil group (HSG) for the Upper Colorado River Basin. The HSG for an area is...

  1. Overland Flow Direction Information for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (overland_flow_direction_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — overland_flow_direction_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing overland flow direction in the Upper Colorado River Basin using the D8...

  2. Land Cover Information for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (nlcd_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — nlcd_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing land cover information for the Upper Colorado River Basin. The 2011 National Land Cover Database...

  3. Available Water Capacity for the Upper Colorado River Basin in Maurer et al. (2002) Climate Data resolution (awc_UCRB_Maurer_resolution.asc)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — awc_UCRB_Maurer_resolution.asc is an Esri ASCII grid representing the available water capacity (AWC) for the Upper Colorado River Basin. AWC is the amount of water...

  4. Overland Flow Direction Information for the Upper Colorado River Basin in Daymet Climate Data resolution (overland_flow_direction_UCRB_daymet_resolution.txt)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — overland_flow_direction_UCRB_daymet_resolution.txt is an Esri ASCII grid representing overland flow direction in the Upper Colorado River Basin using the D8...

  5. Hydrogeologic and stratigraphic data pertinent to uranium mining, Cheyenne Basin, Colorado. Information series 12

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, R.M.; O' Leary, W.; Warner, J.W.

    1980-01-01

    Recoverable low-grade uranium deposits occur in the Upper Cretaceous Fox Hills Sandstone and Laramie Formation in the Cheyenne Basin, Colorado. One of these deposits, the Grover deposit, has been test mined on a pilot scale using in-situ solution-mining techniques. A second deposit, the Keota deposit, is currently being licensed and will produce about 500,000 lb/yr (227,000 kg/yr) of yellowcake also using in-situ solution-mining techniques. Other uranium deposits exist in this area and will also probably be solution mined, although open-pit mining may possibly be employed at a few locations in the Cheyenne Basin. One of the principal environmental impacts of this uranium-mining activity is the potential effect on ground-water quality and quantity. In order to fully assess potential ground-water impacts, regulatory agencies and mine planners and operators must be familiar with regional geologic and hydrologic characteristics of the basin. The Oligocene White River Group and Upper Cretaceous Laramie Formation, Fox Hills Sandstone, and Pierre Shale contain important aquifers which supply water for domestic, stock-watering, irrigation, and municipal purposes in the study area. Should uranium mining seriously impact shallower aquifers, the upper Pierre and lower Fox Hills aquifers may become important sources of water. Water samples collected and analyzed from over 100 wells during this investigation provide baseline water-quality data for much of the study area. These analyses indicate water quality is highly variable not only between aquifers, but also within a particular aquifer. Many of the wells yield water that exceeds US Public Health drinking water standards for pH, TDS, sulfate, manganese, iron and selenium. Uranium, molybdenum, and vanadium concentrations are also high in many of these wells. 8 figures.

  6. Water Sources and Quantity for Energy Development in Colorado's Denver-Julesburg Basin

    Science.gov (United States)

    Waskom, R.; Kallenberger, J.; Boone, K.; Plombon, B.; Ryan, J. N.

    2014-12-01

    Over the past decade, Colorado has experienced a significant rise in oil and gas development with the greatest concentration of activity occurring in the Denver-Julesburg Basin (DJB) in the Northeast corner of the state. According to the Colorado Oil and Gas Association, as of June 2014, there are approximately 52,200 active oil and gas wells statewide, with over 21,300 located in Weld County, the epicenter of the DJB. In this water-scarce region, much attention is paid to the source and quantity of water being used to produce energy. This information is not readily accessible, but is of great importance to many. In response, our research team is undertaking an evaluation of water quantity impacts and tradeoffs associated with oil and gas development. Technological advancements in horizontal drilling and hydraulic fracturing require additional sources of water - about 2.8 million gallons of per well (Goodwin et al.). The statewide water use for hydraulic fracturing is estimated to be less than 0.1%; however, on a local scale, when water is transferred from agricultural and municipal uses to industrial use, there are economic, environmental and social tradeoffs. Unfortunately, the pathway of a particular water transfer and its associated tradeoffs can be difficult to predict and quantify, further complicating the ability of local and state stakeholders to make sound and informative decisions about energy development. Energy companies are implementing new strategies to ensure reliable water supplies for their operations. These include tapping into non-tributary aquifers to help reduce competition for fully appropriated surface and tributary groundwater sources and recycling and reusing wastewater that results from the drilling and extraction practices. Many conflicting perspectives shape the water-energy discussion in the DJB so non-biased scientific data plays an important role in addressing the questions surrounding water use for energy development. This

  7. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    Science.gov (United States)

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  8. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  9. Simulation of mine drainage for preliminary development of oil shale and associated minerals, Piceance basin, northwestern Colorado

    Science.gov (United States)

    Taylor, O. James

    1986-01-01

    The Piceance basin of northwestern Colorado contains large resources of oil shale, nahcolite, and dawsonite. Development of these minerals will require drainage of water from mines. A six-layer hydrologic model of the basin was prepared to simulate mine drainage for mineral development. Streams and major tributaries were simulated as head-dependent nodes. Stream nodes were gaining or losing, but the rate of loss was constrained by the leakance of the streambed and the stream stage. Springs also were simulated as head-dependent nodes that stop flowing if the aquifer head declines below the spring orifice. (USGS)

  10. Green Net Regional Product for the San Luis Basin, Colorado: an economic measure of regional sustainability.

    Science.gov (United States)

    Heberling, Matthew T; Templeton, Joshua J; Wu, Shanshan

    2012-11-30

    This paper presents the data sources and methodology used to estimate Green Net Regional Product (GNRP), a green accounting approach, for the San Luis Basin (SLB). We measured the movement away from sustainability by examining the change in GNRP over time. Any attempt at green accounting requires both economic and natural capital data. However, limited data for the Basin requires a number of simplifying assumptions and requires transforming economic data at the national, state, and county levels to the level of the SLB. Given the contribution of agribusiness to the SLB, we included the depletion of both groundwater and soil as components in the depreciation of natural capital. We also captured the effect of the consumption of energy on climate change for future generations through carbon dioxide (CO(2)) emissions. In order to estimate the depreciation of natural capital, the shadow price of water for agriculture, the economic damages from soil erosion due to wind, and the social cost of carbon emissions were obtained from the literature and applied to the SLB using benefit transfer. We used Colorado's total factor productivity for agriculture to estimate the value of time (i.e., to include the effects of exogenous technological progress). We aggregated the economic data and the depreciation of natural capital for the SLB from 1980 to 2005. The results suggest that GNRP had a slight upward trend through most of this time period, despite temporary negative trends, the longest of which occurred during the period 1985-86 to 1987-88. However, given the upward trend in GNRP and the possibility of business cycles causing the temporary declines, there is no definitive evidence of moving away from sustainability. PMID:22483369

  11. Depositional sequences in a foreland basin (north-western domain of the continental Duero basin, Spain)

    Science.gov (United States)

    Herrero, Antonio; Alonso-Gavilán, Gaspar; Colmenero, Juan Ramón

    2010-01-01

    The Cenozoic record of the north-western domain of the Duero basin is articulated at the surface through a set of continental depositional sequences called, from base to top, the Vegaquemada sequence, the Candanedo sequence, and the Barrillos sequence. These depositional sequences were deposited in continental sedimentary environments. The deposition of the first sequence occurred through a fluvial system with floodplains cut by low-sinuosity channels. The Vegaquemada sequence was developed between the Middle Eocene and the Early Agenian. The second sequence was formed by a set of highly efficient transport alluvial fans that evolved laterally towards fluvial systems with low-sinuosity fluvial channels and an extensive floodplain, where several types of palaeosols were formed. This sequence developed between the Early Agenian and the Late Vallesian. The third unit-the Barrillos sequence (between the Late Vallesian and the Turolian/Ruscinian transition), was generated by a set of highly efficient transport alluvial fans dominated by low-sinuosity fluvial channels. In subsurface geology, seismic and well data are used to rebuild the stratigraphic architecture. The two basal depositional sequences can be identified with two seismic units: the Palaeogene Seismic Unit (PgSU) and the Neogene Seismic Unit (NgSU), respectively. In the present work, we obtained the isovelocity, isochron, and isobath maps for the top and base of the two Cenozoic units. The Palaeozoic (PzSU) and Mesozoic (MzSU) seismic units are found under these two units. Through study of the logs of the various boreholes, it was only possible to analyse the upper 700 m of the Candanedo Sequence (NgSU), without encompassing the total thickness of the unit. Several middle-order sequences were differentiated, in general showing a sequential fining-upwards evolutionary character. Additionally, for the boreholes analysed two main types of electrofacies were identified, both representing fluvial channels and

  12. Characterization of selected biological, chemical, and physical conditions at fixed sites in the Upper Colorado River basin, Colorado, 1995-98

    Science.gov (United States)

    Deacon, Jeffrey R.; Mize, Scott V.; Spahr, Norman E.

    1999-01-01

    Biological community samples were collected at 15 sites in the Upper Colorado River Basin (UCOL) in Colorado as part of the National Water-Quality Assessment (NAWQA) Program. Sites sampled in two physiographic provinces, the Southern Rocky Mountains and the Colorado Plateau, represented agriculture, mining, urban and recreation, and mixed land uses and background conditions. Nine measures of water quality, which include information on nutrients, specific conductance (a surrogate for salinity), trace elements in streambed sediment, pesticides in fish tissue, fish communities, and macroinvertebrate richness and composition and stream habitat were used for comparisons among sites within the two physiographic provinces. Sampling sites from three other NAWQA study units?the Rio Grande Valley, the South Platte River Basin, and the Upper Snake River Basin study units?were categorized on the basis of land use and stream size in order to develop a larger data set for comparison to sites in the UCOL. Three categories of land use?forested (includes mining, urban and recreation, and background), agriculture, and mixed?were used for comparison to the UCOL fixed sites. Results indicated that all sites other than the Colorado River below Baker Gulch (a background site) showed some water-quality characteristics to be significantly affected. Results indicated that the concentrations of cadmium and zinc in streambed sediment at mining land-use sites in the Southern Rocky Mountains physiographic province generally were orders of magnitude higher than streambed-sediment concentrations at the background site. Streambed-sediment concentrations at mining land-use sites in the UCOL were greater than the 75th percentile of concentrations from sites in the three other NAWQA study units. Fish communities and habitat conditions were degraded at mining land-use sites compared to the background site. Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness and the percentage of EPT were lower

  13. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  14. Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin

    Science.gov (United States)

    Pool, T.K.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.

    2010-01-01

    Freshwater conservation efforts require an understanding of how natural and anthropogenic factors shape the present-day biogeography of native and non-native species. This knowledge need is especially acute for imperiled native fishes in the highly modified Lower Colorado River Basin (LCRB), USA. In the present study we employed both a taxonomic and functional approach to explore how natural and human-related environmental drivers shape landscape-scale patterns of fish community composition in the LCRB. Our results showed that hydrologic alteration, watershed land use, and regional climate explained 30.3% and 44.7% of the total variation in fish community taxonomic and functional composition, respectively. Watersheds with greater dam densities and upstream storage capacity supported higher non-native functional diversity, suggesting that dams have provided additional "niche opportunities" for non-native equilibrium life-history strategists by introducing new reservoir habitat and modifying downstream flow and thermal regimes. By contrast, watersheds characterized by greater upstream land protection, lower dam densities, and higher variation in spring and summer precipitation supported fish communities with a strong complement of native species (opportunistic-periodic strategists). In conclusion, our study highlights the utility of a life-history approach to better understand the patterns and processes by which fish communities vary along environmental gradients.

  15. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    Science.gov (United States)

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied conservation of these riparian forests. ?? 2007 Springer Science+Business Media, LLC.

  16. Hydronomics and terranomics in the Nyando basin of Western Kenya.

    OpenAIRE

    Onyango, Leah; Swallow, Brent; Meinzen-Dick, Ruth

    2005-01-01

    This paper uses the concepts of hydronomics as systems of rules that define water management and terranomics as systems of rules that define land management and explores their linkages in rainfed agriculture and irrigation areas in the Nyando basin. The upper reaches of the basin have experienced a change from large scale commercial farming to more intensive small holder farming while in the flood prone lower reaches of the basin several irrigation schemes have been set up. The basin has a co...

  17. Geologic Mapping to Constrain the Sources and Timing of Fluvial Activity in Western Ladon Basin, Mars

    Science.gov (United States)

    Weitz, C. M.; Wilson, S. A.; Irwin, R. P.; Grant, J. A.

    2016-06-01

    We are mapping two quadrangles in Margaritifer Terra (-15032 and -20032) to define the evolution of the western Ladon basin region as it relates to fluvial/alluvial events occurring on surrounding surfaces.

  18. Generalized hydrogeology and ground-water budget for the C Aquifer, Little Colorado River Basin and parts of the Verde and Salt River Basins, Arizona and New Mexico

    Science.gov (United States)

    Hart, Robert J.; Ward, John J.; Bills, Donald J.; Flynn, Marilyn E.

    2002-01-01

    The C aquifer underlies the Little Colorado River Basin and parts of the Verde and Salt River Basins and is named for the primary water-bearing rock unit of the aquifer, the Coconino Sandstone. The areal extent of this aquifer is more than 27,000 square miles. More than 1,000 well and spring sites were identified in the U.S. Geological Survey database for the C aquifer in Arizona and New Mexico. The C aquifer is the most productive aquifer in the Little Colorado River Basin. The Little Colorado River is the primary surface-water feature in the area, and it has a direct hydraulic connection with the C aquifer in some areas. Spring discharge as base flow from the C aquifer occurs predominantly in the lower 13 miles of the Little Colorado River subsequent to downward leakage into the deeper Redwall-Muav Limestone aquifer. Ground-water mounds or divides exist along the southern and northeastern boundaries of the Little Colorado River Basin. The ground-water divides are significant boundaries of the C aquifer; however, the location and persistence of the divides potentially can be affected by ground-water withdrawals. Ground-water development in the C aquifer has increased steadily since the 1940s because population growth has produced an increased need for agricultural, industrial, and public water supply. Ground-water pumpage from the C aquifer during 1995 was about 140,000 acre-feet. Ground-water budget components for the C aquifer were evaluated using measured or estimated discharge values. The system was assumed to be in a steady-state condition with respect to natural recharge and discharge, and the stability of discharge from major springs during the past several decades supported the steady-state assumption. Downward leakage to the Redwall-Muav Limestone aquifer is a major discharge component for the ground-water budget. Discharge from the C aquifer is estimated to be 319,000 acre-feet per year.

  19. Review of the Upper Jurassic-Lower Cretaceous stratigraphy in Western Cameros basin, Northern Spain

    DEFF Research Database (Denmark)

    Vidal, Maria del Pilar Clemente

    2010-01-01

    The Upper Jurassic-Lower Cretaceous stratigraphy of the Cameros basin has been reviewed. In Western Cameros the stratigraphic sections are condensed but they have a parallel development with the basin depocentre and the same groups have been identified. The Tera Group consists of two formations...

  20. Actual Evapotranspiration (Water Use) Assessment of the Colorado River Basin at the Landsat Resolution Using the Operational Simplified Surface Energy Balance Model

    OpenAIRE

    Ramesh K. Singh; Senay, Gabriel B.; Naga M. Velpuri; Stefanie Bohms; Russell L. Scott; James P. Verdin

    2013-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface ...

  1. Regional hydrology of the Blanding-Durango area, southern Paradox Basin, Utah and Colorado

    International Nuclear Information System (INIS)

    Principal findings of this study that are pertinent to an assessment of suitability of the hydrogeologic systems to store and contain radioactive waste in salt anticlines of adjacent areas are: water in the upper ground-water flow system discharges to the San Juan River - a major tributary of the Colorado River. Discharge of water from the upper aquifer system to streambed channels of the San Juan River and its tributaries during low-flow periods primarily is through evapotranspiration from areas on flood plains and maintenance of streamflow; the lower ground-water system does not have known recharge or discharge areas within the study area; subsurface inflow to this system comes from recharge areas located north and northeast of the study area; the upper and lower ground-water systems are separated regionally by thick salt deposits in the Blanding-Durango study area of the Paradox basin; potential exists in mountainous areas for downward leakage between the upper and lower ground-water systems, where salt deposits are thin, absent, or faulted; no brines were found in this study area with outflow to the biosphere; water in the upper ground-water system generally is fresh. Water in the lower ground-water system generally is brackish or saline; and ground-water flow disruptions by contiguous faults probably are common in the upper ground-water system. These disruptions of flow are not apparent in the lower ground-water system, perhaps because available hydrologic data for the lower ground-water system are scarce. The above major findings do not preclude the potential for waste storage in salt; however, they do not allow the prediction of detailed ground-water flow rates and directions through this area. 55 references, 13 figures, 15 tables

  2. The role of strain partitioning on intermontane basin inception and isolation, External Western Gibraltar Arc

    Science.gov (United States)

    Jiménez-Bonilla, A.; Expósito, I.; Balanyá, J. C.; Díaz-Azpiroz, M.; Barcos, L.

    2015-12-01

    The intermontane Ronda Basin, currently located in the Western Betics External Zones, started as an embayment of the Betic foreland basin during the Tortonian. We have characterized a post-Serravallian, basin-related deformation event that overprinted the former fold-and-thrust belt. Updated structural and kinematic maps allow us to identify NW-SE basinward-dipping normal faults at the southwestern and northeastern boundaries of the basin and NE-SW shortening structures (large-scale folds and reverse faults) affecting both the outcropping basement and partially the basin infill. In order to test the possible tectonic activity of these structures during the last 5 Ma, exhaustive geomorphologic analyses in the Ronda Basin area have been done. This included the qualitative study of relief and drainage network, together with the characterization of quantitative indices (SLk, Smf, Vf and HI). These results obtained from this analysis are coherent with structural data and suggest that the identified post-Serravallian structures were active up to at least 5 Ma. We also conclude that the Ronda Basin was generated by along strike segmentation of the relief in the Western Betics induced by NE-SW (arc-parallel) stretching accompanied with NW-SE shortening. In the NW basin boundary, the strain was partitioned into ENE-WSW dextral strike-slip faults and NE-SW shortening structures, which gave rise to a Messinian transpressive structural high that disconnected the former Ronda Basin from its parental foreland basin.

  3. Hydrology and management of Lakes Mead and Mohave within the Colorado River Basin: Chapter 3 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Holdren, G. Chris; Tietjen, Todd; Turner, Kent; Miller, Jennell M.

    2012-01-01

    The Colorado River Basin covers parts of seven States: Colorado, Wyoming, Utah, New Mexico, Nevada, Arizona, and California; at 1,450 mi (2,333.5 km) in length, the Colorado River is the seventh longest river in the United States (fig. 3-1). The Bureau of Reclamation has the responsibility for management of this system, in coordination with the seven basin States, within a complex framework of law, regulations, compact, treaty, and policies often referred to collectively as the “Law of the River.” Lake Mead is a critical component of the overall Colorado River management, providing the capacity to store almost 2 years of the average runoff of the river.

  4. Point sources of emerging contaminants along the Colorado River Basin: source water for the arid Southwestern United States.

    Science.gov (United States)

    Jones-Lepp, Tammy L; Sanchez, Charles; Alvarez, David A; Wilson, Doyle C; Taniguchi-Fu, Randi-Laurant

    2012-07-15

    Emerging contaminants (ECs) (e.g., pharmaceuticals, illicit drugs, personal care products) have been detected in waters across the United States. The objective of this study was to evaluate point sources of ECs along the Colorado River, from the headwaters in Colorado to the Gulf of California. At selected locations in the Colorado River Basin (sites in Colorado, Utah, Nevada, Arizona, and California), waste stream tributaries and receiving surface waters were sampled using either grab sampling or polar organic chemical integrative samplers (POCIS). The grab samples were extracted using solid-phase cartridge extraction (SPE), and the POCIS sorbents were transferred into empty SPEs and eluted with methanol. All extracts were prepared for, and analyzed by, liquid chromatography-electrospray-ion trap mass spectrometry (LC-ESI-ITMS). Log D(OW) values were calculated for all ECs in the study and compared to the empirical data collected. POCIS extracts were screened for the presence of estrogenic chemicals using the yeast estrogen screen (YES) assay. Extracts from the 2008 POCIS deployment in the Las Vegas Wash showed the second highest estrogenicity response. In the grab samples, azithromycin (an antibiotic) was detected in all but one urban waste stream, with concentrations ranging from 30ng/L to 2800ng/L. Concentration levels of azithromycin, methamphetamine and pseudoephedrine showed temporal variation from the Tucson WWTP. Those ECs that were detected in the main surface water channels (those that are diverted for urban use and irrigation along the Colorado River) were in the region of the limit-of-detection (e.g., 10ng/L), but most were below detection limits. PMID:22684090

  5. Changing Demands from Riparian Evapotranspiration and Free-Water Evaporation in the Lower Colorado River Basin Under Different Climate Scenarios

    Science.gov (United States)

    Bunk, D. A.; Piechota, T. C.

    2012-12-01

    Observed and projected trends in riparian evapotranspiration (ET) and free-water evaporation are examined to improve water demand forecasting for use in modeling of lower Colorado River system reservoir operations. While most previous research has focused on the impacts of climate change and climate variability on water supply, the impacts on water demand under changing climate conditions have not been adequately addressed (NRC, 2007 and Reclamation, 2009). Increases in temperatures and changes in precipitation and wind patterns are expected to increase evaporative demands (Bates and others, 2008), potentially increasing free-water evaporation and ET from riparian vegetation; increasing infiltration rates; altering cropping patterns; and changing the temporal and spatial distribution of water deliveries. This study uses observations and projections under changing climate scenarios of hydroclimatic variables, such as temperature, wind, and precipitation, to analyze their impacts on riparian ET and free-water evaporation in the lower Colorado River mainstream downstream of Lake Mead and Hoover Dam. The projected changes in evaporative demands were assessed to determine their impacts on water supply and reservoir operations in the Colorado River basin under changing climate conditions. Based on analysis of observed and projected hydroclimatic data from the Variable Infiltration Capacity (VIC) hydrologic model, mean annual daily temperature in the lower Colorado River mainstream reach has increased by 0.8° Celsius (C) from the 30-year period ending in 1980 to period ending in 2010 and is projected to increase by an additional 1.7° C by 30-year period ending in 2060. Analysis of riparian ET derived from the ASCE Penman-Monteith method (Allen et al., 2005, from Monteith, 1965 and 1981) and Westenburg et al. (2006) and free-water evaporation derived from the Penman combination model in Dingman (2008) indicates that combined evaporative demand in the lower Colorado River

  6. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas

    Science.gov (United States)

    Kováč, Michal; Plašienka, Dušan; Soták, Ján; Vojtko, Rastislav; Oszczypko, Nestor; Less, György; Ćosović, Vlasta; Fügenschuh, Bernhard; Králiková, Silvia

    2016-05-01

    The data about the Paleogene basin evolution, palaeogeography, and geodynamics of the Western Carpathian and Northern Pannonian domains are summarized, re-evaluated, supplemented, and newly interpreted. The presented concept is illustrated by a series of palinspastic and palaeotopographic maps. The Paleogene development of external Carpathian zones reflects gradual subduction of several oceanic realms (Vahic, Iňačovce-Kričevo, Szolnok, Magura, and Silesian-Krosno) and growth of the orogenic accretionary wedge (Pieniny Klippen Belt, Iňačovce-Kričevo Unit, Szolnok Belt, and Outer Carpathian Flysch Belt). Evolution of the Central Western Carpathians is characterized by the Paleocene-Early Eocene opening of several wedge-top basins at the accretionary wedge tip, controlled by changing compressional, strike-slip, and extensional tectonic regimes. During the Lutetian, the diverging translations of the northward moving Eastern Alpine and north-east to eastward shifted Western Carpathian segment generated crustal stretching at the Alpine-Carpathian junction with foundation of relatively deep basins. These basins enabled a marine connection between the Magura oceanic realm and the Northern Pannonian domain, and later also with the Dinaridic foredeep. Afterwards, the Late Eocene compression brought about uplift and exhumation of the basement complexes at the Alpine-Carpathian junction. Simultaneously, the eastern margin of the stretched Central Western Carpathians underwent disintegration, followed by opening of a fore-arc basin - the Central Carpathian Paleogene Basin. In the Northern Hungarian Paleogene retro-arc basin, turbidites covered a carbonate platform in the same time. During the Early Oligocene, the rock uplift of the Alpine-Carpathian junction area continued and the Mesozoic sequences of the Danube Basin basement were removed, along with a large part of the Eocene Hungarian Paleogene Basin fill, while the retro-arc basin depocentres migrated toward the east

  7. Groundwater quality, age, and susceptibility and vulnerability to nitrate contamination with linkages to land use and groundwater flow, Upper Black Squirrel Creek Basin, Colorado, 2013

    Science.gov (United States)

    Wellman, Tristan P.; Rupert, Michael G.

    2016-01-01

    The Upper Black Squirrel Creek Basin is located about 25 kilometers east of Colorado Springs, Colorado. The primary aquifer is a productive section of unconsolidated deposits that overlies bedrock units of the Denver Basin and is a critical resource for local water needs, including irrigation, domestic, and commercial use. The primary aquifer also serves an important regional role by the export of water to nearby communities in the Colorado Springs area. Changes in land use and development over the last decade, which includes substantial growth of subdivisions in the Upper Black Squirrel Creek Basin, have led to uncertainty regarding the potential effects to water quality throughout the basin. In response, the U.S. Geological Survey, in cooperation with Cherokee Metropolitan District, El Paso County, Meridian Service Metropolitan District, Mountain View Electric Association, Upper Black Squirrel Creek Groundwater Management District, Woodmen Hills Metropolitan District, Colorado State Land Board, and Colorado Water Conservation Board, and the stakeholders represented in the Groundwater Quality Study Committee of El Paso County conducted an assessment of groundwater quality and groundwater age with an emphasis on characterizing nitrate in the groundwater.

  8. Relations of benthic macroinvertebrates to concentrations of trace elements in water, streambed sediments, and transplanted bryophytes and stream habitat conditions in nonmining and mining areas of the upper Colorado River basin, Colorado, 1995-98

    Science.gov (United States)

    Mize, Scott V.; Deacon, Jeffrey R.

    2002-01-01

    Intensive mining activity and highly mineralized rock formations have had significant impacts on surface-water and streambed-sediment quality and aquatic life within the upper reaches of the Uncompahgre River in western Colorado. A synoptic study by the U.S. Geological Survey National Water-Quality Assessment Program was completed in the upper Uncompahgre River Basin in 1998 to better understand the relations of trace elements (with emphasis on aluminum, arsenic, copper, iron, lead, and zinc concentrations) in water, streambed sediment, and aquatic life. Water-chemistry, streambed-sediment, and benthic macroinvertebrate samples were collected during low-flow conditions between October 1995 and July 1998 at five sites on the upper Uncompahgre River, all downstream from historical mining, and at three sites in drainage basins of the Upper Colorado River where mining has not occurred. Aquatic bryophytes were transplanted to all sites for 15 days of exposure to the water column during which time field parameters were measured and chemical water-quality and benthic macroinvertebrate samples were collected. Stream habitat characteristics also were documented at each site. Certain attributes of surface-water chemistry among streams were significantly different. Concentrations of total aluminum, copper, iron, lead, and zinc in the water column and concentrations of dissolved aluminum, copper, and zinc were significantly different between nonmining and mining sites. Some sites associated with mining exceeded Colorado acute aquatic-life standards for aluminum, copper, and zinc and exceeded Colorado chronic aquatic-life standards for aluminum, copper, iron, lead, and zinc. Concentrations of copper, lead, and zinc in streambed sediments were significantly different between nonmining and mining sites. Generally, concentrations of arsenic, copper, lead, and zinc in streambed sediments at mining sites exceeded the Canadian Sediment Quality Guidelines probable effect level (PEL

  9. Variability of aerosol optical properties in the Western Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    M. Pandolfi

    2011-05-01

    Full Text Available Aerosol light scattering, black carbon (BC and particulate matter (PM concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR. Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Measurements of BC were used to calculate the light absorption properties of atmospheric particles. Single Scattering Albedo (SSA at 635 nm was estimated starting from aerosol scattering and absorption measurements, while Ångström exponents were calculated by means of the three wavelengths (450 nm, 525 nm, 635 nm aerosol light scattering measurements from Nephelometer. Mean scattering and hemispheric backscattering coefficients (@ 635 nm were 26.8 ± 23.3 Mm−1 and 4.3 ± 2.7 Mm−1, respectively and the mean aerosol absorption coefficient was 2.8 ± 2.2 Mm−1. Mean values of Single Scattering Albedo (SSA and Ångström exponent (calculated from 450 nm to 635 nm at MSY were 0.90 ± 0.05 and 1.2 ± 0.6, respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections for fine mass and sulfate at 635 nm were calculated in 2.8 ± 0.5 m2 g−1 and 11.8 ± 2.2 m2 g−1 respectively, while the mean aerosol absorption cross section was estimated around 10.4 ± 2.0 m2 g−1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas, changing the optical properties of aerosols. Aerosol

  10. Variability of aerosol optical properties in the Western Mediterranean Basin

    Directory of Open Access Journals (Sweden)

    M. Pandolfi

    2011-08-01

    Full Text Available Aerosol light scattering, absorption and particulate matter (PM concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR. Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm were 26.6±23.2 Mm−1 and 4.3±2.7 Mm−1, respectively and the mean aerosol absorption coefficient (@ 637 nm was 2.8±2.2 Mm−1. Mean values of Single Scattering Albedo (SSA and Ångström exponent (å (calculated from 450 nm to 635 nm at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM1/PM10 and PM2.5/PM10 ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC for fine mass and sulfate at 635 nm were 2.8±0.5 m2 g−1 and 11.8±2.2 m2 g−1, respectively, while the mean aerosol absorption cross section (MAC was 10.4±2.0 m2 g−1. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (å = 1.5±0.1 while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly

  11. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  12. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    International Nuclear Information System (INIS)

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  13. Screening Assessment of Potential Human-Health Risk from Future Natural-Gas Drilling Near Project Rulison in Western Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Daniels Jeffrey I.,Chapman Jenny B.

    2012-01-01

    The Project Rulison underground nuclear test was conducted in 1969 at a depth of 8,400 ft in the Williams Fork Formation of the Piceance Basin, west-central Colorado (Figure 1). The U.S. Department of Energy Office of Legacy Management (LM) is the steward of the site. Their management is guided by data collected from past site investigations and current monitoring, and by the results of calculations of expected behavior of contaminants remaining in the deep subsurface. The purpose of this screening risk assessment is to evaluate possible health risks from current and future exposure to Rulison contaminants so the information can be factored into LM's stewardship decisions. For example, these risk assessment results can inform decisions regarding institutional controls at the site and appropriate monitoring of nearby natural-gas extraction activities. Specifically, the screening risk analysis can provide guidance for setting appropriate action levels for contaminant monitoring to ensure protection of human health.

  14. Fragmentation and thermal risks from climate change interact to affect persistence of native trout in the Colorado River basin

    Science.gov (United States)

    Roberts, James J.; Fausch, Kurt D.; Peterson, Douglas P.; Hooten, Mevin B.

    2013-01-01

    Impending changes in climate will interact with other stressors to threaten aquatic ecosystems and their biota. Native Colorado River cutthroat trout (CRCT; Oncorhynchus clarkii pleuriticus) are now relegated to 309 isolated high-elevation (>1700 m) headwater stream fragments in the Upper Colorado River Basin, owing to past nonnative trout invasions and habitat loss. Predicted changes in climate (i.e., temperature and precipitation) and resulting changes in stochastic physical disturbances (i.e., wildfire, debris flow, and channel drying and freezing) could further threaten the remaining CRCT populations. We developed an empirical model to predict stream temperatures at the fragment scale from downscaled climate projections along with geomorphic and landscape variables. We coupled these spatially explicit predictions of stream temperature with a Bayesian Network (BN) model that integrates stochastic risks from fragmentation to project persistence of CRCT populations across the upper Colorado River basin to 2040 and 2080. Overall, none of the populations are at risk from acute mortality resulting from high temperatures during the warmest summer period. In contrast, only 37% of populations have a greater than or equal to 90% chance of persistence for 70 years (similar to the typical benchmark for conservation), primarily owing to fragmentation. Populations in short stream fragments risk of extirpation. Therefore, interactions of stochastic disturbances with fragmentation are projected to be greater threats than warming for CRCT populations. The reason for this paradox is that past nonnative trout invasions and habitat loss have restricted most CRCT populations to high-elevation stream fragments that are buffered from the potential consequences of warming, but at risk of extirpation from stochastic events. The greatest conservation need is for management to increase fragment lengths to forestall these risks. 

  15. Localized accumulation and a shelf-basin gradient of particles in the Chukchi Sea and Canada Basin, western Arctic

    Science.gov (United States)

    Yamada, Yosuke; Fukuda, Hideki; Uchimiya, Mario; Motegi, Chiaki; Nishino, Shigeto; Kikuchi, Takashi; Nagata, Toshi

    2015-07-01

    Transparent exopolymer particles (TEP), particulate organic carbon (POC), and particles (size range: 5.2-119 μm) as determined by laser in situ scattering and transmissometry (LISST) were measured in the water column from the Chukchi Sea to the Canada Basin in the western Arctic Ocean, during the late summer of 2012. In general, the percentages of TEP-carbon to POC were high (the mean values for the shelf and slope-basin regions were 135.4 ± 58.0% (± standard deviation, n = 36) and 187.6 ± 73.3% (n = 58), respectively), relative to the corresponding values reported for other oceanic regions, suggesting that TEP play an important role in regulating particle dynamics. A hotspot (extremely high concentration) of particles, accompanied by high prokaryote abundance and production, was observed near the seafloor (depth 50 m) of the shelf region. Localized accumulation of particles was also found in the thin layer near the pycnocline (depth 10-30 m) and on the slope. Over a broader spatial scale, particle concentration gradients were identified from the shelf to the basin in the upper water column (TEP are produced in the shelf region and are potentially delivered to the slope-basin region along the pycnocline, which might support productivity and material cycles in the nutrient-depleted basin region of the western Arctic Ocean.

  16. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin

    Science.gov (United States)

    Senay, Gabriel; Friedrichs, MacKenzie O.; Singh, Ramesh K.; Velpuri, Naga Manohar

    2016-01-01

    Evapotranspiration (ET) mapping at the Landsat spatial resolution (100 m) is essential to fully understand water use and water availability at the field scale. Water use estimates in the Colorado River Basin (CRB), which has diverse ecosystems and complex hydro-climatic regions, will be helpful to water planners and managers. Availability of Landsat 8 images, starting in 2013, provides the opportunity to map ET in the CRB to assess spatial distribution and patterns of water use. The Operational Simplified Surface Energy Balance (SSEBop) model was used with 528 Landsat 8 images to create seamless monthly and annual ET estimates at the inherent 100 m thermal band resolution. Annual ET values were summarized by land use/land cover classes. Croplands were the largest consumer of “blue” water while shrublands consumed the most “green” water. Validation using eddy covariance (EC) flux towers and water balance approaches showed good accuracy levels with R2 ranging from 0.74 to 0.95 and the Nash–Sutcliffe model efficiency coefficient ranging from 0.66 to 0.91. The root mean square error (and percent bias) ranged from 0.48 mm (13%) to 0.60 mm (22%) for daily (days of satellite overpass) ET and from 7.75 mm (2%) to 13.04 mm (35%) for monthly ET. The spatial and temporal distribution of ET indicates the utility of Landsat 8 for providing important information about ET dynamics across the landscape. Annual crop water use was estimated for five selected irrigation districts in the Lower CRB where annual ET per district ranged between 681 mm to 772 mm. Annual ET by crop type over the Maricopa Stanfield irrigation district ranged from a low of 384 mm for durum wheat to a high of 990 mm for alfalfa fields. A rainfall analysis over the five districts suggested that, on average, 69% of the annual ET was met by irrigation. Although the enhanced cloud-masking capability of Landsat 8 based on the cirrus band and utilization of the Fmask algorithm improved the

  17. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  18. Messinian Events: View from the Provence Basin (Gulf of Lion,Western Mediterranean)

    OpenAIRE

    Bache, François; Gorini, C.; Olivet, Jean-Louis; Rabineau, Marina; Aslanian, Daniel; Suc, J.p.

    2009-01-01

    Though the late Miocene "Messinian Salinity Crisis" has been intensely researched along the circum- Mediterranean basins, few studies have focused on the central part of the Mediterranean Basin and, especially, the pre-salt deposits. Within the Western Mediterranean, the Gulf of Lion is exceptional in that its sedimentary strata have not been significantly deformed. In addition, the Gulf of Lion is characterized by a relatively constant subsidence with continuous accommodation space for sedim...

  19. Observations of Sympatric Populations of Least Chipmunks (Tamias minimus) and Hopi Chipmunks (Tamias rufus) in Western Colorado, 1995-2006

    International Nuclear Information System (INIS)

    From 1995 through 2006, we studied a rodent community in western Colorado, observing weather conditions and their effects on least chipmunk (Tamias minimus) and Hopi chipmunk (T. rufus) populations. There are few studies that have assessed relative abundances of chipmunks over long durations and none have been conducted on least chipmunks or Hopi chipmunks. This study is unique in that it assesses abundances of sympatric populations of these chipmunks over a 12-year period. We captured 116 least chipmunks and 62 Hopi chipmunks during 47,850 trap nights of effort. Results indicated that year-to-year precipitation and temperature fluctuations had little effect on these chipmunk populations. However, the relative abundances of Hopi chipmunks and least chipmunks appear to have an inverse relationship with each other, suggesting the potential for resource competition between these congeners.

  20. Atmospheric Dust in the Upper Colorado River Basin: Integrated Analysis of Digital Imagery, Total Suspended Particulate, and Meteorological Data

    Science.gov (United States)

    Urban, F. E.; Reynolds, R. L.; Neff, J. C.; Fernandez, D. P.; Reheis, M. C.; Goldstein, H.; Grote, E.; Landry, C.

    2012-12-01

    Improved measurement and observation of dust emission and deposition in the American west would advance understanding of (1) landscape conditions that promote or suppress dust emission, (2) dynamics of dryland and montane ecosystems, (3) premature melting of snow cover that provides critical water supplies, and (4) possible effects of dust on human health. Such understanding can be applied to issues of land management, water-resource management, as well as the safety and well-being of urban and rural inhabitants. We have recently expanded the scope of particulate measurement in the Upper Colorado River basin through the establishment of total-suspended-particulate (TSP) measurement stations located in Utah and Colorado with bi-weekly data (filter) collection, along with protocols for characterizing dust-on-snow (DOS) layers in Colorado mountains. A sub-network of high-resolution digital cameras has been co-located with several of the TSP stations, as well as at other strategic locations. These real-time regional dust-event detection cameras are internet-based and collect digital imagery every 6-15 minutes. Measurements of meteorological conditions to support these collections and observations are provided partly by CLIM-MET stations, four of which were deployed in 1998 in the Canyonlands (Utah) region. These stations provide continuous, near real-time records of the complex interaction of wind, precipitation, vegetation, as well as dust emission and deposition, in different land-use settings. The complementary datasets of dust measurement and observation enable tracking of individual regional dust events. As an example, the first DOS event of water year 2012 (Nov 5, 2011), as documented at Senator Beck Basin, near Silverton, Colorado, was also recorded by the camera at Island-in-the-Sky (200 km to the northwest), as well as in aeolian activity and wind data from the Dugout Ranch CLIM-MET station (170 km to the west-northwest). At these sites, strong winds and the

  1. The Chilean granite (austral mountains of Buenos Aires-Argentina): preludial testimony of the Rifting Jurassic-Cretaceous in the Colorado and Macachin Basins

    International Nuclear Information System (INIS)

    The tectonic significance of Los Chilenos (140 16 Ma), forming the crystalline basement of the Sierras Australes de Buenos Aires, is out lighted as a preludial testimony of Jurassic-Cretaceous rifting which controlled the sedimentation in neighbouring Colorado and Macachin basins. (author)

  2. The thermal history of the western lower Saxony Basin, Germany

    OpenAIRE

    Adriasola Muñoz, Yvonne

    2008-01-01

    Since about 30 years the maturity and geophysical anomalies within the Lower Saxony Basin (LSB) were interpreted as a result of a deep lying igneous intrusion called “Bramsche Massif”. Based on the lignite/subbituminous coal stage of Upper Campanian rocks overlying the Lower Cretaceous units, a late Early Cretaceous or early Late Cretaceous age was concluded for the time of intrusion. Vitrinite reflectances for the central and southern part of the LSB confirm a low reflectance increase with d...

  3. Uranium Geologic Drilling Project, Sand Wash Basin, Moffat and Routt Counties, Colorado:

    International Nuclear Information System (INIS)

    This environmental assessment of drill holes in Moffat and Routt Counties, Colorado considered the current environment; potential impacts from site preparation, drilling operations, and site restoration; coordination among local, state and federal plans; and consideration of alternative actions for this uranium drilling project

  4. Evolution, Migration, Controlling Factors and Forming Setting of Mesozoic Basins in Western Shandong

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhongyi; WU Ganguo; GUO Jinghui; ZHANG Da

    2005-01-01

    The distinctive topography in western Shandong province consists of several NW-WNW-trending mountain ranges and intervening basins.Basins,in which late-stage sediments to the south have progressively overlapped the earlier sediments and "basement" rocks of the hanging-wall block,are bounded by S-SW-dipping normal faults to the north.Basin analysis reveals the Jurassic-Cretaceous sedimentary rocks accumulated both within the area of crustal extension and during extensional deformation; they contain a record of a sequence of tectonic events during stretching and can be divided into four tectonic-sequence episodes.These basins were initially developed as early as ca.200 Ma in the northern part of the study area,extending dominantly N-S from the Early Jurassic until the Late Cretaceous.Although with a brief hiatus due to changes in stress field,to keep uniform N-S extensional polarity in such a long time as 130 Ma requires a relatively stable tectonic controlling factor responsible for the NW- and E-W-extensional basins.The formation of the extensional basins is partly concurrent with regional magmatism,but preceded magmatism by 40 Ma.This precludes a genetic link between local magmatism and extension during the Mesozoic.Based on integrated studies of basins and deformation,we consider that the gravitational collapse of the early overthickened continental crust may be the main tectonic driver for the Mesozoic extensional basins.From the Early Jurassic,dramatic reduction in north-south horizontal compressive stress made the western Shandong deformation belt switch from a state of failure under shortening to one dominated by extension and the belt gravitationally collapsed and horizontally spread to the south until equilibrium was established; synchronously,the normal faults and basins were developed based on the model of simple-shear extensional deformation.This may be relative to the gravitational collapse of the Mesozoic plateau in eastern China.

  5. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA.

    Science.gov (United States)

    Mills, Taylor J; Mast, M Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted. PMID:27320741

  6. Hydrocarbons and Mineral Resources of the Uinta Basin, Utah and Colorado

    OpenAIRE

    United States Department of the Interior, Indian Affairs Bureau

    1995-01-01

    The Uinta Basin holds special fascination for economic geologists because of its rich and diverse assemblage of mineral and hydrocarbon resources. Due to their presence in rocks of the basin, much effort has been put into assessing and exploiting uranium, phosphate, gold, copper, coal, and evaporite minerals. However, the basin is probably best noted for its extensive and very rich accumulations of hydrocarbons such as, oil, gas, bituminous sandstones, oil shale (shale oil), and gilsonite a...

  7. 137Cs inventory in semi-isolated basins of the western South Pacific

    Science.gov (United States)

    Yamada, M.; Wang, Z.

    2007-12-01

    The main introduction routes of 137Cs into the Pacific Ocean are worldwide global fallout from atmospheric nuclear weapons testing and close-in fallout from U. S. tests conducted on the Bikini and Enewetak Atolls. The objectives of this study are to measure the 137Cs activities in water columns of the western South Pacific Ocean and to discuss the processes controlling the 137Cs inventory. The 137Cs activities were determined for seawater samples from the East Caroline, Coral Sea, New Hebrides, South Fiji and Tasman Sea Basins of the western South Pacific Ocean. The 137Cs activities in surface waters ranged from 1.7 Bq m- 3 in the Tasman Sea Basin to 2.3 Bq m-3 in the East Caroline Basin. The latitudinal 137Cs distributions in surface waters showed the opposite trend to the expected deposition density from global fallout. The distribution profiles of 137Cs activity at these six western South Pacific Ocean stations did not differ from each other significantly. The total 137Cs inventories in the western South Pacific Ocean ranged from 850 Bq m-2 in the Coral Sea Basin to 1270 Bq m-2 in the South Fiji Basin. Higher 137Cs inventories were observed at middle latitude stations in the subtropical gyre than at low latitude stations. The 137Cs inventories were 1.9 - 4.5 times higher than that of the expected deposition density of atmospheric global fallout at the same latitude. The possible sources of excess 137Cs inventories in the western South Pacific Ocean might be attributable to both the inter-hemisphere dispersion of the atmospheric nuclear weapons testing 137Cs from the northern stratosphere to the southern one and its subsequent deposition, and water- bearing transport of 137Cs from the North Pacific Ocean to the South Pacific.

  8. Western spotted frog (Rana pretiosa) distribution in the Bonneville Basin of western Utah: Research in progress

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides information on the western spotted frog Rana pretiosa which occurs in Tule Valley, Utah. The following topics are discussed; general...

  9. Anthropogenic impacts drive niche and conservation metrics of a cryptic rattlesnake on the Colorado Plateau of western North America.

    Science.gov (United States)

    Douglas, M R; Davis, M A; Amarello, M; Smith, J J; Schuett, G W; Herrmann, H-W; Holycross, A T; Douglas, M E

    2016-04-01

    Ecosystems transition quickly in the Anthropocene, whereas biodiversity adapts more slowly. Here we simulated a shifting woodland ecosystem on the Colorado Plateau of western North America by using as its proxy over space and time the fundamental niche of the Arizona black rattlesnake (Crotalus cerberus). We found an expansive (= end-of-Pleistocene) range that contracted sharply (= present), but is blocked topographically by Grand Canyon/Colorado River as it shifts predictably northwestward under moderate climate change (= 2080). Vulnerability to contemporary wildfire was quantified from available records, with forested area reduced more than 27% over 13 years. Both 'ecosystem metrics' underscore how climate and wildfire are rapidly converting the Plateau ecosystem into novel habitat. To gauge potential effects on C. cerberus, we derived a series of relevant 'conservation metrics' (i.e. genetic variability, dispersal capacity, effective population size) by sequencing 118 individuals across 846 bp of mitochondrial (mt)DNA-ATPase8/6. We identified five significantly different clades (net sequence divergence = 2.2%) isolated by drainage/topography, with low dispersal (F ST = 0.82) and small sizes (2N ef = 5.2). Our compiled metrics (i.e. small-populations, topographic-isolation, low-dispersal versus conserved-niche, vulnerable-ecosystem, dispersal barriers) underscore the susceptibility of this woodland specialist to a climate and wildfire tandem. We offer adaptive management scenarios that may counterbalance these metrics and avoid the extirpation of this and other highly specialized, relictual woodland clades. PMID:27152218

  10. The Origin of Basin of Great Lakes in Western Mongolia: Glaciated Super Valley, Not Super Flooding

    Science.gov (United States)

    Khukhuudei, Ulambadrakh; Otgonbayar, Orolzodmaa

    2015-04-01

    Research for morphology, its origin of the Basin of Great Lakes in Western Mongolia, is few and far between, particularly, any in recent years. The origin of the morphology of the basin presents a new study, combining previous study materials, their results and interpreting the digital photos. Also the main bases of theory is Pleistocene Last Glacial Maximum distribution. Many scholars have proven that global glaciation covered many areas of the Northern Hemisphere during the Pleistocene era. This global glaciation occurred in the northwest part of Mongolia to Mongolian Altay, Khangay and Khuvsgul mountain range. At the same time, the present appearance of basin that developed inheriting since the Mesozoic era, forms by global glaciation. The morphology of Basin of Great Lakes is super trough or glaciated super valley. At current day, "knock and lochan" topography (scoured region) and rock drumlins lie in the central part of the basin. Huge meltwater from this glaciation formed Shargasub-basin as a super kettle hole by erosion and overflowed water from it formed pluvial basins or big lakes in the Lake Valley.

  11. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    Science.gov (United States)

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets. Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets.

  12. The Late Quaternary biogeographic histories of some Great Basin mammals (western USA)

    Science.gov (United States)

    Grayson, Donald K.

    2006-11-01

    The Great Basin of arid western North America provides one of the most detailed late Pleistocene and Holocene mammal records available for any part of the world, though the record is by far strongest for small mammals. Of the 35 genera of now-extinct North American Pleistocene mammals, 19 are known to have occurred in the Great Basin, a list that is likely to be complete or nearly so. Of these 19, seven can be shown to have survived beyond 12,000 radiocarbon years ago, a proportion similar to that for North America as a whole. Horses, camels, mammoth, and helmeted musk-oxen appear to have been the most abundant of these genera. Pygmy rabbits ( Brachylagus idahoensis), yellow-bellied marmots ( Marmota flaviventris), and bushy-tailed woodrats ( Neotoma cinerea) declined in abundance at the end of the Pleistocene, at about the same time as populations south of their current arid western distributional boundary were extirpated. Subsequent declines occurred during the hot/dry middle Holocene. Pygmy rabbits also declined as modern pinyon-juniper woodlands developed across the Great Basin. The Snake Range of eastern Nevada has seen the late Pleistocene or Holocene extinction of both northern pocket gophers ( Thomomys talpoides) and pikas ( Ochotona princeps). Coupled with the rarity of yellow-bellied marmots here, these histories make the Snake Range a biogeographic oddity. These and other Great Basin mammal histories provide significant insights into the possible responses of Great Basin small mammals to global warming.

  13. Transmittal of field data regarding wetlands : Closed Basin Division, San Luis Valley Project, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Copies of 1980 field information involving auger hole surveys, soil sample moisture analyses, infiltration tests, and evaporation pan readings from the Closed Basin...

  14. Geospatial datasets for assessing the effects of rangeland conditions on dissolved-solids yields in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D; Flynn, Marilyn E.; Anning, David W.

    2015-01-01

    In 2009, the U.S. Geological Survey (USGS) developed a Spatially Referenced Regressions on Watershed Attributes (SPARROW) surface-water quality model for the Upper Colorado River Basin (UCRB) relating dissolved-solids sources and transport in the 1991 water year to upstream catchment characteristics. The SPARROW model focused on geologic and agricultural sources of dissolved solids in the UCRB and was calibrated using water-year 1991 dissolved-solids loads from 218 monitoring sites. A new UCRB SPARROW model is planned that will update the investigation of dissolved-solids sources and transport in the basin to circa 2010 conditions and will improve upon the 2009 model by incorporating more detailed information about agricultural-irrigation and rangeland-management practices, among other improvements. Geospatial datasets relating to circa 2010 rangeland conditions are required for the new UCRB SPARROW modeling effort. This study compiled geospatial datasets for the UCRB that relate to the biotic alterations and rangeland conditions of grazing, fire and other land disturbance, and vegetation type and cover. Datasets representing abiotic alterations of access control (off-highway vehicles) and sediment generation and transport in general, were also compiled. These geospatial datasets may be tested in the upcoming SPARROW model to better understand the potential contribution of rangelands to dissolved-solids loading in UCRB streams.

  15. Application of Decadal Scale Projections Based on Large Scale Climate Indices to Decision Making in the Colorado River Basin

    Science.gov (United States)

    Erkyihun, S. T.; Zagona, E. A.; Rajagopalan, B.

    2015-12-01

    Effective water resources planning and management requires skillful decisions on multi-year or decadal timeframes. In basins such as the Colorado River Basin (CRB), streamflow is not stationary but exhibits variability that reflects teleconnections with large scale climate indices such as Atlantic Multi-decadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). A recently developed stochastic streamflow simulation and projection model, the Wavelet K-Nearest Neighbor (WKNN) model, identifies and reconstructs dominant quasi-periodic signals in the AMO and PDO using wavelet analysis, simulates each using block K-Nearest Neighbor (K-NN) bootstrap, then simulates the streamflow using a K-NN bootstrap conditioned on the simulated climate forcings, and has been demonstrated to produce skillful decadal scale projections of streamflow in the CRB. The Bureau of Reclamation's 2012 Colorado River Basin Supply and Demand Study used scenarios to explore the use of options and strategies such as infrastructure development, conservation and efficiency improvements to address supply-demand imbalances. Each year in the simulated scenarios, decision criteria such as reservoir elevations and average flows over recent years were applied to determine system vulnerability and the need to implement options and strategies to mitigate future shortages. This presentation describes the addition of the WKNN generated decadal scale flow projections to the decision criteria. In addition, periods of poor predictability are identified by using a nonlinear dynamical system based approach to recover the underlying dynamics. Time varying predictability is assessed by quantifying the divergence of trajectories in the phase space with time, using Local Lyapunov Exponents (LLE). Skillful decadal scale streamflow projections within the high predictable time epochs are used to indicate future flow conditions and improve decisions. An ensemble of projections is considered to be wet or dry based

  16. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-07-10

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the

  17. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    International Nuclear Information System (INIS)

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of

  18. Seasonal forecasting of intense tropical cyclones over the North Atlantic and the western North Pacific basins

    Science.gov (United States)

    Choi, Woosuk; Ho, Chang-Hoi; Jin, Chun-Sil; Kim, Jinwon; Feng, Song; Park, Doo-Sun R.; Schemm, Jae-Kyung E.

    2016-02-01

    Intense tropical cyclones (TCs) accompanying torrential rain and powerful wind gusts often cause substantial socio-economic losses in the regions around their landfall. This study analyzes intense TCs in the North Atlantic (NA) and the western North Pacific (WNP) basins during the period 1982-2013. Different intensity criteria are used to define intense TCs for these two basins, category 1 and above for NA and category 3 and above for WNP, because the number of TCs in the NA basin is much smaller than that in the WNP basin. Using a fuzzy clustering method, intense TC tracks in the NA and the WNP basins are classified into two and three representative patterns, respectively. On the basis of the clustering results, a track-pattern-based model is then developed for forecasting the seasonal activities of intense TCs in the two basins. Cross-validation of the model skill for 1982-2013 as well as verification of a forecast for the 2014 TC season suggest that our intense TC model is applicable to operational uses.

  19. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Minnick, Matthew D [Colorado School of Mines, Golden, CO (United States) Dept. of Geology and Geological Engineering; Mattson, Earl D [Idaho National Lab. (INL), Idaho Falls, ID (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States) Dept. of Cilvil and Environmental Engineering; Murray, Kyle E. [Univ. of Oklahoma, Norman, OK (United States) Oklahoma Geological Survey

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  20. XXI Century Climatology of Snow Cover for the Western River Basins of the Indus River System

    CERN Document Server

    Hasson, Shabeh ul; Lucarini, Valerio

    2012-01-01

    Under changing climate, freshwater resources of Hindu Kush-Karakoram-Himalaya (HKH) region can be affected by changes in temperature and in amount, type and distribution of precipitation. This can have serious implications for the water supply and in turn threaten the food security and economic wellbeing of Indus basin. Using MODIS daily snow products (Terra & Aqua), this study focuses on the assessment of the 2000-2010 snow cover dynamics on seasonal/annual basis against geophysical parameters (aspect, elevation and slope) for the so called western river basins of Indus River System (IRS), namely Indus, Kabul, Jhelum, Astore, Gilgit, Hunza, Swat, Shigar and Shyok basins. Results show that inputs from MODIS instrument provide unprecedented better opportunity to study by using GIS techniques the snow cover dynamics in the remote areas like HKH region at such hyper-temporal and finer planar resolution. Adapted non-spectral cloud filtering techniques have significantly reduced cloud coverage and improved sno...

  1. Monitoring species richness and abundance of shorebirds in the western Great Basin

    Science.gov (United States)

    Warnock, N.; Haig, Susan M.; Oring, L.W.

    1998-01-01

    Broad-scale avian surveys have been attempted within North America with mixed results. Arid regions, such as the Great Basin, are often poorly sampled because of the vastness of the region, inaccessibility of sites, and few ornithologists. In addition, extreme variability in wetland habitat conditions present special problems for conducting censuses of species inhabiting these areas. We examined these issues in assessing multi-scale shorebird (order: Charadriiformes) censuses conducted in the western Great Basin from 1992-1997. On ground surveys, we recorded 31 species of shorebirds, but were unable to accurately estimate population size. Conversely, on aerial surveys we were able to estimate regional abundance of some shorebirds, but were unable to determine species diversity. Aerial surveys of three large alkali lakes in Oregon (Goose, Summer, and Abert Lakes) revealed > 300,000 shorebirds in one year of this study, of which 67% were American Avocets (Recurvirostra americana) and 30% phalaropes (Phalaropus spp.). These lakes clearly meet Western Hemisphere Shorebird Reserve Network guidelines for designation as important shorebird sites. Based upon simulations of our monitoring effort and the magnitude and variation of numbers of American Avocets, detection of S-10% negative declines in populations of these birds would take a minimum of 7-23 years of comparable effort. We conclude that a combination of ground and aerial surveys must be conducted at multiple sites and years and over a large region to obtain an accurate picture of the diversity, abundance, and trends of shorebirds in the western Great Basin.

  2. 2014 annual summary of the lower Gunnison River Basin Selenium Management Program water-quality monitoring, Colorado

    Science.gov (United States)

    Henneberg, Mark F.

    2016-01-01

    Dissolved-selenium loading analyses of data collected at 18 water-quality sites in the lower Gunnison River Basin in Colorado were completed through water year (WY) 2014. A WY is defined as October 1–September 30. Selenium is a trace element that bioaccumulates in aquatic food chains and can cause reproductive failure, deformities, and other harmful effects. This report presents information on the dissolved-selenium loads at 18 sites in the lower Gunnison River Basin for WYs 2011–2014. Annual dissolved-selenium loads were calculated at 5 sites with continuous U.S. Geological Survey (USGS) streamflow gages, whereas instantaneous dissolved-selenium loads were calculated for the remaining 13 sites using water-quality samples that had been collected periodically during WYs 2011–2014. Annual dissolved-selenium loads for WY 2014 ranged from 336 pounds (lb) at Uncompahgre River at Colona to 13,300 lb at Gunnison River near Grand Junction (Whitewater). Most sites in the basin had a median instantaneous dissolved-selenium load of less than 20.0 lb per day. In general, dissolved-selenium loads at Gunnison River main-stem sites showed an increase from upstream to downstream.The State of Colorado water-quality standard for dissolved selenium of 4.6 micrograms per liter (µg/L) was compared to the 85th percentiles for dissolved selenium at selected water-quality sites. Annual 85th percentiles for dissolved selenium were calculated for the five core USGS sites having streamflow gages using estimated dissolved-selenium concentrations from linear regression models. These annual 85th percentiles in WY 2014 ranged from 0.97 µg/L at Uncompahgre River at Colona to 16.7 µg/L at Uncompahgre River at Delta. Uncompahgre River at Delta and Whitewater were the only core sites where water samples exceeded the State of Colorado water-quality standard for dissolved selenium of 4.6 µg/L.Instantaneous 85th percentiles for dissolved selenium were calculated for sites with sufficient data

  3. Interbasinal marker intervals——A case study from the Jurassic basins of Kachchh and Jaisalmer, western India

    Institute of Scientific and Technical Information of China (English)

    PANDEY; Dhirendra; Kumar; FüRSICH; Franz; Theodor

    2009-01-01

    The Kachchh Basin and the Jaisalmer Basin are two neighboring Mesozoic sedimentary basins at the western margin of the Indian craton. The Jurassic succession of the Kachchh Basin is more complete and more fossiliferous than that of the Jaisalmer Basin. Consequently, intrabasinal correlation of the sedimentary units has been possible in the Kachchh Basin, but not in the Jaisalmer Basin. However, some marker beds existing in the Kachchh Basin can be recognized also in the Jaisalmer Basin. Ammonite evidence shows that they are time-equivalent. The following four units form marker intervals in both basins: (1) the pebbly rudstone unit with Isastrea bernardiana and Leptosphinctes of the Kaladongar Formation (Kachchh Basin) and the Isastrea bernardiana-bearing rudstone of the Jaisalmer Formation (Jaisalmer Basin) both represent transgressive systems tract deposits dated as Late Bajocian; (2) bioturbated micrites with anomalodesmatan bivalves within the Goradongar Yellow Flagstone Member (Kachchh Basin) and bioturbated units in the Fort Member (Jaisalmer Basin) represent maximum flooding zone deposits of the Middle to Late Bathonian; (3) trough-crossbedded, sandy packto grainstones of the Raimalro Limestone Member (Kachchh Basin) and the basal limestone-sandstone unit of the Kuldhar section of the Jaisalmer Formation (Jaisalmer Basin) correspond to Late Bathonain transgressive systems tract deposits; and (4) ferruginous ooid-bearing carbonates with hardgrounds of the Dhosa Oolite member (Kachchh Basin) and the middle part of the Jajiya Member (Jaisalmer Basin) are Oxfordian transgressive systems tract deposits. The fact that in both basins similar biofacies prevailed during certain time intervals demonstrates a common control of their depositional history. As the two basins represent different tectonic settings, the most likely controlling factors were the relative sea-level changes produced by eustatic processes, a common subsidence history of the northwestern margin of

  4. Sedimentary history and economic geology of San Juan Basin, New Mexico and Colorado

    International Nuclear Information System (INIS)

    The San Juan Basin contains up to 15,000 ft of sedimentary rocks ranging in age from Cambrian to Recent. The earliest development of the area as a sedimentary basin or trough apparently took place in Pennsylvanian time, and the basin was maintained, with changing rates of subsidence and filling, through the remainder of geologic time. During the Early Paleozoic, sedimentation was dominated by marine transgressions across the northwestern flank of the regional Transcontinental Arch. The Late Paleozoic history was strongly influenced by tectonism related to development of the Ancestral Rocky Mountains Uplifts and associated downwarping. The Early Mesozoic is characterized by fluvial and eolian environments, interrupted periodically by thin marine transgressive deposits of nearshore redbeds. The final Mesozoic event was the widespread Late Cretaceous marine transgression which deposited a thick cyclic sequence of marine gray shale and sandstone, with interbedded coal. Late Tertiary regional uplift and resulting volcanism were accompanied by a regional dissection of the area by stream systems that evolved into the present drainage pattern of superposed streams. The sedimentary history is directly related to the occurrence of economic deposits in the basin. Major reserves of petroleum and gas are in Cretaceous and Pennsylvanian rocks, coal in Cretaceous, and uranium in Jurassic and Cretaceous. Abstract only

  5. What drives basin scale spatial variability of snowpack properties in northern Colorado?

    Science.gov (United States)

    Sexstone, G. A.; Fassnacht, S. R.

    2014-03-01

    This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow density and snow water equivalent (SWE) variability at the basin scale (100s to 1000s km2). Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE near peak snow accumulation. Bivariate relations and multiple linear regression models were developed to understand the relation of snow density and SWE with terrain variables (derived using a geographic information system (GIS)). Snow density variability was best explained by day of year, snow depth, UTM Easting, and elevation. Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance, and model validation suggests the model is transferable to independent data within the bounds of the original data set. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time-consuming measurements of SWE are often not feasible. A comparison with a previously developed snow density model shows that calibrating a snow density model to a specific basin can provide improvement of SWE estimation at this scale, and should be considered for future basin scale analyses. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and/or UTM Northing) were the most important SWE model variables, suggesting that orographic precipitation and storm track patterns are likely driving basin scale SWE variability. Terrain curvature was also shown to be an important variable, but to a lesser extent at the scale of interest.

  6. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region)

    OpenAIRE

    A. A. Tahir; Chevallier, Pierre; Arnaud, Yves; Ashraf, M.; Bhatti, M. T.

    2015-01-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatiotemporal change and the hydrological response of these sub-basins i...

  7. Abnormal overpressure distribution and natural gas accumulation in foreland basins, Western China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Abnormal overpressure occurs in the foreland basins of Kuqa, South Junggar and West Sichuan in China. The pressure coefficients are high. Overpressure exists in wide areas and various strata. The layers of overpressure have a very close relationship with lithology, and the area of overpressure is controlled by the piedmont depression. The mechanisms of overpressure formation in the Kuqa and South Junggar Depression include disequilibrium compaction and tectonic compression; the importance of these two factors varies in different basins and in different stages of the same basin. Different models of gas accumulation are established to explain the relationship between overpressure distribution and gas pool formation, and the influence of overpressure on the gas pools. These models include: (ⅰ) the violent tectonic movement leads to the pool formation in overpressure belt (Kela-2 gas field in Kuqa); (ⅱ) the pressure releases at shallow part and the gas pool forms in late time (Hutubi gas field in southern Junggar Basin); (ⅲ) through the pressure transfer the gas migrates and accumulates (Xinchang gas field in Western Sichuan Basin).

  8. DISTRIBUTION, ABUNDANCE AND ENTRAINMENT STUDIES OF LARVAL FISHES IN THE WESTERN AND CENTRAL BASINS OF LAKE ERIE

    Science.gov (United States)

    To assess the impact of entrainment of larval fishes at steam generating electrical power plants, samples were collected in Lake Erie. In 1975, 1976 and 1977 the Western Basin was sampled and in 1978 the sampling was concentrated in the Central Basin. The 1975, 1976 sampling perm...

  9. Review of the petroleum geology of the western part of the Sirt Basin, Libya

    Science.gov (United States)

    Abdunaser, K. M.

    2015-11-01

    The petroleum geology of the western part of the Sirt Basin is reviewed by source, reservoir, traps and seal type in addition to Oil migration by different mechanisms. In general the oil and gas accumulations within Sirt Basin are reservoired in granitic basement, sandstones and carbonates ranging in age from Pre-Cambrian to Oligocene, charged by syn and early postrift, Triassic and intra-Cretaceous organic rich lacustrine and restricted marine shales. This paper offers a broad overview on petroleum systems of the western Sirt Basin as a part of the complex, prolific and mature Sirt Basin which considered as one of tectonically active basins of Mesozoic-Cenozoic age in central northern Libya includes reviewing the potential source rocks and assesses their thermal maturity, petroleum generation potential, organic richness and distribution. Key factors responsible for hydrocarbon distribution described by source rock distribution maps, and hydrocarbon generation areas as well as stratigraphic distribution of oil and gas occurrences with field maps and cross-sections (analogues) and summary reservoir description have been shown. The oil to source correlation scheme suggests that most of the oil in the study area was derived from the Sirte Shale (Upper Cretaceous, Campanian/Turonian), whilst the reservoirs are ranging in age from Lower/Upper Cretaceous to the Eocene. Sandstones predominate in the Cretaceous and carbonates are the main reservoirs in the Tertiary. Several different play types have been described from the study area of the western part of the Sirt Basin dominated by the structural traps, which range from simple normal faults to more complex faults and fold structures associated with wrench faults. Structural traps are dominant in the Zallah Trough and are mainly related to Eocene deformation on the heavily faulted western side of the basin. In addition several types of stratigraphic traps are present in the study area and essentially they are

  10. Cenozoic coupled basin-mountain and prospecting direction for sandstone-type uranium deposits in western Yunnan

    International Nuclear Information System (INIS)

    The initial forming time of Cenozoic basins in western Yunnan is at 14 Ma or so, it was coupling in the later period tectonic activity time of Lushui-Ruili arc dextral strike-slip fault belt in the eastern fringe and Nabang dextral strike-slip fault belt in the western fringe of Tengchong microplate. The evolution of Cenozoic basins is divided into two stages of sedimentary basin and reformed basin, the former was coupling in the strike-slip tectonic activity of orogen, and formed strike-slip basins, the latter was closely related with the uplift of the whole basins, and formed residual basins. It is considered that there exists two sorts of Cenozoic basins, and they are different in sedimentary evolution, volcanic activity and geographic sight etc., the metallogenic conditions of sandstone-type uranium deposits are also different. The most favourable basins for prospecting sandstone-type uranium deposits are those basins that keeps on uplifting in reformed basin stages, exists volcanic activity and deep incised low mountain-hill-river valley terraces in northern Tengchong area. (authors)

  11. Mechanism of petroleum migration and accumulation in western China's superposed basins

    Institute of Scientific and Technical Information of China (English)

    Kang Yongshang; Li Peijun; Qi Xuefeng; Wen Yonghong; Li Shuijing

    2012-01-01

    In western China.most petroliferous basins are superposed due to their multi-periodic tectonic evolution,and the mechanisms of petroleum migration and accumulation are so complex that much more sophisticated methodologies are necessary for depiction of these mechanisms and identification of petroleum occurrences.For this purpose,in this article,a new methodology was formulated which includes:(1) vertical identification of petroleum migration and accumulation fluid dynamic systems in the superposed basins;(2) analysis of the effect of large scale regional faults and fault combinations on the fluids exchange between the vertically identified different systems;(3) analysis of petroleum migration and accumulation in each vertically identified system,and establishment of appropriate geological model of petroleum migration and accumulation for each vertically identified system.Using this methodology,the satisfactory results obtained in the Lunnan Uplift of Tarim Basin and Ludong Uplift of Jungar Basin case studies are:(1) existence of different vertical fluid dynamic systems in western China's superposed basins which are very necessary for understanding the mechanism of petroleum migration and accumulation;(2) in deep system,long-distance lateral petroleum migration and accumulation mainly take place along the long time exposed unconformity with weathered,fractured or karst reservoir rocks;(3) regional faults are the main conducts for fluids migration from deep system up to middle and/or upper systems.As to middle and/or upper systems,regional faults play a role of "petroleum source".Small faults within middle and/or upper systems conduct petroleum to carrier beds with less impeding force;(4) petroleum migrated from deep system vertically up to middle and/or upper systems will migrate laterally in carrier beds of these systems and accumulate to form pools near or far from faults.

  12. Habitat features affect bluehead sucker, flannelmouth sucker, and roundtail chub across a headwater tributary system in the Colorado River Basin

    Science.gov (United States)

    Bower, M.R.; Hubert, W.A.; Rahel, F.J.

    2008-01-01

    We assessed the distributions of three species of conservation concern, bluehead sucker (Catostomus discobolus), flannelmouth sucker (Catostomus latipinnis), and roundtail chub (Gila robusta), relative to habitat features across a headwater tributary system of the Colorado River basin in Wyoming. We studied the upper Muddy Creek watershed, Carbon County, portions of which experience intermittent flows during late summer and early fall. Fish and habitat were sampled from 57 randomly-selected, 200-m reaches and 416 habitat units (i.e., pools, glides, or runs) during the summer and fall of 2003 and 2004. Among reaches, the occurrences of adults and juveniles of all three species were positively related to mean wetted width and the surface area of pool habitat, and the occurrences of adult bluehead sucker and roundtail chub were also positively related to the abundance of rock substrate. Only juvenile bluehead sucker appeared to be negatively influenced by the proportion of a reach that was dry at the time of sampling. Within individual pools, glides, and runs, the occurrences of adults and juveniles of all three species were positively related to surface area and maximum depth, and occurrences of bluehead sucker and flannelmouth sucker juveniles were more probable in pools than in glides or runs.

  13. A Nonstationary Hidden Markov Model for Stochastic Streamflow Simulation and Inter-annual Forecasting in the Upper Colorado River Basin

    Science.gov (United States)

    Bracken, C. W.; Rajagopalan, B.; Zagona, E. A.

    2011-12-01

    Upper Colorado River Basin annual flow exhibits very low autocorrelation but regime shifting behavior causing long departures from the historical average flow producing sustained wet and dry periods. Traditional stochastic time series models do not capture this feature thereby misleading the water resources system risk and consequently impacting the management and planning efforts. To address this, we developed a nonstationary Hidden Markov (HM) model with Gamma component distributions, as opposed to Normal distributions which is widely used in literature, for stochastic simulation and short term forecasting. Global decoding from this model reveals and captures strong underlying persistent structure in the Lees Ferry flow time series. In addition to capturing the shifting mean, simulations from this model have a 20% greater chance than a first order Auto Regressive model (AR1), the best time series model for this data, of simulating wet and dry runs of 6 or more years. Relative to AR1 the HM model also captures the spectral features quite well. When applied to short term forecasting (i.e. of 1-2 years) they show higher skill relative to climatology but also to an AR1 model.

  14. Blending satellite-based snow depth products with in situ observations for streamflow predictions in the Upper Colorado River Basin

    Science.gov (United States)

    Liu, Yuqiong; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi R.; Mocko, David M.

    2015-02-01

    In snowmelt-driven river systems, it is critical to enable reliable predictions of the spatiotemporal variability in seasonal snowpack to support local and regional water management. Previous studies have shown that assimilating satellite-station blended snow depth data sets can lead to improved snow predictions, which however do not always translate into improved streamflow predictions, especially in complex mountain regions. In this study, we explore how an existing optimal interpolation-based blending strategy can be enhanced to reduce biases in satellite snow depth products for improving streamflow predictions. Two major new considerations are explored, including: (1) incorporating terrain aspect and (2) incorporating areal snow coverage information. The methodology is applied to the bias reduction of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth estimates, which are then assimilated into the Noah land surface model via the ensemble Kalman Filtering (EnKF) for streamflow predictions in the Upper Colorado River Basin. Our results indicate that using only observations from low-elevation stations such as the Global Historical Climatology Network (GHCN) in the bias correction can lead to underestimation in streamflow, while using observations from high-elevation stations (e.g., the Snow Telemetry (SNOTEL) network) along with terrain aspect is critically important for achieving reliable streamflow predictions. Additionally incorporating areal snow coverage information from the Moderate Resolution Imaging Spectroradiometer (MODIS) can slightly improve the streamflow results further.

  15. Seismicity in the Raton Basin of Southern Colorado and Northern New Mexico, USA, as Recorded by a Local Array

    Science.gov (United States)

    Macartney, H.

    2013-12-01

    Microseismic events (Basin of southern Colorado and northern New Mexico, USA, over a period of 18 months following the occurrence of a 5.3 magnitude event near Trinidad CO in August, 2011. Micro-seismicity was observed in the region, concentrated in six clusters at depths of 6-12 km below the surface, deep in the basement, and 4-10 km below zones used for fluid disposal from an overlying coalbed methane natural gas field. Clusters are separated from disposal zones by large aseismic intervals. The clusters are mixed in character; both planar and elongate amorphous swarms, some continually active and some as short-lived bursts, with larger initial events tending to occur deeper and smaller after-shocks propagating upward and away from the nucleating events. Magnitudes range between 0 and 3, with the vast majority being less than 1.5M. Most of the clusters have no disposal wells above and no seismic activity was correlated with changes in fluid disposal. No seismicity was detected from hydraulic fracturing operations.

  16. Using water, bryophytes, and macroinvertebrates to assess trace element concentrations in the Upper Colorado River Basin

    Science.gov (United States)

    Deacon, J.R.; Spahr, N.E.; Mize, S.V.; Boulger, R.W.

    2001-01-01

    This study examined trace elements concentrations and macroinvertebrate community structure at 32 sites in 22 streams in Colorado. Sites affected by mining activities (mining sites) and sites that were minimally disturbed (nonmining sites) were selected for the assessment. Water and transplanted aquatic bryophyte samples were analyzed for trace elements. Macroinvertebrate samples were collected to assess the effects of trace elements on the aquatic community of the stream. All samples of aquatic bryophytes had detectable concentrations of Cd, Cu, Pb and Zn. Principal components analysis of chemical and physical properties classified sites into three groups. The first group represented sites that were unaffected to minimally affected by mining activities; the second group was characterized by sites with Cd, Pb and Zn predominant in the mineralogy; and the third group was characterized by sites with Cu predominant in the mineralogy. Six macroinvertebrate families were common in the study area. Median values of total abundance, taxa richness and mayfly and stonefly abundance were reduced at mining sites. Abundances of Heptageniidae, Chloroperlidae and Rhyacophila and Baetis sp. also were reduced at sites with elevated trace element concentrations. Tanytarsini chironomids were most abundant at reference and minimally-disturbed sites.

  17. Magnetic and electrical study of a roll-front uranium deposit in the Denver basin, Colorado

    International Nuclear Information System (INIS)

    Electrical and magnetic surface geophysical techniques have been used to study a shallow uranium deposit in the Denver basin. Both magnetic and resistivity lows correlate with the main ore deposit. Indications are that the resistivity anomaly extends from the near surface down through the ore sand. Data from this shallow deposit can be used to predict the scale of anomalies to be expected from deeper deposits. Further studies to determine the geophysical character of shallow deposits could be useful in the exploration for deeper deposits by borehole geophysical techniques

  18. Remote Sensing-based Estimates of Potential Evapotranspiration for Hydrologic Modeling in the Upper Colorado River Basin Region

    Science.gov (United States)

    Barik, Muhammad Ghulam

    Potential Evapotranspiration (PET) is used as a common input to calculate evaporative demand in hydrological, ecological and biological modeling. Dynamic and distributed measurement of PET is important for improved hydrologic predictions at the watershed scale since PET varies with time and space. In this work, an advanced dynamic PET estimation is proposed by integrating geostationary satellite products into a currently existing remote sensing-based PET algorithm and evaluated in the framework of operational hydrologic forecasting modeling. The development work is approached through a series of studies. At first, a previously developed Moderate Resolution Imaging Spectroradiometer (MODIS) based PET (MODIS-PET) product applied over several flux towers and basins in the Upper Colorado River Basin (UCRB) to determine its applicability and predictive ability in comparison to other ground based distributed PET methods. Results from this primary study indicate the MODIS-PET is an improved PET estimation method compared to the other two contemporary distributed PET products that were tested over this geographically complex study region. In addition to elevation and cloud cover, uncertainties are associated with the MODIS-PET algorithm pertaining from three model variables; land surface temperature, air temperature and surface emissivity. The crude hypothetical sinusoidal curve considered in the conversion of instantaneous MODIS-PET to the daily PET estimation can potentially be replaced with satellite data with improved temporal resolution. Hence, integration of Geostationary Operational Environmental Satellites (GOES), a series of geostationary satellites with frequent observations, data in the MODIS-PET algorithm is performed in the second part. The coupling of GOES within the MODIS-PET algorithm shows significant improvement over the previously developed stand-alone MODIS-PET product, especially for cloudy days and high temperature pixels. Finally, evaluation of these

  19. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitomer basin (Kutahya), western Anatolia

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz-Isik, N. [Ondokuz Mayis University, Kurupelit (Turkey). Dept. of Civil Engineering

    2007-09-15

    The late Early-Middle Miocene sequences of the Seyitomer Basin (western Anatolia) were palynologically investigated. Fifty-five taxa belonging to seven gymnospermous and 48 angiospermous pollen genera were identified in the 19 productive samples. Two pollen zones were recognised based on the changing abundance of individual tree taxa. Zone 1 is characterized by predominance of Pinus and Cedrus. Zone 2 is characterized by predominance of deciduous Quercus and evergreen Quercus and a marked reduction in representation of Taxodiaceae. The differences in the pollen spectra between Zone 1 and Zone 2 may reflect the global Middle Miocene cooling. These results are largely comparable to pollen data derived from the neighbouring areas. The vegetation of the Seyitomer Basin was dominated by trees. This palynological analysis reveals the existence of a swamp-forest developed in a subtropical to warm-temperate humid climate.

  20. Sources and summaries of water-quality information for the Rapid Creek basin, western South Dakota

    Science.gov (United States)

    Zogorski, John S.; Zogorski, E.M.; McKallip, T.E.

    1990-01-01

    This report provides a compilation of water quality information for the Rapid Creek basin in western South Dakota. Two types of information are included: First, past and current water quality monitoring data collected by the South Dakota Department of Water and Natural Resources, U.S. Forest Service, U.S. Geological Survey, and others are described. Second, a summary is included for all past water quality reports, publications, and theses that could be located during this study. A total of 62 documents were abstracted and included journal articles, abstracts, Federal agency reports and publications, university and State agency reports, local agency reports, and graduate theses. The report should be valuable to water resources managers, regulators, and others contemplating water quality research, monitoring, and regulatory programs in the Rapid Creek basin. (USGS)

  1. Research on supplying potential of uranium source from rocks in western provenance area of Hailaer basin

    International Nuclear Information System (INIS)

    Using U-Pb isotope composition evolution, this paper expounds the initial uranium content in volcanic rocks of provenance area of Xihulitu basin and in granites of provenance area of Kelulun sag, western Hailaer basin. The initial uranium content (U0) in volcanic rocks of provenance area is higher, the average initial uranium content of volcanic rocks is 10.061 x 10-6, the average uranium variation coefficient (ΔU) is -49.57%; the average initial uranium content of granites is 18.381 x 10-6, the average uranium variation coefficient (ΔU) is -80%. The results indicate that rocks in provenance area could provide the pre-enrichment of uranium in deposited sandstone. U-Ra equilibrium coefficients of rocks indicate that there is obvious U-Ra disequilibrium phenomenon in volcanic rocks, and the time when granites provided uranium source occurred 16000 a ago. (authors)

  2. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  3. Study on geochronology of sandstone-type uranium mineralization in western Hailaer basin

    International Nuclear Information System (INIS)

    The study on U-Pb isotopic dating of sandstone-type uranium mineralization in western Hailaer basin, namely, Xihulitu and Kelulun depressions, has been carried out. The ages of 81 ± 2 Ma, 44 ± 2 Ma, 9 ± 2 Ma, 2 ± 0 Ma for sandstone-type uranium mineralization in Xihulitu depression and 51 ± 8 Ma, 67 ± 5 Ma for sandstone-type uranium mineralization in Kelulun depression have been obtained for the first time by U-Pb isochron dating. These mineralization ages are in good accordance with the tectonic and climatic evolution histories of the study area

  4. Dual Heuristics for Assessment of Hydrologic Sensitivities to Climate Change in Watersheds of the Lower Colorado Basin

    Science.gov (United States)

    Murphy, K. W.; Murphy, B. S.; Ellis, A. W.

    2014-12-01

    Uncertainties surrounding potential impacts of climate change on water resources can be reduced in part by an accurate understanding of a watershed's hydrologic response to shifts in temperature and precipitation. This has typically been pursued by computationally-intensive land surface modeling involving complex parameterizations. A viable and more efficient alternative lies in two heuristics: temperature sensitivity and precipitation elasticity of runoff. Their comprehensive descriptions are vital for watersheds with distinct seasons, low runoff efficiencies, large coefficients of variation, and highly skewed distributions - such as for the Salt and Verde Rivers of the arid lower Colorado River Basin. Long data records together with an amplified temperature response of these watersheds relative to global trends enable a thorough exploration of temperature sensitivity and precipitation elasticity grounded in observational data. Regression analyses and kriging methods have been employed in this study to develop these seasonal heuristics. While results align with expectations at the mean, trends were revealed across key variables, posing important stream flow implications depending on relative position within the distributions. Winter temperature sensitivity is nearly indistinguishable at low evapotranspiration response, while it is significant in summer with overland flow impairment. It is lessened by an active monsoon season, which also dilutes loss contributions at reservoirs. Precipitation elasticity of runoff is often assumed to be approximately 2.0, but this study revealed higher values in winter and lower ones in summer, with smaller elasticity when approaching the base flow level and in the upper range of runoff efficiency. Descriptive algorithms have been derived that can be readily applied to distribution functions with any climate change assumption to assess stream flow impact and water resource sustainability for the region.

  5. Dust radiative forcing in snow of the Upper Colorado River Basin: 2. Interannual variability in radiative forcing and snowmelt rates

    Science.gov (United States)

    Skiles, S. Mckenzie; Painter, Thomas H.; Deems, Jeffrey S.; Bryant, Ann C.; Landry, Christopher C.

    2012-07-01

    Here we present the radiative and snowmelt impacts of dust deposition to snow cover using a 6-year energy balance record (2005-2010) at alpine and subalpine micrometeorological towers in the Senator Beck Basin Study Area (SBBSA) in southwestern Colorado, USA. These results follow from the measurements described in part I. We simulate the evolution of snow water equivalent at each station under scenarios of observed and dust-free conditions, and +2°C and +4°C melt-season temperature perturbations to these scenarios. Over the 6 years of record, daily mean dust radiative forcing ranged from 0 to 214 W m-2, with hourly peaks up to 409 W m-2. Mean springtime dust radiative forcings across the period ranged from 31 to 49 W m-2 at the alpine site and 45 to 75 W m-2 at the subalpine site, in turn shortening snow cover duration by 21 to 51 days. The dust-advanced loss of snow cover (days) is linearly related to total dust concentration at the end of snow cover, despite temporal variability in dust exposure and solar irradiance. Under clean snow conditions, the temperature increases shorten snow cover by 5-18 days, whereas in the presence of dust they only shorten snow duration by 0-6 days. Dust radiative forcing also causes faster and earlier peak snowmelt outflow with daily mean snowpack outflow doubling under the heaviest dust conditions. On average, snow cover at the towers is lost 2.5 days after peak outflow in dusty conditions, and 1-2 weeks after peak outflow in clean conditions.

  6. Trace-element accumulation by Hygrohypnum ochraceum in the upper Rio Grande Basin, Colorado and New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Carter, L.F. [Geological Survey, Albuquerque, NM (United States); Porter, S.D. [Geological Survey, Lakewood, CO (United States). Denver Federal Center

    1997-12-01

    Accumulation of 12 trace elements by transplanted aquatic bryophytes (Hygrohypnum ochraceum) was determined at 13 sites in the Rio Grande and tributary streams in southern Colorado and northern New Mexico as part of the US Geological Survey`s National Water-Quality Assessment Program. The purposes of the study were to determine the spatial distribution of trace elements in relation to land-use practices in the upper Rio Grande Basin, compare accumulation rates of metals in bryophytes at sites contaminated by trace elements, and evaluate transplanted aquatic bryophytes as a tool for examining the bioavailability of trace elements in relation to concentrations in water and bed sediment. Concentrations of Cd, Cu, Pb, and Zn in bryophytes, water, and bed sediment were significantly higher at sites that receive drainage from mining areas than at sites near agricultural or urban activities. Concentrations of most trace elements were lower in a tributary stream below an urban source than at sites near mining or agricultural use. Concentrations of Cu and Zn in bryophytes correlated with concentrations in water and bed sediment. In addition, bryophyte concentrations of As, Cd, and Pb correlated with concentrations in bed sediment. Transplanted bryophytes can provide an indication of bioavailability. Rates of accumulation were related to the magnitude of ambient trace-element concentrations; maximal uptake occurred during the first 10 d of exposure. Trace-element concentrations in transplanted bryophytes could potentially be used to predict water and sediment concentrations that represent an integration of conditions over short to intermediate lengths of time, rather than instantaneous conditions as measured using water samples.

  7. Rhinocerotidae from the Upper Miocene deposits of the Western Pannonian Basin (Hungary): implications for migration routes and biogeography

    Science.gov (United States)

    Pandolfi, Luca; Gasparik, Mihály; Magyar, Imre

    2016-02-01

    Although the rhinoceros remains have high biochronological significance, they are poorly known or scarcely documented in the uppermost Miocene deposits of Europe. Several specimens collected from the Upper Miocene (around 7.0 Ma, Turolian) deposits of Kávás (Pannonian Basin, Western Hungary), previously determined as Rhinoceros sp., are revised and described in this paper. The postcranial remains of these specimens belong to "Dihoplus" megarhinus (de Christol) on the basis of the morphological and morphometric characters of humerus, radii, metacarpal and metatarsal elements. An overview of rhinoceros remains from several uppermost Miocene localities and the revision of the rhinoceros material from the Pannonian Basin suggest that "D." megarhinus spread during the latest Miocene from the Pannonian Basin towards Italy. The occurrences of this species in Western Hungary and Italy during the latest Miocene further imply that Rhinocerotini species were biogeographically segregated between Western, Southern and Central Europe.

  8. Benthic macrofaunal production for a typical shelf-slope-basin region in the western Arctic Ocean

    Science.gov (United States)

    Lin, Heshan; Wang, Jianjun; Liu, Kun; He, Xuebao; Lin, Junhui; Huang, Yaqin; Zhang, Shuyi; Mou, Jianfeng; Zheng, Chengxing; Wang, Yu

    2016-02-01

    Secondary production by macrofaunal communities in the western Arctic Ocean were quantified during the 4th and 5th Chinese Arctic Scientific Expeditions. The total production and P/B ratio for each sector ranged from 3.8 (±7.9) to 615.6 (±635.5) kJ m-2 yr-1 and 0.5 (± 0.2) to 0.7 (± 0.2) yr-1, respectively. The shallow shelves in the western Arctic Ocean exhibited particularly high production (178.7-615.6 kJ m-2 yr-1), particularly in the two "hotspots" - the southern and northeastern (around Barrow Canyon) Chukchi Sea. Benthic macrofaunal production decreased sharply with depth and latitude along a shelf-slope-basin transect, with values of 17.0-269.8 kJ m-2 yr-1 in slope regions and 3.8-10.1 kJ m-2 yr-1 in basins. Redundancy analysis indicated that hydrological characteristics (depth, bottom temperature and salinity) and granulometric parameters (mean particle size, % sand and % clay) show significant positive/negative correlations with total production. These correlations revealed that the dominant factors influencing benthic production are the habitat type and food supply from the overlying water column. In the Arctic, the extreme environmental conditions and low temperature constrain macrofaunal metabolic processes, such that food and energy are primarily used to increase body mass rather than for reproduction. Hence, energy turnover is relatively low at high latitudes. These data further our understanding of benthic production processes and ecosystem dynamics in the context of rapid climate change in the western Arctic Ocean.

  9. Short-term natural gas deliverability from the Western Canada Sedimentary Basin 2000-2002

    International Nuclear Information System (INIS)

    Factors which affect natural gas supply in the short term are discussed and a forecast for deliverability to the year 2002 is provided as part of the ongoing effort by the National Energy Board to provide analyses of the major energy commodities on either an individual or integrated commodity basis. The objective of these energy market assessment reports is to advance the understanding of the short-term supply situation by reviewing recent trends in the production characteristics of the Western Canada Sedimentary Basin and to update previous reports on short-term deliverability. This report focuses on a review of producing characteristics of natural gas wells from 1990 to 1999. These producing characteristics are then combined with forecasts of drilling activity in order to generate a forecast of natural gas deliverability from 2000 to 2002. Two key trends were identified during the review process. First, recently drilled wells were found to produce at lower rates than wells drilled more than five years ago; second, production from these wells were shown to decline more quickly than production from older wells. Based on these observations, it was concluded that future wells will be generally less productive than wells which were drilled a few years ago, therefore, more wells will have to be drilled to offset production declines from existing gas wells if deliverability is to be maintained or increased. The National Energy Board expects 8,100 wells to be drilled in 2000, followed by 8,700 natural gas wells in 2001 and 8,900 in 2002. A shift in drilling activity to more prolific areas located in the western and northern parts of the Western Canada Sedimentary Basin is also expected. Based on these estimates of expected drilling activity, total deliverability is projected to increase from 465 million cubic feet per day in 1999 to 495 million cubic feet in 2002. Specialized statistics and forecast data are provided in the appendices. 3 tabs., 11 figs., 6 appendices

  10. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  11. An energy systems view of sustainability: emergy evaluation of the San Luis Basin, Colorado.

    Science.gov (United States)

    Campbell, Daniel E; Garmestani, Ahjond S

    2012-03-01

    Energy Systems Theory (EST) provides a framework for understanding and interpreting sustainability. EST implies that "what is sustainable" for a system at any given level of organization is determined by the cycles of change originating in the next larger system and within the system of concern. The pulsing paradigm explains the ubiquitous cycles of change that apparently govern ecosystems, rather than succession to a steady state that is then sustainable. Therefore, to make robust decisions among environmental policies and alternatives, decision-makers need to know where their system resides in the cycles of change that govern it. This theory was examined by performing an emergy evaluation of the sustainability of a regional system, the San Luis Basin (SLB), CO. By 1980, the SLB contained a climax stage agricultural system with well-developed crop and livestock production along with food and animal waste processing. The SLB is also a hinterland in that it exports raw materials and primary products (exploitation stage) to more developed areas. Emergy indices calculated for the SLB from 1995 to 2005 revealed changes in the relative sustainability of the system over this time. The sustainability of the region as indicated by the renewable emergy used as a percent of total use declined 4%, whereas, the renewable carrying capacity declined 6% over this time. The Emergy Sustainability Index (ESI) showed the largest decline (27%) in the sustainability of the region. The total emergy used by the SLB, a measure of system well-being, was fairly stable (CV = 0.05). In 1997, using renewable emergy alone, the SLB could support 50.7% of its population at the current standard of living, while under similar conditions the U.S. could support only 4.8% of its population. In contrast to other indices of sustainability, a new index, the Emergy Sustainable Use Index (ESUI), which considers the benefits gained by the larger system compared to the potential for local environmental

  12. The Salar de Atacama Basin: a Subsiding Block within the Western Edge of the Altiplano-Puna Plateau

    OpenAIRE

    Klaus-J. Reutter; Reynaldo Charrier; Hans-J. Götze; B. Schurr; Peter Wigger; Ekkehard Scheuber; Peter Giese; Claus-Dieter Reuther; Sabine Schmidt; Andreas Rietbrock; Guillermo Chong; Arturo Belmonte-Pool

    2006-01-01

    The internally drained Salar de Atacama (SdA) Basin, located in the proximal fore-arc between the present magmatic arc (Western Cordillera) to the east and the North Chilean Precordillera (Cordillera de Domeyko) to the west, represents a prominent morphological anomaly in the Central Andean Plateau. The basin is a post-Incaic feature that developed contemporaneously with the initial plateau uplift. Before 38 Ma, the magmatic arc was positioned in the present-day Precordillera; as a result, th...

  13. Fossil associations from the middle and upper Eocene strata of the Pamplona Basin and surrounding areas (Navarre, western Pyrenees)

    OpenAIRE

    Astibia, H.; Tosquella Angrill, Josep

    2016-01-01

    Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is do...

  14. Paleogeographic and tectonic controls on the evolution of Cenozoic basins in the Altiplano and Western Cordillera of southern Peru

    Science.gov (United States)

    Carlotto, Víctor

    2013-03-01

    Integrated studies of stratigraphy, sedimentology, paleogeography and tectonic controls on Cenozoic basins provide the basis for a series of time-slice reconstructions of basin evolution in the Andes of southern Peru. The Altiplano and adjacent margin of the Western Cordillera are characterized by several Paleocene-Miocene synorogenic continental basins with thicknesses locally exceeding 10 km. The evolution of these basins has been controlled by NW-trending tectonic features that mark the Altiplano-Western Cordillera and Altiplano-Eastern Cordillera boundaries and the Condoroma structural high. Sedimentary deposits of Paleocene age preserved in the Altiplano are the result of nonmarine sedimentation in a distal foreland basin. During the early Eocene, predominantly dextral strike-slip movements in the Altiplano between the Cusco-Lagunillas and Urcos-Ayaviri fault systems created the transpressional Kayra basin. The Soncco and Anta basins (middle Eocene-early Oligocene) are related to NE shortening (43-30 Ma) and represent proximal, wedge-top and foredeep basin environments preserved on the Altiplano. At ~ 29-28 Ma, a change to predominantly E-W shortening produced sinistral strike-slip motion along NW-striking faults, resulting in intermontane, transpressional basins. In the Altiplano, the Tinajani and Punacancha (29-5 Ma), and Paruro (12-6 Ma) basins were controlled by the Cusco-Lagunillas and the Urcos-Ayaviri fault systems. The Maure, Tincopalca-Huacochullo and Condoroma basins (22-5 Ma) of the Western Cordillera developed between the Condoroma high and the Cusco-Lagunillas fault system. Oligocene-Miocene sedimentation commonly evolved from proximal (alluvial) facies along the borders to distal (lacustrine) facies. These basins were linked to sinistral strike-slip faults that evolved into reverse-sinistral structures. Plate kinematics may play a role in Andean basin evolution, with deformation influenced by major preexisting faults that dictated paleogeographic

  15. Complex tectonic and tectonostratigraphic evolution of an Alpine foreland basin: The western Duero Basin and the related Tertiary depressions of the NW Iberian Peninsula

    Science.gov (United States)

    Martín-González, F.; Heredia, N.

    2011-04-01

    The tectonic and tectonostratigaphic evolution of foreland basins and related Tertiary depressions are the key to investigate deformation history and the uplifting of the continental lithosphere of the Alpine-Pyrenean Orogeny. The northern part of the Duero basin is the foreland basin of the Cantabrian Mountains, which are, in turn, the western part of the Pyrenean Orogen. We have studied the western sharp end of the Duero foreland basin, and its relation to the Tertiary deposits of the NW Iberian Peninsula and the topography evolution. In order to propose a coherent tectonic and tectonosedimentary model that could explain all Tertiary deposits, we have analysed the depositional environment, stratigraphic sequences, paleocurrents and established a correlation of the main outcrops. Besides, a detailed structural mapping of the Alpine structures that limit and affect the main Tertiary outcrops has been carried out. The Tertiary deposits of the NW Iberian Peninsula depressions are affected and fragmented by Alpine structures that limit their extensions and locations. The stratigraphic succession is similar in the NW Tertiary outcrops; they are mainly terrigenous and carbonated continental deposits formed by assemblage of alluvial fans developed at the mountains front, in arid or semiarid conditions. Three formations can be identified in the main depressions: Toral Fm, Santalla Fm and Médulas Fm. The NW Tertiary outcrops were the western deposits of the Duero foreland basin that surrounded the lateral termination of the Pyrenean Orogen. These deposits were fragmented and eroded by the subsequent uplift of the Galaico-Leoneses Mountains and the NE-SW strike-slip faults activity (broken foreland basin). Only the latest stages of some of these outcrops can be considered as intramontane basins as traditionally have been interpreted. The sedimentation started in the northeast (Oviedo-Infiesto) during the Eocene and migrated to the west (As Pontes) during the Late Oligocene

  16. Age and Thickness of the Lithosphere within the Western and Eastern Basins of the Black Sea according to Geophysical Data

    OpenAIRE

    VERZHBITSKY, EUGENIY; LOBKOVSKY, IVAN KUZIN & LEOPOLD

    2002-01-01

    The ages of the western and eastern basins of the Black Sea have been estimated on the basis of heat-flow data. The obtained ages (70-60 Ma) are in good accord with the time of basins' origin as determined from seismic and magnetic data. During this time, the Black Sea opened as a back-arc basin to the north of the Pontide magmatic arc. The arc prehistory of the Pontides is confirmed by the existence of relict mantle seismicity, which is most active in the eastern Pontides. Nearly synchr...

  17. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques; SEMIANNUAL

    International Nuclear Information System (INIS)

    The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities

  18. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2001-04-19

    The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

  19. Input Digital Datasets for the Soil-Water Balance Groundwater Recharge Model of the Upper Colorado River Basin

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5...

  20. A Comparative Assessment of Water Markets: Insights from the Murray-Darling Basin of Australia and the Western US

    OpenAIRE

    R. Quentin Grafton; Gary D. Libecap; Eric C. Edwards; R. J. (Bob) O'Brien; Clay Landry

    2011-01-01

    Water markets in Australia’s Murray-Darling Basin (MDB) and the US west are compared in terms of their ability to allocate scarce water resources. The study finds that the gains from trade in the MDB are worth hundreds of millions of dollars per year. Total market turnover in water rights exceeds $2 billion per year while the volume of trade exceeds over 20% of surface water extractions. In Arizona, California, Colorado, Nevada, and Texas, trades of committed water annually range between 5% a...

  1. A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2012-12-01

    The Salt and Verde River watersheds in the Lower Colorado River Basin are a very important surface water resource in the Southwest United States. Their runoff is captured by a downstream reservoir system serving approximately 40% of the water demand and providing hydroelectric power to the Phoenix, Arizona area. Concerns have been expressed over the risks associated with their highly variable climate dependencies under the realization that the short, historical stream flow record was but one of many possible temporal and volumetric outcome sequences. A characterization of the possible range of flow deficits arising from natural variability beyond those evident in the instrumental record can facilitate sustainability planning as well as adaptation to future climate change scenarios. Methods were developed for this study to generate very long seasonal time series of net reservoir inflows by Monte Carlo simulations of the Salt and Verde watersheds which can be analyzed for detailed probabilistic insights. Other efforts to generate stochastic flow representations for impact assessments have been limited by normality distribution assumptions, inability to represent the covariance of flow contributions from multiple watersheds, complexities of different seasonal origins of precipitation and runoff dependencies, and constraints from spectral properties of the observational record. These difficulties were overcome in this study through stationarity assessments and development of joint probability distributions with highly skewed discrete density functions characteristic of the different watershed-season behaviors derived from a 123 year record. As well, methods of introducing season-to-season correlations owing to antecedent precipitation runoff efficiency enhancements have been incorporated. Representative 10,000 year time series have been stochastically generated which reflect a full range of temporal variability in flow volume distributions. Extreme value statistical

  2. Using oceanic-atmospheric oscillations for long lead-time streamflow forecasting in the Upper Colorado River Basin

    Science.gov (United States)

    Kalra, A.; Ahmad, S.

    2007-12-01

    In the recent past, oceanic-atmospheric oscillations have been used successfully for long lead-time streamflow forecasting. Herein, we present a data-driven model, Support Vector Machine (SVM) for the long lead-time streamflow forecast incorporating oceanic-atmospheric oscillations. The SVM is based on Statistical Learning Theory that uses a hypothesis space of linear functions based on Kernel approach and can be used to predict a quantity forward in time based on training that uses past data. The principal strength of SVM lies in minimizing the empirical classification error and maximizing the geometric margin by solving inverse problems. The SVMs are considered superior to the Artificial Neural Networks (ANNs) due to the tendency of formulating a quadratic optimization problem which ensures a global optimum that is found missing in the traditional ANN approach. The SVM model was applied to four unimpaired gages in the Upper Colorado River Basin (UCRB). The streamflow data for the selected gages was used from 1906¡§C2004. Annual oceanic-atmospheric indexes comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1906¡§C2001 were used to generate streamflow volumes for three years ahead. The SVM model was trained with 86 years of data (1906¡§C1991) and tested for 10 years of data (1992-2001). The testing criteria used for the model effectiveness was based on correlation coefficient r, root means square error (RMSE) and nash sutcliffe efficiency coefficient e. Predictions during the testing phase showed a good agreement with measured streamflow volumes for the selected gages in UCRB. Rigorous sensitivity analysis was performed to evaluate the effect of individual oscillation. The results indicated a strong signal for NAO and ENSO indexes as compared to PDO and AMO indexes for the long lead-time streamflow forecast. The oceanic

  3. Ceramic clays from the western part of the Tamnava Tertiary Basin, Serbia: Deposits and clay types

    Directory of Open Access Journals (Sweden)

    Radosavljević Slobodan

    2014-01-01

    Full Text Available Based on geological, mineralogical, physical, chemical and technological investigations in the Tamnava Tertiary Basin near Šabac town (western Serbia, deposits of ceramic clays were studied. These ceramic clays are composed of kaolin-illite with a variable content of quartz, feldspars, mica, iron oxides and hydroxides, and organic matter. Four main types of commercial clays were identified: i red-yellow sandy-gravely (brick clays; ii grey-white poor sandy (ceramic clays; iii dark-carbonaceous (ceramic clays; and iv lamellar (“interspersed” fatty, poor sandy (highly aluminous and ferrous clays. Ceramic clays are defined as medium to high plastic with different ranges of sintering temperatures, which makes them suitable for the production of various kinds of materials in the ceramic industry. [Projekat Ministarstva nauke Republike Srbije, br. OI-176016

  4. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins. Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    Energy Technology Data Exchange (ETDEWEB)

    Nummedal, Dag [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Doran, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Sitchler, Alexis [Trustees Of The Colorado School Of Mines, Golden, CO (United States); McCray, John [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mouzakis, Katherine [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Glossner, Andy [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Mandernack, Kevin [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Gutierrez, Marte [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Pranter, Matthew [Trustees Of The Colorado School Of Mines, Golden, CO (United States); Rybowiak, Chris [Trustees Of The Colorado School Of Mines, Golden, CO (United States)

    2012-09-30

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is

  5. Application of the European water framework directive in a Western Mediterranean basin (Málaga, Spain)

    Science.gov (United States)

    Carrasco, F.; Sánchez, D.; Vadillo, I.; Andreo, B.; Martínez, C.; Fernández, L.

    2008-04-01

    The water framework directive (WFD) is applied within the Guadalhorce river basin, a Western Mediterranean basin in the Málaga province (South Spain). Criteria defining different surface and groundwater bodies are described. The basic hydrographic network is constituted of low-mountain and low-altitude Mediterranean mineralized rivers. Heavily modified surface water bodies correspond (1) to areas where dams regulate the main watercourses, (2) to areas downstream of reservoirs, where river flow is reduced, and (3) to the coastal sector of the river where artificial channelling has caused morphological variations. Groundwater bodies are related to carbonate and porous aquifers and, locally, to aquifers influenced by dissolution of evaporites. The main impacts to water bodies are irrigated lands and livestock farming. There are also point sources of pollution, such as wastewater, landfills, golf courses, industrial zones, quarries and petrol stations. In addition, groundwater is frequently pumped for human supply and irrigation. Qualitative status of groundwater bodies was done by chemical analysis of samples from a monitoring network and the quantitative status by examining variations in piezometric levels. Both revealed the existence of water bodies at risk of not meeting the environmental objectives of the WFD. The main indicators of pollution are nitrates related to agricultural activities, and total organic carbon (TOC), PO{4/3-} and NH{4/+} in relation to wastewater.

  6. Hydrogeological evolution of the Luni river basin, Rajasthan, western India: A review

    Indian Academy of Sciences (India)

    V N Bajpai

    2004-09-01

    The Luni river basin has been evolved as a result of typical hydrogeomorphic processes of arid zone, operating under the influence of active tectonic lineaments. A detailed analysis of stream morphology in relation to geology and lineaments carried out on selected windows indicated the morphological control of the streams while flowing over the lineaments from the eastern to the western part of the basin. Typical valley fills indicated by dark green tone on digitally processed images and the pediments showing greenish white tone appear in sharp contrast and indicate respectively the graben and horst structures. A detailed identification of lineaments for the georesources and geological evaluation has been carried out. Earlier analysis carried out on Bouguer anomalies correlate with graben and horst structures in the subsurface. Quaternary sequences have been dated from 80 ka to 3 ka indicating a range of fluvial to aeolian deposits reflecting prevailing climatic conditions. However, the changes in sediment type from coarse and mixed of all size grades to fine in a vertical litho-column warrant further studies on fine resolution stratigraphy and high resolution stratigraphy for understanding climatic variations in the region.

  7. Soil erosion determinations using 137Cs technique in the agricultural regions of Gediz Basin, Western Turkey

    International Nuclear Information System (INIS)

    Gediz basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation has long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137Cs inventories of the samples using both Proportional Model (PM) and Simplified Mass Balance Model (SMBM). When Proportional Model was used, erosion and deposition rates varied from -15 to -28 t ha-1y-1 and from +5 to +41 t ha ha-1y-1, respectively, they varied from -16 to -33 t ha-1y-1 and from +5 to +55 t ha-1y-1 with Simplified Mass Balance Model. A good agreement was observed between the results of two models up to 30 t ha-1y-1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137Cs techniques with the results obtained by Universal Soil Loss Equation (USLE) applied in the area before. (authors)

  8. Preliminary study on avian fauna of the Krishna River basin Sangli District, Western Maharashtra, India.

    Science.gov (United States)

    Kumbar, Suresh M; Ghadage, Abhijit B

    2014-11-01

    The present study on avifaunal diversity carried out for three years at the Krishna River Basin, Sangli District revealed a total of 126 species of birds belonging to 30 families, of which 91 species were resident, 16 migratory, 12 resident and local migratory and 7 species were resident and migratory. Among the migrant birds, Rosy Starling Sturnus roseus was dominant in the study area. Commonly recorded resident bird species were, Red vented bulbul, Jungle crow, House sparrow, Common myna, Brahminy myna, Rock pigeon, Spotted dove, Rose ringed parakeet, Indian robin, White-browed fantail-flycatcher and Small sunbird. Most of the families had one or two species, whereas Muscicapidae family alone had 16 species. Forty one species of waterfowls were recorded in this small landscape. Out of 126 bird species, 38 were insectivorous, 28 piscivorous, 25 omnivorous, 19 carnivorous, 9 granivorous, 5 frugivorous and 2 species were nectar sucker and insectivorous. These results suggest that richness of avifauna in the Krishna River Basin, Western Maharashtra might be due to large aquatic ground, varied vegetations and favourable environmental conditions. PMID:25522499

  9. Late Quaternary stratigraphic development in the lower Luni, Mahi and Sabarmati river basins, western India

    Indian Academy of Sciences (India)

    M Jain; S K Tandon; S C Bhatt

    2004-09-01

    This study reviews the Quaternary alluvial stratigraphy in three semi-arid river basins of western India i.e., lower Luni (Rajasthan), and Mahi and Sabarmati (Gujarat alluvial plains). On the basis of OSL chronologies, it is shown that the existing intra-valley lithostratigraphic correlations require a revision. The sand, gravel and mud facies are present during various times in the three basins, however, the fluvial response to climate change, and the resulting facies associations, was different in the Thar desert as compared to that at the desert margin; this makes purely lithostratigraphic correlations unviable. It is further shown that the rivers in the Thar desert were more sensitive to climate change and had small response times and geomorphic thresholds as compared to the desert-margin rivers. This is illustrated during the early OIS 1, when the Luni river in the Thar desert was dynamic and showed frequent variations in fluvial styles such as gravel bedload braided streams, sand-bed ephemeral streams and meandering streams, all followed by incision during the early Holocene. The coeval deposits in Sabarmati, however, only show a meandering, floodplain-dominated river. Late Quaternary alluvial deposits in these basins unconformably overlie some older deposits that lack any absolute chronology. Based on the facies types and their associations, and the composition and architecture of the multistoried gravel sheets in the studied sections, it is suggested that older deposits are of pre-Quaternary age. This hypothesis implies the presence of a large hiatus incorporating much of the Quaternary period in the exposed sections.

  10. New evidence for the Storegga tsunami event in lake basins systems: western Norway

    Science.gov (United States)

    Waldmann, N.; Vasskog, K.; Nesje, A.; Chapron, E.; Ariztegui, D.; Bondevik, S.

    2012-12-01

    Between 8180 and 8070 years ago, one of the largest known submarine slides occurred off the coast of mid-Norway. This event displaced about 3500 km3 of sediment, affected an area of 95,000 km2 and triggered a large tsunami that inundated coastal areas around the North Atlantic and the North Sea. In this contribution, we present first geological evidence from a high resolution geophysical survey and shallow sediment coring for the presence of a large tsunamite related to the Storegga event, in shallow lacustrine basins of Western Norway. A unique Rapidly Deposited Layer (RDL) discovered in the sedimentary infill of the lakes Nerfloen and Oppstrynsvatnet (29 m a.s.l.) is interpreted as a deposit from this tsunami. Two radiocarbon dates from within the deposit itself yield a combined age estimate of 8180-8030 cal a BP (2σ) for the RDL, which is in agreement with robust age-depth modelling of the overlying sediments and strongly supporting the correlation with the Storegga event. In the outer lake basins, where both high-resolution seismic profiles and sediment cores are available, the up to 3.5 m thick RDL covers an area of ~1.1 km2 and features an estimated sediment volume of ~1.2x106 m3. More tentatively we suggest that a ~5x106 m3 semi-transparent seismic unit in the main Oppstrynsvatnet basin could also be connected to the tsunami. Tsunami deposits of this magnitude have not been documented previously in Norwegian lakes, suggesting that the physiographic setting of the study area may have significantly amplified the tsunami wave.

  11. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    OpenAIRE

    Biagio, C.; Formenti, P.; Doppler, L.; C. Gaimoz; Grand, N.; Ancellet, G.; Attié, J.-L.; Bucci, S.; P. Dubuisson; Fierli, F.; Mallet, M.; Ravetta, F

    2016-01-01

    Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω) of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ~160 ...

  12. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    Science.gov (United States)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. PMID:25461078

  13. Constraining frequency-magnitude-area relationships for precipitation and flood discharges using radar-derived precipitation estimates: example applications in the Upper and Lower Colorado River Basins, USA

    Science.gov (United States)

    Orem, C. A.; Pelletier, J. D.

    2015-11-01

    Flood-envelope curves (FEC) are useful for constraining the upper limit of possible flood discharges within drainage basins in a particular hydroclimatic region. Their usefulness, however, is limited by their lack of a well-defined recurrence interval. In this study we use radar-derived precipitation estimates to develop an alternative to the FEC method, i.e. the frequency-magnitude-area-curve (FMAC) method, that incorporates recurrence intervals. The FMAC method is demonstrated in two well-studied U.S. drainage basins, i.e. the Upper and Lower Colorado River basins (UCRB and LCRB, respectively), using Stage III Next-Generation-Radar (NEXRAD) gridded products and the diffusion-wave flow-routing algorithm. The FMAC method can be applied worldwide using any radar-derived precipitation estimates. In the FMAC method, idealized basins of similar contributing area are grouped together for frequency-magnitude analysis of precipitation intensity. These data are then routed through the idealized drainage basins of different contributing areas, using contributing-area-specific estimates for channel slope and channel width. Our results show that FMACs of precipitation discharge are power-law functions of contributing area with an average exponent of 0.79 ± 0.07 for recurrence intervals from 10 to 500 years. We compare our FMACs to published FECs and find that for wet antecedent-moisture conditions, the 500-year FMAC of flood discharge in the UCRB is on par with the US FEC for contributing areas of ~ 102 to 103 km2. FMACs of flood discharge for the LCRB exceed the published FEC for the LCRB for contributing areas in the range of ~ 102 to 104 km2. The FMAC method retains the power of the FEC method for constraining flood hazards in basins that are ungauged or have short flood records, yet it has the added advantage that it includes recurrence interval information necessary for estimating event probabilities.

  14. The quality of our Nation's waters: water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009

    Science.gov (United States)

    Thiros, Susan A.; Paul, Angela P.; Bexfield, Laura M.; Anning, David W.

    2015-01-01

    The Southwest Principal Aquifers consist of many basin-fill aquifers in California, Nevada, Utah, Arizona, New Mexico, and Colorado. Demands for irrigation and drinking water have substantially increased groundwater withdrawals and irrigation return flow to some of these aquifers. These changes have increased the movement of contaminants from geologic and human sources to depths used to supply drinking water in several basin-fill aquifers in the Southwest.

  15. Western Gas Sands Project. Quarterly basin activities report, October 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This report is a summation of three months drilling and testing activitie in the four primary study areas of the WGSP: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin.

  16. Seismic and Gravity Investigations of the Western Espanola Basin, Rio Grande Rift, New Mexico

    Science.gov (United States)

    Braile, L. W.; Coldren, B. G.; Baca, A.; Fontana, J.; Olheiser, M.; Ziff, M.; Keske, A.; Rhode, A.; Martin-Short, R.; Allen, W.; Denton, K. M.; Harper, C.; Baldridge, W.; Biehler, S.; Ferguson, J. F.; McPhee, D.; Snelson, C. M.

    2013-12-01

    The SAGE (Summer of Applied Geophysical Experience) program collected new seismic, gravity, electromagnetic and down-hole temperature data in 2013 in the western Espanola basin of the Rio Grande rift area of northern New Mexico. The location, about 25 km NW of Santa Fe, has been identified as a potential geothermal resources area based on relatively high temperature gradients in drill holes. The SAGE 2013 data collection was part of an integrated geophysical study of the area initiated in 2011. Seismic data consisted of a 4.8 km W to E profile (120 three-component stations in four overlapping deployments, 20 m station spacing, using a Vibroseis source - 20 m spacing for reflection VPs; 800 m spacing for refraction VPs) with both refraction and CMP reflection coverage. About 55,000 seismograms were recorded. The surface conditions (dry unconsolidated sediments) increased surface wave energy and limited the signal-to-noise level of the refraction and reflection arrivals. Utilizing longer source-receiver offsets improved the shot-gather record sections by emphasizing wider angle reflections which are very strong and coherent. The refraction data were modeled with first arrival travel time methods. The reflection data were processed to produce a CMP stacked record section. Strong reflectors from basin-filling sedimentary rocks (mostly Tertiary in age) are visible above reflections from a thin section of Paleozoic rocks and the basement. The lower reflections have an apparent dip to the west of about 12 degrees. Eighty-one new gravity measurements (detailed data at 200 m spacing along the seismic profile, and regional stations) were collected and combined with existing regional data for modeling. Interpretation of the seismic and gravity data was aided by refraction velocities, the existence of a nearby regional seismic reflection profile from industry, and lithologies and well-logs from a deep well. The sedimentary basin interpreted from the seismic and gravity data

  17. Institutions and Societal Impacts of Climate in the Lower Colorado and San Pedro Basins of the U.S.-Mexico Border Region

    Science.gov (United States)

    Varady, R. G.; Wilder, M.; Morehouse, B. J.; Garfin, G. M.

    2007-05-01

    The U.S. Southwest and Mexico border region feature two prominent river basins, the Colorado and Rio Grande, and ecologically important sub-basins such as the San Pedro. The area within which these transboundary basins lie is characterized by overall aridity and high climatic variability over seasonal to decadal and longer time scales. Throughout human occupation, numerous and diverse strategies for buffering climate impacts have emerged. The most notable response has been an increasingly complex system of institutions and structures designed to buffer water scarcity. The Colorado River Compact, and the laws governing allocation of waters from the Rio Grande River, together with the dams, hydropower generators, canals and other engineered features, represent two of the most complex systems. Drought nevertheless remains a looming specter across much of the binational border region. Institutional mechanisms for responding to drought range from awareness-raising and capacity-building efforts, to implementation of formal drought plans, to storing water to make up for deficits, and water conservation rules that become increasingly stringent as drought intensifies. A number of formal and informal binational institutions operate in the region. Some are venerable, like the century-old International Boundary and Water Commission (IBWC) and its Mexican counterpart the Comision Internacional de Limites y Agua (CILA). Others, like the Border Environment Cooperation Commission and the North American Development Bank, were created in the mid-1990s with the North American Free Trade Agreement. These institutions, both domestic and transnational, operate in a complex binational, bicultural environment with contrasting legal and administrative traditions. Under such constraints, they manage water resources and ecosystems and attempt to improve water and sanitation infrastructure in the context of deep and extended drought. But in spite of their efforts, society and natural habitat

  18. Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin.

    Science.gov (United States)

    Mukherjee, Abhijit; von Brömssen, Mattias; Scanlon, Bridget R; Bhattacharya, Prosun; Fryar, Alan E; Hasan, Md Aziz; Ahmed, Kazi Matin; Chatterjee, Debashis; Jacks, Gunnar; Sracek, Ondra

    2008-07-29

    Although arsenic (As) contamination of groundwater in the Bengal Basin has received wide attention over the past decade, comparative studies of hydrogeochemistry in geologically different sub-basins within the basin have been lacking. Groundwater samples were collected from sub-basins in the western margin (River Bhagirathi sub-basin, Nadia, India; 90 samples) and eastern margin (River Meghna sub-basin; Brahmanbaria, Bangladesh; 35 samples) of the Bengal Basin. Groundwater in the western site (Nadia) has mostly Ca-HCO(3) water while that in the eastern site (Brahmanbaria) is much more variable consisting of at least six different facies. The two sites show differences in major and minor solute trends indicating varying pathways of hydrogeochemical evolution However, both sites have similar reducing, postoxic environments (p(e): +5 to -2) with high concentrations of dissolved organic carbon, indicating dominantly metal-reducing processes and similarity in As mobilization mechanism. The trends of various redox-sensitive solutes (e.g. As, CH(4), Fe, Mn, NO(3)(-), NH(4)(+), SO(4)(2-)) indicate overlapping redox zones, leading to partial redox equilibrium conditions where As, once liberated from source minerals, would tend to remain in solution because of the complex interplay among the electron acceptors. PMID:18164513

  19. An integrated geological and geophysical study of the Uinta Mountains, Utah, Colorado and a geophysical study on Tamarix in the Rio Grande River basin, West Texas

    Science.gov (United States)

    Khatun, Salma

    2008-07-01

    This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a

  20. Heat transfer and fluid flow modelling in supra-detachment basins: a case study of the Devonian basins of western Norway

    Science.gov (United States)

    Souche, A.; Dabrowski, M.; Andersen, T. B.; Medvedev, S.

    2012-04-01

    The Devonian basins of western Norway are supra-detachment basins located above a large crustal-scale detachment system, so-called the Nordfjord Sogn Detachment Zone. These basins are characterised by a thick succession (>10km) of siliciclastic sediments ranging in size from coarse conglomerates to fine grain sandstones and organized into narrow half-graben systems. Their architecture and geometry is closely controlled by the development of the coeval (i.e. Early to Middle Devonian) detachment acting as a normal fault/shear zone beneath the basins. The exhumation of rocks within the footwall of the detachment was subsequently followed by an increase of the geothermal gradient at the base of the sedimentary successions. Shear heating resulting from the intense rock deformation within the shear zone also played a role in increasing the temperature at the base of the basins. These two significant processes might have in turn contributed to the fluid mobility in the basins. In this study, we explore the feasibility of porous convection to occur spontaneously in sedimentary basins due to a regional increase of the geothermal gradient. Such process can be approximated by Darcy flow through porous media where the fluid density in the system might introduce a buoyancy-driven instability between lighter hot fluids at the base and denser cold fluids at the top of the basin. In geological systems porous flow might be inhibited by the closing of pores with depth, which leads to a reduced permeability and a limited amount of heat carrying fluids. Also, geological heterogeneities inherited from the layered structure of the sedimentary strata introduce large variations in the rock transport properties. We address these problems numerically by modelling heat and mass transport in porous media assuming quasi-incompressible Darcy flow. The fluid (water) density, viscosity, and specific heat are computed from the pore fluid pressure and the temperature. We investigate the onset of

  1. Molecular systematics of the wolf spider genus Lycosa (Araneae: Lycosidae) in the Western Mediterranean Basin.

    Science.gov (United States)

    Planas, Enric; Fernández-Montraveta, Carmen; Ribera, Carles

    2013-05-01

    In this study, we present the first molecular phylogeny of the wolf spider genus Lycosa Latreille, 1804 in the Western Mediterranean Basin. With a wide geographic sampling comprising 90 localities and including more than 180 individuals, we conducted species delimitation analyses with a Maximum Likelihood approach that uses a mixed Yule-coalescent model to detect species boundaries. We estimated molecular phylogenetic relationships employing Maximum Likelihood and Bayesian Inference methods using mitochondrial and nuclear sequences. We conducted divergence time analyses using a relaxed clock model implemented in BEAST. Our results recovered 12 species that form four groups: Lycosa tarantula group comprising L. tarantula the type species of the genus, L. hispanica and L. bedeli; Lycosa oculata group composed of L.oculata, L. suboculata and three putative new species; Lycosa baulnyi group formed by the maghrebian L. baulnyi and L. vachoni and Lycosa fasciiventris group that includes two widespread species, L. fasciiventris and L. munieri. We found that each group of species shows a characteristic burrowing behavior and molecular and morphological diagnostic characters. Molecular clock analyses support the hypothesis of a relatively recent evolutionary origin of diversification of the group (4.96 Mya (3.53-6.45 Mya)). The establishment of the Mediterranean-like climate and the Pleistocenic glacial cycles seem to have been the main factors that promoted the diversification within the group. Finally, the results obtained in this study together with the revision of museum specimens, descriptions, redescriptions and illustrations, lead us to propose 18 nomenclatural changes (synonymies, generic transfers and nomina dubia) concerning the genera Lycosa, Allocosa and Hogna in the Western Mediterranean. PMID:23416758

  2. A new structural interpretation relating NW Libya to the Hun Graben, western Sirt Basin based on a new paleostress inversion

    Science.gov (United States)

    Abdunaser, K. M.; McCaffrey, K. J. W.

    2015-12-01

    The present study is based on fault-slip data (striated fault planes with known sense of slip) measured in outcrops in two structural domains located along the Hun Graben, western Sirt Basin (150 fault-slip data) and the Jifarah Basin and Nafusah Uplift, northwest Libya (200 fault-slip data). Pre-existing field data collected in two previous studies were reprocessed using standard inversion methods in MyFaultTM(v. 1.03) stereonet software, produced by Pangaea Scientific Ltd.

  3. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    Energy Technology Data Exchange (ETDEWEB)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone

  4. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Science.gov (United States)

    Paschke, Suzanne S.; Walton-Day, Katie; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  5. A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin

    Directory of Open Access Journals (Sweden)

    N. Christensen

    2006-12-01

    Full Text Available Implications of 21st century climate change on the hydrology and water resources of the Colorado River basin were assessed using a multimodel ensemble approach in which downscaled and bias corrected output from 11 General Circulation Models (GCMs was used to drive macroscale hydrology and water resources models. Downscaled climate scenarios (ensembles were used as forcings to the Variable Infiltration Capacity (VIC macroscale hydrology model, which in turn forced the Colorado River Reservoir Model (CRMM. Ensembles of downscaled precipitation and temperature, and derived streamflows and reservoir system performance were assessed through comparison with current climate simulations for the 1950–1999 historical period. For each of the 11 GCMs, two emissions scenarios (IPCC SRES A2 and B1, corresponding to relatively unconstrained growth in emissions, and elimination of global emissions increases by 2100 were represented. Results for the A2 and B1 climate scenarios were divided into period 1 (2010–2039, period 2 (2040–2069, and period 3 (2070–2099. The mean temperature change averaged over the 11 ensembles for the Colorado basin for the A2 emission scenario ranged from 1.2 to 4.4°C for periods 1–3, and for the B1 scenario from 1.3 to 2.7°C. Precipitation changes were modest, with ensemble mean changes ranging from −1 to −2 percent for the A2 scenario, and from +1 to −1 percent for the B1 scenario. An analysis of seasonal precipitation patterns showed that most GCMs had modest reductions in summer precipitation and increases in winter precipitation. Derived 1 April snow water equivalent declined for all ensemble members and time periods, with maximum (ensemble mean reductions of 38 percent for the A2 scenario in period 3. Runoff changes were mostly the result of a dominance of increased evapotranspiration over the seasonal precipitation shifts, with ensemble mean runoff reductions of −1, −6, and −11 percent for the A2 ensembles

  6. Using technology for E and P success - the practices of leader companies in Western Canada Sedimentary Basin strategies

    International Nuclear Information System (INIS)

    The technologies that create a competitive advantage for the leaders in various exploration and production (E and P) strategies were demonstrated. The western Canadian E and P industry has evolved since the oil price shock of 1986 and the gas price shock of 1990-92. Performance of the leaders in broadly defined E and P strategy areas in the western Canada Sedimentary Basin are compared. Success of the industry as a whole was evaluated based on measurement of one of the most critical success factors, technology utilization

  7. Tritium clouds environmental impact in air into the Western Mediterranean Basin evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P., E-mail: paloma.castro@ciemat.es [EURATOM-CIEMAT Association, LNF Fusion National Laboratory, BBTU, Avda Complutense,40 28040 Madrid (Spain); Velarde, M. [ETSII Nuclear Fusion Institute: DENIM, Madrid (Spain); Ardao, J. [AEMET, Environmental Applications Service, 28040 Madrid (Spain); Perlado, J.M. [ETSII Nuclear Fusion Institute: DENIM, Madrid (Spain); Sedano, L. [EURATOM-CIEMAT Association, LNF Fusion National Laboratory, BBTU, Avda Complutense,40 28040 Madrid (Spain)

    2012-08-15

    The paper considers short-term releases of tritium (mainly but not only tritium hydride (HT)) to the atmosphere from a potential ITER-like fusion reactor located in the Mediterranean Basin and explores if the short range legal exposure limits are exceeded (both locally and downwind). For this, a coupled Lagrangian ECMWF/FLEXPART model has been used to follow real time releases of tritium. This tool was analyzed for nominal tritium operational conditions under selected incidental conditions to determine resultant local and Western Mediterranean effects, together with hourly observations of wind, to provide a short-range approximation of tritium cloud behavior. Since our results cannot be compared with radiological station measurements of tritium in air, we use the NORMTRI Gaussian model. We demonstrate an overestimation of the sequence of tritium concentrations in the atmosphere, close to the reactor, estimated with this model when compared with ECMWF/FLEXPART results. A Gaussian 'mesoscale' qualification tool has been used to validate the ECMWF/FLEXPART for winter 2010/spring 2011 with a database of the HT plumes. It is considered that NORMTRI allows evaluation of tritium-in-air-plume patterns and its contribution to doses.

  8. Managing the Cumulative Impacts of Land Uses in the Western Canadian Sedimentary Basin: A Modeling Approach

    Directory of Open Access Journals (Sweden)

    Stan Boutin

    2003-07-01

    Full Text Available This case study from northeastern Alberta, Canada, demonstrates a fundamentally different approach to forest management in which stakeholders balance conservation and economic objectives by weighing current management options from the point of view of their long-term effects on the forest. ALCES®, a landscape-scale simulation model, is used to quantify the effects of the current regulatory framework and typical industrial practices on a suite of ecological and economic indicators over the next 100 yr. These simulations suggest that, if current practices continue, the combined activities of the energy and forestry industries in our 59,000 km2 study area will cause the density of edge of human origin to increase from 1.8 km/km 2 to a maximum of 8.0 km/km2. We also predict that older age classes of merchantable forest stands will be largely eliminated from the landscape, habitat availability for woodland caribou will decline from 43 to 6%, and there will be a progressive shortfall in the supply of softwood timber beginning in approximately 60 yr. Additional simulations involving a suite of "best practices" demonstrate that substantial improvements in ecological outcome measures could be achieved through alternative management scenarios while still maintaining a sustainable flow of economic benefits. We discuss the merits of our proposed approach to land use planning and apply it to the Western Canadian Sedimentary Basin.

  9. Delineation of uplifting and subsiding zones in the Western Pannonian Basin using sinousity analysis

    Science.gov (United States)

    Gál, Judit; Kovács, Gábor; Zámolyi, András.; Pál, Lénárd; Székely, Balázs

    2010-05-01

    The recent tectonic setting of the Pannonian-basin is partly caracterised by different uplift and subsident pattern. Our study area the western part of the Bakony-Hill is currently uplifting while the neighbouring Little Hungarian Plane subsides. The contact zone of this two domain can be outline only from seismic profiles and borehole data. This normal faulting represented displacement int he seismic profile, however cannot be traced up to the surface. The depth conditions can only be partly recontsructed because we use TWT data, but there is evidence that early pannonian strata are faulted. In order to trace the faulted we analysed several seismic profile. We anticipate, that there motions inply surface this placement. Slope angles are therefore are disturbed, the valley slopes are modified and the river courses are sensitive to that change and accomodate to the new setting, restoring the original channel slope. Analysing the sinousity of these river course. We can inply to the differential uplift pattern. Historic maps were used for river course velineation, The Second Military Survey of the Habsburg Empire (1806-1869) perfect possibility for that. This mapsheets record the pre-regulation conditions of the hidrological system, this situation is the closest to the natural unmodified state.

  10. Fractured rock aquifer test in the Western Siberian Basin, Ozyorsk, Russia

    International Nuclear Information System (INIS)

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses

  11. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A. [and others

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  12. Presentation Showing Results of a Hydrogeochemical Investigation of the Standard Mine Vicinity, Upper Elk Creek Basin, Colorado

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Wanty, Richard B.

    2008-01-01

    PREFACE This Open-File Report consists of a presentation given in Crested Butte, Colorado on December 13, 2007 to the Standard Mine Advisory Group. The presentation was paired with another presentation given by the Colorado Division of Reclamation, Mining, and Safety on the physical features and geology of the Standard Mine. The presentation in this Open-File Report summarizes the results and conclusions of a hydrogeochemical investigation of the Standard Mine performed by the U.S. Geological Survey (Manning and others, in press). The purpose of the investigation was to aid the U.S. Environmental Protection Agency in evaluating remediation options for the Standard Mine site. Additional details and supporting data related to the information in this presentation can be found in Manning and others (in press).

  13. Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado.

    Science.gov (United States)

    Sherwood, Owen A; Rogers, Jessica D; Lackey, Greg; Burke, Troy L; Osborn, Stephen G; Ryan, Joseph N

    2016-07-26

    Unconventional oil and gas development has generated intense public concerns about potential impacts to groundwater quality. Specific pathways of contamination have been identified; however, overall rates of contamination remain ambiguous. We used an archive of geochemical data collected from 1988 to 2014 to determine the sources and occurrence of groundwater methane in the Denver-Julesburg Basin of northeastern Colorado. This 60,000-km(2) region has a 60-y-long history of hydraulic fracturing, with horizontal drilling and high-volume hydraulic fracturing beginning in 2010. Of 924 sampled water wells in the basin, dissolved methane was detected in 593 wells at depths of 20-190 m. Based on carbon and hydrogen stable isotopes and gas molecular ratios, most of this methane was microbially generated, likely within shallow coal seams. A total of 42 water wells contained thermogenic stray gas originating from underlying oil and gas producing formations. Inadequate surface casing and leaks in production casing and wellhead seals in older, vertical oil and gas wells were identified as stray gas migration pathways. The rate of oil and gas wellbore failure was estimated as 0.06% of the 54,000 oil and gas wells in the basin (lower estimate) to 0.15% of the 20,700 wells in the area where stray gas contamination occurred (upper estimate) and has remained steady at about two cases per year since 2001. These results show that wellbore barrier failure, not high-volume hydraulic fracturing in horizontal wells, is the main cause of thermogenic stray gas migration in this oil- and gas-producing basin. PMID:27402747

  14. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer Assay, Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  15. Actual Evapotranspiration (Water Use Assessment of the Colorado River Basin at the Landsat Resolution Using the Operational Simplified Surface Energy Balance Model

    Directory of Open Access Journals (Sweden)

    Ramesh K. Singh

    2013-12-01

    Full Text Available Accurately estimating consumptive water use in the Colorado River Basin (CRB is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85 at the sub-basin level. Though there was good correlation (R2 = 0.79 between Moderate Resolution Imaging Spectroradiometer (MODIS-based ETa (1 km spatial resolution and Landsat-based ETa (30 m spatial resolution, the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  16. Groundwater methane in relation to oil and gas development and shallow coal seams in the Denver-Julesburg Basin of Colorado

    Science.gov (United States)

    Sherwood, Owen A.; Rogers, Jessica D.; Lackey, Greg; Burke, Troy L.; Osborn, Stephen G.; Ryan, Joseph N.

    2016-01-01

    Unconventional oil and gas development has generated intense public concerns about potential impacts to groundwater quality. Specific pathways of contamination have been identified; however, overall rates of contamination remain ambiguous. We used an archive of geochemical data collected from 1988 to 2014 to determine the sources and occurrence of groundwater methane in the Denver-Julesburg Basin of northeastern Colorado. This 60,000-km2 region has a 60-y-long history of hydraulic fracturing, with horizontal drilling and high-volume hydraulic fracturing beginning in 2010. Of 924 sampled water wells in the basin, dissolved methane was detected in 593 wells at depths of 20–190 m. Based on carbon and hydrogen stable isotopes and gas molecular ratios, most of this methane was microbially generated, likely within shallow coal seams. A total of 42 water wells contained thermogenic stray gas originating from underlying oil and gas producing formations. Inadequate surface casing and leaks in production casing and wellhead seals in older, vertical oil and gas wells were identified as stray gas migration pathways. The rate of oil and gas wellbore failure was estimated as 0.06% of the 54,000 oil and gas wells in the basin (lower estimate) to 0.15% of the 20,700 wells in the area where stray gas contamination occurred (upper estimate) and has remained steady at about two cases per year since 2001. These results show that wellbore barrier failure, not high-volume hydraulic fracturing in horizontal wells, is the main cause of thermogenic stray gas migration in this oil- and gas-producing basin. PMID:27402747

  17. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model

    Science.gov (United States)

    Singh, Ramesh K.; Senay, Gabriel B.; Velpuri, Naga Manohar; Bohms, Stefanie; Russell L, Scott; Verdin, James P.

    2014-01-01

    Accurately estimating consumptive water use in the Colorado River Basin (CRB) is important for assessing and managing limited water resources in the basin. Increasing water demand from various sectors may threaten long-term sustainability of the water supply in the arid southwestern United States. We have developed a first-ever basin-wide actual evapotranspiration (ETa) map of the CRB at the Landsat scale for water use assessment at the field level. We used the operational Simplified Surface Energy Balance (SSEBop) model for estimating ETa using 328 cloud-free Landsat images acquired during 2010. Our results show that cropland had the highest ETa among all land cover classes except for water. Validation using eddy covariance measured ETa showed that the SSEBop model nicely captured the variability in annual ETa with an overall R2 of 0.78 and a mean bias error of about 10%. Comparison with water balance-based ETa showed good agreement (R2 = 0.85) at the sub-basin level. Though there was good correlation (R2 = 0.79) between Moderate Resolution Imaging Spectroradiometer (MODIS)-based ETa (1 km spatial resolution) and Landsat-based ETa (30 m spatial resolution), the spatial distribution of MODIS-based ETa was not suitable for water use assessment at the field level. In contrast, Landsat-based ETa has good potential to be used at the field level for water management. With further validation using multiple years and sites, our methodology can be applied for regular production of ETa maps of larger areas such as the conterminous United States.

  18. The origin of the Great Lakes Basin, Western Mongolia: not the super flooding, but glaciated super valley

    OpenAIRE

    Khukhuudei Ulambadrakh

    2015-01-01

    Research on Morphology and genesis of the Great Lakes Basin in western Mongolia were taken relatively rarely in recent years. The present study combines the results of previous work with modern analysis of photographs and satellite images. The theory of Pleistocene glaciation which took vast areas of the northern hemisphere became the basis of the new approach. Glaciation covered the area from northwestern Mongolia to Mongolian Altai, Khangai and Khuvsgul mountain ranges. At that time, the ic...

  19. Application and effectiveness of shallow seismic method to uranium exploration in the tertiary basin in western Yunnan

    International Nuclear Information System (INIS)

    The orientation survey confirmed the effectiveness of shallow seismic reflection method in determination of basement morphology at the depth of 100-400 m, tectonics and overburden zoning in the Tertiary basin in western Yunnan. McSEIS-1500 seismograph is used to study the effective field technology in order to raise S/N ratio and stress effective waves on the basis of the features of effective waves and noise within the working area by selecting suitable excited condition

  20. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    OpenAIRE

    Bastawesy, M.; R. Ramadan Ali; A. Faid; Osta, M.

    2013-01-01

    This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases), which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission...

  1. Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states

    Science.gov (United States)

    Reddy, Patrick J.; Pfister, Gabriele G.

    2016-03-01

    We use daily maximum 8 h average surface O3 concentrations (MDA8) for July 1995-2013, meteorological variables from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis, the North American Regional Reanalysis, and output from regional chemistry-climate simulations to assess relationships between O3 and weather in the western U.S. We also explore relationships among July O3, satellite-derived NO2, and meteorology. A primary objective of this study is to identify an effective method for correcting the effects of meteorology on July MDA8. We find significant correlations between July MDA8 O3 and meteorological variables for sites in or near Denver, Colorado, and Salt Lake City, Utah. The highest correlations were for 500 hPa heights, surface temperatures, and 700 hPa temperatures and zonal winds. We conclude that increased 500 hPa heights lead to high July O3 in much of the western U.S., particularly in areas of elevated terrain near urban sources of NO2 and other O3 precursors. In addition to bringing warmer temperatures and fewer clouds, upper level ridges decrease winds and allow cyclic terrain-driven circulations to reduce transport away from sources. Because of strong, nearly linear responses of July MDA8 to 500 hPa heights, it is not reasonable to use uncorrected trends in peak O3 for assessments of the effectiveness of emissions controls for much of the western U.S. Robust linear regressions for July MDA8 and tropospheric NO2 with 500 hPa heights can be used to assess and correct trends in July MDA8 in the Intermountain West.

  2. Biodegradation and origin of oil sands in the Western Canada Sedimentary Basin

    Institute of Scientific and Technical Information of China (English)

    Zhou Shuqing; Huang Haiping; Liu Yuming

    2008-01-01

    The oil sands deposits in the Western Canada Sedimentary Basin (WCSB) comprise of at least 85% of the total immobile bitumen in place in the world and are so concentrated as to be virtually the only such deposits that are economically recoverable for conversion to oil.The major deposits are in three geographic and geologic regions of Alberta: Athabasca,Cold Lake and Peace River.The bitumen reserves have oil gravities ranging from 8 to 12° API,and are hosted in the reservoirs of varying age,ranging from Devonian (Grosmont Formation) to Early Cretaceous (Mannville Group).They were derived from light oils in the southern Alberta and migrated to the north and east for over 100 km during the Laramide Orogeny,which was responsible for the uplift of the Rocky Mountains.Biodegradation is the only process that transforms light oil into bitumen in such a dramatic way that overshadowed other alterations with minor contributions.The levels of biodegradation in the basin increasing from west (non-biodegraded) to east (extremely biodegraded) can be attributed to decreasing reservoir temperature,which played the primary role in controlling the biodegradation regime.Once the reservoir was heated to approximately 80 ℃,it was pasteurized and no biodegradation would further occur.However,reservoir temperature could not alone predict the variations of the oil composition and physical properties.Compositional gradients and a wide range of biodegradation degree at single reservoir column indicate that the water-leg size or the volume ratio of oil to water is one of the critical local controls for the vertical variations of biodegradation degree and oil physical properties.Late charging and mixing of the fresh and degraded oils ultimately dictate the final distribution of compositions and physical properties found in the heavy oil and oil sand fields.Oil geochemistry can reveal precisely the processes and levels that control these variations in a given field,which opens the

  3. 76 FR 5148 - Loveland Area Projects-Western Area Colorado Missouri Balancing Authority-Rate Order No. WAPA-155

    Science.gov (United States)

    2011-01-28

    ... Extension of Rate Order Nos. WAPA-106 and WAPA-118. 76 FR 1429, January 10, 2011. Proposed Formula Rate for...--Rate Order No. WAPA-155 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Proposed... extension through February 28, 2011. 73 FR 48382, August 19, 2008. \\3\\ WAPA-118 was approved by FERC on...

  4. 76 FR 56433 - Loveland Area Projects-Western Area Colorado Missouri Balancing Authority-Rate Order No. WAPA-155

    Science.gov (United States)

    2011-09-13

    ... and WAPA-118 through February 28, 2013. 76 FR 1429, January 10, 2011. LAP Transmission Service Rate... participation in power rate adjustments (10 CFR 903) were published on September 18, 1985 (50 FR 37835). Under...--Rate Order No. WAPA-155 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of...

  5. Rapid inundation estimates using coastal amplification laws in the Western Mediterranean basin

    Science.gov (United States)

    Gailler, Audrey; Hébert, Hélène; Schindelé, François

    2016-04-01

    Numerical tsunami propagation and inundation models are well developed and have now reached an impressive level of accuracy, especially in locations such as harbors where the tsunami waves are mostly amplified. In the framework of tsunami warning under real-time operational conditions, the main obstacle for the routine use of such numerical simulations remains the slowness of the numerical computation, which is strengthened when detailed grids are required for the precise modeling of the coastline response of an individual harbor. Thus only tsunami offshore propagation modeling tools using a single sparse bathymetric computation grid are presently included within the French Tsunami Warning Center (CENALT), providing rapid estimation of tsunami impact at Western Mediterranean and NE Atlantic basins scale. We present here a work that performs quick estimates of the coastal impact at individual harbors from these high sea forecasting tsunami simulations. The method involves an empirical correction based on the Green's theoretical amplification law. The main limitation is that its application to a given coastal area would require a large database of previous observations, in order to define the empirical parameters of the correction equation. As no tide gage records of significant tsunamis are available for the Western Mediterranean French coasts, we use a set of points of interest distributed along these coasts, where maximum water heights are calculated for both fake events and well-known historical tsunamigenic earthquakes in the area. This synthetic dataset is obtained through accurate numerical tsunami propagation and inundation modeling by using several nested bathymetric grids of increasingly fine resolution close to the shores. Non linear shallow water tsunami modeling performed on a single 2' coarse bathymetric grid are compared to the values given by time-consuming nested grids simulations, in order to check to which extent the simple approach based on the

  6. Variability of mineral dust deposition in the western Mediterranean basin and South-East of France

    Directory of Open Access Journals (Sweden)

    J. Vincent

    2015-12-01

    deposition events are recorded at only one station, suggesting that the dust provenance, transport, and deposition processes (i.e. wet vs. dry of dust are different and specific for the different deposition sites in the Mediterranean studied area. The results also show that wet deposition is the main way of deposition for mineral dust in the western Mediterranean basin, but the contribution of dry deposition is far to be negligible, and contributes by 15 to 46 % to the major dust deposition events, depending on the sampling site.

  7. Formation mechanisms of heavy oils in the Liaohe Western Depression,Bohai Gulf Basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Liaohe Oilfield in the Liaohe Western Depression of the Bohai Gulf Basin is the third-largest oil producing province and the largest heavy oil producing oilfield in China. A total of 65 oil samples,35 rock samples and 36 reservoir sandstone samples were collected and analyzed utilizing conventional geochemical and biogeochemical approaches to unravel the mechanisms of the formation of the heavy oils. Investigation of the oils with the lowest maturity compared with the oils in the Gaosheng and Niuxintuo oilfields indicates no apparent relation between the maturity and physical properties of the heavy oils. It is suggested that the heavy oil with primary origin is not likely the main mechanism re-sponsible for the majority of the heavy oils in the Liaohe Western Slope. The absence and/or depletion of n-alkanes etc.,with relatively low molecular weight and the occurrence of 25-norhopane series in the heavy oils as well as the relatively high acidity of the oils all suggest that the majority of the heavy oils once experienced secondary alteration. The fingerprints of the total scanning fluorescence (TSF) of the inner adsorbed hydrocarbons on the reservoir grains and the included hydrocarbons in fluid inclusions are similar to that of the normal oils in the area but are different from the outer adsorbed and reser-voired free oils at present,further indicating that most of the heavy oils are secondary in origin. Analyses of bacteria (microbes) in 7 oil samples indicate that anaerobic and hyperthermophilic Ar-chaeoglobus sp. are the dominant microbes relevant to oil biodegradation,which coincides with the shallow commercial gas reservoirs containing anaerobic bacteria derived gas in the Gaosheng and Leijia teotonic belts. The biodegradation most likely occurs at the water/oil interface,where the forma-tion water is essential for microbe removal and nutrient transportation. We think that biodegradation,water washing and oxidization are interrelated and are the main

  8. Web application to access U.S. Army Corps of Engineers Civil Works and Restoration Projects information for the Rio Grande Basin, southern Colorado, New Mexico, and Texas

    Science.gov (United States)

    Archuleta, Christy-Ann M.; Eames, Deanna R.

    2009-01-01

    The Rio Grande Civil Works and Restoration Projects Web Application, developed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers (USACE) Albuquerque District, is designed to provide publicly available information through the Internet about civil works and restoration projects in the Rio Grande Basin. Since 1942, USACE Albuquerque District responsibilities have included building facilities for the U.S. Army and U.S. Air Force, providing flood protection, supplying water for power and public recreation, participating in fire remediation, protecting and restoring wetlands and other natural resources, and supporting other government agencies with engineering, contracting, and project management services. In the process of conducting this vast array of engineering work, the need arose for easily tracking the locations of and providing information about projects to stakeholders and the public. This fact sheet introduces a Web application developed to enable users to visualize locations and search for information about USACE (and some other Federal, State, and local) projects in the Rio Grande Basin in southern Colorado, New Mexico, and Texas.

  9. Geology and coal-bed methane resources of the northern San Juan Basin, Colorado and New Mexico

    International Nuclear Information System (INIS)

    This guidebook is the first of its kind: A focused look at coal-bed methane in a large Rocky Mountain Laramide basin. The papers in this volume cover every aspect of coal-bed methane in the San Juan Basin, including: The geology, environments of deposition, and geometry of the coal beds that contain the resource; the origin and migration history of the gas; basin-wide resource estimates; the engineering aspects of getting the gas out of the ground; the marketing and economics of producing coal-bed methane in the San Juan Basin; the legal ownership of the gas; state regulations governing well spacing and field rules; disposal of produced water; and land and mineral ownership patterns in the northern part of the basin. Also included are detailed papers on all of the major coal-bed methane fields in the basin, and in a paper on the history of Fruitland gas production, a discussion of most of the not-so-major fields. A small section of the book deals with geophysical methods, as yet still experimental, for surface detection of underground hydrocarbon resources. Individual papers have been processed separately for inclusion on the data base

  10. Geochemical characteristics of Tertiary saline lacustrine oils in the Western Qaidam Basin, northwest China

    International Nuclear Information System (INIS)

    Based on the systematic analyses of light hydrocarbon, saturate, aromatic fractions and C isotopes of over 40 oil samples along with related Tertiary source rocks collected from the western Qaidam basin, the geochemical characteristics of the Tertiary saline lacustrine oils in this region was investigated. The oils are characterized by bimodal n-alkane distributions with odd-to-even (C11-C17) and even-to-odd (C18-C28) predominance, low Pr/Ph (mostly lower than 0.6), high concentration of gammacerane, C35 hopane and methylated MTTCs, reflecting the high salinity and anoxic setting typical of a saline lacustrine depositional environment. Mango's K 1 values in the saline oils are highly variable (0.99-1.63), and could be associated with the facies-dependent parameters such as Pr/Ph and gammacerane indexes. Compared with other Tertiary oils, the studied Tertiary saline oils are marked by enhanced C28 sterane abundance (30% or more of C27-C29 homologues), possibly derived from halophilic algae. It is noted that the geochemical parameters of the oils in various oilfields exhibit regular spatial changes, which are consistent with the depositional phase variations of the source rocks. The oils have uncommon heavy C isotopic ratios (-24%o to -26%o) and a flat shape of the individual n-alkane isotope profile, and show isotopic characteristics similar to marine organic matter. The appearance of oleanane and high 24/(24 + 27)-norcholestane ratios (0.57-0.87) in the saline oils and source rocks confirm a Tertiary organic source

  11. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Science.gov (United States)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  12. Long-range Transport of Aerosol at a Mountain Site in the Western Mediterranean Basin

    Science.gov (United States)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Véronique; Claeys, Marine; Sciare, Jean; Dulac, François

    2016-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  13. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    International Nuclear Information System (INIS)

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site

  14. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A. [P.A. Mayak, Chelyabinsk (Russian Federation); Glagolev, A.V.; Vasil`kova, N.A. [P.S.A. Hydrospetzgeologiya, Moscow (Russian Federation)

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  15. Early middle Miocene tectonic uplift of the northwestern part of the Qinghai–Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin

    NARCIS (Netherlands)

    Wang, Chaowen; Hong, Hanlie; Abels, Hemmo A.; Li, Zhaohui; Cao, Kai; Yin, Ke; Song, Bowen; Xu, Yadong; Ji, Junliang; Zhang, Kexin

    2016-01-01

    The Tarim Basin in western China has been receiving continuous marine to lacustrine deposits during the Cenozoic as a foreland basin of the Qinghai–Tibetan Plateau (QTP). Clay mineralogy and geochemical proxy data from these sedimentary archives can shed light on climate and tectonic trends. Here we

  16. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    Science.gov (United States)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make

  17. Susceptibility to Myxobolus cerebralis among Tubifex tubifex populations from ten major drainage basins in Colorado where Cutthroat Trout are endemic.

    Science.gov (United States)

    Nehring, R Barry; Lukacs, P M; Baxa, D V; Stinson, M E T; Chiaramonte, L; Wise, S K; Poole, B; Horton, A

    2014-03-01

    Establishment of Myxobolus cerebralis (Mc) resulted in declines of wild Rainbow Trout Oncorhynchus mykiss populations in streams across Colorado during the 1990s. However, the risk for establishment and spread of this parasite into high-elevation habitats occupied by native Cutthroat Trout O. clarkii was unknown. Beginning in 2003, tubificid worms were collected from all major drainages where Cutthroat Trout were endemic and were assayed by quantitative PCR to determine the occurrence and distribution of the various lineages of Tubifex tubifex (Tt) oligochaetes. Over a 5-year period, 40 groups of Tt oligochaetes collected from 27 streams, 3 natural lakes, 2 private ponds, and a reservoir were evaluated for their relative susceptibility to Mc. Exposure groups were drawn from populations of pure lineage III Tt, mixed-lineage populations where one or more of the highly resistant (lineage I) or nonsusceptible lineages (V or VI) were the dominant oligochaete and susceptible lineage III worms were the subdominant worm, or pure lineage VI Tt. Experimental replicates of 250 oligochaetes were exposed to 50 Mc myxospores per worm. The parasite amplification ratio (total triactinomyxons [TAMs] produced / total myxospore exposure) was very high among all pure lineage III Colorado exposure groups, averaging 363 compared with 8.24 among the mixed-lineage exposure groups. Lineage III oligochaetes from Mt. Whitney Hatchery in California, which served as the laboratory standard for comparative purposes, had an average parasite amplification ratio of 933 among 10 exposed replicates over a 5-year period. Lineage I oligochaetes were highly resistant to infection and did not produce any TAMs. Lineages V and VI Tt did not become infected and did not produce any TAMs. These results suggest that the risk of establishment of Mc is high for aquatic habitats in Colorado where Cutthroat Trout and lineage III Tt are sympatric. PMID:24689955

  18. Office of Inspector General report on audit of the Western Area Power Administration`s contract with Basin Electric Power Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-25

    At the request of the Western Area Power Administration (Western), an audit of 17 areas was conducted with respect to possible overcharges on a power contract between Western and Basin Electric Power Cooperative (Basin), Contract No. DE-MP65-82WP-19001. The contract for Western`s purchase of electric power from Basin was entered into on April 15, 1982, and was in effect from January 1, 1986, through October 31, 1990. During this 58-month period, Basin billed Western approximately $197.6 million. Overall, it was found that Basin overcharged Western approximately $23.8 million. These overcharges occurred because Basin: (1) did not recognize or amortize as gain its overestimate of completion and correction costs for Antelope Valley Station (AVS) Unit 2; (2) did not amortize the gain on the sale/leaseback of AVS Unit 2 as an offset to lease costs; (3) billed Western prematurely for lease and interest costs; (4) overcharged for the cost of coal by including administrative and general expenses and profit, as well as incorrectly calculating discounts, royalty payments, and imputed interest costs; (5) made faulty calculations of amortization rates for deferred costs; (6) used a shorter depreciation period for AVS common facilities than it had used for other power plants; (7) retained tax benefit transfers; and (8) charged Western for interest and depreciation that had been paid by others. In addition to the $23.8 million in overcharges, interest accrued on the overcharges through December 31, 1996 was estimated to be approximately $22.1 million, resulting in a total of $45.9 million due Western.

  19. Hydrologic Vulnerability and Risk Assessment Associated With the Increased Role of Fire on Western Landscapes, Great Basin, USA

    Science.gov (United States)

    Williams, C. J.; Pierson, F. B.; Robichaud, P. R.; Spaeth, K. E.; Hardegree, S. P.; Clark, P. E.; Moffet, C. A.; Al-Hamdan, O. Z.; Boll, J.

    2010-12-01

    Landscape-scale plant community transitions and altered fire regimes across Great Basin, USA, rangelands have increased the likelihood of post-fire flooding and erosion events. These hazards are particularly concerning for western urban centers along the rangeland urban-wildland interface where natural resources, property, and human life are at risk. Extensive conversion of 4-7 million hectares of Great Basin shrub-steppe to cheatgrass-dominated (Bromus tectorum) grasslands has increased the frequency and size of wildland fires within these ecosystems. Fire frequencies have increased by more than an order of magnitude and occur on 3-10 year intervals across much of the cheatgrass-dominated landscape. Extensive tree (Pinus spp. and Juniperus spp.) encroachment into wooded shrub-steppe has increased heavy fuel loads. Ladder fuels in these ecosystems promote rapidly spreading, high-intensity and severe ground-surface-crown fires. These altered fuel structures across much of the historical Great Basin shrub-steppe have initiated an upsurge in large rangeland wildfires and have increased the spatial and temporal vulnerability of these landscapes to amplified runoff and erosion. Resource and infrastructure damages, and loss of life have been reported due to flooding following recent large-scale burning of western rangelands and dry forests. We present a decade of post-fire rangeland hydrologic research that provides a foundation for conceptual modeling of the hydrologic impacts associated with an increased role of rangeland wildfires. We highlight advancements in predictive tools to address this large-scale phenomenon and discuss vital research voids requiring attention. Our geographic emphasis is the Great Basin Region, however, these concepts likely extend elsewhere given the increased role of fire in many geographic regions and across rangeland-to-forest ecotones in the western United States.

  20. Gravity anomalies, crustal structure and rift tectonics at the Konkan and Kerala basins, western continental margin of India

    Indian Academy of Sciences (India)

    Sheena V Dev; M Radhakrishna; Shyam Chand; C Subrahmanyam

    2012-06-01

    Litho-stratigraphic variation of sedimentary units constructed from seismic sections and gravity anomaly in the Konkan and Kerala basins of the western continental margin of India (WCMI) have been used to model processes such as lithospheric rifting mechanism, its strength, and evolution of flank uplift topography that led to the present-day Western Ghats escarpment. Based on the process-oriented approach, two lithospheric models (necking and magmatic underplating) of evolution of the margin were tested. Both, necking and underplating models suggest an effective elastic thickness (Te) of 5 km and 10 km along Konkan and Kerala basins, respectively and a deep level of necking at 20 km at both basins. Model study suggests that the necking model better explains the observed gravity anomalies in the southern part of the WCMI. A synthesis of these results along with the previously published elastic thickness estimates along the WCMI suggests that a low-to-intermediate strength lithosphere and a deeper level of necking explains the observed flank-uplift opography of the Western Ghats. Process-oriented gravity modeling further suggests that the lateral variations in the lithospheric strength, though not very significant, exist from north to south within a distance of 600 km in the Konkan and Kerala basins along the WCMI at the time of rifting. A comparison with previous Te estimates from coherence analysis along the WCMI indicates that the lithospheric strength did not change appreciably since the time of rifting and it is low both onshore and offshore having a range of 5–15 km.

  1. Geology and structure of the Pine River, Florida River, Carbon Junction, and Basin Creek gas seeps, La Plata County, Colorado

    Science.gov (United States)

    Fassett, James E.; Condon, Steven M.; Huffman, A. Curtis, Jr.; Taylor, David J.

    1997-01-01

    Introduction: This study was commissioned by a consortium consisting of the Bureau of Land Management, Durango Office; the Colorado Oil and Gas Conservation Commission; La Plata County; and all of the major gas-producing companies operating in La Plata County, Colorado. The gas-seep study project consisted of four parts; 1) detailed surface mapping of Fruitland Formation coal outcrops in the above listed seep areas, 2) detailed measurement of joint and fracture patterns in the seep areas, 3) detailed coal-bed correlation of Fruitland coals in the subsurface adjacent to the seep areas, and 4) studies of deep-seated seismic patterns in those seep areas where seismic data was available. This report is divided into three chapters labeled 1, 2, and 3. Chapter 1 contains the results of the subsurface coal-bed correla-tion study, chapter 2 contains the results of the surface geologic mapping and joint measurement study, and chapter 3, contains the results of the deep-seismic study. A preliminary draft of this report was submitted to the La Plata County Group in September 1996. All of the members of the La Plata Group were given an opportunity to critically review the draft report and their comments were the basis for revising the first draft to create this final version of a geologic report on the major La Plata County gas seeps located north of the Southern Ute Indian Reservation.

  2. Messinian erosional and salinity crises: View from the Provence Basin (Gulf of Lions, Western Mediterranean)

    OpenAIRE

    Bache, François; Olivet, Jean-Louis; Gorini, Christian; Rabineau, Marina; Baztan, J.; Aslanian, Daniel; Suc, Jean-Pierre

    2009-01-01

    International audience Though the late Miocene “Messinian Salinity Crisis” has been intensely researched along the circum-Mediterranean basins, few studies have focused on the central part of the Mediterranean Basin and, especially, the pre-salt deposits. To improve our knowledge of the Messinian events, it is imperative to better understand this domain. In this study, we provide a more complete understanding of this central domain in the Provence Basin. We were able to recognize: a) thick...

  3. Geohydrology, water quality, and preliminary simulations of ground-water flow of the alluvial aquifer in the Upper Black Squirrel Creek basin, El Paso County, Colorado

    Science.gov (United States)

    Buckles, D.R.; Watts, K.R.

    1988-01-01

    The upper Black Squirrel Creek basin in eastern El Paso County, Colorado, is underlain by an alluvial aquifer and four bedrock aquifers. Groundwater pumpage from the alluvial aquifer has increased since the mid-1950's, and water level declines have been substantial; the bedrock aquifers virtually are undeveloped. Groundwater pumpage for domestic, stock, agricultural, and municipal uses have exceeded recharge for the past 25 years. The present extent of the effect of pumpage on the alluvial aquifer was evaluated, and a groundwater flow model was used to simulate the future effect of continued pumpage on the aquifer. Measured water level declines from 1974 through 1984 were as much as 30 ft in an area north of Ellicott, Colorado. On the basis of the simulations, water level declines from October 1984 to April 1999 north of Ellicott might be as much as 20 to 30 ft and as much as 1 to 10 ft in most of the aquifer. The groundwater flow models provided a means of evaluating the importance of groundwater evapotranspiration at various stages of aquifer development. Simulated groundwater evapotranspiration was about 43% of the outflow from the aquifer during predevelopment stages but was less than 3% of the outflow from the aquifer during late-development stages. Analyses of 36 groundwater samples collected during 1984 indicated that concentrations of dissolved nitrite plus nitrate as nitrogen generally were large. Samples from 5 of the 36 wells had concentrations of dissolved nitrite plus nitrate as nitrogen that exceeded drinking water standards. Water from the alluvial aquifer generally is of suitable quality for most uses. (USGS)

  4. New Data on Land Subsidence Phenomena Due to Excessive Ground Water Withdrawal in the Western Thessaly Basin, Central Greece

    Science.gov (United States)

    Sideri, D.; Rozos, D.; Loupasakis, C.; Kotsanis, D.

    2012-04-01

    The Western Thessaly basin is a major plain which is located in Central Greece. During the last decades this area exhibits an intensive development, mainly based on the agricultural economy. Due to that agricultural development, several thousand boreholes have been drilled for irrigation purposes. The overexploitation of the ground water, in the wider area, has triggered the manifestation of land subsidence phenomena. These phenomena were firstly observed in 2002 in the Stavros and Farsala sites (southeast part of the Western Thessaly basin), in the form of various surface ruptures. In 2009 similar phenomena appeared in Agios Georgios village and in 2011 in Anohori and Katohori villages, which are located between Farsala and Stavros towns. The geological environment of the research area consists of terrestrial sands and gravels horizons Pleistocene in age, with brown and grey clayey silt to silty clay intercalations. These alternations of permeable coarse-grained deposits (aquifers) with impermeable to low permeability strata (aquitards) create a number of successive semi-confined to confined aquifers, sometimes artesians. Land subsidence deformations were noticed both along the margins as well as in the inner part of the basin. Surface ruptures are observed along the margins of the basin where the bedrock outcrops and generally in areas where the thickness of the Pleistocene deposits appear to be small. On the contrary, in the parts of the basin with thick deposits, the subsidence of the Pleistocene formations can be noticed by the extraction of the water wells pipes. During this research a detailed geotechnical and hydrogeological survey was carried out covering the study area. Several hundreds of boreholes, drilled in the frame of previous geological-geotechnical investigations, were analyzed and interpreted, along with previous data, referring to the stratigraphy of the study area. As a result, the highly compressible units, which may be responsible for

  5. Loess in the foothills of the western Carpathians and its importance for paleoenvironmental reconstruction towards the Carpathian Basin

    Science.gov (United States)

    Obreht, Igor; Lehmkuhl, Frank; Kels, Holger; Hambach, Ulrich; Schulte, Philipp; Eckmeier, Eileen; Klasen, Nicole; Bösken, Janina; Krauss, Lydia; Zeeden, Christian

    2016-04-01

    The CRC 806 "Our way to Europe" focuses on the first arrival and dispersal of anatomically modern humans (AMH) from Africa to Europe. Within the second phase of this project, a subproject investigates the eastern trajectory of AMH dispersal through the Levant and Balkan Peninsula. Special attention is given to the Carpathian Basin and the surrounding foothills of the Carpathian Mountains. To this date, most Paleolithic sites in this region have been found in the foothills. To test the hypothesis whether this observation presents a valid pattern, or if it may be biased by the fact that the lowlands of the Carpathian Basin are covered by thick loess deposits overlying the archaeologic remains of AMH, beside improved archeological perspective it is also necessarily to understand the regional past climatic conditions from the time of the first AMH appearance in Europe around 40 ka ago. Loess-paleosol sequences (LPS) from the lowlands of the Carpathian Basin preserve almost continuous records of past environmental changes from this region. During the last decade, LPS were intensively investigated resulting in a good overall understanding of general paleoenvironmental conditions in the Carpathian Basin itself. However, short LPS from the surrounding mountains have only been studied in few localities and not well understood yet. This presents a challenge in understanding the past environmental conditions of the foothill areas which are hypothesized to be a preferred habitat of the AMH. As an attempt to bridge this gap, we are presenting the initial results from the Şanoviţa section (western Romania), located at the transition from lowlands to foothills of the Carpathians. Based on a multi-proxy study (grain-size, rock magnetism, color and geochemical analysis) of last glacial sediments, we improve the understanding of paleoenvironmental conditions between the Carpathian Basin and the western flank of the Carpathian Mountains. Şanoviţa is located at the upper end of a

  6. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India)

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhijit, E-mail: amukh2@gmail.com [Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78758 (United States); Bhattacharya, Prosun; Shi, Fei [KTH-International Groundwater Arsenic Research Group, Dept. of Land and Water Resources, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Fryar, Alan E. [Department of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506 (United States); Mukherjee, Arun B. [Environmental Sciences, Dept. of Biological and Environmental Sciences, Helsinki University, P.O. Box 27, FIN-00014 Helsinki (Finland); Xie, Zheng M. [Department of Resources/Soil Sciences, Zhejiang University, Hangzhou 310029 (China); Jacks, Gunnar [KTH-International Groundwater Arsenic Research Group, Dept. of Land and Water Resources, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Bundschuh, Jochen [Instituto Costarricense de Electricidad, Apartado Postal 10032, 1000 San Jose (Costa Rica)

    2009-10-15

    Elevated As concentrations in groundwater of the Huhhot basin (HB), Inner Mongolia, China, and the western Bengal basin (WBB), India, have been known for decades. However, few studies have been performed to comprehend the processes controlling overall groundwater chemistry in the HB. In this study, the controls on solute chemistry in the HB have been interpreted and compared with the well-studied WBB, which has a very different climate, physiography, lithology, and aquifer characteristics than the HB. In general, there are marked differences in solute chemistry between HB and WBB groundwaters. Stable isotopic signatures indicate meteoric recharge in the HB in a colder climate, distant from the source of moisture, in comparison to the warm, humid WBB. The major-ion composition of the moderately reducing HB groundwater is dominated by a mixed-ion (Ca-Na-HCO{sub 3}-Cl) hydrochemical facies with an evolutionary trend along the regional hydraulic gradient. Molar ratios and thermodynamic calculations show that HB groundwater has not been affected by cation exchange, but is dominated by weathering of feldspars (allitization) and equilibrium with gibbsite and anorthite. Mineral weathering and mobilization of As could occur as recharging water flows through fractured, argillaceous, metamorphic or volcanic rocks in the adjoining mountain-front areas, and deposits solutes near the center of the basin. In contrast, WBB groundwater is Ca-HCO{sub 3}-dominated, indicative of calcite weathering, with some cation exchange and silicate weathering (monosiallitization).

  7. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India)

    International Nuclear Information System (INIS)

    Elevated As concentrations in groundwater of the Huhhot basin (HB), Inner Mongolia, China, and the western Bengal basin (WBB), India, have been known for decades. However, few studies have been performed to comprehend the processes controlling overall groundwater chemistry in the HB. In this study, the controls on solute chemistry in the HB have been interpreted and compared with the well-studied WBB, which has a very different climate, physiography, lithology, and aquifer characteristics than the HB. In general, there are marked differences in solute chemistry between HB and WBB groundwaters. Stable isotopic signatures indicate meteoric recharge in the HB in a colder climate, distant from the source of moisture, in comparison to the warm, humid WBB. The major-ion composition of the moderately reducing HB groundwater is dominated by a mixed-ion (Ca-Na-HCO3-Cl) hydrochemical facies with an evolutionary trend along the regional hydraulic gradient. Molar ratios and thermodynamic calculations show that HB groundwater has not been affected by cation exchange, but is dominated by weathering of feldspars (allitization) and equilibrium with gibbsite and anorthite. Mineral weathering and mobilization of As could occur as recharging water flows through fractured, argillaceous, metamorphic or volcanic rocks in the adjoining mountain-front areas, and deposits solutes near the center of the basin. In contrast, WBB groundwater is Ca-HCO3-dominated, indicative of calcite weathering, with some cation exchange and silicate weathering (monosiallitization).

  8. Uranium Bio-accumulation and Cycling as revealed by Uranium Isotopes in Naturally Reduced Sediments from the Upper Colorado River Basin

    Science.gov (United States)

    Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate

    2016-04-01

    Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by

  9. Petroleum resources assessment on the western part of the Kunsan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.S.; Park, K.P.; Sunwoo, D.; Yoo, D.G.; Cheong, T.J.; Oh, J.H.; Bong, P.Y.; Son, J.D.; Lee, H.Y.; Ryu, B.J.; Son, B.K.; Hwang, I.G.; Kwon, Y.I.; Lee, Y.J.; Kim, H.J. [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Palynomorphs including spores, pollen and organic-walled microfossils and calcareous microfossils such as ostracods, charophytes and gastropods were studied for the biostratigraphic work of Kachi-1 and IIH-1Xa wells. All the microfossils yielded from two wells indicate nonmarine environment ranging from shallow lacustrine to fluvial one. The paleoclimates have been fluctuated between subtropical and cool temperate with arid/humid alternating conditions. The fluvial sandstone of the interval between 2017 m and 2021 m could be a potential reservoir rock in the well Kachi-1. The sandstone from 1587 m to 1592 could be also a potential reservoir rock even if further study is necessary for the cap rock. Content of organic matter is very low and the type is compared to III in the section penetrated by the above two wells. Thermal maturity might reach top of oil window at depth about 1200 m by Tmax and about 1300 m by biomarker analysis in the Kachi-1 well. On the basis of illite crystallinity, the top of oil generation zone could be located at the depth 1600 m. The thermal maturity could not be determined in the IIH-1Xa well, because of the extremely low organic matter content or bad state of samples. Hydrocarbon genetic potential is almost null in the both well except for a few sample in the thermally immature interval. Analysis of approximately 3,300 Line-km of multichannel seismic data integrated with 3 well data provides an insight of structural evolution of the western part of the Yellow Sea Basin. Tectonics of the rifting phase have been established on the basis of structural and stratigraphic analyses of depositional sequences and their seismic expressions. Based on available well data, the rifting probably began in the Cretaceous time had continued until Paleocene. It is considered that compressional force immediately after rifting event deformed sedimentary sections. During the period of Paleocene to middle Miocene, the sediments were deposited in stable

  10. Monitoring interannual variability of vegetation in the western Liaohe River Basin, Northeast China

    Science.gov (United States)

    Huang, Fang; Wang, Ping; Qin, Yujun; Li, Yanqing

    2008-10-01

    Because vegetation affect several processes including water balance, absorption and reemission of solar radiation, latent and sensible heat fluxes, and carbon cycle, the variations in the composition and distribution of vegetation represents one of the most main source of systematic change on local, regional, or global scale. To monitor and better assess natural or man-made change in vegetation of the earth is desirable for modeling and predicting interactions between land surface and atmosphere. The temporal evolution of decadal NDVI composition is regarded as an effective time window able to show the natural seasonal variations. This paper investigates vegetation change between 1998 and 2006 in the west Liao River watershed, North China, which is the east fringe of agro-pasture transitional zone in northern China and highly sensitive to global change. Time series of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data are used to detect the vegetation cover change during last 9 years. Results show that the yearly maximum value composite mean NDVI over the study area increased slightly from 0.277 in 1998 to 0.287 in 2006, which indicated the increasing trend of vegetation activity. The annual average NDVI value in whole area was steady. Very slight improved and slight improved area reached 113442.32 km2 and 27987.34 km2, taking up 67.81% and 16.73% of the whole study area respectively. The degraded regions occupied about 15.16%. During 1998-2006, the landscape evolution in the western Liaohe River Basin was characterized by two opposite processes, namely vegetation restoration (returning cropland for farming to grassland and close grazing) and desertification (especially land salinization). The increasing amplitude is larger than the decreasing amplitude on the whole. There was obvious decrease of monthly MNDVI in spring months, while increasing tendency of monthly MNDVI in summer and autumn was found. Results will help to provide valuable

  11. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    Science.gov (United States)

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  12. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E., Jr.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  13. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology

    Science.gov (United States)

    Niu, Y.

    2013-12-01

    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and

  14. Digital data and derivative products from a high-resolution aeromagnetic survey of the central San Luis basin, covering parts of Alamosa, Conejos, Costilla, and Rio Grande counties, Colorado, and Taos county, New Mexico

    Science.gov (United States)

    Bankey, Viki; Grauch, V.J.S.; Webbers, Ank; PRJ, Inc

    2005-01-01

    This report describes data collected from a high-resolution aeromagnetic survey flown over the central San Luis basin during October, 2004, by PRJ, Inc., on contract to the U.S. Geological Survey (USGS). The survey extends from just north of Alamosa, Colorado, southward to just northwest of Taos, New Mexico. It covers large parts of the San Luis Valley in Alamosa, Conejos, Costilla, and Rio Grande Counties, southern Colorado, and the Taos Plateau in Taos County, northern New Mexico. The survey was designed to complement two surveys previously acquired along the eastern borders of the San Luis Basin over the vicinities of Taos, New Mexico (Bankey and others, 2004a) and Blanca, Colorado (Bankey and others, 2004b). Our overall objective in conducting these surveys is to improve knowledge of the subsurface geologic framework in order to understand ground-water systems in populated alluvial basins along the Rio Grande. These USGS efforts are conducted in collaboration with other federal, state, and local governmental entities where possible.

  15. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States

    Science.gov (United States)

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S.; Herbert, Timothy; Andreasen, Dyke

    2012-01-01

    The water cycle in the western U.S. changed dramatically over glacial cycles. In the last 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation is hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  16. Impact of stormwater infiltration basins on groundwater quality, Perth metropolitan region, Western Australia

    Science.gov (United States)

    Appleyard, S. J.

    1993-08-01

    Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.

  17. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    Science.gov (United States)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  18. A Vegetation Database for the Colorado River Ecosystem from Glen Canyon Dam to the Western Boundary of Grand Canyon National Park, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.

    2008-01-01

    A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the

  19. Detecting Ecosystem Performance Anomalies for Land Management in the Upper Colorado River Basin Using Satellite Observations, Climate Data, and Ecosystem Models

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2010-01-01

    This study identifies areas with ecosystem performance anomalies (EPA) within the Upper Colorado River Basin (UCRB) during 2005–2007 using satellite observations, climate data, and ecosystem models. The final EPA maps with 250-m spatial resolution were categorized as normal performance, underperformance, and overperformance (observed performance relative to weather-based predictions) at the 90% level of confidence. The EPA maps were validated using “percentage of bare soil” ground observations. The validation results at locations with comparable site potential showed that regions identified as persistently underperforming (overperforming) tended to have a higher (lower) percentage of bare soil, suggesting that our preliminary EPA maps are reliable and agree with ground-based observations. The 3-year (2005–2007) persistent EPA map from this study provides the first quantitative evaluation of ecosystem performance anomalies within the UCRB and will help the Bureau of Land Management (BLM) identify potentially degraded lands. Results from this study can be used as a prototype by BLM and other land managers for making optimal land management decisions.

  20. Microfacies analysis of the Upper Triassic (Norian) "Bača Dolomite": early evolution of the western Slovenian Basin (eastern Southern Alps, western Slovenia)

    Science.gov (United States)

    Gale, Luka

    2010-08-01

    The Slovenian Basin represents a Mesozoic deep-water sedimentary environment, situated on the southern Tethyan passive margin. Little is known about its earliest history, from the initial opening in the Carnian (probably Ladinian) to a marked deepening at the beginning of the Jurassic. The bulk of the sediment deposited during this period is represented by the Norian-Rhaetian "Bača Dolomite", which has, until now, been poorly investigated due to a late-diagenetic dolomitization. The Mount Slatnik section (south-eastern Julian Alps, western Slovenia) is one of a few sections where the dolomitization was incomplete. Detailed analysis of this section allowed us to recognize eight microfacies (MF): MF 1 (calcilutite), MF 2 (pelagic bivalve-radiolarian floatstone/wackestone to rudstone/packstone), MF 3 (dolomitized mudstone) with sub-types MF 3-LamB and MF 3-LamD (laminated mudstone found in a breccia matrix and laminated mudstone found in thin-bedded dolomites, respectively) and MF 3-Mix (mixed mudstone), MF 4 (bioturbated radiolarian-spiculite wackestone), MF 5 (fine peloidal-bioclastic packstone), MF 6 (very fine peloidal packstone), MF 7 (bioclastic wackestone) and MF 8 (crystalline dolomite). The microfacies and facies associations indicate a carbonate slope apron depositional environment with hemipelagic sedimentation punctuated by depositions from turbidites and slumps. In addition to the sedimentary environment, two "retrogradation-progradation" cycles were recognized, each with a shift of the depositional setting from an inner apron to a basin plain environment.

  1. Diet and environment of a mid-Pliocene fauna in the Zanda Basin (western Himalaya): Paleo-elevation implications

    Science.gov (United States)

    Wang, Y.; Xu, Y.; Khawaja, S. N.; Wang, X.; Passey, B. H.; Zhang, C.; Li, Q.; Tseng, Z. J.; Takeuchi, G.; Deng, T.; Xie, G.

    2011-12-01

    A mid-Pliocene fauna (3.1-4.0 Ma) was recently discovered in the Zanda Basin in western Himalaya, at an elevation of about 4200 m above sea level. These fossil materials provide a unique window for examining the linkage among tectonic, climatic and biotic changes. Here we report the initial results from isotopic analyses of this fauna and of modern herbivores in the Zanda Basin. The δ13C values of enamel samples from modern wild Tibetan ass, horse, cow and goat from the Zanda Basin are -9.1±2.1%, which indicate a diet comprising predominantly of C3 plants and are consistent with the current dominance of C3 vegetation in the area. The enamel-δ13C values of the fossil horse, rhino, deer, and bovid are -9.6±0.8%, indicating that these ancient mammals, like modern herbivores in the area, fed primarily on C3 vegetation and lived in an environment dominated by C3 plants. The enamel-δ18O values of mid-Pliocene obligate drinkers (i.e., horse and rhino) are lower than those of their modern counterpart, most likely indicating a shift in climate to much drier conditions after ~3-4 Ma. Preliminary paleo-temperature estimates derived from a fossil-based temperature proxy as well as the "clumped isotope" thermometer for the mid-Pliocene Zanda Basin, although somewhat equivocal, are close to the present-day mean annual temperature in the area, suggesting that the paleo-elevation of the Zanda Basin in the mid-Pliocene was similar to its present-day elevation.

  2. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    Directory of Open Access Journals (Sweden)

    M. El Bastawesy

    2013-04-01

    Full Text Available This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases, which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM and Enhanced Thematic Mapper (ETM+ were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM digital elevation model (DEM has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and

  3. Franciscan olistoliths in Upper Cretaceous conglomerate deposits, Western Transverse Ranges, California: Implications for basin morphology and tectonic history

    Energy Technology Data Exchange (ETDEWEB)

    Reed, W.E.; Campbell, M.D. (Univ. of California, Los Angeles, CA (United States). Dept. of Earth and Space Sciences)

    1993-04-01

    Compositional analyses reveal that Upper Cretaceous sediments exposed in the Western Transverse Ranges of CA were deposited in submarine fan systems in a forearc basin. Point count data suggest a magmatic arc/recycled orogen as the dominant provenance for these sediments. Paleocurrent measurements from conglomerates in these sediments yield a northerly transport direction. Removal of ca. 90[degree] of clockwise rotation and 70 km of right-lateral slip restore this section to a position west of the San Diego area. The forearc basin would have had a N-S orientation, with the bulk of sediments supplied by the Peninsular Ranges to the east. Evidence of the erosion of the accretionary wedge is provided by the presence of large, internally stratified olistoliths of Franciscan material interbedded with and surrounded by upper Cretaceous conglomerate. Petrographic, quantitative SEM, and microprobe analyses indicate the presence of diagnostic Franciscan mineralogy, including glaucophane, riebeckite, lawsonite, and serpentine. Olistoclasts of chert, jadeitic graywacke, serpentine, and blueschist are found intermixed with the conglomerates in close association with the olistoliths. This association provides strong field evidence that recirculation of melange material within the subduction zone was active and well-established by late Cretaceous time. Inferences regarding the forearc system morphology can be drawn from these observations. The occurrence of coarse, easterly-derived conglomerates surrounded by large, stratified, but sheared, westerly-derived Franciscan debris, suggests a narrow, relatively steep-sided basin. Paleocurrent measurements gave no indication of axial transport within the basin. This morphology suggests that, in late Cretaceous time, the forearc basin was youthful, with a narrow arc-trench gap. Thus, relative convergence rates between the North American and Pacific plates were possibly slower than Tertiary convergence rates.

  4. Giant polygons and circular graben in western Utopia basin, Mars: Exploring possible formation mechanisms

    Science.gov (United States)

    Buczkowski, Debra L.; Seelos, Kim D.; Cooke, Michele L.

    2012-08-01

    Large-scale fracture systems surrounding the Utopia basin include giant polygons and circular graben. Data covering the northern Utopia basin now allow high-resolution mapping of these features in all regions of the basin. Giant polygons to the north and south of the basin are different in both size and morphology, leading to the polygon classifications (1) S-style, (2) subdued S-style, (3) northern S-style and (4) N-style. Also, ten circular graben have been identified to the north of the Utopia basin. These have generally larger diameters than southern circular graben, and their fracture morphology is similar to N-style giant polygons. As with southern circular graben, the surface relief of the depression inside the northern circular graben scales directly with diameter. However, northern circular graben have less steep trend slopes, larger average diameters and greater ring spacing compared to southern circular graben of the same diameter and similar distance to the center of the Utopia basin. Both the giant polygons and circular graben of Utopia Planitia are consistent with formation by volumetric compaction of a fine-grained sedimentary material covering an uneven buried surface. Giant polygon size variations can be explained by the material being wet to the south but frozen or partially frozen to the north, while differences between northern and southern circular graben may be attributed to changes in cover thickness. Differences in fracture morphology can be explained by subsequent alteration of the northern troughs due to polar processes.

  5. Basin formation in the NIAS area of the Sumatra Force Arc, Western Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Milsom, J. (University College, London (United Kingdom))

    1994-07-01

    Although Sumatra includes the site of Indonesia's first oil field and continues to be one of the country's most important hydrocarbon producing regions, the fore-arc basin to the west remains a frontier exploration area. Gas has been found in a number of wells but commercial reserves have yet to be established. The possibility of their existence hinges on the presence of a complex of deep subbasins, but the development of these basins and their relationship to structures onshore Sumatra are still unclear. Although geological observations on the fore-arc islands are acquiring increasing importance with the recognition that the sediments exposed were deposited dominantly or entirely within the fore-arc basin, seismic reflection data remain the key to geological understanding. Reconnaissance surveys in the basin near Nias, the largest of the fore-arc islands, have defined two major depocenters, but interpretation has been hampered by poor data quality in some areas. Measurements of gravity field point to remarkable structural variations along the axis of the fore-arc basin and have been used to amplify and extend seismic interpretation. The combined analysis demonstrates that although some of the structural highs that straddle the fore-arc basin have been positive elements for considerable periods, at least one overlies a deep depression. The very poor quality of the seismic data in parts of the subbasin may be due to extensive shale diapirism, which must be recognized as a factor in future exploration.

  6. Stress distribution and seismicity patterns of the 2011 seismic swarm in the Messinia basin, (South-Western Peloponnesus, Greece

    Directory of Open Access Journals (Sweden)

    G. Chouliaras

    2013-01-01

    Full Text Available In this investigation we examine the local stress field and the seismicity patterns associated with the 2011–2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA. During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN and also by the additional local installation of four portable broadband seismographic stations by NOA.

    The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest–southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value of the frequency–magnitude relation.

  7. Socio-hydrologic Perspectives of the Co-evolution of Humans and Water in the Tarim River Basin, Western China

    Science.gov (United States)

    Liu, Ye; Tian, Fuqiang; Hu, Heping; Liu, Dengfeng; Sivapalan, Murugesu

    2013-04-01

    Socio-hydrology studies the co-evolution of coupled human-water systems, which is of great importance for long-term sustainable water resource management in basins suffering from serious eco-environmental degradation. Process socio-hydrology can benefit from the exploring the patterns of historical co-evolution of coupled human-water systems as a way to discovering the organizing principles that may underpin their co-evolution. As a self-organized entity, the human-water system in a river basin would evolve into certain steady states over a sufficiently long time but then could also experience sudden shifts due to internal or external disturbances that exceed system thresholds. In this study, we discuss three steady states (also called stages in the social sciences, including natural, human exploitation and recovery stages) and transitions between these during the past 1500 years in the Tarim River Basin of Western China, which a rich history of civilization including its place in the famous Silk Road that connected China to Europe. Specifically, during the natural stage with a sound environment that existed before the 19th century, shifts in the ecohydrological regime were mainly caused by environmental changes such river channel migration and climate change. During the human exploitation stages in the 5th and again in the 19th-20th centuries, however, humans gradually became the main drivers for system evolution, during which the basin experienced rapid population growth, fast socio-economic development and intense human activities. By the 1970s, after 200 years of colonization, the Tarim River Basin evolved into a new regime with vulnerable ecosystem and water system, and suffered from serious water shortages and desertification. Human society then began to take a critical look into the effects of their activities and reappraise the impact of human development on the ecohydrological system, which eventually led the basin into a treatment and recovery stage

  8. The late Paleozoic palynological diversity in southernmost Paraná (Uruguay), Claromecó and Paganzo basins (Argentina), Western Gondwana

    Science.gov (United States)

    Beri, Ángeles; Gutiérrez, Pedro R.; Balarino, M. Lucía

    2015-12-01

    This study explores the changes in palynoflora diversity of the late Paleozoic in boreholes DI.NA.MI.GE. 254 (26 samples) and DI.NA.MI.GE. 221 (14 samples) of the Paraná Basin in Uruguay and in 18 surface samples of the La Deheza Formation (Paganzo Basin) and 10 samples of borehole UTAL.CMM1.La Estrella.x-1 (Claromecó Basin) in Argentina. Possible relationships among biostratigraphic zones, diversity levels, facies and climatic evolution patterns in Western Gondwana are studied. Diversity curves of boreholes 221 and 254 and the La Deheza Formation outcrop exhibit similar diversity evolution patterns, i.e., an increase in lower strata diversity and a decrease in upper strata diversity. The disappearance events are determined to be more prominent in biozones of the Cisuralian to the Guadalupian age and less prominent in biozones of the early Cisuralian age. The number of genera raises from the glaciomarine facies, through the deltaic and the marine facies, up to the shallow marine or lagoon facies, in which the disappearance rates become more prominent. . The diversity of the lower part of the La Estrella borehole is lesser than that of the other sequences These diversity, disappearance and appearance behaviors may reflect post-glacial climatic amelioration patterns and the beginning of an arid phase.

  9. Modelling of wave propagation and attenuation in the Osaka sedimentary basin, western Japan, during the 2013 Awaji Island earthquake

    Science.gov (United States)

    Asano, Kimiyuki; Sekiguchi, Haruko; Iwata, Tomotaka; Yoshimi, Masayuki; Hayashida, Takumi; Saomoto, Hidetaka; Horikawa, Haruo

    2016-03-01

    On 2013 April 13, an inland earthquake of Mw 5.8 occurred in Awaji Island, which forms the western boundary of the Osaka sedimentary basin in western Japan. The strong ground motion data were collected from more than 100 stations within the basin and it was found that in the Osaka Plain, the pseudo velocity response spectra at a period of around 6.5 s were significantly larger than at other stations of similar epicentral distance outside the basin. The ground motion lasted longer than 3 min in the Osaka Plain where its bedrock depth spatially varies from approximately 1 to 2 km. We modelled long-period (higher than 2 s) ground motions excited by this earthquake, using the finite difference method assuming a point source, to validate the present velocity structure model and to obtain better constraint of the attenuation factor of the sedimentary part of the basin. The effect of attenuation in the simulation was included in the form of Q(f) = Q0(f/f0), where Q0 at a reference frequency f0 was given by a function of the S-wave velocity, Q0 = αVS. We searched for appropriate Q0 values by changing α for a fixed value of f0 = 0.2 Hz. It was found that values of α from 0.2 to 0.5 fitted the observations reasonably well, but that the value of α = 0.3 performed best. Good agreement between the observed and simulated velocity waveforms was obtained for most stations within the Osaka Basin in terms of both amplitude and ground motion duration. However, underestimation of the pseudo velocity response spectra in the period range of 5-7 s was recognized in the central part of the Osaka Plain, which was caused by the inadequate modelling of later phases or wave packets in this period range observed approximately 2 min after the direct S-wave arrival. We analysed this observed later phase and concluded that it was a Love wave originating from the direction of the east coast of Awaji Island.

  10. An experimental peri-urban basin in North-western France

    Science.gov (United States)

    Chancibault, K.; Rodriguez, F.; Mosini, M.-L.; Furusho, C.; Bocher, E.; Palaccio, M.; Palma-Lopes, S.; Letellier, L.; Benot, R.; Andrieu, H.

    2009-04-01

    Basins located in the suburbs, known as peri-urban basins, face a quick land-use change, increasing pollution and flood risks. Being neither urban nor rural basins, they have been left apart by hydrologists. Improving hydrological models taking into account both natural and anthropogenic surfaces and pathways is the objective of the French project AVuPUR. One of the two peri-urban basins chosen for this project is the Chézine basin, located in northwestern France, in the suburbs of Nantes. The Chézine basin is subject to an oceanic climate and has a quite flat topography. Whereas the upstream part of the catchment remains essentially rural, the urbanization is dense in the downstream part and under development in the medium part. The mean urbanization over the basin is about 18%. A first part of the project consists of collecting geographical and hydrological data, followed by a first hydrological data analysis. Then different spatial segmentation methods are tested based on a geomorphological analysis and ultimately hydrological models well adapted for these particular basins will be developed. Nantes Metropole supplies geographical data as roads, buildings, land-use, sewer networks, Digital Elevation Model, etc. They also have monitored Chézine basin since 2001, with a water level recorder and a rain gauge. The outlet, at the water level recorder, defines a 29 km² basin with a 15km long river. During summer 2008, additional recorders were installed, in the medium part of the basin, at the outlet of the rural subcatchment : a rain gauge and a flow meter. This will help to analyse the hydrological behaviour of the catchment, by characterizing the rainfall spatial variability over the basin and by pointing out the rural surface contribution. In autumn 2008, a geophysical experimental study was carried out, using different geophysical methods: ground penetrating radar, DC-electrical resistivity tomography and EM31 electromagnetic profiling method. The aim of this

  11. Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin

    Directory of Open Access Journals (Sweden)

    Simon Weides

    2014-04-01

    Full Text Available Heat flow and geothermal gradient of the sedimentary succession of the Western Canada Sedimentary Basin (WCSB are mapped based on a large thermal database. Heat flow in the deep part of the basin varies from 30 mW/m2 in the south to high 100 mW/m2 in the north. As permeable strata are required for a successful geothermal application, the most important aquifers are discussed and evaluated. Regional temperature distribution within different aquifers is mapped for the first time, enabling a delineation of the most promising areas based on thermal field and aquifer properties. Results of previous regional studies on the geothermal potential of the WCSB are newly evaluated and discussed. In parts of the WCSB temperatures as high as 100–210 °C exist at depths of 3–5 km. Fluids from deep aquifers in these “hot” regions of the WCSB could be used in geothermal power plants to produce electricity. The geothermal resources of the shallower parts of the WCSB (>2 km could be used for warm water provision (>50 °C or district heating (>70 °C in urban areas.

  12. The recent extreme hydrological events in the Western Amazon Basin: The role of the Pacific and Atlantic Oceans

    Science.gov (United States)

    Espinoza, J.; Ronchail, J.; Guyot, J.; Santini, W.; Lavado, W.; Ore-Hybam Observatory

    2013-05-01

    The Peruvian Amazonas River, the main western tributary of the Amazon basin, has a huge drainage (750 000 km2, 50% of which lies in the Andes) and a mean discharge estimated in 32 000 m3/s, which correspond to 15% of the Amazon discharge at the estuary. Recently, in a context of significant discharge diminution during the low-water season (1970-2012), severe hydrological events, as intense droughts and floods, have been reported in the Peruvian Amazonas River. As they have not been always observed in other regions of the Amazon basin and because they have strong impacts on vulnerable riverside residents, we shall focus on the origin and the predictability of the western Amazon extremes, providing a review of the main findings about the climate features during recent extreme hydrological events in western Amazon. While the lowest discharge value was observed in September 2010 (8 300 m3/s) at the hydrological Tamshiyacu station (near to Iquitos city), a rapid transition toward a high discharge was noticed in April 2011 (45 000 m3/s). Finally, in April 2012, during the on going high waters period, the Amazonas River is experimenting its historical highest discharge (55 000 m3/s). Our work is based on several datasets including in-situ discharge and rainfall information from ORE-HYBAM observatory. Extreme droughts (1995, 2005 and 2010) are generally associated with positive SST anomalies in the tropical North Atlantic and weak trade winds and water vapor transport toward the western Amazon, which, in association with increased subsidence over central and southern Amazon, explain the lack of rainfall and very low discharge values. But, in 1998, toward the end of the 1997-98 El Niño event, the drought has been more likely related to an anomalous divergence of water vapor in the western Amazon that is characteristic of a warm event in the Pacific. The years with a rapid transition form low waters to very high floods (e.g. September 2010 to April 2011) are characterized

  13. Early middle Miocene tectonic uplift of the northwestern part of the Qinghai–Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin

    OpenAIRE

    Wang, Chaowen; Hong, Hanlie; Abels, Hemmo A.; Li, Zhaohui; Cao, Kai; Yin, Ke; Song, Bowen; Xu, Yadong; Ji, Junliang; Zhang, Kexin

    2016-01-01

    The Tarim Basin in western China has been receiving continuous marine to lacustrine deposits during the Cenozoic as a foreland basin of the Qinghai–Tibetan Plateau (QTP). Clay mineralogy and geochemical proxy data from these sedimentary archives can shed light on climate and tectonic trends. Here we report on an abrupt mineralogical and weathering shift at 17 Ma ± 1 Myr in the Miocene Qimugan section in the northwestern part of the Qinghai–Tibetan Plateau. The rapid shift involves decreasing ...

  14. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: the Taiji–Tire Model

    OpenAIRE

    Liu, Y.; F. Tian; Hu, H; Sivapalan, M.

    2013-01-01

    This paper presents a historical socio-hydrological analysis of the Tarim Basin, Xinjiang Province, Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human–water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human–water system in the Tarim Basin reached stable states for...

  15. Plio-Quaternary kinematic development and paleostress pattern of the Edremit Basin, western Turkey

    Science.gov (United States)

    Gürer, Ömer Feyzi; Sangu, Ercan; Özburan, Muzaffer; Gürbüz, Alper; Gürer, Aysan; Sinir, Hasan

    2016-06-01

    The Edremit Basin and Kazdağ High are the most prominent morphological features of the Biga Peninsula in northwest Anatolia. There is still no consensus on the formation of Edremit Basin and debates are on whether the basin evolved through a normal, a right-lateral or a left-lateral strike-slip faulting. In this study, the geometric, structural and kinematic characteristics of the Edremit Basin are investigated to make an analytical approach to this problem. The structural and kinematic features of the faults in the region are described according to field observations. These fault-slip data derived from the fault planes were analyzed to determine the paleostress pattern of faulting in the region. According to the performed analysis, the southern end of the Biga Peninsula is under the influence of the ENE-WSW-trending faults of the region, such as the Yenice-Gönen, the Edremit, the Pazarköy and the Havran-Balıkesir Fault Zones. The right step-over geometry and related extension caused to the development of the Edremit Basin as a transtensional pull-apart basin between the Havran-Balıkesir Fault Zone and the Edremit Fault Zone. Field observations showed that the Plio-Quaternary faults at the Edremit Gulf and adjacent areas are prominently right-lateral strike-slip faults. Our paleostress analyses suggest a dominant NE-SW extension in the study area, as well as NW-SE direction. This pattern indicates the major effects of the North Anatolian Fault System and the component of Aegean Extensional System in the region. However, our kinematic analysis represents the dominant signature of the North Anatolian Fault System in basin bounding faults. The field observations and kinematic findings of this study are also consistent with the regional GPS, paleomagnetic and seismological data. This study concludes that the North Anatolian Fault System is the prominent structure in the current morphotectonic framework of the Edremit Gulf and adjacent areas.

  16. River Basin Scale Management and Governance: Competing Interests for Western Water

    Science.gov (United States)

    Lindquist, Eric

    2015-04-01

    One of the most significant issues in regard to how social scientists understand environmental and resource management is the question of scale: what is the appropriate scale at which to consider environmental problems, and associated stakeholders (including hydrologists) and their interests, in order to "govern" them? Issues of scale touch on the reality of political boundaries, from the international to the local, and their overlap and conflict across jurisdictions. This presentation will consider the questions of environmental management and governance at the river basin scale through the case of the Boise River Basin (BRB), in southwest Idaho. The river basin scale provides a viable, and generalizable, unit of analysis with which to consider theoretical and empirical questions associated with governance and the role of hydrological science in decision making. As a unit of analysis, the "river basin" is common among engineers and hydrologists. Indeed, hydrological data is often collected and assessed at the basin level, not at an institutional or jurisdictional level. In the case of the BRB much is known from the technical perspective, such as infrastructure and engineering factors, who manages the river and how, and economic perspectives, in regard to benefits in support of major agricultural interests in the region. The same level of knowledge cannot be said about the political and societal factors, and related concepts of institutions and power. Compounding the situation is the increasing probability of climate change impacts in the American West. The geographic focus on the Boise River Basin provides a compelling example of what the future might hold in the American West, and how resource managers and other vested interests make or influence river basin policy in the region. The BRB represents a complex and dynamic environment covering approximately 4,100 square miles of land. The BRB is a highly managed basin, with multiple dams and diversions, and is

  17. Radioactivity and uranium content of the Sharon Springs member of the Pierre shale and associated rocks in western Kansas and eastern Colorado

    Science.gov (United States)

    Landis, Edwin R.

    1955-01-01

    As a part of the Geological Survey's program of investigating uranium-bearing carbonaceous rocks on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission, a reconnaissance of the Sharon Springs member of the Pierre shale in western Kansas and eastern Colorado was conducted during 1954. The Sharon Springs member of the Pierre shale and its lateral equivalents ranges from 155 to about 500 feet in thickness and generally contains about 0.001 percent uranium, but some beds contain larger amounts. A 6-foot thick shale bed in Cheyenne County, Colo., contains about 0.006 percent uranium, a 4 1/2-foot thick sequence of beds in Crowley County, Colo., is estimated to contain between 0.004 and 0.005 percent uranium, and a 3 1/2-foot thick sequence of beds in Kiowa County, Colo., contains about 0.004 percent uranium. At several outcrop localities, sequences of beds as much as 9 1/2 feet thick contain about 0.003 percent uranium. Data from wells indicate that the 4 1/2-foot thick sequence of beds in Crowley County, Colo., may have a lateral extent of at least 5 1/2 miles. A gamma-ray log of a well in Yuma County, Colo., indicates the presence of a sequence of beds 66 feet thick which contains 0.005 to 0.010 percent equivalent uranium. No definite pattern of areal distribution of radioactivity and uranium content in the Sharon Springs is indicated by available data. Lateral variation in uranium content of individual beds was not noted in outcrops, which seldom extend more than 150 feet, but subsurface data from gamma-ray logs of wells indicate that both the maximum radioactivity and the thickness of radioactive beds are variable within distances of a few miles. Vertical variation in radioactivity and uranium content of the more radioactive beds is usually abrupt, but in the rocks as a whole the range of uranium content is so small that large variations in content are absent. In most of the gamma-ray logs examined there is only part of the sequence of rocks

  18. A preliminary evaluation of vertical separation between production intervals of coalbed-methane wells and water-supply wells in the Raton basin, Huerfano and Las Animas Counties, Colorado, 1999-2004

    Science.gov (United States)

    Watts, Kenneth R.

    2006-01-01

    The Raton Basin in southern Colorado and northern New Mexico is undergoing increased development of its coalbed-methane resources. Annual production of methane from coalbeds in the Raton Basin in Huerfano and Las Animas Counties, Colorado, increased from about 28,000,000 thousand cubic feet from 478 wells to about 80,000,000 thousand cubic feet from 1,543 wells, during 1999-2004. Annual ground-water withdrawals for coalbed-methane production increased from about 1.45 billion gallons from 480 wells to about 3.64 billion gallons from 1,568 wells, during 1999-2004. Where the coalbeds are deeply buried near the center of the Raton Basin, water pressure may be reduced as much as 250 to 300 pounds per square inch to produce the methane from the coalbeds, which is equivalent to a 577- to 692-foot lowering of water level. In 2001, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began an evaluation of the potential effects of coalbed- methane production on the availability and sustainability of ground-water resources. In 2003, there were an estimated 1,370 water-supply wells in the Raton Basin in Colorado, and about 90 percent of these water-supply wells were less than 450 feet deep. The tops of the production (perforated) interval of 90 percent of the coalbed-methane wells in the Raton Basin (for which data were available) are deeper than about 675 feet. The potential for interference of coalbed-methane wells with nearby water-supply wells likely is limited because in most areas their respective production intervals are separated by more than a hundred to a few thousand feet of rock. The estimated vertical separation between production intervals of coalbed-methane and water-supply wells is less than 100 feet in an area about 1 to 6 miles west and southwest of Trinidad Lake and a few other isolated areas. It is assumed that in areas with less than 100 feet of vertical separation, production by coalbed-methane wells has a greater

  19. Qualitative Interpretation Of Aerogravity And Aeromagnetic Survey Data Over The South Western Part Of The Volta River Basin Of Ghana

    Directory of Open Access Journals (Sweden)

    George Hinson

    2015-04-01

    Full Text Available Abstract The study area South western part of Volta River Basin of Ghana covering an area of 8570 km2 which is one-eleventh the area of the Volta River basin of Ghana has been subjected to numerous academic research works but geophysical survey works because of virtual perceptive reasons. It is now believed to overly mineral-rich geological structures hence the use of magnetic and gravity survey methods to bring out these mineral-rich geological structures.Geographically it study area is located at the south western part of the Voltaian basin at latitudes 07o 00 N and 08o 00 N and longitudes 02o 00 W and 01o 00 W respectively. Airborne gravity and magnetic survey methods were employed in the data collection. The field data correction and error reduction were applied to the two raw data on the field after which Geosoft Oasis Montaj 7.01 Encom Profile Analysis P.A 11 and 13 Model Vision 12 and ArcGIS 10.0 were used to process enhance e.g. reduce to pole at low latitude first vertical derivative etc. model the reduced and corrected airborne magnetic data and also to produce maps from them data. Low-to-moderate-to-high gravity and magnetic anomalies were obtained in the complete Bouguer anomaly CBA and total magnetic intensity TMI reduced to pole at low latitude with many of these anomalies trending NE-SW by which the Birimian Metasediments and Metavolcanics can be said to be part of the causative structures of these anomalies with cross-cut NW-SE faults. From the quantitative point of view the intrusive granitic bodies of the study area have a mean depth location of 1.7 km while the isolated anomaly is located at a depth of 1.4 km computed from Euler deconvolution. The NE-SW trending anomalies show the trend direction of their causative structures which are the basement rocks and the basinal intrusive bodies.

  20. Neolithic flint mines of Treviño (Basque-Cantabrian Basin, Western Pyrenees, Spain

    Directory of Open Access Journals (Sweden)

    Antonio Tarriño

    2014-09-01

    Full Text Available English:The prehistoric Treviño flint mine complex is located in the Sierra de Araico-Cucho (Berantevilla, Alava - Condado de Treviño, Burgos, inside the lacustrine-palustrine Cenozoic (Aquitanian, Miocene materials of the South-Pyrenean syncline of the Basque-Cantabrian Basin. It is a landscape unit constituted by a set of carbonated layers with abundant nodular and stratiform silicifications. The extraction mining works (often referred to as ‘tailing’ are usually identified as dumps or trenches, subtly visible and associated with archaeological materials.An archaeological excavation was carried out in one potential mining structure (dump or pit that was detected by LiDAR (Light Detection and Ranging in the mountain pass of “Pozarrate” near the villages of Grandival and Araico (Treviño, Burgos. In this work we present the results of the excavation of the last two years. The existence of a Neolithic mining dump (the tailings with a chronology ca. 5000 cal. BC was confirmed. The base rock level with nodular flint was reached and the impressions of the exploited nodules have been identified. As well, the extraction front which reaches about 4.0-5.0 metres in height was delimited. Thousands of lithic remains associated with the extraction and the initial processing (shaping of flint were collected, as along with mining tools. We have found and described three types of mining structures: trenches, linear dumps and crescent-shaped (or “half-moon-shaped” dumps.This site is one of the few prehistoric flint mines dated in the Iberian Peninsula. Recent investigations in the Cantabrian Mountains and Western Pyrenees indicate that the circulation and use of Treviño flint during Prehistory reached many Holocene and Pleistocene archaeological sites, located hundreds of kilometres away from the outcrops.Español:El complejo prehistórico minero de sílex de Treviño se sitúa en la Sierra de Araico-Cucho (Berantevilla, Alava - Condado de Trevi

  1. Palaeotemperature conditions for the southwest of Western Australia from the stable isotopic composition of deep, confined groundwater within the Perth Basin

    International Nuclear Information System (INIS)

    Two major confined aquifers occur within the upper 3000 m of the sedimentary sequence forming the Perth Basin located in the south-west coastal margin of Western Australia. The aquifers comprise multi-layered sequences of interbedded sandstones, shales and siltstones and are an important groundwater resource for metropolitan Perth. Within the context of research into groundwater resource evaluation of the aquifers, undertaken by the Geological Survey of Western Australia [1], 14C, δ2H and δ18O data on the deep groundwater were collected. Samples were obtained from nine east-west transects across the coastal plain, four transects in the Northern Perth Basin and five in the Southern Perth Basin. The most northerly transect in the Northern Perth basin is 70 km north of Perth while the most southerly is 50 km south of Perth. The most northerly transect on the Southern Perth Basin is near Bunbury and the most southerly is at Karridale, giving a total north to south range for both basins of 300 km. The purpose of this paper is to investigate palaeoclimatic conditions based on isotopic data within the groundwater archive of the Perth Basin

  2. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj

    2008-02-01

    This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding of ash layer interbedded in Quaternary alluvial sequences of western Indian continental margin is significant, as ash being datable material, a near precise time-controlled stratigraphy can be interpreted for the Quaternary sediments of western India. The distant volcanic source of this ash requires a fresh re-assessment of ash volume and palaeoclimatic interpretations.

  3. Potential use of petroleum inclusions in the study of hydrocarbon degradation in oil sands and heavy oils in the Western Canada Sedimentary Basin : examples from western Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Chi, G.; Tong, A. [Regina Univ., SK (Canada). Dept. of Geology; Lai, J. [Regina Univ., SK (Canada). Dept. of Geology]|[Central South Univ. Changsha, Hunan (China). School of Geoscience and Environmental Engineering; Pedersen, P. [Apache Canada Ltd., Calgary, AB (Canada)

    2006-07-01

    This paper presented the results of a microthermometric inclusion study of the Celtic Pool in western Saskatchewan's Lloydminster Deposit. Petroleum inclusions are useful for investigating hydrocarbon biodegradation processes that influenced the diagenesis of oil sands and heavy oils in the Western Canada Sedimentary Basin (WCSB). The significant biodegradation which has occurred in the Lower Cretaceous Mannville Group in the WCSB is closely associated with the burial temperatures of the reservoir rocks. These inclusions record petroleum characteristics in the different stages of reservoir evolution and can potentially give information about the conditions associated with biodegradation. The heavy oil reservoir contains two types of oil inclusions, namely a brown, non-fluorescent one; and, a light-coloured, fluorescent type. The latter occurs as secondary inclusions in detrital quartz and may record the petroleum in the reservoir before significant biodegradation. According to microthermometric studies, this type of oil inclusion suggests a wide range of homogenization temperatures mainly attributed to heterogenous oil trapping. Possible trapping temperatures may be 76 to 98 degrees C. However, homogeneous trapping was also recorded, with valid homogenization temperatures ranging from 29 to 113 degrees C. These range of temperature may reflect the change of petroleum temperature during the evolution of the reservoir, with the higher temperatures representing a hot oil charge event responsible for lower degree of biodegradation compared to that in the Athabasca and Cold Lake deposits. The study identified several problems associated with heterogeneous trapping and validation of homogenization temperatures. It was suggested that these problems may be solved by finding trails of petroleum inclusions with consistent homogenization temperatures. 21 refs., 2 tabs., 3 figs.

  4. Sedimentitas marinas de la Formación Barranca Final (Mioceno medio-superior de la cuenca del Colorado, aflorantes en el sureste de la provincia de La Pampa, Argentina Marine sediments of the Barranca Final Formation (Middle-Upper Miocence of the Colorado Basin in south-east La Pampa province, Argentina

    Directory of Open Access Journals (Sweden)

    G. Visconti

    2003-06-01

    Full Text Available En este trabajo se describen sedimentitas carbonáticas, silicoclásticas y evaporíticas del Mioceno de la cuenca del Colorado, aflorantes en el sureste de la provincia de La Pampa, Argentina. Sobre la base de la litología, las estructuras sedimentarias y los fósiles se identificaron siete facies y dos asociaciones de facies, correspondientes a ambientes marino somero (intermareal a supramareal y fluvial, para las secciones analizadas. Las sedimentitas marinas infrayacen a las areniscas fluviales de la Formación Río Negro y se consideran correlacionables con las sedimentitas de la Formación Barranca Final (Mioceno medio-superior, depositadas en la cuenca del Colorado durante la transgresión "Entrerriense". El hallazgo de estos niveles confirma la presencia de este mar en el sureste de la provincia de La Pampa.This paper describes Miocene carbonatic, siliciclastic and evaporitic sedimentary rocks of the Colorado Basin, from southeast of La Pampa Province, Argentina. Seven facies and two facies assemblages of shallow marine (intertidal and supratidal settings and fluvial environments are inferred on the basis of lithology, sedimentary structures, and fossil content. The thin marine level underlies the fluvial sandstones of the Río Negro Formation, and is considered contemporary with the Barranca Final Formation (middle-upper Miocene, of the Colorado Basin, which is the depositional record of the "Entrerriense" transgression. The occurrence of these sedimentary rocks confirms the presence of the "Entrerriense" sea in the south-east of La Pampa Province during the Miocene.

  5. Spatio-temporal snow cover change and hydrological characteristics of the Astore, Gilgit and Hunza river basins (western Himalayas, Hindukush and Karakoram region) - Northern Pakistan

    Science.gov (United States)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Lane, Stuart; Terzago, Silvia; Adamowski, Jan Franklin

    2015-04-01

    A large proportion of Pakistan's irrigation water supply is drawn from the Upper Indus River Basin (UIB) situated in the Himalaya-Karakoram-Hindukush (HKH) ranges. More than half of the annual flow in the UIB is contributed by five of its high-altitude snow and glacier-fed sub-basins including the Astore (Western Himalaya - southern part of the UIB), Gilgit (Hindukush - western part of the UIB) and Hunza (Central Karakoram - northern part of the UIB) River basins. Studying the snow cover, its spatio-temporal evolution and the hydrological response of these sub-basins is important so as to better manage water resources. This study compares data from the Astore, Gilgit and Hunza River basins (mean catchment elevation, 4100, 4250 and 4650 m ASL, respectively), obtained using MODIS satellite snow cover images. The hydrological regime of these sub-catchments was analyzed using hydrological and climate data available at different altitudes from the basin areas. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas), western (Hindukush) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff in the southern part, but snow and glacier melt is dominant in the northern and western parts of the catchment. Despite similar snow cover trends (stable or slightly increasing), different river flow trends (increasing in Astore and Gilgit, decreasing in Hunza) suggest that a sub-catchment level study of the UIB is needed to understand thoroughly its hydrological behavior for better flood forecasting and water resources management and to quantify how the system is being forced by changing climate.

  6. Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin,western Yunnan Province, Southwest China: Constraints from apatite fission track data

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoming; SONG Yougui

    2006-01-01

    Since the Mesozoic, abundant metal and salt deposits have been formed in the Lanping Basin, western Yunnan Province, Southwest China, constituting a well-known hydrothermal ore belt in China. Most of the deposits are meso-epithermal hydrothermal deposits. This paper preliminarily deals with the mineralization ages of hydrothermal deposits in the Lanping Basin by using the apatite fission track method, and integrates the spatial distribution of the deposits and their regional geological backgrounds, to give the preliminary viewpoints as follows: (1) the apatite fission track ages acquired range from 19.9 Ma to 52.8 Ma, much younger than those of their host strata, so they may be considered to be mineralization ages, which represent the late mineralization period; (2) the apatite fission track ages tend to become younger from the west to the middle of the basin, indicating that the latest evolution of tectono-fluid and/or metallogenic processes of the middle basin ended later than that in the west; (3) in the Paleogene, most of the Cu deposits were formed in the western part of the basin; (4) the major metallogenic processes occur between the Paleogene and the Neogene, because the eastern and western edges of the basin were subducted into and collided with its bilateral continental blocks, respectively, and the central fault was strongly activated, which led to the processes of large-scale ore-forming fluids, and their differentiation and transport because of the variation of their physical and chemical properties. Having been squeezed and uplifted, the Lanping Basin became an intermontane basin that contains many kinds of fluid traps resulting in the formation of different types of ore deposits (for example, Pb-Zn, Cu, Ag) of different scales in the middle of the basin. Simultaneously, the fluids with volatile elements such as Hg, Sb and As were transported upwards along the central fault system and diffused into its subordinate fractures, thus leading to the

  7. Small mammals in saltcedar (Tamarix ramosissima) - invaded and native riparian habitats of the western Great Basin

    Science.gov (United States)

    Invasive saltcedar species have replaced native riparian trees on numerous river systems throughout the western US, raising concerns about how this habitat conversion may affect wildlife. For periods ranging from 1-10 years, small mammal populations were monitored at six riparian sites impacted by s...

  8. Key Role of European Rabbits in the Conservation of the Western Mediterranean Basin Hotspot

    OpenAIRE

    Delibes Mateos, Miguel; Delibes, M.; Ferreras, Pablo; Villafuerte, Rafael

    2008-01-01

    The Mediterranean Basin is a global hotspot of biodiversity. Hotspots are said to be experiencing a major loss of habitat, but an added risk could be the decline of some species having a special role in ecological relationships of the system. We reviewed the role of European rabbits (Oryctolagus cuniculus) as a keystone species in the Iberian Peninsula portion of the Mediterranean hotspot. Rabbits conspicuously alter plant species composition and vegetation structure through grazing and see...

  9. The problems of Paleozoic beds and reconstruction of the Middle Permian sedimentary basin in western Slovenia

    OpenAIRE

    Ivan Mlakar

    2003-01-01

    In the first part of paper geologic data from smaller outcrops of Val Gardena Formation in west Slovenia are assembled. Together with the already published information from larger outcrops they permit the reconstruction of the Middle Permian sedimentary basin on which the accent of paper is based. Attention is drawn to general problems of Upper Paleozoic beds, and conclusions regarding lithologic, stratigraphic and structural control of uranium and copper deposits in this part of Slovenia are...

  10. The problems of Paleozoic beds and reconstruction of the Middle Permian sedimentary basin in western Slovenia

    Directory of Open Access Journals (Sweden)

    Ivan Mlakar

    2003-06-01

    Full Text Available In the first part of paper geologic data from smaller outcrops of Val Gardena Formation in west Slovenia are assembled. Together with the already published information from larger outcrops they permit the reconstruction of the Middle Permian sedimentary basin on which the accent of paper is based. Attention is drawn to general problems of Upper Paleozoic beds, and conclusions regarding lithologic, stratigraphic and structural control of uranium and copper deposits in this part of Slovenia are given.

  11. Status report: numerical modeling of ground-water flow in the Paleozoic formations, western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    A three-dimensional finite-difference numerical model was applied to simulate the ground-water flow pattern in Paleozoic strata within the western Paradox Basin region. The primary purpose of the modeling was to test the present conceptual hydrogeologic model and evaluate data deficiencies. All available data on ground-water hydrology, although sparse in this area, were utilized as input to the model. Permeability and potentiometric levels were estimated from petroleum company drill-stem tests and water-supply wells; formation thicknesses were obtained from geologic correlation of borehole geophysical logs. Hydrogeologic judgment weighed heavily in the assignment of hydrologic values to geologic features for this preliminary modeling study. Calibration of the model was accomplished through trial-and-error matching of simulated potentiometric contours with available head data. Hypothetical flow patterns, flux rates, recharge amounts, and surface discharge amounts were produced by the model. 34 refs., 17 figs., 3 tabs

  12. EVIDENCE FOR LADINIAN (MIDDLE TRIASSIC PLATFORM PROGRADATION IN THE GYULAKESZI AREA, TAPOLCA BASIN, WESTERN HUNGARY: MICROFACIES ANALYSIS AND BIOSTRATIGRAPHY

    Directory of Open Access Journals (Sweden)

    ZSOLT RÓBERT NAGY

    2014-07-01

    Full Text Available A shallowing-upward carbonate sequence was studied from the outcrop at Gyulakeszi, Tapolca Basin (western Hungary, and it is interpreted as a Middle Triassic (Curionii or younger platform progradation. Two lithostratigraphic units are distinguished. Microfacies analysis and micropaleontological investigation conducted on the red nodular, cherty limestone (Vászoly and Buchenstein formations suggest that the lower unit was deposited during the Reitzi and the Secedensis ammonoid zones. The overlying white platform limestone (upper unit is typical of a prograding platform and includes gravity-driven deposits at the base followed by periplatform facies deposited in shallow marine warm waters around the fair-weather wave base. The section at Gyulakeszi was unaffected by fabric-destructive dolomitization, which is uncharacteristic of similar platform facies in the Balaton Highland. Isopachous and radiaxial fibrous calcite cement found in the grainstone and boundstone facies are indicative of early lithification and diagenesis in the marine phreatic zone. “Evinospongiae”-type cement is described for the first time from the Balaton Highland and it is similar to the outer platform cements published previously from the Alps (Italy and Austria. The progradation could have advanced over the pelagic limestones as early as the Curionii zone, which is an undocumented event in the Veszprém Plateau. Similar event, however, is well known from the Western Dolomites, where aggradation was followed by intense progradation during the Gredleri and Archelaus ammonoid zones. The length of this progradation event at Gyulakeszi, however, is ambiguous since proven Ladinian (Longobardian rocks are not exposed in the study area and were not penetrated by boreholes in the Tapolca Basin.

  13. New geochronologic and stratigraphic evidence confirms the paleocene age of the dinosaur-bearing ojo alamo sandstone and animas formation in the San Juan Basin, New Mexico and Colorado

    Science.gov (United States)

    Fassett, J.E.

    2009-01-01

    Dinosaur fossils are present in the Paleocene Ojo Alamo Sandstone and Animas Formation in the San Juan Basin, New Mexico, and Colorado. Evidence for the Paleo-cene age of the Ojo Alamo Sandstone includes palynologic and paleomagnetic data. Palynologic data indicate that the entire Ojo Alamo Sandstone, including the lower dinosaur-bearing part, is Paleocene in age. All of the palynomorph-productive rock samples collected from the Ojo Alamo Sandstone at multiple localities lacked Creta-ceous index palynomorphs (except for rare, reworked specimens) and produced Paleocene index palynomorphs. Paleocene palynomorphs have been identified strati-graphically below dinosaur fossils at two separate localities in the Ojo Alamo Sand-stone in the central and southern parts of the basin. The Animas Formation in the Colorado part of the basin also contains dinosaur fossils, and its Paleocene age has been established based on fossil leaves and palynology. Magnetostratigraphy provides independent evidence for the Paleocene age of the Ojo Alamo Sandstone and its dinosaur-bearing beds. Normal-polarity magnetochron C29n (early Paleocene) has been identified in the Ojo Alamo Sandstone at six localities in the southern part of the San Juan Basin. An assemblage of 34 skeletal elements from a single hadrosaur, found in the Ojo Alamo Sandstone in the southern San Juan Basin, provided conclusive evidence that this assemblage could not have been reworked from underlying Cretaceous strata. In addition, geochemical studies of 15 vertebrate bones from the Paleocene Ojo Alamo Sandstone and 15 bone samples from the underlying Kirtland Formation of Late Creta-ceous (Campanian) age show that each sample suite contained distinctly different abundances of uranium and rare-earth elements, indicating that the bones were miner-alized in place soon after burial, and that none of the Paleocene dinosaur bones ana-lyzed had been reworked. ?? U.S. Geological Survey, Public Domain April 2009.

  14. Coda Q in the Kachchh Basin, Western India Using Aftershocks of the Bhuj Earthquake of January 26, 2001

    Science.gov (United States)

    Gupta, S. C.; Kumar, Ashwani; Shukla, A. K.; Suresh, G.; Baidya, P. R.

    2006-08-01

    Q C -estimates of Kachchh Basin in western India have been obtained in a high frequency range from 1.5 to 24.0 Hz using the aftershock data of Bhuj earthquake of January 26, 2001 recorded within an epicentral distance of 80 km. The decay of coda waves of 30 sec window from 186 seismograms has been analysed in four lapse time windows, adopting the single backscattering model. The study shows that Q c is a function of frequency and increases as frequency increases. The frequency dependent Q c relations obtained for four lapse-time windows are: Q c =82 f 1.17 (20 50 sec), Q c =106 f 1.11 (30 60 sec), Q c =126f 1.03 (40 70 sec) and Q c =122f 1.02 (50 80 sec). These empirical relations represent the average attenuation properties of a zone covering the surface area of about 11,000, 20,000, 28,000 and 38,000 square km and a depth extent of about 60, 80, 95, 110 km, respectively. With increasing window length, the degree of frequency dependence, n, decreases marginally from 1.17 to 1.02, whereas Q 0 increases significantly from 82 to 122. At lower frequencies up to 6 Hz, Q c -1 of Kachchh Basin is in agreement with other regions of the world, whereas at higher frequencies from 12 to 24 Hz it is found to be low.

  15. Cyclically-arranged, storm-controlled, prograding lithosomes in Messinian terrigenous shelves (Bajo Segura Basin, western Mediterranean)

    Science.gov (United States)

    Soria, Jesús M.; Giannetti, Alice; Monaco, Paolo; Corbí, Hugo; García-Ramos, Diego; Viseras, César

    2014-08-01

    This work focuses on a Messinian shallow-marine terrigenous unit, termed the La Virgen Formation, which forms part of the sedimentary infill of the Bajo Segura Basin (Betic margin of the western Mediterranean). This formation was deposited during a high sea level phase prior to the onset of the Messinian Salinity Crisis. Stratigraphically, it comprises a prograding stack of sandstone lithosomes alternating with marly intervals (1st-order cyclicity). These lithosomes are characterized by a homoclinal geometry that tapers distally, and interfinger with pelagic sediments rich in planktonic and benthic microfauna (Torremendo Formation). An analysis of sedimentary facies of each lithosome reveals a repetitive succession of sandy storm beds (tempestites), which are separated by thin marly layers (2nd-order cyclicity). Each storm bed contains internal erosional surfaces (3rd-order cyclicity) that delimit sets of laminae. Two categories of storm beds have been differentiated. The first one includes layers formed below storm wave base (SWB), characterized by traction structures associated to unidirectional flows. The second category consists of layers deposited above the SWB, which display typical high regime oscillatory flow structures. The 1st-order cyclicity recorded in the La Virgen Formation corresponds to sapropel/homogeneous marl precessional cycles formed in a pelagic basin context (Torremendo Formation).

  16. Western Central Asia - Uzbekistan:new insights into the basin architecture and lithosphere structures from geophysical data

    Science.gov (United States)

    Sidorova, Irina

    2014-05-01

    This report was prepared as one part of joint Uzbekistan's Working Group results by DARIUS programme, provided in Uzbekistan during the 2009-2013 years. The special attention is devoted to potential geophysical fields and results of interpretation of seismic profiles, which was the base for conclusions about deep lithosphere structure of the DARIUS domains in Uzbekistan.For four last years 12 field expeditions in Uzbekistan were organized by the DARIUS projects - were studied new geological sections and now the new ideas developing about geodynamical evolution in Western Central Asia. The state of art reveals a very heterogeneous set of data. These data commonly deal either with particular basins or mountain belts, or specific basin investigations. Our aim was to combine all available seismic, magnetic and geothermal data with the revealed of the tectonically objects, geological structures, and to show their interrelated temporal and spatial development for general understanding of the inner structure of lithosphere and upper layers of Earth's crust. In link of this, the detailed studying structure of Paleozoic crystal basement on representative basic sites and the crossing faults, accompained by drawing up of level-by-level and summary sections, large-scale geological and geophysical mapping was conducted. Our study elucidated the lithosphere-scale processes driving forces for kinematic of blocks between southern Tien Shan and Pamir. All our data were integrated in the DARIUS database GEOLIS.

  17. Precambrian-Cambrian Sedimentology, Stratigraphy, and Paleontology in the Great Basin (Western United States)

    OpenAIRE

    Sappenfield, Aaron Dale

    2015-01-01

    Thick accumulations of Neoproterozoic and early Phanerozoic strata are distributed throughout much of the arid continental interior of western North America, providing an expansive and well-exposed archive of this important time in Earth’s history. The information presented herein supplements evaluations regarding the utility and limitations of this archive by providing an integrated sedimentological, paleontological, and geochronological description for Precambrian-Cambrian strata exposed i...

  18. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin

    OpenAIRE

    Garcia, Alberto; Palomera, Isabel

    1996-01-01

    [EN] This paper is a review on the anchovy early life history in the western Mediterranean. There is evidence of latitudinal differences in the duration of the spawning period associated with regional temperature variations. The main spawning areas of the anchovy are located in the Gulf of Lyons and at the shelf surrounding the Ebro river delta. The extensions of spawning grounds seem to be linked to the size of the shelf and to the degree of hydrographic enriching-processes. Punc...

  19. Strike slip faulting inferred from offsetting of drainages: Lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj

    2007-10-01

    The detailed analysis of landforms,drainages and geology of the area between the rivers Amaravati and Karjan was carried out in order to understand the tectonic history of the lower Narmada basin. Movement along the various faults in the area was studied on the basis of the drainage offsetting. Horizontal offsetting of stream channels was found quite demonstrable along NNW –SSE trending transverse faults.Tectonic landforms including systematic de flection of stream channels and ridges, alignment of fault scarp and saddles and displacement in the basement rocks and alluvial deposits show that the area is undergoing active deformation driven by the NSF system.

  20. Gamma-ray spectrometry across the Aalenian-Bajocian boundary in the Lusitanian Basin (Western Portugal)

    Science.gov (United States)

    Santos, Marisa; Henriques, Helena; Pena, Rui

    2016-04-01

    The Aalenian - Bajocian boundary was logged for the first time at the Murtinheira (Bajocian GSSP) and the Serra da Boa Viagem II sections, located in the Lusitanian Basin (West Central Portugal) using a portable gamma ray spectrometer, and well calibrated with the ammonite-based biostratigraphical zonation. These two coeval outcrops are represented by a prograding succession of greyish marl and limestone alternations, corresponding to the distal part of a carbonate ramp, which provides rich and diversified fossil (ammonoids, brachiopods) and microfossil (benthic foraminifera, calcareous nannoplancton) record. Different bioevents have been already described for the Concavum Zone (upper Aalenian) - Discites Zone (lower Bajocian) transition in both sections, namely among the ammonites, brachiopods, calcareous nannofossils and especially among the benthic foraminiferal assemblages, which record a remarkable decrease on abundance and diversity, also detected in other coeval sections of different basins located at the northern hemisphere. The gamma-ray data across these sections shows generally low values and variability, 13 to 60 API at Murtinheira section, and 26 to 59 API at Serra da Boa Viagem II section, which are typical of these carbonate hemipelagic facies. Moreover, the Th/U ratio is generally higher than 2 throughout the two sections suggesting well-oxygenated environmental conditions (also documented by the composition of the foraminiferal assemblages), which would have prevented significant organic matter accumulation; some levels displaying low Th/U ratio may reflect depletion in thorium (typical of many marine carbonates) rather than an increase in authigenic uranium, that usually is lower than 1 ppm. Before and after the faunal impoverishment bioevent of Late Concavum - Early Discites Biochron, the K%, Th (ppm) and Th/U ratio at the two sections display a relative increase, probably related to an increment in the detrital supply, and therefore nutrient

  1. Authigenic carbonates in the sediments of Goa offshore basin, western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.

    stream_size 32255 stream_content_type text/plain stream_name Curr_Sci_102_1205.pdf.txt stream_source_info Curr_Sci_102_1205.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 RESEARCH COMMUNICATIONS... from the sediments of Goa offshore basin characterized by shallow gas charged sediments 14,27 . In the present study, we report the occurrence of dispersed authigenic carbonates in RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 102, NO. 8, 25...

  2. 2007 Rocky Mountain Section Friends of the Pleistocene Field Trip - Quaternary Geology of the San Luis Basin of Colorado and New Mexico, September 7-9, 2007

    Science.gov (United States)

    Machette, Michael N.; Coates, Mary-Margaret; Johnson, Margo L.

    2007-01-01

    Prologue Welcome to the 2007 Rocky Mountain Cell Friends of the Pleistocene Field Trip, which will concentrate on the Quaternary geology of the San Luis Basin of Colorado and New Mexico. To our best knowledge, Friends of the Pleistocene (FOP) has never run a trip through the San Luis Basin, although former trips in the region reviewed the 'Northern Rio Grande rift' in 1987 and the 'Landscape History and Processes on the Pajarito Plateau' in 1996. After nearly a decade, the FOP has returned to the Rio Grande rift, but to an area that has rarely hosted a trip with a Quaternary focus. The objective of FOP trips is to review - in the field - new and exciting research on Quaternary geoscience, typically research being conducted by graduate students. In our case, the research is more topically oriented around three areas of the San Luis Basin, and it is being conducted by a wide range of Federal, State, academic, and consulting geologists. This year's trip is ambitious?we will spend our first day mainly on the Holocene record around Great Sand Dunes National Park and Preserve, the second day on the Quaternary stratigraphy around the San Luis Hills, including evidence for Lake Alamosa and the 1.0 Ma Mesita volcano, and wrap up the trip's third day in the Costilla Plain and Sunshine Valley reviewing alluvial stratigraphy, the history of the Rio Grande, and evidence for young movement on the Sangre de Cristo fault zone. In the tradition of FOP trips, we will be camping along the field trip route for this meeting. On the night before our trip, we will be at the Great Sand Dunes National Park and Preserve's Pinyon Flats Campground, a group facility located about 2 miles north of the Visitors Center. After the first day's trip, we will dine and camp in the Bachus pit, about 3 miles southwest of Alamosa. For the final night (after day 2), we will bed down at La Junta Campground at the Bureau of Land Management (BLM) Wild and Scenic Rivers State Recreation Area, west of Questa

  3. Circulation of a Meaban-like virus in yellow-legged gulls and seabird ticks in the western Mediterranean basin.

    Directory of Open Access Journals (Sweden)

    Audrey Arnal

    Full Text Available In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis, a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus, were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring

  4. Shallow lacustrine system of the Permian Pedra de Fogo Formation, Western Gondwana, Parnaíba Basin, Brazil

    Science.gov (United States)

    Araújo, Raphael Neto; Nogueira, Afonso César Rodrigues; Bandeira, José; Angélica, Rômulo Simões

    2016-04-01

    The Permian Period of the Parnaíba Basin, northern Brazil, represented here by deposits from the Pedra de Fogo Formation, records important events that occurred in Western Gondwana near its boundary with the Mesozoic Era. The analysis of outcrop based facies from the Permian Pedra de Fogo Formation, which is 100 m thick, carried out along the eastern and western borders of the Parnaiba Basin, allowed the identification of eleven sedimentary facies, which were grouped into three distinct facies associations (FA), representative of a shallow lacustrine system associated with mudflats and ephemeral rivers. Bioturbation, desiccation cracks, silcretes and various siliceous concretions characterize the Pedra de Fogo deposits. The FA1 mudflat deposits occur predominantly at the base of the Pedra de Fogo Formation and consist of laminated claystone/mudstone, mudcrack-bearing sandstones/mudstones and sandstones exhibiting cross-lamination, massive and megaripple bedding. Popcorn-like silicified nodules and casts indicate evaporite deposits. Other common features are silica concretions, silicified tepees and silcretes. FA2 represents nearshore deposits and consists of fine-grained sandstones with evenly parallel lamination, climbing ripple cross-lamination, massive and megaripple bedding and mudstone/siltstone showing evenly parallel lamination. FA3 refers to wadi/inundite deposits, generally organized as fining-upward cycles of metric size, composed of conglomerates and medium-grained pebbly sandstones showing massive bedding and cross-stratification, as well as claystone/siltstone showing evenly parallel to undulate lamination. Scour-and-fill features are isolated in predominantly tabular deposits composed of mudstones interbedded with fine to medium-grained sandstones showing planar to slightly undulate lamination. Silicified plant remains previously classified as belonging to the Psaronius genus found in the uppermost levels of the Pedra de Fogo Formation, near the

  5. Climate inferences between paleontological, geochemical, and geophysical proxies in Late Pleistocene lacustrine sediments from Summer Lake, Oregon, western Great Basin

    Science.gov (United States)

    Heaton, Eric; Thompson, Greg; Negrini, Rob; Wigand, Peter

    2016-04-01

    Paleontological, geochemical, and geophysical data from western Great Basin pluvial Summer Lake, Oregon have established a high resolution paleoclimate record during the late Pleistocene Mono Lake Excursion (~34.75 ka), Dansgaard-Oeschger interstadials 6-8, and the end of Heinrich Even 4 (~38 ka). Proxies of grain-size, magnetic susceptibility, carbon/nitrogen ratio, ostracode analysis and palynology from a depocenter core show new results with improved age control regarding high amplitude, high frequency changes in lake level, lake temperature, and regional precipitation and temperature which correspond directly with colder/warmer and respectively drier/wetter climates as documented with Northern Atlantic Greenland ice core data. Results from geophysical and geochemical analysis, and the presence of ostracode Cytherissa lacustris consistently demonstrate the correspondence of low lake conditions and colder water temperatures during Dansgaard-Oeschger stadials and the Mono Lake Excursion. The opposite holds true during interstadials. Smaller grain size, increases in carbon/nitrogen ratio and consistent absence of C. lacustris suggest periods of increased discharge into the lake, increased lake level, and warmer water temperatures. Warmer/wetter climate conditions are confirmed during interstadials 7 and 8 from pollen analysis. Existence of Atriplex, Rosaceae, Chrysothamnus and Ambrosia, and pollen ratios of Juniperus/Dip Pinus and (Rosaceae+Atriplex+Poaceae+Chrysothamnus+Ambrosia)/(Pinus+Picea+T. mertensiana+Sarcobatus) suggest warmer/wetter semi-arid woodland conditions during interstadials 7 and 8. This contrasts with absences in these pollens and pollen ratios indicating colder/drier continental montane woodland conditions during stadials and the Mono Lake Excursion. Increases in Juniper/Dip Pinus ratio suggest a warmer/wetter climate during interstadial 6 however additional proxies do not demonstrate comparative warmer/wetter climate, deeper lake level or

  6. Decline in snowfall in response to temperature in Satluj basin, western Himalaya

    Indian Academy of Sciences (India)

    Riyaz Ahmad Mir; Sanjay K Jain; Arun K Saraf; Ajanta Goswami

    2015-03-01

    Snow is an essential resource present in the Himalaya. Therefore, monitoring of the snowfall changes over a time period is important for hydrological and climatological purposes. In this study, variability of snowfall from 1976–2008 were analysed and compared with variability in temperature (max and min) from 1984–2008 using simple linear regression analysis and Mann–Kendall test in the Satluj Basin. The annual, seasonal, and monthly analyses of average values of snowfall and temperature (max and min) have been carried out. The study also consists an analysis of average values of annual snowfall and temperature over six elevation zones (<1500 to >4000 m amsl). During the study, it was observed that the snowfall exhibited declining trends in the basin. The snowfall trends are more sensitive to the climate change below an elevation of 4000 m amsl. Over the elevation zones of 3000–3500 and 4000–4500 m amsl, positive trends of mean annual values of snowfall were observed that may be due to higher precipitation as snowfall at these higher elevations. Although, both negative and positive snowfall trends were statistically insignificant, however, if this decreasing trend in snowfall continues, it may result in significant however, changes in future. Furthermore, the min is also increasing with statistically significant positive trend at 95% confidence level for November, winter season, annually as well as for the elevation zones of 2500–3000, 3000–3500, and 3500–4000 m amsl. There are dominantly increasing trends in max with negative trends for February, June–September, monsoon season, and for elevation zone <1500 m amls. It is important to state that in the present basin, during the months of winter season, most of the precipitation is produced as snowfall by the westerly weather disturbances. Thus, the declining nature in snowfall is concurrent with the positive trends in temperature particularly min, therefore, reflecting that the positive trends in

  7. Combining U speciation and U isotope fractionation to evaluate the importance of naturally reduced sediments in controlling the mobility of uranium in the upper Colorado River Basin

    Science.gov (United States)

    Noel, V.; Lefebvre, P.; Boye, K.; Bargar, J.; Maher, K.; Lezama-Pacheco, J.; Cardarelli, E.; Bone, S.; Dam, W. L.; Johnson, R. H.

    2015-12-01

    Long-term persistence of uranium (U) in groundwater at legacy ore-processing sites in the upper Colorado River Basin (CRB) is a major concern for DOE, stakeholders, and local property owners. In the past year, we have investigated U distributions in contaminated floodplains at Grand Junction, Naturita, and Rifle (CO), Riverton (WY), and Shiprock (NM). We find that U is retained at all locations in fine-grained, organic-rich sulfidic sediments, referred to as naturally reduced zones (NRZs). The retention mechanisms (e.g., complexation, precipitation or adsorption) and the processes responsible for U accumulation in NRZs will directly determine the capacity of the sediments to prevent U mobilization. However, these processes remain poorly understood at local and regional scales yet they are critical to management and remediation of these sites. We have used U LIII/II-edge XANES to systematically characterize U oxidation states, and EXAFS and bicarbonate extractions to characterize U local structure and reactivity in order to distinguish the forms of U. We are measuring U isotopic signatures (δ238/235U) to better understand uranium sources and processes of accumulation in NRZs. We have found that high U concentrations correspond to reduced and relatively insoluble U forms, mainly non-crystalline U(IV), and co-occur with ferrous iron and sulfides. This suggests that reduction processes, fueled by the high organic matter content and constrained to the diffusion-limited environment in the fine-grained NRZs, are important for the retention of U in these sediments. We also observe a strong correlation between the U concentrations in the NRZs and the extent of isotopic fractionation, with up to +1.8 ‰ difference between uranium-enriched and low concentration zones. In some locations the δ238/235U values are within the range of values typical of the mine tailings, whereas at other sites the more positive δ238/235U values suggest that redox cycling and/or partial

  8. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  9. Radioelemental equilibrium-disequilibrium and trace elemental studies of quartz pebble conglomerates from the western margin of Koira-Noamundi iron ore basin, Orissa, India

    International Nuclear Information System (INIS)

    The Late Achaean-Early Proterozoic fluvial pyritiferous gold and uranium bearing quartz pebble conglomerate (QPC) deposited over cratonised granite-greenstone basement is well known across the globe. The QPC represents the earliest sediments (>2200 Ma age) developed largely under an anoxic atmospheric condition. In eastern India, uraniferous QPC bearing occurrences at the base of Iron Ore Group (IOG) basins and Dhanjori Basin are situated in Orissa and Jharkhand states. They occur as peri-cratonic basins around Singhbhum Granitic batholiths, viz. Badampahar-Garumahisani basin, to the east of Singhbhum Granite, Daitari basin, to the south and Koira basin, located east of Bonai granite (Singhbhum Granite equivalent). This paper discusses the nature of radioactive QPC occurrences at Taladih, Sarlanga, and Soyamba areas situated along the western margin of Koira Basin in terms of their physical characteristics, radioelemental distribution and their disequilibrium behaviour vis-à-vis the trace elemental distribution. Strong correlation of thorium with Y, La, Zr etc. suggests its association in the resitate detrital mineral phases in the QPC matrix

  10. Detection of Lineaments in Denizli Basin of Western Anatolia Region Using Bouguer Gravity Data

    Science.gov (United States)

    Altinoğlu, Figen F.; Sari, Murat; Aydin, Ali

    2015-02-01

    The aim of this study is to investigate the geostructural boundaries of the eastern part of Western Anatolia. To achieve this, three methods, horizontal gradient, analytic signal, and tilt angle, were used. With the application of each method to the Bouguer gravity data, the common lineaments were determined using maximum values of the horizontal gradient, analytic signal maps, and zero contours of the tilt angle maps. The basement topography was also produced using the Parker-Oldenburg algorithm. Then, the produced lineaments were compared with the active fault map of the region. The results suggested that although a good agreement between the current work and earlier work exists, the new four lineament regions were also detected. We concluded that this work will lead to better understanding of Anatolian geostructural and its impact on the larger scale geological processes.

  11. Chemical contamination baseline in the Western basin of the Mediterranean Sea based on transplanted mussels.

    Science.gov (United States)

    Andral, Bruno; Galgani, François; Tomasino, Corinne; Bouchoucha, Marc; Blottiere, Charlotte; Scarpato, Alfonso; Benedicto, José; Deudero, Salud; Calvo, Monica; Cento, Alexandro; Benbrahim, Samir; Boulahdid, Moustapha; Sammari, Cherif

    2011-08-01

    The MYTILOS project aimed at drawing up a preliminary report on coastal chemical contamination at the scale of the Western Mediterranean (continental coasts of the Balearic Islands, Sicily, Sardinia, Corsica and Maghreb) based on a transplanted mussels methodology validated along the French coasts since 1996 by Ifremer and the Rhône Méditerranée & Corsica water board. MYTILOS is backed up by the INTERREG III B/MEDOC programme, the PNUE/PAM-MEDPOL and Rhône Méditerranée & Corsica water board. Three cruises (2004, 2005, 2006) have taken place to assess the first state of chemical contamination along the Western Mediterranean shores with the same methodology. Approximately 120 days were spent at sea deploying and retrieving 123 mussel bags. The results obtained for all studied contaminants were equivalent to those obtained along the French coast according the RINBIO network. These similarities relate to both the highest measured levels and background levels throughout the 123 stations. The areas of greatest impact were mainly urban and industrial centers and the outlets of major rivers, with a far higher midsea impact on the dilution of organic compounds than on metals. Metal levels measured in midsea zones were found to be similar to those in natural shellfish populations living along the coast. On a global scale we can observe that the contaminants levels in the Mediterranean Sea are in the same range as in other areas worldwide. Overall, the research demonstrates the reliability of this methodology for marine pollution monitoring, especially in the Mediterranean sea. PMID:20862467

  12. Arsenic, Prokaryotes, and Closed Basin Soda Lakes of the Western USA.

    Science.gov (United States)

    Oremland, R. S.

    2006-12-01

    A number of saline, alkaline soda lakes in the Great Basin and Mojave Desert of the United States have unusually high concentrations of inorganic arsenic dissolved in their brine-waters. The arsenic originates from natural rather than anthropogenic sources, namely volcanic hydrothermal inputs. When this influx is coupled with evapo-concentration and the unique chemical behavior of arsenic oxyanions in alkaline waters, it results in extremely elevated As concentrations. For example, the salinity and arsenate levels of 3 comparable soda lakes (pH 9.8) are: Big Soda Lake, NV (27 g/L; 20 uM), Mono Lake, CA (90 g/L; 200 uM), and Searles Lake, CA (340 g/L; 3,900 uM). The arsenic oxidation state changes from As5+ (arsenate) to As3+ (arsenite) with vertical transition from their oxygenated surface water to their anoxic bottom water. Similar phenomena occur in their littoral sediments. These lakes also harbor active populations of prokaryotes that achieve these As redox changes either by using arsenate as an electron acceptor for respiration, or by employing arsenite as a chemoautotrophic electron donor. Diverse microorganisms have been identified in these systems that are involved in the biogeochemical cycling of arsenic therein, and in situ studies made with radiotracer (73As) and other means showed that these redox reactions occur at rapid rates. However, other than their use for waterfowl hunting (Big Soda Lake), as a region of scenic beauty (Mono Lake), or as a resource for the chemical industry (Searles Lake), there is little concern about the arsenic in these systems because the waters are not potable and their chemistry is too extreme to allow for the presence of fish. Nonetheless, microbial processes that govern arsenic biogeochemistry can greatly influence the hydrologic mobility and toxicity of this element in freshwater systems, such as drinking water aquifers. Moreover, anthropogenic inputs of arsenic can also occur in closed basin lakes in this region, such as

  13. A new structural interpretation relating NW Libya to the Hun Graben, western Sirt Basin based on a new paleostress inversion

    Indian Academy of Sciences (India)

    K M Abdunaser; K J W McCaffrey

    2015-12-01

    The present study is based on fault-slip data (striated fault planes with known sense of slip) measured in outcrops in two structural domains located along the Hun Graben, western Sirt Basin (150 fault-slip data) and the Jifarah Basin and Nafusah Uplift, northwest Libya (200 fault-slip data). Pre-existing field data collected in two previous studies were reprocessed using standard inversion methods in MyFaultTM (v. 1.03) stereonet software, produced by Pangaea Scientific Ltd. The aim of this study was to use paleostress orientations and relative paleostress magnitudes (stress ratios), determined using the reduced stress concept, to test a new understanding of the kinematic characteristics, the relationship between the two areas and the paleostress fields that controlled the evolution of the fault systems responsible for the observed deformation. Various types of faults (normal faults, sinistral normal faults, dextral normal faults and strike-slip faults) were recorded from outcrops comprised of Mesozoic and Cenozoic sedimentary sequences in which a lineation rake is present on minor structures with displacement ranging from several centimetres to several metres. Two different domains of a NNE–SSW directed extension regime ranging from N12°E to 25°E and minor ENE–WSW and WNW–ESE compression were identified in the analysis. The results are remarkably homogeneous at all sites and consistent with progressive collisional coupling of Africa and Europe, being under approximately WNW–ESE reactivated compressional stresses during the Late Eocene-age. The new kinematic and structural conceptual model that has been proposed is a test of the prevailing tectonic models describing the Cenozoic kinematic evolution of the areas. The results show the remarkable influence of basement fabrics of different ages on the subsequent structural development of NW Libya.

  14. Tectonic Fractures in Tight Gas Sandstones of the Upper Triassic Xujiahe Formation in the Western Sichuan Basin,China

    Institute of Scientific and Technical Information of China (English)

    ZENG Lianbo; LI Yuegang

    2010-01-01

    The western Sichuan Basin,which is located at the front of the Longmen Mountains in the west of Sichuan Province,China,is a foreland basin formed in the Late Triassic.The Upper Triassic Xujiahe Formation is a tight gas sandstone reservoir with low porosity and ultra-low permeability,whose gas accumulation and production are controlled by well-developed fracture zones.There are mainly three types of fractures developed in the Upper Triassic tight gas sandstones,namely tectonic fractures,diagenetic fractures and overpressure-related fractures,of which high-angle tectonic fractures are the most important.The tectonic fractures can be classified into four sets,i.e.,N-S-,NE-,E-W-and NW-striking fractures.In addition,there are a number of approximately horizontal shear fractures in some of the medium-grained sandstones and grit stones nearby the thrusts or slip layers.Tectonic fractures were mainly formed at the end of the Triassic,the end of the Cretaceous and the end of the Neogene-Early Pleistocene.The development degree of tectonic fractures was controlled by lithology,thickness,structure,stress and fluid pressure.Overpressure makes not only the rock shear strength decrease,but also the stress state change from compression to tension.Thus,tensional fractures can be formed in fold-thrust belts.Tectonic fractures are mainly developed along the NE-and N-S-striking structural belts,and are the important storage space and the principal flow channels in the tight gas sandstone.The porosity of fractures here is 28.4% of the gross reservoir porosity,and the permeability of fractures being two or three grades higher than that of the matrix pores.Four sets of high-angle tectonic fractures and horizontal shear fractures formed a good network system and controlled the distribution and production of gas in the tight sandstones.

  15. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    Energy Technology Data Exchange (ETDEWEB)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text

  16. Petrogenesis of Mesoproterozoic lamproite dykes from the Garledinne (Banganapalle) cluster, south-western Cuddapah Basin, southern India

    Science.gov (United States)

    Rao, N. V. Chalapathi; Atiullah; Kumar, Alok; Sahoo, Samarendra; Nanda, Purnendu; Chahong, Ngazimpi; Lehmann, B.; Rao, K. V. S.

    2016-04-01

    We report mineral chemistry and whole-rock major and trace-element geochemistry for a recent find of Mesoproterozoic (~1.4 Ga) lamproites from the Garledinne (Banganapalle) cluster, south-western part of the Paleo-Mesoproterozoic Cuddapah Basin, southern India. The Garledinne lamproites occur as WNW-ESE-trending dykes that have undergone varying degree of pervasive silicification and carbonate alteration. Nevertheless, their overall texture and relict mineralogy remain intact and provide important insights into the nature of their magmas. The lamproite dykes have porphyritic to weakly porphyritic textures comprising pseudomorphed olivine macrocrysts and microphenocrysts, titanian phlogopite microphenocrysts, spinel having a compositional range from chromite to rarely magnesiochromite, Sr-rich apatite and niobian rutile. The Garledinne and other Cuddapah Basin lamproites (Chelima and Zangamarajupalle) collectively lack sanidine, clinopyroxene, potassic richterite, and titanite and are thus mineralogically distinct from the nearby Mesoproterozoic lamproites (Krishna and Ramadugu) in the Eastern Dharwar Craton, southern India. The strong correlation between various major and trace elements coupled with high abundances of incompatible and compatible trace elements imply that alteration and crustal contamination have had a limited effect on the whole-rock geochemistry (apart from K2O and CaO) of the Garledinne lamproites and that olivine fractionation played an important role in their evolution. The Garledinne lamproites represent small-degree partial melts derived from a refractory (previously melt extracted) peridotitic mantle source that was subsequently metasomatised (enriched) by carbonate-rich fluids/melts within the garnet stability field. The involvement of multiple reservoirs (sub-continental lithospheric mantle and asthenosphere) has been inferred in their genesis. The emplacement of the Garledinne lamproites is linked to extensional events, across the various

  17. The interplay between tectonics, sediment dynamics and gateways evolution in the Danube system from the Pannonian Basin to the western Black Sea.

    Science.gov (United States)

    Matenco, Liviu; Munteanu, Ioan; ter Borgh, Marten; Stanica, Adrian; Tilita, Marius; Lericolais, Gilles; Dinu, Corneliu; Oaie, Gheorghe

    2016-02-01

    Understanding the natural evolution of a river-delta-sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River-western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during

  18. Rainwater chemistry at the western savannah region of the Lake Maracaibo Basin, Venezuela

    International Nuclear Information System (INIS)

    The major part of Venezuela oil production is located in and around the Lake Maracaibo Basin. The samples were collected over a 1-year period at Catatumbo and La Esperanza sites. The rainwater was acidic, with a VWA-pH of 4.6 for Catatumbo and 4.2 for La Esperanza. This acidity is made up in 93% by inorganic acids (mainly H2SO4), and NH4+ is the major cation which buffers the acidity of precipitation. An excess of sulfate > 96% was obtained in both sites. Correlation analysis shows that H+ is strongly correlated with SO4. Anthropogenic air pollution from oil fields (H2S) and the burning of sulphur-bearing fuels (SO2) are probably the dominant sources; however, the lack of correlation between the H+ and NO3- levels would appear to indicate that the SO4 is also of biogenic origin (H2S-DMS from Sinamaica Lagoon-Lake Maracaibo and the Caribbean). Statistical analysis of the pooled data indicated that the concentration differences between Catatumbo and La Esperanza sites are not significant at 99% confidence level. 12 refs., 1 fig., 2 tabs

  19. Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A.

    Science.gov (United States)

    Moore, Johnnie N

    2016-06-01

    Although extremely important to migrating waterfowl and shorebirds, and highly threatened globally, most saline lakes are poorly monitored. Lake Abert in the western Great Basin, USA, is an example of this neglect. Designated a critical habitat under the Western Hemisphere Shorebird Reserve Network, the lake is at near record historic low levels and ultra-high salinities that have resulted in ecosystem collapse. Determination of the direct human effects and broader climate controls on Lake Abert illustrates the broader problem of saline lake desiccation and suggests future solutions for restoration of key habitat values. A 65-year time series of lake area was constructed from Landsat images and transformed to lake volume and salinity. "Natural" (without upstream withdrawals) conditions were calculated from climate and stream flow data, and compared to measured volume and salinity. Under natural conditions the lake would have higher volume and lower salinities because annual water withdrawals account for one-third of mean lake volume. Without withdrawals, the lake would have maintained annual mean salinities mostly within the optimal range of brine shrimp and alkali fly growth. Even during the last two years of major drought, the lake would have maintained salinities well below measured values. Change in climate alone would not produce the recent low lake volumes and high salinities that have destroyed the brine shrimp and alkali fly populations and depleted shorebird use at Lake Abert. Large scale withdrawal of water for direct human use has drastically increased the imbalance between natural runoff and evaporation during periods of drought in saline lakes worldwide but could be offset by establishing an "environmental water budget" to lay a foundation for the conservation of saline lake habitats under continued threats from development and climate change. PMID:26950628

  20. Results of the first western coal availability study -- Hilight quadrangle, Powder River Basin, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Molnia, C.L.; Biewick, L.R.H.; Blake, D. [Geological Survey, Denver, CO (United States). Denver Federal Center; Tewalt, S.J.; Carter, M.D. [Geological Survey, Reston, VA (United States); Gaskill, C. [Bureau of Land Management, Casper, WY (United States)

    1996-12-31

    The US Geological Survey, in cooperation with the Bureau of Land Management, Geological Survey of Wyoming, and US Bureau of Mines, has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyoming, where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is coal that actually is accessible for development under current regulatory, land-use, and technologic conditions. The first western coal availability study, in the Hilight quadrangle, has shown that approximately 60% (2.7 billion tons) of the total 4.4 billion tons of original coal resources in the quadrangle is available for development. Of this total 4.4 billion tons, 2.9 billion tons are contained in the Main Wyodak coal bed; 67% (1.9 billion tons) of this coal bed is considered available. Local coal-development considerations include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, the Hilight oil and gas field, and the Hilight gas plant. Some of these considerations would be mitigated so that surface mining could proceed; others presently preclude mining in their vicinity.

  1. A new species of the archaic primate Zanycteris from the late Paleocene of western Colorado and the phylogenetic position of the family Picrodontidae

    OpenAIRE

    Benjamin John Burger

    2013-01-01

    A new species of an archaic primate (Pleisadapiformes) is described based on a maxilla containing the first and second upper molars from the Fort Union Formation, Atwell Gulch Member in northwestern Colorado. The preserved teeth show the unusual dental characteristics of members of the rare and poorly documented Picrodontidae family, including an elongated centrocrista and wide occlusal surface. The new species is placed within the genus Zanycteris (represented by a single specimen from south...

  2. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders

    Directory of Open Access Journals (Sweden)

    Bidegaray-Batista Leticia

    2011-10-01

    Full Text Available Abstract Background The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae, which is endemic to the region. Results We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My-1 (nad1 to 0.12% My-1 (28S, and the average divergence rate for the mitochondrial genes was 2.25% My-1, very close to the "standard" arthropod mitochondrial rate (2.3% My-1. Conclusions Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can

  3. Influence of palaeotopography on the distribution of coal in the Western Coalfield, Sydney basin, Australia: comparison with South African coals

    Science.gov (United States)

    Hutton, A. C.; Feldtmann, R.

    1996-07-01

    The Western Coalfield of New South Wales, centred on the town of Lithgow, is one of several areas of the Sydney Basin (Australia) that produces Permian coals for export and for domestic: use. The lowermost seam of the Illawarra Coal Measures, the Lithgow seam, was deposited in an alluvial fan to proximal braidplain complex. The style of clastic sedimentation and coal seam development was strongly influenced by the palaeotopography, especially basement highs which represent erosional remnants of the pre-Permian erosional cycle. The influence of the palaeotopography is seen in the distribution of the basal conglomerate, the thickness of the basal Shoalhaven Group (which is thinnest on and near the basement highs), the location of the alluvial fan facies of the Illawarra Coal Measures (which are adjacent to the highs and received a large proportion of the clastic detritus from these highs) and the development of the coal seams (which are distal to the basement highs). Of great significance is the location of economic sections of the Lithgow seam with respect to palaeotopographic highs. Adjacent to the highs the Lithgow seam is either too thin or contains too many claystone bands to allow mining. Between the highs: and further to the east and north of the highs, where the precursor peats formed on the floodplain and interfan areas, the seam is of significantly better quality and has been mined.

  4. Petroleum exploration of shallow marine deposit Carboniferous volcanic tuff reservoir in the western margin of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    Wang Jianyong; Wang Xuezhong; Ma Liqun

    2013-01-01

    In 2011,petroleum exploration of shallow marine deposits Carboniferous and volcanic tuff reservoir re-alized breakthroughs at Chepaizi slope in the western margin of Junggar Basin. Pai 61 well ,with 855.7 ~949.6 m section,in the conventional test oil obtained 6 t/d industrial oil flow. The surface viscosity is 390 mPa· s (50℃). The marine deposit of Carboniferous are deep oil source rocks and high-quality reservoir. Magma volcanic activity provides the basis for volcanic reservoir development and distribution. The weathering crust and secondary cracks developed volcanic tuff by strong rock weathering and dissolution of organic acids which has become top quality reservoir. Deep Permian oil-gas migrated and accumulated to high parts along Hong-Che fault belt and stratigraphic unconformity stripping. Permian and Triassic volcanic rocks or dense mudstone sedimentary cover as a regional seal for the late Carboniferous oil-gas to save critically. The seismic pre-stack time migration processing technologies for the problem of poor inner structures of Carboniferous were developed. Response of volcanic rock seismic and logging are obvious. The application imaging logging and nuclear magnetic technology achieved the qualitative identification and quantification of fracture description.

  5. Strategy to design the sea-level monitoring networks for small tsunamigenic oceanic basins: the Western Mediterranean case

    Directory of Open Access Journals (Sweden)

    F. Schindelé

    2008-09-01

    Full Text Available The 26 December 2004 Indian Ocean tsunami triggered a number of international and national initiatives aimed at establishing modern, reliable and robust tsunami warning systems. In addition to the seismic network for initial warning, the main component of the monitoring system is the sea level network. Networks of coastal tide gages and tsunameters are implemented to detect the tsunami after the occurrence of a large earthquake, to confirm or refute the tsunami occurrence. Large oceans tsunami monitoring currently in place in the Pacific and in implementation in the Indian Ocean will be able to detect tsunamis in 1 h. But due to the very short time of waves propagation, in general less than 1 h, a tsunami monitoring system in a smaller basin requires a denser network located close to the seismic zones. A methodology is proposed based on the modeling of tsunami travel time and waveform, and on the estimation of the delay of transmission to design the location and the spacing of the stations. In the case of Western Mediterranean, we demonstrate that a network of around 17 coastal tide gages and 13 tsunameters located at 50 km along the shore is required to detect and measure nearly all tsunamis generated on the Northern coasts of Africa.

  6. Spatial variations in magnetic properties in three reservoirs of the Western Canada Sedimentary Basin : insights into hydrocarbon generation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Cioppa, M.T.; Symons, D.T.A. [Windsor Univ., Dept. of Earth Sciences, Windsor, ON (Canada); Gillen, K.P. [Vox Terrae International, Calgary, AB (Canada)

    1999-11-01

    Some of the possible applications of paleomagnetism and rock magnetism in the petroleum industry were discussed. It has been shown that paleomagnetic and rock magnetic data can be used to track and map fluid migration. A study was conducted in 1997 in which limestones, dolostones and anhydrites of the Mississippian Upper Debolt Formation in the Dunvegan, Cindy and Belloy fields in the Western Canada Sedimentary Basin were sampled for rock magnetic, paleomagnetic, petrological and geochemical analysis. It was determined that, contrary to expectations, there was a significant spatial variation in the paleomagnetic and rock magnetic data. Analysis of about 300 specimens indicated the presence of three components: (1) a low temperature or low coercivity `A` component, removed at temperatures of less than 250 degrees C and coercivities of less than 20 mT, (2) the `B` component removed at temperatures between 250 and 350 degrees C and AF fields between 20 and 80 mT, and (3) the `C` component, a high temperature or high coercivity component removed at temperatures above 350 degrees C and fields above 20 mT. The spatial variation in paleomagnetic and rock magnetic properties has important implications for fluid migration, fluid migration pathways, and possible hydrocarbon sources. 3 refs.

  7. Long-period magnetotelluric survey from the black forest through the Western Alps to the Po Basin

    International Nuclear Information System (INIS)

    Complete text of publication follows. Magnetotelluric (MT) soundings in the period range of 8s to 100000s were carried out along a 400-kilometre-long North-South profile from the Black Forest through the Western Alps, with focus on the Ivrea Zone, to the Po Basin. Several RAP-Stations, MT devices developed at the University of Goettingen, were mounted to collect data between October 2008 and May 2009. The survey aims to investigate the evolution of the conductivity structures in the lower crust and mantle along the profile. MT-transfer functions were calculated to investigate the interruption of the intracrustal and asthenospheric high conductivity layers under the European Alps. Furthermore Sq-variations were considered to find out more about the structure of the upper mantle. First results with models made by MT-forward modelling are presented and additionally a comparison with seismic studies in the target areas and particularly about the Alpine Crustal root in the Po Plain is provided. First results indicate a lithospheric thickening under the collision zones.

  8. The impact of hydroelectric project development on the ethnobotany of the Alaknanda river basin of Western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Khilendra Singh Kanwal

    2015-12-01

    Full Text Available Background: This study focuses on the ethnoflora used by local communities in the Alaknanda river basin of Uttarakhand state in Western Himalaya, India. The objectives of the study are to collect ethnobotanical information, to assess the impact of hydropower projects on ethnoflora and to suggest conservation and management measures for the protection of ethnoflora. Material and Methods: A well-designed questionnaire based survey was conducted in the ten villages of the study area to collect ethnobotanical information. The conservation status of plants was also evaluated following the IUCN Red list, the Red Data Book of Indian Plants and the CITES criteria. Results: A total of 136 plant species belonging to 61 families and 112 genera were used by local communities for various ethnobotanical purposes. The majority of plant species were used for medicinal purposes (96 spp., followed by fodder (46 spp., wild edibles (31 spp., fuel (29 spp., timber (17 spp., fish poison (9 spp., agriculture implements (6 spp., fibre (6 spp., religious use (6 spp. and handicraft (1 sp.. For the preparation of herbal medicine, rural people of the region use different parts of medicinal plants such as the whole plant (20% followed by roots/rhizomes/tubers (20%, leaf (18%, fruit (10%, seed (9%, bark (9%, stem (6%, flowers (6% and resin (2%. Conclusions: Development of hydropower projects will influence the diversity and distribution of ethnoflora in the region. Therefore, for the conservation of the ethnoflora of the area, conservation and management measures have been suggested.

  9. Trace and major elements in sediments and in porewater from the north western basin of the Mediterranean Sea

    International Nuclear Information System (INIS)

    As part of an international and interdisciplinary research program of the European Community (EROS-2000), sediment samples were collected in the north western basin of the Mediterranean Sea in May 1990. In the samples trace and/or major elements were determined to advance the knowledge about the manifestation, sources and cycles of natural and anthropogenic constituents in coastal areas. Three fractions were determined: the porewater fraction which contains all dissolved elements, the leachable fraction which contains all easily exchangeable elements, and the residual fraction which contains the not-exchangeable elements in the sediments. The results show that the investigated area can be separated into five 'sub-areas' which are different in element concentration, leachable fraction and sedimentary composition. Highest concentrations of trace elements are found in sediments closest to the Rhone delta. In summary the Rhone is probably the major source for several (trace)-elements to the Gulf of Lions which is located close to the river mouth of the Rhone. (author). 27 refs.; 15 figs.; 17 tabs

  10. Aerosol properties over the western Mediterranean Basin: temporal and spatial variability

    Science.gov (United States)

    Lyamani, H.; Valenzuela, A.; Perez-Ramirez, D.; Toledano, C.; Granados-Muñoz, M. J.; Olmo, F. J.; Alados-Arboledas, L.

    2014-08-01

    This study focuses on the analysis of AERONET aerosol data obtained over Alborán Island (35.95° N, 3.01° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from three nearest AERONET stations and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the aerosol temporal and spatial variations over this scarcely explored region. Aerosol load over Alborán was significantly larger than that reported for open oceanic areas not affected by long-range transport. High aerosol loads over Alborán were mainly associated with desert dust transport from North Africa and occasional advection of anthropogenic fine particles from Italy. The fine particle load observed over Alborán was surprisingly similar to that obtained over the other three nearest AERONET stations in spite of the large differences in local aerosol sources. The results from MAN acquired over the Mediterranean Sea, Black Sea and Atlantic Ocean from July to November 2011 revealed a pronounced predominance of fine particles during the cruise period. Alborán was significantly less influenced by anthropogenic particles than the Black Sea and central and eastern Mediterranean regions during the cruise period. Finally, the longer AERONET dataset from Málaga (36.71° N, 4.4° W, 40 m a.s.l.), port city in southern Spain, shows that no significant changes in columnar aerosol loads since the European Directive on ship emissions was implemented in 2010 were observed over this site.

  11. Thermal-rheological structure of the lithosphere beneath two types of basins in eastern and western China

    Institute of Scientific and Technical Information of China (English)

    王良书; 李成; 刘福田; 李华; 卢华复; 刘绍文

    2000-01-01

    After calculating thermal-rheological properties of the lithosphere in the Northern Jiangsu basin, the Bohaiwan basin as well as the Jiyang depression in the east and Tarim basin in the west of China, this paper analyzes the relationship between thermal-rheological structures and tectonic evolution of the two types of basins. The results show that the thermal-rheoiogical structures of the lithosphere directly reflect the dynamic processes. Under different dynamic environments, the style of basin formation and the differences in basin evolution are closely related to the dynamic properties of the lithosphere indicated by thermal-rheological structures.

  12. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji–Tire model

    OpenAIRE

    Liu, Y.; F. Tian; Hu, H; Sivapalan, M.

    2014-01-01

    This paper presents a historical socio-hydrological analysis of the Tarim River basin (TRB), Xinjiang Uyghur Autonomous Region, in Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human–water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human–water system in...

  13. Molecular Indicators of the Supply of Marine and Terrigenous Organic Matter to a Pleistocene Organic-Matter–Rich Layer in the Alboran Basin (Western Mediterranean Sea)

    OpenAIRE

    Rinna, J.; Hauschildt, M.; J. Rullkötter

    1999-01-01

    The organic matter in sediment series across two organic-matter–rich layers from Ocean Drilling Program Hole 977A drilled in the Alboran Basin of the Western Mediterranean Sea has been characterized by organic geochemical methods. Organic carbon contents reached more than 2% in the organic-matter–rich layer and was ~1% in the background sediment under and overlying it. Molecular compositions of the extractable bitumens in the organic-matter–rich layer for a wide range of compound ...

  14. New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean

    OpenAIRE

    Gorini, Christian; Montadert, Lucien; Rabineau, Marina

    2015-01-01

    International audience Through several examples we show that following sea-level fall and marginal erosion during the Messinian salinity crisis (MSC), clastic inputs into the eastern and western Mediterranean Sea are not distributed evenly in space and time but are mainly limited to the lower section of the Messinian salinity crisis depositional megasequence. Significant similarities around the basin allow us to propose a Mediterranean Messinian salinity crisis depositional episode that ca...

  15. Middle to late Cenozoic basin evolution in the western Alborz Mountains: Implications for the onset of collisional deformation in northern Iran

    OpenAIRE

    Guest, Bernard; Horton, Brian K.; Axen, Gary J.; Hassanzadeh, Jamshid; MCINTOSH, William C.

    2007-01-01

    Oligocene-Miocene strata preserved in synclinal outcrop belts of the western Alborz Mountains record the onset of Arabia-Eurasia collision-related deformation in northern Iran. Two stratigraphic intervals, informally named the Gand Ab and Narijan units, represent a former basin system that existed in the Alborz. The Gand Ab unit is composed of marine lagoonal mudstones, fluvial and alluvial-fan clastic rocks, fossiliferous Rupelian to Burdigalian marine carbonates, and basalt flows yielding ^...

  16. The impact of Outer Western Carpathian nappe tectonics on the recent stress-strain state in the Upper Silesian Coal Basin (Moravosilesian Zone, Bohemian Massif)

    Czech Academy of Sciences Publication Activity Database

    Ptáček, Jiří; Grygar, R.; Koníček, Petr; Waclawik, P.

    2012-01-01

    Roč. 63, č. 1 (2012), s. 3-11. ISSN 1335-0552 R&D Projects: GA ČR GA105/08/1625 Institutional research plan: CEZ:AV0Z30860518 Keywords : Variscan orogeny * Upper Silesian Coal Basin * recent stress fields * Outer Western Carpathians * paleostress Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.143, year: 2012 http://versita.metapress.com/content/0326174t34663755/

  17. Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: the Tertiary Piedmont Basin (Alpine domain, NW Italy)

    OpenAIRE

    Carrapa, B.; Bertotti, G.; Krijgsman, W.

    2003-01-01

    The Oligocene to Miocene Tertiary Piedmont Basin (TPB) is located in the NW part of Italy at the junction between the Apennine and the Alpine thrust belts. The position of the TPB on top of the Alpine/Apennine Orogen poses fundamental questions as to the tectonics of the basin subsidence. Having undergone little deformation, the TPB sediments provide an insight into the stress regime and rotations in the kinematically very complex area surrounding the basin itself. In this study we integrate ...

  18. The first deep heat flow determination in crystalline basement rocks beneath the Western Canadian Sedimentary Basin

    Science.gov (United States)

    Majorowicz, Jacek; Chan, Judith; Crowell, James; Gosnold, Will; Heaman, Larry M.; Kück, Jochem; Nieuwenhuis, Greg; Schmitt, Douglas R.; Unsworth, Martyn; Walsh, Nathaniel; Weides, Simon

    2014-05-01

    Heat flow (Q) determined from bottom-hole temperatures measured in oil and gas wells in Alberta show a large scatter with values ranging from 40 to 90 mW m-2. Only two precise measurements of heat flow were previously reported in Alberta, and were made more than half a century ago. These were made in wells located near Edmonton, Alberta, and penetrated the upper kilometre of clastic sedimentary rocks yielding heat flows values of 61 and 67 mW m-2 (Garland & Lennox). Here, we report a new precise heat flow determination from a 2363-m deep well drilled into basement granite rocks just west of Fort McMurray, Alberta (the Hunt Well). Temperature logs acquired in 2010-2011 show a significant increase in the thermal gradient in the granite due to palaeoclimatic effects. In the case of the Hunt Well, heat flow at depths >2200 m is beyond the influence of the glacial-interglacial surface temperatures. Thermal conductivity and temperature measurements in the Hunt Well have shown that the heat flow below 2.2 km is 51 mW m-2 (±3 mW m-2), thermal conductivity measured by the divided bar method under bottom of the well in situ like condition is 2.5 W m-1 K-1, and 2.7 W m-1 K-1 in ambient conditions), and the geothermal gradient was measured as 20.4 mK m-1. The palaeoclimatic effect causes an underestimate of heat flow derived from measurements collected at depths shallower than 2200 m, meaning other heat flow estimates calculated from basin measurements have likely been underestimated. Heat production (A) was calculated from spectral gamma recorded in the Hunt Well granites to a depth of 1880 m and give an average A of 3.4 and 2.9 μW m-3 for the whole depth range of granites down to 2263 m, based on both gamma and spectral logs. This high A explains the relatively high heat flow measured within the Precambrian basement intersected by the Hunt Well; the Taltson Magmatic Zone. Heat flow and related heat generation from the Hunt Well fits the heat flow-heat generation

  19. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    Science.gov (United States)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  20. Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin from R/Vs GORIZONT and OKEANOGRAF, 1960 - 1969 (NODC Accession 0074609)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, Silicate, Nitrite, pH and Alkalinity data collected in the Black Sea, Tyrrhenian Sea and Western Basin of the...

  1. Origin and accumulation mechanisms of petroleum in the Carboniferous volcanic rocks of the Kebai Fault zone, Western Junggar Basin, China

    Science.gov (United States)

    Chen, Zhonghong; Zha, Ming; Liu, Keyu; Zhang, Yueqian; Yang, Disheng; Tang, Yong; Wu, Kongyou; Chen, Yong

    2016-09-01

    The Kebai Fault zone of the West Junggar Basin in northwestern China is a unique region to gain insights on the formation of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks are widespread in the Kebai Fault zone and consist of basalt, basaltic andesite, andesite, tuff, volcanic breccia, sandy conglomerate and metamorphic rocks. The volcanic oil reservoirs are characterized by multiple sources and multi-stage charge and filling history, characteristic of a complex petroleum system. Geochemical analysis of the reservoir oil, hydrocarbon inclusions and source rocks associated with these volcanic rocks was conducted to better constrain the oil source, the petroleum filling history, and the dominant mechanisms controlling the petroleum accumulation. Reservoir oil geochemistry indicates that the oil contained in the Carboniferous volcanic rocks of the Kebai Fault zone is a mixture. The oil is primarily derived from the source rock of the Permian Fengcheng Formation (P1f), and secondarily from the Permian Lower Wuerhe Formation (P2w). Compared with the P2w source rock, P1f exhibits lower values of C19 TT/C23 TT, C19+20TT/ΣTT, Ts/(Ts + Tm) and ααα-20R sterane C27/C28 ratios but higher values of TT C23/C21, HHI, gammacerane/αβ C30 hopane, hopane (20S) C34/C33, C29ββ/(ββ + αα), and C29 20S/(20S + 20R) ratios. Three major stages of oil charge occurred in the Carboniferous, in the Middle Triassic, Late Triassic to Early Jurassic, and in the Middle Jurassic to Late Jurassic periods, respectively. Most of the oil charged during the first stage was lost, while moderately and highly mature oils were generated and accumulated during the second and third stages. Oil migration and accumulation in the large-scale stratigraphic reservoir was primarily controlled by the top Carboniferous unconformity with better porosity and high oil enrichment developed near the unconformity. Secondary dissolution

  2. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available Holocene sequences in the humid tropical region of Kerala, South-western (SW India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The

  3. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene

    Science.gov (United States)

    Padmalal, Damodaran; Limaye, Ruta B.; S., Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G.

    2016-01-01

    Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic—rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub—coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon—lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0–3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of

  4. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Tung Chen

    2010-01-01

    Full Text Available Growth strata analysis is an useful tool in understanding kinematics and the evolution of active faults as well as the close relationship between sedimentation and tectonics. Here we present the Shanchiao Fault as a case study which is an active normal fault responsible for the formation of the 700-m-thick late Quaternary deposits in Taipei Basin at the northern tip of the Taiwan mountain belt. We compiled a sedimentary record, particularly the depositional facies and their dated ages, at three boreholes (SCF-1, SCF-2 and WK-1, from west to east along the Wuku Profile that traverses the Shanchiao Fault at its central segment. By incorporating the global sea level change curve, we find that thickness changes of sediments and changes of depositional environments in the Wuku area are in a good agreement with a rapid sea level rise since the Last Glacial Maximum (LGM of about 23 ka. Combining depositional facies changes and their ages with their thickness, we are able to introduce a simple back-stripping method to reconstruct the evolution of growing strata across the Shanchiao Fault since the LGM. We then estimate the vertical tectonic slip rate since 23 ka, which exhibits 2.2 mm yr-1 between SCF-2 and WK-1 and 1.1 mm yr-1 between SCF-1 and SCF-2. We also obtain the Holocene tectonic subsidence rate of 2.3 mm yr-1 at WK-1 and 0.9 mm yr-1 at SCF-2 since 8.4 ka. We thus conclude that the fault zone consists of a high-angle main fault to the east between SCF-2 and WK-1 and a western lower-angle branch fault between SCF-1 and SCF-2, resembling a tulip structure developed under sinistral transtensional tectonism. We find that a short period of 600-yr time span in 9 - 8.4 ka shows important tectonic subsidence of 7.4 and 3.3 m for the main and branch fault, respectively, consistent with possible earthquake events proposed by previous studies during that time. A correlation between geomorphology and subsurface geology in the Shanchiao Fault zone shows

  5. Forecasting database for the tsunami warning center for the western Mediterranean and North-East Atlantic basins

    Science.gov (United States)

    Gailler, A.; Hebert, H.; Loevenbruck, A.; Hernandez, B.

    2011-12-01

    Improvements in the availability of sea-level observations and advances in numerical modeling techniques are increasing the potential for tsunami warnings to be based on numerical model forecasts. Numerical tsunami propagation and inundation models are well developed, but they present a challenge to run in real-time, partly due to computational limitations and also to a lack of detailed knowledge on the earthquake rupture parameters. A first generation model-based tsunami prediction system is being developed as part of the French Tsunami Warning Center that will be operational by mid 2012. It involves a pre-computed unit source functions database (i.e., a number of tsunami model runs that are calculated ahead of time and stored) corresponding to tsunami scenarios generated by a source of seismic moment 1.75E+19 N.m with a rectangular fault 25 km by 20 km in size and 1 m in slip. The faults of the unit functions are placed adjacent to each other, following the discretization of the main seismogenic faults bounding the western Mediterranean and North-East Atlantic basins. An authomatized composite scenarios calculation tool is implemented to allow the simulation of any tsunami propagation scenario (i.e., of any seismic moment). The strategy is based on linear combinations and scaling of a finite number of pre-computed unit source functions. The number of unit functions involved varies with the magnitude of the wanted composite solution and the combined wave heights are multiplied by a given scaling factor to produce the new arbitrary scenario. Uncertainty on the magnitude of the detected event and inaccuracy on the epicenter location are taken into account in the composite scenarios calculation. For one tsunamigenic event, the tool produces finally 3 warning maps (i.e., most likely, minimum and maximum scenarios) together with the rough decision matrix representation. A no-dimension code representation is chosen to show zones in the main axis of energy at the basin

  6. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    Science.gov (United States)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  7. Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene.

    Science.gov (United States)

    Kumaran, Navnith K P; Padmalal, Damodaran; Limaye, Ruta B; S, Vishnu Mohan; Jennerjahn, Tim; Gamre, Pradeep G

    2016-01-01

    Holocene sequences in the humid tropical region of Kerala, South-western (SW) India have preserved abundance of organic-rich sediments in the form of peat and its rapid development in a narrow time frame towards Middle Holocene has been found to be significant. The sub-coastal areas and flood plains of the Greater Pamba Basin have provided palaeorecords of peat indicating that the deposits are essentially formed within freshwater. The combination of factors like stabilized sea level and its subsequent fall since the Middle Holocene, topographic relief and climatic conditions led to rapid peat accumulation across the coastal lowlands. The high rainfall and massive floods coupled with a rising sea level must have inundated > 75% of the coastal plain land converting it into a veritable lagoon-lake system that eventually led to abrupt termination of the forest ecosystem and also converted the floodplains into peatland where accumulation of peat almost to 2.0-3.0 m thickness in coastal lowlands and river basins during the shorter interval in the Middle Holocene. Vast areas of the coastal plains of Kerala have been converted into carbon rich peatland during the Middle Holocene and transforming the entire coastal stretch and associated landforms as one of the relatively youngest peatlands in the extreme southern tip of India. Unlike the uninterrupted formation of peatlands of considerable extent during the Holocene in Southeast Asia, the south Peninsular Indian region has restricted and short intervals of peatlands in the floodplains and coastal lowlands. Such a scenario is attributed to the topographic relief of the terrain and the prevailing hydrological regimes and environmental conditions as a consequence of monsoon variability since Middle Holocene in SW India. Considering the tropical coastal lowlands and associated peatlands are excellent repositories of carbon, they are very important for regional carbon cycling and habitat diversity. The alarming rate of land

  8. Subsidence, stress regime and rotation(s) of a tectonically active sedimentary basin within the western Alpine Orogen: the Tertiary Piedmont Basin (Alpine domain, NW Italy)

    NARCIS (Netherlands)

    Carrapa, B.; Bertotti, G.; Krijgsman, W.

    2003-01-01

    The Oligocene to Miocene Tertiary Piedmont Basin (TPB) is located in the NW part of Italy at the junction between the Apennine and the Alpine thrust belts. The position of the TPB on top of the Alpine/Apennine Orogen poses fundamental questions as to the tectonics of the basin subsidence. Having und

  9. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.

    Directory of Open Access Journals (Sweden)

    Lisa L Robbins

    Full Text Available Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  10. A new impulse-stage sand fracturing technology and its pilot application in the western Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Bin Qi

    2015-03-01

    Full Text Available A better placement of proppants has been always the goal pursued in sand fracturing in order to get longer effective fractures and higher flow conductivity. However, it is always difficult to achieve satisfactory effects by conventional processes. On the basis of theoretical analysis and simulation with FracproPT software, basic experiments, and innovative physical modeling experiment, a new impulse-stage fracturing process has been developed by combining a special pumping process with fiber, liquid and other auxiliary engineering means. Compared with conventional fracturing, the open seepage channel created by the new fracturing process has an obvious edge in effective fracture length and flow conductivity. Moreover, the open seepage channel can also improve fracture cleanliness and reduce pressure loss in artificial fractures, thus reaching the goal of prolonging the single-well production time and maximizing productivity. After the research on principles and optimal design of this new process, on-site pilot test and detailed post-fracturing evaluation were conducted. The results indicated that (1 the new process is highly operable and feasible; (2 compared with the adjacent wells with similar geological conditions, the proppant' cost is reduced by 44%–47%, the ratio of effective fracture length to propped fracture length is increased by about 16%, the fracturing fluid recovery rate is up to 63% after 18 h in the test, and the normalized production is 1.9–2.3 times that of the adjacent wells; and (3 the new process can significantly lower the cost and enhance production. The process has a broad application prospect in shallow-middle sand gas reservoirs and shale gas reservoirs in western Sichuan Basin.

  11. Evolution of a Permian Arid Lake System, Upper Pedra de Fogo Formation, Western Border of the Parnaiba Basin

    Directory of Open Access Journals (Sweden)

    Luiz Saturnino de Andrade

    2014-12-01

    Full Text Available Stratigraphic and facies analysis in the Filadélfia region, TO, BR, at the western of the Parnaíba Basin, allowed redefine the paleoenvironment of the upper portion of the Pedra de Fogo Formation of Permian age. The studied deposits are a series of approximately 100 m thick, predominantly siliciclastic, with subordinate carbonates and evaporites, where were defined 21 sedimentary facies that could be grouped into six facies associations (AF: AF1 Lacustrine with ephemeral river deposits; AF2 Storm wave-influenced lake deposits; AF3 Continental sabkha deposits; AF4 Central lake deposits; AF5 Eolian dunes field deposits; and AF6 Lake/oasis deposits with inunditos. These associations indicate that during Permian, an extensive lacustrine arid system developed adjacent to eolian dunes fields and continental sabkha, as well as with contributions from ephemeral rivers. Fluvial incursions into lakes propitiated the formation of suspension lobes and sheet flows (AF1. Sabkha plains (AF3 were formed in the marginal portions of the lake that eventually were influenced by storms waves (AF2, while central zone were site of intense pelitic deposition (AF4. The low supply of eolian sand in this system resulted in the formation of restricted dune fields (AF5, with development of interdune lakes (oasis, where proliferating giant ferns, sporadically flooded by ephemeral rivers (AF6. The facies associations data, corroborated by the paleogeography of the region during the Late Permian, indicate that settling of the top part of the Pedra de Fogo Formation was laid during a hot and arid climate.

  12. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios.

    Science.gov (United States)

    Yen, Haw; White, Michael J; Arnold, Jeffrey G; Keitzer, S Conor; Johnson, Mari-Vaughn V; Atwood, Jay D; Daggupati, Prasad; Herbert, Matthew E; Sowa, Scott P; Ludsin, Stuart A; Robertson, Dale M; Srinivasan, Raghavan; Rewa, Charles A

    2016-11-01

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation. PMID:27387796

  13. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian Basin surface waters are undersaturated with respect to aragonite

    Science.gov (United States)

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsava, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  14. The roles of ENSO on the occurrence of abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin

    Directory of Open Access Journals (Sweden)

    N. K. W. Cheung

    2006-01-01

    Full Text Available The abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin during El Niño and La Niña events are studied. Temporal and spatial variations of these anomalous tracks under different phases of ENSO are shown. The anomalies of the pressure field in relation to ENSO circulation for the occurrence of the abruptly recurving cyclone tracks are investigated using fuzzy method. These are supplemented by wind field analyses. It is found that the occurrence of recurving-left (RL and recurving-right (RR tropical cyclones under the modification of the steering currents, including the re-adjustment of the westerly trough, the expansion or contraction of the sub-tropical high pressure, the intensifying easterly flow and the strengthening of the cross-equatorial flow, can be in El Niño or La Niña events. Evidently, there is a higher chance of occurrence of anomalous tropical cyclone trajectories in El Niño rather than La Niña events, but there is not any pronounced spatial pattern of anomalous tropical cyclone tracks. By analyzing the pressure-field, it is seen RL (RR tropical cyclones tend to occur when the subtropical high pressure is weak (strong in El Niño and La Niña events. More importantly, how the internal force of tropical cyclones changed by the steering current, which relies upon the relative location of tropical cyclones to the re-adjustment of the weather systems, shows when and where RL and RR tropical cyclones occur in El Niño and La Niña events.

  15. Holocene palaeo-environments on the western coast of the Nile Delta: local and basin-wide forcing factors

    Science.gov (United States)

    Flaux, Clément; Véron, Alain; Marriner, Nick; el-Assal, Mena; Claude, Christelle; Morhange, Christophe

    2014-05-01

    The Canopic branch, which is today either silted up and cultivated or re-used in the modern drainage network, was the main channel for the western Nile Delta during Antiquity. Ancient Canopic flow used to supply the water network on the deltaic margin, including secondary tributaries, the Maryut lake, and irrigation agriculture and urban needs. We present new data obtained from a sediment core taken close to the palaeo-Canopic channel. Lead (Pb) isotopic analyses of bulk sediments, together with sedimentology, macro- and micro-fauna assemblages, magnetic susceptibility and radiocarbon dates provide evidence for environmental changes at the Canopic mouth in addition to changes in Nile sediment sources during the last 6000 years. Alternation of estuarine to lagoonal and peaty biofacies have recorded stages of transgression and progradation. 206Pb/207Pb analyses suggest a change in dominant sediment load from the White Nile to Blue Nile between 6000 and 5000 years cal. BP. The dataset is then compared and contrasted with previous studies, including: (1) a dense grid of dated bio-sedimentological cores data from the northwestern Nile Delta; (2) strontium isotope records of water and sediment fluxes on the delta; and (3) geochemical records from offshore sediment cores. Our analysis attempts to date and discriminate between basin-wide and regional to local forcing agents driving environmental changes at the mouth of the Canopic. The three main factors discussed will include climatic forcing of Nile flow and load changes, relative sea-level variations, and human impacts on the Canopic flow.

  16. Evaluation of Weights of Evidence to Predict Epithermal-Gold Deposits in the Great Basin of the Western United States

    International Nuclear Information System (INIS)

    The weights-of-evidence method provides a simple approach to the integration of diverse geologic information. The application addressed is to construct a model that predicts the locations of epithermal-gold mineral deposits in the Great Basin of the western United States. Weights of evidence is a data-driven method requiring known deposits and occurrences that are used as training sites in the evaluated area. Four hundred and fifteen known hot spring gold-silver, Comstock vein, hot spring mercury, epithermal manganese, and volcanogenic uranium deposits and occurrences in Nevada were used to define an area of 327.4 km2 as training sites to develop the model. The model consists of nine weighted-map patterns that are combined to produce a favorability map predicting the distribution of epithermal-gold deposits. Using a measure of the association of training sites with predictor features (or patterns), the patterns can be ranked from best to worst predictors. Based on proximity analysis, the strongest predictor is the area within 8 km of volcanic rocks younger than 43 Ma. Being close to volcanic rocks is not highly weighted, but being far from volcanic rocks causes a strong negative weight. These weights suggest that proximity to volcanic rocks define where deposits do not occur. The second best pattern is the area within 1 km of hydrothermally altered areas. The next best pattern is the area within 1 km of known placer-gold sites. The proximity analysis for gold placers weights this pattern as useful when close to known placer sites, but unimportant where placers do not exist. The remaining patterns are significantly weaker predictors. In order of decreasing correlation, they are: proximity to volcanic vents, proximity to east-west to northwest faults, elevated airborne radiometric uranium, proximity to northwest to west and north-northwest linear features, elevated aeromagnetics, and anomalous geochemistry. This ordering of the patterns is a function of the quality

  17. A new species of the archaic primate Zanycteris from the late Paleocene of western Colorado and the phylogenetic position of the family Picrodontidae

    Directory of Open Access Journals (Sweden)

    Benjamin John Burger

    2013-10-01

    Full Text Available A new species of an archaic primate (Pleisadapiformes is described based on a maxilla containing the first and second upper molars from the Fort Union Formation, Atwell Gulch Member in northwestern Colorado. The preserved teeth show the unusual dental characteristics of members of the rare and poorly documented Picrodontidae family, including an elongated centrocrista and wide occlusal surface. The new species is placed within the genus Zanycteris (represented by a single specimen from southern Colorado. This placement is based on similarities in regard to the parastyle, curvilinear centrocrista, and wider anterior stylar shelf on the upper molars. However, the new species differs from the only known species of Zanycteris in exhibiting an upper first molar that is 30% larger in area, while retaining a similarly sized upper second molar. Phylogenetic analysis supports the separation of the Picrodontidae family from the Paromomyidae, while still recognizing picrodontids position within Pleisadapiformes. The unusual dental features of the upper molars likely functioned in life as an enhanced shearing surface between the centrocrista and cristid obliqua crests for a specialized diet of fruit. A similar arrangement is found in the living bat Ariteus (Jamaican fig-eating bat, which feeds on fleshy fruit. The new species showcases the rapid diversification of archaic primates shortly after the extinction of the dinosaurs during the Paleocene, and the unusual dental anatomy of picrodontids to exploit new dietary specializations.

  18. A new species of the archaic primate Zanycteris from the late Paleocene of western Colorado and the phylogenetic position of the family Picrodontidae.

    Science.gov (United States)

    Burger, Benjamin John

    2013-01-01

    A new species of an archaic primate (Pleisadapiformes) is described based on a maxilla containing the first and second upper molars from the Fort Union Formation, Atwell Gulch Member in northwestern Colorado. The preserved teeth show the unusual dental characteristics of members of the rare and poorly documented Picrodontidae family, including an elongated centrocrista and wide occlusal surface. The new species is placed within the genus Zanycteris (represented by a single specimen from southern Colorado). This placement is based on similarities in regard to the parastyle, curvilinear centrocrista, and wider anterior stylar shelf on the upper molars. However, the new species differs from the only known species of Zanycteris in exhibiting an upper first molar that is 30% larger in area, while retaining a similarly sized upper second molar. Phylogenetic analysis supports the separation of the Picrodontidae family from the Paromomyidae, while still recognizing picrodontids position within Pleisadapiformes. The unusual dental features of the upper molars likely functioned in life as an enhanced shearing surface between the centrocrista and cristid obliqua crests for a specialized diet of fruit. A similar arrangement is found in the living bat Ariteus (Jamaican fig-eating bat), which feeds on fleshy fruit. The new species showcases the rapid diversification of archaic primates shortly after the extinction of the dinosaurs during the Paleocene, and the unusual dental anatomy of picrodontids to exploit new dietary specializations. PMID:24255808

  19. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  20. Petroleum source rocks of western and central Africa : the examples of the marine Tarfaya Basin, Morocco and the continental Congo Basin, Democratic Republic of Congo

    OpenAIRE

    Sachse, Victoria Frederike

    2011-01-01

    This study comprises newly collected organic geochemical and petrological data on quality, quantity, maturity as well as the depositional environment of various organic matter-rich stratigraphic units in Morocco and the Central Congo Basin, DRC. In addition, 1D modeling was carried out for one locality in northern Morocco (Aït Moussa) and for two wells from the Central Congo Basin to obtain information on burial thermal and maturation history. For the Aït Moussa model, specific bulk kinetic p...

  1. Analysis on metallogenic conditions and prospect of sandstone-type uranium deposits in Longchuan basin western Yunnan

    International Nuclear Information System (INIS)

    The author discusses geotectonics, geomorphologic landscape, and paleoclimate, uranium source, structural pattern and structural division of the Longchuan basin, lithologies and lithofaces of Upper Tertiary, hydrogeology and hydrogeochemistry, concentration of uranium and deep information, compares the above information with that of U-productive Longchuanjiang basin, and analyzes the metallogenic conditions of sandstone-type uranium deposits. It is considered that the tectonic-erosion depressions located on the hanging wall of water-blocking faults in the southeastern uplifted zone of the Longchuan basin, and containing abundant organic matter and carbonaceous matter are the prospective areas for sandstone-type uranium deposits in Longchuan basin

  2. Assessment of continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale of the Piceance Basin, Uinta-Piceance Province, Colorado and Utah, 2016

    Science.gov (United States)

    Hawkins, Sarah J.; Charpentier, Ronald R.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Tom M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phoung A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2016-01-01

    The U.S. Geological Survey (USGS) completed a geology-based assessment of the continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale within the Piceance Basin of the Uinta-Piceance Province (fig. 1). The previous USGS assessment of the Mancos Shale in the Piceance Basin was completed in 2003 as part of a comprehensive assessment of the greater UintaPiceance Province (U.S. Geological Survey Uinta-Piceance Assessment Team, 2003). Since the last assessment, more than 2,000 wells have been drilled and completed in one or more intervals within the Mancos Shale of the Piceance Basin (IHS Energy Group, 2015). In addition, the USGS Energy Resources Program drilled a research core in the southern Piceance Basin that provided significant new geologic and geochemical data that were used to refine the 2003 assessment of undiscovered, technically recoverable oil and gas in the Mancos Shale.

  3. Surface Water Rights in and adjacent to the Closed Basin Project salvage areas : and diversions downstream of Alamosa, Colorado on the Rio Grande

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Closed Basin Project was developed to provide conveyance channels from well fields to the Rio Grande. This report focuses on the 15,200 acre feet of surface...

  4. Fault-block structure and state of stress in the Earth's crust of the Gusinoozersky Basin and the adjacent territory, western Transbaikal region

    Science.gov (United States)

    Lunina, O. V.; Gladkov, A. S.

    2009-01-01

    The geological structure and tectonophysics of the Gusinoozersky Basin—a tectonotype of Mesozoic depressions in the western Transbaikal region—is discussed. New maps of the fault-block structure and state of stress in the Earth’s crust of the studied territory are presented. It is established that the Gusinoozersky Basin was formed in a transtensional regime with the leading role of extension oriented in the NW-SE direction. The transtensional conditions were caused by paths of regional tension stresses oriented obliquely to the axial line of the basin, which created a relatively small right-lateral strike-slip component of separation (in comparison with normal faulting) along the NE-trending master tectonic lines. The widespread shear stress tensors of the second order with respect to extension are related to inhomogeneities in the Earth’s crust, including those that are arising during displacement of blocks along normal faults. Folding at the basin-range boundary was brought about by gravity effects of normal faulting. The faults and blocks in the Gusinoozersky Basin remained active in the Neogene and Quaternary; however, it is suggested that their reactivation was a response to tectonic processes that occurred in the adjacent Baikal Rift Zone rather than to the effect of a local mantle source.

  5. Sea-floor undulations formation by turbidity flow in the Adra prodeltaic system, western Mediterranean Basin: comparison between numerical simulation and real data

    Science.gov (United States)

    Fernández-Salas, Luis Miguel; Barcenas, Patricia; Macias, Jorge

    2016-04-01

    Numerical simulation of turbidity currents are used to study the formation of the seafloor undulations in the Adra prodeltaic system, western Mediterranean basin. A series of elongated and subparallel bathymetric undulations are distinguished in the foreset-bottomsets domain of the Holocene pro-deltaic wedge associated with the Adra river. In this study, multibeam data and surficial sediment samples have been used in comparison with numerical simulation to propose an evolutionary model of the seafloor undulations. Numerical model suggests that the depositional basin slope gradient is one of the factors more influent in the seafloor undulations formation. The simulations allowed to observe as seafloor undulations are approximately in phase with the undulations of the turbidity layer. Therefore, undulations are associated with Froude-supercritical flow. The upslope and downslope undulations boundaries are limited by a hydraulic jump where the flow makes a conversion from supercriticial flow (Fr>1) to subcritical flow (Frproject TESELA (P11-RNM7069)

  6. Contributions to the phytocoenological study of pure european beech forests in Oraştie river basin (central-western Romania

    Directory of Open Access Journals (Sweden)

    Petru BURESCU

    2012-05-01

    Full Text Available În the current paper we present a phytocoenologic study of the phytocoenoses of the association Festuco drymejaeFagetum Morariu et al. 1968 (Syn.: Fagetum sylvaticae transylvaticum facies with Festuca drymeja I. Pop et al. 1974, found in the pure European beech forests of the Orăştie river basin, lying in the central-western part of Romania. The characterisation of the association under analysis as well as the presentation of the synthetic table have been done byselecting the most representative relevées of pure European beech forests belonging to the Orăştie river basin. The phytocoenoses of these beech forests were analysed in terms of physiognomy and floristic composition, life forms spectrum, floristic elements, and ecological indices.

  7. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES. Semi-Annual Technical Progress Report April 6, 2000 - October 5, 2002

    International Nuclear Information System (INIS)

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m3) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m3) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing, vertical, field wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the third project year (April 6 through October 5, 2002). This work included capillary pressure/mercury injection analysis, scanning electron microscopy, and pore casting on selected samples from Cherokee and Bug fields, Utah. The diagenetic fabrics and porosity types found at these fields are indicators of reservoir flow capacity, storage capacity, and potential for enhanced oil recovery via horizontal drilling. The reservoir quality of Cherokee and Bug fields has been affected by multiple generations of dissolution, anhydrite plugging, and

  8. Multi-phase Uplift of the Indo-Burman Ranges and Western Thrust Belt of Minbu Sub-basin (West Myanmar): Constraints from Apatite Fission Track Data

    Science.gov (United States)

    Zhang, P.; Qiu, H.; Mei, L.

    2015-12-01

    The forearc regions in active continental margins are important keys to analysis geodynamic processes such as oceanic crust oblique subduction, mechanism of subduction zone, and sediments recycling. The West Myanmar, interpreted as forearc silver, is the archetype example of such forearc regions subordinate to Sunda arc-trench system, and is widely debated when and how its forearc regions formed. A total of twenty-two samples were obtained from the Indo-Burman Ranges and western thrust belt of Minbu Sub-basin along Taungup-Prome Road in Southwestern Myanmar (Figure 1), and five sandstone samples of them were performed at Apatite to Zircon, Inc. Three samples (M3, M5, and M11) collected from Eocene flysch and metamorphic core at the Indo-Burman Ranges revealed apatite fission track (AFT) ages ranging from 19 to 9 Ma and 6.5 to 2 Ma. Two samples (M20 and M21) acquired from the western thrust belt of Minbu Sub-basin yielded AFT ages ranging from 28 to 13.5 Ma and 7.5 to 3.5 Ma. Time-temperature models based on AFT data suggest four major Cenozoic cooling episodes, Late Oligocene, Early to Middle Miocene, Late Miocene, and Pliocene to Pleistocene. The first to third episode, models suggest the metamorphic core of the Indo-Burman Ranges has experienced multi-phase rapidly uplifted during the early construction of the forearc regions. The latest episode, on which this study focused, indicated a fast westward growth of the Palaeogene accretionary wedge and a eastward propagation deformation of folding and thrusting of the western thrust belt of Minbu Sub-basin. We argued that above multi-phase uplifted and deformation of the forearc regions were results of India/West Burma plate's faster oblique convergence and faster sedimentation along the India/Eurasia suture zone.

  9. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    Science.gov (United States)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect

  10. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques; SEMIANNUAL

    International Nuclear Information System (INIS)

    This report covers research activities for the second half of the second project year (October 6, 2001, through April 5, 2002). This work includes description and analysis of cores, correlation of geophysical well logs, reservoir mapping, petrographic description of thin sections, cross plotting of permeability and porosity data, and development of horizontal drilling strategies for the Little Ute and Sleeping Ute fields in Montezuma County, Colorado. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible compartmentalization, within these fields. This study utilizes representative core, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells

  11. Combined Microfacies-Log-Analysis of Cambrian and Ordovician Carbonate Rocks (Upper Cambrian, Western Hills, Bejing; TZ-162 well, Tarim Basin, Western China)

    OpenAIRE

    Wang, Anjia

    2014-01-01

    The Tarim Basin in northwestern China is the second largest petroleum field in China. The reservoirs are predominantly Palaeozoic (Devonian, Ordovician, and Cambrian) carbonate rocks buried at a depth of 5000 m – 6000 m. Ordovician carbonate rocks are one of the main topics in recent hydrocarbon drilling projects. This great depth and a complex inhomogeneous geological and tectonic development results in many problems in hydrocarbon exploration and production. The Ordovician sequence is do...

  12. Nature of the crust in the Laxmi Basin (14°-20°N), western continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Rao, D.G.; Sar, D.

    stretched continental crust, in which magmatic bodies have been emplaced, whereas Panikkar Ridge remains less altered stretched continental crust. The crust of the Laxmi Basin is mostly thinner than crust under Laxmi Ridge and continental margin. In addition...

  13. New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean

    Science.gov (United States)

    Gorini, Christian; Montadert, Lucien; Rabineau, Marina

    2015-04-01

    Through several examples we show that following sea-level fall and marginal erosion during the Messinian salinity crisis (MSC), clastic inputs into the eastern and western Mediterranean Sea are not distributed evenly in space and time but are mainly limited to the lower section of the Messinian salinity crisis depositional megasequence. Significant similarities around the basin allow us to propose a Mediterranean Messinian salinity crisis depositional episode that can be divided into two seismic megasequences: the Messinian lower megasequence (MLM) and the Messinian upper megasequence (MUM). Their distinctive seismic facies correspond to systems tracts deposited during three main stages that represent a complete sea level cycle. (1) A falling stage systems tract including mass transport deposits and forced regressive clinoforms deposited in in the early part of the falling stage, and related to the increasing rate of relative sea level fall. This stage is characterized by a marked shift in the depocenter towards the deep basins. (2) An early lowstand characterized by massive clastic inputs from major Messinian rivers (the Rhone, Nile, and Antalya Gulf rivers) or smaller river systems (offshore south Lebanon). These clastics were deposited in an oversaturated basin, as evidenced by the interfingering chaotic and transparent seismic facies of the Messinian lower megasequence (MLM). (3) A late lowstand, starting with rapid deposition of massive halite, with no detrital inputs into the deep basin. The upper part of the evaporites clearly onlaps the Messinian erosional surface at the margins and is evidence for a transition between a late lowstand stage and an early transgressive stage. These deposits belong to the Messinian upper megasequence (MUM). We interpret the transition between the two megasequences as the peak of the "salinity" crisis, the end of the relative sea level fall, and the maximum dispersal of sands into the deep Mediterranean basins.

  14. Impacts of satellite-based precipitation datasets on rainfall-runoff modeling of the Western Amazon basin of Peru and Ecuador

    Science.gov (United States)

    Zubieta, Ricardo; Getirana, Augusto; Espinoza, Jhan Carlo; Lavado, Waldo

    2015-09-01

    Satellites are an alternative source of rainfall data used as input to hydrological models in poorly gauged or ungauged regions. They are also useful in regions with highly heterogeneous precipitation, such as the tropical Andes. This paper evaluates three satellite precipitation datasets (TMPA, CMORPH, PERSIANN), as well as a dataset based only on rain gauge data (HYBAM), and their impacts on the water balance of the Western Amazon basin, a region where hydrological modeling and hydrological forecasting are poorly developed. These datasets were used as inputs in the MGB-IPH hydrological model to simulate streamflows for the 2003-2009 period. The impacts of precipitation on model parameterization and outputs were evaluated in two calibration experiments. In Experiment 1, parameter sets were separately defined for each catchment; in Experiment 2, a single parameter set was defined for the entire basin. TMPA shows overestimated precipitation over the northern region, while CMORPH and PERSIANN significantly underestimate rainfall in the same that region and along the Andes. TMPA and CMORPH lead to similar estimates of mean evapotranspiration (∼2 mm/day) for different regions along the entire basin, while PERSIANN is the least accurate (∼0.5 mm/day). Overall, better scores for streamflow simulations are obtained with Experiment 1 forced by HYBAM and TMPA. Nevertheless, results using the three satellite datasets indicate inter-basin differences, low performance in the northern and high in the southern regions. Low model performances are mainly related to scale issues and forcing errors in small basins over regions that present very low rainfall seasonality.

  15. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    Science.gov (United States)

    Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc

    2016-04-01

    Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow

  16. Palaeomagnetic secular variation and relative field intensity in pleistocene lacustrine sediments in the U.S. great basin as chronologic tools for dating climate in western north America

    International Nuclear Information System (INIS)

    Complete text of publication follows. Since the end of the 19th Century when first it was reported that large pluvial lakes formed during the Pleistocene in the U.S. Great Basin (Russell, 1885), the sediments deposited by some of those lakes have been used to study climate in western North America back about 3 m.y. (Smith et al., 1983, Morrison, 1991: many others). That research includes mineralogic, isotopic, geochemical, and sedimentologic data; radiometric dates; lacustrine fossils; volcanic ashes; and a record of long-term behaviour (secular variation) and excursions (Pringle Falls, Laschamp, and Mono Lake) of the palaeomagnetic field. In an attempt to establish an accurate chronology for the palaeoclimate in western North America during the past approximately 50,000 years, I will compare the records of palaeomagnetic directions for Pyramid Lake (the remnant of Lake Lahontan in northwestern Nevada)(Benson et al., 2008), Mono Lake (the remnant of Lake Russell in east-central California)(Lund et al., 1988; Zimmerman et al., 2006), and Searles Lake in the southeastern Great Basin (Liddicoat et al., 2008) with other records of palaeomagnetic field behaviour, especially the relative palaeomagnetic field intensity for the North and South Atlantic oceans (Laj et al., 2000; Stoner et al., 2004). This is possible because large- and small-scale fluctuations occur in the records that are distinctive and often are common to all.

  17. Geodetic vs. Geologic Measures of Fault Slip Rates in the Northern Walker Lane, Basin and Range Province, Western United States

    Science.gov (United States)

    Hammond, W. C.; Kreemer, C.; Blewitt, G.

    2008-05-01

    Quantifying faults slip rates and styles is an important objective in the study of crustal deformation. Fault slip rates are used to quantify seismic hazard associated with active faults, and are an important input into the U.S.G.S. seismic hazard maps. However, when multiple types of data (e.g. geologic, seismic and geodetic) are used to measure slip rates, results from the different techniques can be corroborative, complementary, or in direct conflict. Geologic methods provide some of the only constraints on slip rates of individual faults over hundreds to tens of thousands of years, time scales that are significant with respect to observed deformation patterns, and likely representative of modern hazard. On the other hand geodetic measurements provide strong constraints on the medium to long spatial wavelength (>50 km) budgets of deformation, and on geographic changes in deformation style, and have the potential to provide geographically complete measurements of surface deformation. However, geodetic measurements can be influenced by earthquake cycle effects, e.g. owing to interseismic fault locking and postseismic relaxation, which limit their ability to resolve individual slip rates, especially in complex systems with many closely spaced faults. The northern Walker Lane (NWL), in the western Basin and Range Province (BRP) of the United States, is an example of a complex system of dextral, normal and sinestral faults that work together to accommodate approximately 10 mm/yr of relative motion between the Sierra Nevada/Great Valley block and the central part of the BRP. To exploit the strengths of each dataset, we have built a detailed model of NWL crustal blocks and are using geodetic and geologic data to resolve patterns of crustal deformation. We use a block modeling technique that incorporates the strengths of both targeted geologic investigations of slip rates on individual faults and longer wavelength constraints offered by GPS geodesy. To constrain these

  18. Eco-environmental problems and effective utilization of water resources in the Kashi Plain, western Terim Basin, China

    Science.gov (United States)

    Lin, Nian-Feng; Tang, Jie; Han, Feng-Xiang

    2001-02-01

    Since ancient times, water resources, mainly from melting snow in the high mountains, have nourished a large area of an oasis in the Kashi Plain in the western Terim Basin, China. In the last half-century, however, the rapid growth of population and the overexploitation of water, soil, and biological resources have led to drought, salinization, and desertification in the area, and consequently have hindered the development of sustainable agriculture. In this study, groundwater reservoirs with sustainable water supplies equivalent to 44.65×108 m3/year were identified, which has made it possible to implement several projects in the area to improve the ecological and agricultural environment. Three strategies are proposed for the integrated development and management of both surface-water and groundwater resources in the area. Résumé. Depuis des temps anciens, les ressources en eaux, provenant surtout de la fonte des neiges en montagne, ont alimenté une large part d'une oasis de la plaine de Kashi, dans le bassin occidental de Terim (Chine). Au cours des derniers cinquante ans, toutefois, l'accroissement rapide de la population et la surexploitation de l'eau, des sols et des ressources biologiques ont provoqué la sécheresse, la salinisation et la désertification de la région cela a eu pour conséquence d'entraver le développement d'une agriculture durable. Cette étude identifie les réserves en eau souterraine, susceptibles de fournir durablement 44,65×108 m3/an, ce qui a permis de réaliser plusieurs projets dans cette région pour améliorer l'environnement écologique et agricole. Trois stratégies sont proposées pour le développement intégré et la gestion simultanée des ressources en eau de surface et en eau souterraine de cette région. Resumen. Los recursos hídricos, procedentes fundamentalmente del deshielo en alta montaña, han nutrido desde tiempo inmemorial una gran área de un oasis situado en las llanuras de Kashi, en la cuenca occidental

  19. Continental pollution in the western Mediterranean basin: vertical profiles of aerosol and trace gases measured over the sea during TRAQA 2012 and SAFMED 2013

    Science.gov (United States)

    Di Biagio, C.; Doppler, L.; Gaimoz, C.; Grand, N.; Ancellet, G.; Raut, J.-C.; Beekmann, M.; Borbon, A.; Sartelet, K.; Attié, J.-L.; Ravetta, F.; Formenti, P.

    2015-08-01

    In this study we present airborne observations of aerosol and trace gases obtained over the sea in the western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) and SAFMED (Secondary Aerosol Formation in the MEDiterranean) campaigns in summer 2012 and 2013. A total of 23 vertical profiles were measured up to 5000 m above sea level over an extended area (40-45° N and 2° W-12° E) including the Gulf of Genoa, southern France, the Gulf of Lion, and the Spanish coast. During TRAQA and SAFMED the study area experienced a wide range of meteorological conditions which favoured pollution export from different sources located around the basin. Also, several events of dust outflows were measured during the campaigns. Observations from the present study show that continental pollution largely affects the western Mediterranean both close to coastal regions and in the open sea as far as ~ 250 km from the coastline. The measured aerosol scattering coefficient varies between ~ 20 and 120 Mm-1, while carbon monoxide (CO) and ozone (O3) mixing ratios are in the range of 60-165 and 30-85 ppbv, respectively. Pollution reaches 3000-4000 m in altitude and presents a very complex and highly stratified structure characterized by fresh and aged layers both in the boundary layer and in the free troposphere. Within pollution plumes the measured particle concentration in the Aitken (0.004-0.1 μm) and accumulation (0.1-1.0 μm) modes is between ~ 30 and 5000-6000 scm-3 (standard cm-3), which is comparable to the aerosol concentration measured in continental areas under pollution conditions. Additionally, our measurements indicate the presence of highly concentrated Aitken layers (10 000-15 000 scm-3) observed both close to the surface and in the free troposphere, possibly linked to the influence of new particle formation (NPF) episodes over the basin.

  20. Western oil-shale development: a technology assessment. Volume 6: oil-shale development in the Piceance Creek Basin and potential water-quality changes

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report brackets the stream quality changes due to pre-mining pumping activites required to prepare oil shale lease Tracts C-a and C-b for modified in situ retorting. The fluxes in groundwater discharged to the surface were identified for Tract C-b in a modeling effort by another laboratory. Assumed fluxes were used for Tract C-a. The quality of the groundwater aquifers of the Piceance Basin is assumed to be that reported in the literature. The changes are bracketed in this study by assuming all premining pumping is discharged to the surface stream. In one case, the pumped water is assumed to be of a quality like that of the upper aquifer with a relatively high quality. In the second case, the pumped water is assumed to come from the lower aquifer. Complete mixing and conservation of pollutants was assumed at sample points at the White River and at Lees Ferry of the Colorado River. A discussion of possible secondary effects of oil shale and coal mining is presented. In addition, a discussion of the uncertainties associated with the assumptions used in this study and alternative uses for the water to prevent stream contamination by oil shale development is provided.

  1. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    Science.gov (United States)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  2. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques. Semi-Annual Technical Progress Report April 6, 2003 - October 5, 2006

    International Nuclear Information System (INIS)

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m3) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m3) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the

  3. Miocene and early Pliocene epithermal gold-silver deposits in the northern Great Basin, western United States: Characteristics, distribution, and relationship to Magmatism

    Science.gov (United States)

    John, D.A.

    2001-01-01

    Numerous important Miocene and early Pliocene epithermal Au-Ag deposits are present in the northern Great Basin. Most deposits are spatially and temporally related to two magmatic assemblages: bimodal basalt-rhyolite and western andesite. These magmatic assemblages are petrogenetic suites that reflect variations in tectonic environment of magma generation. The bimodal assemblage is a K-rich tholeiitic series formed during continental rifting. Rocks in the bimodal assemblage consist mostly of basalt to andesite and rhyolite compositions that generally contain anhydrous and reduced mineral assemblages (e.g., quartz + fayalite rhyolites). Eruptive forms include mafic lava flows, dikes, cinder and/or spatter cones, shield volcanoes, silicic flows, domes, and ash-flow calderas. Fe-Ti oxide barometry indicates oxygen fugacities between the magnetite-wustite and fayalite-magnetite-quartz oxygen buffers for this magmatic assemblage. The western andesite assemblage is a high K calc-alkaline series that formed a continental-margin are related to subduction of oceanic crust beneath the western coast of North America. In the northern Great Basin, most of the western andesite assemblage was erupted in the Walker Lane belt, a zone of transtension and strike-slip faulting. The western andesite assemblage consists of stratovolcanoes, dome fields, and subvolcanic plutons, mostly of andesite and dacite composition. Biotite and hornblende phenocrysts are abundant in these rocks. Oxygen fugacities of the western andesite assemblage magmas were between the nickel-nickel oxide and hematite-magnetite buffers, about two to four orders of magnitude greater than magmas of the bimodal assemblage. Numerous low-sulfidation Au-Ag deposits in the bimodal assemblage include deposits in the Midas (Ken Snyder), Sleeper, DeLamar, Mule Canyon, Buckhorn, National, Hog Ranch, Ivanhoe, and Jarbidge districts; high-sulfidation gold and porphyry copper-gold deposits are absent. Both high- and low

  4. Paleogeography of the upper Paleozoic basins of southern South America: An overview

    Science.gov (United States)

    Limarino, Carlos O.; Spalletti, Luis A.

    2006-12-01

    The paleogeographic evolution of Late Paleozoic basins located in southern South America is addressed. Three major types of basins are recognized: infracratonic or intraplate, arc-related, and retroarc. Intraplate basins (i.e., Paraná, Chaco-Paraná, Sauce Grande-Colorado, and La Golondrina) are floored by continental or quasi-continental crust, with low or moderate subsidence rates and limited magmatic and tectonic activity. Arc-related basins (northern and central Chile, Navidad-Arizaro, Río Blanco, and Calingasta-Uspallata basins and depocenters along Chilean Patagonia) show a very complex tectonic history, widespread magmatic activity, high subsidence rates, and in some cases metamorphism of Late Paleozoic sediments. An intermediate situation corresponds to the retroarc basins (eastern Madre de Dios, Tarija, Paganzo, and Tepuel-Genoa), which lack extensive magmatism and metamorphism but in which coeval tectonism and sedimentation rates were likely more important than those in the intraplate region. According to the stratigraphic distribution of Late Paleozoic sediments, regional-scale discontinuities, and sedimentation pattern changes, five major paleogeographic stages are proposed. The lowermost is restricted to the proto-Pacific and retroarc basins, corresponds to the Mississippian (stage 1), and is characterized by shallow marine and transitional siliciclastic sediments. During stage 2 (Early Pennsylvanian), glacial-postglacial sequences dominated the infracratonic (or intraplate) and retroarc basins, and terrigenous shallow marine sediments prevailed in arc-related basins. Stage 3 (Late Pennsylvanian-Early Cisuralian) shows the maximum extension of glacial-postglacial sediments in the Paraná and Sauce Grande-Colorado basins (intraplate region), whereas fluvial deposits interfingering with thin intervals of shallow marine sediments prevailed in the retroarc basins. To the west, arc-related basins were dominated by coastal to deep marine conditions

  5. A Project for Developing an Original Methodology Intended for Determination of the River Basin/Sub-Basin Boundaries and Codes in Western Mediterranean Basin in Turkey with Perspective of European Union Directives

    Science.gov (United States)

    Gökgöz, Türkay; Ozulu, Murat; Erdoǧan, Mustafa; Seyrek, Kemal

    2016-04-01

    From the view of integrated river basin management, basin/sub-basin boundaries should be determined and encoded systematically with sufficient accuracy and precision. Today basin/sub-basin boundaries are mostly derived from digital elevation models (DEM) in geographic information systems (GIS). The accuracy and precision of the basin/sub-basin boundaries depend primarily on the accuracy and resolution of the DEMs. In this regard, in Turkey, a survey was made for the first time within the scope of this project to identify current situation, problems and needs in General Directorates of State Hydraulic Works, Water Management, Forestry, Meteorology, Combating Desertification and Erosion, which are the major institutions with responsibility and authority. Another factor that determines the accuracy and precision of basin/sub-basin boundaries is the flow accumulation threshold value to be determined at a certain stage according to a specific methodology in deriving the basin/sub-basin boundaries from DEM. Generally, in Turkey, either the default value given by GIS tool is used directly without any geomorphological, hydrological and cartographic bases or it is determined by trial and error. Although there is a system of catchments and rivers network at 1:250,000 scale and a proper method has already been developed on systematic coding of the basin by the General Directorate of State Hydraulic Works, it is stated that a new system of catchments, rivers network and coding at larger scale (i.e. 1:25,000) is needed. In short, the basin/sub-basin boundaries and codes are not available currently at the required accuracy and precision for the fulfilment of the obligations described in European Union (EU) Water Framework Directive (WFD). In this case, it is clear that there is not yet any methodology to obtain such products. However, a series of projects should be completed such that the basin/sub-basin boundaries and codes are the fundamental data infrastructure. This task

  6. Adjustment of the basin-scale circulation at 26° N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the Rapid array

    Directory of Open Access Journals (Sweden)

    S. A. Cunningham

    2009-04-01

    Full Text Available The Rapid instrument array across the Atlantic Ocean along 26° N provides unprecedented monitoring of the basin-scale circulation. A unique feature of the Rapid array is the combination of full-depth moorings with instruments measuring temperature, salinity, pressure time series at many depths with co-located bottom pressure measurements so that dynamic pressure can be measured from surface to bottom. Bottom pressure measurements show a zonally uniform rise (and fall of bottom pressure of 0.015 dbar on a 5 to 10 day time scale, suggesting that the Atlantic basin is filling and draining on a short time scale. After removing the zonally uniform bottom pressure fluctuations, bottom pressure variations at 4000 m depth against the western boundary compensate instantaneously for baroclinic fluctuations in the strength and structure of the deep western boundary current so there is no basin-scale mass imbalance resulting from variations in the deep western boundary current. After removing the mass compensating bottom pressure, residual bottom pressure fluctuations at the western boundary just east of the Bahamas balance variations in Gulf Stream transport. Again the compensation appears to be especially confined close to the western boundary. Thus, fluctuations in either Gulf Stream or deep western boundary current transports are compensated in a depth independent (barotropic manner very close to the continental slope off the Bahamas. In contrast, compensation for variations in wind-driven surface Ekman transport appears to involve fluctuations in both western basin and eastern basin bottom pressures, though the bottom pressure difference fluctuations appear to be a factor of 3 too large, perhaps due to an inability to resolve small bottom pressure fluctuations after removal of larger zonal average, baroclinic, and Gulf Stream pressure components. For 4 tall moorings where time series dynamic height (geostrophic pressure profiles can be estimated from

  7. Balancing Subsurface Restrictions and Resource Access under Conditions of Changing Land Use at the Rulison Underground Nuclear Test Site, Piceance Basin, Colorado, USA

    International Nuclear Information System (INIS)

    Site closure decisions often rely on institutional controls, and one of the requirements of long-term management is monitoring and responding to changes in land use. This challenge is particularly acute for underground nuclear tests, where contaminants occur in mobile fluids (groundwater or natural gas) subject to resource extraction. The Rulison underground nuclear test was conducted in Colorado in 1969 to evaluate the effectiveness of a nuclear detonation at stimulating natural gas production from the low-permeability Williams Fork Formation of the Mesaverde Group. After a period of production testing and surface cleanup, the site was deactivated in 1976, with a subsurface restriction on drilling intrusion within the 40-acre parcel surrounding the nuclear test well. Increasing natural gas exploration activities are causing the U.S. Department of Energy (DOE) to assess if the original site institutional controls remain effective at protecting the public. To support the assessment of institutional controls, a numerical model was developed to simulate the movement of nuclear-test-produced tritiated water in both gas and liquid phases through the subsurface. Uncertainty in geometry of geologic units and in flow and transport properties was included in the model in order to identify the likely system behavior, as well as low-probability but potentially high-consequence behavior. Generally, conservative assumptions were used for many parameter distributions, consistent with the uncertainties inherent in the problem and the desire to err on the side of caution. The Monte Carlo modeling approach allows transport predictions to be understood in a probabilistic context, so that the expected behavior is identified, as well as the unlikely outcomes captured by the tail of the distribution. Model results indicate that tritium migration is not currently expected beyond the existing land restriction, but the model's primary purpose is as a platform for hypothesis testing of the

  8. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    Science.gov (United States)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the

  9. Sedimentology, origin and gold potential of the Late Archean Lalla Rookh Basin, East Pilbara Block, Western Australia

    International Nuclear Information System (INIS)

    Terrigenous clastic sequences comprising the Lalla Rookh Formation rest with angular unconformity on the 3,550-3,000 Myr granitoid-greenstone terrain of the east Pilbara block. Outcrop of the Lalla Rookh Formation is confined to an elongate structural basin with dimensions of 50 km x 12 km that is bounded by high-angle faults and unconformities with older supracrustal rocks and younger ca 2,800 Myr old metasedimentary rocks. The results of a sedimentologic basin analysis suggest that the configuration of the original depository was similar to the present structural basin. The basin fill, attaining a maximum preserved thickness of 3,000 m, consists of five depositional facies; 1) alluvial-fan and talus-slope; 2) braided-stream; 3) flood-plain; 4) fan-delta; and 5) lacustrine. Braided-stream deposits define the depositional axis of the basin and include various proximal-conglomerate to distal-sandstone assemblages. Significant heavy-mineral concentrations are located in: 1) stacked sequences of proximal core-zone conglomerates; 2) specific beds of conglomerate in stacked sequences of proximal to medial core-zones; 3) telescoped sequences of conglomerates in proximal to distal core-zones; 4) specific beds in stacked sequences of distal sandstones; 5) stacked ''levee'' sequences of sandstone lateral to proximal core-zones; and 6) basal diamictites of debris-flow origin in alluvial-fan facies. Potentially economic gold placers are developed on low-angle, intraformational unconformities. The basin analysis indicates that broad exploration targets for gold-pyrite placers can be identified by recognising suitable facies and facies assemblages. Specific targets are delineated using geochemistry which identifies anomalous concentrations of heavy minerals and sulphides. Two lines of evidence suggest that there is low potential to develop gold placers in the Lalla Rookh Formation: the lack of conclusive evidence that it post-dates a major metamorphic, tectonic and

  10. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan

    OpenAIRE

    Chih-Tung Chen; Jian-Cheng Lee; Yu-Chang Chan; and Chia-Yu Lu

    2010-01-01

    Growth strata analysis is an useful tool in understanding kinematics and the evolution of active faults as well as the close relationship between sedimentation and tectonics. Here we present the Shanchiao Fault as a case study which is an active normal fault responsible for the formation of the 700-m-thick late Quaternary deposits in Taipei Basin at the northern tip of the Taiwan mountain belt. We compiled a sedimentary record, particularly the depositional facies and their dated ages, at thr...

  11. The sedimentological significance of a clastic wedge in the western basin margin of the Triassic Tethys (Iberian Range, Spain)

    OpenAIRE

    García-Gil, Soledad

    1991-01-01

    [EN] The Middle Triassic in the NW of the Iberian Basin consists of both carbonate and terrigenous sediments. A new sedimentary model is proposed for the clastic wedge of the Cuesta del Castillo Saudstones and Siltstones (CCSS) Formation (García-Gil, 1990), and its relationship with the Upper Muschelkalk carbonate Formations. The model will take account of the following characteristics: 1. Low depositional gradient being integrated in a homoclinal carbonate ramp. 2. Co...

  12. The role of active and ancient geothermal processes in the generation, migration, and entrapment of oil in the basin and Range Province, western USA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, J.B.; Collister, J.W.; Curtiss, D.K. [and others

    1997-06-01

    The Basin and Range (B&R) physiographic province of the western USA is famous not only for its geothermal and precious-metal wealth, but also for its thirteen oil fields, small but in some cases highly productive. The Grant Canyon field in Railroad Valley, for example, for years boasted production of more than 6000 barrels of oil (BO) per day from just two wells; aggregate current production from the Blackburn field in Pine Valley commonly exceeds 1000 BO per day. These two and several other Nevada oil fields are unusually hot at reservoir depth--up to 130{degrees}C at depths as shallow as 1.1 km, up to three times the value expected from the prevailing regional geothermal gradient.

  13. Contributions to the phytocoenological study of the beech forests of the Luzulo-Fagetum type in the Oraştie river basin (Central-Western Romania

    Directory of Open Access Journals (Sweden)

    Petru BURESCU

    2012-11-01

    Full Text Available n the current paper we present a phytocoenologic study of the phytocoenoses of the association Luzulo albidae-Fagetum sylvaticae Zólyomi 1955 (Syn.: Hieracio rotundati-Fagetum (Vida 1963 Täuber 1987, Dechampsio flexuosae-Fagetum Soó 1962, Luzulo-Fagetum silvaticae Beldie 1951 Morariu et al. 1968 identified in the acidophylous beech forests of the Orăştie river basin, situated in the central-western part of Romania. The characterisation of the association under analysis as well as the presentation of the synthetic table have been done by selecting the most representative relevées performed in the beech forests of the Luzulo-Fagetum type belonging to the Orăştie river. The phytocoenoses of these beech forests were analysed in terms of physiognomy and floristic composition, life forms spectrum, floristic elements, and ecological indices.

  14. Hydrogeochemical Investigations Supported By Isotopic Evidences: The Quaternary Aquifer in Wadi Na'Man Basin, Western Province of Saudi Arabia

    International Nuclear Information System (INIS)

    The groundwater of the Quaternary aquifer in Wadi Na'man basin displays different hydrogeochemical environments. The salinity reflects fresh to saline characters (TDS ranges from 384 mg/l to 6190 mg/l) and ph reflects slightly acidic to alkaline nature (range from 6.9 and 8.1). Certain hydrogeochemical processes were detected in the present study which plays the essential role for the groundwater evolution and contamination under the prevailing arid climate with occasional rainfall events. The present investigations are based on the distribution trends of the binary relationships of Cl- ions and its ionic ratios with Br-, Na+, K+ Ca++and Mg++ ions. They reveal the potential of the hydrogeochemical processes such as the evaporation, the leaching and dissolution and silicate weathering. They reflect the influence of natural hydrogeological factors as well as the man-made factors. The increase of K+ and NO3 ions concentrations in the groundwater confirms the potential of fertilizing and primitive sewerage effluent. The present investigated trends of variation of stable isotopes (D and 18O) in the groundwater and rain water in the basin confirm the potential of the detected hydrogeochemical processes and factors. The tritium concentrations and stable isotope data support the direct connection between the different parts of the aquifer from the upper to lower reaches of the basin as well as renewal recharge with the recently local rainfall after 1952.

  15. Integrating geologic and satellite radar data for mapping dome-and-basin patterns in the In Ouzzal Terrane, Western Hoggar, Algeria

    Science.gov (United States)

    Deroin, Jean-Paul; Djemai, Safouane; Bendaoud, Abderrahmane; Brahmi, Boualem; Ouzegane, Khadidja; Kienast, Jean-Robert

    2014-11-01

    The In Ouzzal Terrane (IOT) located in the north-western part of the Tuareg Shield forms an elongated N-S trending block, more than 400 km long and 80 km wide. It involves an Archaean crust remobilized during a very high-temperature metamorphic event related to the Palaeoproterozoic orogeny. The IOT largely crops out in the rocky and sandy desert of Western Hoggar. It corresponds mainly to a flat area with some reliefs composed of Late Panafrican granites, dyke networks or Cambrian volcanic rocks. These flat areas are generally covered by thin sand veneers. They are favorable for discriminating bedrock geological units using imaging radar, backscattering measurements, and field checking, because the stony desert is particularly sensitive to the radar parameters such as wavelength or polarization. The main radar data used are those obtained with the ALOS-PALSAR sensor (L-band), in ScanSAR mode (large swath) and Fine Beam modes. The PALSAR sensor has been also compared to ENVISAT-ASAR and to optical imagery. Detailed mapping of some key areas indicates extensive Archaean dome-and-basin patterns. In certain parts, the supracrustal synforms and orthogneiss domes exhibit linear or circular features corresponding to shear zones or rolling structures, respectively. The geological mapping of these dome-and-basin structures, and more generally of the Archaean and Proterozoic lithological units, is more accurate with the SAR imagery, particularly when using the L-band, than with the optical imagery. A quantitative approach is carried out in order to estimate the backscatter properties of the main rock types. Due to the large variety of configurations, radar satellite imagery such as ALOS PALSAR represents a key tool for geological mapping in arid region at different scales from the largest (e.g., 1:500,000) to the smallest (e.g., 1:50,000).

  16. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    Science.gov (United States)

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  17. Geodynamic evolution of the Salinas de Añana diapir in the Basque-Cantabrian Basin, Western Pyrenees

    Science.gov (United States)

    Frankovic, Allen; Eguiluz, Luis; Martínez-Torres, Luis M.

    2016-02-01

    The Salinas de Añana diapir is located in the Basque-Cantabrian basin part of the great evaporite basin, along with the Gulf of Mexico and the Central European basin, when the fragmentation of Pangea started. The evolution of these basins can only be achieved by understanding the control of salt in the sedimentary and tectonic evolution of these basins. Sedimentation began with clastic Buntsandstein sediments and minor Muschelkalk limestones. Subsequent Keuper evaporites are the bottom of sedimentary cover constituted by Jurassic limestones and marls, a clastic Lower Cretaceous and an alternant limestone and marl Upper Cretaceous, whose deposition has been conditioned by salt tectonics. The emplacement of salt extends from the Aptian until now, favored by the duplication of the salt thickness associated with the thrust of Sierra Cantabria, so it is an excellent example to study changes in the regime of intrusion along the time. The geodynamic evolution of the Salinas de Añana diapir was determined through the interpretation of 45 reprocessed seismic lines, along with information from three wells. Migration of the salt in this diapir, conditioned by N120E and N30E pre-Alpine basement lineations, was determined using time isopach maps of the various rock layers. Vertical evolution of the diapir was determined through the reconstruction of a north-south section at various geologic times by flattening the respective seismic horizons. A minimum of salt flow into the diapir coincides with a minimum rate of sedimentation during the Turonian. Similarly, maximum flows of salt into the diapir occurred during the Coniacian and Lower Santonian and again from the end of the Lower Miocene to the present, coinciding with maximum rates of sedimentation during these times. In the Tertiary, probably during the Oligocene, the diapir was displaced to the south by the Sierra Cantabria thrust, maintaining the contact between the evaporites of diapir and the same evaporites of the

  18. Thermal-rheological structure of lithosphere beneath the northern flank of Tarim Basin, western China:Implications for geodynamics

    Institute of Scientific and Technical Information of China (English)

    LIU; Shaowen; WANG; Liangshu; LI; Cheng; LI; Hua; HAN; Yong

    2004-01-01

    Based on the data of geo-temperature and thermophysical parameters of rocks in the Kuqa Depression and the Tabei Uplift, northern flank of the Tarim Basin, in terms of the analytical solution of 1-D heat transfer equation, the thermal structure of the lithosphere under this region is determined. Our results show that the average surface heat flow of the northern flank of the Tarim Basin is 45 mW/m2, and the mantle heat flow is between 20 and 23 mW/m2; the temperature at crust-mantle boundary (Moho) ranges from 514℃ to 603℃ and the thermal lithosphere where the heat conduction dominates is 138-182 km thick. Furthermore, in combination with the P wave velocity structure resulting from the deep seismic sounding profile across this region and rheological modeling, we have studied the local composition of the lithosphere and its rheological profile, as well as the strength distribution. We find that the rheological stratification of the lithosphere in this region is apparent. The lowermost of the lower crust is ductile; however,the uppermost of the mantle and the upper and middle parts of the crust are both brittle layers,which is typically the so-called sandwich-like structure. Lithospheric strength is also characterized by the lateral variation, and the uplift region is stronger than the depression region. The lithospheric strength of the northem flank of the Tarim Basin decreases gradually from south to north; the Kuqa Depression has the lowest strength and the south of the Tabei Uplift is strongest.The total lithospheric strength of this region is 4.77× 1012-5.03 × 1013 N/m under extension, and 6.5 × 1012-9.4× 1013 N/m under compression. The lithospheric brittle-ductile transition depth is between 20 km and 33 km. In conclusion, the lithosphere of the northern flank of the Tarim Basin is relatively cold with higher strength, so it behaves rigidly and deforms as a whole, which is also supported by the seismic activity in this region. This rigidity of the

  19. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Di; He, Dengfa; Tang, Yong

    2016-05-01

    The Altai-Junggar area in northwestern China is a critical region to gain insights on the tectonic framework and geological evolution of the western Central Asian Orogenic Belt (CAOB). In this study, we report results from integrated geological, geochemical and geophysical investigations on the Wulungu Depression of the Junggar Basin to determine the basement nature of the basin and understand its amalgamation history with the Chinese Altai, within the broad tectonic evolution of the Altai-Junggar area. Based on borehole and seismic data, the Wulungu Depression is subdivided into two NW-trending tectonic units (Suosuoquan Sag and Hongyan High) by southward-vergent thrust faults. The Suosuoquan Sag consists of the Middle-Late Devonian basaltic andesite, andesite, dacite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava flows and shallow marine sediments from a proximal juvenile provenance (zircon εHf(t) = 6.0-14.9), compared to the Late Carboniferous andesite and rhyolite in the Hongyan High. Zircon SIMS U-Pb ages for dacites and andesites indicate that these volcanics in the Suosuoquan Sag and Hongyan High erupted at 376.3 Ma and 313.4 Ma, respectively. The Middle-Late Devonian basaltic andesites from well LC1 are calc-alkaline and exhibit primitive magma-like MgO contents (7.9-8.6%) and Mg# values (66-68), with low initial 87Sr/86Sr (0.703269-0.704808) and positive εNd(t) values (6.6-7.6), and relatively high Zr abundance (98.2-116.0 ppm) and Zr/Y ratios (5.1-5.4), enrichment in LREEs and LILEs (e.g., Th and U) and depletion in Nb, Ta and Ti, suggesting that they were probably derived from a metasomatized depleted mantle in a retro-arc extensional setting. The well LC1 andesitic tuffs, well L8 dacites, well WL1 dacitic tuffs and well L5 andesites belong to calc-alkaline and metaluminous to peraluminous (A/CNK = 0.8-1.7) series, and display low Mg# values (35-46) and variably positive εNd(t) (4

  20. Geochemical characteristics and genetic types of crude oils from the Tertiary system in the southern part of western Qaidam Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    LI Hongbo; ZHANG Min; ZHANG Chunming; PENG Dehua

    2008-01-01

    Crude oil samples taken from the southern part of westem Qaidam Basin were analyzed with GC/MS in order to understand the geochemical characteristics of crude oils. The results reveal that most crude oils are characterized by high abundance of gammaeerane and C35 homohopane, which are the representative characteristics of saline lacustrine crude oils. Based on the variation of the ratios of gammacerane/C30 hopane (G/H) and C35 homohopane/C34 homohopane (C35/C34H), two crude oil groups, A and B, are identified. Group-A crude oils mainly occurr in the north of the study area, with higher ratios of G/H (>0.8) and C35/C34H (>1.2), whereas group-B crude oils, selected from the south of the study area, show lower ratios of G/H (<0.8) and C35/C3aH (<1.0). In addition, group-A crude oils are distinguished into three subgroups in accordance with their different ratios of G/H and C35/C34H and different distribution characteristics of n-alkanes, isoprenoids and steranes. These may be helpful for understanding the distribution characteristics of crude oils in the southern part of western Qaidam Basin and providing clues to the forthcoming exploration of crude oils and gas.

  1. CHANGES IN QUALITY OF SURFACE AND GROUND WATERS DURING IMPLEMENTATION OF NITRATES DIRECTIVE IN SELECTED AGRICULTURAL RIVER BASIN OF WESTERN POMERANIA

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2015-07-01

    Full Text Available The implementation of the EU Sustainable Development Strategy and Water Framework Directive and Nitrates Directive in particular by Poland requires taking actions aiming at protection of water quality against agricultural pollution, especially with nitrates. Therefore, in 2003, in the province of Western Pomerania, the area vulnerable to nitrates of agricultural origin the measures preventing their leaching into waters were undertaken. That area was located in the Płonia river basin. Despite the programme of reducing water pollution caused by nitrates from agricultural sources, in 2008 and 2012 that area was recognised again as a Nitrate Vulnerable Zone (NVZ. The studies focused on the waters of the Gowienica Miedwiańska river, from selected sections, and ground water from the piezometers located in the river basin of 63.65 km2, within the Nitrate Vulnerable Zone. The concentration of NO3-, NH4+ and PO4-3 as well as pH in surface and ground waters were determined. The obtained results indicated insufficient effectiveness of action programmes to reduce nitrates emission.

  2. Early middle Miocene tectonic uplift of the northwestern part of the Qinghai-Tibetan Plateau evidenced by geochemical and mineralogical records in the western Tarim Basin

    Science.gov (United States)

    Wang, Chaowen; Hong, Hanlie; Abels, Hemmo A.; Li, Zhaohui; Cao, Kai; Yin, Ke; Song, Bowen; Xu, Yadong; Ji, Junliang; Zhang, Kexin

    2016-04-01

    The Tarim Basin in western China has been receiving continuous marine to lacustrine deposits during the Cenozoic as a foreland basin of the Qinghai-Tibetan Plateau (QTP). Clay mineralogy and geochemical proxy data from these sedimentary archives can shed light on climate and tectonic trends. Here we report on an abrupt mineralogical and weathering shift at 17 Ma ± 1 Myr in the Miocene Qimugan section in the northwestern part of the Qinghai-Tibetan Plateau. The rapid shift involves decreasing trends of chemical weathering indices, Rb/Sr and Ba/Sr ratios, and of minor and immobile elements with respect to upper crust composition as well as increasing trends of Na/Al and Na/Ti ratios, smectite, chlorite, and calcite contents. We ascribe these trends to changing source rocks due to uplift of the northern part of the QTP leading to exposures of younger intrusive bodies and older gneisses, schists, and carbonate-rich rocks. These uplifts potentially caused regional aridification reducing chemical weathering. The dating is indirect via magnetostratigraphically dated ostracod biostratigraphy and detrital zircon chronology and currently not good enough to compare the shift accurately in time with the onset of the global middle Miocene Climate Optimum (MMCO) at 16.5 Ma. Nevertheless, regional tectonics seem to have dominated over global climate as the warmer MMCO is expected to have increased weathering indices and decreased Na/Al and Na/Ti, rather than the observed reverse trends.

  3. Impact of water quality on bacterioplankton assemblage along Cértima River Basin (central western Portugal) assessed by PCR-DGGE and multivariate analysis.

    Science.gov (United States)

    de Figueiredo, Daniela R; Ferreira, Raquel V; Cerqueira, Mário; de Melo, Teresa Condesso; Pereira, Mário J; Castro, Bruno B; Correia, António

    2012-01-01

    The information on bacterial community composition (BCC) in Portuguese water bodies is very scarce. Cértima River (central western Portugal) is known to have high levels of pollution, namely organic. In the present work, the BCC from a set of 16 water samples collected from Cértima River Basin and its main tributaries was characterized using 16S rDNA-denaturing gradient gel electrophoresis, a culture-independent molecular approach. Molecular data were related to environmental parameters through multivariate analysis to investigate potential impact of water pollution along the river. Principal component analysis using environmental data showed a water quality gradient from more pristine waters (at the mountain tributaries) to waters with increasingly eutrophic potential (such as Fermentelos Lake). This gradient was mainly defined by factors such as organic and inorganic nutrient sources, electrical conductivity, hydrogen carbonate concentration, and pH. Molecular results showed variations in BCC along Cértima River Basin but in the main river section, a Bacteroidetes phylotype (Flavobacterium sp.) proved to be dominant throughout the river course. Multivariate analysis suggests that spatial variation of BCC along the Cértima River Basin depended mainly on parameters such as Chl a, total suspended solid (TSS), total organic carbon, electrical conductivity, and HCO[Formula: see text] levels. Bacteroidetes phylotypes were all related to higher electrical conductivity and HCO[Formula: see text] levels although some of these were also correlated with high SO[Formula: see text] and others with high soluble reactive phosphorus, nitrate, TN, and Kjeld-N levels. The Gammaproteobacteria occurrence was correlated with high SO[Formula: see text] levels. One of the Betaproteobacteria phylotypes showed to correlate with low redox potential (E(h)) and high temperature, pH, TSS, and Chl a levels while another one showed a negative correlation with Chl a values. PMID:21431313

  4. The sequence of moderate-size earthquakes at the junction of the Ligurian basin and the Corsica margin (western Mediterranean): The initiation of an active deformation zone revealed?

    Science.gov (United States)

    Larroque, Christophe; Delouis, Bertrand; Sage, Françoise; Régnier, Marc; Béthoux, Nicole; Courboulex, Françoise; Deschamps, Anne

    2016-04-01

    A new seismically active zone is found in the southern part of the Ligurian basin, 80-km west of Corsica (western Mediterranean). The activity began in February 2011 with a foreshock (ML 4) and a mainshock (ML 5.3) 5 days later, followed by numerous aftershocks. We first analyze the fore- and mainshock in detail. We compare the results obtained using classical methods (linear location in a 1D medium and focal mechanisms from P and S polarities) and new approaches (non-linear location in a 3D medium and waveform modeling for determining the seismic moment and the focal mechanism). Both methods provided similar results for location, depth (in the range of 6-13 km) and focal mechanisms, which reveal reverse faulting with nodal planes oriented N-S and NE-SW. We then locate 27 of the aftershocks in the 3D model and find a 10-km-long NE-SW alignment with a depth between 7 and 16 km. In 2012 and 2013, three other moderate-size events (ML 3.8, 4 and 4.5) occurred and confirm that this zone is still active. The epicentral area is located in the oceanic domain of the Ligurian Basin. From analysis of the bathymetry and high-resolution multi-channel seismic profiles, no morphologic anomaly at surface and no inherited fault in the shallow ~ 4 km depth were imaged, which suggest that no significant deformation occurred in the area since 5 Ma. Thus, the structure(s) activated during the 2011-2013 sequence remain unknown. In light of these results, we point out a notable difference on both sides of the Ligurian Basin: the northern margin, close to the alpine chain, suffered strong earthquakes and large cumulated deformation since 5 Ma, while the southern margin, close to the Corsica-Sardinia continental block, is poorly deformed since 5 Ma.

  5. Evidence for multi-cycle sedimentation and provenance constraints from detrital zircon U-Pb ages: Triassic strata of the Lusitanian basin (western Iberia)

    Science.gov (United States)

    Pereira, M. F.; Gama, C.; Chichorro, M.; Silva, J. B.; Gutiérrez-Alonso, G.; Hofmann, M.; Linnemann, U.; Gärtner, A.

    2016-06-01

    Laser ablation ICP-MS U-Pb analyses were conducted on detrital zircons of Triassic sandstone and conglomerate from the Lusitanian basin in order to: i) document the age spectra of detrital zircon; ii) compare U-Pb detrital zircon ages with previous published data obtained from Upper Carboniferous, Ordovician, Cambrian and Ediacaran sedimentary rocks of the pre-Mesozoic basement of western Iberia; iii) discuss potential sources; and iv) test the hypothesis of sedimentary recycling. U-Pb dating of zircons established a maximum depositional age for this deposit as Permian (ca. 296 Ma), which is about sixty million years older compared to the fossil content recognized in previous studies (Upper Triassic). The distribution of detrital zircon ages obtained points to common source areas: the Ossa-Morena and Central Iberian zones that outcrop in and close to the Porto-Tomar fault zone. The high degree of immaturity and evidence of little transport of the Triassic sediment suggests that granite may constitute primary crystalline sources. The Carboniferous age of ca. 330 Ma for the best estimate of crystallization for a granite pebble in a Triassic conglomerate and the Permian-Carboniferous ages (age spectra found in Triassic strata are also the result of recycling from the Upper Carboniferous Buçaco basin, which probably acted as an intermediate sediment repository. U-Pb data in this study suggest that the detritus from the Triassic sandstone and conglomerate of the Lusitanian basin is derived from local source areas with features typical of Gondwana, with no sediment from external sources from Laurussia or southwestern Iberia.

  6. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  7. Spatiotemporal Variation and Risk Assessment of Pesticides in Water of the Lower Catchment Basin of Acheloos River, Western Greece

    OpenAIRE

    Nikolaos Stamatis; Dimitra Hela; Vassilios Triantafyllidis; Ioannis Konstantinou

    2013-01-01

    A three-year monitoring survey (March 2005–February 2008) was conducted to investigate, on monthly basis, the presence of thirty pesticides belonging to various categories and metabolites, in Acheloos River (Western Greece), one of the most important water resources in Greece. Six sampling stations along the river were established. Water analyses were performed using solid-phase extraction combined with gas chromatography with flame thermionic detector and mass spectrometry. Statistical analy...

  8. The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient

    International Nuclear Information System (INIS)

    Unprecedented wet conditions are reported in the 2014 summer (December–March) in South-western Amazon, with rainfall about 100% above normal. Discharge in the Madeira River (the main southern Amazon tributary) has been 74% higher than normal (58 000 m3 s−1) at Porto Velho and 380% (25 000 m3 s−1) at Rurrenabaque, at the exit of the Andes in summer, while levels of the Rio Negro at Manaus were 29.47 m in June 2014, corresponding to the fifth highest record during the 113 years record of the Rio Negro. While previous floods in Amazonia have been related to La Niña and/or warmer than normal tropical South Atlantic, the 2014 rainfall and flood anomalies are associated with warm condition in the western Pacific-Indian Ocean and with an exceptionally warm Subtropical South Atlantic. Our results suggest that the tropical and subtropical South Atlantic SST gradient is a main driver for moisture transport from the Atlantic toward south-western Amazon, and this became exceptionally intense during summer of 2014. (letter)

  9. Regional geophysical investigations in central Colorado Plateau

    International Nuclear Information System (INIS)

    Gravity and aeromagnetic surveys covering about 15,000 square miles in the central Colorado Plateau in Utah, Colorado, Arizona, and New Mexico were conducted to assist in determining the regional subsurface geology as it may relate to uranium, oil, and potash exploration. The dominant gravity anomalies are conspicuous gravity lows over the salt anticlines. Both broad regional highs, which occur over the monoclinal uplifts where denser rocks are close to the surface, and regional lows, which occur over the basin and platform areas, are caused by lateral density contrasts related to structural relief. Most of the magnetic anomalies arise from contrasts in magnetization of the Precambrian basement

  10. Integrated Geologic and Geophysical Approach for Establishing Geothermal Play Fairways and Discovering Blind Geothermal Systems in the Great Basin Region, Western USA: A Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E.; Hinz, Nicholas H.; Coolbaugh, Mark F.; Shevenell, Lisa A.; Siler, Drew L.; dePolo, Craig M.; Hammond, William C.; Kreemer, Corne; Oppliger, G.; Wannamaker, P.; Queen, John H.; Visser, Charles

    2015-09-02

    We have undertaken an integrated geologic, geochemical, and geophysical study of a broad 240-km-wide, 400-km-long transect stretching from west-central to eastern Nevada in the Great Basin region of the western USA. The main goal of this study is to produce a comprehensive geothermal potential map that incorporates up to 11 parameters and identifies geothermal play fairways that represent potential blind or hidden geothermal systems. Our new geothermal potential map incorporates: 1) heat flow; 2) geochemistry from springs and wells; 3) structural setting; 4) recency of faulting; 5) slip rates on Quaternary faults; 6) regional strain rate; 7) slip and dilation tendency on Quaternary faults; 8) seismologic data; 9) gravity data; 10) magnetotelluric data (where available); and 11) seismic reflection data (primarily from the Carson Sink and Steptoe basins). The transect is respectively anchored on its western and eastern ends by regional 3D modeling of the Carson Sink and Steptoe basins, which will provide more detailed geothermal potential maps of these two promising areas. To date, geological, geochemical, and geophysical data sets have been assembled into an ArcGIS platform and combined into a preliminary predictive geothermal play fairway model using various statistical techniques. The fairway model consists of the following components, each of which are represented in grid-cell format in ArcGIS and combined using specified weights and mathematical operators: 1) structural component of permeability; 2) regional-scale component of permeability; 3) combined permeability, and 4) heat source model. The preliminary model demonstrates that the multiple data sets can be successfully combined into a comprehensive favorability map. An initial evaluation using known geothermal systems as benchmarks to test interpretations indicates that the preliminary modeling has done a good job assigning relative ranks of geothermal potential. However, a major challenge is defining

  11. Morphometric characterization of sub-basins in the municipality of Xapuri: subsidies to land management in the Western Amazon

    Directory of Open Access Journals (Sweden)

    Éllen Albuquerque Abud

    2015-04-01

    Full Text Available This work morphometrically characterized watersheds that occur in the municipality of Xapuri and constructed a model that explains the extent of watershed impact and resilience. Emphasis was given to provide a decision-making tool for non-specialists. The study area is located in the State of Acre and has four sub-basins: Alto Acre, Rio Xapuri, Xipamanu and Riozinho do Rola. A cartographic survey was conducted, to include the morphometric characteristics of the area and land use and cover features that resulted in the soil-hydrographic zoning of the municipality. Sub-basins Xapuri, Xipamanu and Riozinho do Rôla revealed drainage densities and orders that indicate low drainage efficiency, while Alto Acre presented high drainage orders (ninth order and densities, contrary the geometric indices and drainage densities, and is considered to have efficient drainage. Considerable alterations in permanent preservation areas occur in the municipality of Xapuri, with conversion to less resilient areas highly sensitive to impacts. The soil-hydrographic zoning assists in visualizing the municipality in a land management context through an ecosystem approach and a qualitative view of the possibilities and weaknesses.

  12. On a moderately diverse continental ichnofauna from the Permian Ikakern Formation (Argana Basin, Western High Atlas, Morocco)

    Science.gov (United States)

    Hminna, Abdelkbir; Voigt, Sebastian; Saber, Hafid; Schneider, Jörg W.; Hmich, Driss

    2012-06-01

    The Permian Ikakern Formation of the Argana Basin yielded important tetrapod skeletal remains but is still poorly known for any other kind of fossils. Here we present a moderately diverse assemblage of invertebrate and vertebrate traces from red beds in the upper part of the formation (Tourbihine Member, T2) near Timezgadiouine. Recorded ichnotaxa include Spongeliomorpha carlsbergi (Bromley and Asgaard, 1979), Striatichnium natalisWalter, 1982, AmphisauropusHaubold, 1970, HyloidichnusGilmore, 1927, ErpetopusMoodie, 1929, and DromopusMarsh, 1894. The traces occur in laminated muddy siltstone and fine-grained sandstone that we interpret as slack-water deposits in an episodically high energy fluvial setting. Including arthropod burrows, arthropod grazing traces and tetrapod footprints, the ichnofossil assemblage corresponds to the Scoyenia ichnofacies. The described trace fossils provide evidence for various invertebrates and vertebrates hitherto unknown from the body fossil record of the study area. By extending the stratigraphic and geographic range of some of the recorded ichnotaxa, our finds strongly emphasise the importance of the Argana Basin for the reconstruction and understanding of Late Palaeozoic terrestrial ecosystems.

  13. Demonstration optimization analyses of pumping from selected Arapahoe aquifer municipal wells in the west-central Denver Basin, Colorado, 2010–2109

    Science.gov (United States)

    Banta, Edward R.; Paschke, Suzanne S.

    2012-01-01

    Declining water levels caused by withdrawals of water from wells in the west-central part of the Denver Basin bedrock-aquifer system have raised concerns with respect to the ability of the aquifer system to sustain production. The Arapahoe aquifer in particular is heavily used in this area. Two optimization analyses were conducted to demonstrate approaches that could be used to evaluate possible future pumping scenarios intended to prolong the productivity of the aquifer and to delay excessive loss of saturated thickness. These analyses were designed as demonstrations only, and were not intended as a comprehensive optimization study. Optimization analyses were based on a groundwater-flow model of the Denver Basin developed as part of a recently published U.S. Geological Survey groundwater-availability study. For each analysis an optimization problem was set up to maximize total withdrawal rate, subject to withdrawal-rate and hydraulic-head constraints, for 119 selected municipal water-supply wells located in 96 model cells. The optimization analyses were based on 50- and 100-year simulations of groundwater withdrawals. The optimized total withdrawal rate for all selected wells for a 50-year simulation time was about 58.8 cubic feet per second. For an analysis in which the simulation time and head-constraint time were extended to 100 years, the optimized total withdrawal rate for all selected wells was about 53.0 cubic feet per second, demonstrating that a reduction in withdrawal rate of about 10 percent may extend the time before the hydraulic-head constraints are violated by 50 years, provided that pumping rates are optimally distributed. Analysis of simulation results showed that initially, the pumping produces water primarily by release of water from storage in the Arapahoe aquifer. However, because confining layers between the Denver and Arapahoe aquifers are thin, in less than 5 years, most of the water removed by managed-flows pumping likely would be supplied

  14. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River basin, Western China: the Taiji-Tire model

    Science.gov (United States)

    Liu, Y.; Tian, F.; Hu, H.; Sivapalan, M.

    2014-04-01

    This paper presents a historical socio-hydrological analysis of the Tarim River basin (TRB), Xinjiang Uyghur Autonomous Region, in Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human-water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS). As a self-organized entity, the evolution of the human-water system in the Tarim Basin reached stable states for long periods of time, but then was punctuated by sudden shifts due to internal or external disturbances. In this study, we discuss three stable periods (i.e., natural, human exploitation, and degradation and recovery) and the transitions in between during the past 2000 years. During the "natural" stage that existed pre-18th century, with small-scale human society and sound environment, evolution of the SHS was mainly driven by natural environmental changes such as river channel migration and climate change. During the human exploitation stage, especially in the 19th and 20th centuries, it experienced rapid population growth, massive land reclamation and fast socio-economic development, and humans became the principal players of system evolution. By the 1970s, the Tarim Basin had evolved into a new regime with a vulnerable eco-hydrological system seemingly populated beyond its carrying capacity, and a human society that began to suffer from serious water shortages, land salinization and desertification. With intensified deterioration of river health and increased recognition of unsustainability of traditional development patterns, human intervention and recovery measures have since been adopted. As a result, the basin has shown a reverse regime shift towards some healing of the environmental damage. Based on our analysis within TRB and a common theory of social development, four general types of SHSs are defined according to their characteristic spatio

  15. Socio-hydrologic perspectives of the co-evolution of humans and water in the Tarim River Basin, Western China: the Taiji–Tire Model

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2013-10-01

    Full Text Available This paper presents a historical socio-hydrological analysis of the Tarim Basin, Xinjiang Province, Western China, from the time of the opening of the Silk Road to the present. The analysis is aimed at exploring the historical co-evolution of coupled human–water systems and at identifying common patterns or organizing principles underpinning socio-hydrological systems (SHS. As a self-organized entity, the evolution of the human–water system in the Tarim Basin reached stable states for long periods of time, then punctuated by sudden shifts due to internal or external disturbances. In this study, we discuss three steady periods (i.e. natural, human exploitation, and degradation and recovery and transitions in between during the past 2000 yr. During the "natural" stage that existed pre-18th century, with small-scale human society and sound environment, evolution of the SHS was mainly driven by natural environmental changes such as river channel migration and climate change. During the human exploitation stage, especially in the 19th and 20th centuries, it experienced rapid population growth, massive land reclamation and fast socio-economic development, and humans became the principal players of system evolution. By the 1970s, the Tarim Basin had evolved into a new regime with a vulnerable eco-hydrological system seemingly populated beyond its carrying capacity, and a human society that began to suffer from serious water shortages, land salinization and desertification. With intensified deterioration of river health and increased recognition of unsustainability of traditional development pattern, human intervention and recovery measures have been adopted. Since then, the basin has shown a reverse regime shift towards some healing of the environmental damage. Spatio-temporal variations of historical socio-hydrological co-evolution are classified into four types: primitive agricultural, traditional agricultural, industrial agricultural and urban

  16. Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources

    Science.gov (United States)

    Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake II, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    The 2007 Energy Independence and Security Act (Public Law 110–140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

  17. Diamond drilling for geologic information in the middle Precambrian basins in the western portion of northern Michigan. Final report

    International Nuclear Information System (INIS)

    Between September 26, 1977, and May 11, 1978, six initially vertical holes probed a total of 9896 feet (1109 feet or 11.2% in overburden, 155 feet or 1.6% in Precambrian Y mafic dikes, 8386 feet or 84.7% in Precambrian X Goodrich Quartzite and Michigamme Formation, and 246 feet or 2.5% in Precambrian W basement lithologies). In addition to normal examination of core, logging, and storing of core, the holes were extensively logged geophysically, acidized core was tested for phosphate content by ammonium molybdate, splits from five out of every thirty feet of core were subjected to chemical scrutiny, thin sections of all lithologies were examined, and radiometric determinations of geologic age were made for confirmation of Precambrian W basement which was encountered in each of the three basins in Marquette County

  18. Impact of warming climate on the monsoon and water resources of a western Himalayan watershed in the Upper Indus Basin

    Science.gov (United States)

    Khan, Asif; Richards, Keith S.; Parker, Geoffrey T.; McRobie, Allan; Booij, Martijn J.

    2015-04-01

    This study discusses the impact of a warming climate on the monsoon and on water resources in the Astore watershed, a major tributary of the Upper Indus Basin (UIB). It uses precipitation and temperature time series data from climatic stations, European Reanalysis (ERA) interim precipitation data, and monthly river flow data, all for the 1984-2009 period. Monthly average temperature data show statistically significant increasing trends for November-June through this period, while June and July, which experience episodic and intense precipitation, show statistically significant but opposing trends between the first and second halves of the period. To examine precipitation and flow data in more detail, two equal sub-periods were defined; 1984-1996 (T1) and 1997-2009 (T2). Basin-wide average annual precipitation (based on ERA data) declined by ~29% from 1481 mm/yr in T1 to 1148 inT2, whereas during the same periods flows declined by only ~17% (1245 to 1061 mm/yr), suggesting an increase in glacier melt in the T2 period. Spring to early summer flows increased during the T2 period concomitant with shift in the streamflow peak from July to June. Increasing spring discharge, the shift in timing of annual peak discharge, and an increase in the glacial melt component in river flows have been accompanied by a depletion of glacial storage within the Astore watershed, especially in the T2 period. If recent trends in climate and river flow continue in the future, then river flows will eventually decrease more sharply once the glacial reserves can no longer provide sustained nourishment to the river waters. Thus, there is a vital need to prepare and adopt policies for water resource management and reservoir operation that support sustainable development, agricultural expansion, and increased hydro-power generation.

  19. Adjustment of the basin-scale circulation at 26° N to variations in Gulf Stream, deep western boundary current and Ekman transports as observed by the Rapid array

    Directory of Open Access Journals (Sweden)

    S. A. Cunningham

    2009-10-01

    Full Text Available The Rapid instrument array across the Atlantic Ocean along 26° N provides unprecedented monitoring of the basin-scale circulation. A unique feature of the Rapid array is the combination of full-depth moorings with instruments measuring temperature, salinity, pressure time series at many depths with co-located bottom pressure measurements so that dynamic pressure can be measured from surface to bottom. Bottom pressure measurements show a zonally uniform rise (and fall of bottom pressure of 0.015 dbar on a 5 to 10 day time scale, suggesting that the Atlantic basin is filling and draining on a short time scale. After removing the zonally uniform bottom pressure fluctuations, bottom pressure variations at 4000 m depth against the western boundary compensate instantaneously for baroclinic fluctuations in the strength and structure of the deep western boundary current so there is no basin-scale mass imbalance resulting from variations in the deep western boundary current. After removing the mass compensating bottom pressure, residual bottom pressure fluctuations at the western boundary just east of the Bahamas balance variations in Gulf Stream transport. Again the compensation appears to be especially confined close to the western boundary. Thus, fluctuations in either Gulf Stream or deep western boundary current transports are compensated in a depth independent (barotropic manner very close to the continental slope off the Bahamas. In contrast, compensation for variations in wind-driven surface Ekman transport appears to involve fluctuations in both western basin and eastern basin bottom pressures, though the bottom pressure difference fluctuations appear to be a factor of 3 too large, perhaps due to an inability to resolve small bottom pressure fluctuations after removal of larger zonal average, baroclinic, and Gulf Stream pressure components. For 4 tall moorings where time series dynamic height (geostrophic pressure profiles can be estimated from

  20. A province-scale block model of Walker Lane and western Basin and Range crustal deformation constrained by GPS observations (Invited)

    Science.gov (United States)

    Hammond, W. C.; Bormann, J.; Blewitt, G.; Kreemer, C.

    2013-12-01

    The Walker Lane in the western Great Basin of the western United States is an 800 km long and 100 km wide zone of active intracontinental transtension that absorbs ~10 mm/yr, about 20% of the Pacific/North America plate boundary relative motion. Lying west of the Sierra Nevada/Great Valley microplate (SNGV) and adjoining the Basin and Range Province to the east, deformation is predominantly shear strain overprinted with a minor component of extension. The Walker Lane responds with faulting, block rotations, structural step-overs, and has distinct and varying partitioned domains of shear and extension. Resolving these complex deformation patterns requires a long term observation strategy with a dense network of GPS stations (spacing ~20 km). The University of Nevada, Reno operates the 373 station Mobile Array of GPS for Nevada transtension (MAGNET) semi-continuous network that supplements coverage by other networks such as EarthScope's Plate Boundary Observatory, which alone has insufficient density to resolve the deformation patterns. Uniform processing of data from these GPS mega-networks provides a synoptic view and new insights into the kinematics and mechanics of Walker Lane tectonics. We present velocities for thousands of stations with time series between 3 to 17 years in duration aligned to our new GPS-based North America fixed reference frame NA12. The velocity field shows a rate budget across the southern Walker Lane of ~10 mm/yr, decreasing northward to ~7 mm/yr at the latitude of the Mohawk Valley and Pyramid Lake. We model the data with a new block model that estimates rotations and slip rates of known active faults between the Mojave Desert and northern Nevada and northeast California. The density of active faults in the region requires including a relatively large number of blocks in the model to accurately estimate deformation patterns. With 49 blocks, our the model captures structural detail not represented in previous province-scale models, and

  1. Impact of riparian land-use patterns on Ephemeroptera community structure in river basins of the southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Selvakumar C.

    2014-02-01

    Full Text Available This study analysed the impact of riparian land use in structuring the larval ephemeropteran communities from 25 sites in streams and rivers of Kalakad-Mundanthurai Tiger Reserve (KMTR of the southern end of the Western Ghats, India. A total of twenty-eight species belonging to twenty-four genera of six families were collected across all the sites. Baetidae and Leptophlebiidae were the most numerous and ubiquitous families, comprising eight genera in each family and eleven and nine species, respectively. The physico-chemical parameters and species richness and abundance of mayflies varied across streams and rivers with different riparian land-use types. Species distribution was influenced by the environmental gradients. Canonical Correspondence Analysis revealed a clear separation of the mayfly assemblages along water quality and riparian land-use gradients. The results of this study suggest that Ephemeroptera taxa can be potentially used as sensitive indicators of riparian land use in lotic ecosystems.

  2. Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau

    Science.gov (United States)

    Zhang, Tao; Han, Wenxia; Fang, Xiaomin; Zhang, Weilin; Song, Chunhui; Yan, Maodu

    2016-02-01

    As the tectonical and geographical northern edge of the Tibetan Plateau, the evolution of the Altyn Tagh range has attracted wide attention. Precise dating of its activities is believed essential for understanding the possible mechanisms of the Tibetan Plateau uplift and its effects on climate changes. Under the framework of basin-mountain coupling, both magnetic susceptibility and rock magnetic researches were carried out in this study on the Late Cenozoic sediments of the Honggouzi (HGZ) section (ca. 17-5 Ma) in the western Qaidam Basin to explore the tectonic and climatic evolution as well as their interactions of the Altyn Tagh range. The obtained magnetic susceptibility record in the HGZ section displayed a two-step variation, which kept relatively low and stable values for sediments from the stratigraphic levels of 120-596 m (ca. 17-10 Ma) (stage I), but increased rapidly from 596 to 1014 m (ca. 10-5 Ma) (stage II). The rock magnetic results revealed that paramagnetic minerals or clay minerals, maghemite and hematite are dominant in stage I, which were replaced by magnetite and maghemite in stage II. A detailed comparison of magnetic susceptibility record in the HGZ section with regional tectonic and climate records was carried out. Combined with sedimentary facies, lithology and angular unconformity in the sequence, as well as seismostratigraphy data, paleocurrent and provenance analyses, the possible mechanisms for the magnetic susceptibility variation were explored. The results indicated a direct link between magnetic susceptibility change and the uplift of the Altyn Tagh range at ca. 10 Ma.

  3. Hydrological and land-use controls of watershed exports of DOM and nutrients in a large arid river basin of Western China

    Science.gov (United States)

    Hu, Y.; Lu, Y.; Edmonds, J. W.; Zheng, C.; Wang, S.

    2014-12-01

    The Heihe River Basin (HRB) is the second largest inland river basin in arid Western China. The Heihe river has been significantly modified to make human settlements possible, particularly involving regulating water flow and extracting groundwater to support irrigated agriculture. It remains unknown how these engineered modifications alter transfers of carbon and nutrients from the watersheds to the river. We sampled surface water and groundwater in the middle reach of the HRB during contrasting hydrology regimes. In addition to DOM and nutrients (nitrate, nitrite, phosphate), a series of parameters (δ18O, δD, cation, and DIC) were analyzed to constrain water sources. Five DOM fluorescence components were identified, including two terrestrial humic-like components (C1 and C2), two protein-like components (C3 and C4), and one component (C5) indicative of resistant compounds persisting in deep groundwater. During the period of high discharge, high fluxes of DOM and nutrients were observed, and DOM was characterized by higher %C1, %C2 and %C5, lower %C3 and %C4, greater values of humification index, and lower values of fluorescence index (FI). This observation suggests that high riverine flow mobilized soil-derived OM and resistant OM into the river but suppressed the contributions of autochthonous, microbial OM. δ13C-DOC values fell in a general range indicative of the dominance of C3 plants but became more enriched in agricultural areas, indicating the influence of corn OM. A positive correlation between nutrient concentrations versus FI values during the period of low discharge suggests that irrigation return flow was an important source for both nutrients and humic DOM in the river. Our data demonstrate that watershed exports of nutrients and DOM were collectively controlled by hydrology and watershed land use, and the influence of land use was more evident during low discharge regimes.

  4. Colorado River cutthroat habitat resistance and resilience to climate change

    OpenAIRE

    Olsen, Kate

    2013-01-01

    Colorado River cutthroat trout, Oncorhyncus clarki pleuriticus , occupy less than 12% of their historic range. Restoration and conservation of this species are currently under way across the upper Colorado River basin, but guidance to inform management decisions related to the impacts of climate change on cutthroat is lacking. Shifts in the thermal distribution of freshwater fish have been documented, and will continue to occur as cold water habitat is threatened by warming water temperatures...

  5. Depositional Characteristics of Lake-Floor Fan of Cretaceous Lower Yaojia Formation in Western Part of Central Depression Region,Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    Xin Renchen; Li Guifan; Feng Zhiqiang; Liang Jiangping; Lin Changsong

    2009-01-01

    Based on the integrated subsurface data,including those of over 600 m drilled cores,more than 30 drilled wells and 600 km2 three-dimensional (3D) seismic-reflection data of the study area, the characteristics of the lake-floor fan of lower Yaojia(姚家) Formation have been clarified.An evident lacustrine slope break and a steep slope belt developed in the west of Songliao(松辽)basin during depositional period of Qingshankou(青山口)-Yaojia formations(K2).The slope gradient was about 15 m/km.During the depositional period of lower Yaojia Formation,the lake shrank and the shore line of the western Songliao basin shifted to the lacustrine slope-break.The wedge-shaped sediment body,which is interpreted as the lowstand system tract of SQy1 (LSTy1),developed in the area below the slope-break.The LSTyl is pinched out in the west of the study area.As to the thickness of LSTyl,ft is thicker in the east with SO m in its thickness than in the west The LSTyl,rich in sandstone,can be divided into lower part LSTylL and upper part LSTy1u based on two onlap seismic reflection phases,and core and logging data clearly.The various sediments' gravity flow deposits developed and the complex of lake-floor fan formed in the LSTyl under the slope-break in the western part of the central depression region.The lake-floor fan consists of various sediments' gravity flow deposits,including: (1) turbidity deposits with characteristics of Bouma sequences; (2) sand-bearing muddy debrite dominated by mud and mixed by sand; (3) mud-bearing sandy debrites characterized by dominated sand and mixed by mud; (4) sandy debris laminar flow deposits with massive or inclined bedding,and (5) sandy slump deposits developed as deforma tional sedimentary structure.During the lower lake-level period (LSTy1L),the western clinoform region was erosion or sediment pass-by area; the terrigenous clastic was directly transported to deep-water area,converted to channelized sandy debris flow,and combined with slump

  6. Geochemical and palaeoenvironmental characteristics of Missole I iron duricrusts of the Douala sub-basin (Western Cameroon)

    Science.gov (United States)

    Ngon Ngon, Gilbert François; Etame, Jacques; Ntamak-Nida, Marie Joseph; Mbesse, Cécile Olive; Mbai, Joël Simon; Bayiga, Élie Constantin; Gerard, Martine

    2016-02-01

    Major and trace element composition of iron duricrusts including clayey material samples and biostratigraphy of the Missole I outcrop from the Paleocene-Eocene N'Kapa Formation in the Douala sub-basin of Cameroon were used to infer the palaeoenvironment and relative age of the iron duricrusts. Iron duricrusts and clayey materials are essentially kaolinitic and smectitic and are generally siliceous and ferruginous (iron duricrusts) or siliceous and aluminous (clayey materials). These materials have high Chemical Indices of Alteration (CIA = 86.6-99.33%). The negative Eu anomalies with high (La/Yb)N shown by iron duricrusts and clayey sediments are essentially derived from silicic or felsic parent rocks when fractionated chondrite-normalized REE patterns also indicate felsic or silicic parent rocks. The Missole I iron duricrusts have a post-Thanetian age according to the relative age of claystones (Thanetian) and were formed after the deposition of sedimentary materials in an anoxic low-depth marine environment with eutrophication of surface water, and may have been exhumed and oxidized under arid climate.

  7. Environmental monitoring of Micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trends.

    Science.gov (United States)

    Tziritis, Evangelos P

    2014-07-01

    The Micro Prespa basin is a trilateral catchment area of significant importance with a unique ecosystem closely related to the homonymous lake. In this frame, a fully operational monitoring project was carried out including continuous real-time measurements in Micro Prespa Lake with the use of a multi-sensor probe, as well as periodical sampling and analyses of all available water systems for an extended set of 85 parameters. Four main interacting water systems were identified, including alluvial and karstic aquifers, Micro Prespa Lake and adjacent drainage network. The results outlined that general environmental conditions are satisfying in respect to the relative legislation and the hydrogeochemical signatures. However, trends of environmental pressures were ascertained as a result of natural (geogenic) factors, embracing seasonal peaks for Ni, Pb, and NH4 mainly in groundwater systems. Based on chlorophyll a records, Micro Prespa is classified as oligotrophic to slightly mesotrophic, subjected to seasonal variations. Heavy metal concentrations are low, except Ni which appears to have elevated values during the dry hydrological period. Finally, the hydrogeochemistry of drainage network is primarily influenced by surface runoff of the surrounding mountainous areas, hence elevated phosphorus values of the Aghios Germanos stream are possibly linked with the leaching of the granitic formations on the east. PMID:24668122

  8. Response of a dryland fluvial system to climate–tectonic perturbations during the Late Quaternary: Evidence from Rukmawati River basin, Kachchh, western India

    Indian Academy of Sciences (India)

    Archana Das; Falguni Bhattacharya; B K Rastogi; Gaurav Chauhan; Mamata Ngangom; M G Thakkar

    2016-08-01

    Dryland rivers, dominated by short-lived, localised and highly variable flow due to discrete precipitation events, have characteristic preservation potential, which serves as suitable archives towards understanding the climate–tectonic coupling. In the present study, we have investigated the fluvial records of a major, southerly-draining river – the Rukmawati River in the dryland terrain of southern Kachchh, in western India. The sediment records along the bedrock rivers of Kachchh register imprints of the Indian summer monsoon (ISM), which is the major source of moisture to the fluvial system in western India. The Rukmawati River originates from the Katrol Hill Range in the north and flows towards the south, into the Gulf of Kachchh. The field stratigraphy, sedimentology, along with the optical chronology suggeststhat a braided-meandering system existed during 37 ka period due to an overall strengthened monsoon. A gradual decline in the monsoon strength with fluctuation facilitated the development of a braided channel system between 20 and 15 ka. A renewed phase of strengthened monsoon with seasonality after around 15 ka which persisted until around 11 ka, is implicated in the development of floodplain sequences. Two zones of relatively high bedrock uplift are identified based on the geomorphometry and morphology of the fluvial landform. These zones are located in the vicinity of the North Katrol Hill Fault (NKHF) and South Katrol Hill Fault (SKHF). Geomorphic expression of high bedrock uplift is manifested by the development of beveled bedrock prior to or around 20 ka during weak monsoon. The study suggests that the terrain in the vicinity of NKHF and SKHF is uplifting at around 0.8 and >0.3 mm/a, respectively. Simultaneously, the incision in the Rukmawati River basin, post 11 ka, is ascribed to have occurred due to lowered sea level during the LGM and early Holocene period.

  9. Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç, Emet and Kirka Neogene lacustrine basins, western Turkey

    Science.gov (United States)

    Gündogdu, M. N.; Yalçin, H.; Temel, A.; Clauer, N.

    1996-09-01

    The Bigadiç, Emet and Kirka lacustrine basins of western Turkey may be considered as Tibet-type graben structures that were developed during the Miocene within the Izmir-Ankara suture zone complex. The volcanic-sedimentary successions of these basins are made up of mudstone, carbonate (limestone and dolomite) and detrital rocks, and also of crystal or vitric tuffs about 135 to 200 m thick. The Degirmenli (Bigadiç), Emirler (Bigadiç) Köpenez (Emet) and Karaören (Kirka) tuffs constituting the zeolite deposits are situated beneath four borate deposits (colemanite, ulexite, borax). The most abundant diagenetic silicate minerals are K- and Ca-clinoptilolites in the zeolite deposits, and Li-rich trioctahedral smectites (stevensite, saponite and hectorite) and K-feldspar in the borate deposits. In the Degirmenli, Emirler, Köpenez and Karaören deposits, the following diagenetic facies were developed from rhyolitic glasses rich in K and poor in Na: (glass+smectite), (K-clinoptilolite+opal-CT), (Ca-clinoptilolite+K-feldspar±analcime± quartz) and (K-feldspar+analcime+quartz). K-feldspar which is also rarely associated with phillipsite (Karaören) and heulandite (Degirmenli and Karaören), succeeds clinoptilolite and precedes analcime in these diagenetic facies where dioctahedral smectites, opal-CT and quartz are the latest minerals. No diagenetic transformations exist between clinoptilolite, K-feldspar and analcime that were formed directly from glass. The lateral facies distributions resulted from the differences in salinity and pH of pore water trapped during deposition of the tuffs, but vertical distributions in vitric tuffs seem to have been controlled by the glass/liquid ratio of the reacting system and the permeability or diffusion rate of alkali elements. The Bigadiç, Emet and Kirka zeolite deposits which were formed in saline basins rich in Ca and Mg ions, show similar chemical changes, i.e. loss of alkalis and gain in alkaline-earth elements that have taken

  10. Gas migration pathways in a complex faulted hangingwall in the western part of the Norwegian Danish Basin

    Science.gov (United States)

    Mauritzen, Emil K.; Clausen, Ole R.; Andresen, Katrine J.

    2013-04-01

    The studied fault is positioned in the westernmost Danish part of the Norwegian Danish Basin at the southern margin of the Northern Permian Basin. The dominating fault is the so called D-1 fault, which is part of a fault trend which follows the southern pinch-out line of the Zechstein salt and detach along the top Zechstein evaporites. Just north of the D-1 fault is the only Danish commercial HC producing area outside the Mesozoic Central Graben -the Siri Canyon- located The presence of gas within the Neogene sediments at the hanging-wall of the D-1 fault was reported in the D-1 well and the D-1 fault was analyzed in detail using 2-D seismic data in the early 90-ies. Due to the open seismic grid used then it was not possible to link the presence of possible gas occurrences and the faults as well as linking the small faults associated to the hanging-wall deformation. The area was subject to renewed interest due to the HC discoveries in the Siri Valley and industrial 3-D seismic data was acquired covering the D-1 fault.The 3D seismic data has enabled a very detailed mapping of the entire D-1 fault complex as well as seismic attribute analysis (courtesy OpendTect). The D-1 fault is in map-view characterized by segments approximately 10 km long striking E-W and NE-SW respectively. In the Cretaceous and Cenozoic part is the main fault coherent whereas the antithetic and secondary synthetic faults in the hanging-wall are smaller (both with respect to offset and length). The character of the internal hanging-wall faults varies along strike of the main fault. In areas adjacent to NE-SW striking segments is the number of faults much higher and they strike both parallel to the main fault and at an angle to it; whereas the faults are longer, less numerous and dominantly parallel to the main fault in the E-W striking central parts. Gas occurrences are observed as bright-spots associated to small faults in the hanging-wall next to the NE-SW striking segments, whereas

  11. A cost-benefit analysis of preventative management for zebra and quagga mussels in the Colorado-Big Thompson System

    Science.gov (United States)

    Thomas, Catherine M.

    2010-01-01

    Zebra and quagga mussels are fresh water invaders that have the potential to cause severe ecological and economic damage. It is estimated that mussels cause $1 billion dollars per year in damages to water infrastructure and industries in the United States (Pimentel et al., 2004). Following their introduction to the Great Lakes in the late 1980s, mussels spread rapidly throughout the Mississippi River Basin and the Eastern U.S. The mussel invasion in the West is young. Mussels were first identified in Nevada in 2007, and have since been identified in California, Arizona, Colorado, Utah, and Texas. Western water systems are very different from those found in the East. The rapid spread of mussels through the eastern system was facilitated by connected and navigable waterways. Western water systems are less connected and are characterized by man-made reservoirs and canals. The main vector of spread for mussels in the West is overland on recreational boats (Bossenbroek et al., 2001). In response to the invasion, many western water managers have implemented preventative management programs to slow the overland spread of mussels on recreational boats. In Colorado, the Colorado Department of Wildlife (CDOW) has implemented a mandatory boat inspection program that requires all trailered boats to be inspected before launching in any Colorado water body. The objective of this study is to analyze the costs and benefits of the CDOW boat inspection program in Colorado, and to identify variables that affect the net benefits of preventative management. Predicting the potential economic benefits of slowing the spread of mussels requires integrating information about mussel dispersal potential with estimates of control costs (Keller et al., 2009). Uncertainty surrounding the probabilities of establishment, the timing of invasions, and the damage costs associated with an invasion make a simulation model an excellent tool for addressing "what if" scenarios and shedding light on the

  12. Tectonic fabrics vs. mineralogical artifacts in AMS analysis: A case study of the Western Morocco extensional Triassic basins

    Science.gov (United States)

    Oliva-Urcia, B.; Casas, A. M.; Moussaid, B.; Villalaín, J. J.; El Ouardi, H.; Soto, R.; Torres-López, S.; Román-Berdiel, T.

    2016-03-01

    New magnetic fabric data from 48 sites in Upper Triassic red beds from the Argana, Asni and Tizi n'Tichka areas in the western High Atlas, in combination with rock magnetic analyses, SEM observations and qualitative chemical analyses, reveal that mineralization processes can affect the primary (extensional) or secondary (post-depositional) magnetic fabrics. Twenty out of the 48 analyzed sites show tectonic-related fabrics consistent with the rifting stage (primary). Their orientation suggests that the extensional Atlasic (for the Asni area) and Atlantic (for Argana area) distinct directions prevailing during Liassic times are already present in the Upper Triassic sediments. The other 28 sites show axes switching (including different possibilities, kmax-kmin or kint-kmin), indicating their secondary development related to mineralogical changes after deposition. However, orientation of magnetic susceptibility axes (without considering their relative value) is consistent with the main directions obtained for the rifting stage. This magnetic fabric study also suggests that (i) extension had a small transtensional component and (ii) there is a limited influence of compressional inversion tectonics.

  13. The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States

    Science.gov (United States)

    McNeal, J.M.; Lee, D.E.; Millard, H.T., Jr.

    1981-01-01

    Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.

  14. BENEFITS OF CONTROLLING SALINE WATER IN COLORADO

    OpenAIRE

    Ellingson, Lindsey; Houk, Eric E.; Schuck, Eric C.; Frasier, W. Marshall

    2004-01-01

    The Arkansas River in Colorado is confronted with a salinity issue; the majority of this salinity problem is due to agricultural runoff caused by irrigation. Reducing applications of irrigation water through adoption of more technically efficient irrigation systems is one means of improving water quality in the Arkansas River basin. This research uses positive mathematical programming to model the cropping practices of the farms along the Arkansas River. It examines the affect of acreage and ...

  15. RESULTADOS PRELIMINARES DEL SITIO ZOKO ANDI 1. APORTES PARA LA ARQUEOLOGÍA DEL CURSO INFERIOR DEL RÍO COLORADO (PROVINCIA DE BUENOS AIRES / Preliminary results of Zoko Andi 1 site. Contributions to the archaeology of the lower basin of the Colorado River

    Directory of Open Access Journals (Sweden)

    Gustavo Martinez

    2014-11-01

    Full Text Available El objetivo de este trabajo es presentar la cronología y las principales tendencias de los análisis geoarqueológicos, zooarqueológicos, de la tecnología lítica y de los entierros humanos recuperados en el sitio arqueológico Zoko Andi 1 (Pdo. de Patagones. Éste se localiza en una duna, sobre la margen derecha del curso inferior del río Colorado. Se obtuvieron nueve fechados radiocarbónicos provenientes de especímenes faunísticos, restos óseos humanos y carbón que ubican la cronología del sitio entre ca. 1500-400 años AP. Las dataciones obtenidas, en conjunción con los aspectos estratigráficos identificados, indican la existencia de al menos dos lapsos de ocupación. El primero de ellos se ubica en torno a los ca. 1500-1300 años AP (Holoceno tardío inicial, mientras que el otro se localiza en ca. 800-400 años AP (Holoceno tardío final. En este sentido, se trata del primer sitio del área en cuya secuencia se distinguen dos componentes que se corresponden con los dos bloques temporales del Holoceno tardío. Los resultados obtenidos hasta el momento en las distintas líneas de análisis se ajustan parcialmente a las tendencias propuestas en los modelos formulados para el área y son brevemente discutidas en este trabajo.   Palabras clave: transición pampeano-patagónica oriental; Holoceno tardío; geoarqueología; tecnología lítica; subsistencia; prácticas mortuorias.   Abstract The objective of this paper is to present the chronology and the main trends obtained from the results of geoarchaeology, zooarchaeology, lithics and human burials of Zoko Andi 1 archaeological site (Patagones district, Buenos Aires province. The site is located in a dune, on the right bank of the lower basin of the Colorado River. Nine radiocarbon dates from faunal remains, human bones and charcoal place the chronology of the site at ca. 1500-400 years BP. The chronology obtained in conjunction with stratigraphic aspects of the site indicates the

  16. Soil and plant composition in the Noun river catchment basin, Western Cameroon: a contribution to the development of a biogeochemical baseline

    Science.gov (United States)

    Njofang, Clémentine; Matschullat, Jörg; Amougou, Akoa; Tchouankoué, Jean Pierre; Heilmeier, Hermann

    2009-02-01

    Soils and selected edible plants of the Noun river catchment basin of western Cameroon were sampled to investigate the distribution of trace elements, based on the preliminary idea of unusual anomalies. Analytical techniques for trace elements included ICP-AES, GF-AAS, and ICP-MS. Further soil analyses comprised the mineralogy and contents of the biogenic elements carbon, nitrogen and sulphur (CNS). The trace element concentrations in the soils reflect those of the lithogeochemical background of the pluto-volcanic rocks of the region. This is consistent with the results from the mineralogical analyses and physicochemical parameters such as pH, taken in the field, which also do not suggest any geochemical anomaly. Most trace elements analyzed in the plants showed concentrations that reflect those of the soils (Al, Fe, Ti, and Rb). However, some trace elements were enriched in the plants as compared to the soils, such as Zn, Cu, Cd, Mo (excluding yam), Ni (peanut), Ba (peanut), Sr (peanut, bean), and B. Trace elements such as As, Cr, V, and Se were not bioavailable for all the analyzed plants. Besides, trace elements such as Cu, Zn, Mo, Fe, Al, Ni, B, Ti, Rb, Cs, and Ba were in the range of phytotoxicity and reached or exceeded human food tolerance level (Cu). The plants with seeds showed a higher absorption of trace elements compared to plants with tubercles.

  17. Geochemical characterization in karst basin tributaries of the San Franciscan depression: The Corrente River, western Bahia, NE-Brazil

    Science.gov (United States)

    Lecomte, Karina L.; Bicalho, Cristina C.; Silva-Filho, Emmanoel V.

    2016-08-01

    Karst aquifers are important freshwater resources for the growing population in Brazil. The sandstones of Urucuia plateau and the limestone of Bambui Group constitute important aquifer systems in the western part of Bahia state. The Corrente River provides ∼30% of the total water flow of the São Francisco River and crosses karstified structures. Surface and groundwater samples were collected during the dry period, the beginning of the wet season, and the wet season. The main objective was to define sources and distribution of dissolved elements and to describe the geochemical processes that govern their mobility within the system. Water samples are classified into three groups, depending on the dominant weathering process. When carbonate dissolution governs, waters are bicarbonate-calcium-type; whereas when the atmospheric precipitation signal is present, the samples in siliciclastic terrain are more Cl- - Na+. Groundwaters reflect bicarbonate-mixed-type, with the highest dissolved concentrations. In contrast to the major elements, trace elements, including Rare Earth Elements (REE), show seasonal behavior: their concentrations increase with the beginning of the wet season, due to re-mobilization and release into the solution of adsorbed elements from the system and the atmospheric dust. The total dissolved REE concentration (800-7500 ng L-1) is one order of magnitude more concentrated in karsts than in siliciclastic rocks. Principal component analysis was performed, explaining >77% of the variance. First factor extracted (REE, Y, Th, Al, Fe) explain the washout and enhancement of atmospheric dust weathering throughout the beginning of the wet seasons. The second component comprises variables related to karsts lithology, representing calcite and dolomite dissolution.

  18. The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China

    Institute of Scientific and Technical Information of China (English)

    ZHU BingQi; YANG XiaoPing

    2007-01-01

    The physio-chemical and chemical features of water in natural conditions are controlled by the weathering of bedrocks, local climate, landforms and other geo-environmental parameters. In order to understand the characteristics of water and the origins of the dissolved loads in the rivers and in the ground waters of the Taklimakan Desert, western China, we studied the ions in the water samples collected from rivers and wells. We collected water samples from four rivers (Keriya River, Cele River, Tumiya River and Yulongkashi River) in the southern desert and ground water samples from many parts of the desert. Major cations and anions were measured using ion-chromatograph and titration with HCl. The total dissolved solids (TDS), pH and conductivity were examined on site by a portable multi-parameter analyzer. The data show that the water in the rivers of southern Taklimakan is still of fresh water quality and slight alkalinity, although the TDS is comparatively higher than that of many other rivers of the world. The ground water is fresh to slightly saline, with TDS a little higher than that of river water in the study area. The concentration of ions is slightly different between the four rivers in the southern Taklimakan. However, the chemistries of ground water in all samples are to a large degree controlled by sodium and chloride. The ions in the ground water are concluded to be mainly from dissolving of evaporites, consistent with the dry climate in the region, whereas the ions in the rivers are mainly from rock weathering. Low-level human imprints are recognized in the ground water samples also.

  19. Provenance and sediment dynamics within river basins in Western Peru through detrital zircons U-Pb ages

    Science.gov (United States)

    Camille, Litty; Pierre, Lanari; Marco, Burn; Fritz, Schlunegger

    2016-04-01

    U-Pb dating of detrital zircons from clastic sediments by LA-ICPMS has become a popular method in sedimentary correlation and provenance studies. Because of remarkable durability, detrital zircons may be reworked through multiple sedimentary cycles and provide an ideal material to study the sedimentary provenance in rivers and the erosional characteristics. The Western side of the Peruvian Andes has experienced multiple pluvial periods induced phases of erosion and the formation of subsequent cut-and-fill terrace sequences since the Pleistocene. The aim of the study is to estimate the source areas of the terrace and modern deposits to infer changes in sediment dynamics through time and correlate them with the climatic change and especially precipitation patterns. To this extent, we determined the provenance of 4 dated terrace deposits along with modern sediments from the same streams by matching detrital-zircon ages with crystallization ages of source rocks. Age populations of detrital zircons are derived using U-Pb LA-ICP-MS analysis of about 50 zircons. Results show changes in the sediment provenance through time. Nowadays, sediment source areas are mainly located on the uppermost reach of the rivers whereas during the Pleistocene, sediment source areas were both located in the headwaters and along the middle reach of the rivers. These differences in terms of provenance could correlate with a change in precipitation locations and rates. Indeed a scenario where the locus of precipitation occurrence shifted from the middle reaches including the Altiplano during the past, to the Altiplano only as observed today, along with higher precipitation rates during the periods of terraces formation, offers an explanation to explain the erosional patterns recorded by detrital zircons.

  20. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    Science.gov (United States)

    2013-01-01

    Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb), and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn) considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3-) with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied impoundments were found to

  1. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2013-01-01

    Full Text Available Abstract Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb, and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3- with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied

  2. Environmental drivers of megafaunal assemblage composition and biomass distribution over mainland and insular slopes of the Balearic Basin (Western Mediterranean)

    Science.gov (United States)

    Fanelli, E.; Cartes, J. E.; Papiol, V.; López-Pérez, C.

    2013-08-01

    The influence of mesoscale physical and trophic variables on deep-sea megafauna, a scale of variation often neglected in deep-sea studies, is crucial for understanding their role in the ecosystem. Drivers of megafaunal assemblage composition and biomass distribution have been investigated in two contrasting areas of the Balearic basin in the NW Mediterranean: on the mainland slope (Catalonian coasts) and on the insular slope (North of Mallorca, Balearic Islands). An experimental bottom trawl survey was carried out during summer 2010, at stations in both sub-areas located between 450 and 2200 m water depth. Environmental data were collected simultaneously: near-bottom physical parameters, and the elemental and isotopic composition of sediments. Initially, data were analysed along the whole depth gradient, and then assemblages from the two areas were compared. Analysis of the trawls showed the existence of one group associated with the upper slope (US=450-690 m), another with the middle slope (MS=1000-1300 m) and a third with the lower slope (LS=1400-2200 m). Also, significant differences in the assemblage composition were found between mainland and insular slopes at MS. Dominance by different species was evident when the two areas were compared by SIMPER analysis. The greatest fish biomass was recorded in both areas at 1000-1300 m, a zone linked to minimum temperature and maximum O2 concentration on the bottom. Near the mainland, fish assemblages were best explained (43% of total variance, DISTLM analysis) by prey availability (gelatinous zooplankton biomass). On the insular slope, trophic webs seemed less complex and were based on vertical input of surface primary production. Decapods, which reached their highest biomass values on the upper slope, were correlated with salinity and temperature in both the areas. However, while hydrographic conditions (temperature and salinity) seemed to be the most important variables over the insular slope, resource availability

  3. Traveltimes and amplitudes from nuclear explosions; Nevada Test Site to Ordway, Colorado

    Science.gov (United States)

    Ryall, Alan; Stuart, David J.

    1963-01-01

    This paper treats the results of a study of seismic waves generated by eight nuclear explosions and recorded at 31 locations between the Nevada Test Site (NTS) and Ordway, Colorado. The line of recording stations crosses the eastern part of the Basin and Range Province, the Colorado Plateau, the southern Rocky Mountains, and extends into the Great Plains. In the eastern Basin and Range Province and the western margin of the Colorado Plateau (0 ≤ Δ ≤ 385 km ), the time-distance curves for Pg and Pn can be expressed, respectively, as T1 = 0.8 + Δ/6.0. T3 = 5.8 + Δ/7.6. A third phase, tentatively identified as P*, is represented by the equation T2 = 3.8 + Δ/6.5. Using the crustal structure and Pn velocity (7.9 km/ sec) found for the NTS region by other authors, these relations indicate that the thickness of the crust increases from about 25 km at NTS to about 42 km in the western part of the Colorado Plateau Province. East of this boundary the velocity of P in the upper mantle increases to 8.0 km/sec; depth to the Mohorovicic discontinuity is approximately constant over the range 435 ≤ Δ ≤ 645 km. Beyond 850 km, first arrivals indicate an apparent velocity of about 8.4 km/sec. Amplitudes of Pn attenuate according to the equation A = Ao Δ-1/2(Δ -d)-3/2 e-0.0022Δ over the distance range 150 ≤ Δ ≤ 850 km. This relation yields a value of Q, for Pn of about 520. The amplitudes of Pg attenuates extremely rapidly, and beyond about 130 km this phase cannot be identified with certainty. An extension of the Pg traveltime branch at large distances could be associated with waves reflected beyond the critical angle, from the base of the crust. This phase, called ?P after Mohorovicic, appears to attenuate as A = Ao e-0.076Δ Δ-1/2. The value of Q indicated by this equation is about 200.

  4. Late Permian to Middle Triassic correlations and palaeogeographical reconstructions in south-western European basins: New sedimentological data from Minorca (Balearic Islands, Spain)

    Science.gov (United States)

    Linol, Bastien; Bercovici, Antoine; Bourquin, Sylvie; Diez, José Bienvenido; López-Gómez, José; Broutin, Jean; Durand, Marc; Villanueva-Amadoz, Uxue

    2009-09-01

    -lake or ponded environments where fluvial systems generally flowed southward, except in south-eastern France (oriented to the NE). Within these SW European basins, such as Minorca, the Late Permian succession shows a major retrogradational (evolution from fluvial or alluvial fan deposits to extensive lake, playa or floodplain deposits) and a progradational trend (fluvial or alluvial fan deposits). The Permian-Triassic transition corresponds to an unconformity overlain by braided river deposits with arid climate indicators (aeolian deposits: ventifacts and aeolian dune sedimentation). At the scale of western Europe, this arid episode is dated as Smithian and the Induan age sedimentation deposits seem to be preserved only in the central part of the Germanic Basin. As with all other Peri-Tethyan basins, environment DE 2 of Minorca (above the major erosional surface) is attributed to the Smithian. In the upper part of the studied succession, braided river deposits indicative of less arid climatic conditions are preserved. This succession contains the earliest Mesozoic palaeosols, dated as Anisian by palynomorphs, and expresses a vertical evolution from fluvial to open marine depositional environments attributed to the Muschelkalk transgression.

  5. Background Contaminants Evaluation of the Republican River Drainage- Colorado, Kansas, and Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Republican River Basin is a very large watershed in west-central Kansas, eastern Colorado, Wyoming and southern Nebraska. This study was conducted to determine...

  6. The neo-tectonic deformation features in the eastern segment of Circum-Tibetan Plateau Basin and Range System:Take the western Sichuan basin as an example%环青藏高原盆山体系东段新构造变形特征——以川西为例

    Institute of Scientific and Technical Information of China (English)

    李本亮; 雷永良; 陈竹新; 贾东; 张朝军

    2011-01-01

    介于扬子板块与青藏高原之间的川西前陆冲断带是环青藏高原盆山体系东段的重要组成部分,它是研究喜马拉雅构造运动对青藏高原东缘沉积盆地构造作用的重要场所.本文分别选取川西南段、川西北段和川北西段米仓山前的区城构造地质剖面来研究沉积地层在喜马拉雅运动中发生的构造变形特征.通过前陆冲断构造变形带的宽度、水平缩短童,山体隆升、盆地沉降,新构造对早期古构造的叠加与改造关系的研究,揭示出在环青藏高原盆山体系内,造山带与盆地边缘的冲断构造变形从造山带向克拉通盆地内扩展的同时受欧亚大陆与印度板块碰撞及其远程效应的空间位置限制,靠近青藏高原的川西南段到远离它的川北西段,新构造变形强度、新构造变形范围、盆山耦合程度具有依次降低等特征.这种受环青藏高原盆山体系控制的前陆冲断带构造变形具有明显的资环效应,特别是对油气资源的聚集与分布有重要的影响,控制了川西南段晚期次生气藏发育,川西北段和川北西段的早期原生气藏的发育.%The western Sichuan basin foreland thrust and fold belt locate between the Tibetan Plateau and Upper Yangtze plate, which is the main part of the eastern segment of Circum-Tibetan Plateau Basin and Range System formed during the Himalayan tectonic movement. There are different neo-tectonic deformation features in the different areas. The long geologic profile cross the whole foreland thrust and fold belt in the south segment of western Sichuan basin, north segment of western Sichuan basin and west segment of northern Sichuan basin, are compiled to study the neo-tectonic features and distribution. After comparing their deformation width of foreland thrust and fold belt, structural shortening amount, lifted mountain altitude, basin subsidence and the space relation between old structure and neo-structure, authors

  7. Diagenetic characteristics and reservoir quality of the Lower Cretaceous Biyadh sandstones at Kharir oilfield in the western central Masila Basin, Yemen

    Science.gov (United States)

    Hakimi, Mohammed Hail; Shalaby, Mohamed Ragab; Abdullah, Wan Hasiah

    2012-06-01

    The Lower Cretaceous Biyadh Formation in the Masila Basin is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Biyadh Formation more specifically on the diagenesis and relate with reservoir quality, are limited. Based on core samples from one well in the Kharir oilfield, western central Masila Basin, this study reports the lithologic and diagenetic characteristics of this reservoir. The Biyadh sandstones are very fine to very coarse-grained, moderate to well sorted quartzarenite and quartzwacke. The diagenetic processes recognized include mechanical compaction, cementation (carbonate, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cement and feldspar grains. The widespread occurrences of early calcite cement suggest that the Biyadh sandstones lost a significant amount of primary porosity at a very early stage of its diagenetic history. Based on the framework grain-cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-filling clay cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cement and feldspar grains. In addition to calcite, several different clay minerals including kaolinite and chlorite occur as pore-filling and pore-lining cements. Kaolinite largely occurs as vermiform and accelerated the minor porosity loss due to pore-occlusion. Chlorite coating grains helps to retain primary porosity a by retarding the envelopment of quartz overgrowths. Porosity and permeability data exhibit good inverse correlation with cement. Thus, reservoir quality is controlled by pore occluding cement. Diagenetic history of the Biyadh sandstones as established here is expected to help better understanding and exploitation of this reservoir. The relation between diagenesis and reservoir quality is as follows: the

  8. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    International Nuclear Information System (INIS)

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U3O8 resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed

  9. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U/sub 3/O/sub 8/ resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed.

  10. Colorado Library Program Assessment

    Science.gov (United States)

    Russell, Becky

    2012-01-01

    Colorado school librarians are in the midst of a crisis. According to a 2009-2010 survey of public schools in Colorado, just 23% of elementary schools have an endorsed librarian, while 37% of middle schools and 32% of high schools report having an endorsed librarian. This report also shows how these percentages have dropped in just a two-year…

  11. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  12. Discovery of a Devonian mafic magmatism on the western border of the Murzuq basin (Saharan metacraton): Paleomagnetic dating and geodynamical implications

    Science.gov (United States)

    Derder, M. E. M.; Maouche, S.; Liégeois, J. P.; Henry, B.; Amenna, M.; Ouabadi, A.; Bellon, H.; Bruguier, O.; Bayou, B.; Bestandji, R.; Nouar, O.; Bouabdallah, H.; Ayache, M.; Beddiaf, M.

    2016-03-01

    Intraplate deformation is most often linked to major stress applied on plate margins. When such intraplate events are accompanied by magmatism, the use of several dating methods integrated within a multidisciplinary approach can bring constraints on the age, nature and source mobilized for generating the magma and in turn on the nature of the intraplate deformation. This study focuses on the large gabbro Arrikine sill (35 km in extension) emplaced within the Silurian sediments of the western margin of the Murzuq cratonic basin in southeastern Algeria. Its emplacement is dated during the early Devonian (415-400 Ma) through the determination of a reliable paleomagnetic pole by comparison with the Gondwana Apparent Polar Wander Path (APWP). This age can be correlated with deep phreatic eruptions before Pragian time thought to be at the origin of sand injections and associated circular structures in Algeria and Libya. For the sill, the K-Ar age of 325.6 ± 7.7 Ma is related to a K-rich aplitic phase that has K-enriched by more than 20% the Devonian gabbro. Laser-ICP-MS U-Pb method dates only inherited zircons mostly at c. 2030 Ma with additional ages at c. 2700 Ma and younger ones in the 766-598 Ma age range. The Arrikine sill is a high-Ti alkaline gabbro having the geochemical composition of a hawaiite akin to several intraplate continental and oceanic provinces, including the contemporaneous Aïr ring complexes province in Niger, but also to the Mauna Loa volcano in Hawaii. This peculiar composition akin to that of the contemporaneous Aïr province is in agreement with a lower Devonian age for the Arrikine sill. The lower Devonian Arrikine sill emplacement is related to a "Caledonian" transtensive reactivation of the western metacratonic boundary of the Murzuq craton. This event also generated in the Saharan platform the so-called "Caledonian unconformity" of regional extension, the Aïr ring complexes and magmatic rocks that produced sand injections. It could be

  13. Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mathews, Runcie P.; Saraswati, Pratul K.; Banerjee, Santanu [Department of Earth Sciences, Indian Institute of Technology Bombay (India); Singh, Bhagwan D.; Tripathi, Suryakant M.; Singh, Alpana [Birbal Sahni Institute of Palaeobotany, Lucknow (India); Mann, Ulrich [Forschungszentrum Juelich (Germany). Institut fuer chemie und Dynamik der Geosphaere

    2011-01-01

    Petrological, palynological and organic-geochemical investigations were undertaken to determine the source vegetation, depositional conditions and hydrocarbon source potential of Eocene Matanomadh lignites from Kutch Basin, western India. The maceral study reveals that studied lignites are rich in huminite (av. 63%) with sub-ordinate amount of liptinite (av. 19%) and low inertinite (av. 3%), along with low to moderately high associated mineral matters (av. 15%). The overall petrographic composition points to a lagoonal condition for the formation of these lignites. The mean huminite reflectance values (R{sub r}: 0.28-0.34%, av. 0.