WorldWideScience

Sample records for basin northwest china

  1. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Science.gov (United States)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  2. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    Directory of Open Access Journals (Sweden)

    C. Liu

    2015-05-01

    Full Text Available Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  3. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Tang, Qiuhong

    2017-08-01

    In Northwest China, water originates from the mountain area and is largely used for irrigation agriculture in the middle reaches. This study investigates the local and remote impact of irrigation on regional climate in the Heihe River Basin, the second largest inland river basin in Northwest China. An irrigation scheme was developed and incorporated into the Weather Research and Forecasting (WRF) model with the Noah-MP land surface scheme (WRF/Noah-MP). The effects of irrigation is assessed by comparing the model simulations with and without consideration of irrigation (hereafter, IRRG and NATU simulations, respectively) for five growth seasons (May to September) from 2009 to 2013. As consequences of irrigation, daily mean temperature decreased by 1.7°C and humidity increased by 2.3 g kg-1 (corresponding to 38.5%) over irrigated area. The temperature and humidity of IRRG simulation matched well with the observations, whereas NATU simulation overestimated temperature and underestimated humidity over irrigated area. The effects on temperature and humidity are generally small outside the irrigated area. The cooling and wetting effects have opposing impacts on convective precipitation, resulting in a negligible change in localized precipitation over irrigated area. However, irrigation may induce water vapor convergence and enhance precipitation remotely in the southeastern portion of the Heihe River Basin.

  4. The Implication of Climate Signal for Precipitation in the Heihe River Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2016-01-01

    Full Text Available This paper studies the stochastic dynamic variability of precipitation, for the upper, middle, and lower reaches of the Heihe River basin in Northwest China, by employing Mann-Kendall statistic, Pettitt test, and wavelet transform methods. The possible associations with three prominent climatic patterns, El Niño-Southern Oscillation (ENSO, Artic Oscillation (AO, and Indian Ocean Dipole (IOD, are examined by using multiscale wavelet coherence method. No significant trend is identified for the interannual precipitation variability. However, about 2-year significant variability is detected for the lower reach of the Heihe River basin, and this dominating precipitation variability is essentially depicted by AO. The possible influences of ENSO are exerted on long-term timescale, 8–16 years. The obtained knowledge is helpful for the predications of extreme hydroclimatological events and better reservoir operations for regional water resources.

  5. Distribution and migration mechanism of fluoride in groundwater in the Manas River Basin, Northwest China

    Science.gov (United States)

    Liu, Yalei; Jin, Menggui; Ma, Bin; Wang, Jianjun

    2018-04-01

    Elevated fluoride (F) concentration in groundwater is posing a public health risk in the Manas River Basin (MRB), Northwest China. Based on the characterization of regional groundwater flow, 90 groundwater samples from aquifers were analyzed, along with top-soil leachate and pore-water samples from aquitards. Stable oxygen (δ18O) and hydrogen isotopes, radiocarbon and hydrochemical analyses of the groundwater and pore-water samples were conducted to trace groundwater hydrological and hydrochemical processes and thereby understand the distribution and migration mechanism of F. The groundwater is recharged by meteoric precipitation through vapor condensation processes in the Tianshan Mountains. The F concentration in groundwater samples from this basin ranged from 0.11 to 48.15 mg/L (mean 2.56 mg/L). In 37 of the 90 groundwater samples, the F concentrations were above the safe level for drinking water. The F concentrations progressively increased with the residence time and well depths in the northwest of the alluvial-fluvial plain, where groundwater is overexploited for agricultural and domestic use. Positive correlations between F and sodium (Na)/calcium (Ca) indicate that the enrichment and migration of F are influenced by cation exchange processes under high-Na and alkaline pH conditions. The relationships between δ18O and F and chloride (Cl) concentrations were nonlinear due to leaching and mixing processes. This shows that vertical leaching by irrigation return flow and mixing with pore water are the dominant processes driving the migration of F in the groundwater flow system of MRB, in addition to geochemical processes.

  6. Extensional tectonics and sedimentary response of the Early–Middle Cambrian passive continental margin, Tarim Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Zhiqian Gao

    2012-09-01

    Full Text Available The fact that several half-grabens and normal faults developed in the Lower–Middle Cambrian of Tazhong (central Tarim Basin and Bachu areas in Tarim Basin, northwest China, indicates that Tarim Basin was under extensional tectonic setting at this time. The half-grabens occur within a linear zone and the normal faults are arranged in en echelon patterns with gradually increasing displacement eastward. Extensional tectonics resulted in the formation of a passive continental margin in the southwest and a cratonic margin depression in the east, and most importantly, influenced the development of a three-pronged rift in the northeast margin of the Tarim Basin. The fault system controlled the development of platform – slope – bathyal facies sedimentation of mainly limestone-dolomite-gypsum rock-saline rock-red beds in the half-grabens. The NW-SE trending half-grabens reflect the distribution of buried basement faults.

  7. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2012-04-01

    Full Text Available Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.

  8. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou Formation, Santanghu Basin, northwest China: Application to lake basin evolution

    Science.gov (United States)

    Hackley, Paul C.; Fishman, Neil; Wu, Tao; Baugher, Gregory

    2016-01-01

    Exploration for tight oil in the frontier Santanghu Basin of northwest China has resulted in recent commercial discoveries sourced from the lacustrine Upper Permian Lucaogou Formation, already considered a “world class source rock” in the Junggar Basin to the west. Here we apply an integrated analytical program to carbonate-dominated mudrocks from the Lucaogou Formation in Santanghu Basin to document the nature of organic matter (OM) in the context of an evolving lake system. The organic-rich samples (TOC 2.8–11.4 wt%; n = 10) were widely spaced from an ~ 200 m cored section, interpreted from textural and mineralogical evidence to document transition from a lower under-filled to an overlying balanced-filled lake. Organic matter is dominated by moderate to strongly fluorescent amorphous material with Type I geochemical signature (HI values 510–755; n = 10) occurring in a continuum from lamellar stringers, 10–20 μm thick, some ≥ 1 mm in length (possible microbial mat; preserved only in lower under-filled section) to finely-disseminated amorphous groundmass intimately intermixed with mineral matrix. Biomarkers for methanotrophs and photosynthetic cyanobacteria indicate a complex microbial consortium. A unicellular prasinophyte green alga(?), similar to Tasmanites in marine rocks, is present as discrete flattened discs 50–100 μm in diameter. Type III OM including vitrinite (some fluorescent) and inertinite also is abundant. Solid bitumen, indicating local kerogen conversion, fills voids and occurs throughout the cored section. Vitrinite reflectance values are 0.47–0.58%, consistent with strong OM fluorescence but may be “suppressed”. Other proxies, e.g., biomarker parameters, indicate the Lucaogou Formation is in the early oil window at this location. On average, slightly more amorphous OM and telalginite are present in the lower section, consistent with a shallow, stratified, saline environment with low sediment dilution. More

  9. Geothermal regime and Jurassic source rock maturity of the Junggar basin, northwest China

    Science.gov (United States)

    Nansheng, Qiu; Zhihuan, Zhang; Ershe, Xu

    2008-01-01

    We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0-4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m 2 with a mean of 41.8 ± 7.8 mW/m 2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m 2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m 2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J 1b) and Middle Jurassic Xishanyao Group (J 2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic

  10. Groundwater sustainability and groundwater/surface-water interaction in arid Dunhuang Basin, northwest China

    Science.gov (United States)

    Lin, Jingjing; Ma, Rui; Hu, Yalu; Sun, Ziyong; Wang, Yanxin; McCarter, Colin P. R.

    2018-03-01

    The Dunhuang Basin, a typical inland basin in northwestern China, suffers a net loss of groundwater and the occasional disappearance of the Crescent Lake. Within this region, the groundwater/surface-water interactions are important for the sustainability of the groundwater resources. A three-dimensional transient groundwater flow model was established and calibrated using MODFLOW 2000, which was used to predict changes to these interactions once a water diversion project is completed. The simulated results indicate that introducing water from outside of the basin into the Shule and Danghe rivers could reverse the negative groundwater balance in the Basin. River-water/groundwater interactions control the groundwater hydrology, where river leakage to the groundwater in the Basin will increase from 3,114 × 104 m3/year in 2017 to 11,875 × 104 m3/year in 2021, and to 17,039 × 104 m3/year in 2036. In comparison, groundwater discharge to the rivers will decrease from 3277 × 104 m3/year in 2017 to 1857 × 104 m3/year in 2021, and to 510 × 104 m3/year by 2036; thus, the hydrology will switch from groundwater discharge to groundwater recharge after implementing the water diversion project. The simulation indicates that the increased net river infiltration due to the water diversion project will raise the water table and then effectively increasing the water level of the Crescent Lake, as the lake level is contiguous with the water table. However, the regional phreatic evaporation will be enhanced, which may intensify soil salinization in the Dunhuang Basin. These results can guide the water allocation scheme for the water diversion project to alleviate groundwater depletion and mitigate geo-environmental problem.

  11. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan

    2016-04-01

    Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial

  12. Estimate of subsurface formation temperature in the Tarim basin, northwest China

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2015-04-01

    Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.

  13. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    Science.gov (United States)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  14. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  15. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  16. Probability Modeling of Precipitation Extremes over Two River Basins in Northwest of China

    Directory of Open Access Journals (Sweden)

    Zhanling Li

    2015-01-01

    Full Text Available This paper is focused on the probability modeling with a range of distribution models over two inland river basins in China, together with the estimations of return levels on various return periods. Both annual and seasonal maximum precipitations (MP are investigated based on daily precipitation data at 13 stations from 1960 to 2010 in Heihe River and Shiyang River basins. Results show that GEV, Burr, and Weibull distributions provide the best fit to both annual and seasonal MP. Exponential and Pareto 2 distributions show the worst fit. The estimated return levels for spring MP show decreasing trends from the upper to the middle and then to the lower reaches totally speaking. Summer MP approximates to annual MP both in the quantity and in the spatial distributions. Autumn MP shows a little higher value in the estimated return levels than Spring MP, while keeping consistent with spring MP in the spatial distribution. It is also found that the estimated return levels for annual MP derived from various distributions differ by 22%, 36%, and 53% on average at 20-year, 50-year, and 100-year return periods, respectively.

  17. Significance and effect of ecological rehabilitation project in inland river basins in northwest China.

    Science.gov (United States)

    Wang, Yu; Feng, Qi; Chen, Lijuan; Yu, Tengfei

    2013-07-01

    The Ecological Water Transfer and Rehabilitation Project in the arid inland area of northwest China is an important measure in restoring a deteriorated ecosystem. However, the sustainability of the project is affected by many socio-economic factors. This article examines the attitudes of the local populace toward the project, its impact on the livelihood of the people, and the positive effects of water-efficient agricultural practices in Ejina County. Related data were collected through questionnaire surveys and group discussions. The results identified three critical issues that may influence the sustainability of the project in the study area. The first issue relates to the impact of the project on the livelihood of local herdsmen. The potential for the sustainability of the project is compromised because the livelihood of the herdsmen greatly depends on the compensation awarded by the project. The second issue is that the project did not raise the water resource utilization ratio, which may undermine its final purpose. Finally, the compensation provided by the project considers losses in agriculture, but neglects the externalities and public benefit of eco-water. Thus, appropriate compensation mechanisms should be established and adopted according to local economic, environmental, and social conditions. Some recommendations for improving the sustainability of the project are provided based on the results of this study.

  18. Assessing the changes in land use and ecosystem services in an oasis agricultural region of Yanqi Basin, Northwest China.

    Science.gov (United States)

    Wang, Shuixian; Wu, Bin; Yang, Pengnian

    2014-12-01

    The Yanqi Basin, one of the most productive agricultural areas, has a high population density in Xinjiang, Northwest China. Land use changes, mainly driven by oasis expansion, significantly impact ecosystem services and functions, but these effects are difficult to quantify. The valuation of ecosystem services is important to clarify the ecological and environmental changes caused by agriculturalization of oasis. This study aimed to investigate variations in ecosystem services in response to land use changes during oasis agricultural expansion activities in the Yanqi Basin from 1964 to 2009. The methods used were based on formula of ecosystem service value (ESV) and ESV coefficients. Satellite data were combined with the ESV coefficients to quantify land use changes and ecosystem service changes in the study area. Sensitivity analysis determined the effect of manipulating the coefficients on the estimated values. The results show that the total ESVs in the Yanqi Basin were $1,674, $1,692, $1,471, $1,732, and $1,603 million in 1964, 1973, 1989, 1999, and 2009, respectively. The net deline in ESV was $71 million in the past 46 years, but the ESVs of each types of landscape changed significantly. The aggregated ESVs of water areas and wetlands were approximately 80 % of the total ESV. Water supply and waste treatment were the two largest service functions and contributed approximately 65 % of the total ESV. The estimated ESVs in this study were elastic with respect to the value coefficients. Therefore, the estimations were robust in spite of uncertainties on the value coefficients. These significant changes in land use occur within the entire basin over the study period. These changes cause environmental problems, such as land degradation, vegetation degeneracy, and changes in aquatic environment.

  19. Responses of Vegetation Growth to Climatic Factors in Shule River Basin in Northwest China: A Panel Analysis

    Directory of Open Access Journals (Sweden)

    Jinghui Qi

    2017-03-01

    Full Text Available The vegetation response to climatic factors is a hot topic in global change research. However, research on vegetation in Shule River Basin, which is a typical arid region in northwest China, is still limited, especially at micro scale. On the basis of Moderate-resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI data and daily meteorological data, employing panel data models and other mathematical models, the aim of this paper is to reveal the interactive relationship between vegetation variation and climatic factors in Shule River Basin. Results show that there is a widespread greening trend in the whole basin during 2000–2015, and 80.28% of greening areas (areas with vegetation improvement are distributed over upstream region, but the maximum vegetation variation appears in downstream area. The effects of climate change on NDVI lag about half to one month. The parameters estimated using panel data models indicate that precipitation and accumulated temperature have positive contribution to NDVI. With every 1-mm increase in rainfall, NDVI increases by around 0.223‰ in upstream area and 0.6‰ in downstream area. With every 1-°C increase in accumulated temperature, NDVI increases by around 0.241‰ in upstream area and 0.174‰ in downstream area. Responses of NDVI to climatic factors are more sensitive when these factors are limiting than when they are not limiting. NDVI variation has performance in two seasonal and inter-annual directions, and the range of seasonal change is far more than that of inter-annual change. The inverted U-shaped curve of the variable intercepts reflects the seasonal change. Our results might provide some scientific basis for the comprehensive basin management.

  20. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  1. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue

    2015-07-01

    Full Text Available The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  2. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    Science.gov (United States)

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  3. The red bed-type and sandstone-type uranium deposits in the inland basins of the northwest China

    International Nuclear Information System (INIS)

    Wang Zhilong.

    1988-01-01

    On the basis of the study on the relationship between the red bed-type and sandstone-type uranium deposits in the inland basins of the northwest China, a classification of red beds based on sedimentary facies and redding origin is presented. Red beds in the inland badins can be divided into six types: 1. alluvial plain and 2. shallow lake red beds formed at the stage of continental disintegration; 3. fluvial alluvial red bed, 4. delta plain and 5. desert red beds formed at the diagenetic-epigenetic stage; 6. spattered red (secondaty red beds) formed at the hypergenic weathering stage. According to the characteristics, structural environments of these six types of red beds, and changes of various geochemical characteristic values (Eh, pH, Th/U, Fe 3+ /Fe 2+ , Sr/Ba, etc.) from host rocks to different kinds of red beds , the relationship between these values and sandstone-type uranium deposits was determined. it is an open system, the mobile uranium is easily leached, thus it is unfavoutable for mineralization; but when the rock reddens at the diagenetic epigenetic stage (closed system) that is favourable for mineraizaltion, the mobile uranium can be concentrated to form uranium deposits

  4. Geological Factors and Reservoir Properties Affecting the Gas Content of Coal Seams in the Gujiao Area, Northwest Qinshui Basin, China

    Directory of Open Access Journals (Sweden)

    Zhuo Zou

    2018-04-01

    Full Text Available Coalbed methane (CBM well drilling and logging data together with geological data were adopted to provide insights into controlling mechanism of gas content in major coal seams and establish gas accumulation models in the Gujiao area, Northwest Qinshui Basin, China. Gas content of targeted coals is various in the Gujiao area with their burial depth ranging from 295 to 859 m. Highly variable gas content of coals should be derived from the differences among tectonism, magmatism, hydrodynamism, and sedimentation. Gas content preserved in the Gujiao area is divided into two parts by the geological structure. Gas tends to accumulate in the groundwater stagnant zone with a total dissolved solids (TDS value of 1300–1700 ppm due to water pressure in the Gujiao area. Reservoir properties including moisture content, minerals, and pore structure also significantly result in gas content variability. Subsequently, the gray correlation statistic method was adopted to determine the most important factors controlling gas content. Coal metamorphism and geological structure had marked control on gas content for the targeted coals. Finally, the favorable CBM exploitation areas were comprehensively evaluated in the Gujiao area. The results showed that the most favorable CBM exploitation areas were in the mid-south part of the Gujiao area (Block I.

  5. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

    Science.gov (United States)

    Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong

    2017-11-01

    Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

  6. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    OpenAIRE

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-01-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second...

  7. Towards a digital watershed, with a case study in the Heihe River Basin of northwest China

    Science.gov (United States)

    Li, X.; Cheng, G.-D.; Ma, M.-G.; Lu, L.; Ge, Y.-C.

    2003-04-01

    Integrated watershed study and river basin management needs integrated database and integrated hydrological and water resource models. We define digital watershed as a web-based information system that integrates data from different sources and in different scales through both information technology and hydrological modeling. In the last two years, a “digital basin” of the Heihe River Basin, which is a well-studied in-land catchment in China’s arid region was established. More than 6 Gb of in situ observation data, GIS maps, and remotely sensed data have been uploaded to the Heihe web site. Various database and dynamic web techniques such as PHP, ASP, XML, VRML are being used for data service. In addition, the DIAL (Data and Information Access Link), IMS (Internet Map Server) and other Web-GISs are used to make GIS and remote sensing datasets of the Heihe River Basin available and accessible on the Internet. We also have developed models for estimating the evapotranspiration, bio-physical parameters, and snow runoff. These methods can be considered as the elements to build up the integrated watershed model that can be used for integrated management of the Heihe River Basin. The official domain name of the digital Heihe River Basin is heihe.westgis.ac.cn

  8. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Xue; JiaQiang Lei; DongWei Gui; JianPing Zhao; DongLei Mao; Jie Zhou

    2016-01-01

    The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958–2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden-tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can im-prove the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economic development.

  9. Behavior of Agricultural water users induced hydro-climatic cycle change in Heihe River Basin, in the northwest of china

    Science.gov (United States)

    Wu, F.; Deng, X.; Cai, X.; Zhang, X.; Zhang, Q.

    2017-12-01

    Water allocation unbalance is the most important driving force of ecological degradation in the Heihe River Basin, where it seems the lifeblood of environment and human society. Water commute complex and frequent in soil, atmosphere, surface and ground face. The balance analysis of Water's transformation based on the WRF (Weather Research Forecasting) and SWAT (Soil and Water Assessment Tool) simulations, puts forward the application of land governance in arid and semi-arid region. In this study, we designed an irrigation scheme using local field experiences and incorporated the irrigation scheme into WRF/Noah-MP model. Then, to test the effects of irrigation scheme on performance of WRF/Noah-MP model, we carried out two simulations with the Heihe watershed, Northwest China, as a case study area. Firstly, the irrigation simulation is meanly about 860 mm across all of 671 cropland grid cells within the Heihe watershed and gradually increases from about 500 mm nearby the foot of Qilian Mountain to the maximum about 1500 mm in the middle and lower reach of Heihe River. Both of regional mean value and spatial heterogeneity are close to ground measurements. Secondly, the irrigation simulation dramatically reduced the mean bias of specified humidity to -0.47 g kg-1 (accounting for 6.0% of observation) and RMSE of temperature to 0.47 °C, respectively, since the irrigation enhanced the surface latent heat and weakened sensible heat to atmosphere. Thirdly, Across the 8 agricultural sites, the correlation coefficient and RMSE increased from 0.75 to 0.80. Finally, we found the surface runoff will increase by 0.46% with SWAT model at irrigation months. Therefore, the irrigation may led to expansion of cultivated land through transformation from groundwater to surface water at some degree. Water authorities should strengthen the tough water management measures to implement measures of total quantity control and raise the efficiency of water resources.

  10. Model identification and control of development of deeply buried paleokarst reservoir in the central Tarim Basin, northwest China

    Science.gov (United States)

    Yu, Jingbo; Li, Zhong; Yang, Liu; Han, Yinxue

    2018-04-01

    The paleokarst reservoirs of the Ordovician Yingshan formation, rich in oil and gas, are deeply buried in the central Tarim Basin, northwest China. Dozens of imaging well-logs in this region reveal five typical paleokarst features, including solution vugs, solution-enlarged fractures, filled caves, unfilled caves and collapsed caves, as well as two typical paleokarst structures located in different paleotopographic sites, including paleokarst vadose and phreatic zones. For seismic data, the large wave impedance contrast between the paleocave system and the surrounding rocks leads to a strong seismic reflection, which is highlighted as a bead-like ‘bright spot’ in a seismic section. By quantitatively estimating the seismic resolution limits of deep seismic reflections, a single paleocave cannot be identified from a seismic profile, and the bead-like reflection represents an entire paleocave complex. The spectral decomposition technique was employed to depict the planar shape and semi-quantitatively measure the size of the paleocave complexes. The results indicate that the sizes of the paleokarst caves are all small, and most of the karst caves are nearly completely filled by clay and calcite. The small cave size and the effective support of cave fills for the overlying strata mean that some individual paleocaves in a paleocave complex are preserved at a burial depth of more than 6000 m. Paleotopography and faults strongly impact the distribution of paleokarst reservoirs. Well-developed paleokarst reservoirs are generally located in paleotopographic highlands and on slopes, and for a specific paleotopographic site, the distribution of paleokarst reservoirs is obviously controlled by NW-SE trending faults. The most favorable area for paleokarst development is the Tazhong No. 10 fault zone, a faulted anticline bounded by two NW-SE trending back thrusts.

  11. Quantification of Environmental Flow Requirements to Support Ecosystem Services of Oasis Areas: A Case Study in Tarim Basin, Northwest China

    Directory of Open Access Journals (Sweden)

    Jie Xue

    2015-10-01

    Full Text Available Recently, a wide range of quantitative research on the identification of environmental flow requirements (EFRs has been conducted. However, little focus is given to EFRs to maintain multiple ecosystem services in oasis areas. The present study quantifies the EFRs in oasis areas of Tarim Basin, Xinjiang, Northwest China on the basis of three ecosystem services: (1 maintenance of riverine ecosystem health, (2 assurance of the stability of oasis–desert ecotone and riparian (Tugai forests, and (3 restoration of oasis–desert ecotone groundwater. The identified consumptive and non-consumptive water requirements are used to quantify and determine the EFRs in Qira oasis by employing the summation and compatibility rules (maximum principle. Results indicate that the annual maximum, medium, and minimum EFRs are 0.752 × 108, 0.619 × 108, and 0.516 × 108 m3, respectively, which account for 58.75%, 48.36%, and 40.29% of the natural river runoff. The months between April and October are identified as the most important periods to maintain the EFRs. Moreover, the water requirement for groundwater restoration of the oasis–desert ecotone accounts for a large proportion, representing 48.27%, 42.32%, and 37.03% of the total EFRs at maximum, medium, and minimum levels, respectively. Therefore, to allocate the integrated EFRs, focus should be placed on the water demand of the desert vegetation’s groundwater restoration, which is crucial for maintaining desert vegetation to prevent sandstorms and soil erosion. This work provides a reference to quantify the EFRs of oasis areas in arid regions.

  12. Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: hydrogeochemistry and environmental tracer indicators

    Science.gov (United States)

    Ma, Bin; Jin, Menggui; Liang, Xing; Li, Jing

    2018-02-01

    Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain-oasis-desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial-oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial-oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.

  13. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China

    Directory of Open Access Journals (Sweden)

    C. F. Zang

    2012-08-01

    Full Text Available In arid and semi-arid regions freshwater resources have become scarcer with increasing demands from socio-economic development and population growth. Until recently, water research and management has mainly focused on blue water but ignored green water. Furthermore, in data poor regions hydrological flows under natural conditions are poorly characterised but are a prerequisite to inform future water resources management. Here we report on spatial and temporal patterns of both blue and green water flows that can be expected under natural conditions as simulated by the Soil and Water Assessment Tool (SWAT for the Heihe river basin, the second largest inland river basin in Northwest China. Calibration and validation at two hydrological stations show good performance of the SWAT model in modelling hydrological processes. The total green and blue water flows were 22.05–25.51 billion m3 in the 2000s for the Heihe river basin. Blue water flows are larger in upstream sub-basins than in downstream sub-basins mainly due to high precipitation and a large amount of snow and melting water in upstream. Green water flows are distributed more homogeneously among different sub-basins. The green water coefficient was 87%–89% in the 2000s for the entire river basin, varying from around 80%–90% in up- and mid-stream sub-basins to above 90% in downstream sub-basins. This is much higher than reported green water coefficients in many other river basins. The spatial patterns of green water coefficients were closely linked to dominant land covers (e.g. snow cover upstream and desert downstream and climate conditions (e.g. high precipitation upstream and low precipitation downstream. There are no clear consistent historical trends of change in green and blue water flows and the green water coefficient at both the river basin and sub-basin levels. This study provides insights into green and blue water endowments under natural conditions for the entire

  14. Geochemical characteristics of Tertiary saline lacustrine oils in the Western Qaidam Basin, northwest China

    International Nuclear Information System (INIS)

    Zhu Yangming; Weng Huanxin; Su Aiguo; Liang Digang; Peng Dehua

    2005-01-01

    Based on the systematic analyses of light hydrocarbon, saturate, aromatic fractions and C isotopes of over 40 oil samples along with related Tertiary source rocks collected from the western Qaidam basin, the geochemical characteristics of the Tertiary saline lacustrine oils in this region was investigated. The oils are characterized by bimodal n-alkane distributions with odd-to-even (C 11 -C 17 ) and even-to-odd (C 18 -C 28 ) predominance, low Pr/Ph (mostly lower than 0.6), high concentration of gammacerane, C 35 hopane and methylated MTTCs, reflecting the high salinity and anoxic setting typical of a saline lacustrine depositional environment. Mango's K 1 values in the saline oils are highly variable (0.99-1.63), and could be associated with the facies-dependent parameters such as Pr/Ph and gammacerane indexes. Compared with other Tertiary oils, the studied Tertiary saline oils are marked by enhanced C 28 sterane abundance (30% or more of C 27 -C 29 homologues), possibly derived from halophilic algae. It is noted that the geochemical parameters of the oils in various oilfields exhibit regular spatial changes, which are consistent with the depositional phase variations of the source rocks. The oils have uncommon heavy C isotopic ratios (-24%o to -26%o) and a flat shape of the individual n-alkane isotope profile, and show isotopic characteristics similar to marine organic matter. The appearance of oleanane and high 24/(24 + 27)-norcholestane ratios (0.57-0.87) in the saline oils and source rocks confirm a Tertiary organic source

  15. Origins and Geochemistry of Oolitic Dolomite of the Feixianguan Formation from the Yudongzi Outcrop, Northwest Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Liya Zhang

    2017-07-01

    Full Text Available The topic of dolomite formation has long presented a challenge to researchers. In this study, the origin of widely occurring oolitic dolomites from the Yudongzi outcrop in the lower Triassic Feixianguan formation in northwest Sichuan, China, was investigated through petrographic observations, and mineralogical and geochemical analysis. Analytical methods used include cathodoluminescence, X-ray diffraction, stable isotopes, and electronic microprobe characterization. The dolomites were categorized into three major genetic types according to their textural and structural characteristics, which reflect their various origins. The first genetic type of these dolomites, seepage reflux dolomitization, occurs in marly to microcrystalline dolomite during the penecontemporaneous stage, and displays negatively skewed δ18Ο (−2.83‰ Pee Dee Belemnite (PDB, positively skewed δ13C (2.71‰ PDB, a low degree of order (0.48, and 87Sr/86Sr ratios of 0.707509–0.707634, indicating involvement of a Mg-rich brine fluid in an open evaporative environment. The second type, shallow burial dolomitization, is the most significant genetic type of dolomite reservoir in this area. This process produced dominantly silty to fine crystalline dolomite in a platform-margin oolitic beach facies with negatively skewed δ18Ο (−3.26‰ PDB, positively skewed δ13C (1.88‰ PDB, a high degree of order (0.70, and 87Sr/86Sr ratios of 0.707318–0.707661, which are related to seawater-derived fluids in a shallow burial environment. The third type is moderate to deep burial dolomitization, and is the main process responsible for zoned dolomite and dolomite with cloudy cores and clear rims (CCCR dolomite, which have the most strongly negatively skewed δ18Ο (−7.32‰ PDB, positively skewed δ13C (3.02‰ PDB, and 87Sr/86Sr ratios of 0.707217–0.707855, representing diagenetic alteration and fluid flow in a closed environment. These findings indicate that dolomite was likely

  16. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China.

    Science.gov (United States)

    Abuduwailil, Jilili; Zhaoyong, Zhang; Fengqing, Jiang

    2015-09-01

    Recently, a large amount of research assessing pollution levels and the related health risks posed by atmosphere dust has been undertaken worldwide. However, little work has been done in the oases of the arid regions of Northwest China. In this paper, we studied the pollution and health risks over a year of seven heavy metals in the atmospheric dust of Ebinur Basin, a typical oasis in Northwest China. The results showed the following: (1) The annual amount of atmospheric deposition in Ebinur Basin was 298.23 g m(-2) and the average monthly atmospheric deposition was 25.06 g m(-2). The average and maximum values of the seven heavy metals measured were all below the National Soil Environmental Quality Standards (2nd). (2) Heavy metals of Cu, Cr, and As in the atmospheric deposition mainly originated from the natural geological background, while Zn came from human activity. This study also showed that among the seven measured heavy metals, the ratios of the no-pollution status of Pb, Cd, and Hg were higher than those of others with moderate degrees of pollution also accounting for a certain ratio. (3) The carcinogenic risks from As, Cd, and Cr were all lower than the corresponding standard limit values, and these metals are considered not harmful to the health of the basin. However, there is a relatively high risk of exposure for children from hand-to-mouth intake, which is worthy of attention. This research showed that both human activity and natural factors, such as wind and altitude, influenced the heavy metal contents in the atmospheric dust of the study area. Furthermore, recent human activity in the study area had the most negative influence on the accumulation of the heavy metals and the corresponding health risks, especially for Hg, Pb, and Cd, which is worthy of attention.

  17. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    Science.gov (United States)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  18. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century

    International Nuclear Information System (INIS)

    Zhao Yong; Huang Anning; Zhou Yang; Huang Ying; Zhu Xinsheng

    2013-01-01

    The relationship between the frequency of spring dust storms over Tarim Basin in northwest China and the winter North Atlantic Oscillation (NAO) is investigated by using the observed dust storm frequency (DSF) and the 10 m wind velocity at 36 stations in Tarim Basin and the National Centers for Environment Prediction/National Center for Atmospheric Research reanalysis data for the period 1961–2007. The spring DSF (winter NAO) index shows a clear decreasing (increasing) linear trend over 1961–2007. The winter NAO correlates well with the subsequent spring DSF over Tarim Basin on both interannual and interdecadal time scales and its interannual to interdecadal variation plays an important role in the spring DSF. Two possible physical mechanisms are identified. One is related to the large scale anomalous circulations in spring in the middle to high troposphere modulated by the winter NAO, providing the background of dynamical conditions for the dust storm occurrences. The other is related to the shifts in the local horizontal sea level pressure (SLP) gradients and 10 m wind speed, corresponding to changes in the large scale circulations in spring. The decrease in the local 10 m wind speed due to the reduced horizontal SLP gradients over Tarim Basin during the strong winter NAO years contributes to the decline of the DSF in the subsequent spring. (letter)

  19. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2015-01-01

    Full Text Available This study evaluated hydrological impacts of potential climate and land use changes in Heihe River Basin of Northwest China. The future climate data for the simulation with Soil and Water Assessment Tool (SWAT were prepared using a dynamical downscaling method. The future land uses were simulated with the Dynamic Land Use System (DLS model by establishing Multinomial Logistic Regression (MNL model for six land use types. In 2006–2030, land uses in the basin will experience a significant change with a prominent increase in urban areas, a moderate increase in grassland, and a great decrease in unused land. Besides, the simulation results showed that in comparison to those during 1981–2005 the temperature and precipitation during 2006–2030 will change by +0.8°C and +10.8%, respectively. The land use change and climate change will jointly make the water yield change by +8.5%, while they will separately make the water yield change by −1.8% and +9.8%, respectively. The predicted large increase in future precipitation and the corresponding decrease in unused land will have substantial impacts on the watershed hydrology, especially on the surface runoff and streamflow. Therefore, to mitigate negative hydrological impacts and utilize positive impacts, both land use and climate changes should be considered in water resource planning for the Heihe River Basin.

  20. Post-Triassic thermal history of the Tazhong Uplift Zone in the Tarim Basin, Northwest China: Evidence from apatite fission-track thermochronology

    Directory of Open Access Journals (Sweden)

    Caifu Xiang

    2013-11-01

    Full Text Available The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling. In order to better understand its complex thermal history, apatite fission track (AFT thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ. Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (∼60–120 °C. The AFT ages, ranging from 132 ± 7 Ma (from a Triassic sample to 25 ± 2 Ma (from a Carboniferous sample, are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition. The AFT ages vary among different tectonic belts and decrease from the No. Ten Faulted Zone (133–105 Ma in the northwest, the Central Horst Zone in the middle (108–37 Ma, to the East Buried Hill Zone in the south (51–25 Ma. Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%, the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults. Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults. Permian–early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault. The above arguments are supported by thermal modeling results.

  1. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  2. [Ecology-economy harmonious development based on the ecological services value change in Yanqi Basin, Northwest China].

    Science.gov (United States)

    Mamat, Zulpiya; Halik, Umut; Aji, Rouzi; Nurmemet, Ilyas; Anwar, Mirigul; Keyimu, Maierdang

    2015-03-01

    In this paper, we used land use/cover ecosystem service value estimation model and ecological economic coordination degree model to analyze the changes of the ecosystem service value by the land use/cover changes during 1985, 1990, 1996, 2000, 2005 and 2011 in Yanqi Basin, Xin-jiang. Then we evaluated the ecology-economy harmony and the regional differences. The results showed that during 1985-2011, there was an increasing trend in the areas of waters, wetland, sand, cultivated land and construction land in Yanqi Basin. In contrast, that of the saline-alkali land, grassland and woodland areas exhibited a decreasing trend. The ecosystem service value in Yanqi Basin during this period presented an increasing trend, among which the waters and cultivated land contributed most to the total value of ecosystem services, while the grassland and the woodland had obviously declined contribution to the total value of ecosystem services. The research showed that the development of ecological economy in the study area was at a low conflict and low coordination level. So, taking reasonable and effective use of the regional waters and soil resources is the key element to maintain the ecosystem service function and sustainable and harmonious development of economy in Yanqi Basin.

  3. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  4. Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, northwest China

    Science.gov (United States)

    Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.

    2017-12-01

    Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.

  5. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China: Constraints on petrogenesis and back-arc basin development

    Science.gov (United States)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Pan, Fa-Bin

    2018-06-01

    Early Paleozoic boninites occur in the Central Qilian orogenic belt, Northwest China. Their petrogenesis provides insights into lithosphere process and tectonic evolution of the Qilian block. In this paper, we carry out a study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic boninites in the Lajishan area of the Central Qilian block. The Lajishan boninites (∼483 Ma) have high Al2O3/TiO2 (36.7-64.7) and CaO/TiO2 (31.1-49.6) ratios, and high MgO (7.86-10.47 wt%), Cr (439-599 ppm) and Ni (104-130 ppm) contents, indicating that the boninites result from a refractory mantle source. They are depleted in high field-strength elements (HFSE) and enriched in large ion lithophile elements (LILE), coupled with slightly high initial 87Sr/86Sr values of 0.7059-0.7074 and low εNd(t) values of -1.05 to +2.66, indicating that the mantle source was metasomatized by subducted slab-derived components. We found that an assemblage of low-Ca group and high-Ca group boninites occurred in the Lajishan belt. The high-Ca group boninites were derived from relatively fertile mantle with slightly higher melting degree, whereas the low-Ca group boninites were generated by partial melting of more refractory mantle wedge peridotites with slightly lower melting degree. The assemblage of low-Ca group and high-Ca group boninites reveals that the low-Ca group boninites were generated by the further melting of the more refractory mantle source after the segregation of the high-Ca group boninitic magmas in response to the back-arc basin opening. In the light of reported boninites worldwide, a diagram of Zr/Y vs. CaO/Al2O3 is used to identify boninites in fore-arc and back-arc regions. We suggest that the Lajishan boninites represent the products of back-arc basin development in response to the northward subduction of the Qaidam-West Qinling ocean slab.

  6. [Relationships among leaf traits and their expression in different vegetation zones in Yanhe River basin, Northwest China].

    Science.gov (United States)

    Guo, Ru; Wen, Zhong-ming; Wang, Hong-xia; Qi, De-hui

    2015-12-01

    This article selected zonal plant communities as the research objects in different vegetation zones in Yanhe River basin. We measured six leaf traits of the dominant species and main accompanying species in each community, and then analyzed the relationships and their changes along with environmental gradients between these traits in order to understand the plant adaptation strategies to the environment changes. The results showed that the specific leaf area was significantly negatively correlated to leaf tissue density, area-based leaf nitrogen and phosphorus concentrations, and significantly positively correlated to mass-based leaf phosphorus concentration. Both the scaling relationships among these traits and plant life strategies were different among the three vegetation zones, the scaling-dependent relationship between leaf tissue density and specific leaf area was stronger in steppe and forest-steppe zones than in forest zone, but the correlations among area-based leaf nitrogen/phosphorus concentrations and specific leaf area and leaf tissue density were more significant in forest zone than in steppe zone. In the arid grassland and forest-steppe zone, plants give priority to defensive and stress resistance strategies, and in relatively moist nutrient-rich forest zone, plants give priority to fast growth and resource optimization allocation strategies.

  7. High-resolution precipitation data derived from dynamical downscaling using the WRF model for the Heihe River Basin, northwest China

    Science.gov (United States)

    Zhang, Xuezhen; Xiong, Zhe; Zheng, Jingyun; Ge, Quansheng

    2018-02-01

    The community of climate change impact assessments and adaptations research needs regional high-resolution (spatial) meteorological data. This study produced two downscaled precipitation datasets with spatial resolutions of as high as 3 km by 3 km for the Heihe River Basin (HRB) from 2011 to 2014 using the Weather Research and Forecast (WRF) model nested with Final Analysis (FNL) from the National Center for Environmental Prediction (NCEP) and ERA-Interim from the European Centre for Medium-Range Weather Forecasts (ECMWF) (hereafter referred to as FNLexp and ERAexp, respectively). Both of the downscaling simulations generally reproduced the observed spatial patterns of precipitation. However, users should keep in mind that the two downscaled datasets are not exactly the same in terms of observations. In comparison to the remote sensing-based estimation, the FNLexp produced a bias of heavy precipitation centers. In comparison to the ground gauge-based measurements, for the warm season (May to September), the ERAexp produced more precipitation (root-mean-square error (RMSE) = 295.4 mm, across the 43 sites) and more heavy rainfall days, while the FNLexp produced less precipitation (RMSE = 115.6 mm) and less heavy rainfall days. Both the ERAexp and FNLexp produced considerably more precipitation for the cold season (October to April) with RMSE values of 119.5 and 32.2 mm, respectively, and more heavy precipitation days. Along with simulating a higher number of heavy precipitation days, both the FNLexp and ERAexp also simulated stronger extreme precipitation. Sensitivity experiments show that the bias of these simulations is much more sensitive to micro-physical parameterizations than to the spatial resolution of topography data. For the HRB, application of the WSM3 scheme may improve the performance of the WRF model.

  8. Using the nonlinear aquifer storage-discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    Science.gov (United States)

    Gan, R.; Luo, Y.

    2013-09-01

    Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage-discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage-discharge relationship for use in SWAT (Soil Water Assessment Tool) modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash-Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage-discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  9. Using the nonlinear aquifer storage–discharge relationship to simulate the base flow of glacier- and snowmelt-dominated basins in northwest China

    Directory of Open Access Journals (Sweden)

    R. Gan

    2013-09-01

    Full Text Available Base flow is an important component in hydrological modeling. This process is usually modeled by using the linear aquifer storage–discharge relation approach, although the outflow from groundwater aquifers is nonlinear. To identify the accuracy of base flow estimates in rivers dominated by snowmelt and/or glacier melt in arid and cold northwestern China, a nonlinear storage–discharge relationship for use in SWAT (Soil Water Assessment Tool modeling was developed and applied to the Manas River basin in the Tian Shan Mountains. Linear reservoir models and a digital filter program were used for comparisons. Meanwhile, numerical analysis of recession curves from 78 river gauge stations revealed variation in the parameters of the nonlinear relationship. It was found that the nonlinear reservoir model can improve the streamflow simulation, especially for low-flow period. The higher Nash–Sutcliffe efficiency, logarithmic efficiency, and volumetric efficiency, and lower percent bias were obtained when compared to the one-linear reservoir approach. The parameter b of the aquifer storage–discharge function varied mostly between 0.0 and 0.1, which is much smaller than the suggested value of 0.5. The coefficient a of the function is related to catchment properties, primarily the basin and glacier areas.

  10. A double-layer structure model of uranium-bearing horizon in inland basins of medium to big size, North-west China, and its significance in metallogenic potential assessment

    International Nuclear Information System (INIS)

    Wang Zhilong.

    1985-01-01

    This paper presents a double-layer structure model of uranium-bearing horizon, i.e. uranium-bearing horizon = source rock (arkose red beds) + uranium trap (grey beds favourable to uranium precipitation) in inland basins of medium to big size, North-west China. The mechanism of its formation is: during diagenetic-epigenetic processes resulted in arkose red bed formation, feldspar was hydromicatized, feldspar and quartz were replaced by authigenic hematite, goethite and hydrogoethite and became red. In such oxidation process, part of uranium in detritus of silicates such as feldspar, quartz etc. was mobilized and released, but the released uranium can not be precipitated because of the oxidation environment, and it can be diffused during diagenetic dehydration and then precipitated in nearby grey beds with low Eh together with uranium-bearing 'stagnant water' fixed in pores, forming economic uranium concentration. It is evident that uranium deposit could not be formed owing to uranium dispersion in the case of absence of certain pervious grey beds rich in reductants, although arkose red beds could provide sufficient uranium source. Therefore, only the two conditions existed simultaneously, could the uranium-bearing horizons be formed. The significance of the model for uranium prospecting are as follows: 1. Uranium source range is much expanded concerning uranium prospecting in sandstone. Except the source in basement of the basin and its margins, we must also pay attention to the overlying red beds, especially the arkose red beds in inland basin of medium to big size. 2. For the potential assessment of basin and the selection of potential area, the model is an important prospecting criterion. 3. If we apply the main criterion uranium-bearing horizon-arkose red beds well, the buried ore bodies can be found provided that arkose red beds were regarded as a significant criterion of uranium-bearing horizon

  11. Spatial-temporal variability of soil water content in a cropland-shelterbelt-desert site in an arid inland river basin of Northwest China

    Science.gov (United States)

    Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie

    2016-09-01

    Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.

  12. Combined multivariate statistical techniques, Water Pollution Index (WPI) and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.

    Science.gov (United States)

    Wang, Quan; Wu, Xianhua; Zhao, Bin; Qin, Jie; Peng, Tingchun

    2015-01-01

    Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI), Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season). Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites) and 2 clusters for the dry season (highly polluted and less polluted sites) based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium) is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.

  13. Combined multivariate statistical techniques, Water Pollution Index (WPI and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.

    Directory of Open Access Journals (Sweden)

    Quan Wang

    Full Text Available Understanding spatial and temporal variations in river water quality and quantitatively evaluating the trend of changes are important in order to study and efficiently manage water resources. In this study, an analysis of Water Pollution Index (WPI, Daniel Trend Test, Cluster Analysis and Discriminant Analysis are applied as an integrated approach to quantitatively explore the spatial and temporal variations and the latent sources of water pollution in the Shanchong River basin, Northwest Basin of Lake Fuxian, China. We group all field surveys into 2 clusters (dry season and rainy season. Moreover, 14 sampling sites have been grouped into 3 clusters for the rainy season (highly polluted, moderately polluted and less polluted sites and 2 clusters for the dry season (highly polluted and less polluted sites based on their similarities and the level of pollution during the two seasons. The results show that the main trend of pollution was aggravated during the transition from the dry to the rainy season. The Water Pollution Index of Total Nitrogen is the highest of all pollution parameters, whereas the Chemical Oxygen Demand (Chromium is the lowest. Our results also show that the main sources of pollution are farming activities alongside the Shanchong River, soil erosion and fish culture at Shanchong River reservoir area and domestic sewage from scattered rural residential area. Our results suggest that strategies to prevent water pollutionat the Shanchong River basin need to focus on non-point pollution control by employing appropriate fertilizer formulas in farming, and take the measures of soil and water conservation at Shanchong reservoir area, and purifying sewage from scattered villages.

  14. Anomalies of natural gas compositions and carbon isotope ratios caused by gas diffusion - A case from the Donghe Sandstone reservoir in the Hadexun Oilfield, Tarim Basin, northwest China

    Science.gov (United States)

    Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang

    2018-05-01

    Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents ( δ13C ethane (C2) gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.

  15. Back-arc basin development: Constraints on geochronology and geochemistry of arc-like and OIB-like basalts in the Central Qilian block (Northwest China)

    Science.gov (United States)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Pan, Fa-Bin; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Tao, Lu; Zhang, Li-Qi; Wu, Jing

    2018-06-01

    The Lajishan belt of the Central Qilian block was a back-arc basin during Early Paleozoic. The basaltic magmatism and temporal evolution in this basin provide an opportunity to study the development of back-arc basin in an active continental margin. In this study, we carry out an integrated study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic arc-like and OIB-like basalts. The Lajishan arc-like basalts are enriched in large ion lithophile element (LILE) and show negative Nb and Ta anomalies whereas the OIB-like basalts have high LILE abundances and show positive Nb and Ta anomalies. The arc-like basalts have initial 87Sr/86Sr values of 0.7050-0.7054 and εNd(t) values of +0.51-+2.63, and the OIB-like basalts have initial 87Sr/86Sr values of 0.7049-0.7050 and εNd(t) values of +0.66-+1.57. The geochemical and Sr-Nd isotopic compositions suggest that the arc-like basalts are derived from partial melting of a depleted mantle source metasomatized by slab-derived components at shallow depth levels, and the OIB-like basalts also originated from a metasomatized mantle wedge source. U-Pb zircon dating yielded the ages of 494 ± 4 Ma for the arc-like basalts and 468 ± 6 Ma for the OIB-like basalts. We argue that the arc-like basalts are products of back-arc extension before the back-arc rifting initiated in earlier stage, resulting from the northward subduction of the Qaidam-West Qinling oceanic slab, while the OIB-like basalts represent products of further back-arc spreading in response to rollback of the Qaidam-West Qinling oceanic lithospheric slab. The association of arc-like and OIB-like basalts in the Lajishan belt records the development of back-arc basin from initial rifting to subsequent spreading, offering insight into how basaltic magmatism generates in the formation of back-arc basin in subduction zone setting.

  16. Implementing Integrated River Basin Management in China

    NARCIS (Netherlands)

    Boekhorst, D.G.J. te; Smits, A.J.M.; Yu, X.; Lifeng, L.; Lei, G.; Zhang, C.

    2010-01-01

    This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are

  17. Formation and mechanism of the abnormal pressure zone and its relation to oil and gas accumulations in the Eastern Jiuquan Basin, northwest China

    Institute of Scientific and Technical Information of China (English)

    陈建平; 黄第藩

    1996-01-01

    Three abnormal overpressure zoes with a planar top at different depths occur in the Ying’er Depression in the Eastern Jiuquan Basin. The distance and the temperature difference between them are about 1 000 m and 30℃, respectively. The studies of sedimentary history, nature of formation water, variation of geothermal gradient and examination of thin sections, and the relationship between lithologic section and formation pressure show that there are conditions for formation of abnormal overpressure zones in the Ying’er Depression. Aquathermal pressuring and the overlying sediment load are main factors forming the abnormal overpressure zones. The study indicates that most of oil and gas in the Ying’er Depression accumulated in reservoirs above or under the seals or in the top of the compartments.

  18. Implementing Integrated River Basin Management in China

    Directory of Open Access Journals (Sweden)

    Dorri G. J. te Boekhorst

    2010-06-01

    Full Text Available This paper examines the role of the World Wildlife Fund for Nature China as policy entrepreneur in China. It illustrates the ways in which the World Wildlife Fund for Nature is active in promoting integrated river basin management in the Yangtze River basin and how the efforts at basin level are matched with the advice of the China Council for International Cooperation on Environment and Development task force on integrated river basin management to the national government of China. This article demonstrates that the World Wildlife Fund for Nature uses various strategies of different types to support a transition process towards integrated river basin management. Successful deployment of these strategies for change in environmental policy requires special skills, actions, and attitudes on the part of the policy entrepreneur, especially in China, where the government has a dominant role regarding water management and the position of policy entrepeneurs is delicate.

  19. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.

    Science.gov (United States)

    Chen, Yaning; Li, Zhi; Fan, Yuting; Wang, Huaijun; Deng, Haijun

    2015-05-01

    The arid region of Northwest China, located in the central Asia, responds sensitively to global climate change. Based on the newest research results, this paper analyzes the impacts of climate change on hydrology and the water cycle in the arid region of Northwest China. The analysis results show that: (1) In the northwest arid region, temperature and precipitation experienced "sharply" increasing in the past 50 years. The precipitation trend changed in 1987, and since then has been in a state of high volatility, during the 21st century, the increasing rate of precipitation was diminished. Temperature experienced a "sharply" increase in 1997; however, this sharp increasing trend has turned to an apparent hiatus since the 21st century. The dramatic rise in winter temperatures in the northwest arid region is an important reason for the rise in the average annual temperature, and substantial increases in extreme winter minimum temperature play an important role in the rising average winter temperature; (2) There was a significant turning point in the change of pan evaporation in the northwest arid area in 1993, i.e., in which a significant decline reversed to a significant upward trend. In the 21st century, the negative effects of global warming and increasing levels of evaporation on the ecology of the northwest arid region have been highlighted; (3) Glacier change has a significant impact on hydrology in the northwest arid area, and glacier inflection points have appeared in some rivers. The melting water supply of the Tarim River Basin possesses a large portion of water supplies (about 50%). In the future, the amount of surface water will probably remain at a high state of fluctuation. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Community Service, Educational Performance and Social Responsibility in Northwest China

    Science.gov (United States)

    Luo, Renfu; Shi, Yaojiang; Zhang, Linxiu; Liu, Chengfang; Li, Hongbin; Rozelle, Scott; Sharbono, Brian

    2011-01-01

    The main goal of this paper is to analyse the effect of high school scholarships tied to community service on the development of secondary school students in Northwest China. Using data from three rounds of surveys of thousands of students in 298 classes in 75 high schools in Shaanxi province, the paper documents the implementation of the…

  1. [Ecological and economic harmony evaluation and spatial evolution of the Hexi corridor, northwest China].

    Science.gov (United States)

    Liu, Hai-long; Shi, Pei-ji; Li, Sheng-mei; Tong, Hua-li; Nie, Xiao-ying; Wei, Wei

    2014-12-01

    The relationship between economic development and environment and the evolution characteristics of spatial pattern in Hexi Corridor of Northwest China were analyzed based on Landsat images in 1985, 1995, 2000 and 2011 with twenty counties in Hexi Corridor chosen as the basic research units. The ecological economic harmony during 1985-2011 was estimated according to ESV (ecosystem services value) and EEH (ecological and economic harmony) index with the ecosystem services value estimation methods. The results showed that the land type of the study area dramatically changed during the study period, the grassland decreased badly, and the construction land and cultivated land increased quickly. The ESV showed an overall downward trend, especially in the Shiyang River basin and the middle of Heihe River. The ESV in the Shule River basin in this period. After 2000, the economic growth speeded up visibly in the study area. The economic development concentrated in the resource-based cities and regional central cities, and declined from the center of corridor to the both sides. The ecological-economic relation in Hexi Corridor experienced a transformation of "preliminary deterioration--further deterioration--low grade coordination". The EEH had large changes in the Shiyang River basin and the middle of Heihe River, which experienced a transformation of "conflict--more conflicts--less conflicts", however, there was little change in Shule River basin. The development mode and the comprehensive reclamation of Shiyang River basin and Heihe River basin had a significant influence on the regional ecological and economic harmony.

  2. Advances on application of remote sensing technology to uranium prospecting in northwest of China

    International Nuclear Information System (INIS)

    Ye Fawang; Liu Dechang; Zhao Yingjun; Zhang Jielin; Fang Maolong

    2012-01-01

    Some advances on application of remote sensing technology to uranium prospecting in northwest of China since 21st century are presented in this paper. They included: (1) application of ETM multi-spectral remote sensing technology to identify the sandstone-type uranium ore-controlling structure in north of Ordos Basin and investigate the uranium metallogenetic geological conditions in Qiangtang Basin, Tibet, (2) application of ASTER multi-spectral and QuickBird high spatial resolution remote sensing technology to extract and analyze the oil-gas reduced alteration in Bashibulake uranium ore district, Xinjiang, (3) discovery of Salamubulake uranium metallogenetic belt in Keping, Xinjiang, using ASTER multi-spectral, QuickBird high spatial resolution, and CASI/SASI airborne hyper-spectral remote sensing comprehensively, and (4) application of CASI/SASI airborne hyper-spectral remote sensing technology to extract volcanicrock type uranium mineralization alteration in Baiyanghe area, Xinjiang. These application advances show the good application effects of remote sensing technology to uranium exploration in northwest of China, which provides important references for making further uranium prospecting using remote sensing technology. (authors)

  3. Exiled by Definition:The Salar of Northwest China

    Directory of Open Access Journals (Sweden)

    David SG Goodman

    2005-03-01

    Full Text Available The reform of state socialism came relatively late to Qinghai Province in the Northwest of the People’s Republic of China. One of Qinghai’s most dynamic groups in the social leadership of reform has been the Salar. The Salar were one of the officially recognized nationalities identified in the People’s Republic of China during the 1950s. A relatively small group of some 100,000 currently live along the upper reaches of the Yellow River, on the borders of Qinghai and Gansu Provinces. The Salar are characterised by their commitment to both Islam and China, and by their belief that they live in permanent exile, though there is considerable uncertainty about their origins. The evidence of recent research in Qinghai suggests the perspective of being Chinese citizens, yet a people in exile, significantly shapes recent Salar social and economic activism.

  4. Climate Change Impacts and Adaptation Strategies in Northwest China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong-Yan; LIU Cai-Hong; LI Yan-Chun; FANG Jian-Gang; LI Lin; LI Hong-Mei; ZHENG Guang-Fen; DENG Zhen-Yong; DONG An-Xiang; GUO Jun-Qin; ZHANG Cun-Jie; SUN Lan-Dong; ZHANG Xu-Dong; LIN Jing-Jing; WANG You-Heng; FANG Feng; MA Peng-Li

    2014-01-01

    Climate change resulted in changes in crop growth duration and planting structure, northward movement of planting region, and more severe plant diseases and insect pests in Northwest China. It caused earlier seeding for spring crop, later seeding for autumn crop, accelerated crop growth, and reduced mortality for winter crop. To adapt to climate change, measures such as optimization of agricultural arrangement, adjustment of planting structure, expansion of thermophilic crops, and development of water-saving agriculture have been taken. Damaging consequences of imbalance between grassland and livestock were enhanced. The deterioration trend of grassland was intensified; both grass quantity and quality declined. With overgrazing, proportions of inferior grass, weeds and poisonous weeds increased in plateau pastoral areas. Returning farmland to grazing, returning grazing to grassland, fence enclosure and artificial grassland construction have been implemented to restore the grassland vegetation, to increase the grassland coverage, to reasonably control the livestock carrying capacity, to prevent overgrazing, to keep balance between grassland and livestock, and to develop the ecological animal husbandry. In Northwest China, because the amount of regional water resources had an overall decreasing trend, there was a continuous expansion in the regional land desertification, and soil erosion was very serious. A series of measures, such as development of artificial precipitation (snow), water resources control, regional water diversion, water storage project and so on, were used effectively to respond to water deficit. It had played a certain role in controlling soil erosion by natural forest protection and returning farmland to forest and grassland. In the early 21st century, noticeable achievements had been made in prevention and control of desertification in Northwest China. The regional ecological environment has been improved obviously, and the desertification trend

  5. Maturation history modeling of Sufyan Depression, northwest Muglad Basin, Sudan

    Science.gov (United States)

    Wang, Ying; Liu, Luofu; An, Fuli; Wang, Hongmei; Pang, Xiongqi

    2016-08-01

    The Sufyan Depression is located in the northwest of Muglad Basin and is considered as a favorable exploration area by both previous studies and present oil shows. In this study, 16 wells are used or referred, the burial history model was built with new seismic, logging and well data, and the thermal maturity (Ro, %) of proved AG source rocks was predicted based on heat flow calculation and EASY %Ro modeling. The results show that the present heat flow range is 36 mW/m2∼50 mW/m2 (average 39 mW/m2) in 13 wells and 15 mW/m2∼55 mW/m2 in the whole depression. Accordingly, the geothermal gradient is 20 °C/km∼26 °C/km and 12 °C/km∼30 °C/km, respectively. The paleo-heat flow has three peaks, namely AG-3 period, lower Bentiu period and Early Paleogene, with the value decreases from the first to the last, which is corresponding to the tectonic evolution history. Corresponding to the heat flow distribution feature, the AG source rocks become mature earlier and have higher present marurity in the south area. For AG-2_down and AG-3_up source rocks that are proved to be good-excellent, most of them are mature with Ro as 0.5%-1.1%. But they can only generate plentiful oil and gas to charge reservoirs in the middle and south areas where their Ro is within 0.7%-1.1%, which is consistent with the present oil shows. Besides, the oil shows from AG-2_down reservoir in the middle area of the Sufyan Depression are believed to be contributed by the underlying AG-3_up source rock or the source rocks in the south area.

  6. The early-stage structural evolution of the Barmer Basin rift, Rajasthan, northwest India

    OpenAIRE

    Bladon, Andrew John

    2015-01-01

    The structural evolution of the Barmer Basin and the context of the rift within the northwest Indian region are poorly understood, despite being a prolific hydrocarbon province. In this work an integrated basin analysis is presented covering the outcrop-, seismic-, and lithosphere-scales. The early-stage structural evolution and the origin of poorly understood structural complications in the Barmer Basin subsurface are assessed. Subsequently, the findings are placed within the wider context o...

  7. Recent and Future Climate Change in Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yafeng; Shen, Yongping; Kang, Ersi; Li, Dongliang; Ding, Yongjian [Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhang, Guowei [Xinjiang Bureau of Hydrology and Water Resources, Urumqi, 830010 (China); Hu, Ruji [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 (China)

    2007-02-15

    As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%.

  8. Recent and Future Climate Change in Northwest China

    International Nuclear Information System (INIS)

    Shi, Yafeng; Shen, Yongping; Kang, Ersi; Li, Dongliang; Ding, Yongjian; Zhang, Guowei; Hu, Ruji

    2007-01-01

    As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%

  9. The ecological system and the regionalization of landscape reconstruction in northwest of China

    Directory of Open Access Journals (Sweden)

    Peicheng LI,Guoyuan DU,Qilei LI,Jinfeng WANG,Feimin ZHENG

    2014-12-01

    Full Text Available The northwest of China is a vast area with abundant resources and significant potential for development. However, the ecological system is extremely vulnerable to damage and must be managed carefully. Thus, the Chinese government is strengthening research on improvement and reconstruction of the ecological system and landscape in northwest of China while moving forward with large-scale development in west China. The disadvantages and vulnerabilities in the northwest area in China are presented. It is suggested that the reconstruction of landscape should be conducted by step by step regionalization across the various ecological systems in the 3.04 million km2 northwest area of China. The first level regionalization results of reconstruction of landscape are discussed.

  10. Tectonic evolution of the Tualatin basin, northwest Oregon, as revealed by inversion of gravity data

    Science.gov (United States)

    McPhee, Darcy K.; Langenheim, Victoria E.; Wells, Ray; Blakely, Richard J.

    2014-01-01

    The Tualatin basin, west of Portland (Oregon, USA), coincides with a 110 mGal gravity low along the Puget-Willamette lowland. New gravity measurements (n = 3000) reveal a three-dimensional (3-D) subsurface geometry suggesting early development as a fault-bounded pull-apart basin. A strong northwest-trending gravity gradient coincides with the Gales Creek fault, which forms the southwestern boundary of the Tualatin basin. Faults along the northeastern margin in the Portland Hills and the northeast-trending Sherwood fault along the southeastern basin margin are also associated with gravity gradients, but of smaller magnitude. The gravity low reflects the large density contrast between basin fill and the mafic crust of the Siletz terrane composing basement. Inversions of gravity data indicate that the Tualatin basin is ∼6 km deep, therefore 6 times deeper than the 1 km maximum depth of the Miocene Columba River Basalt Group (CRBG) in the basin, implying that the basin contains several kilometers of low-density pre-CRBG sediments and so formed primarily before the 15 Ma emplacement of the CRBG. The shape of the basin and the location of parallel, linear basin-bounding faults along the southwest and northeast margins suggest that the Tualatin basin originated as a pull-apart rhombochasm. Pre-CRBG extension in the Tualatin basin is consistent with an episode of late Eocene extension documented elsewhere in the Coast Ranges. The present fold and thrust geometry of the Tualatin basin, the result of Neogene compression, is superimposed on the ancestral pull-apart basin. The present 3-D basin geometry may imply stronger ground shaking along basin edges, particularly along the concealed northeast edge of the Tualatin basin beneath the greater Portland area.

  11. The Local Residents’ Concerns about Environmental Issues in Northwest China

    Directory of Open Access Journals (Sweden)

    Fanus A. Aregay

    2016-03-01

    Full Text Available This paper analyzes public awareness and perception about current issues of environmental and water resources in China in comparison to the socio-economic issues. The ranking, Likert scale, and ordered logit analysis were applied to data from 1773 sample residents in northwest China. The results show that the residents rank the degradation of the ecological environment and water resources as the most important issue, and education, political involvement, gender, employment, and residential location play significant roles in explaining the observed differences in concern. Of the possible environmental and water resource restoration policies, residents ranked water quantity and quality, agricultural and industrial water use, erosion control, vegetation restoration, wildlife habitat, animal brooding and migration services, biodiversity landscape, and eco-tourism from one to nine in order of importance, respectively. The results are relevant for policymaking and imply that environmental restoration is a high public demand. Welfare gains from investments in it would be higher or equal to gains from other socio-economic and livelihood activities. Thus, public policies must emphasize restoring and maintaining a sustainable ecological environment.

  12. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  13. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling

    Science.gov (United States)

    Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia

    2018-05-01

    In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.

  14. Evaluation of mulched drip irrigation for cotton in arid Northwest China

    NARCIS (Netherlands)

    Wang, Z.; Jin, M.; Simunek, J.; van Genuchten, M.T.

    2014-01-01

    Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control

  15. Extensive genetic divergence among Diptychus maculatus populations in northwest China

    Science.gov (United States)

    Meng, Wei; Yang, Tianyan; Hai, Sa; Ma, Yanwu; Cai, Lingang; Ma, Xufa; Gao, Tianxiang; Guo, Yan

    2015-05-01

    D. maculates is a kind of specialized Schizothoracinae fish has been locally listed as a protected animal in Xinjiang Province, China. Ili River located in north of Tianshan Mountain and Tarim River located in north of Qinghai-Tibetan Plateau were two main distribution areas of this fish. To investigate the genetic diversity and genetic structure of D. maculates, four populations from Tarim River system and two populations from Ili River system were collected in this study. A 570-bp sequence of the control region was obtained for 105 specimens. Twenty-four haplotypes were detected from six populations, only Kunes River population and Kashi River population shared haplotypes with each other. For all the populations examined, the haplotype diversity ( h) was 0.904 8±0.012 6, nucleotide diversity (π) was 0.027 9±0.013 9, and the average number of pairwise nucleotide differences ( k) was 15.878 3±7.139 1. The analysis of molecular variance (AMOVA) showed that 86.31% of the total genetic variation was apportioned among populations, and the variation within sampled populations was 13.69%. Genetic differences among sampled populations were highly significant. F st statistical test indicated that all populations were significantly divergent from each other ( P<0.01). The largest F st value was between Yurungkash River population and Muzat River population, while the smallest F st value was between Kunes River population and Kashi River population. NJ phylogenetic tree of D-loop haplotypes revealed two main clades. The neutrality test and mismatch distribution analysis suggested that the fish had went through a recent population expansion. The uplift of Tianshan Mountain and movement of Qinghai-Tibetan Plateau might contribute to the wide genetic divergence of D. maculates in northwest China.

  16. Heavy metal pollution assessment, source identification, and health risk evaluation in Aibi Lake of northwest China.

    Science.gov (United States)

    Zhaoyong, Zhang; Xiaodong, Yang; Shengtian, Yang

    2018-01-08

    This study sought to analyze heavy metal (Pb, Zn, Cu, Ni, Mn, and Fe) pollution status in the waters of Aibi Lake in northwest China through the use of an applied comprehensive pollution index, health risk model, and multivariate statistical analyses in combination with the lake's land use types. Results showed that (1) the maximum (average) values of the heavy metals Pb, Zn, Cu, Ni, Mn, and Fe were 0.0644 (0.0123), 0.0006 (0.0002), 0.0009 (0.0032), 0.1235 (0.0242), 0.0061 (0.0025), and 0.0222 (0.0080) μg/L, respectively. Among these, in all the samples, Pb and Ni exceeded the standard and acceptable values put forth by the World Health Organization by 21.13 and 25.67%, respectively. Ni also exceeded (30.16%) the third grade of the Environmental Quality Standards for Surface Water of China. The levels of the six heavy metals were all within the fishery and irrigation water quality standard ranges in China. (2) The average values for single pollution index of heavy metals Pb, Zn, Cu, Ni, Mn, and Fe were 1.000, 0.0006, 0.0009, 3.000, 0.060, and 0.070, respectively, among which Ni levels indicated moderate to significant pollution, while others indicated healthy levels. (3) Health risk evaluation showed that the R n values for Pb, Zn, Cu, Mn, and Fe were 1.8 × 10 -4 , 5.33 × 10 -9 , 4.80 × 10 -7 , 1.08 × 10 -6 , and 2.51 × 10 -7  a -1 , respectively, of which, in all samples, Pb and Ni contents all exceeded the maximum acceptable risk levels according to the International Commission on Radiological Protection (ICRP) as well as the U.S. Environment Protection Agency. (4) Combining with multivariate statistical analyses along with the land use distribution within the lake basin, Pb, Zn, Cu, Ni, and Mn were mainly influenced by the agriculture production and emission from urban lives and traffics, and Fe mainly originated from the natural environment. The results of this research can provide reference values for heavy metal pollution

  17. Spatio-temporal availability of field crop residues for biofuel production in Northwest and Southwest China

    NARCIS (Netherlands)

    Han, L.; Wang, X.; Spiertz, J.H.J.; Yang, L.; Zhou, Y.; Liu, J.; Xie, G.

    2015-01-01

    Developing bioenergy from plant feedstocks is considered an opportunity to reduce greenhouse gas emissions and secure biofuel supply. This study is an assessment of the availability of field crop residues for bioenergy feedstocks in northwest China (NWC) and southwest China (SWC). The amount of

  18. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China

    Science.gov (United States)

    Thompson Jobe, Jessica Ann; Li, Tao; Chen, Jie; Burbank, Douglas W.; Bufe, Aaron

    2017-12-01

    The Pamir-Tian Shan collision zone in the western Tarim Basin, northwest China, formed from rapid and ongoing convergence in response to the Indo-Eurasian collision. The arid landscape preserves suites of fluvial terraces crossing structures active since the late Neogene that create fault and fold scarps recording Quaternary deformation. Using geologic and geomorphic mapping, differential GPS surveys of deformed terraces, and optically stimulated luminescence dating, we create a synthesis of the active structures that delineate the timing, rate, and migration of Quaternary deformation during ongoing convergence. New deformation rates on eight faults and folds, when combined with previous studies, highlight the spatial and temporal patterns of deformation within the Pamir-Tian Shan convergence zone during the Quaternary. Terraces spanning 130 to 8 ka record deformation rates between 0.1 and 5.6 mm/yr on individual structures. In the westernmost Tarim Basin, where the Pamir and Tian Shan are already juxtaposed, the fastest rates occur on actively deforming structures at the interface of the Pamir-Tian Shan orogens. Farther east, as the separation between the Pamir-Tian Shan orogens increases, the deformation has not been concentrated on a single structure, but rather has been concurrently distributed across a zone of faults and folds in the Kashi-Atushi fold-and-thrust belt and along the NE Pamir margin, where shortening rates vary on individual structures during the Quaternary. Although numerous structures accommodate the shortening and the locus of deformation shifts during the Quaternary, the total shortening across the western Tarim Basin has remained steady and approximately matches the current geodetic rate of 6-9 mm/yr.

  19. Sources and characteristics of organochlorine pesticides in the soil and sediment along the Kaidu-Peacock River, Northwest of China

    Science.gov (United States)

    Chen, Wei; Qi, Shihua; Peng, Fei; Qu, Chengkai; Zhang, Yuan; Xing, Xinli; Zhang, Jiaquan

    2016-04-01

    Organochlorine pesticides (OCPs) are a sub-group of persistent organic pollutants (POPs), which have raised the concerns from researchers all around the world for several decades. But very little research has been conducted on POPs in the arid zone of Northwest China. More than 100 soil and sediment samples were collected from Kaidu-Peacock River of Xinjiang, Northwest of China, to investigate the organochlorine pesticides (OCPs) in this region analysed by the gas chromatograph equipped with a mass selective detector (GC-MSD). Our pre-study in 2006 (Chen et al. 2011) in the same region, showed that OCPs except o,p'-DDT were detected in sediments from the Peacock River. Similar results were found in the whole river catchment in this investigation. DDTs, HCHs, chlordanes and endosulfans were the dominant OCPs residual in the soil and sediments. This study confirmed that POPs, such as OCPs in this region were contributed to by both local emissions and long-term atmospheric transport and may pose risks to human health and the ecosystem. Chen, W., Jing, M., Bu, J., Ellis Burnet, J., Qi, S., Song, Q., Ke, Y., Miao, J., Liu, M. & Yang, C. (2011) Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: a study of an arid zone in Central Asia. Environmental Monitoring and Assessment, 177, 1-21.

  20. Assessing Dryland Ecosystem Services in Xinjiang, Northwest China

    Science.gov (United States)

    Siew, T. F.; Brauman, K. A.; Zuo, L.; Doll, P. M.

    2014-12-01

    Dryland ecosystems, including grassland, forest, and irrigated cropland, cover about 41% of earth's land area and are inhabited by over two billion people. In drylands, particularly arid and semiarid areas, the production of ecosystem services is primarily constrained by freshwater availability. Often, water allocated to production by one ecosystem or of one ecosystem service negatively impacts other ecosystems or ecosystem services (ESS). The challenge is to determine how much water should be allocated to which ecosystems (natural and manmade) such that multiple ESS are maximized, thus improving overall well-being. This strategic management decision must be supported by knowledge about spatial and temporal availability of water and its relationship to production (location and scale) of ESS that people receive. We assess the spatial and temporal relationships between water availability and ESS production in Xinjiang, Northwest China. We address four questions: (1) What services are produced by which ecosystems with water available? (2) Where are these services produced? (3) Who uses the services produced? (4) How the production of services changes with variability of water available? Using existing global, national, and regional spatial and statistical data, we assess food, fiber, livestock, and wood production as well as unique forest landscapes (as a proxy for aesthetic appreciation and habitats for unique animals and plants) and protection from dust storms. Irrigation is necessary for crop production in Xinjiang. The production of about 4.2 million tons of wheat and 500,000 tons of cotton requires more than 2 km3 of water each year. This is an important source of food and income for local residents, but the diverted water has negative and potentially costly impacts on downstream forests that potentially provide aesthetic services and protection from dust. Our analyses also show that cropland had increased by about 1.6 million ha from 1987 to 2010, while

  1. Petroleum system of Northwest Java basin based on gravity data analysis

    Science.gov (United States)

    Widianto, E.

    2018-01-01

    Energy management in the upstream oil and gas sector becomes very important for the country’s energy security. The renewal of energy resources and reserves becomes necessary and is a must. In the oil and gas industry, gravity data is usually used only for regional surveys, but with the development of instrumentation technology and gravity software development, this method can be used for assessing oil and gas survey stages from exploration to production. This study was conducted to evaluate aspects of petroleum system and exploration play concept in the part of Northwest Java Basin, covering source rock deposition regions (source kitchen area, migration direction), development of reservoirs, structural and stratigraphic trap, based on gravity data. This study uses data from Bouguer gravity anomaly map by filtering process to produce a residual map depicting sedimentation basin configuration. The mapping generated 20 sedimentary basins in Java Island with the total hydrocarbon resources of 113 BBOE (Billion Barrel of Oil Equivalent). The petroleum system analysis was conducted in the Northwest Basin section. The final map produced illustrates the condition of petroleum system and play concept that can be used as exploration direction, expectedly reducing the risk of drilling failure.

  2. Main types and metallogenetic characteristics of sandstone-type uranium deposits in central asian mobile belt and its neighbouring area, and the study on prospecting direction of northwest China

    International Nuclear Information System (INIS)

    Fu Chengming

    2007-01-01

    Based on the study of geotectonic setting, formation evolution model and metallogenic characteristics of uranium productive basins, important sandstone-type uranium deposits in Central Asian mobile belt and neighbouring area are divided into five types. The statial distribution pattern of different sandstone-type uranium deposits is analyzed in detail. Geotectonic setting and metallogenetic characteristics are discussed. Finally, the characteristics of basin geodynamics, prospecting type and ore-bearing stratigraphy in Northwest China have been proposed. (authors)

  3. Urbanization Process Monitoring in Northwest China based on DMSP/OLS Nighttime Light Data

    Science.gov (United States)

    Wang, K.; Bai, L. Y.; Feng, J. Z.

    2017-02-01

    In recent years, the DMSP/OLS nighttime light data have been widely applied to various fields such as monitoring and evaluation of urbanization, estimation of social economy, economical environment and health effects, hazards analysis, and fisheries research. The general urbanized level in China has rapidly developed since the 1990s, and the cities in northwest China, which were important population centres of the ancient silk road, have also been developed in a high speed thanks to China’s national strategy of Western Development. Given the Xinjiang autonomous region as a core area of One Belt and One Road, it is very necessary to study the urbanization processes and changes of its urban system and the whole northwest region of China. In this paper, we extracted built-up areas of the cities in northwest China in 1992, 1997, 2002, 2007, and 2012, evaluated urban expansion and spatial pattern through appropriate indexes, and also quantitatively analyzed the urbanized level of each city. The results showed that the cities in northwest China generally presented high strong and rapid expansion, but there were some large differences among cities. Urban expansion forms alternate with exterior expansion and interior filling, in general, the cities externally expandedafter 2002 and internally filledbefore 2002, meanwhile, there were a high positive correlation between urban built-up areas and population growth in Xinjiang autonomous.

  4. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    Science.gov (United States)

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  5. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    Directory of Open Access Journals (Sweden)

    Xiaofan Zeng

    Full Text Available The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  6. Relations between red beds times and uranic mineralization at the area of north-west China, Shaanxi and Inner Mongolia

    International Nuclear Information System (INIS)

    Zhou Qiaosheng; Quan Zhigao

    1989-04-01

    Rad beds played an important role in the uranic mineralization. After analyzing the geological evolution in North-West China, Saanxi and Inner Mongolia the red beds is divided into six periods. The evolution rules at each period are studied. The authors found that the time of uranic mineralication and formation of red beds (basin) is simultaneously, the uranic deposits and red beds are accompanying minerals in all places existing deposits. Uranic mineralization is bound up with the continental red beds which was formed under dry and hot climate, but has no relations with the marine red beds. The place where the deposits exist, the red beds must exist, conversely it is not true. In the section, a big uranic deposit is generated only under or above the red beds. The relations between red beds and rich deposit are also explored. The mineralization theory and the model of uranic mineralization in red beds times are presented

  7. Registration and management of community patients with tuberculosis in north-west China

    NARCIS (Netherlands)

    Wang, X.; Cai, J.; Wang, D.; Wang, Q.; Liang, H.; Ma, A.; Schouten, E.G.; Kok, F.J.

    2015-01-01

    OBJECTIVES: To describe the registration, management and characteristics of patients with tuberculosis (TB) in north-west China, and investigate whether patients with TB were diagnosed and treated in a timely manner.STUDY DESIGN: Health-facility-based retrospective data were collected from district

  8. Groundwater quota versus tiered groundwater pricing : two cases of groundwater management in north-west China

    NARCIS (Netherlands)

    Aarnoudse, Eefje; Qu, Wei; Bluemling, B.; Herzfeld, Thomas

    2017-01-01

    Difficulties in monitoring groundwater extraction cause groundwater regulations to fail worldwide. In two counties in north-west China local water authorities have installed smart card machines to monitor and regulate farmers’ groundwater use. Data from a household survey and in-depth interviews are

  9. Northwest disposal site for LLW and ILW in China radioactive impact assessment

    International Nuclear Information System (INIS)

    Wei Kuizi; He Chunying; Lu Baozhen; Li Tingjun

    1993-01-01

    This paper describes the studies and main conclusions in site selection, design, and radioactive impact assessment of the Northwest Disposal Site of China for intermediate- and low-level radioactive wastes. At the end of the paper, further works are proposed

  10. Detecting Variation Trends of Temperature and Precipitation for the Dadu River Basin, China

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2016-01-01

    Full Text Available This study analyzes the variation trends of temperature and precipitation in the Dadu River Basin of China based on observed records from fourteen meteorological stations. The magnitude of trends was estimated using Sen’s linear method while its statistical significance was evaluated using Mann-Kendall’s test. The results of analysis depict increase change from northwest to southeast of annual temperature and precipitation in space. In temporal scale, the annual temperature showed significant increase trend and the annual precipitation showed increase trend. For extreme indices, the trends for temperature are more consistent in the region compared to precipitation. This paper has practical meanings for an effective management of climate risk and provides a foundation for further study of hydrological situation in this river basin.

  11. How Universities Work: Understanding Higher Education Organization in Northwest China

    Science.gov (United States)

    Berger, Joseph B.; Hudson, Katherine E.; Ramirez, Gerardo Blanco

    2013-01-01

    This study explores models of educational management used in postsecondary institutions in the five northwestern provinces of the People's Republic of China (Gansu, Ningxia, Qinghai, Shaanxi, and Xinjiang). As higher education in the People's Republic of China expands and undergoes significant changes, a nuanced understanding of the organizational…

  12. Rifting to India-Asia Reactivation: Multi-phase Structural Evolution of the Barmer Basin, Rajasthan, northwest India

    Science.gov (United States)

    Kelly, M. J.; Bladon, A.; Clarke, S.; Najman, Y.; Copley, A.; Kloppenburg, A.

    2015-12-01

    The Barmer Basin, situated within the West Indian Rift System, is an intra-cratonic rift basin produced during Gondwana break-up. Despite being a prominent oil and gas province, the structural evolution and context of the rift within northwest India remains poorly understood. Substantial subsurface datasets acquired during hydrocarbon exploration provide an unrivalled tool to investigate the tectonic evolution of the Barmer Basin rift and northwest India during India-Asia collision. Here we present a structural analysis using seismic datasets to investigate Barmer Basin evolution and place findings within the context of northwest India development. Present day rift structural architectures result from superposition of two non-coaxial extensional events; an early mid-Cretaceous rift-oblique event (NW-SE), followed by a main Paleocene rifting phase (NE-SW). Three phases of fault reactivation follow rifting: A transpressive, Late Paleocene inversion along localised E-W and NNE-SSW-trending faults; a widespread Late Paleocene-Early Eocene inversion and Late Miocene-Present Day transpressive strike-slip faulting along NW-SE-trending faults and isolated inversion structures. A major Late Eocene-Miocene unconformity in the basin is also identified, approximately coeval with those identified within the Himalayan foreland basin, suggesting a common cause related to India-Asia collision, and calling into question previous explanations that are not compatible with spatial extension of the unconformity beyond the foreland basin. Although, relatively poorly age constrained, extensional and compressional events within the Barmer Basin can be correlated with regional tectonic processes including the fragmentation of Gondwana, the rapid migration of the Greater Indian continent, to subsequent collision with Asia. New insights into the Barmer Basin development have important implications not only for ongoing hydrocarbon exploration but the temporal evolution of northwest India.

  13. Minimal groundwater leakage restricts salinity in a hydrologically terminal basin of northwest Australia

    Science.gov (United States)

    Skrzypek, Grzegorz; Dogramaci, Shawan; Rouillard, Alexandra; Grierson, Pauline

    2016-04-01

    The Fortescue Marsh (FM) is one of the largest wetlands of arid northwest Australia (~1200 km2) and is thought to act as a terminal basin for the Upper Fortescue River catchment. Unlike the playa lake systems that predominate in most arid regions, where salinity is driven by inflow and evaporation of groundwater, the hydrological regime of the FM is driven by inundation from irregular cyclonic events [1]. Surface water of the FM is fresh to brackish and the salinity of the deepest groundwater (80 m b.g.l.) does not exceed 160 g/L; salt efflorescences are rarely present on the surface [2]. In this study, we tested the hypothesis that persistent but low rates of groundwater outflow have restricted the accumulation of salt in the FM over time. Using hydrological, hydrochemical data and dimensionless time evaporation modelling along with the water and salt budget, we calculated the time and the annual groundwater discharge volume that would be required to achieve and maintain the range of salinity levels observed in the Marsh. Groundwater outflow from alluvial and colluvial aquifers to the Lower Fortescue catchment is limited by an extremely low hydraulic gradient of 0.001 and is restricted to a relatively small 'alluvial window' of 0.35 km2 because of the elevation of the basement bedrock at the Marsh outflow. We show that if the Marsh was 100% "leakage free" i.e., a true terminal basin for the Upper Fortescue Catchment, the basin water would have achieved salt saturation after ~45 ka. This is not the case and only a very small outflow of saline groundwater of water volume) is needed to maintain the current salinity conditions. The minimum time required to develop the current hydrochemical composition of the water in the Marsh and the steady-state conditions for salt concentration is between 58 and 164 ka. This is a minimum age of the Marsh but it can be much older as nearly steady-state conditions could be maintained infinitely. Our approach using a combined water

  14. STP K Basin Sludge Sample Archive at the Pacific Northwest National Laboratory FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K.; Smoot, Margaret R.; Schmidt, Andrew J.

    2014-06-01

    The Pacific Northwest National Laboratory (PNNL) currently houses 88 samples (~10.5 kg) of K Basin sludge (81 wet and seven dry samples) on behalf of the Sludge Treatment Project (STP), which is managed for the U.S. Department of Energy (DOE) by the CH2M Hill Plateau Remediation Company (CHPRC). Selected samples are intended to serve, in part, as sentinels to enhance understanding of sludge properties after long-term storage, and thus enhance understanding of sludge behavior following transfer to sludge transfer and storage containers (STSCs) and storage at the Hanford 200 Area central plateau. In addition, remaining samples serve in contingency for future testing requirements. At PNNL, the samples are tracked and maintained under a prescriptive and disciplined monthly sample-monitoring program implemented by PNNL staff. This report updates the status of the K Basin archive sludge sample inventory to April 2014. The previous inventory status report, PNNL 22245 (Fiskum et al. 2013, limited distribution report), was issued in February of 2013. This update incorporates changes in the inventory related to repackaging of 17 samples under test instructions 52578 TI052, K Basin Sludge Sample Repackaging for Continued Long Term Storage, and 52578 TI053, K Basin Sludge Sample Repackaging Post-2014 Shear Strength Measurements. Note that shear strength measurement results acquired in 2014 are provided separately. Specifically, this report provides the following: • a description of the K Basin sludge sample archive program and the sample inventory • a summary and images of the samples that were repackaged in April 2014 • up-to-date images and plots of the settled density and water loss from all applicable samples in the inventory • updated sample pedigree charts, which provide a roadmap of the genesis and processing history of each sample in the inventory • occurrence and deficiency reports associated with sample storage and repackaging

  15. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    Science.gov (United States)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  16. Geotemperature pattern and geothermal resources in North China Basin

    Energy Technology Data Exchange (ETDEWEB)

    Deng Xiao; Chen Moxing; Xiong Liangping; Zhang Juming [Inst. of Geology. Academis Sinica, Beijing (China)

    1995-12-31

    Geotemperature pattern of the North China Basin has been studied. Results indicate that the geotemperature pattern of the Basin is in close correlation with its geological structure, mainly controlled by the structural form or the relief of the basement rock. Generally, high heat flow and high geotemperature zone correspond to basement uplifts whereas low heat flow and low geotemperature zone, to basement depressions. As a consequence, a `high-low-high` geotemperature pattern with NE and EW trending was thus formed and is observed in the North China Basin. This pattern has been validated and revealed by mathematical simulation. In the North China Basin, two main thermal water reservoirs are identified: porous type water in the Neogene system and fissure type water in Lower Paleozoic to Mid-Upper Proterozoic limestone bedrocks. The reserve of thermal water and recoverable resource are estimated. Results show that the North China Basin is an area with abundant low-medium temperature thermal water resources. 9 figs., 5 tabs., 10 refs.

  17. Association of obesity with socioeconomic status among adults of ages 18 to 80?years in rural Northwest China

    OpenAIRE

    Pei, Leilei; Cheng, Yue; Kang, Yijun; Yuan, Shuyi; Yan, Hong

    2015-01-01

    Background Understanding social disparities in obesity are presently an essential element in establishing public health priorities. However, the association between socioeconomic status (SES) and obesity has not been assessed in rural Northwest China. This study aims to explore the effect of SES on overweight/obesity and abdominal obesity by gender and age in rural Northwest China. Methods A total of 3030 participants between the ages of 18 to 80?years from rural Hanzhong, Shaanxi province, N...

  18. Forging Consensus for Implementing Youth Socialization Policy in Northwest China

    Science.gov (United States)

    Fairbrother, Gregory P.

    2011-01-01

    The goal of this article is to examine how the provincial education media in China play a role of forging consensus among local actors responsible for the implementation of new centrally-promulgated youth socialization policy. In doing so, it also explores the tension among three of the Chinese state's claims to legitimacy: economic development,…

  19. Understanding Educational Leadership in North-West China

    Science.gov (United States)

    Militello, Matthew; Berger, Joseph B.

    2010-01-01

    The purpose of this study was to develop greater depth of understanding regarding educational leadership development in the five north-western provinces (Shaanxi, Xinjiang, Gansu, Qinghai and Ningxia) of the People's Republic of China. The researchers used a mixed method approach of surveys and focus group interviews to gather data regarding the…

  20. Land tenure security and land investments in Northwest China

    NARCIS (Netherlands)

    Ma Xian lei, Xianlei; Heerink, N.; Ierland, van E.C.; Berg, van den M.; Shi, X.

    2013-01-01

    Purpose - The purpose of this paper is to examine the effect of perceived land tenure security in China on farmers' decisions to invest in relatively long-term land quality improvement measures, taking into account the potential endogeneity of tenure security. Design/methodology/approach – Data from

  1. Quantitative Analysis and Comparison of BMI among Han, Tibetan, and Uygur University Students in Northwest China

    OpenAIRE

    Jingya, Bai; Ye, He; Jing, Wang; Xi, Huanjiu; Tao, Hai

    2013-01-01

    Objectives. To fully analyze and compare BMI among Han, Tibetan, and Uygur university students, to discuss the differences in their physical properties and physical health, and thus to provide some theoretical suggestions for the improvement of students’ physical health. Methods. The cross-sectional random cluster sampling was used to investigate 10103 Han, Tibetan, and Uygur university students, aged 20–24 in Northwest China, and their height and weight were measured to calculate BMI. The BM...

  2. Establishment and assessment of cataract surgery in Day-care Unit at northwest of China

    OpenAIRE

    Xiu-Li Zhang; Xing Yang; Juan-Juan Yang; Bao-Jian Yan; Jing-Ming Li; Cheng Pei; Li Qin

    2018-01-01

    AIM: To describe the protocol and economic cost of the Day-care Unit cataract surgery procedure in northwest of China.METHODS: Patients who received phacoemulcification and intraocular lens implantation in both Day-care Unit and regular Unit were recruited from January 2016 to December 2016. The baseline data and average cost were recorded and analyzed. Furthermore, satisfaction questionnaire of patients were collected.RESULTS: Patients with Day-care Unit showed shorter registration duration,...

  3. Analysis of metallogenic conditions of sandstone type uranium deposits in interlayer oxidation zone in the northwest of Junggar basin, Xinjiang

    International Nuclear Information System (INIS)

    Lin Shuangxing

    1997-01-01

    From various aspects such as the basin structures, structure features of the sedimentary cover, lithofacies features of basin sediments, geochemical characteristics of sedimentary rocks, regional hydrogeologic conditions and epigenetic reworking of the sedimentary cover and so on, the author analyzes the metallogenic conditions of sandstone type uranium deposits in interlayer oxidation zone in the northwest of Junggar basin. The author proposes that the area has abundant uranium sources, and possesses favourable stratigraphic combinations for the development of interlayer oxidation zone. Secondarily oxidized sandstone bodies present universally at places from the source area to stream channel facies. Reducing beds and secondarily reducing barrier are developed at the front of the secondarily oxidized sandstone body. The tectonic features of the sedimentary cover indicate that the area belongs to a relatively-stable suborogenic region and possesses secondary mobilization and reworking conditions during the uplifting and contraction stage of the basin. Epigenetic metallization is evident in the sedimentary cover of the basin

  4. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  5. Rabies Outbreaks and Vaccination in Domestic Camels and Cattle in Northwest China.

    Directory of Open Access Journals (Sweden)

    Ye Liu

    2016-09-01

    Full Text Available In contrast to many countries where rabies has been well controlled in humans and livestock, even in wildlife, rabies is still endemic in almost regions of China. In Northwest China, rabies transmitted by stray dogs and wild foxes has caused heavy economic losses to local herdsmen, as well as causing numbers of human cases. In this study, as part of an investigation of ways to prevent rabies epidemics in livestock, we report an analysis of domestic cattle and camel rabies cases in Ningxia Hui (NHAR and Inner Mongolia Autonomous Region (IMAR and the immune efficacy of canine inactivated rabies vaccines in these animals. We found that rabies viruses from these animals are closely related to dog-hosted China I and fox-associated China III lineages, respectively, indicating that the infections originated from two different sources (dogs and wild foxes. As well as the previously reported Arctic and Arctic-related China IV lineage in IMAR, at least three separate phylogenetic groups of rabies virus consistently exist and spread throughout Northwest China. Since there is no licensed oral vaccine for wild foxes and no inactivated vaccine for large livestock, local canine inactivated vaccine products were used for emergency immunization of beef and milk cattle and bactrian (two-humped camels in local farms. Compared with a single injection with one (low-efficacy or three doses (high-cost, a single injection of a double dose of canine vaccine provided low-price and convenience for local veterinarians while inducing levels of virus neutralizing antibodies indicative of protection against rabies for at least 1 year in the cattle and camels. However, licensed vaccines for wildlife and large domestic animals are still needed in China.

  6. Correlation and SVD Analysis of Anomalous Spring Precipitation in Northwest China and Sea Surface Temperature in Key Region in Recent 50 Years

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the relationship between spring precipitation anomaly in Northwest China and sea surface temperature anomaly (SSTA) in Key region in recent 50 years. [Method] Based on monthly average precipitation in Northwest China and global monthly sea surface temperature (SST) grid data, the effects of SSTA in equatorial central and eastern Pacific on spring precipitation in Northwest China were discussed by means of correlation and SVD analysis. [Result] For spring precipitation in Nor...

  7. Genetic variation in yield and chemical composition of wide range of sorghum accessions grown in north-west China

    NARCIS (Netherlands)

    Wang, J.S.; Wang, M.L.; Spiertz, J.H.J.; Liu, Z.; Han, L.; Xie, G.H.

    2013-01-01

    Sorghum can be grown on marginal and waste lands as a versatile feedstock for biofuel production in the vast areas of north-west China. Fifty-six sorghum accessions were grown in 2009 at the experimental station of Xinjiang Agricultural University, located at Urumchi, Xinjiang, China. A total of 31

  8. Discrete wavelet transform-based investigation into the variability of standardized precipitation index in Northwest China during 1960-2014

    Science.gov (United States)

    Yang, Peng; Xia, Jun; Zhan, Chesheng; Zhang, Yongyong; Hu, Sheng

    2018-04-01

    In this study, the temporal variations of the standard precipitation index (SPI) were analyzed at different scales in Northwest China (NWC). Discrete wavelet transform (DWT) was used in conjunction with the Mann-Kendall (MK) test in this study. This study also investigated the relationships between original precipitation and different periodic components of SPI series with datasets spanning 55 years (1960-2014). The results showed that with the exception of the annual and summer SPI in the Inner Mongolia Inland Rivers Basin (IMIRB), spring SPI in the Qinghai Lake Rivers Basin (QLRB), and spring SPI in the Central Asia Rivers Basin (CARB), it had an increasing trend in other regions for other time series. In the spring, summer, and autumn series, though the MK trends test in most areas was at the insignificant level, they showed an increasing trend in precipitation. Meanwhile, the SPI series in most subbasins of NWC displayed a turning point in 1980-1990, with the significant increasing levels after 2000. Additionally, there was a significant difference between the trend of the original SPI series and the largest approximations. The annual and seasonal SPI series were composed of the short periodicities, which were less than a decade. The MK value would increase by adding the multiple D components (and approximations), and the MK value of the combined series was in harmony with that of the original series. Additionally, the major trend of the annual SPI in NWC was based on the four kinds of climate indices (e.g., Atlantic Oscillation [AO], North Atlantic Oscillation [NAO], Pacific Decadal Oscillation [PDO], and El Nino-Southern Oscillation index [ENSO/NINO]), especially the ENSO.

  9. Tree-ring reconstruction of streamflow in the Snare River Basin, Northwest Territories, Canada

    Science.gov (United States)

    Martin, J. P.; Pisaric, M. F.

    2017-12-01

    Drought is a component of many ecosystems in North America causing environmental and socioeconomical impacts. In the ongoing context of climatic and environmental changes, drought-related issues are becoming problematic in northern Canada, which have not been associated with drought-like conditions in the past. Dryer than average conditions threatens the energy security of northern canadian communities, since this region relies on the production of hydroelectricity as an energy source. In the North Slave Region of Northwest Territory (NWT), water levels and streamflows were significantly lower in 2014/2015. The Government of the NWT had to spend nearly $50 million to purchase diesel fuel to generate enough electricity to supplement the reduced power generation of the Snare River hydroelectric system, hence the need to better understand the multi-decadal variability in streamflow. The aims of this presentation are i) to present jack pine and white spruce tree-ring chronologies of Southern NWT; ii) to reconstruct past streamflow of the Snare River Basin; iii) to evaluate the frequency and magnitude of extreme drought conditions, and iv) to identify which large-scale atmospheric or oceanic patterns are teleconnected to regional hydraulic conditions. Preliminary results show that the growth of jack pine and white spruce populations is better correlated with precipitation and temperature, respectively, than hydraulic conditions. Nonetheless, we present a robust streamflow reconstruction of the Snare River that is well correlated with the summer North Atlantic Oscillation (NAO) index, albeit the strength of the correlation is non-stationary. Spectral analysis corroborate the synchronicity between negative NAO conditions and drought conditions. From an operational standpoint, considering that the general occurrence of positive/negative NAO can be predicted, it the hope of the authors that these results can facilitate energetic planning in the Northwest Territories through

  10. Uranium geology of the eastern Baker Lake basin, District of Keewatin, Northwest Territories

    International Nuclear Information System (INIS)

    Miller, A.R.

    1980-01-01

    Proterozoic sequences associated with major unconformities are potential uranium metallogenic provinces. Late Aphebian to Paleohelikian Dubawnt Group contintental clastic sedimentary and subaerial alkaline volcanic rocks and underlying Archean gneisses, District of Keewatin, Northwest Territories, represent one such uraniferous metallogenic province. Three types of uranium mineralization are present in the eastern Baker Lake basin, which extends from Christopher Island at the eastern end of Baker Lake southwestwards to the western limit of Thirty Mile Lake. The three uranium associations are: 1) fracture controlled mineralization in the Dubawnt Group and basement gneisses (U-Cu-Ag-Au-Se or U-Cu-Pb-Mo-Zn), 2)diatreme breccia mineralization in basement gneisses (U-Cu-Zn), and 3) impregnation and microfracture mineralization in altered arkose peripheral to lamprophyre dykes(U-Cu-Ag). Hydrothermal fracture related mineralization is controlled by northwest- and east-northeast-trending fault-fracture zones. Diatreme breccia mineralization results from the channelling of groundwaters through highly permeable brecciated gneiss. Mineralization within the altered Kazan arkose peripheral to alkaline dyke complexes formed by a two stage process. Iron and copper sulphides and silver were deposited within the outer portions of the thermal aureole in response to a temperature and Eh gradient across a convective cell created by the thermal anomaly of the dyke complex. The epigenetic sulphide mineralization subsequently provided the reducing environment for precipitation of uranium from groundwater. All three uranium associations show a close spatial distribution to the basal Dubawnt unconformity. The lithological and structural relationships of the Dubawnt Group rocks, types of mineralization and associated alteration assemblages are strikingly similar to the Beaverlodge district, Saskatchewan. (author)

  11. Microstructures in landslides in northwest China - Implications for creeping displacements?

    Science.gov (United States)

    Schäbitz, M.; Janssen, C.; Wenk, H.-R.; Wirth, R.; Schuck, B.; Wetzel, H.-U.; Meng, X.; Dresen, G.

    2018-01-01

    Microstructures, mineralogical composition and texture of selected landslide samples from three landslides in the southern part of the Gansu Province (China) were examined with optical microscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD) and synchrotron x-ray diffraction measurements. Common sheet silicates are chlorite, illite, muscovite, kaolinite, pyrophyllite and dickite. Other minerals are quartz, calcite, dolomite and albite. In one sample, graphite and amorphous carbon were detected by TEM-EDX analyses and TEM high-angle annular dark-field images. The occurrence of graphite and pyrophyllite with very low friction coefficients in the gouge material of the Suoertou and Xieliupo landslides is particularly significant for reducing the frictional strength of the landslides. It is proposed that the landslides underwent comparable deformation processes as fault zones. The low friction coefficients provide strong evidence that slow-moving landsliding is controlled by the presence of weak minerals. In addition, TEM observations document that grain size reduction in clayey slip zone material was produced mainly by mechanical abrasion. For calcite and quartz, grain size reduction was attributed to both pressure solution and cataclasis. Therefore, besides landslide composition, the occurrence of ultrafine-grained slip zone material may also contribute to weakening processes of landslides. TEM images of slip-zone samples show both locally aligned clay particles, as well as kinked and folded sheet silicates, which are widely disseminated in the whole matrix. Small, newly formed clay particles have random orientations. Based on synchrotron x-ray diffraction measurements, the degree of preferred orientation of constituent sheet silicates in local shear zones of the Suoertou and Duang-He-Ba landslide is strong. This work is the first reported observation of well-oriented clay fabrics in landslides.

  12. The Basin Water Resources Management System and Its Innovation in China

    Institute of Scientific and Technical Information of China (English)

    Xun; Pomponio

    2008-01-01

    Water provides the origin of human survival and prosperity,and the basic resource for the maintenance of terrestrial eco-systems,their biodiversity,productivity and ecological services.With China’s recent,rapid growth both in population and economic development,the water shortage has become one of the most constraints on its ecological restoration and socio-economic development,especially in the arid inland regions of northwest China.At first glance,this water shortage in China appears to be a resource crisis.But second,an in-depth analysis reveals that the water shortage crisis arises mainly resulting from the poor water management system and operating mechanism that cannot facilitate fair allocation and efficient utilization of water resources both regionally and nationally and thus is viewed as a crisis of water manage-ment.The solution of China’s water shortage and low-efficient utilization problem will,in particular,require a fundamen-tal and substantial reform or innovation of the existing water management system and operating mechanism.In this paper,we address explicitly the problems existed in the current water management system,explore the basic theory of water re-sources management and provide some insights into the way how to establish a river basin based integrated water re-sources management system in China.

  13. Influence of climate change and human activity on water resources in arid region of Northwest China: An overview

    Directory of Open Access Journals (Sweden)

    Yu-Jie Wang

    2017-12-01

    Full Text Available This study reviews the latest progress in research on climate change and water resources in the arid region of Northwest China, analyzes the cause of water resource changes within the region from the perspective of climate change and human activities, and summarizes future likely changes in water resources and associated adaptation strategies. The research shows that the climate in the region has experienced warming and wetting with the most significant warming in winter and the highest increase in summer precipitation since 1961. Areas with the most significant warming trends include the Qaidam Basin, the Yili River Valley, and Tacheng. Spatially, the increasing trend in precipitation becomes increasingly significant from the southeast to the northwest, and northern Xinjiang experienced the highest increase. Studies have shown a decrease in headwater of Shiyang River because runoff is mainly based on precipitation which shows a decrease trend. But an increase in western rivers was observed such as Tarim River and Shule River as well as Heihe River due to rapid glacier shrinkage and snowmelt as well as precipitation increase in mountain area. Meanwhile unreasonable human activities resulted in decrease of runoff in the middle and lower reaches of Haihe River, Shiyang River and Kaidu River. Finally, recommendations for future studies are suggested that include characteristics of changes in extreme weather events and their impacts on water resources, projections of future climate and water resource changes, climate change attribution, the selection of adaptation strategies relating to climate change and social economic activities, and use of scientific methods to quantitatively determine water resource allocation.

  14. Prevalence and determinants of metabolic syndrome among adults in a rural area of Northwest China.

    Directory of Open Access Journals (Sweden)

    Yaling Zhao

    Full Text Available To evaluate the prevalence and determinants of metabolic syndrome (MetS among adults in a rural area of Northwest China.A population-based cross-sectional study was conducted in 2010 among adults aged 18 to 80 years in rural areas of Hanzhong, in Northwest China. Interview, physical and clinical examinations, and fasting blood glucose and lipid measurements were completed for 2990 adults. The definitions of MetS proposed by the Third Report of the National Cholesterol Education Program Expert Panel (Adults Treatment Panel III, ATP III and the International Diabetes Federation (IDF, and the modified ATP III definition for Asian population were used and compared. Proportions were adjusted for age and sex.The prevalence of MetS was 7.9%, 10.8% and 15.1% according to ATP III, IDF and modified ATP III criteria, respectively. Agreement between ATP III and IDF criteria and that between ATP III and modified ATP III criteria were moderate (Kappa = 0.52 and 0.64, respectively, whereas agreement between IDF and modified ATP III criteria was good (Kappa = 0.83. The prevalence of MetS increased with age, and was higher in women than in men (10.4% versus 5.4%, 13.6% versus 8.1% and 17.4% versus 12.8%, according to ATP III, IDF and modified ATP III criteria, respectively. The most common MetS component was high blood pressure. Having family history of hypertension, lack of physical activity, high economical level, overweight and obesity were positively associated with MetS.MetS is prevalent among rural adults in Northwest China and high blood pressure is the most common MetS component. Prevention and treatment of hypertension and MetS should be a public health priority to reduce cardiovascular diseases in rural areas of Northwest China. More attention should be given to the elderly, women, people with family history of hypertension and obese people who are at high risk of MetS.

  15. Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)

    Science.gov (United States)

    McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

    2013-01-01

    Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

  16. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data

    Science.gov (United States)

    Chang, Jian; Qiu, Nansheng; Song, Xinying; Li, Huili

    2016-06-01

    Apatite fission track and vitrinite reflectance are integrated for the first time to study the cooling history in the Central Tarim, northwest China. The paleo-temperature profiles from vitrinite reflectance data of the Z1 and Z11 wells showed a linear relationship with depth, suggesting an approximately 24.8 °C/km paleo-geothermal gradient and 2700-3900 m of erosion during the Early Mesozoic. The measured apatite fission track ages from well Z2 in the Central Tarim range from 39 to 159 Ma and effectively record the Meso-Cenozoic cooling events that occurred in Central Tarim. Moreover, two cooling events at 190-140 Ma in the Early Jurassic-Early Cretaceous and 80-45 Ma in the Late Cretaceous-Paleocene revealed by measured AFT data and thermal modeling results are related to the collisions of the Qiangtang-Lhasa terranes and the Greater India Plate with the southern margin of the Eurasian Plate, respectively. This study provides new insights into the tectonic evolution of the Tarim Basin (and more broadly Central Asia) and for hydrocarbon generation and exploration in the Central Tarim.

  17. Planning for Regional Water Resources in Northwest China Using a Dynamic Simulation Model

    Science.gov (United States)

    Chen, C.; Kalra, A.; Ahmad, S.

    2014-12-01

    Problem of water scarcity is prominent in northwest China due to its typical desert climate. Exceedence of sustainable yield of groundwater resources has resulted in groundwater depletion, which has raised a series of issues such as drying wells, increasing pumping costs and environmental damage. With a rapid agricultural and economic development, population increase has added extra stress on available water resources by increasing municipal, agricultural and industrial demands. This necessitates efficient water resources management strategies with better understanding of the causes of water stress and options for sustainable development of economy and management of environment. This study focuses on simulating the water supply and demand, under the influence of changing climate, for Shanshan County, located in northwest of China. A dynamic simulation model is developed using the modeling tool Stella for monthly water balance for the period ranging from 2000-2030. Different future water demand and supply scenarios are developed to represent: (1) base scenario- with current practices; (2) change of the primary water source; (3) improvement of irrigation efficiency; (4) reduction of irrigation area; and (5) reduction of industrial water demand. The results indicate that besides growing demand, the low water use efficiency and low level of water reuse are the primary concerns for water scarcity. Groundwater recharge and abstraction could be balanced by 2030, by reducing industrial demand by 50% and using high efficiency irrigation for agriculture. The model provided a better understanding of the effect of different policies and can help in identifying water resources management strategies.

  18. Land degradation mapping based on hyperion data in desertification region of northwest China

    Science.gov (United States)

    Cheng, Penggen; Wu, Jian; Ouyang, Ping; He, Ting

    2008-10-01

    Desertification is an alarming sign of land degradation in Henshan county of northwest china. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of land degradation. Degradation features can be detected directly or indirectly by using image data. In this paper, based on the Hyperion images of Hengshan desertification region of northwest china, a new algorithm aimed at land degradation mapping, called Land Degradation Index (LDI), was put forward. This new algorithm is based on the classified process. We applied the linear spectral unmixing algorithm with the training samples derived from the formerly classified process so as to find out new endmembers in the RMS error imagine. After that, using neutral net mapping with new training samples, the classified result was gained. In addition, after applying mask processing, the soils were grouped to 3 types (Kappa =0.90): highly degraded soils, moderately degraded soils and slightly degraded soils. By analyzing 3 mapping methods: mixture-classification, the spectral angle mapper and mixturetuned matched filtering, the results suggest that the mixture-classification has the higher accuracy (Kappa=0.7075) than the spectral angle mapper (Kappa=0.5418) and the mixture-tuned matched filter (Kappa=0.6039). As a result, the mixture-classification is selected to carry out Land Degradation Index analysis.

  19. Aeolian particle transport inferred using a ~150-year sediment record from Sayram Lake, arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2015-05-01

    Full Text Available We studied sediment cores from Sayram Lake in the Tianshan Mountains of northwest China to evaluate variations in aeolian transport processes over the past ~150 years. Using an end-member modeling algorithm of particle size data, we interpreted end members with a strong bimodal distribution as having been transported by aeolian processes, whereas other end members were interpreted to have been transported by fluvial processes. The aeolian fraction accounted for an average of 27% of the terrigenous components in the core. We used the ratio of aeolian to fluvial content in the Sayram Lake sediments as an index of past intensity of aeolian transport in the Tianshan Mountains. During the interval 1910-1930, the index was high, reflecting the fact that dry climate provided optimal conditions for aeolian dust transport. From 1930-1980, the intensity of aeolian transport was weak. From the 1980s to the 2000s, aeolian transport to Sayram Lake increased. Although climate in northwest China became more humid in the mid-1980s, human activity had by that time altered the impact of climate on the landscape, leading to enhanced surface erosion, which provided more transportable material for dust storms. Comparison of the Lake Sayram sediment record with sediment records from other lakes in the region indicates synchronous intervals of enhanced aeolian transport from 1910 to 1930 and 1980 to 2000.

  20. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Science.gov (United States)

    Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt

    2015-01-01

    Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  1. Ecosystem Evapotranspiration as a Response to Climate and Vegetation Coverage Changes in Northwest Yunnan, China.

    Directory of Open Access Journals (Sweden)

    Hao Yang

    Full Text Available Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET and water yield (WY of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water

  2. Electrical structures in the northwest margin of the Junggar basin: Implications for its late Paleozoic geodynamics

    Science.gov (United States)

    Zhang, Sheng; Xu, Yixian; Jiang, Li; Yang, Bo; Liu, Ying; Griffin, W. L.; Luo, Yong; Huang, Rong; Zhou, Yong; Zhang, Liangliang

    2017-10-01

    Recent geological, geochemical and geophysical data have inclined to support the presence of a remnant Paleozoic oceanic lithosphere beneath the Western Junggar, southwestern Chinese Altaids. However, regional high-resolution geophysical data have been rarely deployed to image its geometry, making it difficult to trace its evolution and final geodynamic setting. Presently, two magnetotelluric (MT) profiles are deployed across the northwest margin of the Junggar basin and the southern Darbut belt to image the electrical structure of the crust and lithospheric mantle. High-quality data at 102 sites and the quasi-2D indications of phase tensor skew angles and impedance phase ellipses for relatively short periods (up to 500 s) allow us to invert the two profile data by a 2-D scheme. The resistivity cross-section of a NW-SE striking LINE2 sheds light on a fossil intraoceanic subduction system, and reveals the Miaoergou intrusions as a bowl-like pluton, indicating that the multi-phase intrusions primarily formed in a post-collisional setting. The resistivity cross-section of striking NE-SW LINE1 reveals a possible oceanic slab with relatively lower resistivity underlying the low-resistivity sedimentary strata and high-resistivity mélange. Given that the profile of LINE1 cuts the out-rise zone of a subducted slab developed during the late Paleozoic, the 2-D resistivity model may thus represent the zone that have experienced heterogeneous deformation, reflecting subduction with barrier variation parallel to the ancient trench. Moreover, as shown in previous results, the new MT data also illustrate that the Darbut Fault is a thin-skinned structure, which has been erased at depths during the subsequent magmatism.

  3. Epidemiology of human fascioliasis and intestinal parasitosis among schoolchildren in Lake Tana Basin, northwest Ethiopia.

    Science.gov (United States)

    Fentie, Tsegaw; Erqou, Sebhat; Gedefaw, Molla; Desta, Almaw

    2013-08-01

    Parasitic diseases are the second most frequent cause of outpatient morbidity in Ethiopia. A cross-sectional study was conducted in Lake Tana Basin, northwest Ethiopia, from November 2007 to February 2008, to assess the magnitude and associated risk factors for parasitic diseases, including human fascioliasis. We examined 520 stool samples from randomly selected schoolchildren in six schools by microscopy. Rapid sedimentation and Kato-Katz techniques were used to detect and count Fasciola and Schistosoma eggs. The formol-ether concentration method was used for the identification of other helminth eggs, larvae and cysts of protozoan parasites. The overall prevalence of intestinal parasitic infections was 71.3% (95% CI 67.3-75.1%). Hookworm was the predominant intestinal parasite (23.5%, 95% CI 19.8-27.1%), followed by Ascaris lumbricoides (18.5%, 95% CI 15.2-21.9%) and Schistosoma mansoni (16.7%, 95% CI 13.5-19.9%). One hundred and sixty-three (31.4%) children had multiple parasitic infections. The most relevant finding was a prevalence of Fasciola spp. of 3.3% in an area where only sporadic cases have been reported previously. The risk of Fasciola spp. infection was significantly associated with raw vegetable consumption, use of unsafe drinking water sources, irrigation practices and sheep and/or cattle ownership. Irrigation practices, male gender, raw vegetable consumption and use of unsafe drinking water sources were risk factors for S. mansoni infection. A high prevalence of parasitic infections among children in the region was found, including a relatively high prevalence of Fasciola spp. infection. Epidemiological studies on the magnitude of parasitic infections in different regions will enable high-risk communities to be identified and allow for planning of appropriate interventions.

  4. Soya and isoflavone intakes associated with reduced risk of oesophageal cancer in north-west China.

    Science.gov (United States)

    Tang, Li; Lee, Andy H; Xu, Fenglian; Zhang, Taotao; Lei, Jun; Binns, Colin W

    2015-01-01

    To ascertain the association between soya consumption, isoflavone intakes and oesophageal cancer risk in remote north-west China, where the incidence of oesophageal cancer is known to be high. Case-control study. Information on habitual consumption of soya foods and soya milk was obtained by personal interview. The intakes of isoflavones were then estimated using the US Department of Agriculture nutrient database. Logistic regression analyses were performed to assess the association between soya consumption, isoflavone intakes and oesophageal cancer risk. Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region, China. Participants were 359 incident oesophageal cancer patients and 380 hospital-based controls. The oesophageal cancer patients consumed significantly less (P soya foods (mean 57·2 (sd 119·0) g/d) and soya milk (mean 18·8 (sd 51·7) ml/d) than the controls (mean 93·3 (sd 121·5) g/d and mean 35·7 (sd 73·0) ml/d). Logistic regression analyses showed an inverse association between intake of soya products and the risk of oesophageal cancer. The adjusted odds were OR = 0·33 (95 % CI 0·22, 0·49) and OR = 0·48 (95 % CI 0·31, 0·74) for consuming at least 97 g of soya foods and 60 ml of soya milk daily (the highest tertiles of consumption), respectively, relative to the lowest tertiles of consumption. Similarly, inverse associations with apparent dose-response relationships were found between isoflavone intakes and oesophageal cancer risk. Habitual consumption of soya products appears to be associated with reduced risk of oesophageal cancer in north-west China.

  5. White rice consumption and risk of esophageal cancer in Xinjiang Uyghur Autonomous Region, northwest China: a case-control study

    OpenAIRE

    Tang, Li; Xu, Fenglian; Zhang, Taotao; Lei, Jun; Binns, Colin W.; Lee, Andy H.

    2015-01-01

    This study investigated the association between white rice consumption and the risk of esophageal cancer in remote northwest China, where the cancer incidence is known to be high. A case-control study was conducted during 2008?2009 in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual white rice consumption was obtained by personal interview using a validated semi-qu...

  6. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    Science.gov (United States)

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.

  7. A population-based study examining hepatitis B virus infection and immunization rates in Northwest China.

    Directory of Open Access Journals (Sweden)

    Zhaohua Ji

    Full Text Available BACKGROUND AND AIM: Current baseline data regarding the prevalence of hepatitis B virus (HBV infections and the immune status in hyperendemic areas is necessary in evaluating the effectiveness of ongoing HBV prevention and control programs in northwest China. This study aims to determine the prevalence of chronic HBV infections, past exposure rates, and immune response profiles in Wuwei City, northwest China in 2010. METHODS: Cross-sectional household survey representative of the Wuwei City population. 28,579 participants were interviewed in the seroepidemiological survey ≥1 year of age. House to house screening was conducted using a standard questionnaire. All serum samples were screened by enzyme-linked immunoassays for the presence of hepatitis B surface antigen, antibodies against HBV surface antigen, and antibodies to the hepatitis B core antigen. RESULTS: Among individuals ≥1 year of age, 7.2% (95%CI: 6.3-8.1% had chronic HBV infections, 43.9% (CI: 40.4-47.4% had been exposed to HBV, and 23.49% (CI: 21.6-25.3% had vaccine-induced immunity. Multi-factor weighted logistic regression analysis showed that having household contact with HBV carriers (OR = 2.6, 95%CI: 2.3-3.0 and beauty treatments in public places (OR = 1.2, 95%CI: 1.1-1.3 were the risk factors of HBV infection in whole population. Having household contact with HBV carriers (OR = 3.8, 95% CI: 2.2-6.5 and lack of hepatitis vaccination (OR = 2.0, 95% CI: 1.4-3.3 were the risk factors for HBV infection in children aged 1-14 years. CONCLUSIONS: Hepatitis B infection remains a serious public health problem in northwest China. Having household contact with HBV carriers and beauty treatments in public places represented HBV infection risk factors. Hepatitis B vaccine immunization strategies need further improvement, particularly by targeting the immunization of rural migrant workers.

  8. Quantitative Analysis and Comparison of BMI among Han, Tibetan, and Uygur University Students in Northwest China

    Directory of Open Access Journals (Sweden)

    Bai Jingya

    2013-01-01

    Full Text Available Objectives. To fully analyze and compare BMI among Han, Tibetan, and Uygur university students, to discuss the differences in their physical properties and physical health, and thus to provide some theoretical suggestions for the improvement of students’ physical health. Methods. The cross-sectional random cluster sampling was used to investigate 10103 Han, Tibetan, and Uygur university students, aged 20–24 in Northwest China, and their height and weight were measured to calculate BMI. The BMI classification criteria for Chinese established by Work Group on Obesity in China (WGOC were used for screening. Results. Han, Tibetan, and Uygur university students show low obesity rates but high overweight rates. Han, Tibetan, and Uygur university students present a high rate of underweight, normal weight, and overweight, respectively. Female Han students show higher underweight and normal weight rates, but lower overweight and obesity rates, than male Han students. Female Tibetan students show higher normal weight rate, but lower overweight and obesity rates, than male Tibetan students. BMI increases with age for male students but decreases with age for female students. Male Uygur students show higher obesity rate than female Uygur students. Tibetan and Uygur university students have higher BMI than other minorities in South China.

  9. Quantitative Analysis and Comparison of BMI among Han, Tibetan, and Uygur University Students in Northwest China

    Science.gov (United States)

    Jingya, Bai; Ye, He; Jing, Wang; Xi, Huanjiu; Tao, Hai

    2013-01-01

    Objectives. To fully analyze and compare BMI among Han, Tibetan, and Uygur university students, to discuss the differences in their physical properties and physical health, and thus to provide some theoretical suggestions for the improvement of students' physical health. Methods. The cross-sectional random cluster sampling was used to investigate 10103 Han, Tibetan, and Uygur university students, aged 20–24 in Northwest China, and their height and weight were measured to calculate BMI. The BMI classification criteria for Chinese established by Work Group on Obesity in China (WGOC) were used for screening. Results. Han, Tibetan, and Uygur university students show low obesity rates but high overweight rates. Han, Tibetan, and Uygur university students present a high rate of underweight, normal weight, and overweight, respectively. Female Han students show higher underweight and normal weight rates, but lower overweight and obesity rates, than male Han students. Female Tibetan students show higher normal weight rate, but lower overweight and obesity rates, than male Tibetan students. BMI increases with age for male students but decreases with age for female students. Male Uygur students show higher obesity rate than female Uygur students. Tibetan and Uygur university students have higher BMI than other minorities in South China. PMID:24453807

  10. Global Warming: The Instability of Desert Climate is Enhancing in the Northwest Area in China: A Case Study in the Desert Area in Northwestern China

    OpenAIRE

    Zhao-Feng Chang; Shu-Juan Zhu; Fu-Gui Han; Sheng-Nnian Zhong; Qiang-Qiang Wang; Jian-Hui Zhang

    2013-01-01

    To disclose the relation between the sandstorms change and the temperature changes, a case study in the desert area in northwestern china is investigated. The results showed that: the instability of climate in Minqin desert area is enhancing in the arid desert region in northwest China. Mainly as follows: Variation the annual extreme maximum temperature increasing. Variation of extreme minimum temperature also an increasing trend. Average visibility of sandstorms significantly reduced and the...

  11. Quantifying climatic impacts on peatland in the Zoige basin, China

    Science.gov (United States)

    Gao, P.; Li, Z.; Hu, X.

    2017-12-01

    Actual evapotranspiration (ET) of the Zoige basin in the Yellow River source region of China is a critical parameter for understanding water balance of peatland in the Zoige basin and hence the cause of the changing land cover. Using daily meteorological data sets of Zoige, Hongyuan, and Maqu stations from 1967 to 2011, the well-known FAO56 Penman-Monteith (P-M) formula was selected to calculate the reference crop evapotranspiration (ET0) in combination with the crop coefficient method in which the crop coefficient Kc is modified in terms of local climatic conditions. By classifying land cover of the Zoige basin in to swamp, grassland, water surface, and desert, the actual ET cover time for each type was obtained. Since late 1990s, the ET0 increased along with the increased air temperature. Different from previous studies, the ET of the swamp was slightly lower than that of water surface, but was slightly larger than the difference between annual precipitation and runoff in the Zoige basin. The increase of ET in the past 45 years was small in comparison with the change of the annual precipitation. More specifically, the annual precipitation, which was about 560-860 mm, slightly decreased between 1967 and 1997, and increased 2.23% in the 1998-2011 period. These results allowed us to conclude that though the slightly increased ET might be a factor leading to the long-term swamp dewatering, it cannot be the primary cause of the degraded peatland swamp and grassland in the Zoige basin.

  12. NPP estimation and seasonal change research of Gansu province in northwest China

    Science.gov (United States)

    Han, Tao; Wang, Dawei; Hao, Xiaocui; Jiang, Youyan

    2018-03-01

    Based on GIS and remote sensing technology, this paper estimates the NPP of the 2015 year-round and every season of Gansu province in northwest China by using the CASA(Carnegie Ames Stanford Approach) light energy utilization model. The result shows that the total annual NPP of Gansu province gradually decline from southeast to northwest in the space, which is in accordance with the water and heat condition in Gansu province. The results show that the summer NPP in Gansu Province is the maximum in each season. The maximum value of summer NPP in Gansu Province reached 695 (gCm-2•season-1), and the maximum value was 473 in spring, and 288 in the autumn, and the NPP in the winter in Gansu province were under 60. The fluctuation range of NPP value is large, this is due to the diversity of ecosystem types in Gansu province, including desert, grassland, farmland and forest, among them, the grassland area is the largest, and the grassland type is very diverse, the grassland coverage is obviously different, especially the low coverage grassland growth is affected by precipitation and temperature and other meteorological factors obviously.

  13. Roles of scholars in the practice of combating-desertification: a case study in northwest China.

    Science.gov (United States)

    Yang, Lihua; Lan, Zhiyong; Wu, Jianguo

    2010-08-01

    This study investigated the perceived importance of scholars' participation in combating-desertification programs in northwest China and analyzed the underlying factors and mechanisms. Our results show that, while various experts, professors, and researchers have participated in combating-desertification programs, their actions were often not effective. Only those scholars who understood the local situations adequately had important and positive impacts. These scholars served as information brokers between the governments and other stakeholders, entrepreneurial activity organizers for farmers, governmental representatives, or advocators for local affairs themselves. They played indispensible roles in facilitating efforts in combating desertification. The study also identified key factors that led to the success of scholars' participation in combating-desertification activities. Our findings have practical implications for improving the effectiveness of scholars' participation in land restoration and environmental management.

  14. Establishment and assessment of cataract surgery in Day-care Unit at northwest of China

    Directory of Open Access Journals (Sweden)

    Xiu-Li Zhang

    2018-04-01

    Full Text Available AIM: To describe the protocol and economic cost of the Day-care Unit cataract surgery procedure in northwest of China.METHODS: Patients who received phacoemulcification and intraocular lens implantation in both Day-care Unit and regular Unit were recruited from January 2016 to December 2016. The baseline data and average cost were recorded and analyzed. Furthermore, satisfaction questionnaire of patients were collected.RESULTS: Patients with Day-care Unit showed shorter registration duration, less cost including housing and nursing charge as well as higher rate of patient satisfaction. Meanwhile, Day-care Unit shorten the time the doctors and nurses spending on filling the medical charts.CONCLUSION:Day-care Unit cataract surgery procedure could benefit both patients and medical staffs and is worthy to generalize.

  15. Analysis of Precipitation and Drought Data in Hexi Corridor, Northwest China

    Directory of Open Access Journals (Sweden)

    Xinyang Yu

    2017-05-01

    Full Text Available Precipitation data from nine meteorological stations in arid oases of Hexi Corridor, northwest China during 1970–2012 were analyzed to detect trends in precipitation and Standardized Precipitation Index (SPI at multiple time scales using linear regression, Mann–Kendall and Spearman’s Rho tests. The results found that annual precipitation in the observed stations was rare and fell into the arid region category according to the aridity index analysis. The monthly analysis of precipitation found that three stations showed significant increasing trends in different months, while on the annual level, only Yongchang station had a significant increasing trend. The analysis of SPI-12 found three main drought intervals, i.e., 1984–1987, 1991–1992 and 2008–2011, and an extremely dry year among the stations was recorded in 1986; the southeast and middle portions of the study area are expected to have more precipitation and less dry conditions.

  16. Empirical study on regional differentiation of rural household energy use in Northwest China

    Science.gov (United States)

    Wu, Wenheng; Zhang, Xin; Guo, Xiaodong

    2018-02-01

    To better understand regional differentiation of rural household energy use, data of energy use of 232 rural households in the Linwei District located in the lower reaches of the Weihe River of Northwest China were collected by questionnaires combined with face-to-face interview. Location quotient of energy use (LQEU) method is adopted in the paper. The results show that multiple energy sources are utilized due to market orientation in the plain area, and biogas is prominent as a result of policy orientation in the loess tableland, whereas firewood is dominant due to the influence of natural environment in the Qinling mountainous area. Regional differentiation of energy use is comprehensively affected by income level, air temperature, development conditions, energy policy, etc.

  17. Effects of smoking and alcohol consumption on lipid profile in male adults in northwest rural China.

    Science.gov (United States)

    Li, X X; Zhao, Y; Huang, L X; Xu, H X; Liu, X Y; Yang, J J; Zhang, P J; Zhang, Y H

    2018-04-01

    To determine the individual and combined influences of smoking and alcohol consumption on lipid profile in male adults in northwest rural China. Cross-sectional study. In total, 4614 subjects were enrolled in the cross-sectional study, performed between 2008 and 2012. The present study examined males aged ≥18 years from northwest rural China (n = 707). Data on current smoking and drinking status were collected. Logistic regression was used to estimate the individual and combined influences of smoking and alcohol consumption on lipid profile. Age, ethnic group, educational background, smoking (or alcohol consumption), waist circumference, body mass index, blood pressure and fasting blood glucose were adjusted as confounders. Total cholesterol (TC)/high-density lipoprotein cholesterol (HDL-C) ratio, triglycerides (TG)/HDL-C ratio, low-density lipoprotein cholesterol (LDL-C)/HDL-C ratio and visceral adiposity index (VAI) were significantly higher in smokers than in non-smokers, whereas HDL-C was lower in smokers. TG/HDL-C ratio, LDL-C/HDL-C ratio, TG, lipid accumulation product and VAI were significantly higher in drinkers than non-drinkers. After adjustment for confounders, significant relationships were observed between smoking status and any dyslipidemia, low HDL-C and high VAI (odds ratios [ORs]: 2.53 [95% confidence interval {CI}: 1.25-5.15], 6.13 [95% CI: 2.84-13.25] and 4.39 [95% CI: 2.02-9.54], respectively). The OR for any dyslipidaemia was 1.94 (95% CI: 1.09-3.48) for subjects who smoke and drank alcohol compared with subjects who did not smoke or drink alcohol. Abnormalities in lipid profile are correlated with smoking and alcohol consumption, which calls for intervention strategies to prevent dyslipidaemia and control risk factors for cardiovascular disease. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  18. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china

    Science.gov (United States)

    Ma, Yongjing; Xin, Jinyuan; Ma, Yining; Kong, Lingbin; Zhang, Kequan; Zhang, Wenyu; Wang, Yuesi; Wang, Xiuqin; Zhu, Yongfeng

    2017-08-01

    Aerosol observational data for 2012 obtained from Dunhuang Station of CARE-China (Campaign on Atmospheric Aerosol Research Network of China) were analyzed to achieve in-depth knowledge of aerosol optical properties over Dunhuang region. The results showed that the annual average aerosol optical depth (AOD) at 500 nm was 0.32±0.06, and the Ångström exponent ( α) was 0.73 ± 0.27. Aerosol optical properties revealed significant seasonal characteristics. Frequent sandstorms in MAM (March-April-May) resulted in the seasonal maximum AOD, 0.41 ± 0.04, and a relatively smaller α value, 0.44±0.04. The tourism seasons, JJA (June-July-August) and SON (September-October-November) coincide with serious emissions of small anthropogenic aerosols. While in DJF (December-January-February), the composition of the atmosphere was a mixture of dust particles and polluted aerosols released by domestic heating; the average AOD and α were 0.29 ± 0.02 and 0.66 ± 0.17, respectively. Different air masses exhibited different degrees of influence on the aerosol concentration over Dunhuang in different seasons. During MAM, ranges of AOD (0.11-1.18) and α (0.06-0.82) were the largest under the dust influence of northwest-short-distance air mass in the four trajectories. Urban aerosols transported by northwest-short-distance air mass accounted for a very large proportion in JJA and the mixed aerosols observed in SON were mainly conveyed by air masses from the west. In DJF, the similar ranges of AOD and α under the three air mass demonstrated the analogous diffusion effects on regional pollutants over Dunhuang.

  19. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  20. Badlands in humid regions - redbed desertification in Nanxiong Basin, China

    Science.gov (United States)

    Yan, Luobin; Hua, Peng; Simonson, Scott

    2016-04-01

    The redbed badlands in Nanxiong City, China, well represent badlands in humid regions. The erosion rate in humid regions is much higher than that in arid regions and can reach 1 cm per month during the summer. The purpose of this study is to introduce the research of badlands in China, which have not been extensively studied so far, and to compare the badlands between arid and humid regions. Furthermore, the aim is to study the impact of mineralogical and chemical composition on the disintegration of soft rock in Nanxiong Basin badlands. For the purpose of this study field observations, sampling, and digging profiles were done. The mineralogical and chemical compositions of the Nanxiong Basin badland lithologies were determined by XRD, XRF and thin sections. Weathering resistance, process of weathering, and disintegration features were studied by weathering experiments under natural conditions. Weathering profiles can be easily divided into four layers: regolith, a strongly weathered layer, a poorly weathered layer, and an unweathered sediment. The depth of the weathering profile is influenced by the weathering resistance of the soft rock. Weathering resistance affects the erosion rate and evolution of landforms in badlands by influencing the rate from unweathered rock to regolith. Analyzed sediments have high content of illite and illite-smectite interstratifications. This composition of clay minerals together with poor sediment consolidation jointly leads to weathering prone sediment. The weathering and disintegration of soft rock in Nanxiong Basin badlands has a close relationship with rainfall. Sheet erosion, a kind of solid-liquid phase flow, formed in the regolith of the badland during rainfall events and can be the most instrumental to erosion. The mineral composition and liquidity plasticity index were also analyzed, and the results show that the regolith are low liquid limit silts with liquid limit of 21%-25%, plastic limit of 13%-18% and plasticity index

  1. Long-term dynamic characterization of aeolian desertification in northwest Shanxi, China.

    Science.gov (United States)

    Xue, Zhanjin; Qin, Zuodong; Cheng, Fangqin; Ding, Guangwei; Li, Hongjian

    2017-07-01

    Northwest Shanxi is located on the farming-pastoral ecotone of northern China, where aeolian desertification is one of the most serious environmental and socioeconomic issues. The remote sensing image and geostatistical approach were implemented to estimate aeolian desertified land (ADL) dynamic variations from 1975 to 2015. Results showed that the ADL covered 11,685.21 km 2 (82.29%) of the study area in 2015, the majority of which was classified as a light or moderate degree. The area of ADL gradually expanded at an increasing rate of 87.37 km 2 a -1 during the 1975-2000 periods. More specifically, the area of ADL has increased by 1259.23 km 2 from 1975 to 1990 and by 924.96 km 2 from 1990 to 2000, respectively. In contrast, spatial transfer of ADL areas has dwindled by 2365.85 km 2 with a net decrease of 157.72 km 2 a -1 , and the mitigated areas of aeolian desertification were 10,602.24 km 2 between 2000 and 2015. During the past 40 years, the gravity center of ADL migrated to southeast until 2000 and moved northwest in 2000-2015. From 1975 to 2000, the migration distance of severe ADL was the largest, migrated toward the northwest by 19.03 km in 1975-1990 and by 20.16 km in 1990-2000, respectively. From 2000 to 2015, the migration distance of light ADL was the largest, 27.54 km migrated to the northwest. Aeolian desertification rapidly expanded from 1975 to 2000 under the combination of climate change and intensive human activities. Since the year of 2000, ecological engineering strategy initiated by the governments has been the dominant contributor to the aeolian desertification severity reversal. Aeolian desertification prevention is a complicated process. Both the central and local government should play a critical role in the rehabilitation of ADL in the long term.

  2. Public perception of an ecological rehabilitation project in inland river basins in northern China: Success or failure.

    Science.gov (United States)

    Feng, Qi; Miao, Zheng; Li, Zongxing; Li, Jianguo; Si, Jianhua; S, Yonghong; Chang, Zongqiang

    2015-05-01

    The need for environmental protection challenges societies to deal with difficult problems because strategies designed by scientists to protect the environment often create negative effects on impoverished local residents. We investigated the effects of China's national and regional policies related to environmental protection and rehabilitation projects in inland river basins, by studying the effect of projects in the Heihe and Shiyang river basins, in northwest China. Interviews and surveys were conducted at 30 sites in the lower reaches of these two arid basins, an area that has experienced severe ecological degradation. The survey results show the ecological rehabilitation projects adversely affected the livelihoods of 70.35% of foresters, 64.89% of farmers and 62.24% of herders in the Minqing region in the lower Shiyang River Basin; also, the projects negatively affected 51.9% of residents in the Ejin Qi in the lower Heihe River Basin. This caused 16.33% of foresters, 39.90% of farmers and 45.32% of herders in the Minqing region to not support the project and 37.5% of residents in the Ejin Qi region said they will deforest and graze again after the project ends. The negative impacts of the policies connected to the projects cause these attitudes. The projects prohibit felling and grazing and require residents to give up groundwater mining; this results in a great amount of uncompensated economic loss to them. Extensive survey data document the concerns of local residents, concerns that are supported by the calculation of actual incomes. In addition, the surveys results show poorer interviewees believe the projects greatly affected their livelihoods. While citizens in this region support environment protection work, the poor require considerable assistance if one expects them to support this type of work. Governmental assistance can greatly improve their living conditions, and hence encourage them to participate in and support the implementation of the projects

  3. Analysis of economic burden for patients with cystic echinococcosis in five hospitals in northwest China.

    Science.gov (United States)

    Wang, Le; Wen, Hao; Feng, Xiaohui; Jiang, Xiaoming; Duan, Xinyu

    2012-12-01

    The direct and indirect economic burden of human cystic echinococcosis (CE) was investigated in the five specialist hydatid hospitals in Xinjiang, PR China, to provide information for health policy in the future. A total of 2018 CE patients (age range 2-88 years) attending the hospitals were studied between 2004 and 2008. The per-person direct medical cost was US$1493.12 (95% CI 1438.43-1547.80) and the per-person direct non-medical cost was US$19.67. The indirect economic cost was US$1435.96 per person, and the disability-adjusted life-years (DALY) lost was approximately 1.03 DALY/person. This study is the first to combine the human capital method with DALYs to analyse the indirect CE economic burden in northwest China. Factors such as age, occupation and hospital level should be considered when developing polices to reduce the economic burden of CE. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  4. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China

    Science.gov (United States)

    Wang, Y. C.; Huang, R.-J.; Ni, H. Y.; Chen, Y.; Wang, Q. Y.; Li, G. H.; Tie, X. X.; Shen, Z. X.; Huang, Y.; Liu, S. X.; Dong, W. M.; Xue, P.; Fröhlich, R.; Canonaco, F.; Elser, M.; Daellenbach, K. R.; Bozzetti, C.; El Haddad, I.; Prévôt, A. S. H.; Canagaratna, M. R.; Worsnop, D. R.; Cao, J. J.

    2017-06-01

    Particulate air pollution is a severe environmental problem in China, affecting visibility, air quality, climate and human health. However, previous studies focus mainly on large cities such as Beijing, Shanghai, and Guangzhou. In this study, an Aerodyne Aerosol Chemical Speciation Monitor was deployed in Baoji, a middle size inland city in northwest China from 26 February to 27 March 2014. The non-refractory submicron aerosol (NR-PM1) was dominated by organics (55%), followed by sulfate (16%), nitrate (15%), ammonium (11%) and chloride (3%). A source apportionment of the organic aerosol (OA) was performed with the Sofi (Source Finder) interface of ME-2 (Multilinear Engine), and six main sources/factors were identified and classified as hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), coal combustion OA (CCOA), less oxidized oxygenated OA (LO-OOA) and more oxidized oxygenated OA (MO-OOA), which contributed 20%, 14%, 13%, 9%, 23% and 21% of total OA, respectively. The contribution of secondary components shows increasing trends from clean days to polluted days, indicating the importance of secondary aerosol formation processes in driving particulate air pollution. The formation of LO-OOA and MO-OOA is mainly driven by photochemical reactions, but significantly influenced by aqueous-phase chemistry during periods of low atmospheric oxidative capacity.

  5. Energy investment and trade opportunities emerging in Central Asia, Northwest China

    International Nuclear Information System (INIS)

    Dorian, J.P.; Abbasovich, T.U.; Tonkopy, M.S.; Jumabekovich, O.A.; Qiu Daxiong

    1998-01-01

    Cooperation in the business of oil and natural gas among governments of Central Asia and Northwest China could help the countries overcome obstacles to development of their vast petroleum resources. The most important obstacle facing these countries is also the one most widely discussed: limited infrastructure for transporting energy. But there are other problems holding back oil and gas development. They include poor communications infrastructure, unstable government structures, political conflict, payments difficulties, and inadequate energy policies. For countries analyzed in a recent Asian Development Bank (ADB) study of economic cooperation in the region--Uzbekistan, Kazakhstan, the Kyrgyz Republic, and the Xinjiang autonomous region of the People's Republic of China (Xinjiang PRC)--oil and gas are the most abundant and valuable natural resources. While Central Asia is poised to become a major world supplier of energy, especially oil and gas, countries in the region emphasize energy self-sufficiency at the expense of developing new trading linkages. Governments thus tend to ignore the benefits of regional cooperation and remain reluctant to commit to area-wide trade and other forms of cooperation. The paper discusses oil and gas sectors; major energy trends, including restructuring, foreign investment, and energy diversification; opportunities for cooperation; impediments to cooperation; and models of cooperation

  6. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.

    Science.gov (United States)

    Wu, Ya; Wang, Yanxin

    2014-05-01

    A hydrogeochemical investigation using integrated methods of stable isotopes ((18)O, (2)H), (87)Sr/(86)Sr ratios, Cl/Br ratios, chloride-mass balance, mass balance and hydrogeochemical modeling was conducted to interpret the geochemical evolution of groundwater salinity in Datong basin, northern China. The δ(2)H, δ(18)O ratios in precipitation exhibited a local meteoric water line of δ(2)H = 6.4 δ(18)O -5 (R(2) = 0.94), while those in groundwater suggested their meteoric origin in a historically colder climatic regime with a speculated recharge rate of less than 20.5 mm overall per year, in addition to recharge from a component of deep residual ancient lake water enriched with Br. According to the Sr isotope binary mixing model, the mixing of recharges from the Shentou karst springs (24%), the western margins (11%) and the eastern margins (65%) accounts for the groundwater from the deep aquifers of the down-gradient parts in the central basin is a possible mixing mechanism. In Datong, hydrolysis of silicate minerals is the most important hydrogeochemical process responsible for groundwater chemistry, in addition to dissolution of carbonate and evaporites. In the recharge areas, silicate chemical weathering is typically at the bisiallitization stage, while that in the central basin is mostly at the monosiallitization stage with limited evidence of being in equilibrium with gibbsite. Na exchange with bound Ca, Mg prevails at basin scale, and intensifies with groundwater salinity, while Ca, Mg exchange with bound Na locally occurs in the east pluvial and alluvial plains. Although groundwater salinity increases with the progress of water-rock/sediment interactions along the flow path, as a result of carbonate solubility control and continuous evapotranspiration, Na-HCO3 and Na-Cl-SO4 types of water are usually characterized respectively in the deep and the shallow aquifers of an inland basin with a silicate terrain in an arid climatic regime.

  7. Effects of climate change on spring wheat phenophase and water requirement in Heihe River basin, China

    Science.gov (United States)

    Han, Dongmei; Yan, Denghua; Xu, Xinyi; Gao, Yu

    2017-02-01

    Climate change has significantly altered the temperature rhythm which is a key factor for the growth and phenophase of the crop. And temperature change further affects crop water requirement and irrigation system. In the north-west of China, one of the most important crop production bases is Heihe River basin where the observed phenological data is scarce. This study thus first adopted accumulated temperature threshold (ATT) method to define the phenological stages of the crop, and analysed the effect of climate change on phenological stages and water requirement of the crop during growing season. The results indicated the ATT was available for the determination of spring wheat phenological stages. The start dates of all phenological stages became earlier and the growing season length (days) was reduced by 7 days under climate change. During the growing season, water requirement without consideration of phenophase change has been increased by 26.1 mm, while that with consideration of phenophase change was featured in the decrease of water requirement by 50 mm. When temperature increased by 1°C on average, the changes were featured in the 2 days early start date of growing season, 2 days decrease of growing season length, and the 1.4 mm increase of water requirement, respectively.

  8. Air Pollution Over the Ganges Basin and Northwest Bay of Bengal in the Early Postmonsoon Season Based on NASA MERRAero Data

    Science.gov (United States)

    Kishcha, Pavel; Da Silva, Arlindo M.; Starobinets, Boris; Alpert, Pinhas

    2014-01-01

    The MERRA Aerosol Reanalysis (MERRAero) has been recently developed at NASA's Global Modeling Assimilation Office. This reanalysis is based on a version of the Goddard Earth Observing System-5 (GEOS-5) model radiatively coupled with Goddard Chemistry, Aerosol, Radiation, and Transport aerosols, and it includes assimilation of bias-corrected aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on both Terra and Aqua satellites. In October over the period 2002-2009, MERRAero showed that AOT was lower over the east of the Ganges basin than over the northwest of the Ganges basin: this was despite the fact that the east of the Ganges basin should have produced higher anthropogenic aerosol emissions because of higher population density, increased industrial output, and transportation. This is evidence that higher aerosol emissions do not always correspond to higher AOT over the areas where the effects of meteorological factors on AOT dominate those of aerosol emissions. MODIS AOT assimilation was essential for correcting modeled AOT mainly over the northwest of the Ganges basin, where AOT increments were maximal. Over the east of the Ganges basin and northwest Bay of Bengal (BoB), AOT increments were low and MODIS AOT assimilation did not contribute significantly to modeled AOT. Our analysis showed that increasing AOT trends over northwest BoB (exceeding those over the east of the Ganges basin) were reproduced by GEOS-5, not because of MODIS AOT assimilation butmainly because of the model capability of reproducing meteorological factors contributing to AOT trends. Moreover, vertically integrated aerosol mass flux was sensitive to wind convergence causing aerosol accumulation over northwest BoB.

  9. Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy

    International Nuclear Information System (INIS)

    Wang, Xiuhong; Shen, Jianxiu; Zhang, Wei

    2014-01-01

    China’s grain-for-green policy (GFGP) was implemented with the goal of improving ecological security. Consequently, agricultural energy and agrochemical inputs have been significantly increased to improve food security and to increase the income of farmers in the regions where the GFGP was implemented. In analysis of the sustainability of the agricultural system affected by the GFGP, it is essential to consider both economic profitability and environmental sustainability. Using Yanchi County as a case study area, this study used an emergy synthesis to examine the sustainability of the agricultural system before and after the GFGP in Northwest China. We found that the total emergy input and energy output of the agricultural system in the study area increased from 1991 to 2008; however, the sustainability of the system declined, and this decline was especially evident after the GFGP was launched in 2001. Increasing inputs of non-renewable purchased resources will not only reduce the effectiveness of the GFGP in Northwest China, but also hinder the implementation of the energy-saving and emission-reduction policy that China launched in 2005. We suggest that sustainable agricultural development in Northwest China should be based on effective use of renewable resources and development of a low-carbon agricultural economy. - Highlights: • The total emergy input and energy output of the study system increased from 1991 to 2008. • The change of each emergy index was more evident after the GFGP launched in 2001. • The increase in input of non-renewable purchased resources will gradually reduce the function of the GFGP in West China. • Agricultural development in West China should be based on organic agriculture

  10. First report of Toxoplasma gondii infection in market-sold adult chickens, ducks and pigeons in northwest China

    Directory of Open Access Journals (Sweden)

    Cong Wei

    2012-06-01

    Full Text Available Abstract Background Toxoplasma gondii infection is a global concern, affecting a wide range of warm-blooded animals and humans worldwide, including poultry. Domestic and companion birds are considered to play an important role in the transmission of T. gondii to humans and other animals. However, little information on T. gondii infection in domestic birds in Lanzhou, northwest China was available. Therefore, this study was performed to determine the seroprevalence of T. gondii infection in domestic birds in Lanzhou, northwest China. Methods In the present study, the seroprevalence of T. gondii antibodies in 413 (305 caged and 108 free-range adult chickens, 334 (111 caged and 223 free-range adult ducks and 312 adult pigeons in Lanzhou, northwest China, were examined using the modified agglutination test (MAT. Results 30 (7.26% chickens, 38 (11.38% ducks and 37 (11.86% pigeons were found to be positive for T. gondii antibodies at the cut-off of 1:5. The prevalences in caged and free-range chickens were 6.23% and 10.19% respectively, however, statistical analysis showed that the difference was not significant (P > 0.05. The seroprevalences in caged and free-range ducks were 6.31% and 13.90% respectively, but the difference was not statistically significant (P > 0.05. Conclusions The results of the present survey indicated the presence of T. gondii infection in adult chickens, ducks and pigeons sold for meat in poultry markets in Lanzhou, northwest China, which poses a potential risk for T. gondii infection in humans and other animals in this region. This is the first seroprevalence study of T. gondii infection in domestic birds in this region.

  11. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China

    OpenAIRE

    Aynur Mamat; Ümüt Halik; Aihemaitijiang Rouzi

    2018-01-01

    Increasing anthropogenic activities have significantly altered ecosystems in arid oasis regions. Estimating the impact on a wide range of ecosystem services is important for decision making and the sustainable development of these regions. This study analyzed time-series Landsat data to determine the influences of oasis land-use changes on the ecosystem services in the Kashgar region in Northwest China. The following results were found. The total value of the ecosystem services in the Kashgar...

  12. Evaluation of water productivity under climate change in irrigated areas of the arid Northwest China using an assemble statistical downscaling method and an agro-hydrological model

    Science.gov (United States)

    Liu, Liu; Guo, Zezhong; Huang, Guanhua

    2018-06-01

    The Heihe River Basin (HRB) is the second largest inland river basin, located in the arid region of Northwest China with a serious water shortage. Evaluation of water productivity will provide scientific implications for agricultural water-saving in irrigated areas of the arid region under climate change. Based on observed meteorological data, 23 GCMs outputs and the ERA-40 reanalysis data, an assemble statistical downscaling model was developed to generate climate change scenarios under RCP2.6, RCP4.5, RCP8.5 respectively, which were then used to drive the SWAP-EPIC model to simulate crop growth in the irrigated areas of the middle HRB for the future period from 2018 to 2047. Crop yield showed an increasing trend, while crop water consumption decreased gradually in Gaotai and Ganzhou irrigated areas. The water productivity in future 30 years showed an increasing trend in both Gaotai and Ganzhou areas, with the most significant increase under RCP4.5 scenario, which were both larger than 2 kg m-3. Compared with that of the period from 2012 to 2015, the water productivity during 2018-2047 under three RCP scenarios increased by 9.2, 14.3 and 11.8 % in the Gaotai area, and 15.4, 21.6, 19.9 % in the Ganzhou area, respectively.

  13. Evaluating the impacts of slope aspect on forest dynamic succession in Northwest China based on FAREAST model

    Science.gov (United States)

    Hu, Shanshan; Ma, Jianyong; Shugart, Herman H.; Yan, Xiaodong

    2018-03-01

    Mountain forests provide the main water resources and lumber for Northwest China. The understanding of the differences in forests growing among individual slope aspects in mountainous regions is of great significance to the wise management and planning of these natural systems. The aim of this study was to investigate the impacts of slope aspect on forest dynamic succession in Northwest China by using the dynamic forest succession model (FAREAST). First, the simulated forest composition and vertical forest zonation produced by the model were compared against recorded data in three sub-regions of the Altai Mountains. The FAREAST model accurately reproduced the vertical zonation, forest composition, growth curves of the dominant species (Larix sibirica), and forest biomass in the Altai Mountains. Transitions along the forest zones of the Altai Mountains averaged about a 400 m difference between the northern and southern sites. Biomass for forests on north-facing slopes were 11.0, 15.3 and 55.9 t C ha-1 higher than for south-facing slopes in the Northeast, Central and Southeast sub-regions, respectively. Second, our analyses showed that the FAREAST model can be used to predict dynamic forest succession in Northwest China under the influence of slope and aspect. In the Altai Mountains, the north-facing slopes supported the best forest growth, followed by the west- and east-facing slopes. South-facing slopes consistently exhibited the lowest growth, biomass storage and forest diversity.

  14. Integrated prediction based on GIS for sandstone-type uranium deposits in the northwest of Ordos Basin

    International Nuclear Information System (INIS)

    Han Shaoyang; Ke Dan; Hu Shuiqing; Guo Qingyin; Hou Huiqun

    2005-01-01

    The integrated prediction model of sandstone-type uranium deposits and its integrated evaluation methods as well as flow of the work based on GIS are studied. A software for extracting metallogenic information is also developed. A multi-source exploring information database is established in the northwest of Ordos Basin, and an integrated digital mineral deposit prospecting model of sandstone-type uranium deposits is designed based on GIS. The authors have completed metallogenic information extraction and integrated evaluation of sandstone-type uranium deposits based on GIS in the study area. Research results prove that the integrated prediction of sandstone-type uranium deposits based on GIS may further delineate prospective target areas rapidly and improve the predictive precision. (authors)

  15. Common and Privatized: Conditions for Wise Management of Matsutake Mushrooms in Northwest Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Xuefei Yang

    2009-12-01

    Full Text Available Since Hardin's (1968 paper on the "Tragedy of the Commons," property rights of common-pool resources have been a central concern for natural resource management scholars. Matsutake, a common-pool resource, is an economically important mushroom in several locations around the world. Driven by growing international demand over the last few decades, matsutake management is a relatively new practice both for local communities and government agencies. In Northwest Yunnan, China, one of the most productive areas for matsutake globally, numerous local practices and systems have emerged in the last two to three decades. In this study, we investigate the differences between management systems in eight communities and the factors associated with them. The methods used for field research included key-informant interviews, household surveys, and questionnaires. Three main management patterns were identified through use of statistical clustering based on indicators such as physical environment, resource characteristics, tenure arrangements, regulations and implementation, harvesting behavior, income, and market regulation. It was found that private access - the principal characteristic of which is the exclusive use of resources - results in more income at lower labor cost per household than either of the other open-access management patterns. Even though under the context of ongoing Second Forest Tenure Reform in China - in which collective forest privatization is the key task - application of private-access regimes is limited because of site conditions including physical, institutional, and market environments. Common-access management systems have advantages in terms of managing conflict and balancing equity needs. No matter the type of access right, the key issue for wise matsutake management is institutional. Locally rooted innovative strategies should be encouraged, and institutional capacity building should be carried out to support innovations in

  16. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Directory of Open Access Journals (Sweden)

    Jian Kang

    2018-01-01

    Full Text Available Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment.

  17. Experimental Study on Productivity Performance of Household Combined Thermal Power and Biogas System in Northwest China

    Science.gov (United States)

    Zhen, Xiaofei; Osman, Yassir Idris Abdalla; Feng, Rong; Si, Zetian

    2018-01-01

    Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV) conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached −25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment. PMID:29862289

  18. AHP 46: AN UNEXPECTED GIFT FROM THE GODS: BOYHOOD IN NORTHWEST CHINA

    Directory of Open Access Journals (Sweden)

    Yang Jialiang 杨佳亮

    2017-04-01

    Full Text Available My name is Chao. I'm an ordinary person from a poor mountain village in northwest China. Like most other human beings, I often ponder: Why do I exist? How should I live? What is the meaning of my life? I believe my life is not worthless. Everyone should be appreciated and each of us should be valued as a wonderful individual. This is why I wrote this book - to share with others the narrative of my life; to allow others to know another human being's life story. My parents had two children. Brother was born in 1982 and 10 years later in 1992, I was born. Mother was then 38 and Father was 42. I was an accident. My parents had decided to give me away because they were afraid of violating the one-child policy and because they were so poor. They had decided to give me to a rich family who would in return give them a truck. However, at that time Brother was very attached to me. He cried a lot when he heard that my parents would give me away. My parents then decided to keep me no matter the difficulties they faced.

  19. Land surface temperature retrieval from MODIS and VIRR data in northwest China

    International Nuclear Information System (INIS)

    Wang, L J; Zuo, H C; Ren, P C; Qiang, B

    2014-01-01

    By using the Gulang Heterogeneous Underlying Surface Layer Experiment (GHUSLE) data, the accuracy of land surface temperature (LST) in Northwest China retrieved by the Moderate-Resolution Imaging Spectroradiometer(MODIS) and Visible and InfraRed Radiometer(VIRR) data is verified. Furthermore, a new LST algorithm for heterogeneous underlying surface is developed and the LST retrieved by the two remote sensing data using three algorithms are compared with the observed data. Results suggest that the new algorithm is the best one in the case of heterogeneous underlying surface, Kerr algorithm accuracy is not satisfying and Becker algorithm is ranked just ahead Kerr algorithm. Especially, the differences in retrieval accuracy among them are more obvious when using the VIRR data. Compared with the observed LST, the root mean square errors of the LST retrieved by MODIS and VIRR data are the least when using the new algorithm, the specific values are 2.55 K and 3.78 K, respectively. The LST retrieved by MODIS data are closer to observed values and higher than its counterpart retrieved by VIRR data. When the new LST retrieval algorithm used, the LST retrieved by MODIS and VIRR data are the closest

  20. Estimation of wind erosion from construction of a railway in arid Northwest China

    Directory of Open Access Journals (Sweden)

    Benli Liu

    2017-06-01

    Full Text Available A state-of-the-art wind erosion simulation model, the Wind Erosion Prediction System and the United States Environmental Protection Agency's AP 42 emission factors formula, were combined together to evaluate wind-blown dust emissions from various construction units from a railway construction project in the dry Gobi land in Northwest China. The influence of the climatic factors: temperature, precipitation, wind speed and direction, soil condition, protective measures, and construction disturbance were taken into account. Driven by daily and sub-daily climate data and using specific detailed management files, the process-based WEPS model was able to express the beginning, active, and ending phases of construction, as well as the degree of disturbance for the entire scope of a construction project. The Lanzhou-Xinjiang High-speed Railway was selected as a representative study because of the diversities of different climates, soil, and working schedule conditions that could be analyzed. Wind erosion from different working units included the building of roadbeds, bridges, plants, temporary houses, earth spoil and barrow pit areas, and vehicle transportation were calculated. The total wind erosion emissions, 7406 t, for the first construction area of section LXS-15 with a 14.877 km length was obtained for quantitative analysis. The method used is applicable for evaluating wind erosion from other complex surface disturbance projects.

  1. Simulating the Effect of Climate Change on Vegetation Zone Distribution on the Loess Plateau, Northwest China

    Directory of Open Access Journals (Sweden)

    Guoqing Li

    2015-06-01

    Full Text Available A risk assessment of vegetation zone responses to climate change was conducted using the classical Holdridge life zone model on the Loess Plateau of Northwest China. The results show that there are currently ten vegetation zones occurring on the Loess Plateau (1950–2000, including alvar desert, alpine wet tundra, alpine rain tundra, boreal moist forest, boreal wet forest, cool temperate desert, cool temperate desert scrub, cool temperate steppe, cool temperate moist forest, warm temperate desert scrub, warm temperate thorn steppe, and warm temperate dry forest. Seventy years later (2070S, the alvar desert, the alpine wet tundra and the cool temperate desert will disappear, while warm temperate desert scrub and warm temperate thorn steppe will emerge. The area proportion of warm temperate dry forest will expand from 12.2% to 22.8%–37.2%, while that of cool temperate moist forest will decrease from 18.5% to 6.9%–9.5%. The area proportion of cool temperate steppe will decrease from 51.8% to 34.5%–51.6%. Our results suggest that future climate change will be conducive to the growth and expansion of forest zones on the Loess Plateau, which can provide valuable reference information for regional vegetation restoration planning and adaptive strategies in this region.

  2. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China

    Directory of Open Access Journals (Sweden)

    Yonggang Ma

    2013-01-01

    Full Text Available An integrated modeling system has been developed for analyzing the impact of climate change on snowmelt runoff in Kaidu Watershed, Northwest China. The system couples Hadley Centre Coupled Model version 3 (HadCM3 outputs with Snowmelt Runoff Model (SRM. The SRM was verified against observed discharge for outlet hydrological station of the watershed during the period from April to September in 2001 and generally performed well for Nash-Sutcliffe coefficient (EF and water balance coefficient (RE. The EF is approximately over 0.8, and the water balance error is lower than ± 10%, indicating reasonable prediction accuracy. The Statistical Downscaling Model (SDSM was used to downscale coarse outputs of HadCM3, and then the downscaled future climate data were used as inputs of the SRM. Four scenarios were considered for analyzing the climate change impact on snowmelt flow in the Kaidu Watershed. And the results indicated that watershed hydrology would alter under different climate change scenarios. The stream flow in spring is likely to increase with the increased mean temperature; the discharge and peck flow in summer decrease with the decreased precipitation under Scenarios 1 and 2. Moreover, the consideration of the change in cryosphere area would intensify the variability of stream flow under Scenarios 3 and 4. The modeling results provide useful decision support for water resources management.

  3. Seroprevalence and risk factors of Chlamydia abortus infection in Tibetan sheep in Gansu province, northwest China.

    Science.gov (United States)

    Qin, Si-Yuan; Yin, Ming-Yang; Cong, Wei; Zhou, Dong-Hui; Zhang, Xiao-Xuan; Zhao, Quan; Zhu, Xing-Quan; Zhou, Ji-Zhang; Qian, Ai-Dong

    2014-01-01

    Chlamydia abortus, an important pathogen in a variety of animals, is associated with abortion in sheep. In the present study, 1732 blood samples, collected from Tibetan sheep between June 2013 and April 2014, were examined by the indirect hemagglutination (IHA) test, aiming to evaluate the seroprevalence and risk factors of C. abortus infection in Tibetan sheep. 323 of 1732 (18.65%) samples were seropositive for C. abortus antibodies at the cut-off of 1:16. A multivariate logistic regression analysis was used to evaluate the risk factors associated with seroprevalence, which could provide foundation to prevent and control C. abortus infection in Tibetan sheep. Gender of Tibetan sheep was left out of the final model because it is not significant in the logistic regression analysis (P > 0.05). Region, season, and age were considered as major risk factors associated with C. abortus infection in Tibetan sheep. Our study revealed a widespread and high prevalence of C. abortus infection in Tibetan sheep in Gansu province, northwest China, with higher exposure risk in different seasons and ages and distinct geographical distribution.

  4. Seroprevalence and Risk Factors of Chlamydia abortus Infection in Tibetan Sheep in Gansu Province, Northwest China

    Directory of Open Access Journals (Sweden)

    Si-Yuan Qin

    2014-01-01

    Full Text Available Chlamydia abortus, an important pathogen in a variety of animals, is associated with abortion in sheep. In the present study, 1732 blood samples, collected from Tibetan sheep between June 2013 and April 2014, were examined by the indirect hemagglutination (IHA test, aiming to evaluate the seroprevalence and risk factors of C. abortus infection in Tibetan sheep. 323 of 1732 (18.65% samples were seropositive for C. abortus antibodies at the cut-off of 1 : 16. A multivariate logistic regression analysis was used to evaluate the risk factors associated with seroprevalence, which could provide foundation to prevent and control C. abortus infection in Tibetan sheep. Gender of Tibetan sheep was left out of the final model because it is not significant in the logistic regression analysis (P>0.05. Region, season, and age were considered as major risk factors associated with C. abortus infection in Tibetan sheep. Our study revealed a widespread and high prevalence of C. abortus infection in Tibetan sheep in Gansu province, northwest China, with higher exposure risk in different seasons and ages and distinct geographical distribution.

  5. Variation of NEE and its affecting factors in a vineyard of arid region of northwest China

    Science.gov (United States)

    Guo, W. H.; Kang, S. Z.; Li, F. S.; Li, S. E.

    2014-02-01

    To understand the variation of net ecosystem CO2 exchange (NEE) in orchard ecosystem and it's affecting factors, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during 2008-2010. Results show that vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and lower negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day. Irrigation and pruning did not affect diurnal variation shape of NEE, however, irrigation reduced the difference between maximal and minimal value of NEE and pruning reduced the carbon sink capacity. The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The hourly NEE increased with the increase of gc or Rn when gc was less than 0.02 m·s-1 or Rn was between 0 and 200 W·m-2. The main factors affecting both daily and seasonal NEE were gc, air temperature (Ta), atmospheric CO2 density, vapour pressure deficit (VPD) and soil moisture content.

  6. Regional Disparities in Emissions of Rural Household Energy Consumption: A Case Study of Northwest China

    Directory of Open Access Journals (Sweden)

    Wenheng Wu

    2017-05-01

    Full Text Available The purpose of this paper is to present the emissions status of multiple rural areas from the perspective of a field survey and make up for the defects of the traditional emission cognition of single type of area. The basic data in the lower reaches of the Weihe River of Northwest China were collected through household questionnaire surveys, and emissions from rural household energy consumption were calculated in the paper. In addition, the grey relational analysis method was used to identify influential factors of emission disparities. The results show that the total emissions of the plain, loess tableland, and Qinling piedmont areas are 1863.20, 1850.43, and 2556.68 kg, respectively. Regional disparities in emissions of rural household energy consumption vary greatly. CO2 emissions are highest in the Qinling piedmont area, followed by the loess tableland area. For other emissions, there is no fixed order of the three areas, which suggests that disparities in emissions are connected with the dominant type of energy consumption. Diversification of energy use might not necessarily produce higher emissions, but the traditional biomass energy pattern does generate more emissions. The regional supply capacity of household energy is the original influence factor of disparities in emissions, and factors that influence these disparities are directly related to differences among farmers, followed by the age structure, educational background, income level, occupation, and so on.

  7. Development of a Severe Sand-dust Storm Model and its Application to Northwest China

    International Nuclear Information System (INIS)

    Zhang Xiaoling; Cheng, Linsheng; Chung, Yong-Seung

    2003-01-01

    A very strong sand-dust storm occurred on 5 May, 1993 in Northwest China. In order to give a detailed description of the evolution of a mesoscale system along with the heavy sand-dust storm, a complex model including improved physical processes and a radiation parameterization scheme was developed based on a simulation model. The improved model introduced a sand-dust transport equation as well as a lifting transport model, sand-dust aerosols and radiation parameterization scheme.Using this model, the super sand-dust storm case on 5 May was simulated. Results indicated that the coupled mesoscale model successfully simulated the mesoscale vortex, its strong upward movement and the warm core structure of PBL. The generation and development of these structures were consistent with that of the sand-dust storm and dry squall-line (which was different with normal squall-line). Simulated sand-dust concentration and its radiative effect corresponded with observation data. The radiative effect of sand-dust aerosols caused the air to heat on the top of aerosol layer with a heating rate amounting to 2 K hr -1 . As a result, solar radiation flux that reached the surface, net radiation flux and surface temperature all suddenly went down. The temperature gradient across the cold front became obviously larger. Therefore, enhancing the development of the mesoscale system. The simulation generally reflected features during the squall-line passage of this strong sand-dust storm

  8. Research on Fluid Viscous Damper Parameters of Cable-Stayed Bridge in Northwest China

    Directory of Open Access Journals (Sweden)

    Xiongjun He

    2017-01-01

    Full Text Available To optimize the aseismic performance of nonlinear fluid viscous dampers (FVD of cable-stayed bridge in the highly seismic zone, Xigu Yellow River Bridge in northwest China is taken as an example. Nonlinear time-history analysis method is used to research on the relation among the internal forces, displacements, and damping parameters of the 650 tonnage FVD. The method of getting the minimum of binary functions is used to obtain the optimal parameters of FVD. Also, the 1 : 1 full-scale FVD model is made and used in the constitutive relation test. Then the test result of the damping parameters can be got by normal equation method. The optimized method to obtain the damping parameters is further verified. The results indicate that seismic response in key positions of the cable-stayed bridge can be reduced by installing longitudinal nonlinear FVD between the towers and girders if choosing reasonable damping parameters C and ξ. The optimal damping parameters can be calculated accurately by the proposed method of optimizing damping parameters of nonlinear FVD, and the constitutive relation test verifies the correctness of the optimization analysis method. Conclusions concerned can be applied to the design of nonlinear FVD for cable-stayed bridges.

  9. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    Science.gov (United States)

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  10. Palinspastic reconstruction and geological evolution of Permian residual marine basins bordering China and Mongolia

    Directory of Open Access Journals (Sweden)

    Gen-Yao Wu

    2014-04-01

    Full Text Available One main feature of the tectono-paleogeographic evolution of the southern branch of the Paleo-Asian Ocean was that there developed residual marine basins in former backarc/forearc regions after the disappearance of oceanic crust. The paper illustrates the viewpoint taking the evolution of Dalandzadgad and Solonker oceanic basins as examples. The Dalandzadgad ocean subducted southwards during the Silurian-Devonian, created an intra-oceanic arc and a backarc basin in southern Mongolia. In addition, a continent marginal arc formed along the national boundary between China and Mongolia, the south of which was a backarc basin. The oceanic basin closed and arc–arc (continent collision occurred during the early Early Permian, followed by two residual marine basins developing in the former backarc regions, named the South Gobi Basin in southern Mongolia and the Guaizihu Basin in western Inner Mongolia. The Solonker ocean subducted southwards and finally disappeared during the early Middle Permian. Afterwards, two residual marine basins occurred in northern China, the Zhesi Basin being situated in the former backarc region and the Wujiatun Basin in the former forearc region. The late Middle Permian was the most optimum period for the developing residual marine basins, when they covered a vast area. The basin evolution differentiated during the early Late Permian, with a general trend of uplift in the east and of subsidence in the west. The Upper Permian in the South Gobi Basin was characterized by coal-bearing strata hosting economically valuable coal fields. A transgression invaded westwards and the Chandmani-Bayanleg Basin was created in southwest Mongolia during the middle-late stage of the Late Permian. Correspondingly, the coal formation entered a flourishing time, with thick coal beds and sedimentary interbeds. All of these basins, namely, both the marine and nonmarine residual basins, reversed and closed by the end of Permian.

  11. Neoproterozoic rift basins and their control on the development of hydrocarbon source rocks in the Tarim Basin, NW China

    Science.gov (United States)

    Zhu, Guang-You; Ren, Rong; Chen, Fei-Ran; Li, Ting-Ting; Chen, Yong-Quan

    2017-12-01

    The Proterozoic is demonstrated to be an important period for global petroleum systems. Few exploration breakthroughs, however, have been obtained on the system in the Tarim Basin, NW China. Outcrop, drilling, and seismic data are integrated in this paper to focus on the Neoproterozoic rift basins and related hydrocarbon source rocks in the Tarim Basin. The basin consists of Cryogenian to Ediacaran rifts showing a distribution of N-S differentiation. Compared to the Cryogenian basins, those of the Ediacaran are characterized by deposits in small thickness and wide distribution. Thus, the rifts have a typical dual structure, namely the Cryogenian rifting and Ediacaran depression phases that reveal distinct structural and sedimentary characteristics. The Cryogenian rifting basins are dominated by a series of grabens or half grabens, which have a wedge-shaped rapid filling structure. The basins evolved into Ediacaran depression when the rifting and magmatic activities diminished, and extensive overlapping sedimentation occurred. The distributions of the source rocks are controlled by the Neoproterozoic rifts as follows. The present outcrops lie mostly at the margins of the Cryogenian rifting basins where the rapid deposition dominates and the argillaceous rocks have low total organic carbon (TOC) contents; however, the source rocks with high TOC contents should develop in the center of the basins. The Ediacaran source rocks formed in deep water environment of the stable depressions evolving from the previous rifting basins, and are thus more widespread in the Tarim Basin. The confirmation of the Cryogenian to Ediacaran source rocks would open up a new field for the deep hydrocarbon exploration in the Tarim Basin.

  12. Identifying entry points to improve fertilizer use efficiency in Taihu Basin, China

    NARCIS (Netherlands)

    Ma, Li; Feng, S.; Reidsma, P.; Qu, F.; Heerink, N.

    2014-01-01

    Overuse of fertilizers in China causes environmental problems and high costs for farmers. In this paper we aim to identify entry points to improve fertilizer use efficiency in Taihu Basin, China. We use stochastic frontier analysis to estimate the technical and fertilizer use efficiency of rice

  13. Geological evolution, regional perspectives and hydrocarbon potential of the northwest Phu Khanh Basin, offshore Central Vietnam

    DEFF Research Database (Denmark)

    Fyhn, Michael Bryld Wessel; Nielsen, Lars H.; Boldreel, Lars Ole

    2009-01-01

    seeps are found at Dam Thi Nai, immediately landward of the basin. Geochemical analyses of the oil seeps indicate the existence of at least two early to peak mature source rocks. Maturation modelling, combined with the seismic analysis, suggests the likely presence of oil kitchens 40-50km downdip...

  14. SWAT-simulated hydrological impact of land-use change in the Zanjanrood basin, Northwest Iran

    NARCIS (Netherlands)

    Ghaffari, G.; Ghodousi, J.; Ahmadi, H.; Keesstra, S.D.

    2010-01-01

    Understanding the impacts of land-use changes on hydrology at the watershed scale can facilitate development of sustainable water resource strategies. This paper investigates the hydrological effects of land-use change in Zanjanrood basin, Iran. The water balance was simulated using the Soil and

  15. Tectonostratigraphic history of the Neogene Maimará basin, Northwest Argentina

    Science.gov (United States)

    Galli, Claudia I.; Coira, Beatriz L.; Alonso, Ricardo N.; Iglesia Llanos, María P.; Prezzi, Claudia B.; Kay, Suzanne Mahlburg

    2016-12-01

    This paper presents the tectonostratigraphic evolution of the Maimará Basin and explores the relationship between the clastic sediments and pyroclastic deposits in the basin and the evolution of the adjacent orogeny and magmatic arc. The sedimentary facies in this part of the basin include, in ascending order, an ephemeral fluvial system, a deep braided fluvial system and a medial to distal ephemeral fluvial system. We interpret that Maimará Formation accumulated in a basin that has developed two stages of accumulation. Stage 1 extended from 7 to 6.4 Ma and included accelerated tectonic uplift in the source areas, and it corresponds to the ephemeral fluvial system deposits. Stage 2, which extended from 6.4 to 4.8 Ma, corresponds to a tectonically quiescent period and included the development of the deep braided fluvial system deposits. The contact between the Maimará and Tilcara formations is always characterized by a regional unconformity and, in the study area, also shows pronounced erosion. Rare earth element and other chemical characteristics of the tuff intervals in the Maimará Formation fall into two distinct groups suggesting the tuffs were erupted from two distinct late Miocene source regions. The first and most abundant group has characteristics that best match tuffs erupted from the Guacha, Pacana and Pastos Grandes calderas, which are located 200 and 230 km west of the study area at 22º-23º30‧S latitude. The members the second group are chemically most similar to the Merihuaca Ignimbrite from the Cerro Galán caldera 290 km south-southwest of the studied section. The distinctive geochemical characteristics are excellent tools to reconstruct the stratigraphic evolution of the Neogene Maimará basin from 6.4 to 4.8 Ma.

  16. A New Zincian Greenockite Occurrence in the Saishitang Cu Skarn Deposit, Qinghai Province, Northwest China

    Directory of Open Access Journals (Sweden)

    Jianping Liu

    2017-07-01

    Full Text Available Zn-Cd-S series minerals not only comprise industrial resources for Zn and Cd, but are also significant mineralogical indicators for hydrothermal ore-forming processes. Due to its unique formation conditions and rare occurrence, our understanding of the formation of zincian greenockite in natural systems is limited. Zincian greenockite was discovered during mineralogical studies in the Saishitang Cu skarn deposit, Qinghai Province, Northwest China. This provided an ideal opportunity to assess the occurrence and formation of zincian greenockite in skarn-type deposits. Ore minerals were observed using reflected-light microscopy, and the zincian greenockite was further analyzed using electron-probe microanalysis (EPMA and X-ray diffraction (XRD. The zincian greenockite occurs in the bornite–chalcopyrite ores and is composed of subhedral to anhedral grains approximately 50 × 150 μm2 to 200 × 300 μm2 in size, replaces the bornite, and is replaced by native silver. Two phases (I and II were identified based on back-scattered electron images, X-ray element-distributions maps, and EPMA data. The textural relationship indicated that Phase I was replaced by Phase II. Phase I contained high Zn (14.6 to 21.7 mol % ZnS and low Cd (72.4 to 82.2 mol % CdS, while Phase II contained low Zn (5.6 to 9.1 mol % ZnS and high Cd (85.4 to 89.9 mol % CdS. The zincian greenockite was formed at temperature of 300~270 °C during the transformation from a reducing environment to an oxidizing one in the late stage of the mineralization process in the Saishitang deposit.

  17. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  18. Cooling effect of agricultural irrigation over Xinjiang, Northwest China from 1959 to 2006

    International Nuclear Information System (INIS)

    Han Songjun; Yang Zhiyong

    2013-01-01

    The influences of agricultural irrigation on trends in surface air temperature from 1959 to 2006 over Xinjiang, Northwest China are evaluated using data from 90 meteorological stations. The 90 stations are located in landscapes with markedly different cultivated land uses. The increasing trends in daily average temperature (T a ), maximum temperature (T max ), and minimum temperature (T min ) for May–September (the main growing season) are negatively correlated with cultivated land proportions within 4 km of the meteorological stations, as indicated by year 2000 land use data. The correlations between the trends in T max and cultivated land proportions are the most significant. The trends in T a , T max , and T min for May–September are expected to decrease by −0.018, −0.014, and −0.016 ° C per decade, respectively, along with a 10% increase in cultivated land proportion. As irrigated cultivated land occupies over 90% of total cultivated land, the dependence of temperature trends on cultivated area is attributed to irrigation. The cooling effects on stations with cultivated land proportion larger than 50% are compared to temperature trends in a reference group with cultivated land proportion smaller than 10%. The irrigation expansion from 1959 to 2006 over Xinjiang is found to be associated with cooling of May–September T a , T max , and T min by around −0.15 ° C to −0.10 ° C/decade in the station group with extensive irrigation. Short periods of rapid irrigation expansion co-occurred with the significant cooling of the May–September temperature. (letter)

  19. Human paleodiet and animal utilization strategies during the Bronze Age in northwest Yunnan Province, southwest China.

    Directory of Open Access Journals (Sweden)

    Lele Ren

    Full Text Available Reconstructing ancient diets and the use of animals and plants augment our understanding of how humans adapted to different environments. Yunnan Province in southwest China is ecologically and environmentally diverse. During the Neolithic and Bronze Age periods, this region was occupied by a variety of local culture groups with diverse subsistence systems and material culture. In this paper, we obtained carbon (δ13C and nitrogen (δ15N isotopic ratios from human and faunal remains in order to reconstruct human paleodiets and strategies for animal exploitation at the Bronze Age site of Shilinggang (ca. 2500 Cal BP in northwest Yunnan Province. The δ13C results for human samples from Shilinggang demonstrate that people's diets were mainly dominated by C3-based foodstuffs, probably due to both direct consumption of C3 food and as a result of C3 foddering of consumed animals. Auxiliary C4 food signals can also be detected. High δ15N values indicate that meat was an important component of the diet. Analysis of faunal samples indicates that people primarily fed pigs and dogs with human food waste, while sheep/goats and cattle were foddered with other food sources. We compare stable isotope and archaeobotanical data from Shilinggang with data from other Bronze Age sites in Yunnan to explore potential regional variation in subsistence strategies. Our work suggests that people adopted different animal utilization and subsistence strategies in different parts of Yunnan during the Bronze Age period, probably as local adaptations to the highly diversified and isolated environments in the region.

  20. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China.

    Directory of Open Access Journals (Sweden)

    Gaoyang Cui

    Full Text Available The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989-1993, 1994-1998, 1999-2003, and 2004-2008 and field-sampling measurements (2012. The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude to south (low latitude generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg and slightly underestimated (778.07 Tg when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change.

  1. Does migration benefit the schooling of children left behind?: Evidence from rural northwest China

    Directory of Open Access Journals (Sweden)

    Feng Hu

    2013-07-01

    Full Text Available BACKGROUND While many studies have found that migration can benefit home communities and family members left behind by increasing household income, thus easing liquidity constraints on investment; less is known about how "internal" migration and remittances affect the educational performance of the children who are left behind in the source communities. OBJECTIVE My aim in this paper is to examine the effects of migration on the educational attainment of left-behind rural children in northwest China. To gain a better understanding of whether the educational performance of these children improves or suffers when adult family members migrate, I attempt to disentangle the effects of remittances from the effects of migration. METHODS The data used in this study come from the 2004 wave of the Gansu Survey of Children and Families. To account for the possible endogeneity of migration-related variables, I use the migration network variables to instrument for different migration strategies. RESULTS The results show that the absence of adult household members, including parents, has a negative effect on the educational performance of the children left behind, but that remittances can partially compensate for this loss. Boys' educational performance does not seem to be greatly affected by the migration of adult household members. By contrast, the absence of adult household members is shown to have a large negative effect on girls' educational performance, and the positive effect of remittances is also found to be significant for girls. CONCLUSIONS The findings may be of interest to other developing countries with large internal migration flows and to the relevant policy makers, as the results suggest that remittances sent home by out-migrants may serve as a channel for investing in human capital in the migrants' regions of origin, and especially for investing in the human capital of girls.

  2. Paleoseismic observations along the Langshan range-front fault, Hetao Basin, China: Tectonic and seismic implications

    Science.gov (United States)

    Dong, Shaopeng; Zhang, Peizhen; Zheng, Wenjun; Yu, Zhongyuan; Lei, Qiyun; Yang, Huili; Liu, Jinfeng; Gong, Huilin

    2018-04-01

    The Langshan range-front fault (LRF) is an active Holocene normal fault that borders Langshan Mountain and the Hetao Basin, northwest of the Ordos Plateau, China. In this study, paleoseismic trenching was undertaken at three sites (North-South): Dongshen village (TC1), Qingshan (TC2), and Wulanhashao (TC3). The paleoevents ED1, ED2, ED3 from TC1 were constrained to 6.0 ± 1.3, 9.6 ± 2.0, and 19.7 ± 4.2 ka, respectively. The single paleoevent (EQ1) from TC2 was constrained to about 6.7 ± 0.1 ka, and the paleoevents EW1, EW2, and EW3 from TC3 were constrained to 2.3 ± 0.4, 6.0 ± 1.0, and before 7.0 ka, respectively. With reference to previous research, the Holocene earthquake sequence of the LRF can be established as 2.30-2.43 (E1), 3.06-4.41 (E2), 6.71-6.80 (E3), 7.60-9.81 (E4), and 19.70 ± 4.20 (E5) ka BP. Events E1, E3, and E4 might have been caused by events with magnitudes of Mw 7.6-7.8 that ruptured the entire LRF. Event E2 might have been smaller magnitude, about M7.0, and ruptured only a portion of the fault. The vertical slip rate of the LRF at the Qingshan site is inferred as 0.9 or 1.4-1.6 mm/year in the last 6.8 ka. The slip rate at Wulanhashao is considered to have been close to, but not recurrence interval of 2500 years.

  3. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    Science.gov (United States)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution ( 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  4. Correlation between seismicity and geomorphology in Dingxi Basin, Gansu Province, China

    Directory of Open Access Journals (Sweden)

    Li Xue

    2013-01-01

    Full Text Available A M6.6 earthquake occurred on July 22, 2013 at Dingxi Basin in Gansu Province within the tectonially expanding northeastern margin of the Qinghai-Tibet Plateau. We analyzed the geomorphological features of the Dingxi Basin by using remote sensing technology and compared them with local seismic activity. We found that most of the river basins are at the robust stage of development and that the major local rivers and the development of some basins boundaries are controlled by the seismic faults. Among four zones identified to have significant tectonic activities, the northwestly-oriented one located in the south has the highest seismic activity, and it is where the M6. 6 earthquake occurrred.

  5. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  6. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  7. Precipitation alters plastic film mulching impacts on soil respiration in an arid area of northwest China

    Science.gov (United States)

    Ming, Guanghui; Hu, Hongchang; Tian, Fuqiang; Peng, Zhenyang; Yang, Pengju; Luo, Yiqi

    2018-05-01

    Plastic film mulching (PFM) has widely been used around the world to save water and improve crop yield. However, the effect of PFM on soil respiration (Rs) remains unclear and could be further confounded by irrigation and precipitation. To address these topics, controlled experiments were conducted in mulched and non-mulched fields under drip irrigation from 2014 to 2016 in an arid area of the Xinjiang Uygur Autonomous Region, northwest China. The spatio-temporal pattern of soil surface CO2 flux as an index of soil respiration under drip irrigation with PFM was investigated, and the confounded effects of PFM and irrigation/precipitation on soil respiration were explored. The main findings were as follows. (1) Furrows, planting holes, and plastic mulch are three important pathways of soil CO2 emissions in mulched fields, of which the planting hole efflux outweighs that from the furrow, with the largest values of 8.0 and 6.6 µmol m-2 s-1, respectively, and the plastic mulch itself can emit up to 3.6 µmol m-2 s-1 of CO2. (2) The frequent application of water (i.e. through irrigation and precipitation) elevates soil moisture and soil respiration and enhances their variation. The resultant higher variation of soil moisture further alleviates the sensitivity of soil respiration to soil temperature, leading to a weak correlation and lower Q10 values. (3) Soil CO2 effluxes from furrows and ridges in mulched fields outweigh the corresponding values in non-mulched fields in arid areas. However, this outweighing relation attenuates with increasing precipitation. Furthermore, by combining our results with those from the literature, we show that the difference in soil CO2 effluxes between non-mulched and mulched fields presents a linear relation with the amount of precipitation, which results in negative values in arid areas and positive values in humid areas. Therefore, whether PFM increases soil respiration or not depends on the amount of precipitation during the crop

  8. Migration and Morphology of Asymmetric Barchans in the Central Hexi Corridor of Northwest China

    Directory of Open Access Journals (Sweden)

    Zhengcai Zhang

    2018-06-01

    Full Text Available Crescent-shaped barchan dunes often display an asymmetric shape, with one limb longer than the other. As shown in previous studies, asymmetric bimodal winds constitute one major cause of barchan asymmetry, but the heterogeneous conditions of sand availability or flux, as well as topographic influences, may be also important. Understanding the morphology and dynamics of asymmetric barchans may have an impact in a broad range of areas, particularly as these dunes may serve as a proxy for planetary wind regimes and soil conditions in extraterrestrial environments. However, in addition to the existing theories and numerical models that explain barchan asymmetry, direct measurements of migration rates and morphologic changes of real asymmetric barchans over a time span of several years would be beneficial. Therefore, here we report such measurements, which we have acquired by investigating asymmetric barchans in the Hexi Corridor, northwest of China. We have found that dune interactions and asymmetric influx conditions are the most important causes of barchan asymmetry in this field. Particle size distributions in the Hexi Corridor display strong variations over different parts of the asymmetric barchans, as well as over different dunes, with gravel particles being incorporated from the substrate as the dunes migrate. Our observations have shown that upwind sediment sources are important for dune formation in the Hexi Corridor, and that interdune interactions affect dune shape in different ways, depending on their offset. The asymmetric barchans in the Hexi Corridor are active, with an average migration rate (MR between 8 and 53 m year−1, in spite of the different asymmetric shapes. Our data for dune migration rates can be described well by a scaling of MR = A/(W + W0, where W is the barchan cross-wind width, A ≈ 2835 m2 s−1, and W0 ≈ 44 m. A similar scaling fits very well the migration rate as a function of dune along-wind width L, (i.e., MR

  9. Allocation pattern and accumulation potential of carbon stock in natural spruce forests in northwest China

    Directory of Open Access Journals (Sweden)

    Jun-Wei Yue

    2018-05-01

    Full Text Available Background The spruce forests are dominant communities in northwest China, and play a key role in national carbon budgets. However, the patterns of carbon stock distribution and accumulation potential across stand ages are poorly documented. Methods We investigated the carbon stocks in biomass and soil in the natural spruce forests in the region by surveys on 39 plots. Biomass of tree components were estimated using allometric equations previously established based on tree height and diameter at breast height, while biomass in understory (shrub and herb and forest floor were determined by total harvesting method. Fine root biomass was estimated by soil coring technique. Carbon stocks in various biomass components and soil (0–100 cm were estimated by analyzing the carbon content of each component. Results The results showed that carbon stock in these forest ecosystems can be as high as 510.1 t ha−1, with an average of 449.4 t ha−1. Carbon stock ranged from 28.1 to 93.9 t ha−1 and from 0.6 to 8.7 t ha−1 with stand ages in trees and deadwoods, respectively. The proportion of shrubs, herbs, fine roots, litter and deadwoods ranged from 0.1% to 1% of the total ecosystem carbon, and was age-independent. Fine roots and deadwood which contribute to about 2% of the biomass carbon should be attached considerable weight in the investigation of natural forests. Soil carbon stock did not show a changing trend with stand age, ranging from 254.2 to 420.0 t ha−1 with an average of 358.7 t ha−1. The average value of carbon sequestration potential for these forests was estimated as 29.4 t ha−1, with the lower aged ones being the dominant contributor. The maximum carbon sequestration rate was 2.47 t ha−1 year−1 appearing in the growth stage of 37–56 years. Conclusion The carbon stock in biomass was the major contributor to the increment of carbon stock in ecosystems. Stand age is not a good predictor of soil carbon stocks and accurate

  10. Prevalence and associated factors of corneal blindness in Ningxia in northwest China

    Directory of Open Access Journals (Sweden)

    Xun-Lun Sheng

    2014-06-01

    Full Text Available AIM:To describe the prevalence and demographic characteristics of corneal blindness in an urban and rural region of Ningxia, located in the northwest part of China.METHODS:A stratified, randomized sampling procedure was employed in the study, including urban and rural area of all age group. Visual acuity, anterior segment and ocular fundus were checked. Related factor of corneal disease, including age, gender, education status, ethnic group, location and occupation, were identified according to uniform customized protocol. An eye was defined to be corneal blindness if the visual acuity was <20/400 due to a corneal disease.RESULTS:Three thousand individuals (1290 from urban area and 1710 from rural area participated in the investigation, with a response rate of 80.380%. The prevalence of corneal blindness was 0.023% in both eyes and 0.733% in at least one eye. The blindness in at least one eye with varied causes was present in 106 participants (3.533% and in bilateral eyes in 34 participants (1.133%. The corneal diseases accounted for 20.754% of blindness in at least one eye and 20.588% of bilateral blindness. The prevalence of corneal disease was higher in older and Han ethnic group, especially those who occupied in agriculture and outdoor work. People with corneal blindness were more likely to be older and lower education. Rural population were more likely to suffer from bilateral corneal blindness than the urban population in ≥59-year group (χ2=6.716, P=0.019. Infectious, trauma and immune corneal disease were the three leading causes of corneal disease. Trauma corneal disease was more likely leading to blindness in one eye. However, infectious and immune corneal diseases make more contribution to the bilateral corneal blindness.CONCLUSION: Corneal blindness is a significant burden of in Ningxia population, encompassing a variety of corneal infections and trauma; the majority of those were avoidable. Health promotion strategies and good

  11. Epidermal characters of Tamarix L. (Tamaricaceae from Northwest China and their taxonomic and palaeogeographic implications

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zhang

    2018-04-01

    implications of Tamarix in the Late Cenozoic of Northwest China are also discussed. Keywords: Anatomy, Arid region, Epidermis, Ecological adaptation, Phylogenetic evolution, Tamarix, Northwest China

  12. Variations of Ecosystem Service Value in Response to Land-Use Change in the Kashgar Region, Northwest China

    Directory of Open Access Journals (Sweden)

    Aynur Mamat

    2018-01-01

    Full Text Available Increasing anthropogenic activities have significantly altered ecosystems in arid oasis regions. Estimating the impact on a wide range of ecosystem services is important for decision making and the sustainable development of these regions. This study analyzed time-series Landsat data to determine the influences of oasis land-use changes on the ecosystem services in the Kashgar region in Northwest China. The following results were found. The total value of the ecosystem services in the Kashgar region were approximately $10,845.3, $11,218.6, $10,291.7, and $10,127.3 million in 1986, 1996, 2005, and 2015, respectively. The water supply, waste treatment, biodiversity protection, and recreation and cultural services were the four ecosystem services with the highest service value, contributing 77.05% of the total ecosystem services. The combined contribution rate of food production and raw material value was only about 4.02%, relatively small. The sensitivity analysis indicated that the estimated total ecosystem service value (ESV for this study area was relatively inelastic with respect to the value coefficients. The findings of this study will be crucial for maintaining the stability and sustainable development of the oasis region, where socio-economic development and the integrity of the natural ecosystem complement each other. Furthermore, the results provide a scientific basis for decision makers in land use management, and provide a reference for researchers in the Northwest China.

  13. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012

    Science.gov (United States)

    Li, Zhen; Pan, Jinghu

    2018-03-01

    Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.

  14. Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China.

    Science.gov (United States)

    Nie, Qingke; Zhou, Changjun; Shu, Xiang; He, Qiang; Huang, Baoshan

    2014-05-13

    Over the vast Northwest China, arid desert contains high concentrations of sulfate, chloride, and other chemicals in the ground water, which poses serious challenges to infrastructure construction that routinely utilizes portland cement concrete. Rapid industrialization in the region has been generating huge amounts of mineral admixtures, such as fly ash and slags from energy and metallurgical industries. These industrial by-products would turn into waste materials if not utilized in time. The present study evaluated the suitability of utilizing local mineral admixtures in significant quantities for producing quality concrete mixtures that can withstand the harsh chemical environment without compromising the essential mechanical properties. Comprehensive chemical, mechanical, and durability tests were conducted in the laboratory to characterize the properties of the local cementitious mineral admixtures, cement mortar and portland cement concrete mixtures containing these admixtures. The results from this study indicated that the sulfate resistance of concrete was effectively improved by adding local class F fly ash and slag, or by applying sulfate resistance cement to the mixtures. It is noteworthy that concrete containing local mineral admixtures exhibited much lower permeability (in terms of chloride ion penetration) than ordinary portland cement concrete while retaining the same mechanical properties; whereas concrete mixtures made with sulfate resistance cement had significantly reduced strength and much increased chloride penetration comparing to the other mixtures. Hence, the use of local mineral admixtures in Northwest China in concrete mixtures would be beneficial to the performance of concrete, as well as to the protection of environment.

  15. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    Science.gov (United States)

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  16. Impact of Climate Change on Rain-fed Farming and Response Solutions in Semiarid Area of Northwest China

    Directory of Open Access Journals (Sweden)

    WANG Hong-li

    2015-12-01

    Full Text Available The impact of climate change on the agriculture production in semi-arid areas of Northwest, the major drought-resistant technology, the mechanism of increasing grain production were analyzed to explore technical solutions to retort the future climate change, future development of rainfed agriculture, and provide reference for food security. The results showed that the impact of future climate change on crop growth had main three aspects: Firstly, higher temperatures resulted in lower crop yield and quality decline; Secondly, changes in precipitation and precipitation patterns resulted in drought/flooding problems; Thirdly, meteorological disasters caused by extreme weather lead to fluctuations of food production. To adapt or mitigate these adverse effects, increase use efficiency of limited rainfall, optimize soil structure, improve soil fertility, enhance withstanding environmental change ability of crop-soil system, mitigate the impact of future climate change on food production in semi-arid region of Northwest China, the mainly solutions were: (1 Covering gathered precipitation, improve the ability to accumulate soil moisture, change the distribution of soil moisture, regulate the migration and improve the infiltration of precipitation, thus “adjusting water” to adapt to precipitation changes; (2 Optimizing soil structure, physical and chemical properties by soil fertilization, thus “regulating soil” to improve the ability of crop-soil system against to environmental changes, in order to stabilize productivity of rainfed agriculture; (3 Integrate “adjusting water” and “regulating soil” technology, forming technical system of “coordination of water and soil” to comprehensively response to future climate change, mitigate the adverse impact of future climate change on food production in semi-arid region of Northwest, China.

  17. Palinspastic reconstruction and geological evolution of Jurassic basins in Mongolia and neighboring China

    Directory of Open Access Journals (Sweden)

    Wu Genyao

    2013-07-01

    Full Text Available The important event in Jurassic tectonics in Mongolia was the subduction and closure of the Mongolia-Okhotsk ocean; correspondingly, basin evolution can be divided into two main stages, related to the orogeny and collapse of the orogenic belt, respectively. The developing of Early–Middle Jurassic basins to the north of the ocean resulted from back-arc extension. The fossil sutures, from the China–SE Asia sub-continent to the south of the ocean, were rejuvenated by subduction-related orogeny; in addition, the Yanshanian intra-continental movement occurred. Three Early–Middle Jurassic molasse basins were developed by movement in Inner Mongolia, all of which stretched westwards (or northwards into Mongolia; therefore, the molasse basins in eastern and southern Mongolia had the same geometric and kinematic features as the basins in the Inner Mongolia. Owing to the collapse of the Mongolia-Okhotsk orogenic belt, a group of rift basins developed during the Late Jurassic. In eastern Mongolia, the NE orientated extensional basins were controlled by the neogenic NE-structure. The contemporary basins in southern Mongolia and the neighboring areas in China were constrained by remobilization (inherited activation of the latitudinal or ENE-directional basement structures. Three stages can be recognized in the evolution of the Early–Middle Jurassic basins after reversal; the basins also experienced four episodes of reformation.

  18. Ecosystem Services and Related Sustainable Management of River Oases along the Tarim River in Northwest China

    Science.gov (United States)

    Disse, M.; Keilholz, P.; Rumbaur, C.; Thevs, N.

    2011-12-01

    Within the Taklimakan Desert of Northwestern China, an area renowned for its extreme climate and vulnerable ecosystems, lies one of the largest inland rivers in the world, the Tarim River. Because the Tarim River is located in a remote area from the oceans, rainfall is extremely rare (less than 50 mm per year) but potential evaporation is high (3000 mm). Thus, the major source of water discharge comes from snowmelt and glacier-melt in the mountains. Though the water discharge into the Tarim River has experienced an increase over the past ten years, global climate change forecasts predict this water supply to decline within the century. The Tarim River is the major source of water in Northwestern China, and has become the hub of many economic activities related to agriculture and urban life. Over the past 50 years increased activity in the area has led to a severe decline in river flow. Both human and natural ecosystems have been impacted by water diversions. Since rainfall is rare, the majority of vegetation in this area depends solely on groundwater for survival, and plants are experiencing stress caused by decreasing groundwater levels. Recently nearby cities have experienced severe dust storms caused by the shrinking of the vegetative region along the river. SuMaRiO (Sustainable Management of River Oases) is a bundle project between Germany and China working to contribute to a sustainable land management which explicitly takes into account ecosystem functions (ESF) and ecosystem services (ESS). In a transdisciplinary research process, SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. SuMaRiO is developing tools to work with Chinese decision makers to implement sustainable land management strategies. In addition, research is being conducted to estimate climate change impacts, floodplain biodiversity, and water runoff characteristics. The overarching goal of SuMaRiO is to support oasis management along

  19. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    Science.gov (United States)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  20. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang

    2012-03-01

    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  1. How to help woody plants to overcome drought stress?-a control study of four tree species in Northwest China.

    Science.gov (United States)

    Liu, Xiaozhen; Zhang, Shuoxin

    2010-05-01

    Water is essential for plants and involves most physical and chemical processes within their lifecycles. Drought stress is a crucial limiting factor for plant growth and production. 48% of the land in China is arid and semi-arid, and non-irrigated land occupies approximately 51.9% of the total cultivated areas. Therefore, studies on plant drought resistant mechanisms have great significance for improving water use efficiency and thus increasing productivity of economical plants. Prior research has shown that the application of nitrogenous fertilizer affects the drought-resistant characteristics of plants. This study aimed to reveal the effect of nitrogenous fertilizer on physiological aspects and its impact on the drought resistance of four tree species (Robinia pseudoacacia L., Ligustrum lucidum Ait., Acer truncatum Bge. and Ulmus pumila L. ) in northwest China. Three levels of nitrogen fertilization (46% N based of urea adjusted to: 5g/15g soil, 15g/15g soil and 25g/15g soil) and an additional control study were applied to 2-year-old well-grown seedlings under drought conditions (30% field moisture capacity). Stomatal conductance, transpiration rate and net photosynthetic rate were measured by a LI-6400 photosynthesis system, while water use efficiency was calculated from net photosynthesis rate and transpiration rate. The results revealed that as the amount of urea applied was raised, stomatal conductance, transpiration rate and net photosynthetic rate decreased significantly, and thus water use efficiency significantly increased. It is therefore concluded that the application of nitrogenous fertilizer regulated physiological parameters by reducing stomata conductance to improve water use efficiency. In addition, among the four tree species, U. pumila had the maximum value of water use efficiency under the same drought condition. The outcome of this study provides a guided option for forest management in arid and semi-arid areas of northwest China.

  2. Testing new methodologies and assessing their potential for reservoir characterisation: Geoelectrical studies in the Northwest Carboniferous Basin (Ireland).

    Science.gov (United States)

    Ogaya, Xènia; Campanyà, Joan; Rath, Volker; Jones, Alan G.; Reay, Derek; Raine, Rob; McConnell, Brian; Ledo, Juanjo

    2016-04-01

    The overarching objective of this study is to improve our methods of characterising saline aquifers by integrating newly acquired electromagnetic data with existing geophysical and geological data. The work presented here is part of an ongoing project to evaluate Ireland's potential for onshore carbon sequestration (IRECCSEM; funded by Science Foundation Ireland). The methodology presented in this characterisation work is not only relevant for studying the potential for onshore carbon sequestration, but is generally applicable for aquifer characterisation, particularly for the evaluation of geothermal resources in appropriate geological settings. We present first results of the three-dimensional (3D) modelling and inversion of the magnetotelluric (MT) data acquired in the Northwest Carboniferous Basin (Ireland) in summer 2015. The electrical resistivity distribution beneath the survey area is constrained using a joint inversion of three different types of electromagnetic data: MT impedance tensor responses (Z), geomagnetic transfer functions (GTF) and inter-station horizontal magnetic transfer-functions (HMT). The preliminary 3D resistivity model obtained reveals the geoelectrical structure of the subsurface, which is translated into parameters relevant to fluid flow. The electromagnetic data were acquired along profiles linking four wells drilled in the area and the available well log data from those wells are used to evaluate some of the existing petrophysical relationships and calibrate them for the study area. This allows us to interpolate the rock physical properties from one well to another well, using the computed geoelectrical model as a reference. The obtained results are compared to available independent geological and geophysical data in order to analyse the validity of this technique, to characterise the uncertainties inherent to our approach, and to assess the potential of this methodology for reservoir characterisation.

  3. Study of southern CHAONAN sag lower continental slope basin deposition character in Northern South China Sea

    Science.gov (United States)

    Tang, Y.

    2009-12-01

    Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study

  4. Biomass Carbon Sequestration Potential by Riparian Forest in the Tarim River Watershed, Northwest China: Implication for the Mitigation of Climate Change Impact

    Directory of Open Access Journals (Sweden)

    Tayierjiang Aishan

    2018-04-01

    Full Text Available Carbon management in forests has become the most important agenda of the first half of the 21st century in China in the context of the mitigation of climate change impact. As the main producer of the inland river basin ecosystem in arid region of Northwest China, the desert riparian forest maintains the regional environment and also holds a great significance in regulating the regional/global carbon cycle. In this study, we estimated the total biomass, carbon storage, as well as monetary ecosystem service values of desert riparian Populus euphratica Oliv. in the lower reaches of the Tarim River based on terrestrial forest inventory data within an area of 100 ha (100 plots with sizes of 100 m × 100 m and digitized tree data within 1000 ha (with 10 m × 10 m grid using a statistical model of biomass estimation against tree height (TH and diameter at breast height (DBH data. Our results show that total estimated biomass and carbon storage of P. euphratica within the investigated area ranged from 3.00 to 4317.00 kg/ha and from 1.82 to 2158.73 kg/ha, respectively. There was a significant negative relationship (p < 0.001 between biomass productivity of these forests and distance to the river and groundwater level. Large proportions of biomass (64% of total biomass are estimated within 200 m distance to the river where groundwater is relatively favorable for vegetation growth and biomass production. However, our data demonstrated that total biomass showed a sharp decreasing trend with increasing distance to the river; above 800 m distance, less biomass and carbon storage were estimated. The total monetary value of the ecosystem service “carbon storage” provided by P. euphratica was estimated to be $6.8 × 104 USD within the investigated area, while the average monetary value was approximately $70 USD per ha, suggesting that the riparian forest ecosystem in the Tarim River Basin should be considered a relevant regional carbon sink. The findings of

  5. Sweet sorghum performance under irrigated conditions in northwest China : Biomass and its partitioning in inbred and hybrid cultivars at two nitrogen levels

    NARCIS (Netherlands)

    Fan, F.; Spiertz, J.H.J.; Han, L.P.; Liu, Z.X.; Xie, G.H.

    2013-01-01

    Effects of cultivar choice and nitrogen supply on biomass yield and dry matter partitioning of sweet sorghum [Sorghum bicolor (L.) Moench] were studied under irrigated conditions in the arid temperate climate of north-west China. Two hybrid cultivars, Zaoshu-1 (ZS 1) and Chuntian-2 (CT 2), and two

  6. Earth fissures in Qinglong Graben in Yuncheng Basin, China

    Indian Academy of Sciences (India)

    Jianwei Qiao

    2018-02-14

    Feb 14, 2018 ... Key Laboratory of Western China Mineral Resources and Geological Engineering, Xi'an 710 054, Shaanxi, China. *Corresponding .... first to appear in edge and then extended to the center. ..... Miao D Y, Li Y L, Lv S H, Tian J M, Wang Y R and Si ... Wang J M, Wang C M and Liu K 2001 Progress in ground.

  7. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    Science.gov (United States)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  8. Assessment of undiscovered continuous oil and gas resources in the Bohaiwan Basin Province, China, 2017

    Science.gov (United States)

    Schenk, Christopher J.; Tennyson, Marilyn E.; Mercier, Tracey J.; Woodall, Cheryl A.; Finn, Thomas M.; Brownfield, Michael E.; Le, Phuong A.; Klett, Timothy R.; Gaswirth, Stephanie B.; Marra, Kristen R.; Leathers-Miller, Heidi M.; Potter, Christopher J.

    2018-02-07

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 2.0 billion barrels of oil and 20.3 trillion cubic feet of gas in the Bohaiwan Basin Province, China.

  9. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change

    NARCIS (Netherlands)

    Bosboom, R.E.; Dupont-Nivet, G.; Houben, A.J.P.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica, M.; Zachariasse, W.J.; Guo, ZJ.; Li, CX.; Krijgsman, W.

    2011-01-01

    The Paleogene sediments of the southwest Tarim Basin along the West Kunlun Shan in western China include the remnants of the easternmost extent of a large epicontinental sea. This shallow sea once extended across the Eurasian continent before it retreated westward and eventually separated as the

  10. Linking Tarim Basin sea retreat (west China) and Asian aridification in the late Eocene

    NARCIS (Netherlands)

    Bosboom, R.; Dupont-Nivet, G.; Grothe, A.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica, M.; Huang, W.; Yang, W.; Guo, Z.; Krijgsman, W.

    2014-01-01

    The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as

  11. Land Use Changes of an Aeolian-Loessial Soil Area in Northwest China: Implications for Ecological Restoration

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Fu; LIU Yan-Sui; WANG Jing; YAN Jian-Ping; GUO Xu-Dong

    2009-01-01

    China has experienced dramatic land use changes over recent decades,with marked environmental and socio-economic consequences.Hcngshan County,located in the aeolian-loessial area of Northwest China,was investigated to illustrate land use changes and their implications for environmental and long-term rural economic development.The farmland in Hengshan County significantly decreased during 1990-2003,whereas forest land and grassland increased.The conversion rates of farmland,orchard land,forest land and construction land varied markedly among different periods:1990-1995,1995-2000 and 2000-2003.Conversion of orchard land,grassland and construction land was dominant in 1990-1995,whereas the conversion of farmland to forest land mainly occurred in 2000-2003.The results suggested a profound transition in institutional policy and political economy of land management,including implementation of integrated soil erosion control projects,adoption of a market-oriented economy and the 'Grain-for-Green' policy,during this period in China.To achieve long-term sustainable land use in Hengshan County,efforts should aim at increasing off-farm income of rural families as well as establishing land-economizing mechanisms to promote land productivity,in addition to conservation measures.

  12. [Health assessment of river ecosystem in Haihe River Basin, China].

    Science.gov (United States)

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  13. Allele frequencies of 18 autosomal STR loci in the Uyghur population living in Kashgar Prefecture, Northwest China.

    Science.gov (United States)

    Zhang, Jian; Li, Zhenghui; Mo, Xiaoting; Ma, Wenhua; Zhang, Hantao; Lin, Ziqing; Ye, Jian

    2018-03-10

    There is currently no large population data-based data set in Kashgar Prefecture Uyghur. The allele frequencies of 18 autosomal short tandem repeat (STR) loci included in the DNATyper™ 19 kit were evaluated in 2600 Uyghur individuals living in Kashgar Prefecture, Northwest China. The values of combined power of discrimination (CPD) and combined probability of exclusion (CPE) of all 18 autosomal STR loci were 0.99999999999999999998235 and 0.99999998670, respectively. Phylogenetic analyses revealed that the Uyghur population has a closer relationship with the Xinjiang-Kazakh, Inner Mongolia-Mongolian, and other three Uyghur populations. In addition, our results are consistent with the hypothesis that Uyghur population is an admixture of Eastern Asian and European populations.

  14. Evaluation of the tourism climate in the Hexi Corridor of northwest China's Gansu Province during 1980-2012

    Science.gov (United States)

    Zhang, Fuxian; Zhang, Mingjun; Wang, Shengjie; Qiang, Fang; Che, Yanjun; Wang, Jie

    2017-08-01

    As a pivotal section of the Silk Road in northwest China, the Hexi Corridor is a popular tourist destination. In this study, the tourism climate conditions in this region were discussed using the Physiologically Equivalent Temperature (PET) and the Climate-Tourism/Transfer-information-Scheme (CTIS) from 1980 to 2012. Overall, cold or cool stress was prevalent in the area, and the optimal travel period was from May to September. With global warming, the annual numbers of cumulative days with relatively cold conditions decreased, and the annual numbers of cumulative days with comfortable and relatively hot conditions increased. Two typical stations, Wushaoling and Dunhuang, were compared and analysed for their tourism climate information according to the frequency of PET and CTIS conditions, respectively. In addition, regional variations in the tourism climate conditions based on geographic information systems (GIS) were investigated during the optimal travel period.

  15. Analysis and prediction of reference evapotranspiration with climate change in Xiangjiang River Basin, China

    Directory of Open Access Journals (Sweden)

    Xin-e Tao

    2015-10-01

    Full Text Available Reference evapotranspiration (ET0 is often used to estimate actual evapotranspiration in water balance studies. In this study, the present and future spatial distributions and temporal trends of ET0 in the Xiangjiang River Basin (XJRB in China were analyzed. ET0 during the period from 1961 to 2010 was calculated with historical meteorological data using the FAO Penman-Monteith (FAO P-M method, while ET0 during the period from 2011 to 2100 was downscaled from the Coupled Model Intercomparison Project Phase 5 (CMIP5 outputs under two emission scenarios, representative concentration pathway 4.5 and representative concentration pathway 8.5 (RCP45 and RCP85, using the statistical downscaling model (SDSM. The spatial distribution and temporal trend of ET0 were interpreted with the inverse distance weighted (IDW method and Mann-Kendall test method, respectively. Results show that: (1 the mean annual ET0 of the XJRB is 1 006.3 mm during the period from 1961 to 2010, and the lowest and highest values are found in the northeast and northwest parts due to the high latitude and spatial distribution of climatic factors, respectively; (2 the SDSM performs well in simulating the present ET0 and can be used to predict the future ET0 in the XJRB; and (3 CMIP5 predicts upward trends in annual ET0 under the RCP45 and RCP85 scenarios during the period from 2011 to 2100. Compared with the reference period (1961–1990, ET0 increases by 9.8%, 12.6%, and 15.6% under the RCP45 scenario and 10.2%, 19.1%, and 27.3% under the RCP85 scenario during the periods from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100, respectively. The predicted increasing ET0 under the RCP85 scenario is greater than that under the RCP45 scenario during the period from 2011 to 2100.

  16. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China.

    Science.gov (United States)

    Zhang, Li-Juan; Cai, Wan-Zhi; Luo, Jun-Yu; Zhang, Shuai; Wang, Chun-Yi; Lv, Li-Min; Zhu, Xiang-Zhen; Wang, Li; Cui, Jin-Jie

    2017-01-01

    Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.

  17. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Science.gov (United States)

    Liu, Xin; Wang, Sufen; Xue, Han; Singh, Vijay P

    2015-01-01

    Modelling crop evapotranspiration (ET) response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1) and summer maize (scenario 2) by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  18. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    Full Text Available Modelling crop evapotranspiration (ET response to different planting scenarios in an irrigation district plays a significant role in optimizing crop planting patterns, resolving agricultural water scarcity and facilitating the sustainable use of water resources. In this study, the SWAT model was improved by transforming the evapotranspiration module. Then, the improved model was applied in Qingyuan Irrigation District of northwest China as a case study. Land use, soil, meteorology, irrigation scheduling and crop coefficient were considered as input data, and the irrigation district was divided into subdivisions based on the DEM and local canal systems. On the basis of model calibration and verification, the improved model showed better simulation efficiency than did the original model. Therefore, the improved model was used to simulate the crop evapotranspiration response under different planting scenarios in the irrigation district. Results indicated that crop evapotranspiration decreased by 2.94% and 6.01% under the scenarios of reducing the planting proportion of spring wheat (scenario 1 and summer maize (scenario 2 by keeping the total cultivated area unchanged. However, the total net output values presented an opposite trend under different scenarios. The values decreased by 3.28% under scenario 1, while it increased by 7.79% under scenario 2, compared with the current situation. This study presents a novel method to estimate crop evapotranspiration response under different planting scenarios using the SWAT model, and makes recommendations for strategic agricultural water management planning for the rational utilization of water resources and development of local economy by studying the impact of planting scenario changes on crop evapotranspiration and output values in the irrigation district of northwest China.

  19. Mesozoic basins and associated palaeogeographic evolution in North China

    Directory of Open Access Journals (Sweden)

    Yong-Qing Liu

    2015-04-01

    Besides, during the Late Mesozoic, a huge terrestrial biota, mainly dinosaur fauna, dominated in North China. The Yanliao biota of the Middle–Late Jurassic and the Jehol biota of the Early Cretaceous are characterized by feathered dinosaurs, primitive birds, mammals, pterosaur, insects and plants (angiosperms. In northeastern Asia, this Late Mesozoic tectonic background , palaeogeoraphy and palaeoecology were shared by East China, Korean Peninsula, Japan and the Far East of Russia.

  20. Detecting runoff variation in Weihe River basin, China

    Science.gov (United States)

    Jingjing, F.; Qiang, H.; Shen, C.; Aijun, G.

    2015-05-01

    Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  1. Detecting runoff variation in Weihe River basin, China

    Directory of Open Access Journals (Sweden)

    F. Jingjing

    2015-05-01

    Full Text Available Dramatic changes in hydrological factors in the Weihe River basin are analysed. These changes have exacerbated ecological problems and caused severe water shortages for agriculture, industries and the human population in the region, but their drivers are uncertain. The Mann-Kendall test, accumulated departure analysis, sequential clustering and the sliding t-test methods were used to identify the causes of changes in precipitation and runoff in the Weihe basin. Change-points were identified in the precipitation and runoff records for all sub-catchments. For runoff, the change in trend was most pronounced during the 1990s, whereas changes in precipitation were more prominent earlier. The results indicate that human activities have had a greater impact than climate change on the hydrology of the Weihe basin. These findings have significant implications for the establishment of effective strategies to counter adverse effects of hydrological changes in the catchment.

  2. Adaptive Fusion of Information for Seeing into Ordos Basin, China: A China-Germany-US Joint Venture.

    Science.gov (United States)

    Yeh, T. C. J.; Yin, L.; Sauter, M.; Hu, R.; Ptak, T.; Hou, G. C.

    2014-12-01

    Adaptive fusion of information for seeing into geological basins is the theme of this joint venture. The objective of this venture is to initiate possible collaborations between scientists from China, Germany, and US to develop innovative technologies, which can be utilized to characterize geological and hydrological structures and processes as well as other natural resources in regional scale geological basins of hundreds of thousands of kilometers (i.e., the Ordos Basin, China). This adaptive fusion of information aims to assimilate active (manmade) and passive (natural) hydrologic and geophysical tomography surveys to enhance our ability of seeing into hydrogeological basins at the resolutions of our interests. The active hydrogeophysical tomography refers to recently developed hydraulic tomgoraphic surveys by Chinese and German scientists, as well as well-established geophysical tomography surveys (such as electrical resistivity tomography, cross-borehole radars, electrical magnetic surveys). These active hydrogeophysical tomgoraphic surveys have been proven to be useful high-resolution surveys for geological media of tens and hundreds of meters wide and deep. For basin-scale (i.e., tens and hundreds of kilometers) problems, their applicabilities are however rather limited. The passive hydrogeophysical tomography refers to unexplored technologies that exploit natural stimuli as energy sources for tomographic surveys, which include direct lightning strikes, groundwater level fluctuations due to earthquakes, river stage fluctuations, precipitation storms, barometric pressure variations, and long term climate changes. These natural stimuli are spatially varying, recurrent, and powerful, influencing geological media over great distances and depths (e.g., tens and hundreds of kilometers). Monitoring hydrological and geophysical responses of geological media to these stimuli at different locations is tantamount to collecting data of naturally occurring tomographic

  3. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    Science.gov (United States)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  4. Expansion of the South China Sea basin: Constraints from magnetic anomaly stripes, sea floor topography, satellite gravity and submarine geothermics

    Directory of Open Access Journals (Sweden)

    Xuezhong Yu

    2017-01-01

    Full Text Available The widely distributed E–W-trending magnetic anomaly stripes in the central basin and the N–E-trending magnetic anomaly stripes in the southwest sub-basin provide the most important evidence for Neogene expansion of the South China Sea. The expansion mechanism remains, however, controversial because of the lack of direct drilling data, non-systematic marine magnetic survey data, and irregular magnetic anomaly stripes with two obvious directions. For example, researchers have inferred different ages and episodes of expansion for the central basin and southwest sub-basin. Major controversy centers on the order of basinal expansion and the mechanism of expansion for the entire South China Sea basin. This study attempts to constrain these problems from a comprehensive analysis of the seafloor topography, magnetic anomaly stripes, regional aeromagnetic data, satellite gravity, and submarine geothermics. The mapped seafloor terrain shows that the central basin is a north-south rectangle that is relatively shallow with many seamounts, whereas the southwest sub-basin is wide in northeast, gradually narrows to the southwest, and is relatively deeper with fewer seamounts. Many magnetic anomaly stripes are present in the central basin with variable dimensions and directions that are dominantly EW-trending, followed by the NE-, NW- and NS-trending. Conversely such stripes are few in the southwest sub-basin and mainly NE-trending. Regional magnetic data suggest that the NW-trending Ailaoshan-Red River fault extends into the South China Sea, links with the central fault zone in the South China Sea, which extends further southward to Reed Tablemount. Satellite gravity data show that both the central basin and southwest sub-basin are composed of oceanic crust. The Changlong seamount is particularly visible in the southwest sub-basin and extends eastward to the Zhenbei seamount. Also a low gravity anomaly zone coincides with the central fault zone in the sub-basin

  5. Study on Variations in Climatic Variables and Their Influence on Runoff in the Manas River Basin, China

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-04-01

    Full Text Available Climate change in Northwest China could lead to the change of the hydrological cycle and water resources. This paper assessed the influence of climate change on runoff in the Manas River basin as follows. First, the temporal trends and abrupt change points of runoff, precipitation, and mean, lowest and highest temperature in yearly scale during the period of 1961–2015 were analyzed using the Mann-Kendall (MK test. Then the correlation between runoff and climatic variables was characterized in a monthly, seasonal and yearly scale using the partial correlation method. Furthermore, three global climate models (GCMs from Coupled Model Inter-comparison Project Phase 5 (CMIP5 were bias-corrected using Equidistant Cumulative Distribution Functions (EDCDF method to reveal the future climate change during the period from 2021 to 2060 compared with the baseline period of 1961–2000. The influence of climate change on runoff was studied by simulating the runoff with the GCMs using a modified TOPMODEL considering the future snowmelt during the period from 2021 to 2060. The results showed that the runoff, precipitation, and mean, lowest and highest temperature all presented an increasing trend in yearly scale during the period of 1961–2015, and their abrupt change points were at a similar time; the runoff series was more strongly related to temperature than to precipitation in the spring, autumn and yearly scales, and the opposite was true in winter. All GCMs projected precipitation and temperature, and the runoff simulated with these GCMs were predicted to increase in the period from 2021 to 2060 compared with the baseline period of 1961–2000. These findings provide valuable information for assessing the influence of climate change on water resources in the Manas River basin, and references for water management in such regions.

  6. Aerodynamic roughness length estimation from very high-resolution imaging LIDAR observations over the Heihe basin in China

    Directory of Open Access Journals (Sweden)

    J. Colin

    2010-12-01

    Full Text Available Roughness length of land surfaces is an essential variable for the parameterisation of momentum and heat exchanges. The growing interest in the estimation of the surface turbulent flux parameterisation from passive remote sensing leads to an increasing development of models, and the common use of simple semi-empirical formulations to estimate surface roughness. Over complex surface land cover, these approaches would benefit from the combined use of passive remote sensing and land surface structure measurements from Light Detection And Ranging (LIDAR techniques. Following early studies based on LIDAR profile data, this paper explores the use of imaging LIDAR measurements for the estimation of the aerodynamic roughness length over a heterogeneous landscape of the Heihe river basin, a typical inland river basin in the northwest of China. The point cloud obtained from multiple flight passes over an irrigated farmland area were used to separate the land surface topography and the vegetation canopy into a Digital Elevation Model (DEM and a Digital Surface Model (DSM respectively. These two models were then incorporated in two approaches: (i a strictly geometrical approach based on the calculation of the plan surface density and the frontal surface density to derive a geometrical surface roughness; (ii a more aerodynamic approach where both the DEM and DSM are introduced in a Computational Fluid Dynamics model (CFD. The inversion of the resulting 3-D wind field leads to a fine representation of the aerodynamic surface roughness. Examples of the use of these three approaches are presented for various wind directions together with a cross-comparison of results on heterogeneous land cover and complex roughness element structures.

  7. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China

    International Nuclear Information System (INIS)

    Fu, Xiugen; Wang, Jian; Tan, Fuwen; Feng, Xinglei; Wang, Dong; He, Jianglin

    2013-01-01

    Highlights: • Qiangtang Basin is the biggest residual petroleum-bearing basin in Tibet Plateau. • The Late Triassic Tumen Gela Formation is the most important gas source rock. • Seventy-one potential anticline structural traps have been found. • A favorable geothermal condition for gas hydrate formation. • A large number of mud volcanoes were discovered in the basin. - Abstract: The Qiangtang Basin is the biggest residual petroleum-bearing basin in the Qinghai–Tibet Plateau, and is also an area of continuous permafrost in southwest China with strong similarities to other known gas-hydrate-bearing regions. Permafrost thickness is typically 60–180 m; average surface temperature ranges from −0.2 to −4.0 °C, and the geothermal gradient is about 2.64 °C/100 m. In the basin, the Late Triassic Tumen Gela Formation is the most important gas source rock for gas, and there are 34.3 × 10 8 t of gas resources in the Tumen Gela Formation hydrocarbon system. Seventy-one potential anticline structural traps have been found nowadays covering an area of more than 30 km 2 for each individual one, five of them are connected with the gas source by faults. Recently, a large number of mud volcanoes were discovered in the central Qiangtang Basin, which could be indicative of the formation of potential gas hydrate. The North Qiangtang depression should be delineated as the main targets for the purpose of gas hydrate exploration

  8. Spatiotemporal patterns of precipitation extremes in the Poyang Lake basin, China: Changing properties and causes

    Science.gov (United States)

    Xiao, M.

    2016-12-01

    Under the background of climate change, extensive attentions have been paid on the increased extreme precipitation from the public and government. To analyze the influences of large-scale climate indices on the precipitation extremes, the spatiotemporal patterns of precipitation extremes in the Poyang Lake basin have been investigated using the Bayesian hierarchical method. The seasonal maximum one-day precipitation amount (Rx1day) was used to represent the seasonal precipitation extremes. Results indicated that spring Rx1day was affected by El Niño/Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), a positive ENSO event in the same year tends to decrease the spring Rx1day in the northern part of Poyang Lake Basin while increase the spring Rx1day in southeastern Poyang Lake Basin, a positive NAO events in the same year tends to increase the spring Rx1day in the southwest and northwest part of Poyang Lake basin while decrease the spring Rx1day in the eastern part of Poyang Lake basin; summer Rx1day was affected by Indian Ocean Dipole (IOD), positive IOD events in the same year tend to increase the summer Rx1day of northern Poyang Lake basin while decrease summer Rx1day of southern Poyang Lake basin; autumn Rx1day was affected by ENSO, positive ENSO events in the same year tend to mainly increase the autumn Rx1day in the west part of Poyang Lake basin; winter Rx1day was mainly affected by the NAO, positive NAO events in the same year tend to mainly increase the winter Rx1day of southern Poyang Lake basin, while positive NAO events in the previous year tend to mainly increase the winter Rx1day in the central and northeast part of Poyang Lake basin. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Furthermore, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the seasonal Rx1day, and

  9. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    Science.gov (United States)

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  10. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  11. Current strain accumulation in the hinterland of the northwest Himalaya constrained by landscape analyses, basin-wide denudation rates, and low temperature thermochronology

    Science.gov (United States)

    Morell, Kristin D.; Sandiford, Mike; Kohn, Barry; Codilean, Alexandru; Fülöp, Réka-H.; Ahmad, Talat

    2017-11-01

    Rupture associated with the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake highlighted our incomplete understanding of the structural architecture and seismic cycle processes that lead to Himalayan mountain building in Central Nepal. In this paper we investigate the style and kinematics of active mountain building in the Himalayan hinterland of Northwest India, approximately 400 km to the west of the hypocenter of the Nepal earthquake, via a combination of landscape metrics and long- (Ma) and short-term (ka) erosion rate estimates (from low temperature thermochronometry and basin-wide denudation rate estimates from 10Be concentrations). We focus our analysis on the area straddling the PT2, the physiographic transition between the Lesser and High Himalaya that has yielded important insights into the nature of hinterland deformation across much of the Himalaya. Our results from Northwest India reveal a distinctive PT2 that separates a Lesser Himalaya region with moderate relief (∼1000 m) and relatively slow erosion (400 km distance between them, similar spatiotemporal patterns of erosion and deformation observed in Northwest India and Central Nepal suggest both regions experience similar styles of active strain accumulation and both are susceptible to large seismic events.

  12. Analysis of the evolution of precipitation in the Haihe river basin of China under changing environment

    Science.gov (United States)

    Ding, Xiangyi; Liu, Jiahong; Gong, Jiaguo

    2018-02-01

    Precipitation is one of the important factors of water cycle and main sources of regional water resources. It is of great significance to analyze the evolution of precipitation under changing environment for identifying the evolution law of water resources, thus can provide a scientific reference for the sustainable utilization of water resources and the formulation of related policies and measures. Generally, analysis of the evolution of precipitation consists of three levels: analysis the observed precipitation change based on measured data, explore the possible factors responsible for the precipitation change, and estimate the change trend of precipitation under changing environment. As the political and cultural centre of China, the climatic conditions in the Haihe river basin have greatly changed in recent decades. This study analyses the evolution of precipitation in the basin under changing environment based on observed meteorological data, GCMs and statistical methods. Firstly, based on the observed precipitation data during 1961-2000 at 26 meteorological stations in the basin, the actual precipitation change in the basin is analyzed. Secondly, the observed precipitation change in the basin is attributed using the fingerprint-based attribution method, and the causes of the observed precipitation change is identified. Finally, the change trend of precipitation in the basin under climate change in the future is predicted based on GCMs and a statistical downscaling model. The results indicate that: 1) during 1961-2000, the precipitation in the basin showed a decreasing trend, and the possible mutation time was 1965; 2) natural variability may be the factor responsible for the observed precipitation change in the basin; 3) under climate change in the future, precipitation in the basin will slightly increase by 4.8% comparing with the average, and the extremes will not vary significantly.

  13. Dust deposition and ambient PM10 concentration in northwest China: Spatial and temporal variability

    Science.gov (United States)

    Aeolian dust transport and deposition are important geophysical processes which influence global bio-geochemical cycles. Currently, reliable continental deposition data are scarce in central Asia. Located in the eastern part of central Asia, Xinjiang Province of northwestern China has long played a ...

  14. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China

    Science.gov (United States)

    Zhang, Qiang; Zhang, Zongjiao; Shi, Peijun; Singh, Vijay P.; Gu, Xihui

    2018-01-01

    The Yellow River is the second largest river in China and is the important source for water supply in the northwestern and northern China. It is often regarded as the mother river of China. Owing to climatic change and intensifying human activities, such as increasing withdrawal of water for meeting growing agricultural irrigation needs since 1986, the flow of Yellow River has decreased, with serious impacts on the ecological environment. Using multiple hydrological indicators and Flow Duration Curve (DFC)-based ecodeficit and ecosurplus, this study investigates the impact of hydrological alterations, such as the impact of water reservoirs or dams, on downstream ecological instream flow. Results indicate that: (1) due to the impoundment and hydrological regulations of water reservoirs, occurrence rates and magnitudes of high flow regimes have decreased and the decrease is also found in the magnitudes of low flow events. These changes tend to be more evident from the upper to the lower Yellow River basin; (2) human activities tend to enhance the instream flow variability, particularly after the 1980s;(3) the ecological environment in different parts of the Yellow River basin is under different degrees of ecological risk. In general, lower to higher ecological risk can be detected due to hydrological alterations from the upper to the lower Yellow River basin. This shows that conservation of ecological environment and river health is facing a serious challenge in the lower Yellow River basin; (4) ecological instream flow indices, such as ecodeficit and ecosurplus, and IHA32 hydrological indicators are in strong relationships, suggesting that ecodeficit and ecosurplus can be regarded as appropriate ecological indicators for developing measures for mitigating the adverse impact of human activities on the conservation of ecological environment in the Yellow River basin.

  15. A decade of change in breastfeeding in China's far north-west

    Directory of Open Access Journals (Sweden)

    Xiao Cuiqin

    2006-11-01

    Full Text Available Abstract Background There have been considerable changes in breastfeeding practices in China over the past forty years. However China is a very large country, and breastfeeding rates in different parts of China vary considerably. The objective of this paper is to identify and compare breastfeeding types and rates between 1994–1996 and 2003–2004 in Shihezi, Xinjiang Uygur Autonomous Region, PR China. Methods In 1994–1996, a study of breastfeeding (n = 2197 was undertaken in Shihezi, Xinjiang, PR China. A decade later in 2003–2004, a longitudinal study (n = 545 of infant feeding practices was undertaken in the same area. Results The 'any breastfeeding' rates at 1, 4 and 6 months were 94%, 82% and 78% respectively in the early 1990s. A decade later, breastfeeding at 1 month was lower, but rates at 4 and 6 months remained the same. In 2004 the 'full breastfeeding' rate at one month was significantly higher (57% than a decade earlier (38%, but after 3 months there was a rapid decline. This reflected a shift in the way complementary foods are introduced: the initial introduction was later, but by a higher proportion of mothers. Conclusion The rate of breastfeeding at one month is significantly lower in 2003–2004 when compared to 1994–1996. The 'full breastfeeding' rates were initially higher, but after 3 months were then lower. The Chinese national breastfeeding targets were not reached in either period of the study. These studies show the need to further promote full or exclusive breastfeeding and further longitudinal studies are necessary to provide the detailed knowledge about risk factors required for health promotion programs.

  16. StreamNet; Northwest Aquatic Resource Information Network - Status of Salmon and Steelhead in the Columbia River Basin, 1995 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Duane A.; Beamesderfer, Raymond C. [Oregon Dept. of Fish and Wildlife, Enterprise, OR (United States); Woodard, Bob [Washington Dept. of Fish and Wildlife, Olympia, WA (United States)

    1996-04-01

    Information on fish populations, fisheries, and fish habitat is crucial to the success of ongoing program to protect, recover, enhance, and manage fish resources in the Columbia River Basin. However, pertinent data are often difficult to locate because it is scattered among many agencies and is often unpublished. The goal of this annual report is to bring many diverse data types and sources into a single comprehensive report on the status of anadromous fish runs in the Columbia River Basin and the environmental conditions that may affect that status. Brief summaries are provided to identify the type and scope of available information. This synopsis is intended to complement other more detailed reports to which readers are referred for comprehensive treatment of specific subjects. This first report focuses mainly on anadromous salmon and steelhead (primarily through 1994) but the authors intend to expand the scope of future issues to include resident species. This is the first of what the authors intend to be an annual report. They welcome constructive suggestions for improvements. This report is a product of the StreamNet (formerly Coordinated Information System and Northwest Environmental Data Base) project which is a part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The project is called for in the Fish and Wildlife Program of the Northwest Power Planning Council. The project`s objective is to promote exchange and dissemination of information in a standardized electronic format throughout the basin. This project is administered by the Pacific States Marine Fisheries Commission with active participation by tribal, state, and federal fish and wildlife agencies.

  17. Joint inversion of high resolution S-wave velocity structure underneath North China Basin

    Science.gov (United States)

    Yang, C.; Li, G.; Niu, F.

    2017-12-01

    North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.

  18. Geothermal regime of Tarim basin, NW China: insights from borehole temperature logging

    Science.gov (United States)

    Liu, S.; Lei, X.

    2013-12-01

    Geothermal regime of sedimentary basin is vital for understanding basin (de)formation process, hydrocarbon generation status and assessing the resource potential. Located at the Precambrian craton block, the Tarim basin is the largest intermountain basin in China, which is also the ongoing target of oil and gas exploration. Previous knowledge of thermal regime of this basin is from limited oil exploration borehole testing temperature, the inherent deficiency of data of this type makes accurate understanding of its thermal regime impossible. Here we reported our latest steady temperature logging results in this basin and analyze its thermal regime as well. In this study, 10 temperature loggings are conducted in the northern Tarim basin where the major oil and gas fields are discovered. All the boreholes for temperature logging are non-production wells and are shut in at least more than 2~3 years, ensuring the temperature equilibrium after drilling. The derived geothermal gradient varies from 20.2 to 26.1 degree/km, with a mean of 22.0 degree/km. However, some previous reported gradients in this area are obviously lower than our results; for example, the previous gradient of THN2 well is 13.2 degree/km but 23.2 degree/km in this study, and not enough equilibrium time in previous logging accounts for this discrepancy. More important, it is found that high gradients usually occur in the gas field and the gradients of the gas fields are larger than those in other oil fields, indicating higher thermal regime in gas field. The cause of this phenomenon is unclear, and the upward migration of hot fluid along fault conduit is speculated as the possible mechanism for this high geothermal anomaly in the oil and gas fields. Combined with measured thermal conductivity data, 10 new heat flow values are also achieved, and the heat flow of the Tarim basin is between 38mW/m2 and 52mW/m2, with a mean of 43 mW/m2. This relatively low heat flow is coincident with that of typical

  19. Hydrological long-term dry and wet periods in the Xijiang River basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2013-01-01

    Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

    The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

    A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities

  20. A Picea crassifolia Tree-Ring Width-Based Temperature Reconstruction for the Mt. Dongda Region, Northwest China, and Its Relationship to Large-Scale Climate Forcing.

    Directory of Open Access Journals (Sweden)

    Yu Liu

    Full Text Available The historical May-October mean temperature since 1831 was reconstructed based on tree-ring width of Qinghai spruce (Picea crassifolia Kom. collected on Mt. Dongda, North of the Hexi Corridor in Northwest China. The regression model explained 46.6% of the variance of the instrumentally observed temperature. The cold periods in the reconstruction were 1831-1889, 1894-1901, 1908-1934 and 1950-1952, and the warm periods were 1890-1893, 1902-1907, 1935-1949 and 1953-2011. During the instrumental period (1951-2011, an obvious warming trend appeared in the last twenty years. The reconstruction displayed similar patterns to a temperature reconstruction from the east-central Tibetan Plateau at the inter-decadal timescale, indicating that the temperature reconstruction in this study was a reliable proxy for Northwest China. It was also found that the reconstruction series had good consistency with the Northern Hemisphere temperature at a decadal timescale. Multi-taper method spectral analysis detected some low- and high-frequency cycles (2.3-2.4-year, 2.8-year, 3.4-3.6-year, 5.0-year, 9.9-year and 27.0-year. Combining these cycles, the relationship of the low-frequency change with the Pacific Decadal Oscillation (PDO, North Atlantic Oscillation (NAO and Southern Oscillation (SO suggested that the reconstructed temperature variations may be related to large-scale atmospheric-oceanic variations. Major volcanic eruptions were partly reflected in the reconstructed temperatures after high-pass filtering; these events promoted anomalous cooling in this region. The results of this study not only provide new information for assessing the long-term temperature changes in the Hexi Corridor of Northwest China, but also further demonstrate the effects of large-scale atmospheric-oceanic circulation on climate change in Northwest China.

  1. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria.

    Science.gov (United States)

    Toubal, Abderrezak Kamel; Achite, Mohammed; Ouillon, Sylvain; Dehni, Abdelatif

    2018-03-12

    Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km 2 ) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha -1  year -1 , maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 sub-basins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert dam at the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds.

  2. Small rural communities in the inland Northwest: an assessment of small communities in the interior and upper Columbia River basins.

    Science.gov (United States)

    Charles C. Harris; William McLaughlin; Greg Brown; Dennis R. Becker

    2000-01-01

    An assessment of small rural communities in the interior and upper Columbia River basin was conducted for the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The characteristics and conditions of the rural communities in this region, which are complex and constantly changing, were examined. The research also assessed the resilience of the region’s...

  3. Effects of dripper discharge and irrigation frequency on growth and yield of maize in loess plateau of northwest china

    International Nuclear Information System (INIS)

    Xiukang, W.; Zhanbin, L.; Yingying, X.

    2014-01-01

    A field experiment was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, in northwestern China from 2010 to 2011 with four treatments and six replicates in a randomized complete block design to determine appropriate dripper discharge and irrigation frequency for maize (Zea mays, L.) irrigated by drip irrigated system. Dripper discharge was applied to maize 1L/h of dripper discharge, 2 days irrigation frequency and 100% of evaporation from a class a pan (T1), 2, 3 and 4 L/h corresponding to 4, 6 and 8 days irrigation frequency, and deficit irrigation water levels was 90%, 80% and 70% of evaporation (T2, T3 and T4), respectively. The results indicated that longest root, root activity, plant height, leaf area, biomass and grain yields values were highest in T1 in both years. The highest grain yield was obtained of 8.78 and 8.84 t ha-1 under T1 in both years, and the minimum yield was obtained with 8.15 and 7.78 t ha-1 under T4 in 2010 and 2011, respectively. The maximum irrigation water use efficiency (IWUE) was 3.247 and 3.283 kg m-3 in both years under T4. Despite the reduction of growth and grain yield in T3, the dripper discharge was 3L/h, 6 days irrigation frequency and 80% of evaporation was still high and acceptable for maize production and irrigation water use efficiency in Loess Plateau of Northwest China. (author)

  4. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea.

    Science.gov (United States)

    Niu, Mingyang; Fan, Xibei; Zhuang, Guangchao; Liang, Qianyong; Wang, Fengping

    2017-09-01

    Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Validation of a Process-Based Agro-Ecosystem Model (Agro-IBIS for Maize in Xinjiang, Northwest China

    Directory of Open Access Journals (Sweden)

    Tureniguli Amuti

    2018-03-01

    Full Text Available Agricultural oasis expansion and intensive management practices have occurred in arid and semiarid regions of China during the last few decades. Accordingly, regional carbon and water budgets have been profoundly impacted by agroecosystems in these regions. Therefore, study on the methods used to accurately estimate energy, water, and carbon exchanges is becoming increasingly important. Process-based models can represent the complex processes between land and atmosphere among agricultural ecosystems. However, before the models can be applied they must be validated under different environmental and climatic conditions. In this study, a process-based agricultural ecosystem model (Agro-IBIS was validated for maize crops using 3 years of soil and biometric measurements at Wulanwusu agrometeorological site (WAS located in the Shihezi oasis in Xinjiang, northwest China. The model satisfactorily represented leaf area index (LAI during the growing season, simulating its peak values within the magnitude of 0–10%. The total biomass carbon was overestimated by 15%, 8%, and 16% in 2004, 2005, and 2006, respectively. The model satisfactorily simulated the soil temperature (0–10 cm and volumetric water content (VWC (0–25 cm of farmland during the growing season. However, it overestimated soil temperature approximately by 4 °C and VWC by 15–30% during the winter, coinciding with the period of no vegetation cover in Xinjiang. Overall, the results indicate that the model could represent crop growth, and seems to be applicable in multiple sites in arid oases agroecosystems of Xinjiang. Future application of the model will impose more comprehensive validation using eddy covariance flux data, and consider including dynamics of crop residue and improving characterization of the final stage of leaf development.

  6. Oasis Irrigation-Induced Hydro-Climatic Effects: A Case Study in the Hyper-Arid Region of Northwest China

    Directory of Open Access Journals (Sweden)

    Nan Shan

    2018-04-01

    Full Text Available The response of potential evapotranspiration (ET0 to widespread irrigation is important to fully understand future regional climate changes and to infer adaptive management of agricultural water resources. The quantitative impact of irrigation on ET0 from 1960 to 2013 was evaluated using historical time series data of daily meteorological observations in the hyper-arid region of northwest China. The decreasing trends in ET0 were accelerated for meteorological stations in regions with oasis agriculture, especially in the summer and during the growing season. Irrigation led to a cooling effect on temperature, increased relative humidity and precipitation. All of these changes contributed to a larger decrease of ET0 trend. The findings of this study advance our insight into the effects of irrigation on dynamics in ET0 and meteorological factors. Further investigations to understand how ET0 responds to climate change and agricultural irrigation could provide guidance for determining effective measures of water resources for adapting to global change.

  7. [Soil sandy desertification and salinization and their interrelationships in Yanghuang irrigated area of Hongsipu, Ningxia of northwest China].

    Science.gov (United States)

    Yang, Xin-guo; Song, Nai-ping

    2011-09-01

    By the methods of controlled and typical sampling, this paper analyzed the texture, salinization characteristics, cation exchange capacity (CEC), and their correlations in the 0-40 cm soil profiles of corn land, medlar land, and non-utilized land in Yanghuang irrigated area of Hongsipu, Northwest China. Under controlled sampling, the salt content in the soil profiles was 0.69-1.30 g x kg(-1) (except in non-utilized land where the 0-10 cm soil salt content was up to 1.74 g x kg(-1)), with no obvious salinization. The sodium adsorption ratio and exchangeable sodium percentage in the 20-40 cm soil layer of medlar land were 12.18 and 14.1%, respectively, and the total content of clay and silt in the 0-40 cm soil profile of medlar land was up to 37.3% whereas that in the 0-20 cm soil layer of corn land was only 13.5%. In the 20-40 cm soil layer of corn land, the indices of sandy desertification and salinization had significant correlations under controlled sampling but no correlations under typical sampling, while the CEC and the sandy desertification and salinization indices had significant correlations under typical sampling. In different land use types in the study area, soil sandy desertification and salinization had complicated interrelationships, and CEC could be used as the indicator for the changes in soil environmental quality.

  8. Land desertification monitoring and assessment in Yulin of Northwest China using remote sensing and geographic information systems (GIS).

    Science.gov (United States)

    Zhang, Yuanzhi; Chen, Zhengyi; Zhu, Boqin; Luo, Xiuyue; Guan, Yanning; Guo, Shan; Nie, Yueping

    2008-12-01

    The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.

  9. LONG-TERM REMOTE MONITORING OF THREE TYPICAL LAKE AREA VARIATIONS IN THE NORTHWEST CHINA OVER THE PAST 40 YEARS

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2018-04-01

    Full Text Available water resources management and sustainable development strategy, but also provide reference for assessing the impact of climate change and human activities. This paper selects three inland lakes in Northwest China, using Landsat MSS/TM/ETM+/OLI data from 1970 to 2015, Normalized Difference Water Index (NDWI and Modified Normalized Difference Water Index (MNDWI were used to extract lake area and analysed the dynamic trends. Meteorological station rainfall, evaporation and other meteorological data of the lakes were used to analyse reasons for the area change. The results showed that area of Hongjiannao Lake in the past 40 a was reduced, the groundwater impoundment and underground coal mining are the main cause of area reduction; the area of Bosten Lake in recent 40 a showed a decreasing trend after the first increase, the area was mainly affected by the surface runoff and snowmelt; the area of Qinghai Lake in the past 40 a shows a trend of decreasing first and then increasing, the change of its area is mainly affected by regional precipitation and the inflow.

  10. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China

    International Nuclear Information System (INIS)

    Wu Xiuchen; Liu Hongyan; Wang Yufu; Deng Minghua

    2013-01-01

    Based on radial tree growth measurements in nine plots of area 625 m 2 (369 trees in total) and climate data, we explored the possibly changing effects of climate on regional tree growth in the temperate continental semi-arid mountain forests in the Tianshan Mountains in northwest China during 1933–2005. Tree growth in our study region is generally limited by the soil water content of pre- and early growing season (February–July). Remarkably, moving correlation functions identified a clear temporal change in the relationship between tree growth and mean April temperature. Tree growth showed a significant (p < 0.05) and negative relationship to mean April temperature since approximately the beginning of the 1970s, which indicated that the semi-arid mountain forests are suffering a prolonged growth limitation in recent years accompanying spring warming. This prolonged limitation of tree growth was attributed to the effects of soil water limitation in early spring (March–April) caused by the rapid spring warming. Warming-induced prolonged drought stress contributes, to a large part, to the marked reduction of regional basal area increment (BAI) in recent years and a much slower growth rate in young trees. Our results highlight that the increasing water limitation induced by spring warming on tree growth most likely aggravated the marked reduction in tree growth. This work provides a better understanding of the effects of spring warming on tree growth in temperate continental semi-arid forests. (letter)

  11. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China

    Science.gov (United States)

    Yang, Zhi; Zhou, Yangxiao; Wenninger, Jochen; Uhlenbrook, Stefan; Wang, Xusheng; Wan, Li

    2017-08-01

    The interactions between groundwater and surface water have been significantly affected by human activities in the semi-arid Hailiutu catchment, northwest China. Several methods were used to investigate the spatial and temporal interactions between groundwater and surface water. Isotopic and chemical analyses of water samples determined that groundwater discharges to the Hailiutu River, and mass balance equations were employed to estimate groundwater seepage rates along the river using chemical profiles. The hydrograph separation method was used to estimate temporal variations of groundwater discharges to the river. A numerical groundwater model was constructed to simulate groundwater discharges along the river and to analyze effects of water use in the catchment. The simulated seepage rates along the river compare reasonably well with the seepage estimates derived from a chemical profile in 2012. The impacts of human activities (river-water diversion and groundwater abstraction) on the river discharge were analyzed by calculating the differences between the simulated natural groundwater discharge and the measured river discharge. Water use associated with the Hailiutu River increased from 1986 to 1991, reached its highest level from 1992 to 2000, and decreased from 2001 onwards. The reduction of river discharge might have negative impacts on the riparian ecosystem and the water availability for downstream users. The interactions between groundwater and surface water as well as the consequences of human activities should be taken into account when implementing sustainable water resources management in the Hailiutu catchment.

  12. Long-Term Remote Monitoring of Three Typical Lake Area Variations in the Northwest China Over the Past 40 Years

    Science.gov (United States)

    Liu, Y.; Lu, Y.; Li, Y.; Yue, H.

    2018-04-01

    water resources management and sustainable development strategy, but also provide reference for assessing the impact of climate change and human activities. This paper selects three inland lakes in Northwest China, using Landsat MSS/TM/ETM+/OLI data from 1970 to 2015, Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI) were used to extract lake area and analysed the dynamic trends. Meteorological station rainfall, evaporation and other meteorological data of the lakes were used to analyse reasons for the area change. The results showed that area of Hongjiannao Lake in the past 40 a was reduced, the groundwater impoundment and underground coal mining are the main cause of area reduction; the area of Bosten Lake in recent 40 a showed a decreasing trend after the first increase, the area was mainly affected by the surface runoff and snowmelt; the area of Qinghai Lake in the past 40 a shows a trend of decreasing first and then increasing, the change of its area is mainly affected by regional precipitation and the inflow.

  13. An Integrative Approach to Understand the Climatic-Hydrological Process: A Case Study of Yarkand River, Northwest China

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Taking the Yarkand River as an example, this paper conducted an integrative approach combining the Durbin-Watson statistic test (DWST, multiple linear regression (MLR, wavelet analysis (WA, coefficient of determination (CD, and Akaike information criterion (AIC to analyze the climatic-hydrological process of inland river, Northwest China from a multitime scale perspective. The main findings are as follows. (1 The hydrologic and climatic variables, that is, annual runoff (AR, annual average temperature, (AAT and annual precipitation (AP, are stochastic and, no significant autocorrelation. (2 The variation patterns of runoff, temperature, and precipitation were scale dependent in time. AR, AAT, and AP basically present linear trends at 16-year and 32-year scales, but they show nonlinear fluctuations at 2-year and 4-year scales. (3 The relationship between AR with AAT and AP was simulated by the multiple linear regression equation (MLRE based on wavelet analysis at each time scale. But the simulated effect at a larger time scale is better than that at a smaller time scale.

  14. Mapping of wind energy potential over the Gobi Desert in Northwest China based on multiple sources of data

    Science.gov (United States)

    Li, Li; Wang, Xinyuan; Luo, Lei; Zhao, Yanchuang; Zong, Xin; Bachagha, Nabil

    2018-06-01

    In recent years, wind energy has been a fastgrowing alternative source of electrical power due to its sustainability. In this paper, the wind energy potential over the Gobi Desert in Northwest China is assessed at the patch scale using geographic information systems (GIS). Data on land cover, topography, and administrative boundaries and 11 years (2000‒2010) of wind speed measurements were collected and used to map and estimate the region's wind energy potential. Based on the results, it was found that continuous regions of geographical potential (GeoP) are located in the middle of the research area (RA), with scattered areas of similar GeoP found in other regions. The results also show that the technical potential (TecP) levels are about 1.72‒2.67 times (2.20 times on average) higher than the actual levels. It was found that the GeoP patches can be divided into four classes: unsuitable regions, suitable regions, more suitable regions, and the most suitable regions. The GeoP estimation shows that 0.41 billion kW of wind energy are potentially available in the RA. The suitable regions account for 25.49%, the more suitable regions 24.45%, and the most suitable regions for more than half of the RA. It is also shown that Xinjiang and Gansu are more suitable for wind power development than Ningxia.

  15. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    Science.gov (United States)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  16. Sources identification and pollution evaluation of heavy metals in the surface sediments of Bortala River, Northwest China.

    Science.gov (United States)

    Zhang, Zhaoyong; Juying, Li; Mamat, Zulpiya; QingFu, Ye

    2016-04-01

    The current study focused on the Bortala River - a typical inland river located in an oasis of arid area in northwestern China. The sediment and soil samples were collected from the river and drainage basin. Results showed that: (1) the particle size of the sand fraction of the sediments was 78-697 µm, accounting for 78.82% of the total samples; the average concentrations of eight heavy metals fell within the concentration ranges recommended by the Secondary National Standard of China, while the maximum concentrations of Pb, Cd, and Hg exceeded these standards; (2) results from multivariate statistical analysis indicated that Cu, Ni, As, and Zn originated primarily from natural geological background, while Cd, Pb, Hg and Cr in the sediments originated from human activities; (3) results of the enrichment factor analysis and the geo-accumulation index evaluation showed that Cd, Hg, and Pb were present in the surface sediments of the river at low or partial serious pollution levels, while Zn, Cr, As, Ni, and Cu existed at zero or low pollution levels; (4) calculation of the potential ecological hazards index showed that among the eight tested heavy metals, Cd, Pb, Hg, and Cr were the main potential ecological risk factors, with relative contributions of 25.43%, 22.23%, 21.16%, and 14.87%, respectively; (5) the spatial distribution of the enrichment factors (EF(S)), the Geo-accumulation index (I(geo)), and the potential ecological risk coefficient (E(r)(i)) for eight heavy metals showed that there was a greater accumulation of heavy metals Pb, Cd, and Hg in the sediments of the central and eastern parts of the river. Results of this research can be a reference for the heavy metals pollution prevention, the harmony development of the ecology protection and the economy development of the oases of inland river basin of arid regions of China, Central Asia and also other parts of the world. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Genetic polymorphisms of pharmacogenomic VIP variants in the Kyrgyz population from northwest China.

    Science.gov (United States)

    Yunus, Zulfiya; Liu, Lijun; Wang, Hong; Zhang, Le; Li, Xiaolan; Geng, Tingting; Kang, Longli; Jin, Tianbo; Chen, Chao

    2013-10-15

    Pharmacogenomic variant information is well known for major human populations; however, this information is less commonly studied in minorities. In the present study, we genotyped 85 very important pharmacogenetic (VIP) variants (selected from the PharmGKB database) in the Kyrgyz population and compared our data with other four major human populations including Han Chinese in Beijing, China (CHB), the Japanese in Tokyo, Japan (JPT), a northern and western Europe population (CEU), and the Yoruba in Ibadan, Nigeria (YRI). There were 13, 12 and 16 of the selected VIP variant genotype frequencies in the Kyrgyz which differed from those of the CHB, JPT and CEU, respectively (p<0.005). In the YRI, there were 32 different variants, compared to the Kyrgyz (p<0.005). Genotype frequencies of ADH1B, AHR, CYP3A5, PTGS2, VDR, and VKORC1 in the Kyrgyz differed widely from those in the four populations. Haplotype analyses also showed differences among the Kyrgyz and the other four populations. Our results complement the information provided by the database of pharmacogenomics on Kyrgyz. We provide a theoretical basis for safer drug administration and individualized treatment plans for the Kyrgyz. We also provide a template for the study of pharmacogenomics in various ethnic minority groups in China. © 2013 Elsevier B.V. All rights reserved.

  18. Patterns of Livestock Predation by Carnivores: Human-Wildlife Conflict in Northwest Yunnan, China

    Science.gov (United States)

    Li, Xueyou; Buzzard, Paul; Chen, Yongchun; Jiang, Xuelong

    2013-12-01

    Alleviating human-carnivore conflict is central to large carnivore conservation and is often of economic importance, where people coexist with carnivores. In this article, we report on the patterns of predation and economic losses from wild carnivores preying on livestock in three villages of northern Baima Xueshan Nature Reserve, northwest Yunnan during a 2-year period between January 2010 and December 2011. We analyzed claims from 149 households that 258 head of livestock were predated. Wolves ( Canis lupus) were responsible for 79.1 % of livestock predation; Asiatic black bears ( Selenarctos thibetanus) and dholes ( Cuon alpinus) were the other predators responsible. Predation frequency varied between livestock species. The majority of livestock killed were yak-cattle hybrids or dzo (40.3 %). Wolves killed fewer cattle than expected, and more donkeys and horses than expected. Wolves and bears killed more adult female and fewer adult male livestock than expected. Intensified predation in wet season coincided with livestock being left to graze unattended in alpine meadows far away from villages. On average, carnivore attacks claimed 2.1 % of range stock annually. This predation represented an economic loss of 17 % (SD = 14 %) of the annual household income. Despite this loss and a perceived increase in carnivore conflict, a majority of the herders (66 %) still supported the reserve. This support is primarily due to the benefits from the collection of nontimber resources such as mushrooms and medicinal plants. Our study also suggested that improvement of husbandry techniques and facilities will reduce conflicts and contribute to improved conservation of these threatened predators.

  19. Drought Trends and Temperature Influence in Zhanghe River Basin, China

    Directory of Open Access Journals (Sweden)

    Bakhtawar Wagan

    2015-01-01

    Full Text Available Our study area is one of the semiarid region of the China with under water stress condition that causes economic damage. The main objective of this study is to apply standardized precipitation evapotranspiration index (SPEI and to use linear regression to calculate drought conditions in the study area. For this purpose, data from 1980 to 2010 was analyzed at different (1, 6, 12, and 24 months time scales. Results depicted both dry and wet periods in the study area; occurrence of dry span with different frequency and magnitude was increased over last decades (2000–2010 at most of the stations. Statistical results demonstrated that temperature was decreased in the 1st decade in most of stations but in two decades from 1990 to 2000 and 2001 to 2010, temperature was increased except in Changzhi station. These results could be a future reference for developing information programs about monitoring and early drought information, planning of existing reservoirs, and management of water resources under climate conditions.

  20. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China

    International Nuclear Information System (INIS)

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-01-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F − concentration of up to 14.1 mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F − concentrations above the WHO provisional drinking water guideline of 1.5 mg/L. Groundwater with high F − concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO 3 − content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F − mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F − in groundwater of the intermediate and deep aquifers. - Highlights: • High-F − groundwater widely occurs in Yuncheng Basin of northern China. • High-F − groundwater is Na and HCO 3 -rich and Ca-poor, with high pH. • Major hydrogeochemical processes are mineral dissolution, ion exchange and evaporation. • Shallow groundwater leakage/evaporite dissolution may cause F enrichment in lower aquifers

  1. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  2. Groundwater Quality in Jingyuan County, a Semi-Humid Area in Northwest China

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2011-01-01

    Full Text Available Groundwater quality assessment is an essential study which plays an important role in the rational development and utilization of groundwater in any part of the world. In the study, groundwater qualities in Jingyuan County, in Ningxia, China were assessed with entropy weighted water quality index method. In the assessment, 12 hydrochemical parameters including chloride, sulphate, sodium, iron, pH, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia, nitrogen, fluoride, iodine and nitrite were selected. The assessment results show that the concentrations of iodine, TH, iron and TDS are the most influencing parameters affecting the groundwater quality. The assessment results are rational and are in consistency with the results of filed investigation of which both indicates the groundwater in Jingyuan County is fit for drinking.

  3. Petrography and geochemistry characteristics of the lower Cretaceous Muling Formation from the Laoheishan Basin, Northeast China: implications for provenance and tectonic setting

    Science.gov (United States)

    Song, Yu; Liu, Zhaojun; Meng, Qingtao; Wang, Yimeng; Zheng, Guodong; Xu, Yinbo

    2017-06-01

    The petrography, mineralogy and geochemistry of sedimentary rocks from the lower Cretaceous Muling Formation (K1ml) in the Laoheishan basin, northeast (NE) China are studied to determine the weathering intensity, provenance and tectonic setting of the source region. Petrographic data indicate the average quartz-feldspar-lithic fragments (QFL) of the sandstone is Q = 63 %, F = 22 %, and L = 15 %. Lithic fragments mainly contain volcanic clasts that derived from surrounding basement. X-ray diffraction (XRD) data reveal abundant clay and detrital minerals (e.g. quartz), as well as minor calcite in the fine-grained sediments. The Hf contents and element concentration ratios such as Al2O3/TiO2, Co/Th, La/Sc, and La/Th are comparable to sediments derived from felsic and intermediate igneous rocks. The strong genetic relationship with the igneous rocks from the northwest and northeast areas provides evidence that the sediments of the Muling Formation (K1ml) in the Laoheishan basin have been derived from this area. The chemical index of alteration (CIA) and index of chemical variability (ICV) reveal an intensive weathering in the source region of the sediments. The multidimensional tectonic discrimination diagrams indicate that the source rocks of K1ml are mainly derived from the collision system. However, they may also comprise sediments derived from the continental rift system. The results are consistent with the geology of the study area.

  4. Sediment-hosted micro-disseminated gold mineralization constrained by basin paleo-topographic highs in the Youjiang basin, South China

    Science.gov (United States)

    Liu, Jianming; Ye, Jie; Ying, Hanlong; Liu, Jiajun; Zheng, Minghua; Gu, Xuexiang

    2002-06-01

    The Youjiang basin is a Devonian-Triassic rift basin on the southern margin of the Yangtze Craton in South China. Strong syndepositional faulting defined the basin-and-range style paleo-topography that further developed into isolated carbonate platforms surrounded by siliciclastic filled depressions. Finally, thick Triassic siliciclastic deposits covered the platforms completely. In the Youjiang basin, numerous sediment-hosted, micro-disseminated gold (SMG) deposits occur mainly in Permian-Triassic chert and siliciclastic rocks. SMG ores are often auriferous sedimentary rocks with relatively low sulfide contents and moderate to weak alteration. Similar to Carlin-type gold ores in North America, SMG ores in the Youjiang basin are characterized by low-temperature mineral assemblages of pyrite, arsenopyrite, realgar, stibnite, cinnabar, marcasite, chalcedony and carbonate. Most of the SMG deposits are remarkably distributed around the carbonate platforms. Accordingly, there are platform-proximal and platform-distal SMG deposits. Platform-proximal SMG deposits often occur in the facies transition zone between the underlying platform carbonate rocks and the overlying siliciclastic rocks with an unconformity (often a paleo-karst surface) in between. In the ores and hostrocks there are abundant synsedimentary-syndiagenetic fabrics such as lamination, convolute bedding, slump texture, soft-sediment deformation etc. indicating submarine hydrothermal deposition and syndepositional faulting. Numerous fluid-escape and liquefaction fabrics imply strong fluid migration during sediment basin evolution. Such large-scale geological and fabric evidence implies that SMG ores were formed during basin evolution, probably in connection with basinal fluids. It is well known that basinal fluids (especially sediment-sourced fluids) will migrate generally (1) upwards, (2) towards basin margins or basin topographic highs, (3) and from thicker towards thinner deposits during basin evolution

  5. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China

    Directory of Open Access Journals (Sweden)

    N. Bei

    2016-06-01

    Full Text Available Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China, with heavy haze events occurring frequently in recent winters. Using the NCEP reanalysis data, the large-scale synoptic situations influencing the Guanzhong basin during wintertime of 2013 are categorized into six types to evaluate the contribution of synoptic situations to the air pollution, including “north-low”, “southwest-trough”, “southeast-high”, “transition”, “southeast-trough”, and “inland-high”. The FLEXPART model has been utilized to demonstrate the corresponding pollutant transport patterns for the typical synoptic situations in the basin. Except for “southwest-trough” and “southeast-high” (defined as favorable synoptic situations, the other four synoptic conditions (defined as unfavorable synoptic situations generally facilitate the accumulation of air pollutants, causing heavy air pollution in the basin. In association with the measurement of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm in the basin, the unfavorable synoptic situations correspond to high PM2.5 mass concentrations or poor air quality and vice versa. The same analysis has also been applied to winters of 2008–2012, which shows that the basin was mainly influenced by the unfavorable synoptic situations during wintertime leading to poor air quality. The WRF-CHEM model has further been applied to simulate the selected 6 days representing the typical synoptic situations during the wintertime of 2013, and the results generally show a good agreement between the modeled distributions and variations of PM2.5 and the corresponding synoptic situations, demonstrating reasonable classification for the synoptic situations in the basin. Detailed meteorological conditions, such as temperature inversion, low-level horizontal wind speed, and planetary boundary layer, all contribute to heavy air pollution

  6. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria

    Directory of Open Access Journals (Sweden)

    Faiza Hallouz

    2018-04-01

    Full Text Available The objective of this study is to model discharge and solid erosion quantification through a small agricultural watershed by applying the SWAT model (Soil and Water Assessment Tools on the Wadi Harraza’s basin of which is part of Wadi Cheliff’s basin, with an average altitude of 500 m, drains an area of 568 sq km. Soil and Water Assessment Tool (SWAT, version 2009 model integrated with Geographic Information System (ArcGIS, version 10.0 were used to simulate the discharge and sediment concentration of Wadi Harraza’s basin for the period from 2004 to 2009. Model calibration and validation were performed for monthly time periods using Sequential Uncertainty Fitting 2 (SUFI-2, version 2 within SWAT-CUP. Our calibration and validation outputs for monthly simulation showed a good model performance for discharges. Thus the evolution of the average total annual sediment in the Wadi Harraza’s basin which will be deposited in the Wadi Cheliff, is estimated at 54.24 t ha−1. Keywords: SWAT model, Basin, Wadi Harraza, SUFI-2, Discharges, Sediment

  7. Water geochemistry of the Xijiang basin rivers, South China: Chemical weathering and CO2 consumption

    International Nuclear Information System (INIS)

    Xu Zhifang; Liu Congqiang

    2010-01-01

    Research highlights: → The Xijiang River is the second largest river in China and flows through a large carbonate rock region in South China. → Sulfuric acid, which emanate from acid precipitation and the oxidation of sulfide minerals, is involved as a proton donor in weathering reactions in the Xijiang basin. → Calculated results show that the contribution of cations from rock weathering induced by sulfuric acid accounts for approximately 11.2%. → The flux of CO 2 released into the atmosphere is approximately 0.41 x 10 12 gC yr -1 produced by sulfuric acid-induced carbonate weathering in the Xijiang basin. → Sulfuric acid-induced carbonate weathering could counterbalance a significant part of the CO 2 consumed by silicate weathering. - Abstract: The Xijiang River, the mainstream of the Zhujiang (Pearl) River, which is the second largest river in China in terms of discharge, flows through a large carbonate rock region in South China. The chemical and Sr isotopic compositions of the Xijiang waters were determined during the high-flow season in order to understand the chemical weathering processes, associated CO 2 consumption and anthropogenic influences within the carbonate-dominated basin. The major ion compositions of the river waters are characterized by the dominance of Ca 2+ , Mg 2+ , HCO 3 - and are significantly rich in SO 4 2- . The SO 4 2- is mainly derived from the oxidation of sulfide minerals and acid precipitation caused by coal combustion. Chemical and Sr isotopic compositions of the river waters indicate that four reservoirs (carbonates, silicates, evaporites and anthropogenic inputs) contribute to the total dissolved loads. The chemical weathering rates of carbonates and silicates for the Xijiang basin are estimated to be approximately 78.5 and 7.45 ton km -2 a -1 , respectively. The total chemical weathering rate of rocks for the Xijiang basin is approximately 86.1 ton km -2 a -1 or 42 mm ka -1 , which is much higher than global mean

  8. Microseepage of methane to the atmosphere from the Dawanqi oil-gas field, Tarim Basin, China

    Science.gov (United States)

    Tang, Junhong; Xu, Yue; Wang, Guojian; Etiope, Giuseppe; Han, Wei; Yao, Zhitong; Huang, Jingang

    2017-04-01

    The microseepage of natural gas from subsurface hydrocarbon reservoirs is a widespread process in petroleum basins. On a global scale, microseepage represents an important natural source of atmospheric methane (CH4). To date, microseepage CH4 flux data have been obtained from 20 petroleum systems in North America, Europe, and Asia. While the seasonal variations of gas flux due to soil methanotrophic activity are known, the role of geological factors in controlling gas fluxes has been poorly investigated. Here we present new microseepage data from the Dawanqi oil-gas field located within the Tarim Basin (China), a petroleum system characterized by intense faulting and shallow (petroleum fields with active tectonics. Our results confirm that dry soil over petroleum fields can be a net source of atmospheric CH4 and its flux is primarily controlled by faulting, and reservoir depth and pressure. These factors shall be considered in global bottom-up seepage emission estimates.

  9. Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China

    Directory of Open Access Journals (Sweden)

    Jumeniyaz Seydehmet

    2018-02-01

    Full Text Available Significant anthropogenic and biophysical changes have caused fluctuations in the soil salinization area of the Keriya Oasis in China. The Driver-Pressure-State-Impact-Response (DPSIR sustainability framework and Bayesian networks (BNs were used to integrate information from anthropogenic and natural systems to model the trend of secondary soil salinization. The developed model predicted that light salinization (vegetation coverage of around 15–20%, soil salt 5–10 g/kg of the ecotone will increase in the near term but decelerate slightly in the future, and that farmland salinization will decrease in the near term. This trend is expected to accelerate in the future. Both trends are attributed to decreased water logging, increased groundwater exploitation, and decreased ratio of evaporation/precipitation. In contrast, severe salinization (vegetation coverage of around 2%, soil salt ≥20 g/kg of the ecotone will increase in the near term. This trend will accelerate in the future because decreased river flow will reduce the flushing of severely salinized soil crust. Anthropogenic factors have negative impacts and natural causes have positive impacts on light salinization of ecotones. In situations involving severe farmland salinization, anthropogenic factors have persistent negative impacts.

  10. Prevalence, awareness, treatment and control of hypertension in Tibetan monks from Gansu Province, Northwest China.

    Science.gov (United States)

    Li, Xinghui; Cai, Hui; He, Jin; Ramachandran, Devasundaram; Xie, Ping; Huang, Yan; Wang, Hongjing; Liu, Yan; Qiao, Yan; Zhang, Qing

    2015-01-01

    Tibetan monks are a special group in life style and diet customs. We have little information of hypertension about them. Therefore, the objective of this study was to investigate the information on the prevalence, awareness, treatment and control of hypertension in these populations. A cross-sectional study of hypertension was carried out in 984 monks and 1042 Tibetan residents' controls in the same area. All the subjects were selected for interview, and physical examination involved blood pressure (BP) measurement. The overall prevalence of hypertension in monks was significantly lower than those in local residents (19.3% versus 34.1%; p monks were also lower than those in local residents (9.5% versus 16.9%, 4.2% versus 13.2% and 1.6% versus 4.5%; p monks aged 18 years and over in Gannan Tibetan autonomous district of Gansu province in China. We concluded that the relatively healthy diet and ways of life in monks were the major contributing factors to the lower prevalence of hypertension. However, the awareness, treatment and control rates of hypertension were also low. The possible reasons were most likely due to the difficult access to quality medical care and poor health education.

  11. Unique Trichomonas vaginalis gene sequences identified in multinational regions of Northwest China.

    Science.gov (United States)

    Liu, Jun; Feng, Meng; Wang, Xiaolan; Fu, Yongfeng; Ma, Cailing; Cheng, Xunjia

    2017-07-24

    Trichomonas vaginalis (T. vaginalis) is a flagellated protozoan parasite that infects humans worldwide. This study determined the sequence of the 18S ribosomal RNA gene of T. vaginalis infecting both females and males in Xinjiang, China. Samples from 73 females and 28 males were collected and confirmed for infection with T. vaginalis, a total of 110 sequences were identified when the T. vaginalis 18S ribosomal RNA gene was sequenced. These sequences were used to prepare a phylogenetic network. The rooted network comprised three large clades and several independent branches. Most of the Xinjiang sequences were in one group. Preliminary results suggest that Xinjiang T. vaginalis isolates might be genetically unique, as indicated by the sequence of their 18S ribosomal RNA gene. Low migration rate of local people in this province may contribute to a genetic conservativeness of T. vaginalis. The unique genetic feature of our isolates may suggest a different clinical presentation of trichomoniasis, including metronidazole susceptibility, T. vaginalis virus or Mycoplasma co-infection characteristics. The transmission and evolution of Xinjiang T. vaginalis is of interest and should be studied further. More attention should be given to T. vaginalis infection in both females and males in Xinjiang.

  12. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China

    Science.gov (United States)

    Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants. PMID:27391239

  13. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Directory of Open Access Journals (Sweden)

    Liping Li

    Full Text Available With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM, the Uygur Medicine (UM, and the Kazak Medicine (KM for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1 medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2 medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3 CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1, in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2, for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  14. Patterns and Environmental Determinants of Medicinal Plant : Vascular Plant Ratios in Xinjiang, Northwest China.

    Science.gov (United States)

    Li, Liping; Zhang, Bengang; Xiao, Peigen; Qi, Yaodong; Zhang, Zhao; Liu, Haitao; Li, Xiaojin; Wang, Guoping; Terwei, André

    2016-01-01

    With both a full collection of native vascular plant distributions and a full checklist of source plants of the Chinese Materia Medica (CMM), the Uygur Medicine (UM), and the Kazak Medicine (KM) for the Xinjiang region, we defined medicinal plant: vascular plant ratios (simplified as medicinal plant ratios hereafter) as the value of medicinal plant richness divided by vascular plant richness. We aimed to find whether the ratios are constant or change in different environments, which environmental variables determine medicinal plant ratios, and whether the ratios are more influenced by human or by natural environments. Finally, suggestions for medicinal plant conservation were addressed. We found that (1) medicinal plant ratios were not constant, and they were high in the Tarim Basin which was largely covered by desert, while they were relatively low in mountainous areas, especially in the Tianshan Mountains where the general species richness was high; (2) medicinal plant ratios were not significantly influenced by human activities, indicated by human population density distributions, but they were highly correlated with plant species richness and climate, i.e. ratios decreased with plant species richness and MAP, and were related quadratically with MAT; (3) CMM ratio and UM ratio were more influenced by plant richness than by climate, while KM ratio was more influenced by climate. We concluded that the percentages of plants used as medicines were not influenced by distances from human settlements, but were determined by species richness or climate. We suggest that (1), in general, the medicinal plant ratio could be a complementary indicator for medicinal plant conservation planning and (2), for the region of Xinjiang, not only high diversity areas, but also some extreme environments should be considered as compensation for a better protection of medicinal plants.

  15. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    Science.gov (United States)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2018-06-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  16. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year

    Science.gov (United States)

    Zheng, Huang; Kong, Shaofei; Xing, Xinli; Mao, Yao; Hu, Tianpeng; Ding, Yang; Li, Gang; Liu, Dantong; Li, Shuanglin; Qi, Shihua

    2018-04-01

    Oil and natural gas are important for energy supply around the world. The exploring, drilling, transportation and processing in oil and gas regions can release a lot of volatile organic compounds (VOCs). To understand the VOC levels, compositions and sources in such regions, an oil and gas station in northwest China was chosen as the research site and 57 VOCs designated as the photochemical precursors were continuously measured for an entire year (September 2014-August 2015) using an online monitoring system. The average concentration of total VOCs was 297 ± 372 ppbv and the main contributor was alkanes, accounting for 87.5 % of the total VOCs. According to the propylene-equivalent concentration and maximum incremental reactivity methods, alkanes were identified as the most important VOC groups for the ozone formation potential. Positive matrix factorization (PMF) analysis showed that the annual average contributions from natural gas, fuel evaporation, combustion sources, oil refining processes and asphalt (anthropogenic and natural sources) to the total VOCs were 62.6 ± 3.04, 21.5 ± .99, 10.9 ± 1.57, 3.8 ± 0.50 and 1.3 ± 0.69 %, respectively. The five identified VOC sources exhibited various diurnal patterns due to their different emission patterns and the impact of meteorological parameters. Potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models based on backward trajectory analysis indicated that the five identified sources had similar geographic origins. Raster analysis based on CWT analysis indicated that the local emissions contributed 48.4-74.6 % to the total VOCs. Based on the high-resolution observation data, this study clearly described and analyzed the temporal variation in VOC emission characteristics at a typical oil and gas field, which exhibited different VOC levels, compositions and origins compared with those in urban and industrial areas.

  17. Quantitative analysis of burden of infectious diarrhea associated with floods in northwest of anhui province, china: a mixed method evaluation.

    Science.gov (United States)

    Ding, Guoyong; Zhang, Ying; Gao, Lu; Ma, Wei; Li, Xiujun; Liu, Jing; Liu, Qiyong; Jiang, Baofa

    2013-01-01

    Persistent and heavy rainfall in the upper and middle Huaihe River of China brought about severe floods during the end of June and July 2007. However, there has been no assessment on the association between the floods and infectious diarrhea. This study aimed to quantify the impact of the floods in 2007 on the burden of disease due to infectious diarrhea in northwest of Anhui Province. A time-stratified case-crossover analysis was firstly conducted to examine the relationship between daily cases of infectious diarrhea and the 2007 floods in Fuyang and Bozhou of Anhui Province. Odds ratios (ORs) of the flood risk were quantified by conditional logistic regression. The years lived with disability (YLDs) of infectious diarrhea attributable to floods were then estimated based on the WHO framework of the calculating potential impact fraction in the Burden of Disease study. A total of 197 infectious diarrheas were notified during the exposure and control periods in the two study areas. The strongest effect was shown with a 2-day lag in Fuyang and a 5-day lag in Bozhou. Multivariable analysis showed that floods were significantly associated with an increased risk of the number cases of infectious diarrhea (OR = 3.175, 95%CI: 1.126-8.954 in Fuyang; OR = 6.754, 95%CI: 1.954-23.344 in Bozhou). Attributable YLD per 1000 of infectious diarrhea resulting from the floods was 0.0081 in Fuyang and 0.0209 in Bozhou. Our findings confirm that floods have significantly increased the risks of infectious diarrhea in the study areas. In addition, prolonged moderate flood may cause more burdens of infectious diarrheas than severe flood with a shorter duration. More attention should be paid to particular vulnerable groups, including younger children and elderly, in developing public health preparation and intervention programs. Findings have significant implications for developing strategies to prevent and reduce health impact of floods.

  18. Spatiotemporal Variation of Karst Ecosystem Service Values and Its Correlation with Environmental Factors in Northwest Guangxi, China

    Science.gov (United States)

    Zhang, Mingyang; Zhang, Chunhua; Wang, Kelin; Yue, Yuemin; Qi, Xiangkun; Fan, Feide

    2011-11-01

    In this investigation we analyzed the spatiotemporal variation of ecosystem service values (ESVs) and its correlation with numerous environmental factors (EFs) for the karst region of Northwest Guangxi, China, from 1985 to 2005 using remote sensing, geographic information systems (GIS) and statistical techniques. The results indicate that historically ESVs for this karst region decreased from 1985 (109.652 billion Yuan) to 1990 (88.789 billion Yuan) and then increased at the turn of the twenty-first century. However, the ESVs in both 2000 (103.384 billion Yuan) and 2005 (106.257 billion Yuan) never achieved the level recorded in 1985. The total of nutrient cycling, organic production and gas regulation combined were 72.69, 64.57, 70.18 and 72.10% of ESVs in 1985, 1990, 2000 and 2005, respectively. In contrast, the ESVs of water conservation, soil reservation, recreation and culture were determined to be relatively low contributing only 17.44, 23.82, 19.26 and 24.76% of total ESVs, respectively, during these four years. With regards to the spatial distribution of ESVs, larger values were recorded in the west and smaller ones recorded in the east. The most significant factors that were deemed to influence ESVs are annual rainfall, per capita cropland, slope and vegetation coverage. Annual rainfall and slope exert a negative force, whereas per capita cropland and vegetation coverage exert a positive force on ESVs. The results of the study would suggest that ecosystem conditions of this important karst region have been improved as the result of the implementation of rocky desertification control policies.

  19. Soil Susceptibility to Macropore Flow Across a Desert-Oasis Ecotone of the Hexi Corridor, Northwest China

    Science.gov (United States)

    Zhang, Yongyong; Zhao, Wenzhi; He, Jianhua; Fu, Li

    2018-02-01

    Macropore flow not only provides a fast pathway for water and solute transport and increases the risks of water and nutrient loss but also enhances soil aeration and groundwater recharge. However, macropore flow characteristics in irrigated oasis soils subject to continuous crop cultivation are poorly understood. This study was to investigate the effect of continuous cultivation on soil properties and macropore flow and to quantify the changes in macropore flow characteristics in an old oasis field (>50 years of cultivation, OOF), young oasis field (20 years, YOF), and adjacent uncultivated sandy area (0 year, USL) in Northwest China. Triplicate soil samples were collected from each site to investigate soil properties. Dye tracer experiments with also three replicates were conducted at each site. The degree of macropore flow (i.e., parameters of macropore flow) was highest at the OOF, intermediate at the YOF, and minimal at the USL. The macropore flow fraction (i.e., fraction of total infiltration flows through macropore flow pathways) at the OOF was 3.4 times greater than at the USL. The heterogeneous infiltration pattern at the OOF was dominated by macropore flow, while funnel flow was predominant at the USL. Long-term irrigation with silt-laden river water has increased silt + clay contents of the oasis soils. Irrigation and high-input crop cultivation also increased organic matter. These changes in soil properties contributed to the interaggregate voids formation. The conversion of native desert soils to irrigated croplands increases the degree of macropore flow, which might enhance groundwater recharge in the desert-oasis ecotone.

  20. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    Science.gov (United States)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  1. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Science.gov (United States)

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  2. Speciation, sources, and risk assessment of heavy metals in suburban vegetable garden soil in Xianyang City, Northwest China

    Science.gov (United States)

    Wang, Lijun; Tao, Wendong; Smardon, Richard C.; Xu, Xue; Lu, Xinwei

    2017-07-01

    Intensive anthropogenic activities can lead to soil heavy metal contamination resulting in potential risks to the environment and to human health. To reveal the concentrations, speciation, sources, pollution level, and ecological risk of heavy metals in vegetable garden soil, a total of 136 soil samples were collected from three vegetable production fields in the suburbs of Xianyang City, Northwest China. These samples were analyzed by inductively coupled plasma- atomic emission spectrometry and atomic fluorescence spectrometry. The results showed that the mean concentrations of Cd, Co, Cu, Mn, Pb, Zn, and Hg in vegetable garden soil were higher than the corresponding soil element background values of Shaanxi Province. The heavy metals studied in vegetable garden soil were primarily found in the residual fraction, averaging from 31.26% (Pb) to 90.23% (Cr). Considering the non-residual fractions, the mobility or potential risk was in the order of Pb (68.74%)>Co (60.54%)>Mn (59.28%) >Cd (53.54%) ≫Ni (23.36%) >Zn (22.73%)>Cu (14.93%)>V (11.81%)>Cr (9.78%). Cr, Mn, Ni, V, and As in the studied soil were related to soilforming parent materials, while Cu, Hg, Zn, Cd, Co, and Pb were associated with the application of plastic films, fertilizers, and pesticides, as well as traffic emissions and industrial fumes. Cr, Ni, V, and As presented low contamination levels, whereas Co, Cu, Mn, Pb, and Zn levels were moderate, and Cd and Hg were high. Ecological risk was low for Co, Cr, Cu, Mn, Pb, Zn, and As, with high risk observed for Cd and Hg. The overall pollution level and ecological risk of these heavy metals were high.

  3. Lower crustal earthquakes in the North China Basin and implications for crustal rheology

    Science.gov (United States)

    Yuen, D. A.; Dong, Y.; Ni, S.; LI, Z.

    2017-12-01

    The North China Basin is a Mesozoic-Cenozoic continental rift basin on the eastern North China Craton. It is the central region of craton destruction, also a very seismically active area suffering severely from devastating earthquakes, such as the 1966 Xingtai M7.2 earthquake, the 1967 Hejian M6.3 earthquake, and the 1976 Tangshan M7.8 earthquake. We found remarkable discrepancies of depth distribution among the three earthquakes, for instance, the Xingtai and Tangshan earthquakes are both upper-crustal earthquakes occurring between 9 and 15 km on depth, but the depth of the Hejian earthquake was reported of about 30 72 km, ranging from lowermost crust to upper mantle. In order to investigate the focal depth of earthquakes near Hejian area, we developed a method to resolve focal depth for local earthquakes occurring beneath sedimentary regions by P and S converted waves. With this method, we obtained well-resolved depths of 44 local events with magnitudes between M1.0 and M3.0 during 2008 to 2016 at the Hejian seismic zone, with a mean depth uncertainty of about 2 km. The depth distribution shows abundant earthquakes at depth of 20 km, with some events in the lower crust, but absence of seismicity deeper than 25 km. In particular, we aimed at deducing some constraints on the local crustal rheology from depth-frequency distribution. Therefore, we performed a comparison between the depth-frequency distribution and the crustal strength envelop, and found a good fit between the depth profile in the Hejian seismic zone and the yield strength envelop in the Baikal Rift Systems. As a conclusion, we infer that the seismogenic thickness is 25 km and the main deformation mechanism is brittle fracture in the North China Basin . And we made two hypotheses: (1) the rheological layering of dominant rheology in the North China Basin is similar to that of the Baikal Rift Systems, which can be explained with a quartz rheology at 0 10 km depth and a diabase rheology at 10 35 km

  4. Distance on FDI and Trade: The Roles of China and Mexico in the Pacific Basin

    OpenAIRE

    Yushi Yoshida; Hiro Ito

    2005-01-01

    In this study, we investigate the dynamics of the trilateral trade relationship among the U.S., Japan and an emerging economy in the Pacific Basin. Our particular attention is paid to two emerging countries; China and Mexico. In what we call the “triangular trade approach,” we explore how Japanese trade with and foreign direct investment to an emerging economy affect its exports to the US market. We apply the trilateral trade approach to eight Southeast Asian countries, four American continen...

  5. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  6. Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest China

    Science.gov (United States)

    Ming, G.

    2017-12-01

    Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest ChinaGuanghui Ming1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: Agricultural ecosystems have the potential to offset rising CO2 concentration in the atmosphere but the potential is often altered by agricultural management. Plastic film mulching and drip irrigation (PMDI) have been widespread for saving water and improving crop yield worldwide. To comprehensively assess the carbon balance and to detect the controlling factors of the carbon flux in a PMDI cotton field, experiments combining eddy covariance (EC) system, chamber method and crop sampling were implemented in an arid oasis of Xinjiang from the year 2012 to 2016. The annual net ecosystem exchange (NEE) was -250.18 ± 80.41 g C m-2 in the five years, which indicated that the filed was a much stronger carbon sink. After removal of the harvest of cotton as seed oil (Ch) of 108.81±7.57 g C m-2, the field was still a moderate carbon sink with net biome productivity (NBP) of 141.37±73.7 g C m-2. Soil temperature can explain 82% of seasonal variation of nighttime NEE while PAR can explain 36-81% of daytime NEE varying with crop development and photosynthetic activity. NEE was separated into total ecosystem respiration (Reco, 1214.20±144.42 g C m-2) and gross primary productivity (GPP, 1464.38±122.78 g C m-2). Interannual Reco changed more drastically than GPP and respiration may be the main determinant of carbon balance in the PMDI field. Seasonal NPP measured by cop sampling method (NPPCS) agreed well with NPP calculated with EC (NPPEC), with the annual NPP of 708.86 ± 52.26 g C m-2, which indicated that our carbon flux measurements and separating methods reasonable. The PMDI cotton field induced more GPP and Reco than other croplands with larger light use efficiency (LUE) but relatively

  7. Long-Term Effect of Manure and Fertilizer on Soil Organic Carbon Pools in Dryland Farming in Northwest China

    Science.gov (United States)

    Liu, Enke; Yan, Changrong; Mei, Xurong; Zhang, Yanqing; Fan, Tinglu

    2013-01-01

    An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. The objectives of this study were to investigate the effects of long-term fertilization on SOC and SOC fractions for the whole soil profile (0–100 cm) in northwest China. The study was initiated in 1979 in Gansu, China and included six treatments: unfertilized control (CK), nitrogen fertilizer (N), nitrogen and phosphorus (P) fertilizers (NP), straw plus N and P fertilizers (NP+S), farmyard manure (FYM), and farmyard manure plus N and P fertilizers (NP+FYM). Results showed that SOC concentration in the 0–20 cm soil layer increased with time except in the CK and N treatments. Long-term fertilization significantly influenced SOC concentrations and storage to 60 cm depth. Below 60 cm, SOC concentrations and storages were statistically not significant between all treatments. The concentration of SOC at different depths in 0–60 cm soil profile was higher under NP+FYM follow by under NP+S, compared to under CK. The SOC storage in 0–60 cm in NP+FYM, NP+S, FYM and NP treatments were increased by 41.3%, 32.9%, 28.1% and 17.9%, respectively, as compared to the CK treatment. Organic manure plus inorganic fertilizer application also increased labile soil organic carbon pools in 0–60 cm depth. The average concentration of particulate organic carbon (POC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in organic manure plus inorganic fertilizer treatments (NP+S and NP+FYM) in 0–60 cm depth were increased by 64.9–91.9%, 42.5–56.9%, and 74.7–99.4%, respectively, over the CK treatment. The POC, MBC and DOC concentrations increased linearly with increasing SOC content. These results indicate that long-term additions of organic manure have the most beneficial effects in building carbon pools among the investigated types of fertilization. PMID:23437161

  8. Tree-Ring Dating of the Reshui-1 Tomb in Dulan County, Qinghai Province, North-west China

    Science.gov (United States)

    LI, M.; Xuemei, S.; Yin, Z. Y.; Xu, X.

    2015-12-01

    Tuyuhun and Tubo were two important states that thrived in north-western China during AD 311-900 in parallel with the Han Chinese dynasties of Sui and Tang periods. The Reshui Tomb Cluster located in Dulan County of the north-eastern Tibetan Plateau is an important cultural relic of the Tuyuhun-Tubo age. The official excavations of the Reshui tombs were regarded as top events in archaeology in the 1980s and 1990s in China. The Reshui-1 Tomb is the largest one among the tombs in the area. Since its excavation, there have been debates on whether the owner of the tomb belonged to the Tuyuhun or Tubo ethnicity. Therefore, accurately dating the Reshui-1 Tomb has a critical place in studying the Tubo and Tuyuhun histories. We collected 7 discs and 11 increment cores of Qilian juniper (Juniperus przewalskii Kom.) from the exposed and fallen beams of the roof of the Reshui-1Tomb. The lengths of the 16 tree-ring records are between 69 and 152 years. Based on a previously developed master dating chronology using Qilian juniper samples from the eastern Qaidam Basin, the calendar dates of the 16 specimens were determined by the COFECHA program and visual dating procedure. The average inter-series correlation among the dated sample series is 0.696, indicating good quality of cross-dating. The year of the outermost rings is AD 715 for the 7 discs and 4 out of the 9 increment cores. Moreover, the ring-width variations of the samples are consistent with the existing chronologies from the region. The presence of late-wood of AD 715 in the samples indicated that the Reshui-1 Tomb was completed in late AD 715 or early 716, which means that the Reshui-1 Tomb was finished in the Tubo age. This date provides direct evidence for archaeologists to determine the owner's ethnicity and identify of the Reshui-1 Tomb.

  9. Tree-Ring Dating of the Reshui-1 Tomb in Dulan County, Qinghai Province, North-West China.

    Directory of Open Access Journals (Sweden)

    Mingqi Li

    Full Text Available Tuyuhun and Tubo were two important states that thrived in north-western China during AD 311-900 in parallel with the Han Chinese dynasties of Sui and Tang periods. The Reshui Tomb Cluster located in Dulan County of the north-eastern Tibetan Plateau is an important cultural relic of the Tuyuhun-Tubo age. The official excavations of the Reshui tombs were regarded as top events in archaeology in the 1980s and 1990s in China. The Reshui-1 Tomb is the largest one among the tombs in the area. Since its excavation, there have been debates on whether the owner of the tomb belonged to the Tuyuhun or Tubo ethnicity. Therefore, accurately dating the Reshui-1 Tomb has a critical place in studying the Tubo and Tuyuhun histories. We collected 7 discs and 11 increment cores of Qilian juniper (Juniperus przewalskii Kom. from the exposed and fallen beams of the roof of the Reshui-1Tomb. The lengths of the 16 tree-ring records are between 69 and 152 years. Based on a previously developed master dating chronology using Qilian juniper samples from the eastern Qaidam Basin, the calendar dates of the 16 specimens were determined by the COFECHA program and visual dating procedure. The average inter-series correlation among the dated sample series is 0.696, indicating good quality of cross-dating. The year of the outermost rings is AD 715 for the 7 discs and 4 out of the 9 increment cores. Moreover, the ring-width variations of the samples are consistent with the existing chronologies from the region. The presence of late-wood of AD 715 in the samples indicated that the Reshui-1 Tomb was completed in late AD 715 or early 716, which means that the Reshui-1 Tomb was finished in the Tubo age. This date provides direct evidence for archaeologists to determine the owner's ethnicity and identify of the Reshui-1 Tomb.

  10. Coal fires in Northwest China. Detection, monitoring, and prediction using remote sensing data

    International Nuclear Information System (INIS)

    Zhang, Xiangmin

    1998-01-01

    Coal fires in China occur within a region that stretches over 5,000 km in the east- western part and 750 km. in the north-southern part. These fires cause an economic and environmental threat by making a significant contribution to the global CO2 budget. The studies made in this thesis can be divided into two parts. Part one is based on field work and laboratory analysis that includes the dating of the paleo coal fires; part two concerns remote sensing applications for the active coal fires. In Chapter 2, the evolution of the paleo coal fires in Toutunhe and Xinjiang areas are studied. Several age groups of burnt rock have been recognized and their relationships with the river terraces will be discussed. The causes of the paleo coal fires are addressed, and the areas of coal fires with different ages have been dated. In Chapter 3, the physical basis of thermal infrared remote sensing for the detection and measurement of coal fires are addressed with an emphasis on the spatial, spectral, and radiometric resolution. In Chapter 4, a method to reduce the effect of solar heating, the main factor of confusion when investigating the thermal anomalies of coal fires, is discussed with the help of a DEM. In Chapter 5, as the coal fires normally occupy only part of one pixel of the Landsat TM thermal channel data, the capability of sub pixel coal fire detection is addressed. In Chapter 6, the airborne data from different wavelengths acquired at different times are studied to analyze the spatial thermal characteristics of the coal fires. Spreading direction and different types of coal fires are studied. Chapter 7 presents, based on multi-sensor data fusion techniques, a hierarchical methodology for detection and monitoring of the coal fires. 120 refs

  11. Pleistocene climate change and the origin of two desert plant species, Pugionium cornutum and Pugionium dolabratum (Brassicaceae), in northwest China.

    Science.gov (United States)

    Wang, Qian; Abbott, Richard J; Yu, Qiu-Shi; Lin, Kao; Liu, Jian-Quan

    2013-07-01

    Pleistocene climate change has had an important effect in shaping intraspecific genetic variation in many species; however, its role in driving speciation is less clear. We examined the possibility of a Pleistocene origin of the only two representatives of the genus Pugionium (Brassicaceae), Pugionium cornutum and Pugionium dolabratum, which occupy different desert habitats in northwest China. We surveyed sequence variation for internal transcribed spacer (ITS), three chloroplast (cp) DNA fragments, and eight low-copy nuclear genes among individuals sampled from 11 populations of each species across their geographic ranges. One ITS mutation distinguished the two species, whereas mutations in cpDNA and the eight low-copy nuclear gene sequences were not species-specific. Although interspecific divergence varied greatly among nuclear gene sequences, in each case divergence was estimated to have occurred within the Pleistocene when deserts expanded in northwest China. Our findings point to the importance of Pleistocene climate change, in this case an increase in aridity, as a cause of speciation in Pugionium as a result of divergence in different habitats that formed in association with the expansion of deserts in China. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Relationship of nitrate isotopic character to population density in the Loess Plateau of Northwest China

    International Nuclear Information System (INIS)

    Xing, Meng; Liu, Weiguo; Wang, Zhoufeng; Hu, Jing

    2013-01-01

    Highlights: • Investigated nitrate isotopic composition in Xi’an. • δ 15 N–NO 3 - enrich process is mainly caused by the anthropogenic activity. • δ 15 N–NO 3 - value useful for tracing nitrate source. • δ 15 N–NO 3 - value and population density show a significant logarithmic correlation. - Abstract: Nitrate pollution of groundwater is an increasingly serious anthropogenic problem. In this study, the hydrogeochemistry of major ions and stable isotope ratios of NO 3 - in groundwater were determined to identify the contamination sources and chemical transformation processes occurring in the shallow groundwater of Xi’an, the capital of Shaanxi province, NW China. Of a total of 32 groundwater samples, 31% had NO 3 - –N concentrations exceeding the accepted drinking water limit of 10 mg-N L −1 . Most of these samples were from the urban center of the study area, while samples with <10 mg-N L −1 were mainly from suburban areas. Combined with information on NO 3 - and Cl − , the variation in isotopes of NO 3 - in the groundwater suggest a mixing of multiple NO 3 - sources in areas on the urban/suburban border. By determining rainwater and river water NO 3 - isotopic values, the groundwater recharge mode can be deduced for Xi’an city. Chemical fertilizers and nitrification of N-containing organic materials contribute NO 3 - to suburban groundwater, while sewage effluent and nitrification dominate NO 3 - distribution in urban groundwater. Nitrification from organic soil N, manure and sewage was significant in some sampling areas, and NO 3 - isotopic values from groundwater in Xi’an indicated that the effects of denitrification were not an obvious contributor. Thus, the δ 15 N–NO 3 - enrichment process is mainly caused by the intense anthropogenic activity in the city center. From the urban center to suburban areas, the mean δ 15 N–NO 3 - values varied from +16.4‰ to +5.4‰, and the mean NO 3 - –N concentrations varied from 28

  13. Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China.

    Science.gov (United States)

    Sawut, Rukeya; Kasim, Nijat; Maihemuti, Balati; Hu, Li; Abliz, Abdugheni; Abdujappar, Abdusalam; Kurban, Miradil

    2018-06-17

    The objective of this study was to investigate heavy metal contamination in four major vegetable bases and determine the health risks of residents in the vicinity of the highly urbanized city Urumqi in Xinjiang, China. In this paper, we determined the contents of six heavy metals (i.e., As, Zn, Cd, Cr, Hg, and Pb) in surface soil and groundwater to evaluate the levels of heavy metal pollution and human health risks using the pollution index (PI), the Nemerow integrated pollution index (NIPI), the ecological risk factor (E i r ), risk index (RI) and the health risk assessment model. The results showed that (1) The PI, NIPI, the ecological risk factor and risk index indicated that Cd and Hg were the primary pollutants in Sishihu village. These indices suggested moderate to slightly heavy potential ecological risks. In Anningqu town, Hg and Cd led to high levels of pollution and posed slightly heavy potential ecological risks. In Qinggedahu village, it was concluded that the metals Zn, Cr, Cd, Hg, and Pb caused moderate to heavy pollution. In Liushihu village, the pollution trends in the area were low. The results of the pollution level of the irrigation well water (i.e., groundwater) indicated that the well water was considerably safer than the soil, but Cr posed a slight pollution risk. (2) The non-carcinogenic risks for adults based on the HI values of these four vegetable bases were  Sishihu village > Anningqu town. For children, the carcinogenic risks posed by As through trough inhalation and ingestion were the main exposure pathways. From the TCR results, it can be seen that in Sishihu village, Anningqu town, and Qinggedahu village, the TCR values for adults and children were >1 × 10 -4 (unitless), and this degree of carcinogenic risk is unacceptable. (3) The identification of risk sources determined the main pollution sources affecting the vegetable bases were human activities and natural sources. Anthropogenic activities were most often related to

  14. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China.

    Science.gov (United States)

    Zhang, Qian-Qian; Ying, Guang-Guo; Chen, Zhi-Feng; Liu, You-Sheng; Liu, Wang-Rong; Zhao, Jian-Liang

    2015-07-01

    Climbazole is an antidandruff active ingredient commonly used in personal care products, but little is known about its environmental fate. The aim of this study was to evaluate the fate of climbazole in water, sediment, soil and air compartments of the whole China by using a level III multimedia fugacity model. The usage of climbazole was calculated to be 345 t in the whole China according to the market research data, and after wastewater treatment a total emission of 245 t was discharged into the receiving environment with approximately 93% into the water compartment and 7% into the soil compartment. The developed fugacity model was successfully applied to estimate the contamination levels and mass inventories of climbazole in various environmental compartments of the river basins in China. The predicted environmental concentration ranges of climbazole were: 0.20-367 ng/L in water, and 0.009-25.2 ng/g dry weight in sediment. The highest concentration was mainly found in Haihe River basin and the lowest was in basins of Tibet and Xinjiang regions. The mass inventory of climbazole in the whole China was estimated to be 294 t, with 6.79% in water, 83.7% in sediment, 9.49% in soil, and 0.002% in air. Preliminary risk assessment showed high risks in sediment posed by climbazole in 2 out of 58 basins in China. The medium risks in water and sediment were mostly concentrated in north China. To the best of our knowledge, it is the first report on the emissions and multimedia fate of climbazole in the river basins of the whole China. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The current strain distribution in the North China Basin of eastern China by least-squares collocation

    Science.gov (United States)

    Wu, J. C.; Tang, H. W.; Chen, Y. Q.; Li, Y. X.

    2006-07-01

    In this paper, the velocities of 154 stations obtained in 2001 and 2003 GPS survey campaigns are applied to formulate a continuous velocity field by the least-squares collocation method. The strain rate field obtained by the least-squares collocation method shows more clear deformation patterns than that of the conventional discrete triangle method. The significant deformation zones obtained are mainly located in three places, to the north of Tangshan, between Tianjing and Shijiazhuang, and to the north of Datong, which agree with the places of the Holocene active deformation zones obtained by geological investigations. The maximum shear strain rate is located at latitude 38.6°N and longitude 116.8°E, with a magnitude of 0.13 ppm/a. The strain rate field obtained can be used for earthquake prediction research in the North China Basin.

  16. Stationarity of annual flood peaks during 1951-2010 in the Pearl River basin, China

    Science.gov (United States)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Xiao, Mingzhong; Xu, Chong-Yu

    2014-11-01

    The assumption of stationarity of annual peak flood (APF) records at 28 hydrological stations across the Pearl River basin, China, is tested. Abrupt changes in mean and variance are tested using the Pettitt technique and the Loess method. Trends of APFs are analyzed using the Mann-Kendall method and the Spearman technique. And then the stationarity of the APF series is further investigated by GAMLSS models and long-term persistence. Results indicate that: (1) abrupt changes in mean and variance have similar influences on the changing properties of APFs, such as stationarity. Abrupt changes in mean and variance are only field significant in the East River basin; (2) the change points have a considerable impact on the detection of trends, and these may be attributed to the fact that a abrupt increase or decrease in mean values will affect the trend variations. Besides, for the APF series being free of change points and trend, the GAMLSS models also corroborate stationarity of the APF series; (3) the nonstationarity in the Pearl River basin is mainly due to the existence of the change point. However, the APF series with change points in mean and/or variance are also characterized by long-term persistence, and thus it is infeasible to assert that the abrupt behaviors and/or trends of the APF series are the result of human activities or long-term persistence, especially in the East River basin. Results of this study will provide information for management of water resources and design of hydraulic facilities in the Pearl River basin in a changing environment.

  17. Spatial and temporal characteristics of droughts in Luanhe River basin, China

    Science.gov (United States)

    Wang, Yixuan; Zhang, Ting; Chen, Xu; Li, Jianzhu; Feng, Ping

    2018-02-01

    The spatial and temporal characteristics of drought are investigated for Luanhe River basin, using monthly precipitation data from 26 stations covering the common period of 1958-2011. The spatial pattern of drought was assessed by applying principal component analysis (PCA) to the Standardized Precipitation Index (SPI) computed on 3- and 12-month time scales. In addition, annual SPI and seasonal SPIs (including spring SPI, summer SPI, autumn SPI, and winter SPI) were also defined and considered in this study to characterize seasonal and annual drought conditions, respectively. For all seven SPI cases, three distinctive sub-regions with different temporal evolutions of droughts are well identified, respectively, representing the southeast, middle, and northwest of the Luanhe River basin. The Mann-Kendall (MK) trend test with a trend-free pre-whitening (TFPW) procedure and Sen's method were used to determine the temporal trends in the annual and seasonal SPI time series. The continuous wavelet transform (CWT) was employed for further detecting the periodical features of drought condition in each sub-region. Results of MK and Sen's tests show a general tendency of intensification in summer drought over the entire basin, while a significant mitigating trend in spring drought. On the whole, an aggravating trend of inter-annual drought is discovered across the basin. Based on the CWT, the drought variability in the basin is generally dominated by 16- to 64-month cycles, and the 2- to 6-year cycles appear to be obvious when concerned with annual and seasonal droughts. Furthermore, a cross wavelet analysis was performed to examine the possible links between the drought conditions and large-scale climate patterns. The teleconnections of ENSO, NAO, PDO, and AMO show significant influences on the regional droughts principally concentrated in the 16- to 64-month period, maybe responsible for the physical causes of the cyclical behavior of drought occurrences. PDO and AMO also

  18. Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China

    International Nuclear Information System (INIS)

    Mengmeng Zhang; Xinwei Lu; Hao Chen; Panpan Gao; Yi Fu

    2015-01-01

    Concentrations and sources of multi-elements in road dusts from an industrial city of northwest China were determined. Dust samples have elevated concentrations of Co, Cr, Cu, Pb, Zn, Sr and Ba. The dusts were mainly moderate enrichment by Co and Pb, minimal enrichment to moderate enrichment by Sr and Zn, and deficiency to minimal enrichment by other trace metals. Mn, V, Y, La, Hf, Th and U originated from soil. Cu, Pb, Cr, Ba and Sr mainly derived from traffic. Co, Zr, Ni, Ga, As and Zn have mixed sources of nature, industry and traffic. (author)

  19. Progressive Seismic Failure, Seismic Gap, and Great Seismic Risk across the Densely Populated North China Basin

    Science.gov (United States)

    Yin, A.; Yu, X.; Shen, Z.

    2014-12-01

    Although the seismically active North China basin has the most complete written records of pre-instrumentation earthquakes in the world, this information has not been fully utilized for assessing potential earthquake hazards of this densely populated region that hosts ~200 million people. In this study, we use the historical records to document the earthquake migration pattern and the existence of a 180-km seismic gap along the 600-km long right-slip Tangshan-Hejian-Cixian (THC) fault zone that cuts across the North China basin. The newly recognized seismic gap, which is centered at Tianjin with a population of 11 million people and ~120 km from Beijing (22 million people) and Tangshan (7 million people), has not been ruptured in the past 1000 years by M≥6 earthquakes. The seismic migration pattern in the past millennium suggests that the epicenters of major earthquakes have shifted towards this seismic gap along the THC fault, which implies that the 180- km gap could be the site of the next great earthquake with M≈7.6 if it is ruptured by a single event. Alternatively, the seismic gap may be explained by aseismic creeping or seismic strain transfer between active faults.

  20. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China.

    Science.gov (United States)

    Yang, Qingchun; Wang, Luchen; Ma, Hongyun; Yu, Kun; Martín, Jordi Delgado

    2016-09-01

    Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Preliminary investigation on the occurrence of several sulfonamide antibiotics in the Haihe River Basin of China

    Science.gov (United States)

    Zhang, S. L.; Zhang, J.; Wang, Z. G.; Wang, Y. Z.; Liang, S. T.; Liu, C.; Wang, Z.

    2017-08-01

    Several samples collected from lakes, rivers and reservoirs in Haihe river basin of China were analyzed for 8 sulfonamide antibiotics by using solid-phase extraction and liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). All water samples were enriched with HLB extraction cartridges. The antibiotics were separated by gradient elution with methanol as the mobile phase adding 0.1% formic acid. The eluate was then analyzed by the mode of multiple reaction monitoring (MRM). The limits of detection (LOD) and quantification (LOQ) were 0.4-1.0 ng/L and 1.0-3.0 ng/L respectively. The method was used for the analysis of 13 samples from Haihe river basin in China. The results showed that sulfamethoxazole was present in all water samples with maximum concentration of 107.59 ng/L. Sulfadiazine was also frequently detected, concentrations ranging from 2.81 ng/L to 85.35 ng/L. Other sulfonamide antibiotics were not detected in most water samples, especially for those samples from drinking water resources.

  2. On the evolution of the geothermal regime of the North China Basin

    Science.gov (United States)

    Wang, Ji-yang; Chen, Mo-xiang; Wang, Ji-an; Deng, Xiao

    1985-12-01

    Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m -2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m -2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.

  3. Spatio-temporal variation analysis of hydrochemical characteristics in the Luanhe River Basin, China.

    Science.gov (United States)

    Xie, Ying; Li, Xuyong; Wang, Huiliang; Li, Wenzan

    2013-01-01

    The analysis of river pollution and assessment of spatial and temporal variation in hydrochemistry are essential to river water pollution control in the context of rapid economic growth and growing pollution threats in China. In this study, we focused on hydrochemical characteristics of the Luanhe River Basin (China) and evaluation of 12 hydrochemical variables obtained from 32 monitoring stations during 2001-2010. In each study year, the streams were monitored in the three hydrological periods (April, August, and October) to observe differences in the impacts of agricultural activity and rainfall pattern. Multivariate statistical methods were applied to the data set, and the river water hydrochemical characteristics were assessed using the water quality identification index (WQIIM). The results showed that parameters had variable contribution to water quality status in different months except for ammonia nitrogen (NH4-N) and total nitrogen (TN), which were the most important parameters in contributing to water quality variations for all three periods. Results of WQIIM revealed that 18 sites were classified as 'meeting standard' while the other 14 sites were classified as 'not meeting standard', with most of the seriously polluted sites located in urban area, mainly due to discharge of wastewater from domestic and industrial sources. Sites with low pollution level were located primarily in smaller tributaries, whereas sites of medium and high pollution levels were in the main river channel and the larger tributaries. Our findings provide valuable information and guidance for water pollution control and water resource management in the Luanhe River Basin.

  4. Reservoir Space Evolution of Volcanic Rocks in Deep Songliao Basin, China

    Science.gov (United States)

    Zheng, M.; Wu, X.; Zheng, M.; HU, J.; Wang, S.

    2015-12-01

    Recent years, large amount of natural gas has been discovered in volcanic rock of Lower Crataceous of Songliao basin. Volcanic reservoirs have become one of the important target reservoir types of eastern basin of China. In order to study the volcanic reservoirs, we need to know the main factors controlling the reservoir space. By careful obsercation on volcanic drilling core, casting thin sections and statistical analysis of petrophysical properties of volcanic reservoir in Songliao basin, it can be suggested that the igneous rock reservoir in Yingcheng formation of Lower Crataceous is composed of different rock types, such ad rohylite, rohylitic crystal tuff, autoclastic brecciation lava and so on. There are different reservoirs storage space in in various lithological igneous rocks, but they are mainly composed of primary stoma, secondary solution pores and fractures.The evolution of storage space can be divided into 3 stage: the pramary reservoir space,exogenic leaching process and burial diagenesis.During the evolution process, the reservoir space is effected by secondary minerals, tectonic movement and volcanic hydrothermal solution. The pore of volcanic reservoirs can be partially filled by secondary minerals, but also may be dissoluted by other chemical volcanic hydrothermal solution. Therefore, the favorable places for better-quality volcanic reservoirs are the near-crater facies of vocanic apparatus and dissolution zones on the high position of paleo-structures.

  5. Sunshine Duration Variability in Haihe River Basin, China, during 1966–2015

    Directory of Open Access Journals (Sweden)

    Jing Ren

    2017-10-01

    Full Text Available Sunshine can have a profound impact on the systematic change in climate elements, such as temperature and wind speed, and in turn affects many aspects of the human society. In recent years, there has been a substantial interest in the variation of sunshine duration due to the dramatic global climate change. Hence, there is a need to better understand the variation of sunshine duration in order to cope with climate change. This study aimed to analyze the variation of sunshine duration in Haihe River basin, China, and its relationship with temperature, wind speed and low-level cloudiness. The annual, seasonal and monthly changes of sunshine duration were analyzed based on the data collected from 33 meteorological stations over the Haihe River basin during 1966–2015. It is evident that the annual, seasonal and monthly sunshine duration shows a decreasing trend over time. In addition, the annual sunshine duration is lower with a higher climate tendency rate in the southern and eastern coastal regions than that in the northwestern regions. It is negatively correlated with temperature (r = −0.50 and low-level cloudiness (r = −0.29, but positively with wind speed (r = 0.61. Wind speed may be one of the important causes of the decrease of sunshine duration in the Haihe River basin during 1966–2015. These changes may have significant implications for the hydrological cycle in the area.

  6. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    Science.gov (United States)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  7. Assessment of gamma radiation levels and natural radioactivity in soils along a subtropical river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dekun; Yu, Tao [Third Institute of Oceanography, Xiamen (China). Lab. of Marine Isotopic Technology and Environmental Risk Assessment

    2017-07-01

    The activities of natural radionuclides in the environment can be used to assess radiological effects. Monitoring the radiation level in soils is important for public health. It also has important geochemical implications as most of the sediment eroded from river basins is from soil. Therefore, we carried out a soil sampling campaign along a subtropical river basin in southeastern China (Jiulong River). Surface and depth profile soils were collected, and the natural radionuclide activities were measured. The activities of the natural radionuclides {sup 238}U, {sup 232}Th, and {sup 40}K in the surface soils varied from 31.6 to 132.1 Bq kg-dry{sup -1}, 37.8 to 174.0 Bq kg-dry{sup -1}, and 52.3 to 596.2 Bq kg-dry{sup -1}, with average values of 56.7±30.3 Bq kg-dry{sup -1}, 86.7±41.3 Bq kg-dry{sup -1}, and 352.8±190.6 Bq kg-dry{sup -1}, respectively. The absorbed gamma dose in air and the annual effective dose equivalent (AEDE) in surface soils along the river basin were both higher than the world average. In the depth profiles, excess {sup 210}Pb ({sup 210}Pbex) decreased with depth and significant correlation between {sup 210}Pbex and TOC was observed, suggesting that they are affected by similar processes (leaching and sorption).

  8. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China

    Science.gov (United States)

    Xie, Yaowen; Wang, Guisheng; Wang, Xueqiang; Fan, Peilei

    2017-12-01

    Oasis evolution, one of the most obvious surface processes in arid regions, affects various aspects of the regional environment, such as hydrological processes, ecological conditions, and microclimates. In this paper, the historical spatio-temporal evolution of the cultivated oases in the Heihe River Basin, the second largest inland watershed in the northwest of China, was assessed using multidisciplinary methods and data from multiple sources, including historical literature, ancient sites, maps and remotely sensed images. The findings show that cultivated oases were first developed on a large scale during the Han Dynasty (121 BC-220) and then gradually decreased in extent from the Six Dynasties period (220-581) to the Sui-Tang period (581-907), reaching a minimum in the Song-Yuan period (960-1368). An abrupt revival occurred during the Ming Dynasty (1368-1644) and continued through the Qing Dynasty (1644-1911), and during the period of the Republic of China (1912-1949), oasis development reached its greatest peak of the entire historical period. The oasis areas during seven major historical periods, i.e., Han, Six Dynasties, Sui-Tang, Song-Yuan, Ming, Qing, and Republic of China, are estimated to have been 1703 km2, 1115 km2, 629 km2, 614 km2, 964 km2, 1205 km2, and 1917 km2, respectively. The spatial distribution generally exhibited a continuous sprawl process, with the center of the oases moving gradually from the downstream region to the middle and even upstream regions. The oases along the main river remained stable during most periods, whereas those close to the terminal reaches were subject to frequent variations and even abandonment. Socio-economic factors were the main forces driving the evolution of cultivated oases in the area; among them, political and societal stability, national defense, agricultural policy, population, and technological progress were the most important.

  9. Slope-apron deposition in an ordovician arc-related setting: The Vuelta de Las Tolas Member (Suri Formation), Famatina Basin, northwest Argentina

    Science.gov (United States)

    Mangano, M.G.; Buatois, L.A.

    1997-01-01

    The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh

  10. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengli [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Western China' s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Nan, Zhongren, E-mail: nanzhongren@lzu.edu.cn [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Key Laboratory of Western China' s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China); Prete, Daniel [Department of Chemistry and Biology, Ryerson University, Toronto M5B 2K3 (Canada); Ma, Jianmin; Liao, Qin; Zhang, Qian [Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000 (China)

    2016-10-15

    There is limited information on accumulation, transfer, and source of mercury in wheats under field conditions over the Loess Plateau, northwest China. The present study collected 26 pairs of topsoil and whole wheat samples (roots, stems, leaves, shells, and grains) from Dongdagou stream watershed and upper Xidagou stream watershed, Baiyin City, northwest China. Hg concentrations from these samples were used to identify their relationships with soil properties, interactions with other metals, localization of Hg in the different wheat tissues, bio-concentration and transfer of Hg, and major sources of Hg in wheat. Results show that Hg levels in 11 out of 26 sampled soils (42.3% of soil samples) exceeded Hg limit of grade II soil environmental quality standards in China (1.0 mg·kg{sup −} {sup 1}). Likewise, it was also found that Hg in over 50% of wheat grain samples reached or exceeded the maximum permissible food safety levels (0.02 mg·kg{sup −} {sup 1}) according to the General Standard of Contaminants in Food in China (GB 2762-2012). The spatial distribution pattern of Hg in wheats grains was different from that in the sampled soils. Hg concentrations in different wheat tissues were highest in roots, followed by leaves, stalks, shells, and grains, respectively. Bio-concentration factors (BCF) of Hg in almost all grains samples were one or two orders of magnitude lower than that in roots, except for two wheat samples. The translocation factors (TF) of Hg in wheat tissues on average were leaves > stems > shells > grains. The spatial distribution of Hg and its correlation with other heavy metal detected simultaneously in the soil samples suggested that the Hg soil contamination was probably caused by past sewage irrigation practices and atmospheric deposition. Correlation analysis revealed that the principle source of Hg in wheat roots was very likely from Hg contaminated soils. - Highlights: • Hg concentrations in wheats and corresponding soils from loess

  11. Accumulation, transfer, and potential sources of mercury in the soil-wheat system under field conditions over the Loess Plateau, northwest China

    International Nuclear Information System (INIS)

    Wang, Shengli; Nan, Zhongren; Prete, Daniel; Ma, Jianmin; Liao, Qin; Zhang, Qian

    2016-01-01

    There is limited information on accumulation, transfer, and source of mercury in wheats under field conditions over the Loess Plateau, northwest China. The present study collected 26 pairs of topsoil and whole wheat samples (roots, stems, leaves, shells, and grains) from Dongdagou stream watershed and upper Xidagou stream watershed, Baiyin City, northwest China. Hg concentrations from these samples were used to identify their relationships with soil properties, interactions with other metals, localization of Hg in the different wheat tissues, bio-concentration and transfer of Hg, and major sources of Hg in wheat. Results show that Hg levels in 11 out of 26 sampled soils (42.3% of soil samples) exceeded Hg limit of grade II soil environmental quality standards in China (1.0 mg·kg"− "1). Likewise, it was also found that Hg in over 50% of wheat grain samples reached or exceeded the maximum permissible food safety levels (0.02 mg·kg"− "1) according to the General Standard of Contaminants in Food in China (GB 2762-2012). The spatial distribution pattern of Hg in wheats grains was different from that in the sampled soils. Hg concentrations in different wheat tissues were highest in roots, followed by leaves, stalks, shells, and grains, respectively. Bio-concentration factors (BCF) of Hg in almost all grains samples were one or two orders of magnitude lower than that in roots, except for two wheat samples. The translocation factors (TF) of Hg in wheat tissues on average were leaves > stems > shells > grains. The spatial distribution of Hg and its correlation with other heavy metal detected simultaneously in the soil samples suggested that the Hg soil contamination was probably caused by past sewage irrigation practices and atmospheric deposition. Correlation analysis revealed that the principle source of Hg in wheat roots was very likely from Hg contaminated soils. - Highlights: • Hg concentrations in wheats and corresponding soils from loess plateau, northwest

  12. Groundwater Depth Affects Phosphorus But Not Carbon and Nitrogen Concentrations of a Desert Phreatophyte in Northwest China.

    Science.gov (United States)

    Zhang, Bo; Gao, Xiaopeng; Li, Lei; Lu, Yan; Shareef, Muhammad; Huang, Caibian; Liu, Guojun; Gui, Dongwei; Zeng, Fanjiang

    2018-01-01

    Ecological stoichiometry is an important aspect in the analysis of the changes in ecological system composition, structure, and function and understanding of plant adaptation in habitats. Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations in desert phreatophytes can be affected by different depths of groundwater through its effect on the adsorption and utilization of nutrient and plant biomass. We examined the biomass, soil organic C, available (mineral) N, and available P, and leaf C, N, and P concentrations of Alhagi sparsifolia grown at varying groundwater depths of 2.5, 4.5, and 11.0 m in 2015 and 2016 growing seasons in a desert-oasis ecotone in northwest China. The biomass of A. sparsifolia and the C, N, and P concentrations in soil and A. sparsifolia showed different responses to various groundwater depths. The leaf P concentration of A. sparsifolia was lower at 4.5 m than at 2.5 and 11.0 m likely because of a biomass dilution effect. By contrast, leaf C and N concentrations were generally unaffected by groundwater depth, thereby confirming that C and N accumulations in A. sparsifolia were predominantly determined by C fixation through the photosynthesis and biological fixation of atmospheric N 2 , respectively. Soil C, N, and P concentrations at 4.5 m were significantly lower than those at 11.0 m. Leaf P concentration was significantly and positively correlated with soil N concentration at all of the groundwater depths. The C:N and C:P mass ratios of A. sparsifolia at 4.5 m were higher than those at the other groundwater depths, suggesting a defensive life history strategy. Conversely, A. sparsifolia likely adopted a competitive strategy at 2.5 and 11.0 m as indicated by the low C:N and C:P mass ratios. To our knowledge, this study is the first to elucidate the variation in the C, N, and P stoichiometry of a desert phreatophyte at different groundwater depths in an arid ecosystem.

  13. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  14. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP, Ecosystem Respiration (Reco and Net Ecosystem Exchange (NEE were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different

  15. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China.

    Science.gov (United States)

    Yanhui Wang; Pengtao Yu; Karl-Heinz Feger; Xiaohua Wei; Ge Sun; et al

    2011-01-01

    Large-scale forestation has been undertaken over decades principally to control the serious soil erosion in the Loess Plateau of China. A quantitative assessment of the hydrological effects of forestation, especially on basin water yield, is critical for the sustainable forestry development within this dry region. In this study, we constructed the multi-annual water...

  16. Molecular isotopic characterisation of hydrocarbon biomarkers in Palaeocene-Eocene evaporitic, lacustrine source rocks from the Jianghan Basin, China

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Grice, Kliti; Schouten, S.; Peters, Kenneth E.

    1998-01-01

    Immature organic matter in lacustrine source rocks from the Jianghan Basin, eastern China, was studied for distributions and stable carbon isotopic compositions (13C) of hydrocarbon biomarkers. All of the bitumens contain isorenieratane (13C ca. −17 ) indicating the presence of Chlorobiaceae, and

  17. Magnetostratigraphic dating of the Xiashagou Fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China

    NARCIS (Netherlands)

    Liu, Ping; Deng, Chenglong; Li, Shihu; Cai, Shuhui; Cheng, Hongjiang; Wei, Qi; Zhu, Rixiang

    2012-01-01

    The Nihewan Basin sedimentary sequences in northern China are rich in mammalian fossil and Paleolithic sites, thus providing insights into our understanding of Quaternary land mammal biochronology and early human settlements in East Asia. Here we present high-resolution magnetostratigraphic results

  18. Assessment of undiscovered continuous oil and gas resources of Upper Cretaceous Shales in the Songliao Basin of China, 2017

    Science.gov (United States)

    Potter, Christopher J.; Schenk, Christopher J.; Pitman, Janet K.; Klett, Timothy R.; Tennyson, Marilyn E.; Gaswirth, Stephanie B.; Leathers-Miller, Heidi M.; Finn, Thomas M.; Brownfield, Michael E.; Mercier, Tracey J.; Marra, Kristen R.; Woodall, Cheryl A.

    2018-05-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 3.3 billion barrels of oil and 887 billion cubic feet of gas in shale reservoirs of the Upper Cretaceous Qingshankou and Nenjiang Formations in the Songliao Basin of northeastern China.

  19. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China

    NARCIS (Netherlands)

    Reidsma, P.; Feng, S.; Loon, van M.; Luo, X.; Kang, C.; Lubbers, M.T.M.H.; Kanellopoulos, A.; Wolf, J.; Ittersum, van M.K.; Qu, F.

    2012-01-01

    Water pollution in Chinese lakes is a major problem. To reduce nutrient pollution and enhance sustainable development in Taihu Basin, China, an integrated assessment of the impacts of agricultural land use policies has been performed, using the technical coefficient generator TechnoGIN and the

  20. Organic walled dinoflagellate cysts from the Tarim Basin, western China: Implications for the retreat of the Paratethys Sea

    NARCIS (Netherlands)

    Grothe, A.; Houben, A.J.P.; Bosboom, R.E.; Dupont-Nivet, G.; Brinkhuis, H.

    2011-01-01

    Paleogene sediments of the Tarim basin in western China hold the easternmost extent of the Paratethys Sea, an epicontinental sea that covered a large part of Eurasia and probably extended to the Mediterranean Tethys in the west. The late Cretaceous and Paleogene sedimentary record of the

  1. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    Science.gov (United States)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  2. Investigating the Impact of Shading Effect on the Characteristics of a Large-Scale Grid-Connected PV Power Plant in Northwest China

    Directory of Open Access Journals (Sweden)

    Yunlin Sun

    2014-01-01

    Full Text Available Northwest China is an ideal region for large-scale grid-connected PV system installation due to its abundant solar radiation and vast areas. For grid-connected PV systems in this region, one of the key issues is how to reduce the shading effect as much as possible to maximize their power generation. In this paper, a shading simulation model for PV modules is established and its reliability is verified under the standard testing condition (STC in laboratory. Based on the investigation result of a 20 MWp grid-connected PV plant in northwest China, the typical shading phenomena are classified and analyzed individually, such as power distribution buildings shading and wire poles shading, plants and birds droppings shading, and front-row PV arrays shading. A series of experiments is also conducted on-site to evaluate and compare the impacts of different typical shading forms. Finally, some feasible solutions are proposed to avoid or reduce the shading effect of PV system during operation in such region.

  3. Uplifting of the Jiamusi Block in the eastern Central Asian Orogenic Belt, NE China: evidence from basin provenance and geochronology

    Science.gov (United States)

    Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei

    2010-05-01

    The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of

  4. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    Science.gov (United States)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for

  5. Paleomagnetic and magnetostratigraphic investigations of the whitehorse group/quartermaster (Dewey Lake) formation (upper permian-lowermost triassic) in the Palo Duro basin, northwest Texas, USA

    Science.gov (United States)

    Collins, Dylan R.

    In northwest Texas, upper Permian to lowermost Triassic hematite-cemented detrital sedimentary rocks, which include a small number of regionally extensive ash beds, were deposited during the time interval of the greatest mass extinction event sequences in Earth history. The magnetic polarity stratigraphy, as well as key rock magnetic properties, of the upper Whitehorse Group (WH) and Quartermaster formations (QM) at selected sections in the Palo Duro Basin, have been determined using thermal, and chemical demagnetization approaches and anisotropy of magnetic susceptibility, acquisition of isothermal remanent magnetization (IRM) and backfield demagnetization, and thermal demagnetization of three component IRM methods. Demagnetization results show that the WH/QM contains a primary/near-primary characteristic remanent magnetization at each level sampled and thus the magnetic polarity stratigraphy for each section can be compared with existing polarity time scales across the Permian-Triassic boundary. Estimated site mean directions yield a paleomagnetic pole for the latest Permian for North America of 57.8°N, 130.6°E from 38 sampled sites.

  6. Iodine mobilization in groundwater system at Datong basin, China: Evidence from hydrochemistry and fluorescence characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junxia; Wang, Yanxin, E-mail: yx.wang@cug.edu.cn; Guo, Wei; Xie, Xianjun; Zhang, Liping; Liu, Yaqing; Kong, Shuqiong

    2014-01-01

    Characterizing the speciation of iodine in groundwater is essential for understanding its hydrogeochemical behavior in aquifer systems. To quantify the variations in iodine speciation and assess factors controlling the distribution and transformation of iodine, 82 groundwater samples and 1 rain water were collected from the Datong basin, northern China in this study. Factor analysis (FA) and excitation emission matrix with parallel factor analysis (EEM–PARAFAC) were used to clarify the potential relationships among iodine species and other hydrochemical parameters. The iodine concentrations of groundwater range from 6.23 to 1380 μg L{sup −1} with 47% of samples exceeding its drinking water level of 150 μg L{sup −1} as recommended by the Chinese government. 57% of samples have ratios of iodate to total iodine greater than 60%, while iodide as the major species in 22% of the samples. Significant amounts of organic iodine with concentrations higher than 100 μg L{sup −1} were observed in 9 groundwater samples. Redox conditions of groundwater system strongly affect iodine concentration and speciation of inorganic iodine in groundwater, and extremely reducing condition restricts the iodine release from sediments into groundwater. The results of FA show that iodine mobilization in groundwater is related to the nature of dissolved organic matter. EEM-PARAFAC model demonstrates the dominance of terrestrial DOM sources and the presence of microbial activities in groundwater system of the Datong basin. It is proposed that degradation of organic matter and reductive dissolution of iron oxyhydroxides are major hydrogeochemical processes responsible for the mobilization of iodine release and the genesis of organic iodine. - Highlights: • Iodine species in groundwater was studied from Datong basin, northern China. • Weakly alkaline environment favors the accumulation of iodine in groundwater. • Iodate is the major species of iodine in groundwater from Datong

  7. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    Science.gov (United States)

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.

  8. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan

    KAUST Repository

    Farid, Asam M.

    2014-07-10

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center. © 2014 Springer International Publishing Switzerland.

  9. Feasibility of CO{sub 2} geological storage in the Xingou oil field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Sanxi [School of Environmental Studies, China University of Geosciences, Wuhan, 430074 (China); Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy, Changsha, 410001 (China); Shana, Huimei; Li, Yilian [School of Environmental Studies, China University of Geosciences, Wuhan, 430074 (China); Yang, Zhen; Zhong, Zhaohong [Changsha Engineering and Research Institute Ltd. of Nonferrous Metallurgy, Changsha, 410001 (China)

    2013-07-01

    Geological storage of CO{sub 2} as an effective way of reducing CO{sub 2} output to the atmosphere receives growing attention worldwide. To evaluate the feasibility of this technique in the Xingou oil field of Jianghan Basin in China, 2D and 3D models of CO{sub 2} geological storage were established using TOUGH2 software. Results showed that CO{sub 2} gas can be stored in the deepest reservoir through continuous injection over 50 years, and will remain effectively confined within the space under the second cap-rock during its diffusion over 500 years. Compared with 2D models, 3D models showed that the diffusion process of CO{sub 2} gas in the reservoir will create a mushroom-shaped zone of influence. (authors)

  10. Iron speciation and mineral characterization of upper Jurassic reservoir rocks in the Minhe Basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiangxian; Zheng, Guodong, E-mail: gdzhbj@mail.iggcas.ac.cn; Xu, Wang [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Liang, Minliang [Chinese Academy of Geological Sciences, Institute of Geomechanics, Key Lab of Shale Oil and Gas Geological Survey (China); Fan, Qiaohui; Wu, Yingzhong; Ye, Conglin [Chinese Academy of Sciences, Key Laboratory of Petroleum Resources, Gansu Province / Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics (China); Shozugawa, Katsumi; Matsuo, Motoyuki [The University of Tokyo, Graduate School of Arts and Sciences (Japan)

    2016-12-15

    Six samples from a natural outcrop of reservoir rocks with oil seepage and two control samples from surrounding area in the Minhe Basin, northwestern China were selectively collected and analyzed for mineralogical composition as well as iron speciation using X-ray powder diffraction (XRD) and Mössbauer spectroscopy, respectively. Iron species revealed that: (1) the oil-bearing reservoir rocks were changed by water-rock-oil interactions; (2) even in the same site, there was a different performance between sandstone and mudstone during the oil and gas infusion to the reservoirs; and (3) this was evidence indicating the selective channels of hydrocarbon migration. In addition, these studies showed that the iron speciation by Mössbauer spectroscopy could be useful for the study of oil and gas reservoirs, especially the processes of the water-rock interactions within petroleum reservoirs.

  11. Low Flow Regimes of the Tarim River Basin, China: Probabilistic Behavior, Causes and Implications

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2018-04-01

    Full Text Available Droughts are a frequent occurrence in Xinjiang, China, and therefore fundamental to determining their hydrologic characteristics is low flow analysis. To that end, 11 probability distribution functions and 26 copulas functions were employed to analyze the changing characteristics of low flow regime (defined as seven-day low flow of the Tarim River Basin. Results indicated that: (1 The Wakeby distribution satisfactorily described the probabilistic behavior of the low flow regime. According to Akaike Information Criterion (AIC, Bayesian Information Criterions (BIC, maximum likelihood, and other residual-based metrics, Tawn copula, Farlie–Gumbel–Morgenstern copula and Frank copula were the best choice and used in this current study. (2 After 1987, hydrological droughts of longer return periods were prone to higher occurrence frequency. (3 The low flow volume has been increasing in recent years due to the temperature-induced increase of snowmelt and increasing precipitation. However, hydrological droughts can be expected to occur due to the massive increase in water demand from the development of irrigated agriculture, increasing arable land and livestock farming. As a result, the water shortage in the lower Tarim River Basin will be increasingly severe under the influence of climate change and human activities. To alleviate the shortage would call for the development of water-saving agricultural irrigation, water-saving technology, conservation of eco-environment and sustainable development of local socio-economy.

  12. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongguang; Yu, Zhisheng; Liu, Ruyin [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Zhang, Hongxun [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences; Zhong, Qiding; Xiong, Zhenghe [China National Research Institute of Food and Fermentation Industries, Beijing (China). Food Analysis using Isotope Technology Lab

    2012-12-15

    To identify the methanogenic pathways present in a deep coal bed methane (CBM) reservoir associated with Eastern Ordos Basin in China, a series of geochemical and microbiological studies was performed using gas and water samples produced from the Liulin CBM reservoir. The composition and stable isotopic ratios of CBM implied a mixed biogenic and thermogenic origin of the methane. Archaeal 16S rRNA gene analysis revealed the dominance of the methylotrophic methanogen Methanolobus in the water produced. The high potential of methane production by methylotrophic methanogens was found in the enrichments using the water samples amended with methanol and incubated at 25 and 35 C. Methylotrophic methanogens were the dominant archaea in both enrichments as shown by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Bacterial 16S rRNA gene analysis revealed that fermentative, sulfate-reducing, and nitrate-reducing bacteria inhabiting the water produced were a factor in coal biodegradation to fuel methanogens. These results suggested that past and ongoing biodegradation of coal by methylotrophic methanogens and syntrophic bacteria, as well as thermogenic CBM production, contributed to the Liulin CBM reserves associated with the Eastern Ordos Basin. (orig.)

  13. Drought Characteristic Analysis Based on an Improved PDSI in the Wei River Basin of China

    Directory of Open Access Journals (Sweden)

    Lei Zou

    2017-03-01

    Full Text Available In this study, to improve the efficiency of the original Palmer Drought Severity Index (PDSI_original, we coupled the Soil and Water Assessment tool (SWAT and PDSI_original to construct a drought index called PDSI_SWAT. The constructed PDSI_SWAT is applied in the Wei River Basin (WRB of China during 1960–2012. The comparison of the PDSI_SWAT with four other commonly used drought indices reveals the effectiveness of the PDSI_SWAT in describing the drought propagation processes in WRB. The whole WRB exhibits a dry trend, with more significant trends in the northern, southeastern and western WRB than the remaining regions. Furthermore, the drought frequencies show that drought seems to occur more likely in the northern part than the southern part of WRB. The principle component analysis method based on the PDSI_SWAT reveals that the whole basin can be further divided into three distinct sub-regions with different drought variability, i.e., the northern, southeastern and western part. Additionally, these three sub-regions are also consistent with the spatial pattern of drought shown by the drought frequency. The wavelet transform analysis method indicates that the El Niño-Southern Oscillation (ENSO events have strong impacts on inducing droughts in the WRB. The results of this study could be beneficial for a scientific water resources management and drought assessment in the current study area and also provide a valuable reference for other areas with similar climatic characteristics.

  14. Luminescence dating of the Zeketai loess section in the Ili Basin, northwestern China: Methodological considerations

    Science.gov (United States)

    Qin, Jintang; Zhou, Liping

    2018-04-01

    Loess deposits in Xinjiang, northwestern China are ideal archives for past environmental changes in the Westerlies-dominated central Asia. Among previous luminescence dating studies of loess in Xinjiang, few have attempted to systematically investigate the methodological aspects. In this study, we report results of a multiple-procedure luminescence dating of the Zeketai loess section in the Ili Basin, central Xinjiang. Optically stimulated luminescence (OSL) and post-infrared infrared stimulated luminescence (pIRIR) signals were used for quartz and polymineral grains of different sizes. The pIRIR ages obtained with two protocols agree well with each other and constrain the loess deposition between 50 ka and 88 ka. The OSL ages of fine-grained quartz are in stratigraphic order and range from 37 ka to 61 ka, but are ∼30% younger than the pIRIR295 ages of both fine and medium grained polyminerals. Although the causes of the discrepancy between the ages derived from different luminescence dating protocols are still to be understood, we stress that the quartz OSL ages of loess in this region are likely to be underestimated, especially for samples older than 40 ka. The polymineral or potassium feldspar pIRIR signal is recommended for dating loess in the Ili Basin, at least as an internal check.

  15. Regime Shift Identification of Runoff and Sediment Loads in the Yellow River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-10-01

    Full Text Available Runoff and sediment loads have exhibited significant changes over the past six decades in the Yellow River Basin, China. The current study evaluates the changing trends and regime shifts in runoff and sediment loads at both the annual and monthly time scales. The associated spatial and temporal variations are analyzed by a sequential t-test analysis of the regime shifts (STARS approach and the “breaks for additive seasonal and trend” (BFAST model using hydrological data at eight stations from the 1950s to 2011. Both runoff and sediment loads exhibit significant declines (p < 0.05, except in the upper reaches of the river near the Tangnaihai station. The regime shifts detected by the STARS approach are not completely consistent with the results from the BFAST method. In most cases, the regime shifts occurred in 1969 and 1986, due to the construction of large reservoirs. Climate change and other human activities, such as large-scale soil and water conservation measures, can result in abrupt changes in hydrological series at some stations. The trapping effects of reservoirs not only cause regime shifts of runoff and sediment loads, but also adjust their inter-annual and seasonal distributions. Various soil and water conservation measures are responsible for the significant reduction in runoff and sediment loads in the mid-lower reaches of the Yellow River Basin. In addition, water withdrawals from both river runoff and ground water play a critical role in the changing trends in runoff and indirectly alter the sediment loads. The findings provide a good reference for the effective promotion of climate change adaptation, water resources planning and river basin management.

  16. Changes in Remotely Sensed Vegetation Growth Trend in the Heihe Basin of Arid Northwestern China.

    Directory of Open Access Journals (Sweden)

    Wenchao Sun

    Full Text Available The Heihe River Basin (HRB is the second largest inland river basin in China, characterized by high diversity in geomorphology and irrigated agriculture in middle reaches. To improve the knowledge about the relationship between biotic and hydrological processes, this study used Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (NDVI data (1982-2006 to analyze spatiotemporal variations in vegetation growth by using the Mann-Kendall test together with Sen's slope estimator. The results indicate that 10.1% and 1.6% of basin area exhibit statistically significant (p < 0.05 upward and downward trends, and maximum magnitude is 0.066/10a and 0.026/10a, respectively. More specifically, an increasing trend was observed in the Qilian Mountains and Hexi Corridor and a decreasing trend detected in the transitional region between them. Increases in precipitation and temperature may be one possible reason for the changes of vegetation growth in the Qilian Mountains. And decreasing trend in transitional region may be driven by the changes in precipitation. Increases of irrigation contribute to the upward trend of NDVI for cropland in the Hexi Corridor, reflecting that agricultural development becomes more intensive. Our study demonstrates the complexity of the response of vegetation growth in the HRB to climate change and anthropogenic activities and correspondingly adopting mechanistic ecological models capable of describing both factors is favorable for reasonable predictions of future vegetation growth. It is also indicated that improving irrigation water use efficiency is one practical strategy to balance water demand between human and natural ecosystems in the HRB.

  17. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  18. Deltaic Depositional Systems, Evolution Characteristics, and Petroleum Potential, Palaeogene Sub-Basin, South China Sea

    Science.gov (United States)

    Li, Yuan; Wang, Hua; Zhang, Guotao

    2015-04-01

    Deltaic depositional systems are detailed characterized by morphology and facies in a Palaeogene continental sub-basin of Beibuwan Basin, South China Sea. Based on examination of 435 m of conventional cores from 30 wells, three major types of deltaic facies have been recognized: delta, beach and shoreface. Morphology and facies asymmetry between the down-drift and the up-drift sides present a typical asymmetric delta system:1) the down-rift, sourced primarily by the feeding river, are influenced by mixed river and wave processes. Deposits on this side are muddy and consist of barrier, bar, bay-fill, and bayhead delta facies with variable bioturbation intensity; 2)the up-rift, in contrast, is sourced by a second sediment source and typically consists of laterally continuous sandy beach and shoreface facies. Finally, two fundamentally different depositional models are established and reflect a different style of sequence stratigraphic patterns: 1) Multiple-stage faults slopes developed in the down-rift side feed fine grained sediment into two stages channelized front deltaic system; 2) Flexure slope break of the up-rift side, combining with deeper gradual slopes, conversely, feed coarser grained sediment from larger drainages into sandy beach and shoreface systems. Such a distinction has well explained the differentiation of the proven hydrocarbon reserves because the up-rift consists of well-sorted, mature, and laterally continuous homogeneous beach-shoreface reservoirs, whereas the down-rift, in contrast, is muddier and consists of less continuous, less mature, heterolithic reservoirs. The Delta asymmetry concepts and models don't only challenge the traditional definition of deltas in Fushan sub-basin, but also provides strong theoretical support for the future exploration. This process-based model may be applicable to many deep-water settings and provides a framework within which to interpret the stratigraphic and spatial distribution of these complex deposits.

  19. Sources, distribution and export coefficient of phosphorus in lowland polders of Lake Taihu Basin, China.

    Science.gov (United States)

    Huang, Jiacong; Gao, Junfeng; Jiang, Yong; Yin, Hongbin; Amiri, Bahman Jabbarian

    2017-12-01

    Identifying phosphorus (P) sources, distribution and export from lowland polders is important for P pollution management, however, is challenging due to the high complexity of hydrological and P transport processes in lowland areas. In this study, the spatial pattern and temporal dynamics of P export coefficient (PEC) from all the 2539 polders in Lake Taihu Basin, China were estimated using a coupled P model for describing P dynamics in a polder system. The estimated amount of P export from polders in Lake Taihu Basin during 2013 was 1916.2 t/yr, with a spatially-averaged PEC of 1.8 kg/ha/yr. PEC had peak values (more than 4.0 kg/ha/yr) in the polders near/within the large cities, and was high during the rice-cropping season. Sensitivity analysis based on the coupled P model revealed that the sensitive factors controlling the PEC varied spatially and changed through time. Precipitation and air temperature were the most sensitive factors controlling PEC. Culvert controlling and fertilization were sensitive factors controlling PEC during some periods. This study demonstrated an estimation of PEC from 2539 polders in Lake Taihu Basin, and an identification of sensitive environmental factors affecting PEC. The investigation of polder P export in a watershed scale is helpful for water managers to learn the distribution of P sources, to identify key P sources, and thus to achieve best management practice in controlling P export from lowland areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  1. Preliminary Simulations of CO2 Transport in the Dolostone Formations in the Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y; Wolery, T; Carroll, S

    2009-04-30

    This report summarizes preliminary 2-D reactive-transport simulations on the injection, storage and transport of supercritical CO{sub 2} in dolostone formations in the Ordos Basin in China. The purpose of the simulations was to evaluate the role that basin heterogeneity, permeability, CO{sub 2} flux, and geochemical reactions between the carbonate geology and the CO{sub 2} equilibrated brines have on the evolution of porosity and permeability in the storage reservoir. The 2-D simulation of CO{sub 2} injection at 10{sup 3} ton/year corresponds to CO{sub 2} injection at a rate of 3 x 10{sup 5} ton/year in a 3-D, low permeable rock. An average permeability of 10 md was used in the simulation and reflects the upper range of permeability reported for the Ordos Basin Majiagou Group. Transport and distribution of CO{sub 2} between in the gas, aqueous, and solid phases were followed during a 10-year injection phase and a 10-year post injection phase. Our results show that CO{sub 2} flux and the spatial distribution of reservoir permeability will dictate the transport of CO{sub 2} in the injection and post injection phases. The injection rate of supercritical CO{sub 2} into low permeable reservoirs may need to be adjusted to avoid over pressure and mechanical damage to the reservoir. Although it should be noted that 3-D simulations are needed to more accurately model pressure build-up in the injection phase. There is negligible change in porosity and permeability due to carbonate mineral dissolution or anhydrite precipitation because a very small amount of carbonate dissolution is required to reach equilibrium with respect these phases. Injected CO{sub 2} is stored largely in supercritical and dissolved phases. During the injection phase, CO{sub 2} is transport driven by pressure build up and CO{sub 2} buoyancy.

  2. Previously Unrecognized Ornithuromorph Bird Diversity in the Early Cretaceous Changma Basin, Gansu Province, Northwestern China

    Science.gov (United States)

    Wang, Ya-Ming; O'Connor, Jingmai K.; Li, Da-Qing; You, Hai-Lu

    2013-01-01

    Here we report on three new species of ornithuromorph birds from the Lower Cretaceous Xiagou Formation in the Changma Basin of Gansu Province, northwestern China: Yumenornis huangi gen. et sp. nov., Changmaornis houi gen. et sp. nov., and Jiuquanornis niui gen. et sp. nov.. The last of these is based on a previously published but unnamed specimen: GSGM-05-CM-021. Although incomplete, the specimens can be clearly distinguished from each other and from Gansus yumenensis Hou and Liu, 1984. Phylogenetic analysis resolves the three new taxa as basal ornithuromorphs. This study reveals previously unrecognized ornithuromorph diversity in the Changma avifauna, which is largely dominated by Gansus but with at least three other ornithuromorphs. Body mass estimates demonstrate that enantiornithines were much smaller than ornithuromorphs in the Changma avifauna. In addition, Changma enantiornithines preserve long and recurved pedal unguals, suggesting an arboreal lifestyle; in contrast, Changma ornithuromorphs tend to show terrestrial or even aquatic adaptions. Similar differences in body mass and ecology are also observed in the Jehol avifauna in northeastern China, suggesting niche partitioning between these two clades developed early in their evolutionary history. PMID:24147058

  3. Paleostress Analysis with Reflection Seismic Data: Example from the Songliao Basin, Northeast China

    Science.gov (United States)

    Liu, G.; Persaud, P.; Zhang, Y.

    2017-12-01

    Currently paleostress inversion using fault-slip data is a well established approach. However, the deformation history contained in folds has not yet been fully utilized to determine the paleostress field. By applying a 2D FFT-based algorithm to a structure or isopach map derived from reflection seismic data, we find a new way of exploiting the information preserved in folds to determine the paleostress. Our method requires that the strata have a large areal extent and are well preserved. After pre-processing the maps, we find that in the frequency-wavenumber (F-K) domain, folds with similar strikes are grouped into spectrum belts. Each belt parallels the short axis of the fold group and can therefore indicate the direction of the associated maximum horizontal stress. Some information on the relative chronology of stresses can be deduced by comparing the structure and isopach spectrum maps, e.g., if the structure spectrum map has one more spectrum belt than that of the isopach map (an approximate paleo-structure map of the corresponding stratum), we can conclude that the indicated stress postdated the deposition of the stratum. We selected three Late Cretaceous strata from a 3D seismic survey located in the intracontinental Songliao Basin, northeast China. The Songliao has experienced four episodes of deformation: mantle upwelling, rifting, postrift thermal subsidence and structural inversion (Feng et al., 2009). The selected strata were deposited during the third stage. Three structure and two isopach maps were decomposed in the F-K domain. Spectral analysis of the lower isopach map shows eight paleostress directions. We also identify a ninth paleostress in addition to the previous eight from the structure maps and the upper isopach map. The eight stress directions that exist in both the isopach and structure maps may have been active throughout the time period spanned by the strata. We interpret the ninth paleostress as being active after the deposition of the

  4. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    Science.gov (United States)

    Zhao, Yang; Jia, Xin; Lee, Harry F; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  5. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911. Global Position System information and structure (length, width, and span of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  6. Vegetation Carbon Storage, Spatial Patterns and Response to Altitude in Lancang River Basin, Southwest China

    Directory of Open Access Journals (Sweden)

    Long Chen

    2016-01-01

    Full Text Available Vegetation plays a very important role of carbon (C sinks in the global C cycle. With its complex terrain and diverse vegetation types, the Lancang River Basin (LRB of southwest China has huge C storage capacity. Therefore, understanding the spatial variations and controlling mechanisms of vegetation C storage is important to understand the regional C cycle. In this study, data from a forest inventory and field plots were used to estimate and map vegetation C storage distribution in the LRB, to qualify the quantitative relationships between vegetation C density and altitude at sublot and township scale, and a linear model or polynomial model was used to identify the relationship between C density and altitude at two spatial scales and two statistical scales. The results showed that a total of 300.32 Tg C was stored in the LRB, an important C sink in China. The majority of C storage was contributed by forests, notably oaks. The vegetation C storage exhibited nonlinear variation with latitudinal gradients. Altitude had tremendous influences on spatial patterns of vegetation C storage of three geomorphological types in the LRB. C storage decreased with increasing altitude at both town and sublot scales in the flat river valley (FRV region and the mid-low mountains gorge (MMG region, and first increased then decreased in the alpine gorge (AG region. This revealed that, in southwest China, altitude changes the latitudinal patterns of vegetation C storage; especially in the AG area, C density in the mid-altitude (3100 m area was higher than that of adjacent areas.

  7. Analysis of vegetation condition and its relationship with meteorological variables in the Yarlung Zangbo River Basin of China

    Directory of Open Access Journals (Sweden)

    X. Han

    2018-06-01

    Full Text Available The Yarlung Zangbo River Basin is located in the southwest border of China, which is of great significance to the socioeconomic development and ecological environment of Southwest China. Normalized Difference Vegetation Index (NDVI is an important index for investigating the change of vegetation cover, which is widely used as the representation value of vegetation cover. In this study, the NDVI is adopted to explore the vegetation condition in the Yarlung Zangbo River Basin during the recent 17 years, and the relationship between NDVI and meteorological variables has also been discussed. The results show that the annual maximum value of NDVI usually appears from July to September, in which August occupies a large proportion. The minimum value of NDVI appears from January to March, in which February takes up most of the percentage. The higher values of NDVI are generally located in the lower elevation area. When the altitude is higher than 3250 m, NDVI began to decline gradually, and the NDVI became gradual stabilization as the elevation is up to 6000 m. The correlation coefficient between NDVI and precipitation in the Yarlung Zangbo River Basin is greater than that with temperature. The Hurst index of the whole basin is 0.51, indicating that the NDVI of the Yarlung Zangbo River Basin shows a weak sustainability.

  8. Different scale land subsidence and ground fissure monitoring with multiple InSAR techniques over Fenwei basin, China

    Directory of Open Access Journals (Sweden)

    C. Zhao

    2015-11-01

    Full Text Available Fenwei basin, China, composed by several sub-basins, has been suffering severe geo-hazards in last 60 years, including large scale land subsidence and small scale ground fissure, which caused serious infrastructure damages and property losses. In this paper, we apply different InSAR techniques with different SAR data to monitor these hazards. Firstly, combined small baseline subset (SBAS InSAR method and persistent scatterers (PS InSAR method is used to multi-track Envisat ASAR data to retrieve the large scale land subsidence covering entire Fenwei basin, from which different land subsidence magnitudes are analyzed of different sub-basins. Secondly, PS-InSAR method is used to monitor the small scale ground fissure deformation in Yuncheng basin, where different spatial deformation gradient can be clearly discovered. Lastly, different track SAR data are contributed to retrieve two-dimensional deformation in both land subsidence and ground fissure region, Xi'an, China, which can be benefitial to explain the occurrence of ground fissure and the correlation between land subsidence and ground fissure.

  9. Optimization of wetland restoration siting and zoning in flood retention areas of river basins in China: A case study in Mengwa, Huaihe River Basin

    Science.gov (United States)

    Zhang, Xiaolei; Song, Yuqin

    2014-11-01

    Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.

  10. Nose Structure Delineation of Bouguer Anomaly as the Interpretation Basis of Probable Hydrocarbon Traps: A Case Study on the Mainland Area of Northwest Java Basin

    Directory of Open Access Journals (Sweden)

    Kamtono Kamtono

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i3.144Two important aspects in the exploration of oil and gas are technology and exploration concepts, but the use of technology is not always suitable for areas with geological conditions covered by young volcanic sediments or limestone. The land of the Northwest Java Basin is mostly covered by young volcanic products, so exploration using seismic methods will produce less clear image resolution. To identify and interpret the subsurface structure and the possibility of hydrocarbon trap, gravity measurements have been carried out. Delineation of nose structures of a Bouguer anomaly map was used to interpret the probability of hydrocarbon traps. The result of the study shows that the gravity anomalies could be categorized into three groups : low anomaly (< 34 mgal, middle anomaly (34 - 50 mgal, and high anomaly (> 50 mgal. The analysis of Bouguer anomaly indicates that the low anomaly is concentrated in Cibarusa area as a southern part of Ciputat Subbasin, and in Cikampek area. The result of delineation of the Bouguer anomaly map shows the nose structures existing on Cibinong-Cileungsi and Pangkalan-Bekasi Highs, while delineation of residual anomaly map shows the nose structures occurs on Cilamaya-Karawang high. Locally, the gas fields of Jatirangon and Cicauh areas exist on the flank of the nose structure of Pangkalan-Bekasi High, while the oil/gas field of Northern Cilamaya is situated on the flank of the nose structure of Cilamaya-Karawang High. The concept of fluid/gas migration concentrated on nose structures which are delineated from gravity data can be applied in the studied area. This concept needs to be tested in other oil and gas field areas.

  11. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    Science.gov (United States)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  12. Tectonic implications of Mesozoic magmatism to initiation of Cenozoic basin development within the passive South China Sea margin

    Science.gov (United States)

    Mai, Hue Anh; Chan, Yu Lu; Yeh, Meng Wan; Lee, Tung Yi

    2018-04-01

    The South China Sea (SCS) is one of the classical example of a non-volcanic passive margin situated within three tectonic plates of the Eurasian, Indo-Australian and Philippine Sea plate. The development of SCS resulted from interaction of various types of plate boundaries, and complex tectonic assemblage of micro blocks and accretionary prisms. Numerous models were proposed for the formation of SCS, yet none can fully satisfy different aspects of tectonic forces. Temporal and geographical reconstruction of Cretaceous and Cenozoic magmatism with the isochrones of major basins was conducted. Our reconstruction indicated the SE margin of Asia had gone through two crustal thinning events. The sites for rifting development are controlled by localized thermal weakening of magmatism. NW-SE extension setting during Late Cretaceous revealed by magmatism distribution and sedimentary basins allow us to allocate the retreated subduction of Pacific plate to the cause of first crustal thinning event. A magmatic gap between 75 and 65 Ma prior to the initiation of first basin rifting suggested a significant modification of geodynamic setting occurred. The Tainan basin, Pearl River Mouth basin, and Liyue basins started to develop since 65 Ma where the youngest Late Cretaceous magmatism concentrated. Sporadic bimodal volcanism between 65 and 40 Ma indicates further continental extension prior to the opening of SCS. The E-W extension of Malay basin and West Natuna began since late Eocene followed by N-S rifting of SCS as Neotethys subducted. The SCS ridge developed between Pearl River Mouth basin and Liyue basin where 40 Ma volcanic activities concentrated. The interaction of two continental stretching events by Pacific followed by Neotethys subduction with localized magmatic thermal weakening is the cause for the non-volcanic nature of SCS.

  13. New insights into the distribution and evolution of the Cenozoic Tan-Lu Fault Zone in the Liaohe sub-basin of the Bohai Bay Basin, eastern China

    Science.gov (United States)

    Huang, Lei; Liu, Chi-yang; Xu, Chang-gui; Wu, Kui; Wang, Guang-yuan; Jia, Nan

    2018-01-01

    As the largest strike-slip fault system in eastern China, the northeast-trending Tan-Lu Fault Zone (TLFZ) is a significant tectonic element contributing to the Mesozoic-Cenozoic regional geologic evolution of eastern Asia, as well as to the formation of ore deposits and oilfields. Because of the paucity of data, its distribution and evolutionary history in the offshore Liaohe sub-basin of the northern Bohai Bay Basin (BBB) are still poorly understood. Investigations of the strike-slip fault system in the western portion of the offshore Liaohe sub-basin via new seismic data provide us with new insights into the characteristics of the Cenozoic TLFZ. Results of this study show that Cenozoic dextral strike-slip faults occurred near the center of the Liaoxi graben in the offshore Liaohe sub-basin; these strike-slip faults connect with their counterparts to the north, the western part of the onshore Liaohe sub-basin, and have similar characteristics to those in other areas of the BBB in terms of kinematics, evolutionary history, and distribution; consequently, these faults are considered as the western branch of the TLFZ. All strike-slip faults within the Liaoxi graben merge at depth with a central subvertical basement fault induced by the reactivation of a pre-existing strike-slip basement fault, the pre-Cenozoic TLFZ. Data suggest that the TLFZ across the whole Liaohe sub-basin comprises two branches and that the Cenozoic distribution of this system was inherited from the pre-Cenozoic TLFZ. This characteristic distribution might be possessed by the whole TLFZ, thus the new understandings about the distribution and evolutionary model of the TLFZ in this study can be inferred in many research fields along the whole fault zone, such as regional geology, ore deposits, petroleum exploration and earthquake hazard.

  14. Epidemiology of gastroesophageal reflux disease: A general population-based study in Xi’an of Northwest China

    OpenAIRE

    Wang, Jin-Hai; Luo, Jin-Yan; Dong, Lei; Gong, Jun; Tong, Ming

    2004-01-01

    AIM: Gastroesophageal reflux disease (GERD) is a common disorder in the Western population, but detailed population-based data in China are limited. The aim of this study was to understand the epidemiology of symptomatic gastroesophageal reflux (SGER) in adults of Xi’an, a northwestern city of China, and to explore the potential risk factors of GERD.

  15. Human settlement and its influencing factors during the historicalperiod in an oasis-desert transition zone of Dunhuang, Hexi Corridor,northwest China

    Science.gov (United States)

    Li, H.; Dong, G.; Zhang, S.

    2017-12-01

    Many ancient cities and settlement sites have been found in Lucaogou, an ancient oasis near Dunhuangcity in northwest China. These settlements indicate that humans inhabited this area during the historicalperiod. However, the chronology and subsistence practices of this area remain unclear. Based on newdata from radiocarbon dating, macrobotanical analysis, and the synthesis of historical documents andhigh-resolution paleoclimatic records, we discuss the inter-relationship between human settlements andplant resource utilization strategies at Lucaogou ancient oasis during historical period. Our resultsindicate that these ancient sites in Lucaogou area were built between the Han dynasty (202 BC-AD 220)and the Ming dynasty (AD 1368-AD 1644). People mainly used foxtail millet, broomcorn millet, barleyand three types of wood (Tamarix, Salix, Populus), probably as fuel for cooking. Human settlement intensityin the area during the historical period was primarily influenced by political situations, whichmight also have been affected by fluctuations in precipitation.

  16. Using integrated multivariate statistics to assess the hydrochemistry of surface water quality, Lake Taihu basin, China

    Directory of Open Access Journals (Sweden)

    Xiangyu Mu

    2014-09-01

    Full Text Available Natural factors and anthropogenic activities both contribute dissolved chemical loads to  lakes and streams.  Mineral solubility,  geomorphology of the drainage basin, source strengths and climate all contribute to concentrations and their variability. Urbanization and agriculture waste-water particularly lead to aquatic environmental degradation. Major contaminant sources and controls on water quality can be asssessed by analyzing the variability in proportions of major and minor solutes in water coupled to mutivariate statistical methods.   The demand for freshwater needed for increasing crop production puulation and industrialization occurs almost everywhere in in China and these conflicting needs have led to widespread water contamination. Because of heavy nutrient loadings from all of these sources, Lake Taihu (eastern China notably suffers periodic hyper-eutrophication and drinking water deterioration, which has led to shortages of freshwater for the City of Wuxi and other nearby cities. This lake, the third largest freshwater body in China, has historically beeen considered a cultural treasure of China, and has supported long-term fisheries. The is increasing pressure to remediate the present contamination which compromises both aquiculture and the prior economic base centered on tourism.  However, remediation cannot be effectively done without first characterizing the broad nature of the non-point source pollution. To this end, we investigated the hydrochemical setting of Lake Taihu to determine how different land use types influence the variability of surface water chemistry in different water sources to the lake. We found that waters broadly show wide variability ranging from  calcium-magnesium-bicarbonate hydrochemical facies type to mixed sodium-sulfate-chloride type. Principal components analysis produced three principal components that explained 78% of the variance in the water quality and reflect three major types of water

  17. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shifeng [Key Laboratory of Resource Exploration Research of Hebei Province, Handan 056038 (China); Ren, Deyi; Li, Shengsheng; Jiang, Yaofa [China University of Mining and Technology, D11, Xueyuan Road, Haidian District, Beijing 100083 (China); Chou, Chen-Lin [Illinois State Geological Survey (Emeritus), 615 East Peabody Drive, Champaign, IL 61820 (United States)

    2006-04-03

    This paper discusses the mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. The results show that the vitrinite reflectance (0.58%) is lowest and the proportions of inertinite and liptinite (37.4% and 7.1%, respectively) in the No. 6 Coal of the Junger Coalfield are highest among all of the Late Paleozoic coals in the Ordos Basin. The No. 6 Coal may be divided vertically into four sections based on their mineral compositions and elemental concentrations. A high boehmite content (mean 6.1%) was identified in the No. 6 Coal. The minerals associated with the boehmite in the coal include goyazite, rutile, zircon, and Pb-bearing minerals (galena, clausthalite, and selenio-galena). The boehmite is derived from weathered and oxidized bauxite in the weathered crust of the underlying Benxi Formation (Pennsylvanian). A high Pb-bearing mineral content of samples ZG6-2 and ZG6-3 is likely of hydrothermal origin. The No. 6 coal is enriched in Ga (44.8 {mu}g/g), Se (8.2 {mu}g/g), Sr (423 {mu}g/g), Zr (234 {mu}g/g), REEs (193.3 {mu}g/g), Hg (0.35 {mu}g/g), Pb (35.7 {mu}g/g), and Th (17.8 {mu}g/g). Gallium and Th in the No. 6 Coal mainly occur in boehmite, and the Pb-bearing selenide and sulfide minerals contribute not only to Se and Pb contents in the coal, but also probably to Hg content. A high Zr content is attributed to the presence of zircon, and Sr is related to goyazite. The REEs in the coal are supplied from the sediment-source region, and the REEs leached from the adjacent partings by groundwater. (author)

  18. Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China

    Science.gov (United States)

    Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai

    2018-07-01

    The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.

  19. Hydrological Appraisal of Climate Change Impacts on the Water Resources of the Xijiang Basin, South China

    Directory of Open Access Journals (Sweden)

    Dehua Zhu

    2017-10-01

    Full Text Available Assessing the impact of climate change on streamflow is critical to understanding the changes to water resources and to improve water resource management. The use of hydrological models is a common practice to quantify and assess water resources in such situations. In this study, two hydrological models with different structures, e.g., a physically-based distributed model Liuxihe (LXH and a lumped conceptual model Xinanjiang (XAJ are employed to simulate the daily runoff in the Xijiang basin in South China, under historical (1964–2013 and future (2014–2099 climate conditions. The future climate series are downscaled from a global climate model (Beijing Climate Centre-Climate System Model, BCC-CSM version 1.1 by a high-resolution regional climate model under two representative concentration pathways—RCP4.5 and RCP8.5. The hydrological responses to climate change via the two rainfall–runoff models with different mathematical structures are compared, in relation to the uncertainties in hydrology and meteorology. It is found that the two rainfall–runoff models successfully simulate the historical runoff for the Xijiang basin, with a daily runoff Nash–Sutcliffe Efficiency of 0.80 for the LXH model and 0.89 for the XAJ model. The characteristics of high flow in the future are also analysed including their frequency (magnitude–return-period relationship. It shows that the distributed model could produce more streamflow and peak flow than the lumped model under the climate change scenarios. However the difference of the impact from the two climate scenarios is marginal on median monthly streamflow. The flood frequency analysis under climate change suggests that flood magnitudes in the future will be more severe than the historical floods with the same return period. Overall, the study reveals how uncertain it can be to quantify water resources with two different but well calibrated hydrological models.

  20. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China

    Science.gov (United States)

    Yuan, Fei; Zhao, Chongxu; Jiang, Yong; Ren, Liliang; Shan, Hongcui; Zhang, Limin; Zhu, Yonghua; Chen, Tao; Jiang, Shanhu; Yang, Xiaoli; Shen, Hongren

    2017-11-01

    Projections of hydrological changes are associated with large uncertainties from different sources, which should be quantified for an effective implementation of water management policies adaptive to future climate change. In this study, a modeling chain framework to project future hydrological changes and the associated uncertainties in the Xijiang River basin, South China, was established. The framework consists of three emission scenarios (ESs), four climate models (CMs), four statistical downscaling (SD) methods, four hydrological modeling (HM) schemes, and four probability distributions (PDs) for extreme flow frequency analyses. Direct variance method was adopted to analyze the manner by which uncertainty sources such as ES, CM, SD, and HM affect the estimates of future evapotranspiration (ET) and streamflow, and to quantify the uncertainties of PDs in future flood and drought risk assessment. Results show that ES is one of the least important uncertainty sources in most situations. CM, in general, is the dominant uncertainty source for the projections of monthly ET and monthly streamflow during most of the annual cycle, daily streamflow below the 99.6% quantile level, and extreme low flow. SD is the most predominant uncertainty source in the projections of extreme high flow, and has a considerable percentage of uncertainty contribution in monthly streamflow projections in July-September. The effects of SD in other cases are negligible. HM is a non-ignorable uncertainty source that has the potential to produce much larger uncertainties for the projections of low flow and ET in warm and wet seasons than for the projections of high flow. PD contributes a larger percentage of uncertainty in extreme flood projections than it does in extreme low flow estimates. Despite the large uncertainties in hydrological projections, this work found that future extreme low flow would undergo a considerable reduction, and a noticeable increase in drought risk in the Xijiang

  1. A new framework to evaluate ecosystem health: a case study in the Wei River basin, China.

    Science.gov (United States)

    Wu, Wei; Xu, Zongxue; Zhan, Chesheng; Yin, Xuwang; Yu, Songyan

    2015-07-01

    Due to the rapid growth of the population and the development of economies in the Guanzhong district, central China, the river ecosystem is gradually deteriorating, which makes it important to assess the aquatic ecosystem health and take measures to restore the damaged ecosystem. An index of catchment ecosystem health has been developed to assist large-scale management of watersheds by providing an integrated measure of ecosystem health, including aquatic and terrestrial ecosystem. Most researches focus on aquatic ecosystem or terrestrial ecosystem, but little research integrates both of them to assess the catchment ecosystem health. In this paper, we combine these two aspects into catchment ecosystem health. Ecosystem indicators derived from field samples and modeling are identified to integrate into ecosystem health. These included indicators of ecological landscape pattern (based on normalized difference vegetation index (NDVI), vegetation cover, dominance index, Shannon's diversity index, Shannon's evenness index, and fragmentation index), hydrology regime (based on 33 hydrological parameters), physical form condition (based on substrate, habitat complexity, velocity/depth regimes, bank stability, channel alteration), water quality (based on electrical conductivity (Cond), dissolved oxygen (DO), NH3_N, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand-permanganate (CODMn)), and biological quality (based on fish abundance). The index of ecosystem health is applied in the Guanzhong district, and the ecosystem health was fair. The ecosystem health in the upstream to Linjiacun (U-L) and Linjiacun to Weijiabao (L-W) reaches was in good situation, while that in Weijiabao to Xianyang (W-X), Xianyang-Weijiabao (X-W), and Weijiabao to Tongguan (W-T) reaches was in fair situation. There is a trend that the ecosystem health in the upstream was better than that in the downstream. The ecosystem health assessment is expected to play a key role in future

  2. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    Science.gov (United States)

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun

    2013-03-01

    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  3. Recognition of key regions for restoration of phytoplankton communities in the Huai River basin, China

    Science.gov (United States)

    Zhao, Changsen; Liu, Changming; Xia, Jun; Zhang, Yongyong; Yu, Qiang; Eamus, Derek

    2012-02-01

    SummaryHealthy phytoplankton communities are the basis of healthy water ecosystems, and form the foundation of many freshwater food webs. Globally many freshwater ecosystems are degraded because of intensive human activities, so water ecosystem restoration is a burning issue worldwide. Selection of key regions for phytoplankton-related restoration is crucial for an effective aquatic eco-restoration. This paper presents a practical method for identification of key regions for phytoplankton-related restoration, using random forests (RFs) method to cluster sites based on dominance, biodiversity, water chemistry and ecological niche. We sampled phytoplankton for species richness and relative abundance and water quality in the Huai River basin (HRB), China to determine the phytoplankton communities' composition and structure and characterize of their ecological niches. A wider mean niche breadth of a species usually leads to a greater overlap with the niche of other species. Using these data and water quality indices, we identified the key regions for phytoplankton-related river restoration activities. Results indicate that our method for recognition of key regions is effective and practical and its application to the HRB identified the Northern Plain area as the key region for restoration. This area is severely polluted and contributes significantly to the HRB phytoplankton communities. Phytoplankton in this region is highly adaptable to environmental change and therefore will be relatively unharmed by environmental instability induced by restoration measures. During restoration, indices of water temperature, total phosphorus and chemical oxygen demand can be altered with little negative influence on phytoplankton communities, but measures that increase ammonia-nitrogen concentration would be highly detrimental. These results will provide valuable information for policy makers and stakeholders in water ecosystem restoration and sustainable basin management in the HRB.

  4. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China

    Science.gov (United States)

    Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y.

    2006-01-01

    This paper discusses the mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. The results show that the vitrinite reflectance (0.58%) is lowest and the proportions of inertinite and liptinite (37.4% and 7.1%, respectively) in the No. 6 Coal of the Junger Coalfield are highest among all of the Late Paleozoic coals in the Ordos Basin. The No. 6 Coal may be divided vertically into four sections based on their mineral compositions and elemental concentrations. A high boehmite content (mean 6.1%) was identified in the No. 6 Coal. The minerals associated with the boehmite in the coal include goyazite, rutile, zircon, and Pb-bearing minerals (galena, clausthalite, and selenio-galena). The boehmite is derived from weathered and oxidized bauxite in the weathered crust of the underlying Benxi Formation (Pennsylvanian). A high Pb-bearing mineral content of samples ZG6-2 and ZG6-3 is likely of hydrothermal origin. The No. 6 coal is enriched in Ga (44.8 ??g/g), Se (8.2 ??g/g), Sr (423 ??g/g), Zr (234 ??g/g), REEs (193.3 ??g/g), Hg (0.35 ??g/g), Pb (35.7 ??g/ g), and Th (17.8 ??g/g). Gallium and Th in the No. 6 Coal mainly occur in boehmite, and the Pb-bearing selenide and sulfide minerals contribute not only to Se and Pb contents in the coal, but also probably to Hg content. A high Zr content is attributed to the presence of zircon, and Sr is related to goyazite. The REEs in the coal are supplied from the sediment-source region, and the REEs leached from the adjacent partings by groundwater. ?? 2005 Elsevier B.V. All rights reserved.

  5. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  6. Prediction of hydrological responds to climate changes in the Upper Yangtze River Basin, China

    Science.gov (United States)

    Yang, X.; Ren, L.; Wang, Y.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F.

    2017-12-01

    Climate changes have direct effects on hydrological cycle, with the increasing temperature and seasonal shift of precipitation. Therefore, understanding of how climate change may affect the population and water resources and economic development is critical to the water and food security for China. This study aims to evaluate the potential impacts of future climate changes on water resources of the upper basin of Yangtze River (the area controlled by the Yichang hydrological station) using the variable infiltration capacity (VIC) model driven by composite observations (1961-2005) and projections of eight CMIP5 models under scenarios RCP4.5 and RCP8.5 from 2006 to 2099. The raw eight CMIP5 models have been downscaled by the equidistant cumulative distribution functions (EDCDF) statistical downscaling approach from 1961 to 2099. The assessment of the performance of model simulated precipitation and temperature were calculated by comparing to the observations during the historical period (1961-2005). For the same variables, eight CMIP5 models for RCP 4.5 and RCP 8.5 downscaled by EDCDF method were generated during the future period (2006-2099). Overall, the VIC model performed well in monthly streamflow simulation, with the Nash-Sutcliffe coefficient of efficiency (NSCE) 0.92 and 0.97 for calibration and validation, respectively. The annual precipitation is projected to increase by 6.3mm and 8.6mm per decade and the annual temperature will increase by 0.22 °C and 0.53°C per decade (2006-2099) for RCP4.5 and RCP8.5, respectively. In the future period, The total runoff of the study basins would either remain stable or moderately increase by 2.7% and 22.4% per decade, the evapotranspiration increase by 2mm and 13mm per decade, and the soil moisture will reduce by -0.1% and -7.4% per decade under RCP4.5 and RCP8.5, respectively. The changes of model-simulated soil moisture, runoff, and evapotranspiration suggest that there probably be an increasing risk of drought in

  7. Effects of Ethnic Settlements and Land Management Status on Species Distribution Patterns: A Case Study of Endangered Musk Deer (Moschus spp.) in Northwest Yunnan, China.

    Science.gov (United States)

    Li, Xueyou; Bleisch, William V; Jiang, Xuelong

    2016-01-01

    Understanding the status and spatial distribution of endangered species in biologically and ethnologically diverse areas is important to address correlates of cultural and biological diversity. We developed models for endangered musk deer (Moschus spp.) abundance indices in and around protected areas inhabited by different ethnic groups in northwest Yunnan China to address different anthropogenic and management-related questions. We found that prediction of relative abundance of musk deer was best accomplished using ethnicity of settlements, conservation status and poaching pressure in an area. Musk deer were around 5 times more abundant in Tibetan regions relative to Lisu regions. We found no significant negative correlates of gathering and transhumance activities on musk deer abundance. Hunting pressure showed no significant differences between protected and non-protected areas, but showed significant differences among ethnic groups. Hunting pressures in areas adjacent to Lisu settlements was 7.1 times more than in areas adjacent to Tibetan settlements. Our findings indicate protected areas in southwest China are not fully effective in deterring human disturbance caused by traditional practices. We suggest that conservation and management strategies should engage traditional culture and practices with a positive conservation impact. Better understanding of indigenous culture may open up new opportunities for species conservation in much wider tracts of unprotected and human-dominated lands. Traditional practices that are not destructive to biodiversity should be allowed as a way of providing a link between the local communities and protected areas thereby creating incentives for conservation.

  8. Hot food and beverage consumption and the risk of esophageal squamous cell carcinoma: A case-control study in a northwest area in China.

    Science.gov (United States)

    Tai, Wei-Ping; Nie, Guo-Ji; Chen, Meng-Jie; Yaz, Tajigul Yiminni; Guli, Arzi; Wuxur, Arzigul; Huang, Qing-Qing; Lin, Zhi-Gang; Wu, Jing

    2017-12-01

    This study was trying to investigate the association of hot food and beverage consumption and the risk of esophageal squamous cell carcinoma in Hotan, a northwest area of China with high risk of esophageal squmous cell carcinoma. A population-based case-control study was designed. For the study, 167 patients diagnosed with esophageal squamous cell carcinoma were selected from Hotan during 2014 to 2015, and 167 community-based controls were selected from the same area, matched with age and sex. Information involved of temperature of food and beverage intake was obtained by face-to-face interview. Logistic regression analyses were performed to investigate the association between temperature of food and beverage intake and the risk of esophageal squamous cell carcinoma. The temperature of the food and beverage consumed by the esophageal squamous cell carcinoma patients was significantly higher than the controls. High temperature of tea, water, and food intake significantly increased the risk of esophageal squamous cell carcinoma by more than 2-fold, with adjusted odds ratio 2.23 (1.45-2.90), 2.13 (1.53-2.66), and 2.98 (1.89-4.12). Intake of food and beverage with high temperature was positively associated with the incidence of esophageal squamous cell carcinoma in Northwestern China. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  9. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  10. Architecture and quantitative assessment of channeled clastic deposits, Shihezi sandstone (Lower Permian, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Chengye Jia

    2017-02-01

    Full Text Available Lower Permian Shihezi sandstone in Ordos Basin is the largest gas reservoir in China. Architecture elements of channel, overbank and floodplain facies of braided channel deposits were identified through an outcrops survey, and their proportion of channel facies have been quantitatively estimated from well logging. Characteristics of architecture elements, such as sand thickness, bounding surfaces and lithofacies were investigated through outcrops and core. Petrology of Shihezi sandstone has also been studied in detail. Analysis on sandstone components shows that monocrystalline quartz with approximately 76% bulk volume, and lithic up to 5%–45% bulk volume, are the two main components. Litharenite and lithic quartz sandstone are the main rock types. Compaction is concluded by former researchers as the control factor of low permeability. Examination through thin section reveals that secondary pores developed well in coarse sand. Inter-granular dissolution is included as the positive effect to increasing porosity, and is concluded as the control factor to the generation of net pay. Scale of coarse grained channel fills and channel bar sandstone bodies are quantitatively estimated. Strike-oriented, dip-oriented, and vertical distribution of channel fills and channel bar sandstone bodies have been investigated. The geometry of sand bodies can be depicted as an elongated lens. Subsurface mapping reveals that channel sandstone bodies distribute widely from both lateral and longitudinal cross section profiles, and are poorly connected.

  11. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China

    Directory of Open Access Journals (Sweden)

    X. Q. Feng

    2013-07-01

    Full Text Available Zhalong National Nature Preserve is a large wetland reserve on the Songnen Plain in Northeast China. Wetlands in the preserve play a key role in maintaining regional ecosystem function and integrity. Global climate change and intensified anthropogenic activities in the region have raised great concerns over the change of natural flow regime, wetland degradation and loss. In this study, two key hydrologic components in the preserve, water surface area and water volume, as well as their variations during the period 1985–2006, were investigated with a spatially-distributed hydrologic modeling system (SWAT. A wetland module was incorporated into the SWAT model to represent hydrological linkages between the wetland and adjacent upland areas. The modified modeling system was calibrated with streamflow measurements from 1987 to 1989 and was validated for the period 2005–2006. The calibration achieved a Nash efficiency coefficient (Ens of 0.86, and the validation yielded an Ens of 0.66. In the past 20 yr, water surface area in the Zhalong wetland fluctuated from approximately 200 km2 to 1145 km2 with a rapid decreasing trend through the early 2000s. Consequently, water volume decreased largely in the preserve, especially in the dry seasons. The situation changed following the implementation of a river diversion in 2001. Overall, the modeling yielded plausible estimates of hydrologic changes in this large wetland reserve, building a foundation for assessing ecological water requirements and developing strategies and plans for future water resources management within the river basin.

  12. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China

    Energy Technology Data Exchange (ETDEWEB)

    Digang Liang; Shuichang Zhang; Jianping Chen [China National Petroleum Corporation, Beijing (China). Key Laboratory for Petroleum Geochemistry; Research Institute of Petroleum Exploration and Development, PetroChina, Beijing (China); Feiyu Wang [China National Petroleum Corporation, Beijing (China). Key Laboratory for Petroleum Geochemistry; Peirong Wang [China National Petroleum Corporation, Beijing (China). Key Laboratory for Petroleum Geochemistry; Jianghan Petroleum Institute (China)

    2003-07-01

    The Kuqa depression in the Tarim Basin, NW China contains significant natural gas and condensate resources, with only small amounts of black oil. This study demonstrates that the primary reason for the accumulation of large natural gas reserves in the Kuqa depression is the high maturity level of the Jurassic coal-bearing sequence that is currently at the peak stage of dry gas generation. From the combined stable carbon isotopes and molecular and biomarker data it is possible to identify two separate source rocks for the discovered hydrocarbon fluids: the gases were primarily from the Middle-Lower Jurassic coals and associated clastic rocks, and the oils were from the Upper Triassic lacustrine mudstones. Peak oil generation from the Triassic source rocks occurred during the early Miocene (23-12 Ma b.p.). These oils migrated laterally over relatively long distances ({approx}20-50 km) reaching the outer periphery of the depression. Peak gas generation took place more recently, perhaps during the past 5 Ma. The gases migrated mainly along faults over relatively short lateral distances, resulting in accumulations adjacent to the over-matured source kitchens. Different timings for the trap formation along the north and south margins and a late injection of gas into early oil accumulations provided favorable conditions for the formation of evaporative condensates and the preservation of gas pools in the more down-dip reservoirs and oil pools in the more up-dip locations. (author)

  13. Seismic fracture detection of shale gas reservoir in Longmaxi formation, Sichuan Basin, China

    Science.gov (United States)

    Lu, Yujia; Cao, Junxing; Jiang, Xudong

    2017-11-01

    In the shale reservoirs, fractures play an important role, which not only provide space for the oil and gas, but also offer favorable petroleum migration channel. Therefore, it is of great significance to study the fractures characteristics in shale reservoirs for the exploration and development of shale gas. In this paper, four analysis technologies involving coherence, curvature attribute, structural stress field simulation and pre-stack P-wave azimuthal anisotropy have been applied to predict the fractures distribution in the Longmaxi formation, Silurian, southeast of Sichuan Basin, China. By using the coherence and curvature attribute, we got the spatial distribution characteristics of fractures in the study area. Structural stress field simulation can help us obtain distribution characteristics of structural fractures. And using the azimuth P-wave fracture detection technology, we got the characteristics about the fracture orientation and density of this region. Application results show that there are NW and NE fractures in the study block, which is basically consistent with the result of log interpretation. The results also provide reliable geological basis for shale gas sweet spots prediction.

  14. Spatio-temporal evolution of water-related ecosystem services: Taihu Basin, China

    Directory of Open Access Journals (Sweden)

    Junyu Chen

    2018-06-01

    Full Text Available Water-related ecosystem services (WESs arise from the interaction between water ecosystems and their surrounding terrestrial ecosystems. They are critical for human well-being as well as for the whole ecological circle. An urgent service-oriented reform for the utilization and supervision of WESs can assist in avoiding ecological risks and achieving a more sustainable development in the Taihu Basin, China (THB. Spatially distributed models allow the multiple impacts of land use/land cover conversion and climate variation on WESs to be estimated and visualized efficiently, and such models can form a useful component in the toolbox for integrated water ecosystem management. The Integrated Valuation of Ecosystem Services and Tradeoffs model is used here to evaluate and visualize the spatio-temporal evolution of WESs in the THB from 2000 to 2010. Results indicate that water retention service experienced a decline from 2000 to 2005 with a recovery after 2005, while there was ongoing water scarcity in urban areas. Both the water purification service and the soil retention service underwent a slight decrease over the study period. Nutrients export mainly came from developed land and cultivated land, with the hilly areas in the south of the THB forming the primary area for soil loss. The quantity and distribution of WESs were impacted significantly by the shrinkage of cultivated land and the expansion of developed land. These findings will lay a foundation for a service-oriented management of WESs in the THB and support evidence-based decision making.

  15. Influences of climate change on water resources availability in Jinjiang Basin, China.

    Science.gov (United States)

    Sun, Wenchao; Wang, Jie; Li, Zhanjie; Yao, Xiaolei; Yu, Jingshan

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer.

  16. Possible Future Climate Change Impacts on the Hydrological Drought Events in the Weihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Yuan

    2016-01-01

    Full Text Available Quantitative evaluation of future climate change impacts on hydrological drought characteristics is one of important measures for implementing sustainable water resources management and effective disaster mitigation in drought-prone regions under the changing environment. In this study, a modeling system for projecting the potential future climate change impacts on hydrological droughts in the Weihe River basin (WRB in North China is presented. This system consists of a large-scale hydrological model driven by climate outputs from three climate models (CMs for future streamflow projections, a probabilistic model for univariate drought assessment, and a copula-based bivariate model for joint drought frequency analysis under historical and future climates. With the observed historical climate data as the inputs, the Variable Infiltration Capacity hydrological model projects an overall runoff reduction in the WRB under the Intergovernmental Panel on Climate Change A1B scenario. The univariate drought assessment found that although fewer hydrological drought events would occur under A1B scenario, drought duration and severity tend to increase remarkably. Moreover, the bivariate drought assessment reveals that future droughts in the same return period as the baseline droughts would become more serious. With these trends in the future, the hydrological drought situation in the WRB would be further deteriorated.

  17. Geothermal constraints on Emeishan mantle plume magmatism: paleotemperature reconstruction of the Sichuan Basin, SW China

    Science.gov (United States)

    Zhu, Chuanqing; Hu, Shengbiao; Qiu, Nansheng; Jiang, Qiang; Rao, Song; Liu, Shuai

    2018-01-01

    The Middle-Late Permian Emeishan Large Igneous Province (ELIP) in southwestern China represents a classic example of a mantle plume origin. To constrain the thermal regime of the ELIP and contemporaneous magmatic activity in the northeastern Sichuan Basin, maximum paleotemperature profiles of deep boreholes were reconstructed using vitrinite reflectance (Ro) and apatite fission track data. Two heating patterns were identified: (1) heating of the overlying lithosphere by magma storage regions and/or magmatic activity related to the mantle plume, which resulted in a relatively strong geothermal field and (2) direct heating of country rock by stock or basalt. Borehole Ro data and reconstructed maximum paleotemperature profiles near the ELIP exhibit abrupt tectonothermal unconformities between the Middle and Late Permian. The profiles in the lower subsections (i.e., pre-Middle Permian) exhibited significantly higher gradients than those in the upper subsections. Distal to the basalt province, high paleo-geotemperatures (hereafter, paleotemperatures) were inferred, despite deformation of the paleogeothermal curve due to deep faults and igneous rocks within the boreholes. In contrast, Ro profiles from boreholes without igneous rocks (i.e., Late Permian) contained no break at the unconformity. Paleotemperature gradients of the upper and the lower subsections and erosion at the Middle/Late Permian unconformity revealed variations in the thermal regime. The inferred spatial distribution of the paleothermal regime and the erosion magnitudes record the magmatic and tectonic-thermal response to the Emeishan mantle plume.

  18. Regional Frequency Analysis of Extreme Dry Spells during Rainy Season in the Wei River Basin, China

    Directory of Open Access Journals (Sweden)

    Dunxian She

    2016-01-01

    Full Text Available Our research analyzes the regional changes of extreme dry spell, represented by the annual maximum dry spell length (noted as AMDSL during the rainy season in the Wei River Basin (WRB of China for 1960–2014 using the L-moments method. The mean AMDSL values increase from the west to the east of the WRB, suggesting a high dry risk in the east compared to the west in the WRB. To investigate the regional frequency more reasonably, the WRB is clustered into four homogenous subregions via the K-means method and some subjective adjustments. The goodness-of-fit test shows that the GEV, PE3, and GLO distribution can be accepted as the “best-fit” model for subregions 1 and 4, subregion 2, and subregion 3, respectively. The quantiles of AMDSL under various return levels figure out a similar spatial distribution with mean AMDSL. We also find that the dry risk in subregion 2 and subregion 4 might be higher than that in subregion 1. The relationship between ENSO events and extreme dry spell events in the rainy season with cross wavelet analysis method proves that ENSO events play a critical role in triggering extreme dry events during rainy season in the WRB.

  19. Floristic Characteristics and Biodiversity Patterns in the Baishuijiang River Basin, China

    Science.gov (United States)

    Liu, Bing; Zhao, Wenzhi; Wen, Zijuan; Teng, Jirong; Li, Xiaohong

    2009-07-01

    A case study was conducted on the forest ecosystem in the Baishuijiang River basin of China to reveal the influences of environmental factors and human disturbance on the floristic characteristics and biodiversity patterns. Field surveys of the floristic composition, environmental factors, and disturbance factors were conducted along an elevation gradient, and the relationships between biodiversity pattern and environmental factors were analyzed using CCA (canonical correspondence analysis). The results showed that the floristic composition of higher plants consisted of 197 families, 796 genera, 2165 species, 19 subspecies, 239 varietas, and 12 forma, and it was characterized by the multi-geographic composition and by the transition from tropical to temperate zones. Along an elevation gradient, the variations in α and β diversity were best described by a bimodal curve, and the peak values occurred at middle elevations. The CCA indicated that the elevation had the greatest influence on the biodiversity pattern, followed by the topographic index, slope direction, slope, slope position, slope shape, and vegetation coverage. In addition, human disturbance has greatly impacted the floristic composition and biodiversity patterns, and the biodiversity indices were higher with intermediate disturbance at middle elevations compared to higher and lower disturbances at low and high elevations, respectively. This reflected a disturbance-diversity pattern and thus revealed the obvious importance to maintain the intermediate disturbance for biodiversity conservation.

  20. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    Science.gov (United States)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  1. Litter Accumulation and Nutrient Content of Roadside Plant Communities in Sichuan Basin, China.

    Science.gov (United States)

    He, Huiqin; Monaco, Thomas

    2017-08-30

    It is widely recognized that feedbacks exist between plant litter and plant community species composition, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. Given the need to expedite natural recovery of disturbed areas through restoration interventions, we characterized litter accumulation and nutrient content (i.e., organic carbon, total N, and P) and quantified their association with key plant species. Plant species cover and litter characteristics were sampled at 18 successional forest plant communities along major roadways in Sichuan Basin, western China. Variation in litter across communities was assessed with principal component analysis (PCA) and species with the highest correlation to PCA axes were determined with Pearson's r coefficients. Plant communities with the longest time since road construction (i.e., 70 years) were distinctly different in litter total N and organic carbon compared to plant communities with a shorter disturbance history. We encountered 59 plant species across sampling plots, but only four rare species (i.e., frequency plant litter across heavily disturbed landscapes and how litter characteristics and rare plant species are correlated.

  2. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  3. Estimation of nitrogen and phosphorus flows in livestock production in Dianchi Lake basin, China.

    Science.gov (United States)

    Anzai, Hiroki; Wang, Lin; Oishi, Kazato; Irbis, Chagan; Li, Kunzhi; Kumagai, Hajime; Inamura, Tatsuya; Hirooka, Hiroyuki

    2016-01-01

    We assessed the nitrogen (N) and phosphorus (P) flows in intensified livestock production systems by investigating nutrient budgets and cycling in the basin of Dianchi Lake, one of the most eutrophic lakes in China. We conducted field surveys based on feed samplings and interviews of livestock farmers. The N and P in local and external feeds, animal body retentions, animal products and excretions were calculated at the individual level for dairy cattle, fattening pigs, breeding sows, broilers and laying hens. The N and P flows in the total livestock production system in the area were estimated by multiplying the individual N and P budgets by the number of animals. For the dairy and fattening pig productions, N and P supplied from local crops or by-products accounted for large parts of the inputs. For the other livestock categories, most of the N and P inputs depended on external resources. The N and P outputs through animal manure into the cropland were 287 and 66 kg/ha/year, respectively, which were higher than the N and P inputs into the livestock production systems from the cropland. The N and P loads from manure should be reduced for the establishment of sustainable agricultural production systems. © 2015 Japanese Society of Animal Science.

  4. Antibiotics in Crab Ponds of Lake Guchenghu Basin, China: Occurrence, Temporal Variations, and Ecological Risks

    Directory of Open Access Journals (Sweden)

    Wenxia Wang

    2018-03-01

    Full Text Available Antibiotics are widely used in aquaculture, however, this often results in undesirable ecological effects. To evaluate the occurrence, temporal variations, and ecological risk of antibiotics in five crab ponds of Lake Guchenghu Basin, China, 44 antibiotics from nine classes were analyzed by rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS. Twelve antibiotics belonging to six classes were detected in the aqueous phase of five crab ponds, among which sulfonamides and macrolides were the predominant classes, and six compounds (sulfamonomethoxine, sulfadiazine, trimethoprim, erythromycin-H2O, monensin, and florfenicol were frequently detected at high concentrations. In general, the antibiotic levels varied between different crab ponds, with the average concentrations ranging from 122 to 1440 ng/L. The antibiotic concentrations in crab ponds exhibited obvious seasonal variations, with the highest concentration and detection frequency detected in summer. Multivariate analysis showed that antibiotic concentrations were significantly correlated with environmental variables, such as total organic carbon, phosphate, ammonia nitrogen, and pH. Sulfadiazine, clarithromycin, erythromycin-H2O, and ciprofloxacin posed a high risk to algae, while the mixture of antibiotics could pose a high risk to aquatic organisms in the crab ponds. Overall, the usage of antibiotics in farming ponds should be comprehensively investigated and controlled to preserve a healthy aquaculture ecosystem.

  5. 26Al/10Be burial dating of Xujiayao-Houjiayao site in Nihewan Basin, northern China.

    Directory of Open Access Journals (Sweden)

    Hua Tu

    Full Text Available The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years. This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ. The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site's lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL dating at 160-220 ka.

  6. Origin of an unusual heavy oil from the Baiyinchagan depression, Erlian basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Haiping Huang [China University of Geosciences, Beijing (China); University of Newcastle, Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Guangxi Jin [China University of Geosciences, Beijing (China); Exploration and Development Institute, Puyang (China); Changsong Lin; Yabin Zheng [China University of Geosciences, Beijing (China)

    2003-01-01

    A detailed organic geochemical analysis of six oil samples from the Baiyinchagan depression in the Erlian basin, Northern China, was carried out in order to evaluate their origin. The oils are reservoired at a very shallow depth (223-560 m subsurface) and their chemical and physical properties vary greatly, ranging from normal to extremely heavy oil. The preservation of non-biodegraded oil in such a shallow reservoir is possibly related with palaeo-pasteurization of the reservoir before uplift. Maturity difference is not the primary control on the chemical and physical properties of the oils and there is considerable geochemical evidence to suggest the additional influence of in-reservoir/post-accumulation processes such as biodegradation, water-washing and (possibly) evaporation. Whereas some oils appear to be less affected, others are moderately biodegraded up to level 4 on the [Peters and Moldowan, 1993] scale, with sterane distributions largely unaffected and 25-norhopanes undetected. Contrary to classical biodegradation, the unusual heavy oil shows little evidence of biodegradation from aliphatic components. Water-washing is suggested to be the primary process leading to its formation since the severe alteration of soluble aromatic hydrocarbons is observed. In addition, since the oils have been uplifted significantly after accumulation, evaporation and/or leakage to modify oil compositions cannot be ruled out. (author)

  7. Toxoplasma gondii, Dirofilaria immitis, feline immunodeficiency virus (FIV), and feline leukemia virus (FeLV) infections in stray and pet cats (Felis catus) in northwest China: co-infections and risk factors.

    Science.gov (United States)

    Cong, Wei; Meng, Qing-Feng; Blaga, Radu; Villena, Isabelle; Zhu, Xing-Quan; Qian, Ai-Dong

    2016-01-01

    This study was conducted to estimate the prevalence of Toxoplasma gondii, Dirofilaria immitis, feline immunodeficiency virus (FIV), and feline leukemia virus (FeLV) infections among stray and pet cats in Lanzhou, northwest China, and to identify the influence of age, gender, and regions on seropositivity. T. gondii antibodies were examined in cat sera by the modified agglutination test (MAT). The circulating antigens of D. immitis and FeLV and specific antibodies to FIV were examined using kits commercially available. The overall prevalence of T. gondii, FIV, FeLV, and D. immitis was 19.34, 9.12, 11.33, and 3.04 %, respectively. For the genetic characterization of T. gondii genotypes in cats, genomic DNA was extracted from the seropositive cats and the T. gondii B1 gene was amplified using a semi-nested PCR. DNA samples giving positive B1 amplification were then genotyped using multilocus PCR-RFLP. Two T. gondii genotypes (ToxoDB#9 and ToxoDB#1) were identified. Results of the multivariate logistic regression analysis showed that older cats are more likely to be seropositive than juveniles for T. gondii, FIV, FeLV, and D. immitis. This is the first report of T. gondii genotypes in cats in northwest China. Moreover, the present study is the first study of retrovirus and D. immitis seroprevalence in cats in China. The results revealed that T. gondii, FIV, and FeLV infections are common in stray and pet cats in northwest China.

  8. The inter-decadal correlation between summer arctic oscillation and summer drought and moist characteristic of northwest China

    Science.gov (United States)

    Wang, Pengxiang; Zheng, Youfei; Sun, Landong; Ren, Zhenhe; He, Jinhai; Zhang, Qiang

    2007-09-01

    In the context of 1960~2003 summertime rainfall and small-sized pan evaporations from 131 stations distributed over NW China covering Xinjiang, Qinghai, Gansu, Ningxia, Shaanxi as well as western Nei Mongolia, and Arctic Oscillation Indices (AOI) we define a homogenized index for aridity or wetness feature, with which to examine the relations between AOI and NW China aridity-wetness regime, indicating their noticeable relations on an interdecadal basis. It is found that during the decade of summer Arctic oscillation stronger than mean, the sea level pressure field shows positive (negative) anomalies over Asian landmass, a stronger anticyclonic anomaly circulation appears at 700 hPa over Lake Baikal and to the south, westerly (northerly) departure emerges in the westerly (monsoon) portion of NW China, as well as over NW China there appears a structure with a low in the west and a high in the east at the 500 hPa height field, suggestive of east-Asian summer monsoon weaker than normal such that westerly flows prevail in the westerly zone of NW China, leading to rainfall more than mean for a wetter climate while in its monsoon area the northerly winds are dominant, with precipitation less than normal, resulting in a climate drier in comparison to mean and v.v. for the decade with summer AO weaker than normal.

  9. Effects of biochemical and physical processes on concentrations and size distributions of dimethylaminium and trimethylaminium in atmospheric particles from marginal seas of China to the northwest Pacific Ocean

    Science.gov (United States)

    Hu, Q.; Yao, X.; Qu, K.; Cui, Z.; Gao, H.; Xie, H.

    2017-12-01

    This study aim to assess the effects of concentrations and size distributions of aminium ions in atmospheric particles from offshore to open oceans. Size-segregated dimethylaminium (DMA+) and trimethylaminium (TMA+) in atmospheric particles were measured during March-May, 2014. One cruise was over marginal seas of China, in which the concentrations of DMA+ and TMA+ in PM0.056-10 varied from 0.08 nmol m-3 to 0.43 nmol m-3 and from 0.10 to 0.27 nmol m-3, respectively. The two ions both had good positive correlations with subsurface chlorophyll-a maximum and salinity, respectively. The highest concentrations of (DMA+ + TMA+) were observed during cyanobacteria bloom period which happened in subsurface water. The results implied that the concentrations of DMA+ (TMA+) in marine atmospheric particles might be influenced by phytoplankton quantities and species in subsurface seawater. Another cruise was carried out from marginal seas of China to the northwest Pacific Ocean (NWPO). The concentrations of DMA+ and TMA+ in PM0.056-1.8 varied from 0.19 nmol m-3 to 1.53 nmol m-3 and from 0.57 to 3.85 nmol m-3, respectively. The highest (lowest) concentrations of (DMA+ + TMA+) were observed near the cyclonic (anticyclonic) eddy, indicating that the cyclonic (anticyclonic) eddy with high (low) chlorophyll-a enhanced (suppressed) DMA+ (TMA+) production in atmospheric particles. In addition, the dominant particle modes less than 0.2 μm for DMA+ (TMA+) were observed, ie., 0.13±0.02 μm for DMA+ over marginal seas of China, and 0.08±0.00 μm for TMA+ in NWPO, but if they were emitted via bubble bursting needed to be further researched.

  10. Drowning unconformity of lacustrine rift basins: A case study from the Dongying Sag in Bohai Bay Basin, China

    Science.gov (United States)

    Chen, R.; Fan, J.

    2015-12-01

    The concept of drowning unconformity of lacustrine rift basins was proposed in this paper. This paper utilized 3D seismic data, well-log and the principles methods associated with structural geology, sedimentology and geochemistry, to analyze the drowning unconformity and discuss the origins of drowning unconformity in Dongying Sag in Bohai Bay Basin.Researching on it is not only important for a better understanding of tectonic evolution, palaeogeography and sedimentation of hydrocarbon source rocks, but also a vital guiding significance for the exploration of beach-bar sandstone reservoirs and shale oil.1. The concept of drowning unconformity of lacustrine rift basins is defined. With the consequences of rapid tectonic subsidence in basin, the sharp rise of lake-level and the increased rate of accommodation(A) in basin exceeded the rate of sediment supply(S),namely A>>S, the basin suddenly transformed into deep-water settings from shallow-water settings with sudden change of sediment transport and sediment dispersal patterns. 2.The sequence surface between Sha4 and Sha3 Member of Shahejie Formation is the drowning unconformity(43.5Ma). There are the sedimentary association of the reefs in shallow lacustrine, beach-bar sandstones and glutenite fan bodies under the surface. By contrast, there are the sedimentary association of deep-lake oil shales and shales over the surface. The drowning unconformity in Dongying Sag is a tectonic revolution surface which is changed from extensional tectonics to transtensional tectonics and it is also the surface of discontinuity from shallow lacustrine to deep lacustrine. The responses to sudden changes appeared in the parameters of geophysics, geochemistry and paleontology. 3. With the penetration of India into Asia plate in NNE trending,the subduction zones of Pacific Plate retreated. It caused the rapid downwelling of asthenospheric mantle, followed by the extensive drowning unconformity.

  11. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India)

    International Nuclear Information System (INIS)

    Mukherjee, Abhijit; Bhattacharya, Prosun; Shi, Fei; Fryar, Alan E.; Mukherjee, Arun B.; Xie, Zheng M.; Jacks, Gunnar; Bundschuh, Jochen

    2009-01-01

    Elevated As concentrations in groundwater of the Huhhot basin (HB), Inner Mongolia, China, and the western Bengal basin (WBB), India, have been known for decades. However, few studies have been performed to comprehend the processes controlling overall groundwater chemistry in the HB. In this study, the controls on solute chemistry in the HB have been interpreted and compared with the well-studied WBB, which has a very different climate, physiography, lithology, and aquifer characteristics than the HB. In general, there are marked differences in solute chemistry between HB and WBB groundwaters. Stable isotopic signatures indicate meteoric recharge in the HB in a colder climate, distant from the source of moisture, in comparison to the warm, humid WBB. The major-ion composition of the moderately reducing HB groundwater is dominated by a mixed-ion (Ca-Na-HCO 3 -Cl) hydrochemical facies with an evolutionary trend along the regional hydraulic gradient. Molar ratios and thermodynamic calculations show that HB groundwater has not been affected by cation exchange, but is dominated by weathering of feldspars (allitization) and equilibrium with gibbsite and anorthite. Mineral weathering and mobilization of As could occur as recharging water flows through fractured, argillaceous, metamorphic or volcanic rocks in the adjoining mountain-front areas, and deposits solutes near the center of the basin. In contrast, WBB groundwater is Ca-HCO 3 -dominated, indicative of calcite weathering, with some cation exchange and silicate weathering (monosiallitization).

  12. Projection of future runoff change using climate elasticity method derived from Budyko framework in major basins across China

    Science.gov (United States)

    Xing, Wanqiu; Wang, Weiguang; Zou, Shan; Deng, Chao

    2018-03-01

    This study established a climate elasticity method based on Budyko hypothesis and enhanced it by selecting the most effective Budyko-type formula to strengthen the runoff change prediction reliability. The spatiotemporal variations in hydrologic variables (i.e., runoff, precipitation and potential evaporation) during historical period were revealed first and the climate elasticities of runoff were investigated. The proposed climate elasticity method was also applied to project the spatiotemporal variations in future runoff and its key influencing factors in 35 watersheds across China. Wherein, the future climate series were retrieved by consulting the historical series, informed by four global climate models (GCMs) under representative concentration pathways from phase five of the Coupled Model Intercomparison Project. Wang-Tang equation was selected as the optimal Budyko-type equation for its best ability in reproducing the runoff change (with a coefficient of determination and mean absolute error of 0.998 and 1.36 mm, respectively). Observed runoff presents significant decreasing trends in the northern and increasing trends in the southern regions of China, and generally its change is identified to be more sensitive to climatic variables in Hai River Basin and lower Yellow River Basin. Compared to the runoff during the reference period, positive change rates in the north and negative change rates in the south of China in the mid-21st century can be practically generalized from the majority of GCMs projections. This maybe resulted from the increasing precipitation, especially in parts of northern basins. Meanwhile, GCMs project a consistently upward trend in potential evaporation although significant decreasing trends occur in the majority of catchments for the historical period. The results indicate that climate change will possibly bring some changes to the water resources over China in the mid-21st century and some countermeasures of water resources planning

  13. The role of scenario analysis in water resources management in Yanqi Basin, Xinjiang, China

    Science.gov (United States)

    Li, N.; Kinzelbach, W. K.; Li, W.; Dong, X.

    2011-12-01

    With the rapid increase of world population and food demand, the demand for water resources is also increasing. At the same time shifts in rain patterns due to global climate change make the water resources situation more uncertain. A global water crisis can therefore not be excluded. The socio-economic and environmental problems induced by such a water crisis are especially prominent in arid and semiarid regions. The Yanqi Basin in Xinjiang province is a typical case study in China's arid and semi-arid areas, where rainfall is scarce and evaporation is extremely high. Thus its water resources have been under great pressure to satisfy the increasing water demand of agriculture and urban and industrial expansion in the last decades. The development has been accompanied by a number of environmental problems. Yanqi Basin is an important cultivated area which is irrigated by water diverted from rivers. Because of the long-term flood irrigation and an inefficient drainage system, the groundwater level under the cultivated area rose, accelerating the phreatic evaporation and leading to increased soil salinization. Simultaneously, the water quantity and quality of Boston Lake have been impaired in past years because of the decreased river discharge and the increased salt flux contained in the drainage discharge. Thus the ecosystems depending on the inflow to and outflow from the lake suffered. The riverine forests in the downstream area were degraded due to declining groundwater levels, and aquatic life as well as downstream water users had to cope with deteriorating water quality. The big challenge for decision makers in the basin is how to balance the justified requirements of agriculture, industrial development and the ecosystem. In order to provide a scientific basis to the decision making process, a scenario analysis was adopted. Here several scenarios are proposed: the basic scenario, scenario 1, describes the status of the year 2008. A second scenario maximizes the

  14. Lacustrine basin evolution and coal accumulation of the Middle Jurassic in the Saishiteng coalfield, northern Qaidam Basin, China

    Directory of Open Access Journals (Sweden)

    Meng Li

    2016-07-01

    Full Text Available Based on an extensive borehole survey of the Middle Jurassic coal-bearing sequences in the Saishiteng coalfield, northern Qaidam Basin (NQB, a total of 20 rock types and 5 sedimentary facies were identified, including braided river, meandering river, braided delta, meandering river delta, and lacustrine facies. The distribution of rock types and sedimentary facies contributed to the reconstruction of three periods' sedimentary facies maps of the Middle Jurassic in the Saishiteng coalfield, namely, the Dameigou age, the early Shimengou age and the late Shimengou age. That also provided the basis for the development of a three-stage depositional model of the Middle Jurassic in the NQB, indicating the lacustrine basin of the NQB in the Dameigou age and early Shimengou age were corresponding to an overfill basin, and that in the late Shimengou age was related to a balanced-fill basin. The analysis of the stability and structure of coal seams based on sedimentary facies maps showed that the preferred coal-forming facies in the Saishiteng coalfield were inter-delta bay and interdistributary bay of lower delta plain in the Dameigou age. In particular, the swamps that developed on the subaqueous palaeohigh favored the development of thick coal seams. Thus, minable coal seams may also be found along the Pingtai palaeohigh in the western part of the Saishiteng coalfield.

  15. Assessing the influence of climate change and inter-basin water diversion on Haihe River basin, eastern China: a coupled model approach

    Science.gov (United States)

    Xia, Jun; Wang, Qiang; Zhang, Xiang; Wang, Rui; She, Dunxian

    2018-04-01

    The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model-groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP's operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.

  16. A geochemical study on mud volcanoes in the Junggar Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Ryoichi, E-mail: ryo-nakada@hiroshima-u.ac.jp [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Tsunogai, Urumu [Division of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, Kita-10 Nishi-8, Kita-ku, Sapporo 060-0810 (Japan); Zheng Guodong [Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, 382 West Donggang Road, Lanzhou 730000 (China); Shimizu, Hiroshi [Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, Keiko H. [Department of Earth Science, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2011-07-15

    Highlights: > Gases released from Xinjiang mud volcanoes are dominated by thermogenic origin. > Secondary microbial activities occurring closer to the surface dramatically changed the {delta}{sup 13}C{sub CO2}. > The water-rock interaction occurred at deeper level than gas and petroleum reservoir. - Abstract: A comprehensive study was performed to characterize, for the first time, the mud, water, and gases released from onshore mud volcanoes located in the southern margin of the Junggar Basin, northwestern China. Chemical compositions of mud, along with the geology of the basin, suggest that a source of the mud is Mesozoic or Cenozoic shale. Oxygen and H isotope compositions of the released water suggest a local meteoric origin. Combined with the positive Eu anomalies of the water, a large {sup 18}O shift of the water suggests extensive interaction with rocks. Gases discharged from the mud volcanoes are predominantly thermogenic hydrocarbons, and the high {delta}{sup 13}C values (>+20 per mille VPDB) for CO{sub 2} gases and dissolved carbonate in muddy water suggest secondary methanogenesis with CO{sub 2} reduction after oil biodegradation. The enrichments of Eu and {sup 18}O in water and the low thermal gradient of the area suggest that the water-rock interactions possibly occur deeper than 3670 {+-} 200 m. On the other hand, considering the relationship to the petroleum reservoir around the mud volcanoes, the depth of the gases can be derived from about 3600 m, a depth that is greater than that generally estimated for reservoirs whose gas is characterized by {sup 13}C-enriched CO{sub 2}. Oil biodegradation with CO{sub 2} reduction likely occurs at a shallower depth along the seepage system of the mud volcano. The results contribute to the worldwide data set of gas genesis in mud volcanoes. Moreover, they further support the concept that most terrestrial mud volcanoes release thermogenic gas produced in very deep sediments and may be early indicators of oil

  17. Sequence stratigraphy, sedimentary systems and petroleum plays in a low-accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China

    Science.gov (United States)

    Feng, Youliang; Jiang, Shu; Wang, Chunfang

    2015-06-01

    The Lower Jurassic Junggar Basin is a low-accommodation basin in northwestern China. Because of low subsidence rates and a warm, wet climate, deposits of the Central subbasin of the Junggar Basin formed from fluvial, deltaic, shallow lake facies. Sequence stratigraphy and sedimentary systems of the Lower Jurassic members of the Sangonghe Formation (J1s) were evaluated by observing cores, interpreting wireline logs and examining seismic profiles. Two third-order sequences were recognized in the strata. The distribution of the sedimentary systems in the systems tracts shows that tectonic movement, paleorelief, paleoclimate and changes in lake level controlled the architecture of individual sequences. During the development of the lowstand systems tract (LST), the intense structural movement of the basin resulted in a significant fall in the water level in the lake, accompanied by rapid accommodation decrease. Braided rivers and their deltaic systems were also developed in the Central Junggar Basin. Sediments carried by braided rivers were deposited on upward slopes of the paleorelief, and braid-delta fronts were deposited on downward slopes. During the transgressive systems tract (TST), the tectonic movement of the basin was quiescent and the climate was warm and humid. Lake levels rose and accommodation increased quickly, shoal lines moved landward, and shore- to shallow-lake deposits, sublacustrine fans and deep-lake facies were deposited in shallow- to deep-lake environments. During the highstand systems tract (HST), the accommodation no longer increased but sediment supply continued, far exceeding accommodation. HST deposits slowly formed in shallow-lake to meandering river delta-front environments. Relatively low rates of structural subsidence and low accommodation resulted in coarse-grained successions that were fining upward. Deposits were controlled by structural movement and paleorelief within the LST to TST deposits in the Central subbasin. Fine- to medium

  18. Evolution of the Lian River coastal basin in response to Quaternary marine transgressions in Southeast China

    Science.gov (United States)

    Tang, Yongjie; Zheng, Zhuo; Chen, Cong; Wang, Mengyuan; Chen, Bishan

    2018-04-01

    The coastal basin deposit in the Lian River plain is among the thickest Quaternary sequences along the southeastern coast of China. The clastic sediment accumulated in a variety of environmental settings including fluvial, channel, estuary/coastal and marine conditions. Detailed investigation of lithofacies, grain-size distributions, magnetic susceptibility, microfossils and chronology of marine core CN01, compared with regional cores, and combined with offshore seismic reflection profiles, has allowed us to correlate the spatial stratigraphy in the inner and outer plain and the seismic units. Grain size distribution analysis of core CN-01 through compositional data analysis and multivariate statistics were applied to clastic sedimentary facies and sedimentary cycles. Results show that these methods are able to derive a robust proxy information for the depositional environment of the Lian River plain. We have also been able to reconstruct deltaic evolution in response to marine transgressions. On the basis of dating results and chronostratigraphy, the estimated age of the onset of deposition in the Lian River coastal plain was more than 260 kyr BP. Three transgressive sedimentary cycles revealed in many regional cores support this age model. Detailed lithological and microfossil studies confirm that three marine (M3, M2 and M1) and three terrestrial (T3, T2 and T1) units can be distinguished. Spatial correlation between the inner plain, outer plain (typical cores characterized by marine transgression cycles) and offshore seismic reflectors reveals coherent sedimentary sequences. Two major boundaries (unconformity and erosion surfaces) can be recognized in the seismic profiles, and these correspond to weathered reddish and/or variegated clay in the study core, suggesting that Quaternary sediment changes on the Lian River plain were largely controlled by sea-level variations and coastline shift during glacial/interglacial cycles.

  19. Hydrological and pollution processes in mining area of Fenhe River Basin in China.

    Science.gov (United States)

    Yang, Yonggang; Meng, Zhilong; Jiao, Wentao

    2018-03-01

    The hydrological and pollution processes are an important science problem for aquatic ecosystem. In this study, the samples of river water, reservoir water, shallow groundwater, deep groundwater, and precipitation in mining area are collected and analyzed. δD and δ 18 O are used to identify hydrological process. δ 15 N-NO 3 - and δ 18 O-NO 3 - are used to identify the sources and pollution process of NO 3 - . The results show that the various water bodies in Fenhe River Basin are slightly alkaline water. The ions in the water mainly come from rock weathering. The concentration of SO 4 2- is high due to the impact of coal mining activity. Deep groundwater is significantly less affected by evaporation and human activity, which is recharged by archaic groundwater. There are recharge and discharge between reservoir water, river water, soil water, and shallow groundwater. NO 3 - is the main N species in the study area, and forty-six percent of NO 3 - -N concentrations exceed the drinking water standard of China (NO 3 - -N ≤ 10 mg/L content). Nitrification is the main forming process of NO 3 - . Denitrification is also found in river water of some river branches. The sources of NO 3 - are mainly controlled by land use type along the riverbank. NO 3 - of river water in the upper reaches are come from nitrogen in precipitation and soil organic N. River water in the lower reaches is polluted by a mixture of soil organic N and fertilizers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cracking and thermal maturity of Ordovician oils from Tahe Oilfield, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Anlai Ma

    2017-12-01

    Full Text Available The thermal maturity of the Ordovician oils from the Tahe oilfield of Tarim Basin, NW China was assessed through various maturity parameters, such as biomarkers, aromatic parameters, and diamondoid parameters. Both Ts/(Ts+Tm and C29Ts/(C29H+C29Ts values indicate that the maturity of oils has not reached the condensates stage, which is consistent with the maturity obtained by MPI1. However, the diamondoid maturity suggests that the oil maturity ranges 1.1%–1.6% Ro, which is apparently higher than that of the maturity obtained by the biomarker and MPI1. This discrepancy in maturity may indicate that the Ordovician reservoir has multiple filling history. The 4-MD+3-MD concentration of oils disperses and increases slowly when the Ts/(Ts+Tm value is lower than 0.55. Meanwhile, the value increases rapidly when the Ts/(Ts+Tm value is higher than 0.55. It is proposed that the diamondoid baseline is about 15 μg/goil for marine oils in the Tahe oilfield based on the diamondoid concentration of marine oils from reservoirs of various age. The concentration of 4-MD+3-MD of most Ordovician oils generally ranges from 4.5 to 35 μg/goil, suggesting that the degree of oil-cracking is lower than 50% and the deep Ordovician have potential of oil exploration. The distribution of the concentration of 4-MD+3-MD is characterized by being high in the east and south, low in the west and north, proposing that the two migration pathways exit in the oilfield, which are from east to west and from south to north, respectively. The migration directions are consistent with the results obtained from the oil density and the maturity parameters such as Ts/(Ts+Tm. Thus, suggesting the concentration of 4-MD+3-MD can be used as migration index in oilfield scale.

  1. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions play a major role in the shale oil occurrence (free or absorbed state, amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1 Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2 There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3 Pores in lacustrine shale are well developed when the organic matter maturity (Ro is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  2. Hydrochemical Characteristics and Formation of the Saline or Salty Springs in Eastern Sichuan Basin of China

    Science.gov (United States)

    Zhou, X.

    2017-12-01

    Saline or salty springs provide important information on the hydrogeochemical processes and hydrology within subsurface aquifers. More than 20 saline and salty springs occur in the core of anticlines in the eastern Sichuan Basin in southwestern China where the Lower and Middle Triassic carbonates outcrop. Water samples of 8 saline and salty springs (including one saline hot spring) were collected for analyses of the major and minor constituents, trace elements and stable oxygen and hydrogen isotopes. The TDS of the springs range from 4 to 83 g/L, and they are mainly of Cl-Na type. Sr, Ba and Li are the predominant trace elements. The δ2H and δ18O of the water samples indicate that they are of meteoric origin. The source of salinity of the springs originates from dissolution of minerals in the carbonates, including halite, gypsum, calcite and dolomite. The formation mechanism of the springs is that groundwater receives recharge from infiltration of precipitation, undergoes shallow or deep circulation in the core of the anticline and incongruent dissolution of the salt-bearing carbonates occurs, and emerges in the river valley in the form of springs with relatively high TDS. The 8 springs can be classified into 4 springs of shallow groundwater circulation and 4 springs of deep groundwater circulation according to the depth of groundwater circulation, 7 springs of normal temperature and 1 hot spring according to temperature. There are also 2 up-flow springs: the carbonate aquifers are overlain by relatively impervious sandstone and shale, groundwater may flows up to the ground surface through the local portion of the overlying aquiclude where fractures were relatively well developed, and emerges as an up-flow spring. Knowledge of the hydrochemical characteristics and the geneses of the saline and salty springs are of important significance for the utilization and preservation of the springs.

  3. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  4. Socio-hydrologic Perspectives of the Co-evolution of Humans and Water in the Tarim River Basin, Western China

    Science.gov (United States)

    Liu, Ye; Tian, Fuqiang; Hu, Heping; Liu, Dengfeng; Sivapalan, Murugesu

    2013-04-01

    Socio-hydrology studies the co-evolution of coupled human-water systems, which is of great importance for long-term sustainable water resource management in basins suffering from serious eco-environmental degradation. Process socio-hydrology can benefit from the exploring the patterns of historical co-evolution of coupled human-water systems as a way to discovering the organizing principles that may underpin their co-evolution. As a self-organized entity, the human-water system in a river basin would evolve into certain steady states over a sufficiently long time but then could also experience sudden shifts due to internal or external disturbances that exceed system thresholds. In this study, we discuss three steady states (also called stages in the social sciences, including natural, human exploitation and recovery stages) and transitions between these during the past 1500 years in the Tarim River Basin of Western China, which a rich history of civilization including its place in the famous Silk Road that connected China to Europe. Specifically, during the natural stage with a sound environment that existed before the 19th century, shifts in the ecohydrological regime were mainly caused by environmental changes such river channel migration and climate change. During the human exploitation stages in the 5th and again in the 19th-20th centuries, however, humans gradually became the main drivers for system evolution, during which the basin experienced rapid population growth, fast socio-economic development and intense human activities. By the 1970s, after 200 years of colonization, the Tarim River Basin evolved into a new regime with vulnerable ecosystem and water system, and suffered from serious water shortages and desertification. Human society then began to take a critical look into the effects of their activities and reappraise the impact of human development on the ecohydrological system, which eventually led the basin into a treatment and recovery stage

  5. Epidermal characters of Tamarix L. (Tamaricaceae) from Northwest China and their taxonomic and palaeogeographic implications

    OpenAIRE

    Jian-Wei Zhang; Ashalata D'Rozario; Shi-Min Duan; Xi-Yong Wang; Xiao-Qing Liang; Bo-Rong Pan

    2018-01-01

    The taxonomical position of species of the genus Tamarix (Tamaricaceae) has been criticized because of their gross morphological similarities (such as slender, smooth and reddish–brown branches, grey–green foliage and scale leaves), and their systematic relationships remain unclear. In this paper, the leaf epidermal features of 17 species from China are studied based on the micro-morphological characters of the epidermal cells, stomata, salt glands, papillae and epidermal hairs. According to ...

  6. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change

    Science.gov (United States)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.

    2015-03-01

    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; de"target="_blank">http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the Tarim River. The second objective

  7. Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available To reveal the revolution law of hydrologic extremes in the next 50 years and analyze the impact of climate change on hydrologic extremes, the following main works were carried on: firstly, the long duration (15 d, 30 d, and 60 d rainfall extremes according to observed time-series and forecast time-series by dynamical climate model product (BCC-CSM-1.1 were deduced, respectively, on the basis that the quantitative estimation of the impact of climate change on rainfall extremes was conducted; secondly, the SWAT model was used to deduce design flood with the input of design rainfall for the next 50 years. On this basis, quantitative estimation of the impact of climate change on long duration flood volume extremes was conducted. It indicates that (1 the value of long duration rainfall extremes for given probabilities (1%, 2%, 5%, and 10% of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years and (2 long duration flood volume extremes of given probabilities of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years. The conclusions may provide technical supports for basin level planning of flood control and hydropower production.

  8. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China.

    Science.gov (United States)

    Li, Chunxiang; Ning, Chao; Hagelberg, Erika; Li, Hongjie; Zhao, Yongbin; Li, Wenying; Abuduresule, Idelisi; Zhu, Hong; Zhou, Hui

    2015-07-08

    The Tarim Basin in western China, known for its amazingly well-preserved mummies, has been for thousands of years an important crossroad between the eastern and western parts of Eurasia. Despite its key position in communications and migration, and highly diverse peoples, languages and cultures, its prehistory is poorly understood. To shed light on the origin of the populations of the Tarim Basin, we analysed mitochondrial DNA polymorphisms in human skeletal remains excavated from the Xiaohe cemetery, used by the local community between 4000 and 3500 years before present, and possibly representing some of the earliest settlers. Xiaohe people carried a wide variety of maternal lineages, including West Eurasian lineages H, K, U5, U7, U2e, T, R*, East Eurasian lineages B, C4, C5, D, G2a and Indian lineage M5. Our results indicate that the people of the Tarim Basin had a diverse maternal ancestry, with origins in Europe, central/eastern Siberia and southern/western Asia. These findings, together with information on the cultural context of the Xiaohe cemetery, can be used to test contrasting hypotheses of route of settlement into the Tarim Basin.

  9. Hydroclimate-driven changes in the landscape structure of the terminal lakes and wetlands of the China's Heihe River Basin.

    Science.gov (United States)

    Xiao, Shengchun; Xiao, Honglang; Peng, Xiaomei; Song, Xiang

    2015-01-01

    Changes in the landscape structure of terminal lakes and wetlands along inland rivers in arid areas are determined by the water balance in the river basins under the impacts of climate change and human activities. Studying the evolution of these landscapes and the mechanisms driving these changes is critical to the sustainable development of river basins. The terminal lakes and wetlands along the lower reaches of the Heihe River, an inland river in arid northwestern China, can be grouped into three types: runoff-recharged, groundwater-recharged, and precipitation-recharged. These water-recharge characteristics determine the degree to which the landscape structure of a terminal lake or wetland is impacted by climate change and human activities. An analysis of seven remote-sensing and hydroclimatic data sets for the Heihe River basin during the last 50 years indicates that hydrological changes in the basin caused by regional human activities were the primary drivers of the observed changes in the spatial and temporal landscape-structure patterns of the terminal lakes and wetlands of the Heihe River. In this warm, dry climatic context, the lakes and wetlands gradually evolved toward and maintained a landscape dominated by saline-alkaline lands and grasslands.

  10. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China

    Science.gov (United States)

    Zhou, Jianzhong; Zhang, Hairong; Zhang, Jianyun; Zeng, Xiaofan; Ye, Lei; Liu, Yi; Tayyab, Muhammad; Chen, Yufan

    2017-07-01

    An accurate flood forecasting with long lead time can be of great value for flood prevention and utilization. This paper develops a one-way coupled hydro-meteorological modeling system consisting of the mesoscale numerical weather model Weather Research and Forecasting (WRF) model and the Chinese Xinanjiang hydrological model to extend flood forecasting lead time in the Jinshajiang River Basin, which is the largest hydropower base in China. Focusing on four typical precipitation events includes: first, the combinations and mode structures of parameterization schemes of WRF suitable for simulating precipitation in the Jinshajiang River Basin were investigated. Then, the Xinanjiang model was established after calibration and validation to make up the hydro-meteorological system. It was found that the selection of the cloud microphysics scheme and boundary layer scheme has a great impact on precipitation simulation, and only a proper combination of the two schemes could yield accurate simulation effects in the Jinshajiang River Basin and the hydro-meteorological system can provide instructive flood forecasts with long lead time. On the whole, the one-way coupled hydro-meteorological model could be used for precipitation simulation and flood prediction in the Jinshajiang River Basin because of its relatively high precision and long lead time.

  11. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China

    Institute of Scientific and Technical Information of China (English)

    武强; 董东林; 石占华; 武雄; 孙卫东; 叶责钧; 李树文; 刘金韬

    2000-01-01

    The conflict among water drainage, water supply and eco-environment protection is getting more and more serious due to the irrational drainage and exploitation of ground water resources in coal-accumulated basins of North China. Efficient solutions to the conflict are to maintain long-term dynamic balance between input and output of the ground water basins, and to try to improve resourcification of the mine water. All solutions must guarantee the eco-environment quality. This paper presents a new idea of optimum combination of water drainage, water supply and eco-environment protection so as to solve the problem of unstable mine water supply, which is caused by the changeable water drainage for the whole combination system. Both the management of hydraulic techniques and constraints in economy, society, ecology, environment, industrial structural adjustments and sustainable developments have been taken into account. Since the traditional and separate management of different departments of water drainage,

  12. Effect of land use on the seasonal variation of streamwater quality in the Wei River basin, China

    Science.gov (United States)

    Yu, S.; Xu, Z.; Wu, W.; Zuo, D.

    2015-05-01

    The temporal effect of land use on streamwater quality needs to be addressed for a better understanding of the complex relationship between land use and streamwater quality. In this study, GIS and Pearson correlation analysis were used to determine whether there were correlations of land-use types with streamwater quality at the sub-basin scale in the Wei River basin, China, during dry and rainy seasons in 2012. Temporal variation of these relations was observed, indicating that relationships between water quality variables and proportions of different land uses were weaker in the rainy season than that in the dry season. Comparing with other land uses, agriculture and urban lands had a stronger relationship with water quality variables in both the rainy and dry seasons. These results suggest that the aspect of temporal effects should be taken into account for better land-use management.

  13. Recent discovery of handaxes associated with tektites in the Nanbanshan locality of the Darnel site, Bose basin, Guangxi, South China

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; MO JinYou; HUANG ZhiTao

    2008-01-01

    This paper reports the recent discovery of 176 stone artifacts, including two handaxes (bifacial large cutting tools), which are preserved in the laterized sediments of terrace 4 of the Youjiang River at the Nanbanshan locality of the Damei site in the Bose basin, south China. Their characteristics are similar to Paleolithic stone artifacts discovered from other sites in this basin. The handaxes, picks and other stone artifacts are associated with 155 tektite pieces found in the same horizontal layer. These fresh, unabraded and sharp-edged tektites were buried immediately after the airfall event. This provides fur-ther evidence that the Bose stone artifacts and the tektites were deposited simultaneously around 0.8 Ma. More stone artifacts were also unearthed above the tektite layer, indicating that early humans in the area survived the event.

  14. Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013.

    Science.gov (United States)

    Yu, Yan; Hu, Senke; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Jinghua; Gao, Song; Yang, Aimin

    2017-08-02

    A wide range of pesticides is applied for crop protection in vegetable cultivation in China. Regulation of pesticide maximum residue limits (MRLs) in vegetables is established but not fully enforced. And pesticide residues in vegetables were not well monitored. This study conducted the monitoring surveys from 2011 to 2013 to investigate the pesticides in vegetables in the northwest region of China. A multi-residue gas chromatography/mass spectrometry method (GC/MS) was used in determination of pesticides in vegetable samples. The χ 2 test was used to compare the concentration of pesticide residues. A total of 32 pesticide residues were detected in 518 samples from 20 types of vegetables in this study. 7.7% of the detected pesticide residues exceeded the MRLs. The percentages of residues that exceeded the MRLs for leafy, melon and fruit, and root vegetables were 11.2%, 5.1%, and 1.6%, respectively. There was no seasonal difference in the proportion of samples that exceeded the MRLs in different vegetables. A total of 84.3% (27/32) pesticides were detected at concentrations that exceeded MRLs. And of the 27 pesticides that exceeded the MRLs, 11 (40.7%) were banned for use in agriculture. The most frequently detected pesticides were Malathion (9.4%), Dichlorvos (8.7%), and Dimethoate (8.1%). The observed high rate of pesticides detected and high incidence of pesticide detection exceeding their MRLs in the commonly consumed vegetables indicated that the Good Agricultural Practices (GAP) may not be well followed. The management of pesticide use and control should be improved. Well-developed training programs should be initiated to improve pesticide application knowledge for farmers.

  15. Evaluation of body weight-based vancomycin therapy and the incidence of nephrotoxicity: a retrospective study in the northwest of China.

    Science.gov (United States)

    Dong, Mo-Han; Wang, Jing-Wen; Wu, Yin; Chen, Bei-Yu; Yu, Min; Wen, Ai-Dong

    2015-08-01

    To identify specific risk factors of vancomycin-induced nephrotoxicity in China, as the relationship between vancomycin therapy (dosing and trough concentration monitoring) and nephrotoxicity has been the subject of critical debate. The cases of 90 critically ill patients who received vancomycin therapy in Xijing Hospital in the northwest of China between March 2014 and January 2015 were reviewed retrospectively. Vancomycin dosing, blood serum trough concentration, and other independent risk factors associated with nephrotoxicity were evaluated in a multivariable model. Among the 90 critically ill patients, 59 were males; mean age was 46.3 years. The indications for vancomycin use were methicillin-resistant Staphylococcus aureus-associated pneumonia, central nervous system infection, and bacteremia. Clinical pharmacists prescribed weight-based dosing, ranging from 20 to 45mg/kg/day. Fourteen (15.6%) patients developed nephrotoxicity, with serum creatinine elevated significantly from a mean (standard deviation) of 90.0 (18.8) μmol/l to 133.8 (63.2) μmol/l (p = 0.015). It was found that those with a vancomycin dosage >38mg/kg/day (50.0% vs. 11.3%, p = 0.004) and a vancomycin serum trough concentration >20mg/l (57.1% vs. 12.0%, p = 0.01) were more likely to develop nephrotoxicity. The data from this study indicate that a vancomycin dosage >38mg/kg/day and a serum trough level >20mg/l are both independent factors associated with the development of nephrotoxicity, suggesting that renal function should be monitored closely during vancomycin treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The Wasteland Auction Policy in Northwest China: Solving Environmental Degradation and Rural Poverty? / Rural Development in Transitional China: A Special Issue

    NARCIS (Netherlands)

    Ho, P.P.S.

    2003-01-01

    In order to relieve rural poverty and solve the problem of soil and water erosion on marginal land, various provinces and regions throughout China proclaimed a new policy in the late 1980s and early 1990s. This 'Four Wastelands Auction Policy' attempts to boost the development of land of low

  17. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    Science.gov (United States)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy

  18. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    Science.gov (United States)

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.

  19. Simulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China

    Directory of Open Access Journals (Sweden)

    Shouzhang Peng

    2016-07-01

    Full Text Available The current study used the Biome-Bio Geochemical Cycle (Biome-BGC model to simulate water-use efficiency (WUE of Piceacrassi folia (P. crassifolia forest under four representative concentration pathway (RCP scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was validated by comparing simulated forest net primary productivity and transpiration under current climatic condition with independent field-measured data. Subsequently, the model was used to predict P. crassi folia forest WUE response to different climatic and CO2 change scenarios. Results showed that (1 increases in temperature, precipitation and atmospheric CO2 concentrations led to associated increases in WUE (ranging from 54% to 66% above the reference climate; (2 effect of CO2 concentration (increased WUE from 36% to 42.3% was more significant than that of climate change (increased WUE from 2.4% to 15%; and (3 forest WUE response to future global change was more intense at high elevations than at low ones, with CO2 concentration being the main factor that controlled forest WUE variation. These results provide valuable insight to help understand how these forest types might respond to future changes in climate and atmospheric CO2 concentration.

  20. A New Insight into Shale-Gas Accumulation Conditions and Favorable Areas of the Xinkailing Formation in the Wuning Area, North-West Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Shangru Li

    2017-12-01

    Full Text Available In north-west Jiangxi, China, most shale-gas exploration has been focused on the Lower Cambrian Hetang and Guanyintang formations, whereas the Upper Ordovician Xinkailing formation shale has been ignored for years due to heavy weathering. This study systematically analyzed gas source conditions, reservoir conditions and gas-bearing ability in order to reveal the shale-gas accumulation conditions of the Xinkailing formation. The results show that the Xinkailing formation is characterized by thick deposition of black shale (10–80 m, high organic content (with total organic carbon between 1.18% and 3.11%, on average greater than 2%, relatively moderate thermal evolution (with vitrinite reflectance between 2.83% and 3.21%, high brittle-mineral content (greater than 40%, abundant nanopores and micro-fractures, very good adsorption ability (adsorption content between 2.12 m3/t and 3.47 m3/t, on average about 2.50 m3/t, and strong sealing ability in the underlying and overlying layers, all of which favor the generation and accumulation of shale gas. The Wuning-Lixi and Jinkou-Zhelin areas of the Xinkailing formation were selected as the most realistic and favorable targets for shale-gas exploration and exploitation. In conclusion, the Wuning area has great potential and can provide a breakthrough in shale gas with further investigation.

  1. Evaluation of Climate Change Impacts on Wetland Vegetation in the Dunhuang Yangguan National Nature Reserve in Northwest China Using Landsat Derived NDVI

    Directory of Open Access Journals (Sweden)

    Feifei Pan

    2018-05-01

    Full Text Available Based on 541 Landsat images between 1988 and 2016, the normalized difference vegetation indices (NDVIs of the wetland vegetation at Xitugou (XTG and Wowachi (WWC inside the Dunhuang Yangguan National Nature Reserve (YNNR in northwest China were calculated for assessing the impacts of climate change on wetland vegetation in the YNNR. It was found that the wetland vegetation at the XTG and WWC had both shown a significant increasing trend in the past 20–30 years and the increase in both the annual mean temperature and annual peak snow depth over the Altun Mountains led to the increase of the wetland vegetation. The influence of the local precipitation on the XTG wetland vegetation was greater than on the WWC wetland vegetation, which demonstrates that in extremely arid regions, the major constraint to the wetland vegetation is the availability of water in soils, which is greatly related to the surface water detention and discharge of groundwater. At both XTG and WWC, the snowmelt from the Altun Mountains is the main contributor to the groundwater discharge, while the local precipitation plays a lesser role in influencing the wetland vegetation at the WWC than at the XTG, because the wetland vegetation grows on a relatively flat terrain at the WWC, while it grows on a stream channel at the XTG.

  2. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China.

    Science.gov (United States)

    Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong

    2018-05-15

    We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Distinguishing between anthropogenic and climatic impacts on lake size: a modeling approach using data from Ebinur Lake in arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2014-03-01

    Full Text Available Evaluation of anthropogenic and climatic impacts on lake size variation is important for maintaining ecosystem integrity and sustaining societal development. We assumed that climate and human activity are the only drivers of lake-size variation and are independent of each other. We then evaluated anthropogenic and climatic effects on hydrological processes, using a multivariate linear model. Macro-economic data were used to describe the anthropogenic impact on lake surface area in our approach. Ebinur Lake is a shallow, closed, saline lake in arid northwest China; it has shrunk at a rapid rate over the past half century. Using our new method, we explored temporal trends of anthropogenic and climatic impacts on the lake over the past 50 years. Assessment indices indicate that the model represents observed data quite well. Compared with the reference period of 1955-1960, impacts of climate change across the catchment were generally positive with respect to lake area, except for the period from 1961 to 1970. Human activity was responsible for a reduction in lake surface area of 286.8 km2 over the last 50 years. Our approach, which uses economic variables to describe the anthropogenic impact on lake surface area, enables us to explain the lake responses to climate change and human activities quantitatively.

  4. [Species-area and species-abundance relationships of arthropod community in various vegetation restoration areas in Zhifanggou watershed, Shaanxi province of Northwest China].

    Science.gov (United States)

    Zhang, Feng; Hong, Bo; Li, Ying-Mei; Chen, Zhi-Jie; Zhang, Shu-Lian; Zhao, Hui-Yan

    2013-02-01

    Taking the Zhifanggou watershed in Ansai, Shaanxi Province of Northwest China as a study unit, an investigation on the arthropods in 8 forest stands was conducted from 2006 to 2008, with the species-area and species-abundance relationships of the arthropods in these stands analyzed by various mathematical models. In these forest stands, the species-area relationship of the arthropods accorded with the formula S= CAm With the increase of investigation area, the species number approached to a constant, and the corresponding smallest investigation area was in the order of natural bush > natural forest > Populus davidiana+Robinia pseudoacacia forest > Hippaphae rhamnoides +Caragana mocrophylla forest> Periploca sepium forest > Hippaphae rhamnoides forest > Robinia pseudoacacia forest > Caragana mocrophylla forest, indicating that the more complex the stands, the larger the minimum area needed to be investigated. Based on sampling investigation, the species-abundance models of the arthropods in various stands were established. Lognormal distribution model (LN) was most suitable to fit the arthropod community in natural recovery stands, suggesting that in the arthropod community, there were more species with medial individual amount and fewer abundant species and rare species, and no obvious dominant species. LogCauchy distribution model (LC) was most suitable to fit the arthropod community in mixed and pure stands. As compared with natural recovery stand, mixed and pure stands had more abundant and rare species, and more dominant species.

  5. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    Science.gov (United States)

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland.

  6. Climate and Hydrological Change Characteristics and Applicability of GLDAS Data in the Yarlung Zangbo River Basin, China

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2018-03-01

    Full Text Available The hydrological cycle is particularly sensitive to and is greatly affected by global climate change. In addition, runoff change has a strong influence on the hydrological cycle and migration of biogenic substances. The Yarlung Zangbo River basin in China is a typical basin for which climate and hydrological data are lacking. Land surface models can provide data for studying land surface substance and energy circulation, which are meaningful to face climate change. The midstream region of the Yarlung Zangbo River basin, which is strongly affected by climate change, was selected as the study area. First, the observed mean temperature, precipitation and runoff characteristics were analysed. Second, after combining the Global Land Data Assimilation System (GLDAS and the water balance equation, we simulated climate and hydrological processes for the same time period. Finally, the correlation and error between GLDAS and observed data were analysed to verify applicability of the GLDAS data, and the impacts of climate factors on runoff were discussed. The results revealed that under the background of global warming, precipitation, temperature, and runoff changed significantly and showed strong consistency during the research period. Mean monthly precipitation, temperature and runoff exhibited clear cyclical fluctuations of approximately 12 months, and they all tended to increase. GLDAS is not a good system to describe the land surface conditions of the Yarlung Zangbo River basin all the time. However, within a certain time period, GLDAS data have a good applicability in the basin. Thereinto, the GLDAS mean monthly precipitation was moderately correlated with observed precipitation, with a correlation coefficient of 0.75. GLDAS mean monthly temperature was highly correlated with observed data, with a correlation coefficient of 0.94. Based on the Brunke ranking method, it indicates that GLDAS-Noah-based runoff data were closer to observed runoff data

  7. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao

    2013-03-01

    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  8. Evolution of Meso-Cenozoic lithospheric thermal-rheological structure in the Jiyang sub-basin, Bohai Bay Basin, eastern North China Craton

    Science.gov (United States)

    Xu, Wei; Qiu, Nansheng; Wang, Ye; Chang, Jian

    2018-01-01

    The Meso-Cenozoic lithospheric thermal-rheological structure and lithospheric strength evolution of the Jiyang sub-basin were modeled using thermal history, crustal structure, and rheological parameter data. Results indicate that the thermal-rheological structure of the Jiyang sub-basin has exhibited obvious rheological stratification and changes over time. During the Early Mesozoic, the uppermost portion of the upper crust, middle crust, and the top part of the upper mantle had a thick brittle layer. During the early Early Cretaceous, the top of the middle crust's brittle layer thinned because of lithosphere thinning and temperature increase, and the uppermost portion of the upper mantle was almost occupied by a ductile layer. During the late Early Cretaceous, the brittle layer of the middle crust and the upper mantle changed to a ductile one. Then, the uppermost portion of the middle crust changed to a thin brittle layer in the late Cretaceous. During the early Paleogene, the thin brittle layer of the middle crust became even thinner and shallower under the condition of crustal extension. Currently, with the decrease in lithospheric temperature, the top of the upper crust, middle crust, and the uppermost portion of the upper mantle are of a brittle layer. The total lithospheric strength and the effective elastic thickness ( T e) in Meso-Cenozoic indicate that the Jiyang sub-basin experienced two weakened stages: during the late Early Cretaceous and the early Paleogene. The total lithospheric strength (approximately 4-5 × 1013 N m-1) and T e (approximately 50-60 km) during the Early Mesozoic was larger than that after the Late Jurassic (2-7 × 1012 N m-1 and 19-39 km, respectively). The results also reflect the subduction, and rollback of Pacific plate is the geodynamic mechanism of the destruction of the eastern North China Craton.

  9. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    Science.gov (United States)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  10. Interdisciplinary investigation on ancient Ephedra twigs from Gumugou Cemetery (3800 B.P.) in Xinjiang region, northwest China.

    Science.gov (United States)

    Xie, Mingsi; Yang, Yimin; Wang, Binghua; Wang, Changsui

    2013-07-01

    In the dry northern temperate regions of the northern hemisphere, the genus Ephedra comprises a series of native shrub species with a cumulative application history reaching back well over 2,000 years for the treatment of asthma, cold, fever, as well as many respiratory system diseases, especially in China. There are ethnological and philological evidences of Ephedra worship and utilization in many Eurasia Steppe cultures. However, no scientifically verifiable, ancient physical proof has yet been provided for any species in this genus. This study reports the palaeobotanical finding of Ephedra twigs discovered from burials of the Gumugou archaeological site, and ancient community graveyard, dated around 3800 BP, in Lop Nor region of northwestern China. The macro-remains were first examined by scanning electron microscope (SEM) and then by gas chromatography-mass spectrometry (GC-MS) for traits of residual biomarkers under the reference of modern Ephedra samples. The GC-MS result of chemical analysis presents the existence of Ephedra-featured compounds, several of which, including benzaldehyde, tetramethyl-pyrazine, and phenmetrazine, are found in the chromatograph of both the ancient and modern sample. These results confirm that the discovered plant remains are Ephedra twigs. Although there is no direct archaeological evidence for the indication of medicinal use of this Ephedra, the unified burial deposit in which the Ephedra was discovered is a strong indication of the religious and medicinal awareness of the human inhabitants of Gumugou towards this plant. Copyright © 2013 Wiley Periodicals, Inc.

  11. The relative role of climate change and human activities in the desertification process in Yulin region of northwest China.

    Science.gov (United States)

    Wang, Tao; Sun, Jian-Guo; Han, Hui; Yan, Chang-Zhen

    2012-12-01

    To overcome the shortcoming of existing studies, this paper put forward a statistical vegetation-climate relationship model with integrated temporal and spatial characteristics. Based on this model, we quantitatively discriminated on the grid scale the relative role of climate change and human activities in the desertification dynamics from 1986 to 2000 in Yulin region. Yulin region's desertification development occurred mainly in the southern hilly and gully area and its reverse in the northwest sand and marsh area. This spatial pattern was especially evident and has never changed thoroughly. From the first time section (1986-1990) to the second (1991-1995), the desertification was developing as a whole, and either in the desertification development district or in the reverse district human activities' role was always occupying an overwhelmingly dominant position (they were 98.7% and 101.4%, respectively), the role of climate change was extremely slight. From the second time section (1991-1995) to the third (1996-2000), the desertification process was reaching a state of stability, in the desertification development district the role of climate change was nearly equivalent to that of human activities (they were 46.2% and 53.8% separately), and yet in the desertification reverse district, the role of human activities came up to 119.0%, the role of climate change amounted to -19.0%. In addition, the relative role of climate change and human activities possessed great spatial heterogeneity. The above conclusion rather coincides with the qualitative analysis in many literatures, which indicates that this method has certain rationality and can be utilized as a reference for the monitoring and studying of desertification in other areas.

  12. A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics

    Science.gov (United States)

    Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing

    2017-10-01

    In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.

  13. ENSO-Type Signals Recorded in the Late Cretaceous Laminated Sediments of Songliao Basin, Northeast China

    Science.gov (United States)

    Yu, E.; Wang, C.; Hinnov, L. A.; Wu, H.

    2014-12-01

    The quasi-periodic, ca. 2-7 year El Niño Southern Oscillation (ENSO) phenomenon globally influences the inter-annual variability of temperature and precipitation. Global warming may increase the frequency of extreme ENSO events. Although the Cretaceous plate tectonic configuration was different from today, the sedimentary record suggests that ENSO-type oscillations had existed at the time of Cretaceous greenhouse conditions. Cored Cretaceous lacustrine sediments from the Songliao Basin in Northeast China (SK-1 cores from the International Continental Drilling Program) potentially offer a partially varved record of Cretaceous paleoclimate. Fourteen polished thin sections from the depth interval 1096.12-1096.53 m with an age of 84.4 Ma were analyzed by optical and scanning electron microscopy (SEM). ImageJ software was applied to extract gray scale curves from optical images at pixel resolution. We tracked minimum values of the gray scale curves to estimate the thickness of each lamina. Five sedimentary structures were recognized: flaser bedding, wavy bedding, lenticular bedding, horizontal bedding, and massive layers. The mean layer thicknesses with different sedimentary structures range from 116 to 162mm, very close to the mean sedimentation rate estimated for this sampled interval, 135mm/year, indicating that the layers bounded by pure clay lamina with the minimum gray values are varves. SEM images indicate that a varve is composed, in succession, of one lamina rich in coarse silt, one lamina rich in fine silt, one clay-rich lamina with some silt, and one clay-rich lamina. This suggests that a Cretaceous year featured four distinct depositional seasons, two of which were rainy and the others were lacking precipitation. Spectral analysis of extended intervals of the tuned gray scale curve indicates the presence of inter-annual periodicities of 2.2-2.7 yr, 3.5-6.1 year, and 10.1-14.5 year consistent with those of modern ENSO cycles and solar cycles, as well as

  14. Methane clumped isotopes in the Songliao Basin (China): New insights into abiotic vs. biotic hydrocarbon formation

    Science.gov (United States)

    Shuai, Yanhua; Etiope, Giuseppe; Zhang, Shuichang; Douglas, Peter M. J.; Huang, Ling; Eiler, John M.

    2018-01-01

    Abiotic hydrocarbon gas, typically generated in serpentinized ultramafic rocks and crystalline shields, has important implications for the deep biosphere, petroleum systems, the carbon cycle and astrobiology. Distinguishing abiotic gas (produced by chemical reactions like Sabatier synthesis) from biotic gas (produced from degradation of organic matter or microbial activity) is sometimes challenging because their isotopic and molecular composition may overlap. Abiotic gas has been recognized in numerous locations on the Earth, although there are no confirmed instances where it is the dominant source of commercially valuable quantities in reservoir rocks. The deep hydrocarbon reservoirs of the Xujiaweizi Depression in the Songliao Basin (China) have been considered to host significant amounts of abiotic methane. Here we report methane clumped-isotope values (Δ18) and the isotopic composition of C1-C3 alkanes, CO2 and helium of five gas samples collected from those Xujiaweizi deep reservoirs. Some geochemical features of these samples resemble previously suggested identifiers of abiotic gas (13C-enriched CH4; decrease in 13C/12C ratio with increasing carbon number for the C1-C4 alkanes; abundant, apparently non-biogenic CO2; and mantle-derived helium). However, combining these constraints with new measurements of the clumped-isotope composition of methane and careful consideration of the geological context, suggests that the Xujiaweizi depression gas is dominantly, if not exclusively, thermogenic and derived from over-mature source rocks, i.e., from catagenesis of buried organic matter at high temperatures. Methane formation temperatures suggested by clumped-isotopes (167-213 °C) are lower than magmatic gas generation processes and consistent with the maturity of local source rocks. Also, there are no geological conditions (e.g., serpentinized ultramafic rocks) that may lead to high production of H2 and thus abiotic production of CH4 via CO2 reduction. We propose

  15. Geochemical characteristics and implications of shale gas from the Longmaxi Formation, Sichuan Basin, China

    Directory of Open Access Journals (Sweden)

    Chunhui Cao

    2016-04-01

    Full Text Available Gas geochemical analysis was conducted on the shale gas from the Longmaxi Formation in the Weiyuan-Changning areas, Sichuan Basin, China. Chemical composition was measured using an integrated method of gas chromatography combined with mass spectrometry. The results show that the Longmaxi shale gas, after hydraulic fracturing, is primarily dominated by methane (94.0%–98.6% with low humidity (0.3%–0.6% and minor non-hydrocarbon gasses which are primarily comprised of CO2, N2, as well as trace He. δ13CCO2 = −2.5‰−6.0‰3He/4He = 0.01–0.03Ra.The shale gas in the Weiyuan and Changning areas display carbon isotopes reversal pattern with a carbon number (δ13C1 > δ13C2 and distinct carbon isotopic composition. The shale gas from the Weiyuan pilot has heavier carbon isotopic compositions for methane (δ13C1: from −34.5‰ to −36.8‰, ethane (δ13C2: −37.6‰ to −41.9‰, and CO2 (δ13CCO2: −4.5‰ to −6.0‰ than those in the Changning pilot (δ13C1: −27.2‰ to −27.3‰, δ13C2: −33.7‰ to −34.1‰, δ13CCO2: −2.5‰ to −4.6‰. The Longmaxi shale was thermally high and the organic matter was in over mature stage with good sealing conditions. The shale gas, after hydraulic fracturing, could possibly originate from the thermal decomposition of kerogen and the secondary cracking of liquid hydrocarbons which caused the reversal pattern of carbon isotopes. Some CO2 could be derived from the decomposition of carbonate. The difference in carbon isotopes between the Weiyuan and Changning areas could be derived from the different mixing proportion of gas from the secondary cracking of liquid hydrocarbons caused by specific geological and geochemical conditions.

  16. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2015-01-01

    of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...

  17. Estimation of radiative effect of a heavy dust storm over northwest China using Fu–Liou model and ground measurements

    International Nuclear Information System (INIS)

    Wang, Wencai; Huang, Jianping; Zhou, Tian; Bi, Jianrong; Lin, Lei; Chen, Yonghang; Huang, Zhongwei; Su, Jing

    2013-01-01

    A heavy dust storm that occurred in Northwestern China during April 24–30 2010 was studied using observational data along with the Fu–Liou radiative transfer model. The dust storm was originated from Mongolia and affected more than 10 provinces of China. Our results showed that dust aerosols have a significant impact on the radiative energy budget. At Minqin (102.959°E, 38.607°N) and Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL, 104.13°E, 35.95°N) sites, the net radiative forcing (RF) ranged from 5.93 to 35.7 W m −2 at the top of the atmosphere (TOA), −6.3 to −30.94 W m −2 at surface, and 16.77 to 56.32 W m −2 in the atmosphere. The maximum net radiative heating rate reached 5.89 K at 1.5 km on 24 April at the Minqin station and 4.46 K at 2.2 km on 29 April at the SACOL station. Our results also indicated that the radiative effect of dust aerosols is affected by aerosol optical depth (AOD), single-scattering albedo (SSA) and surface albedo. Modifications of the radiative energy budget by dust aerosols may have important implications for atmospheric circulation and regional climate. -- Highlights: ► Dust aerosols' optical properties and radiative effects were investi