WorldWideScience

Sample records for basin irrigation

  1. Irrigation-based livelihood trends in river basins: theory and policy implications for irrigation development

    Science.gov (United States)

    Lankford, Bruce

    This paper examines irrigation development and policy in Tanzania utilising a livelihoods and river basin perspective. On the basis of observations, the author argues that river basins theoretically exhibit a sigmoid curve of irrigation development in three stages; proto-irrigation, irrigation-momentum and river basin management. This model arises from two governing factors. Firstly, irrigation is a complex livelihood activity that, although has benefits, also has costs, risks and alternatives that integrate across many systems; farmers implicitly understand this and enter into or keep out of irrigation accordingly. In the proto-irrigation stage, irrigators are less common, and irrigation is felt to be a relatively unattractive livelihood. In the irrigation-momentum stage, irrigators are drawn very much to irrigation in providing livelihood needs. Hence, given both of these circumstances, governments should be cautious about policies that call for the need to ‘provide irrigation’ (when farmers may not wish to irrigate) or to further increase it (when farmers already have the means and will to do so). Second, irrigation consumes water, generating externalities. Thus if irrigation momentum proceeds to the point when water consumption directly impacts on other sectors and livelihoods, (e.g. pastoralists, downstream irrigation, the environment) decision-makers should focus not necessarily on irrigation expansion, but on water management, allocation and conflict mediation. This three-stage theoretical model reminds us to take a balanced ‘livelihoods river-basin’ approach that addresses real problems in each given stage of river basin development and to develop policy accordingly. The paper contains a discussion on livelihood factors that affect entry into irrigation. It ends with a series of recommendations on policy; covering for example new large-scale systems; problems solving; and the use of an irrigation-river basin livelihoods approach. The recommendations

  2. Winter Irrigation Effects in Cotton Fields in Arid Inland Irrigated Areas in the North of the Tarim Basin, China

    Directory of Open Access Journals (Sweden)

    Pengnian Yang

    2016-02-01

    Full Text Available Winter irrigation is one of the water and salt management practices widely adopted in arid irrigated areas in the Tarim Basin located in the Xinjiang Uygur Autonomous Region in the People’s Republic of China. A winter irrigation study was carried out from November 2013 to March 2014 in Korla City. A cotton field was divided into 18 plots with a size of 3 m × 3 m and five winter irrigation treatments (1200 m3/ha, 1800 m3/ha, 2400 m3/ha, 3000 m3/ha, and 3600 m3/ha and one non-irrigation as a control were designed. The results showed that the higher winter irrigation volumes allowed the significant short-term difference after the irrigation in the fields with the higher soil moisture content. Therefore, the soil moisture in the next sowing season could be maintained at the level which was slightly lower than field capacity and four times that in the non-irrigation treatment. The desalination effect of winter irrigation increased with the increase of water irrigation volume, but its efficiency decreased with the increase of water irrigation volume. The desalination effect was characterized by short-term desalination, long-term salt accumulation, and the time-dependent gradually decreasing trend. During the winter irrigation period, air temperature was the most important external influencing factor of the soil temperature. During the period of the decrease in winter temperatures from December to January, soil temperature in the 5-cm depth showed no significant difference in all the treatments and the control. However, during the period of rising temperatures from January to March, soil temperature in the control increased significantly, faster than that in all treatments. Under the same irrigation volume, the temperature difference between the upper soil layer and the lower soil layer increased during the temperature drop period and decreased during the temperature rise period. In this paper, we proposed the proper winter irrigation volume of 1800

  3. A study on the role and importance of irrigation management in integrated river basin management.

    Science.gov (United States)

    Koç, Cengiz

    2015-08-01

    The purpose of this paper is to identify the role and the importance of irrigation management in integrated river basin management during arid and semi-arid conditions. The study has been conducted at Büyük Menderes Basin which is located in southwest of Turkey and where different sectors (irrigation, drinking and using, industry, tourism, ecology) related to the use and distribution of water sources compete with each other and also where the water demands for important ecological considerations is evaluated and where the river pollution has reached important magnitudes. Since, approximately 73% of the water resources of the basin are utilized for irrigation; as a result, irrigation management becomes important for basin management. Irrigation operations have an effect on basin soil resources, water users, and environmental and ecological conditions. Thus, the determination of the role and importance of irrigation management require an integrated and interdisciplinary approach. In the studies conducted in Turkey, usually the environmental reactions have been analyzed in the basin studies and so the other topics related to integrated river basin management have not been taken into account. Therefore, this study also is to address these existing gaps in the literature and practice. PMID:26148688

  4. Supplemental irrigation potential and impact on downstream flow of Karkheh River basin in Iran

    Science.gov (United States)

    Hessari, Behzad; Bruggeman, Adriana; Akhoond-Ali, Ali Mohammad; Oweis, Theib; Abbasi, Fariborz

    2016-05-01

    Supplemental irrigation of rainfed winter crops improves and stabilises crop yield and water productivity. Although yield increases by supplemental irrigation are well established at the field level, its potential extent and impact on water resources at the basin level are less researched. This work presents a Geographic Information Systems (GIS)-based methodology for identifying areas that are potentially suitable for supplemental irrigation and a computer routine for allocating streamflow for supplemental irrigation in different sub-basins. A case study is presented for the 42 908 km2 upper Karkheh River basin (KRB) in Iran, which has 15 840 km2 of rainfed crop areas. Rainfed crop areas within 1 km from the streams, with slope classes 0-5, 0-8, 0-12, and 0-20 %, were assumed to be suitable for supplemental irrigation. Four streamflow conditions (normal, normal with environmental flow requirements, drought and drought with environmental flow) were considered for the allocation of water resources. Thirty-seven percent (5801 km2) of the rainfed croplands had slopes less than 5 %; 61 % (3559 km2) of this land was suitable for supplemental irrigation, but only 22 % (1278 km2) could be served with irrigation in both autumn (75 mm) and spring (100 mm), under normal flow conditions. If irrigation would be allocated to all suitable land with slopes up to 20 %, 2057 km2 could be irrigated. This would reduce the average annual outflow of the upper KRB by 9 %. If environmental flow requirements are considered, a maximum (0-20 % slopes) of 1444 km2 could receive supplemental irrigation. Under drought conditions a maximum of 1013 km2 could be irrigated, while the outflow would again be reduced by 9 %. Thus, the withdrawal of streamflow for supplemental irrigation has relatively little effect on the outflow of the upper KRB. However, if the main policy goal would be to improve rainfed areas throughout the upper KRB, options for storing surface water need to be developed.

  5. Irrigation efficiency and water-policy implications for river-basin resilience

    Directory of Open Access Journals (Sweden)

    C. A. Scott

    2013-07-01

    Full Text Available Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  6. Gender and power contestations over water use in irrigation schemes: Lessons from the lake Chilwa basin

    Science.gov (United States)

    Nkhoma, Bryson; Kayira, Gift

    2016-04-01

    Over the past two decades, Malawi has been adversely hit by climatic variability and changes, and irrigation schemes which rely mostly on water from rivers have been negatively affected. In the face of dwindling quantities of water, distribution and sharing of water for irrigation has been a source of contestations and conflicts. Women who constitute a significant section of irrigation farmers in schemes have been major culprits. The study seeks to analyze gender contestations and conflicts over the use of water in the schemes developed in the Lake Chilwa basin, in southern Malawi. Using oral and written sources as well as drawing evidence from participatory and field observations conducted at Likangala and Domasi irrigation schemes, the largest schemes in the basin, the study observes that women are not passive victims of male domination over the use of dwindling waters for irrigation farming. They have often used existing political and traditional structures developed in the management of water in the schemes to competitively gain monopoly over water. They have sometimes expressed their agency by engaging in irrigation activities that fall beyond the control of formal rules and regulations of irrigation agriculture. Other than being losers, women are winning the battle for water and land resources in the basin.

  7. Does the Limpopo River Basin have sufficient water for massive irrigation development in the plains of Mozambique?

    NARCIS (Netherlands)

    Zaag, van der P.; Juizo, D.; Vilanculos, A.; Bolding, J.A.; Post Uiterweer, N.C.

    2010-01-01

    This paper verifies whether the water resources of the transboundary Limpopo River Basin are sufficient for the planned massive irrigation developments in the Mozambique part of this basin, namely 73,000 ha, in addition to existing irrigation (estimated at 9400 ha), and natural growth of common use

  8. Willingness to pay for more efficient irrigation techniques in the Lake Karla basin, Greece.

    Science.gov (United States)

    Mylopoulos, Nikitas; Fafoutis, Chrysostomos

    2014-05-01

    Thessaly, the second largest plain of Greece, is an intensively cultivated agricultural region. The intense and widespread agriculture of hydrophilic crops, such as cotton, has led to a remarkable water demand increase, which is usually covered by the overexploitation of groundwater resources. The Lake Karla basin is a prominent example of this unsustainable practice. Competition for the limited available freshwater resources in the Lake Karla basin is expected to increase in the near future as demand for irrigation water increases and drought years are expected to increase due to climate change. Together with the Unions of Agricultural Cooperatives, the Local Organizations of Land Reclamation is planning to introduce more efficient, water saving automated drip irrigation in the area among farmers who currently use non-automated drip irrigation, in order to ensure that these farmers can better cope with drought years and that water will be used more efficiently in crop production. Saving water use in irrigated agriculture is expected to be beneficial to both farmers and the restoration of Lake Karla and its wildlife like plants and birds. The aim of this study is to understand and record the farmers' opinions regarding the use of irrigation water and the restoration of Lake Karla, and to extract valuable conclusions and perform detailed analysis of the criteria for a new irrigation method. A general choice experiment with face-to-face interviews was conducted, using a random sample of 150 open field farmers from the study area. The farmers, who use the non-automated drip irrigation method and their farms are located within the watershed of Lake Karla, were interviewed regarding their willingness to switch to more efficient irrigation techniques, such as automated and controlled drip irrigation.The most important benefits of automated drip irrigation are an increase in crop yield, as plants are given water in a more precise way (based on their needs during the

  9. Digging, Damming or Diverting? Small-Scale Irrigation in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Irit Eguavoen

    2012-10-01

    Full Text Available The diversity of small-scale irrigation in the Ethiopian Blue Nile basin comprises small dams, wells, ponds and river diversion. The diversity of irrigation infrastructure is partly a consequence of the topographic heterogeneity of the Fogera plains. Despite similar social-political conditions and the same administrative framework, irrigation facilities are established, used and managed differently, ranging from informal arrangements of households and 'water fathers' to water user associations, as well as from open access to irrigation schedules. Fogera belongs to Ethiopian landscapes that will soon transform as a consequence of large dams and huge irrigation schemes. Property rights to land and water are negotiated among a variety of old and new actors. This study, based on ethnographic, hydrological and survey data, synthesises four case studies to analyse the current state of small-scale irrigation. It argues that all water storage options have not only certain comparative advantages but also social constraints, and supports a policy of extending water storage 'systems' that combine and build on complementarities of different storage types instead of fully replacing diversity by large dams.

  10. Nitrogen and salt loads in the irrigation return flows of the Ebro River Basin (Spain)

    Science.gov (United States)

    Isidoro, Daniel; Balcells, Maria; Clavería, Ignacio; Dechmi, Farida; Quílez, Dolores; Aragüés, Ramón

    2013-04-01

    The conservation of the quality of surface waters demanded by the European Water Framework Directive requires, among others, an assessment of the irrigation-induced pollution. The contribution of the irrigation return flows (IRF) to the pollution of the receiving water bodies is given by its pollutant load, since this load determines the quality status or pollutant concentration in these water bodies. The aim of this work was to quantify the annual nitrogen and salt loads in the IRF of four irrigated catchments within the Ebro River Basin: Violada (2006-10), Alcanadre (2008-10), Valcuerna (2010), and Clamor Amarga (2010). The daily flow (Q), salt (EC) and nitrate concentration (NO3) were measured in the drainage outlets of each basin. The net irrigation-induced salt and nitrogen loads were obtained from these measurements after discounting the salt and nitrogen inputs from outside the catchments and the non-irrigated areas. The N-fertilizer applications were obtained from farmer surveys and animal farming statistical sources. Irrigation water salinity was very low in all catchments (EC farm residues. The highest NO3 concentrations (mean of 113 mg/L) and annual N loads (mean of 38 kg/ha) were found in Valcuerna, the most intense corn sprinkler-irrigated catchment. The lowest NO3 concentrations (21 mg/L; 5 times lower than Valcuerna) were measured in the Alcanadre flood-irrigated catchment. In contrast, Alcanadre N loads (21 kg/ha) were only about two times lower than in Valcuerna, due to the higher IRF volumes in Alcanadre (353 mm versus 132 mm in Valcuerna). Irrigation modernization in Violada decreased N loads from 20 to 5 kg N/ha (four times lower) due to the sharp reduction of IRF while maintaining NO3 concentration around 20 mg/L. The only significant contribution of ammonium (17% to the total N load of 13 hg/ha) was found in Clamor, the catchment with highest agro-industrial development. Overall, IRF salt and nitrate concentrations tended to increase and salt

  11. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin

    Science.gov (United States)

    Yang, Bin; Wen, Xuefa; Sun, Xiaomin

    2015-10-01

    Agricultural irrigation in the middle reaches of the Heihe River Basin consumes approximately 80% of the total river water. Whether the irrigation depth matches the water uptake depth of crops is one of the most important factors affecting the efficiency of irrigation water use. Our results indicated that the influence of plastic film on soil water δ18O was restricted to 0-30 cm soil depth. Based on a Bayesian model (MixSIR), we found that irrigated maize acquired water preferentially from 0-10 cm soil layer, with a median uptake proportion of 87 ± 15%. Additionally, maize utilised a mixture of irrigation and shallow soil water instead of absorbing the irrigation water directly. However, only 24.7 ± 5.5% of irrigation water remained in 0-10 cm soil layer, whereas 29.5 ± 2.8% and 38.4 ± 3.3% of the irrigation water infiltrated into 10-40 cm and 40-80 cm layers. During the 4 irrigation events, approximately 39% of the irrigation and rainwater infiltrated into soil layers below 80 cm. Reducing irrigation amount and developing water-saving irrigation methods will be important strategies for improving the efficiency of irrigation water use in this area.

  12. Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis

    Science.gov (United States)

    Nikouei, Alireza; Zibaei, Mansour; Ward, Frank A.

    2012-09-01

    SummaryPreserving natural wetlands is a growing challenge as the world faces increased demand for water. Drought, climate change and growing demands by users aggravate the issue. The conflict between irrigated agriculture and wetland services presents a classic case of competition. This paper examines an institutional mechanism that offers an incentive to farmers to adopt water conservation measures, which in turn could reduce overall water use in irrigated agriculture within a selected basin. Reduced water demands could provide the additional water needed for wetland preservation. We present an analytical empirical model implemented through the development of an integrated basin framework, in which least-cost measures for securing environmental flows to sustain wetlands are examined for the Zayandeh-Rud River Basin of central Iran. To test this idea, two policies - one with and one without an incentive - are analyzed: (a) reduced agricultural diversions without a water conservation subsidy, and (b) reduced agricultural diversions with a water conservation subsidy. The policies are evaluated against a background of two alternative water supply scenarios over a 10-year period. Results reveal that a water conservation subsidy can provide incentives for farmers to shift out of flood irrigation and bring more land into production by adopting water-saving irrigation technologies. The policy increases crop yields, raises profitability of farming, and increases the shadow price of water. Although the conservation subsidy policy incurs a financial cost to the taxpayer, it could be politically and economically attractive for both irrigators and environmental stakeholders. Results open the door for further examination of policy measures to preserve wetlands.

  13. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    Science.gov (United States)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  14. Mapping Irrigated Areas Using MODIS 250 Meter Time-Series Data: A Study on Krishna River Basin (India

    Directory of Open Access Journals (Sweden)

    Andrew Nelson

    2011-01-01

    Full Text Available Mapping irrigated areas of a river basin is important in terms of assessing water use and food security. This paper describes an innovative remote sensing based vegetation phenological approach to map irrigated areas and then the differentiates the ground water irrigated areas from the surface water irrigated areas in the Krishna river basin (26,575,200 hectares in India using MODIS 250 meter every 8-day near continuous time-series data for 2000–2001. Temporal variations in the Normalized Difference Vegetation Index (NDVI pattern obtained in irrigated classes enabled demarcation between: (a irrigated surface water double crop, (b irrigated surface water continuous crop, and (c irrigated ground water mixed crops. The NDVI patterns were found to be more consistent in areas irrigated with ground water due to the continuity of water supply. Surface water availability, on the other hand, was dependent on canal water release that affected time of crop sowing and growth stages, which was in turn reflected in the NDVI pattern. Double cropped and light irrigation have relatively late onset of greenness, because they use canal water from reservoirs that drain large catchments and take weeks to fill. Minor irrigation and ground water irrigated areas have early onset of greenness because they drain smaller catchments where aquifers and reservoirs fill more quickly. Vegetation phonologies of 9 distinct classes consisting of Irrigated, rainfed, and other land use classes were also derived using MODIS 250 meter near continuous time-series data that were tested and verified using groundtruth data, Google Earth very high resolution (sub-meter to 4 meter imagery, and state-level census data. Fuzzy classification accuracies for most classes were around 80% with class mixing mainly between various irrigated classes. The areas estimated from MODIS were highly correlated with census data (R-squared value of 0.86.

  15. Are Small-Scale Irrigators Water Use Efficient? Evidence from Lake Naivasha Basin, Kenya

    Science.gov (United States)

    Njiraini, Georgina W.; Guthiga, Paul M.

    2013-11-01

    With increasing water scarcity and competing uses and users, water use efficiency is becoming increasingly important in many parts of developing countries. The lake Naivasha basin has an array of different water users and uses ranging from large scale export market agriculture, urban domestic water users to small holder farmers. The small scale farmers are located in the upper catchment areas and form the bulk of the users in terms of area and population. This study used farm household data to explore the overall technical efficiency, irrigation water use efficiency and establish the factors influencing water use efficiency among small scale farmers in the Lake Naivasha basin in Kenya. Data envelopment analysis, general algebraic and modeling system, and Tobit regression methods were used in analyzing cross sectional data from a sample of 201 small scale irrigation farmers in the lake Naivasha basin. The results showed that on average, the farmers achieved only 63 % technical efficiency and 31 % water use efficiency. This revealed that substantial inefficiencies occurred in farming operations among the sampled farmers. To improve water use efficiency, the study recommends that more emphasis be put on orienting farmers toward appropriate choice of irrigation technologies, appropriate choice of crop combinations in their farms, and the attainment of desirable levels of farm fragmentation.

  16. Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation

    Science.gov (United States)

    Saeed, Fahad; Hagemann, Stefan; Saeed, Sajjad; Jacob, Daniela

    2013-01-01

    Since much of the flow of the Indus River originates in the Himalayas, Karakoram and Hindu Kush Mountains, an understanding of weather characteristics leading to precipitation over the region is essential for water resources management. This study examines the influence of upper level mid-latitude circulation on the summer precipitation over upper Indus basin (UIB). Using reanalysis data, a geopotential height index (GH) is defined at 200 hPa over central Asia, which has a significant correlation with the precipitation over UIB. GH has also shown significant correlation with the heat low (over Iran and Afghanistan and adjoining Pakistan), easterly shear of zonal winds (associated with central Asian high) and evapotranspiration (over UIB). It is argued that the geopotential height index has the potential to serve as a precursor for the precipitation over UIB. In order to assess the influence of irrigation on precipitation over UIB, a simplified irrigation scheme has been developed and applied to the regional climate model REMO. It has been shown that both versions of REMO (with and without irrigation) show significant correlations of GH with easterly wind shear and heat low. However contrary to reanalysis and the REMO version with irrigation, the REMO version without irrigation does not show any correlation between GH index and evapotranspiration as well as between geopotential height and precipitation over UIB, which is further confirmed by the quantitative analysis of extreme precipitation events over UIB. It is concluded that although atmospheric moisture over coastal Arabian sea region, triggered by wind shear and advected northward due to heat low, also contribute to the UIB precipitation. However for the availability of necessary moisture for precipitation over UIB, the major role is played by the evapotranspiration of water from irrigation. From the results it may also be inferred that the representation of irrigated water in climate models is unavoidable for

  17. Mechanisms of basin-scale nitrogen load reductions under intensified irrigated agriculture.

    Directory of Open Access Journals (Sweden)

    Rebecka Törnqvist

    Full Text Available Irrigated agriculture can modify the cycling and transport of nitrogen (N, due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN concentrations and loads of the extensive (465,000 km2 semi-arid Amu Darya River basin (ADRB in Central Asia. We specifically considered a 40-year period (1960-2000 of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here

  18. Analysis of Evaporative Flux Over Irrigated and Unirrigated Pasture in the Wood River Basin

    Science.gov (United States)

    Cuenca, R. H.; Mahrt, L.; Hagimoto, Y.; Peterson, S.

    2005-12-01

    The reduction in evaporative fluxes due to withholding irrigation water for pasture in the Wood River subbasin of the Upper Klamath Basin was evaluated to estimate the potential benefit in subsequent streamflow. Two Campbell Scientific (CSI) Bowen ratio - energy balance systems were installed, one over a fully irrigated site and one over a non-irrigated site separated by approximately 11 km. The systems were comprised of an infrared gas analyzer for water vapor gradients, fine-wire thermocouples for temperature gradients, net radiometer and soil heat flux sensors. Additional micrometeorological sensors for precipitation, solar radiation, air temperature and relative humidity, wind speed and direction enabled calculation of a Penman-Monteith reference evapotranspiration. Both sites had uniform fetch conditions in excess of 1 km in the predominant upwind direction. Bowen ratio data were quality controlled using the Ohmura algorithm and energy balance components and fluxes computed every 20-min. Soil temperature and soil moisture profile sensors in six depth layers down to 80 cm were installed at the same sites and monitored every 15-min. High frequency (10-min) recording piezometers for water table monitoring were also installed. Both irrigated and unirrigated sites started the 2004 growing season with virtually the same soil moisture conditions due to over winter precipitation and melting of the snowpack. The evaporative flux rates from the two sites were nearly identical early in the season, and the repeatability of the diurnal fluxes at the two sites during this period is excellent. Towards the middle of the growing season, the evaporative flux rate at the irrigated site increased relative to the unirrigated site until at the end of the season there was approximately a 40 percent unbiased (dividing by the mean) difference between the two sites. The micrometeorological data indicate nearly uniform atmospheric conditions at the two sites due to turbulent mixing of

  19. Algorithm for Assessing Irrigation Water Use Potential Pertaining Present Water Protection Measures at the Danube and Adriatic Sea River Basins

    Directory of Open Access Journals (Sweden)

    Rozalija Cvejic

    2014-03-01

    Full Text Available The approach for developing a sectoral water use demand plan for irrigation sector is represented in this paper. The aim of the research is to inform implementation of the measure DDU26 set out by the River basin management plan for the Danube and Adriatic Sea river basins. The latter is an umbrella operational plan set out to achieve good status of water bodies under the EU Water Framework Directive (WFD. The aim of the measure DDU26 is to estimate (a available stocks of surface water and groundwater and (b existing and projected water use for the period until 2021. To achieve this all water use sectors (irrigation, domestic use, cooling in electricity production, process water in industry, tourism, etc. need to establish their own water demand plans reflecting their sectoral development programmes. Projections of future irrigation water use show the current water use for irrigation will increase. However no spatial reference on where this development will happen is defined thus the projection poorly informs the DDU26 implementation. To overpass the sectoral gap and inform spatially weighted irrigation development that relates to water source use potential pertaining current protection aspirations under the River Basin Management Plan (RBMP, we document the development of the irrigation water use potential algorithm (IWUP. IWUP is a decision tree that helps choose best suitable irrigation water source of several available. The water sources use suitability is ranked on a scale from highly suitable for use to least suitable for use. Use priority of water sources for irrigation decreases accordingly: surface water stream, reservoir, and groundwater. The IWUP incorporates the WFD relevant variables such as ecologically acceptable flow of surface water streams, quantitative groundwater body status, and multifunctional reservoir use.

  20. Algorithm for Assessing Irrigation Water Use Potential Pertaining Present Water Protection Measures at the Danube and Adriatic Sea River Basins

    Directory of Open Access Journals (Sweden)

    Rozalija Cvejic

    2014-05-01

    Full Text Available The approach for developing a sectoral water use demand plan for irrigation sector is represented in this paper. The aim of the research is to inform implementation of the measure DDU26 set out by the River basin management plan for the Danube and Adriatic Sea river basins. The latter is an umbrella operational plan set out to achieve good status of water bodies under the EU Water Framework Directive (WFD. The aim of the measure DDU26 is to estimate (a available stocks of surface water and groundwater and (b existing and projected water use for the period until 2021. To achieve this all water use sectors (irrigation, domestic use, cooling in electricity production, process water in industry, tourism, etc. need to establish their own water demand plans reflecting their sectoral development programmes. Projections of future irrigation water use show the current water use for irrigation will increase. However no spatial reference on where this development will happen is defined thus the projection poorly informs the DDU26 implementation. To overpass the sectoral gap and inform spatially weighted irrigation development that relates to water source use potential pertaining current protection aspirations under the River Basin Management Plan (RBMP, we document the development of the irrigation water use potential algorithm (IWUP. IWUP is a decision tree that helps choose best suitable irrigation water source of several available. The water sources use suitability is ranked on a scale from highly suitable for use to least suitable for use. Use priority of water sources for irrigation decreases accordingly: surface water stream, reservoir, and groundwater. The IWUP incorporates the WFD relevant variables such as ecologically acceptable flow of surface water streams, quantitative groundwater body status, and multifunctional reservoir use.

  1. MIKE BASIN Based Decision Support Tool for Water Sharing and Irrigation Management in Rangawan Command of India

    Directory of Open Access Journals (Sweden)

    R. K. Jaiswal

    2014-01-01

    Full Text Available In this study, MIKE BASIN has been used as a decision support tool for irrigation management and water sharing of Rangawan reservoir, an interstate project of Madhya Pradesh and Uttar Pradesh in India. The water sharing and optimum irrigation releases have been analyzed by developing two separate models in decision support tool; the first model computes irrigation demand and offers inputs to the second model, which calculates water supplies and deficits as per the water sharing agreements between the two states. The models have been used to generate twelve different scenarios for evaluation of irrigation demands, water supply, and demand deficit/excess for actual cropping pattern in command of Madhya Pradesh part. Simulated results showed, in average/wet rainfall year with conveyance efficiency of 60% and application efficiency of 70%, the irrigation demand of 11.83 Mm3 has been found satisfying without any deficit. By improving efficiencies, conjunctive use, and managing irrigation supplies as recommended from scenarios of DSS application, more areas in the command can be brought under irrigation. The developed models can be used for real time reservoir operation and irrigation planning under variable climatic conditions, conveyance and application efficiencies, consumptive use of surface and groundwater, and probable runoff and cropping pattern.

  2. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China

    Science.gov (United States)

    Li, Xianwen; Jin, Menggui; Zhou, Nianqing; Huang, Jinou; Jiang, Simin; Telesphore, Habiyakare

    2016-07-01

    Mulched drip irrigation for cotton field is an effective measure for the utilization of saline water, and the regulation of soil water and salt. However, the reasonable methods for quantifying actual evapotranspiration (ET) and deep percolation of recharge to groundwater are still not very well understood, which restricts the accurate regulation of soil water and salt for cotton growth in oasis. In this paper, a set of experiments of mulched drip irrigation with brackish water were conducted in a typical arid region of Tarim basin in southern Xinjiang, China. The irrigation events were recorded, and ET and fluctuations of groundwater table were carefully measured for two consecutive irrigation periods of flowering and bolling stages. A group of upscaling conversion methods were used to quantify the ET, in which canopy structure was considered to estimate the transpiration from leaf scale to a unit of field scale. The groundwater table had a significant response to the irrigation events, thus the deep percolation was estimated using water-table fluctuation method (WTF). Results showed that during the two irrigation events of flowering and bolling stages, the total ET was 31.1 mm with the soil surface evaporation of only 0.4 mm. The total percolation of recharge to groundwater was 48.2 mm which contributed to the groundwater run-off of 22.1 mm. Transpiration of 30.7 mm accounted for 98.6% of the total ET of 31.1 mm and 34.3% of the irrigation water of 90.6 mm. Compared with transpiration, the deep percolation accounted for 53.2% of irrigation water, indicating a serious excessive irrigation that recharged to groundwater. Soil salt budget showed that the salt leached into groundwater was 1.56 times of the input from brackish irrigation water and fertilization during the two irrigation periods. Even for the irrigation practice with brackish water, the accumulated salt of soil profile could also be leached out under large amount of irrigation water (e.g. 90.6 mm for the

  3. Study of the hydrological functionning of the irrigated crops in the southern mediterranean basin

    Science.gov (United States)

    Khabba, Said; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Merlin, Olivier; Ezzahar, Jamal; Kharrou, Mohamed H.

    2015-04-01

    In southern Mediterranean region water consumption has significantly increased over the last decades, while available water resources are becoming increasingly scarce. In Morocco, irrigation is highly water demanding: it is estimated that 83% of available resources is dedicated to agriculture with efficiency lower than 50% (Plan Bleu, 2009). In the semiarid region of Tensift Al-Haouz (center of Morocco), typical of southern Mediterranean basin, crop irrigation is inevitable for growth and development. In this situation, and to preserve water resources, the rational management of water irrigation is necessary. This objective is one of the priorities of the research program SudMed (Chehbouni et al., 2008) and the Joint Mixed Laboratory TREMA (Khabba et al. 2013), installed in Marrakech since 2002 and 2011, respectively. In these two programs, the scientific approach adopted, to monitor water transfers in soil-plant-atmosphere system, is based on the synergistic use of the mathematical modeling, the satellite observations and in situ data. Thus, during the decade 2002-2012, 17 experiments on dominant crops in the region (wheat, olive, orange, sugar beet, apricot) were performed. In these experiments, the different terms of water and heat balances exchanged between land surface and atmosphere are controlled with different devices. Results showed that the water losses by evaporation can reach 28% of water inputs for the flooding irrigation site and are obviously lower (about 18-20 % on average) for the drip irrigation sites. Concerning the deep percolation, results are surprising: water losses for the drip irrigation are in the range 29-41% of water input, whereas theses losses are between 26 and 31% for flooding irrigation. Concerning the modeling component, several models ranging from the most simple (FAO-56) to the most complex (i.e. SVAT: Soil Vegetation Atmosphere Transfer) were implemented to estimate the spatio-temporal variability of ET. The results showed that

  4. An integrated framework to assess adaptation options to climate change impacts in an irrigated basin in Central North Chile

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Meza, F. J.; Alvarez, P.; Maureira, F.; Sanchez, A.; Tapia, A.; Cortes, M.; Dale, L. L.

    2013-12-01

    Future climate conditions could potentially affect water supply and demand on water basins throughout the world but especially on snowmelt-driven agriculture oriented basins that can be found throughout central Chile. Increasing temperature and reducing precipitation will affect both the magnitude and timing of water supply this part of the world. Different adaptation strategies could be implemented to reduce the impacts of such scenarios. Some could be incorporated as planned policies decided at the basin or Water Use Organization levels. Examples include changing large scale irrigation infrastructure (reservoirs and main channels) either physically or its operation. Complementing these strategies it is reasonable to think that at a disaggregated level, farmers would also react (adapt) to these new conditions using a mix of options to either modify their patterns of consumption (irrigation efficiency, crop mix, crop area reduction), increase their ability to access new sources of water (groundwater, water markets) or finally compensate their expected losses (insurance). We present a modeling framework developed to represent these issues using as a case study the Limarí basin located in Central Chile. This basin is a renowned example of how the development of reservoirs and irrigation infrastructure can reduce climate vulnerabilities allowing the economic development of a basin. Farmers in this basin tackle climate variability by adopting different strategies that depend first on the reservoir water volume allocation rule, on the type and size of investment they have at their farms and finally their potential access to water markets and other water supplies options. The framework developed can be used to study these strategies under current and future climate scenarios. The cornerstone of the framework is an hydrology and water resources model developed on the WEAP platform. This model is able to reproduce the large scale hydrologic features of the basin such as

  5. Social impact and impoverishment risks of the Koga irrigation scheme, Blue Nile basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    Eguavoen, Irit

    2012-06-01

    Full Text Available The Koga project is the first new large-scale irrigation scheme in the Blue Nile river basin since the 1970s and may thus serve as an example of the tremendous changes of landscape and livelihood that are accompanying current water development projects in Ethiopia. This article analyzes the impoverishment risks arising out of the development-induced relocation of households in Koga. Following the Impoverishment Risk and Reconstruction model, seven of eight impoverishment risks could be identified, namely temporal landlessness, homelessness, joblessness, social marginalization, loss of household assets, social disarticulation and food insecurity, though the majority of relocated households succeeded in moving to other rural areas and did not face the challenges caused by urbanization. The Koga project and the local municipality undertook activities to reverse the impoverishment risk for the relocated households, but focused on the reconstruction of material livelihood assets (land, houses and compensation. The extent of rural-urban migration as a result of the project was underestimated. Proactive activities by the affected households succeeded in reducing their risk of impoverishment if they were informed early enough about the irrigation project.

  6. EVALUATION OF BASIN INFLOW CUTOFF CRITERION IN THE IRRIGATION DISTRICTS OF SOUTHWEST ARIZONA

    Science.gov (United States)

    Low irrigation efficiencies persist in irrigated areas near Yuma, Arizona due to poorly designed irrigation systems, poor condition of existing systems, inaccurate delivery of flow rates, and inadequate criteria for determining irrigation cutoff. In farms where growers lack adequate control over the...

  7. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and...

  8. Areas permitted for irrigation, storage, evaporation, and disposal of treated sewage effluent in the upper Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of areas permitted for irrigation, storage, evaporation, and disposal of treated sewage effluent in the Upper Carson River Basin, California...

  9. Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: a case study.

    Science.gov (United States)

    Abeysingha, N S; Singh, Man; Islam, Adlul; Sehgal, V K

    2016-01-01

    Potential future impacts of climate change on irrigated rice and wheat production and their evapotranspiration and irrigation requirements in the Gomti River basin were assessed by integrating a widely used hydrological model "Soil and Water Assessment Tool (SWAT)" and climate change scenario generated from MIROC (HiRes) global climate model. SWAT model was calibrated and validated using monthly streamflow data of four spatially distributed gauging stations and district wise wheat and rice yields data for the districts located within the basin. Simulation results showed an increase in mean annual rice yield in the range of 5.5-6.7, 16.6-20.2 and 26-33.4 % during 2020s, 2050s and 2080s, respectively. Similarly, mean annual wheat yield is also likely to increase by 13.9-15.4, 23.6-25.6 and 25.2-27.9 % for the same future time periods. Evapotranspiration for both wheat and rice is projected to increase in the range of 3-9.6 and 7.8-16.3 %, respectively. With increase in rainfall during rice growing season, irrigation water allocation for rice is likely to decrease (<5 %) in future periods, but irrigation water allocation for wheat is likely to increase by 17.0-45.3 % in future periods.

  10. Metal contaminants in Largemouth bass (Micropterus salmoides) collected in large dams from Tejo River basin and small irrigation dams

    OpenAIRE

    L.P. Andrade; Antunes, P.; Paulo, L; Pereira, M. E.; A.M. Rodrigues

    2012-01-01

    Largemouth bass (Micropterus salmoides) is a very important fresh water fish in the Portuguese regional cuisine mainly in the countryside (Central region and north Alentejo). Because there’s no aquaculture industry, all eaten largemouth bass in Portugal are collected in large dams (Basins of Tejo and Guadiana rivers) and small irrigation dams. For decades, the Tejo River received environmental pollutants from non-point and point sources that included intensive agriculture, industrial entities...

  11. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin

    Science.gov (United States)

    Li, Zehua; Hao, Zhenchun; Shi, Xiaogang; Déry, Stephen J.; Li, Jieyou; Chen, Sichun; Li, Yongkun

    2016-08-01

    To help the decision making process and reduce climate change impacts, hydrologically-based drought indices have been used to determine drought severity in the Tarim River Basin (TRB) over the past decades. As the major components of the surface water balance, however, the irrigation process and reservoir operations have not been incorporated into drought indices in previous studies. Therefore, efforts are needed to develop a new agricultural drought index, which is based on the Variable Infiltration Capacity (VIC) model coupled with an irrigation scheme and a reservoir module. The new drought index was derived from the simulated soil moisture data from a retrospective VIC simulation from 1961 to 2007 over the irrigated area in the TRB. The physical processes in the coupled VIC model allow the new agricultural drought index to take into account a wide range of hydrologic processes including the irrigation process and reservoir operations. Notably, the irrigation process was found to dominate the surface water balance and drought evolution in the TRB. Furthermore, the drought conditions identified by the new agricultural drought index presented a good agreement with the historical drought events that occurred in 1993-94, 2004, and 2006-07, respectively. Moreover, the spatial distribution of coupled VIC model outputs using the new drought index provided detailed information about where and to what extent droughts occurred.

  12. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-04-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  13. Effect of irrigation pumpage during drought on karst aquifer systems in highly agricultural watersheds: example of the Apalachicola-Chattahoochee-Flint river basin, southeastern USA

    Science.gov (United States)

    Mitra, Subhasis; Srivastava, Puneet; Singh, Sarmistha

    2016-09-01

    In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river-aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river-aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river-aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.

  14. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    Science.gov (United States)

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors.

  15. Energy Balance of Irrigated Intercropping Field in the Middle Reaches of Heihe River Basin

    Institute of Scientific and Technical Information of China (English)

    WU Jinkui; DING Yongjian; WANG Genxu; SHEN Yongping; Yusuke YAMAZAKI; Jumpei KUBOTA

    2006-01-01

    Based on the experiments conducted in an irrigated intercropping field in Zhangye Oasis in the middle reaches of Heihe River basin in 2004, the characteristics of radiation budget are analyzed. Furthermore, energy balance is calculated by using Bowen-Ratio Energy Balance (BREB) method. The results show that the ratio of the absorbed radiation to the incoming short radiation in intercropping crop canopy-soil system is increasing with growing stages, from 0.81 in the initial growing stage (IGS) to 0.86 in the late growing stage (LGS). The net radiation, which is smaller in IGS, increases rapidly in the first period of the middle growing stage (MGS) and reaches the maximum value in the second period of MGS. It then somewhat decreases in LGS. The ratio of net radiation to total radiation has a similar trend with the net radiation. In the whole growing stages, latent heat flux, which takes up 70% or so of the net radiation, is the dominant item in energy balance. Sensible heat flux shares 20% of the net radiation and soil heat flux has a percentage of 10%. The characteristics of heat balance vary distinctly in different growing stages. In IGS, the ratios of latent heat flux,sensible heat flux and soil heat flux to net radiation are 44.5%, 23.8% and 31.7% respectively. In MGS, with the increasing of latent heat flux and the decreasing of sensible heat flux and soil heat flux, the ratios turn into 84.4%, 6.3% and 9.3%. In LGS, the soil heat flux maintains 0W/m2 or so, and latent heat flux and sensible heat flux take up 61.4% and 38.6% respectively. The energy balance also shows an obvious daily variation characteristic.

  16. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    International Nuclear Information System (INIS)

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO3, fresh groundwater evolved to lower NO3, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process slightly enhanced

  17. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  18. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    Science.gov (United States)

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  19. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs.

    Science.gov (United States)

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-10-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  20. Future Water Resources Assessment for West African River Basins Under Climate Change, Population Growth and Irrigation Development

    Science.gov (United States)

    Wisser, D.; Ibrahim, B.; Proussevitch, A. A.

    2014-12-01

    West Africa economies rely on rain-fed agriculture and are extremely vulnerable to changes in precipitation. Results from the most recent generation of regional climate models suggest increases in rainy season rainfall variability (delayed rainy season onset, increased probability of dry spells, shorter rainy season duration) despite a moderate increase in rainy season total precipitation. These changes could potentially have detrimental effects on crop yield and food security. Additional pressures on water resources come from increased demand as a result of high population growth rates (~3% per year). Increased water storage and irrigation can help improve crop yields but future assessments of water resources are needed to prioritize irrigation development as an adaptation option. Increased water abstraction, in turn can impact water availability in downstream regions so that an integrated assessment of future water availability and demand is needed. We use a set of 15 RCM outputs from the CORDEX data archive to drive WBMplus, a hydrological model and simulate water availability under climate change. Based on estimated water constraints, we develop scenarios to expand irrigated areas (from the current 1% of all croplands) and calculate the effects on water scarcity, taking into account increased demand for domestic consumption and livestock water demand, at a spatial resolution of 10 km. Results around the 2050's indicate large potential to develop irrigated areas on ground and surface water and increase local water storage without increasing water scarcity downstream for many river basins in the region that could help alleviate pressures on the cropping systems and thereby increase food security.

  1. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  2. Is irrigation water price an effective leverage for water management? An empirical study in the middle reaches of the Heihe River basin

    Science.gov (United States)

    Zhou, Qing; Wu, Feng; Zhang, Qian

    Serious water scarcity, low water-use efficiency, and over-exploitation of underground water have hindered socio-economic development and led to environmental degradation in the Heihe River basin, northwestern China. Price leveraging is an important tool in water demand management, and it is considered to be effective in promoting water conservation and improving water use efficiency on the premise that water demand is elastic. In the present study, we examine whether price is an effective and applicable instrument for restraining the increasing demand for agricultural irrigation water in the middle reaches of the Heihe River basin and how will it affect farmers' decisions on irrigation and crop structure. Specifically, the price elasticity of agricultural water demand was estimated based on the irrigation water demand function. The results show that the agricultural irrigation water price is statistically significant, but its elasticity is very low under current low water price. Price leverage cannot play a significant role in the context of the current pricing regime and farmers' response to price increase is intrinsically weak. To create incentives for conserving water and improving irrigation efficiency, price mechanism should be accompanied with clearly defined and legally enforceable water rights, restricted water quota measures, and reform of water authorities and water-user associations. Furthermore, increases of surface irrigation water price may lead to the over-withdrawal of groundwater, consequently, effective groundwater licensing and levying must take place to limit the total volume of groundwater withdrawal. In all, improving irrigation efficiency through better management and the adoption of water-saving technologies is the ultimate way to deal with the challenges facing irrigated agriculture in the middle reaches of the Heihe River basin.

  3. Estimating spatially and temporally varying recharge and runoff from precipitation and urban irrigation in the Los Angeles Basin, California

    Science.gov (United States)

    Hevesi, Joseph A.; Johnson, Tyler D.

    2016-10-17

    A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm

  4. Estimating spatially and temporally varying recharge and runoff from precipitation and urban irrigation in the Los Angeles Basin, California

    Science.gov (United States)

    Hevesi, Joseph A.; Johnson, Tyler D.

    2016-10-17

    A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm

  5. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools

    NARCIS (Netherlands)

    Dam, van J.C.; Singh, R.; Bessembinder, J.J.E.; Leffelaar, P.A.; Bastiaanssen, W.G.M.; Jhorar, R.K.; Kroes, J.G.; Droogers, P.

    2006-01-01

    In regions where water is more scarce than land, the water productivity concept (e.g. crop yield per unit of water utilized) provides a useful framework to analyse crop production increase or water savings in irrigated agriculture. Generic crop and soil models were applied at field and regional scal

  6. Climate change and environmental water reallocation in the Murray-Darling Basin: Impacts on flows, diversions and economic returns to irrigation

    Science.gov (United States)

    Kirby, J. M.; Connor, J.; Ahmad, M. D.; Gao, L.; Mainuddin, M.

    2014-10-01

    Increasing river environment degradation from historical growth in withdrawal is leading to reallocation of water from irrigation in many basins. We examine how potential reduction in irrigation allocations under a newly enacted environmental water plan for the Murray Darling Basin in Australia, in combination with projected climate change, impact on flows, diversions and the economic returns to irrigation. We use an integrated hydrology-economics model capable of simulating the year-to-year variability of flows, diversions, and economic returns to model three levels of reallocation (2400, 2750 and 3200 GL) under the historical climate, and under a dry, a median and a wet climate change projection. Previous assessments of the reallocation plan do not address climate change impacts, nor the impact of year to year variability in flows on economic returns. The broad results of this analysis are that estimated river flows and diversions are more sensitive to the range of climate change projections than to the range of diversion reallocation scenarios considered. The projected median climate change more or less removes from flows the gains to the environment resulting from reallocation. Reallocations only in combination with no climate change, or climate change at the wetter end of the range of projections, will lead to flows greater than those experienced under the water management regime prior to reallocation. The reduction in economic returns to irrigation is less than the reduction in water available for irrigation: a 25% reduction in the annual average water availability is estimated to reduce the annual average gross value of irrigated agricultural production by about 10%. This is consistent with expectation of economic theory (since more marginal activities are reduced first) and also with observations of reduced water availability and returns in the recent drought in the Murray-Darling Basin. Irrigation returns vary less across the range of climate change

  7. Groundwater Dynamics under Water Saving Irrigation and Implications for Sustainable Water Management in an Oasis: Tarim River Basin of Western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-02-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of socio-economy and sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between unsaturated vadose zone and groundwater reservoir is a critical link to understand regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In Tarim River Basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux is influenced strongly by irrigation. Recently, mulched drip irrigation, a very advanced water-saving irrigation method, has been widely applied in the Tarim River Basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gain a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2011 and 2012 in a typical oasis within Tarim River Basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux is mostly downward (310.5 mm yr-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (-16.1 mm yr-1) due to the moderate groundwater table depth (annual average depth 2.9 m). Traditional secondary salinization caused by intense phreatic

  8. Groundwater dynamics under water-saving irrigation and implications for sustainable water management in an oasis: Tarim River basin of western China

    Science.gov (United States)

    Zhang, Z.; Hu, H.; Tian, F.; Yao, X.; Sivapalan, M.

    2014-10-01

    Water is essential for life. Specifically in the oases of inland arid basins, water is a critically limited resource, essential for the development of the socio-economy and the sustainability of eco-environmental systems. Due to the unique hydrological regime present in arid oases, a moderate groundwater table is the goal of sustainable water management. A shallow water table induces serious secondary salinization and collapse of agriculture, while a deep water table causes deterioration of natural vegetation. From the hydrological perspective, the exchange flux between the unsaturated vadose zone and groundwater reservoir is a critical link to understanding regional water table dynamics. This flux is substantially influenced by anthropogenic activities. In the Tarim River basin of western China, where agriculture consumes over 90% of available water resources, the exchange flux between the unsaturated vadose zone and groundwater reservoir is influenced strongly by irrigation. Recently, mulched drip irrigation, a sophisticated water-saving irrigation method, was widely applied in the Tarim River basin, which greatly impacted the exchange flux and thus the regional groundwater dynamics. Capitalizing on recent progress in evaporation measurement techniques, we can now close the water balance and directly quantify the exchange flux at the field scale, thus gaining a better understanding of regional groundwater dynamics. In this study, comprehensive observations of water balance components in an irrigated cropland were implemented in 2012 and 2013 in a typical oasis within the Tarim River basin. The water balance analysis showed that the exchange flux and groundwater dynamics were significantly altered by the application of water-saving irrigation. The exchange flux at the groundwater table is mostly downward (310.5 mm year-1), especially during drip irrigation period and spring flush period, while the upward flux is trivial (16.1 mm year-1) due to the moderate

  9. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon

    Science.gov (United States)

    Ren, Dongyang; Xu, Xu; Hao, Yuanyuan; Huang, Guanhua

    2016-01-01

    Water saving in irrigation is a key issue in the upper Yellow River basin. Excessive irrigation leads to water waste, water table rising and increased salinity. Land fragmentation associated with a large dispersion of crops adds to the agro-hydrological complexity of the irrigation system. The model HYDRUS-1D, coupled with the FAO-56 dual crop coefficient approach (dualKc), was applied to simulate the water and salt movement processes. Field experiments were conducted for maize, sunflower and watermelon crops in the command area of a typical irrigation canal system in Hetao Irrigation District during 2012 and 2013. The model was calibrated and validated in three crop fields using two-year experimental data. Simulations of soil moisture, salinity concentration and crop yield fitted well with the observations. The irrigation water use was then evaluated and results showed that large amounts of irrigation water percolated due to over-irrigation but their reuse through capillary rise was also quite large. That reuse was facilitated by the dispersion of crops throughout largely fragmented field, thus with fields reusing water percolated from nearby areas due to the rapid lateral migration of groundwater. Beneficial water use could be improved when taking this aspect into account, which was not considered in previous researches. The non-beneficial evaporation and salt accumulation into the root zone were found to significantly increase during non-growth periods due to the shallow water tables. It could be concluded that when applying water saving measures, close attention should be paid to cropping pattern distribution and groundwater control in association with irrigation scheduling and technique improvement.

  10. The role of stakeholders in Murray-Darling Basin water management: How do irrigators make water use decisions and how can this influence water policy?

    Science.gov (United States)

    Douglas, E. M.; Wheeler, S. A.; Smith, D. J.; Gray, S.; Overton, I. C.; Crossman, N. D.; Doody, T.

    2014-12-01

    Water stress and overallocation are at the forefront of water management and policy challenges in Australia, especially in the Murray Darling Basin (MDB). Farmland within the MDB generates 40 percent of Australia's total agricultural production and utilizes 60 percent of all irrigation water withdrawn nationally. The Murray Darling Basin Plan, drafted in 2008 and enacted in November 2012, has at its core the establishment of environmentally sustainable diversion limits based on a threshold of water extraction which, if exceeded, would cause harm to key environmental assets in the MDB. The overall goal of the Plan is to balance economic, social and environmental outcomes within the Basin. Because irrigated agriculture is the major water user in the MDB, it is important to understand the factors that influence irrigation water use. We applied a mental modeling approach to assessing farmer water use decisions. The approach allowed us to solicit and document farmer insights into the multifaceted nature of irrigation water use decisions in the MDB. Following are a few insights gained from the workshops: 1) For both environmental and economic reasons, irrigators in the MDB have become experts in water use and water efficiency. Water managers and government officials could benefit by partnering with farmers and incorporating this expertise into water management decisions. 2) Irrigators in the MDB may have been misperceived when it comes to accepting policy change. Many, if not most, of the farmers we talked to understood the need for, or at least the inevitability of, governmental policies and regulations. But a lack of accountability and predictability has added to the uncertainty in farming decisions. 3) Irrigators in the MDB subscribe to the concept of environmental sustainability, although they might not always agree with how the concept is implemented. Farmers should be recognized for their significant investments in the long-term sustainability of their farms and

  11. The effects of irrigation waste-water disposal in a former discharge zone of the Murray Basin, Australia

    Science.gov (United States)

    Chambers, L. A.; Williams, B. G.; Barnes, C. J.; Wasson, R. J.

    1992-08-01

    In the Murray Basin in southeastern Australia, saline waste irrigation waters are often discharged to natural depressions and saline lakes as a salinity and land management strategy. At the Noora disposal basin in South Australia the waste irrigation water ( EC = 17-19 dS m-1) has formed a lens in the top of the highly saline (50-80 dS m -1) regional groundwater (Parilla Sands) aquifer. Using salinity and environmental isotopes of water (deuterium and oxygen-18) the lens has been shown to extend about 500 m in a northwesterly direction from the disposal pond. The major effects of this lens have been: (1) to cause upwards displacement of the regional ground water over an area of about 285 km 2, implying increased evaporation from areas surrounding the lens; (2) to reduce evaporation of regional ground water from the central low-lying area. Electromagnetic induction techniques for detecting preferred flowpaths away from the basin were rendered ineffective in this environment because of lithologic variations within the dune system. However, examination of bore-logs and groundwater gradients indicated that there was little evidence of stratigraphic control of mound development. Salinity in the Parilla Sands aquifer was closely related to the depth of the water table from the soil surface. Shallow (2-4 m) water tables were affected by recharge and evaporation to a much greater extent than ground water located below the higher dunes. There was, however, an almost instantaneous pressure response throughout the whole groundwater system to changes induced in the low-lying areas. Analyses of piezometric data showed that there was a seasonal variation imposed on the groundwater mound development. Corrected mean annual water-table increments and estimates of the mound volume and area were derived from a Theis response curve of the water table rise associated with the mound alone. Calculations using fitted parameters from the Theis analyses also suggested high transmissivity

  12. Case studies of the legal and institutional obstacles and incentives to the development of small-scale hydroelectric power: South Columbia Basin Irrigation District, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, L.

    1980-05-01

    The case study concerns two modern human uses of the Columbia River - irrigation aimed at agricultural land reclamation and hydroelectric power. The Grand Coulee Dam has become synonomous with large-scale generation of hydroelectric power providing the Pacific Northwest with some of the least-expensive electricity in the United States. The Columbia Basin Project has created a half-million acres of farmland in Washington out of a spectacular and vast desert. The South Columbia River Basin Irrigation District is seeking to harness the energy present in the water which already runs through its canals, drains, and wasteways. The South District's development strategy is aimed toward reducing the costs its farmers pay for irrigation and raising the capital required to serve the remaining 550,000 acres originally planned as part of the Columbia Basin Project. The economic, institutional, and regulatory problems of harnessing the energy at site PEC 22.7, one of six sites proposed for development, are examined in this case study.

  13. Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska, 1895-2055-Phase Two

    Science.gov (United States)

    Stanton, Jennifer S.; Peterson, Steven M.; Fienen, Michael N.

    2010-01-01

    Regional groundwater-flow simulations for a 30,000-square-mile area of the High Plains aquifer, referred to collectively as the Elkhorn-Loup Model, were developed to predict the effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska. Simulations described the stream-aquifer system from predevelopment through 2005 [including predevelopment (pre-1895), early development (1895-1940), and historical development (1940 through 2005) conditions] and future hypothetical development conditions (2006 through 2033 or 2055). Predicted changes to stream base flow that resulted from simulated changes to groundwater irrigation will aid development of long-term strategies for management of hydrologically connected water supplies. The predevelopment through 2005 simulation was calibrated using an automated parameter-estimation method to optimize the fit to pre-1940 groundwater levels and base flows, 1945 through 2005 decadal groundwater-level changes, and 1940 through 2005 base flows. The calibration results of the pre-1940 period indicated that 81 percent of the simulated groundwater levels were within 30 feet of the measured water levels. The results did not indicate large areas of simulated groundwater levels that were biased too high or too low, indicating that the simulation generally captures the regional trends. Calibration results using 1945 through 2005 decadal groundwater-level changes indicated that a majority of the simulated groundwater-level changes were within 5 feet of the changes calculated from measured groundwater levels. Simulated groundwater-level rises generally were smaller than measured rises near surface-water irrigation districts. Simulated groundwater-level declines were larger than measured declines in several parts of the study area having large amounts of irrigated crops. Base-flow trends and volumes generally were reproduced by the simulation at most sites. Exceptions include downward trends of simulated

  14. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  15. Integrating MODFLOW and GIS technologies for assess-ing impacts of irrigation management and groundwater use in the Hetao Irrigation District, Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    XU Xu; HUANG GuanHua; QU ZhongYi

    2009-01-01

    Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district.Application of water-saving practices (WSPs) is required for the sustainable agricultural development.The human activities including WSPs and increase of groundwater abstrac-tion can lower down the groundwater table, which is helpful to the salinity control.Meanwhile, an ex-cessively large groundwater table depth may result in negative impact on crop growth and fragile eco-logical environment.In this paper, the Jiefangzha irrigation system in Hetao irrigation district was se-lected as a typical area, a groundwater flow model based on Arclnfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area.The pre-and post-processing of model data was performed efficiently by using the available GIS tools.The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA).The model was calibrated and validated with in-dependent data sets.Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.

  16. Integrating MODFLOW and GIS technologies for assessing impacts of irrigation management and groundwater use in the Hetao Irrigation District,Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to severe water scarcity, water resources used in agricultural sector have been reduced markedly in Hetao irrigation district. Application of water-saving practices (WSPs) is required for the sustainable agricultural development. The human activities including WSPs and increase of groundwater abstraction can lower down the groundwater table, which is helpful to the salinity control. Meanwhile, an excessively large groundwater table depth may result in negative impact on crop growth and fragile ecological environment. In this paper, the Jiefangzha irrigation system in Hetao irrigation district was selected as a typical area, a groundwater flow model based on ArcInfo Geographic Information System (GIS) was developed and implemented to quantify the effect of human activities on the groundwater system in this area. The preand post-processing of model data was performed efficiently by using the available GIS tools. The time-variant data in boundary conditions was further edited in Microsoft Excel with programs of Visual Basic for Application (VBA). The model was calibrated and validated with independent data sets. Application of the model indicated that it can well describe the effect of human activities on groundwater dynamics in Jiefangzha irrigation system.

  17. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  18. Water accounting for conjunctive groundwater and surface water irrigation sources:A case study in the middle Heihe River Basin of arid northwestern China

    Institute of Scientific and Technical Information of China (English)

    XueXiang Chang; Bing Liu; Hu Liu; ShouBo Li

    2015-01-01

    Oases in arid northwestern China play a significant role in the region's economic stability and development. Overex-ploitation of the region's water resources has led to serious environmental consequences. In oases, irrigated agriculture is the primary consumer of water, but water shortages resulting from dramatically growing human needs have become a bottleneck for regional sustainable development, making effective management of the limited available water critical. Effective strategies must be formulated to increase agricultural productivity while reducing its environmental impacts. To support the development of such strategies, water use patterns were analyzed during the 2007 and 2008 growing seasons, from May to early October, to identify opportunities for improving water management using the Mold-en-Sakthivadivel water-accounting method, which combines groundwater and surface water into a single domain and can provide a good estimate of the uses, depletion, and productivity of water in a water basin context. The study area lies in Linze County, Gansu Province, China. In the study area, the inflow water resources consist of irrigation, precipita-tion, and soil water, which accounted for 89.3%, 8.9%, and 1.8% of the total in 2007, and 89.3%, 4.8%, and 5.9% in 2008, respectively. The irrigation depends heavily on groundwater, which accounted for 82.1% and 83.6% of the total irrigation water in 2007 and 2008, respectively. In 2007 and 2008, deep percolation accounted for 50.1% and 47.9% of the water outflow, respectively, with corresponding depleted fractions of 0.51 and 0.55, respectively. For the irrigation district as a whole, the water productivity was only 1.37 CNY/m3. To significantly increase crop water productivity and prevent depletion of the region's groundwater aquifer, it will be necessary to reduce the amount of water used for ir-rigation. Several water-saving agricultural practices are discussed and recommended.

  19. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  20. Assessing Cumulative Impacts of Coal Bed Methane Development on Surface Water Quality and its Suitability for Irrigation in the Powder River Basin

    Science.gov (United States)

    Dawson, H. E.

    2003-12-01

    This paper presents a mass balance approach to assessing the cumulative impacts of discharge from Coal Bed Methane (CBM) wells on surface water quality and its suitability for irrigation in the Powder River Basin. Key water quality parameters for predicting potential effects of CBM development on irrigated agriculture are sodicity, expressed as sodium adsorption ratio (SAR) and salinity, expressed as electrical conductivity (EC). The assessment was performed with the aid of a spreadsheet model, which was designed to estimate steady-state SAR and EC at gauged stream locations after mixing with CBM produced water. Model input included ambient stream water quality and flow, CBM produced water quality and discharge rates, conveyance loss (quantity of water loss that may occur between the discharge point and the receiving streams), beneficial uses, regulatory thresholds, and discharge allocation at state-line boundaries. Historical USGS data were used to establish ambient stream water quality and flow conditions. The resultant water quality predicted for each stream station included the cumulative discharge of CBM produced water in all reaches upstream of the station. Model output was presented in both tabular and graphical formats, and indicated the suitability of pre- and post-mixing water quality for irrigation. Advantages and disadvantages of the spreadsheet model are discussed. This approach was used by federal agencies to support the development of the January 2003 Environmental Impact Statements (EIS) for the Wyoming and Montana portions of the Powder River Basin.

  1. Irrigation of wetlands in Tanzania

    OpenAIRE

    Masija, E.H.

    1993-01-01

    Over 1,164,000 ha of wetland areas are listed as suitable for irrigation, mainly for cropproduction and livestock grazing. Existing and planned irrigation schemes are described forthe ,main river basins where large areas are devoted to rice and sugar cane. Emphasis' isplaced on the value of small scale, farmer-managed irrigation schemes and the rehabilitation of traditional systems.

  2. Applying SDDP to very large hydro-economic models with a simplified formulation for irrigation: the case of the Tigris-Euphrates river basin.

    Science.gov (United States)

    Rougé, Charles; Tilmant, Amaury

    2015-04-01

    extended to any type of consumptive use of water beyond irrigation, e.g., municipal, industrial, etc This slightly different version of SDDP is applied to a large portion of the Tigris-Euphrates river basin. It comprises 24 state variables representing storage in reservoirs, 28 hydrologic state variables, and 51 demand nodes. It is the largest yet to simultaneously consider hydropower and irrigation within the same river system, and the proposed formulation almost halves the number of state variables to be considered.

  3. Assessment of the Environmental Impacts of Coalbed Methane Development in the Powder River Basin - Use of Coalbead Methane Produced Water for Cropland Irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Morris

    2009-01-30

    Water quality is a major concern with regard to development of coalbed methane (CBM) in the Powder River Basin, Wyoming. Large quantities of water are being produced and discharged as a by-product in the process of releasing natural gas from coal. Current practices of discharging large volumes of water into drainage channels or using it to irrigate cropland areas has the potential to elevate salinity and sodicity in soils. Elevated salinity affects the ability of plants to uptake water to facilitate biochemical processes such as photosynthesis and plant growth. Elevated sodicity in irrigation water adversely affects soil structure necessary for water infiltration, nutrient supply, and aeration. Salinity and sodicity concentrations are important in that a sodic soil can maintain its structure if the salinity level is maintained above the threshold electrolyte concentration. In this study, cropland soil and CBM water were treated with gypsum and sulfur. Changes in soil chemistry among different treatments were monitored using a split plot experiment. The CBM water used for irrigation had an EC of 1380 {micro}S cm{sup -1} and SAR of 24.3 mmol{sup 1/2} L{sup -1/2}. Baseline and post treatment soil samples were collected to a depth of 60 cm within each study plot, analyzed, and characterized for chemical parameters. Comparisons between Spring 2004 and Fall 2004 soil chemistry data after one irrigation season (using the equivalent of 1 month of irrigation water or {approx}12 inches) indicated that irrigating with Piney Creek water or a 50:50 blend of Piney Creek water and CBM water did not cause SAR values to increase. A combination of using a gypsum amendment to the soil along with a gypsum injection and sulfur burner treatment to the irrigation water resulted in the lowest SAR value in the first soil horizon among treatments irrigated solely with CBM produced water. The SAR value resulting from this combination treatment was 53% lower than using CBM water with no

  4. The project for the study of Wurno irrigation scheme area in the Rima hydrological basin, Sokoto State, Nigeria for Fadama irrigation and water supply, using isotope techniques

    International Nuclear Information System (INIS)

    This publication summarizes the result of the project on the use of isotope techniques for the study of recharge and discharge of the Sokoto-Rima hydrological basin in the semi-arid and northwestern part of Nigeria

  5. Balancing ecosystem services with energy and food security - assessing trade-offs for reservoir operation and irrigation investment in Kenya's Tana basin

    Science.gov (United States)

    Hurford, A. P.; Harou, J. J.

    2014-01-01

    Competition for water between key economic sectors and the environment means agreeing on allocation is challenging. Managing releases from the three major dams in Kenya's Tana River basin with its 4.4 million inhabitants, 567 MW of installed hydropower capacity, 33 000 ha of irrigation and ecologically important wetlands and forests is a pertinent example. This research seeks to identify and help decision-makers visualise reservoir management strategies which result in the best possible (Pareto-optimal) allocation of benefits between sectors. Secondly we seek to show how trade-offs between achievable benefits shift with the implementation of new proposed rice, cotton and biofuel irrigation projects. To identify the Pareto-optimal trade-offs we link a water resources management model to a multi-criteria search algorithm. The decisions or "levers" of the management problem are volume dependent release rules for the three major dams and extent of investment in new irrigation schemes. These decisions are optimised for objectives covering provision of water supply and irrigation, energy generation and maintenance of ecosystem services which underpin tourism and local livelihoods. Visual analytic plots allow decision makers to assess multi-reservoir rule-sets by understanding their impacts on different beneficiaries. Results quantify how economic gains from proposed irrigation schemes trade-off against disturbance of the flow regime which supports ecosystem services. Full implementation of the proposed schemes is shown to be Pareto-optimal, but at high environmental and social cost. The clarity and comprehensiveness of "best-case" trade-off analysis is a useful vantage point from which to tackle the interdependence and complexity of water-energy-food "nexus" challenges.

  6. Water Productivity Mapping (WPM Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia

    Directory of Open Access Journals (Sweden)

    Sabirjan Isaev

    2008-12-01

    Full Text Available The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1 crop productivity (ton/ha maps (CPMs involvingcrop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2 crop water use (m3/ha maps (WUMs (or actual seasonal evapotranspiration or actual ET developed through Simplified Surface Energy Balance (SSEB model; and (3 water productivity (kg/m3 maps (WPMs produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET by multiplying the ET fractionby reference ET. The ETfraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET and “cold” pixels (maximum ET. The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3 in water productivity of cotton fields with overwhelming proportion (87% of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements

  7. Using mental-modelling to explore how irrigators in the Murray–Darling Basin make water-use decisions

    Directory of Open Access Journals (Sweden)

    Ellen M. Douglas

    2016-06-01

    New hydrological insights for the region: Results suggest support for greater local and irrigator involvement in water management decisions. Many, if not most, of the irrigators understood the need for, or at least the inevitability of, governmental policies and regulations. However, a lack of accountability, predictability, and transparency has added to the uncertainty in farm-based water decision-making. Irrigators supported the concept of environmental sustainability, although they might not always agree with how the concept is implemented. The mental modelling approach facilitated knowledge sharing among stakeholders and can be used to identify common goals. Future research utilizing the mental modelling approach may encourage co-management and knowledge partnerships between irrigators, water managers and government officials.

  8. The use of environmental tracers to determine focused recharge from a saline disposal basin and irrigation channels in a semiarid environment in Southeastern Australia

    Science.gov (United States)

    Robson, T. C.; Webb, J. A.

    2016-07-01

    Lake Tutchewop in southeastern Australia is a former ephemeral wetland that has been used as a saline disposal basin since 1968, forming part of the salinity management of the Murray River. The extent of saline focused recharge from Lake Tutchewop and fresh recharge from nearby unlined irrigation channels was determined using pore water and groundwater stable isotope and major ion chemistry, which were able to separate the influence of lake water, irrigation water and regional groundwater. In ∼45 years, saline water from Lake Tutchewop has infiltrated only up to 165 m from the lake edge in most directions, due to the underlying relatively impermeable clay-rich sediments, and a maximum of 700 m due to preferential groundwater flow along a sandy palaeochannel. The saline leakage has had limited, if any, impact on surrounding agricultural land use. Fresh water leakage from unlined irrigation channels extends up to 10 m deep, validating the current program to replace these channels with pipelines. This study demonstrates that focused recharge from different sources can be positively identified where the recharge waters have distinctive compositions, and that underlying clay-rich sediments restrict the extent of seepage. Therefore, management of focused recharge sources, particularly those that could decrease groundwater quality, requires a detailed knowledge of both the groundwater composition around the site and the underlying geology.

  9. Using Coupled Subsurface-Atmospheric Simulations to Investigate the Impact of Irrigation on Atmospheric Response in the San Joaquin River Basin, California

    Science.gov (United States)

    Gilbert, J. M.; Maxwell, R. M.; Gochis, D. J.; Maples, S.; Markovich, K. H.

    2015-12-01

    Observational and modeling studies are continually improving our understanding of terrestrial and atmospheric process interactions over natural and managed systems. Recent studies have implicated irrigation as a strong factor in perturbing land-atmosphere coupling, although the details of this interaction are not fully characterized. Therefore, in this study we seek to better understand the role of subsurface flow under conditions of groundwater extraction and irrigation on resulting atmospheric states. We use an ensemble of coupled ParFlow-WRF simulations over the San Joaquin River Basin in California to identify the type and character of land-atmosphere interactions for a set of irrigation scenarios. Ensemble members include selected boundary layer schemes, land surface model configurations, and initial and boundary condition perturbations. Variability in atmospheric response, particularly in boundary layer height and precipitation patterns, under high water table (characteristic of predevelopment conditions) and lowered water table (resulting from historic groundwater extraction) conditions are evaluated in the context of the uncertainty resulting from choice of model physics and atmospheric perturbations. Hydrologic alterations associated with lowered water table elevation appear linked to the atmosphere via changes in boundary layer height.

  10. Shifting rights and access to irrigation water in a context of growing scarcity: the Krishna Basin, south India1

    OpenAIRE

    Venot, Jean-Philippe

    2016-01-01

    Introduction: are water rights right? In many regions water use for urban, industrial and agricultural growth is approaching, and sometimes even exceeding, the availability of renewable water resources. Conflicts over access and allocation of water become more likely. Intense water development results in over-commitment of water and river basin closure. A generally accepted definition of a closed river basin is a basin where most or all available water is committed and river discharge falls ...

  11. Analysis of historic agricultural irrigation data from the Natural Resources Conservation Service monitoring and evaluation for Grand Valley, Lower Gunnison Basin, and McElmo Creek Basin, western Colorado, 1985 to 2003

    Science.gov (United States)

    Mayo, John W.

    2015-01-01

    The Natural Resources Conservation Service Monitoring and Evaluation for three salinity control units in western Colorado—Grand Valley, Lower Gunnison, and McElmo Creek—from 1985 to 2003 was a response to the Colorado River Basin Salinity Control Act, Public Law 93–320, July 24, 1974, and its amendments. The Natural Resources Conservation Service evaluated the effects on seasonal irrigation efficiency and deep percolation of irrigation water of various on-farm irrigation system improvements in the three salinity control units, and reported the results in a series of internal Natural Resources Conservation Service annual reports. Because of the large amount of effort and expense that went into the Natural Resources Conservation Service Monitoring and Evaluation and the importance of the data to help quantify the changes to deep percolation, the Natural Resources Conservation Service has determined that having the evaluation results made public through a characterization and analysis of the results by the U.S. Geological Survey could be of use to a wider audience of water managers and the general public.

  12. Irrigation canals in Melo creek basin (Rio Espera and Capela Nova municipalities, Minas Gerais, Brazil): habitats to Biomphalaria (Gastropoda: Planorbidae) and potential spread of schistosomiasis.

    Science.gov (United States)

    Leite, M G P; Pimenta, E C; Fujaco, M A G; Eskinazi-Sant'Anna, E M

    2016-04-19

    This study analyzed the presence of Biomphalaria in Melo creek basin, Minas Gerais state, and its relationship to irrigation canals. Seventeen of these canals were used to determine a limnological, morphological and hydrological characterization during an annual seasonal cycle. Biomphalaria samples were sent to René Rachou Research Center/FIOCRUZ for identification and parasitological examination. Six canals were identified as breeding areas for mollusks and in one of them it was registered the coexistence of B. tenagophila (first report to this basin) and B. glabrata species. Results indicated that the low flow rate and speed of water flow were the main characteristics that contributed to this specific growth of the mollusks in the area. These hydraulic characteristics were created due to anthropogenic action through the canalization of lotic areas in Melo creek, which allowed ideal ecological conditions to Biomphalaria outbreak. The results emphasize the need of adequate handling and constant monitoring of the hydrographic basin, subject to inadequate phytosanitary conditions, aiming to prevent the occurrence and propagation of schistosomiasis. PMID:27097093

  13. Hydrological Impacts of Flood Storage and Management on Irrigation Water Abstraction in Upper Ewaso Ng’iro River Basin, Kenya

    NARCIS (Netherlands)

    Ngigi, S.N.; Savenije, H.H.G.; Gichuki, F.N.

    2008-01-01

    The upper Ewaso Ng’iro basin, which starts from the central highlands of Kenya and stretches northwards transcending different climatic zones, has experienced decreasing river flows for the last two decades. The Naro Moru sub-basin is used to demonstrate the looming water crisis in this water scarce

  14. Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil Using Remote Sensing and Penman-Monteith Equation

    Directory of Open Access Journals (Sweden)

    Antônio H. de C. Teixeira

    2010-05-01

    Full Text Available To achieve sustainable development and to ensure water availability in hydrological basins, water managers need tools to determine the actual evapotranspiration (ET on a large scale. Field energy balances from irrigated and natural ecosystems together with a net of agro-meteorological stations were used to develop two models for ET quantification at basin scale, based on the Penman-Monteith equation. The first model (PM1 uses the resistances to the latent heat fluxes estimated from satellite measurements, while the second one (PM2 is based on the ratio of ET to the reference evapotranspiration (ET0 and its relation to remote sensing parameters. The models were applied in the Low-Middle São Francisco river basin in Brazil and, after comparison against field results, showed good agreements with PM1 and PM2 explaining, respectively, 79% and 89% of the variances and mean square errors (RMSE of 0.44 and 0.34 mm d−1. Even though the PM1 model was not chosen for ET calculations, the equation for surface resistance (rs was applied to infer the soil moisture conditions in a simplified vegetation classification. The maximum values of rs were for natural vegetation—caatinga (average of 1,937 s m−1. Wine grape and mango orchard presented similar values around 130 s m−1, while table grape presented the lowest ones, averaging 74 s m−1. Petrolina and Juazeiro, in Pernambuco (PE and Bahia (BA states, respectively, were highlighted with the biggest irrigated areas. The highest increments are for vineyards and mango orchards. For the first crop the maximum increment was verified between 2003 and 2004 in Petrolina-PE, when the cultivated area increased 151%. In the case of mango orchards the most significant period was from 2005 to 2006 in Juazeiro-BA (129%. As the best performance was for PM2, it was selected and used to analyse the regional ET at daily and annual scales, making use of Landsat images and a geographic information system for different

  15. Integrated Water Resources Management for Sustainable Irrigation at the Basin Scale Manejo Integrado de Recursos Hídricos para Riego Sustentable a Nivel de Cuenca

    Directory of Open Access Journals (Sweden)

    Max Billib

    2009-12-01

    Full Text Available The objective of this paper is to review the state of art on integrated water resources management (IWRM approaches for sustainable irrigation at the basin scale under semi-arid and arid climatic conditions, with main emphasis on Latin America, but including case studies of other semi-arid and arid regions in the world. In Latin America the general concept of IWRM has proved to be hard to implement. Case studies recommend to develop the approach from lower to upper scale and oriented at the end-user. As IWRM is an interdisciplinary approach and used for very different objectives, the main emphasis is given to IWRM approaches for sustainable irrigation and their environmental aspects. The review shows that in Latin America the environmental impact is mostly analysed at the field level, the impact on the whole basin is less considered. Many publications present the development of models, advisory services and tools for decision support systems at a high technical level. Some papers present studies of environmental aspects of sustainable irrigation, especially for salt affected areas. Multi-criteria decision making models are developed for irrigation planning and irrigation scenarios are used to show the impact of different irrigation management decision. In general integrated approaches in Latin America are scarce.El objetivo de esta publicación es revisar el estado del arte de los diferentes enfoques que se han usado para lograr un manejo integrado de los recursos hídricos (MIRH asociados a una agricultura de riego sustentable a nivel de cuenca en condiciones áridas y semiáridas, con énfasis en Latinoamérica, pero incluyen casos de estudio de otras regiones similares del mundo. En Latinoamérica el concepto general de MIRH ha resultado difícil de implementar. De los estudios de casos, se recomienda desarrollar este enfoque desde una escala menor a una mayor orientándose al usuario final. MIRH es un enfoque interdisciplinario usado para

  16. Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China

    Science.gov (United States)

    Xie, Xianjun; Wang, Yanxin; Su, Chunli; Li, Junxia; Li, Mengdi

    2012-03-01

    SummaryEnvironment isotopes (δ18O and δ2H) and Cl/Br ratios in groundwater have been used to trace groundwater recharge and geochemical processes for arsenic contamination in Datong Basin. The arsenic concentrations of groundwater samples ranged from 0.4 to 434.9 μg/L with the average of 51.2 μg/L, which exceeded China's drinking water standard (10 μg/L). All the groundwater samples are plotted on or close to the meteoric water line of the δ18O vs. δ2H plot, indicating their meteoric origin. The relationship between δ18O values and Cl/Br ratios and Cl concentrations demonstrate that leaching and mixing are the dominant processes affecting the distribution of high arsenic groundwater in this area. The observed non-linearity in the trend between δ18O and arsenic concentration is due to combined effects of mixing and leaching. The similarity of the trend in Cl/Br ratios and δ18O values for high arsenic groundwater demonstrate that extensive leaching of irrigation return and salt flushing water flow could be the dominant process driving arsenic mobilization in the groundwater system. Moreover, the long term irrigation practice can cause the drastic change of the biogeochemical and redox condition of in the aquifer system, which in turn promotes the mobilization of arsenic. Therefore, groundwater pumping for irrigation in this area of waterborne endemic arsenic poisoning should be under strict control to protect groundwater quality in this area.

  17. Study of crop coefficient and the ratio of soil evaporation to evapotranspiration in an irrigated maize field in an arid area of Yellow River Basin in China

    Science.gov (United States)

    Zhang, Chuan; Yan, Haofang; Shi, Haibin; Sugimoto, Hideki

    2013-08-01

    A field experiment was conducted in a maize field in 2006 in an arid area of the Yellow River Basin in China. The daytime evapotranspiration (ETc) and soil evaporation beneath the maize canopy ( E g) were measured by Bowen ratio energy balance method and micro-lysimeters, respectively. The results showed that the total ETc during maize growth season was 696 mm, and the maximum values occurred at about 90-140 days after sowing. The crop coefficient ( K c), which was calculated from the ratio of ETc to reference evapotranspiration (ET0), was quite different from the values reported by other researchers in similar climate areas, with average values of 0.34, 0.47, 1.0 and 0.9 for initial, development, mid-season and late-season stages, respectively. High correlations between leaf area index (LAI) and average K c for every 4 days were obtained. The total E g was 201.4 mm with average values ranged from 0.92 to 2.05 for four growth stages of maize; and accounted for around 28.9 % of ETc. The ratio E g/ETc showed high negative relationship with LAI. These results were very important in precise management of irrigation for maize in Yellow River Basin areas.

  18. Sustainable use of land and water under rainfed and deficit irrigation conditions in Ogun-Osun River Basin, Nigeria

    NARCIS (Netherlands)

    Adeboye, O.B.

    2015-01-01

    Summary

    Human population is increasing faster than ever in the history. There is an urgent need to scale up food production in order to meet up with food demands, especially in Sub-Saharan Africa. In Ogun-Osun River Basin, Nigeria, more than 95% of the crop production is do

  19. Can existing practices expected to lead to improved on-farm water use efficiency enable irrigators to effectively respond to reduced water entitlements in the Murray-Darling Basin?

    Science.gov (United States)

    Ticehurst, Jenifer L.; Curtis, Allan L.

    2015-09-01

    Australia is the driest continent and there is increasing competition for scarce fresh water resources between agriculture and the environment. In the Murray-Darling Basin (MDB) that conflict has largely been resolved by reallocating water from agriculture to the environment. As part of the water reform process both governments and industry are focussed on improving on-property water use efficiency (WUE), particularly of irrigated agriculture. This paper examines the potential for WUE to enable MDB irrigators to adapt to cuts in their irrigation entitlements. The paper draws on data from a case study in the Namoi Valley of New South Wales. The distinctive contribution of this paper is that we draw on survey data of the existing and intended adoption of a limited suite of currently available WUE practices. That is, we have not simply assumed that all irrigators, or a specific proportion of irrigators, will adopt each WUE option. Given survey respondents' intended level of adoption, we calculated the potential water savings for each property and then the catchment, without extrapolating beyond the survey respondents. Those calculations suggest that water savings of up to 100.9 GL could be achieved across the Namoi catchment if those interested in doing so were to convert to existing improved WUE practices. Those savings represented 82% of the reduction in irrigator entitlements under the draft MDB Plan, and exceed the 10 GL/yr reductions required under the revised MDB Plan. These results suggest that those adopting existing WUE practices will have additional water for irrigation. To the extent that this is the case, there seems to be less justification for government support for irrigators during the adjustment process.

  20. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA.

    Science.gov (United States)

    Mills, Taylor J; Mast, M Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as soluble salts are progressively depleted. PMID:27320741

  1. Observations on the quality of desalinated water in the Segura river basin. Irrigation and supply; Observaciones sobre la calidad del agua desalada en la Cuenca del Seguro. Riego y abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Latorre Carrion, M.; Camara Zapata, J. M.

    2004-07-01

    Desalination of seawater by reverse osmosis (RO) is an unconventional water resource that could help to maintain irrigation crops in the Segura river basin. Its suitability for irrigation purposes needs to be studied to prevent the soil from being harmed and the quality and yield of the crops from falling. This article describes a simulation of the functioning of a RO desalination plant based on actual seawater data (Mazarron). The results show that desalinated water has an ionic balance giving rise to a high specific absorption rate of Na+ and low electrical conductivity, which means that its quality for agricultural purposes is deficient. The article sets out the requirements for irrigation water and the problems they pose for desalination plants. The suitability of desalinated water for agricultural purposes is ecaminaed, corrective measures proposed and the cost involved quantified. (Author) 5 refs.

  2. Agricultural Water Use in Lake Urmia Basin, Iran : An Approach to Adaptive Policies and Transition to Sustainable Irrigation Water Use

    OpenAIRE

    Faramarzi, Nahal

    2012-01-01

    The Lake Urmia positioned in a closed basin in north-west Iran, positioned at altitude 1250 m above the sea level, and has been rapidly drying since 1990. The lake water level has declined to 1271.58 m in 2008 from the last highest record 1277.80 m in 1994. The lake water volume has fluctuated during the observation period and shows a drop from of 32 to 14.5 million cubic meters, while the lake salinity has increased from 205 to 338 g/l due to the evaporation and water inflow reduction. In th...

  3. Basic Soil Problems of Irrigation Association’s Areas in Right Coast of Gediz Basin-Salihli

    OpenAIRE

    USUL, Mustafa; YİĞİNİ, İlhami BAYRAMİN Orhan DENGİZ Yusuf

    2004-01-01

    The aim of this research was carried out determination of soil problems of right side of the Gediz Basin-Salihli. For this purpose, 1:5.000 scale digital basic soil map which was detaily prepared before was used as material. Most part of the study area’s soil is Entisol (% 85,4) and rest of the it is Inceptisol (% 14, 6). According to labarotory results, It was determinated that the most important problems are high born consantraction, salinity, alkalinity and drenage in study area. While % 4...

  4. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and

  5. Sustainable irrigation Agriculture in the Tarim River Basin of Western Xinjiang Province--A proposal for the extablishment of a Salinity Laboratory of P. R. China%中国新疆塔里木河流域的可持续灌溉农业--关于建立中国国家盐渍化研究实验室的建议

    Institute of Scientific and Technical Information of China (English)

    约瑟夫·沙赫维特; 周政一; 徐曼

    2000-01-01

    Based on the background information and the personal impression obtained during a short visit to Tarim River basin, a few problems may be defined and a proposal is presented for establishing a salinity laboratiory in the Tarim river basin of Xinjiang. The problems encountered in the Tarim river basin can be grouped into four categories: (1) Salt reclamation through leaching and resalinization following irrigation; (2) Sodicity (alkalinity) problems; (3) Impermeable subsoil layers; (4) Irrigation water salinity. In order to ensure a sustainable irrigation agriculture in Xinjiang, the water utilization efficiency for both irngation and leaching will have to be improved. The solution for the existing problems and the prevention of future problems for sustainable production requires good quantitative information. It is considered that to establish a salinity laboratory in the Tarim River basin will be not only immediately applicable to Xinjiang' s salinity problems, but its results will be valuable also for other arid regions suffering from the similar problems in China.

  6. Irrigated Acreage Geodatabase Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Accurate delineations of irrigated acreage are critical in the development of water-use estimates and in determining an accurate water budget for the hydrographic...

  7. Impacto das vazões demandadas pela irrigação e pelos abastecimentos animal e humano, na bacia do Paracatu Impact of water demands for irrigation, animal and human supply in the Paracatu Basin

    Directory of Open Access Journals (Sweden)

    Fernando F. Pruski

    2007-04-01

    Full Text Available O rio Paracatu é o afluente com maior contribuição para o rio São Francisco. Como conseqüência da grande expansão da agricultura irrigada na bacia do Paracatu, a partir da década de 70 sérios conflitos pelo uso da água surgiram em várias partes da bacia. Tendo em vista esses conflitos objetivou-se, com o presente trabalho, avaliar, ao longo da bacia do Paracatu, a proporção do consumo representado pela irrigação e pelos abastecimentos animal e humano e o impacto das vazões demandadas pela irrigação. A vazão média anual de longa duração, a vazão mínima de sete dias de duração e o período de retorno de 10 anos (Q7,10 e a vazão associada à permanência de 95% (Q95 foram estimados utilizando-se o período de 1970 a 1996 em 18 seções correspondentes a estações fluviométricas situadas na bacia do Paracatu. As vazões demandadas pelos segmentos analisados foram calculadas para o ano de 1996. Embora a vazão de retirada pela irrigação no mês de maior demanda, para as 18 seções analisadas, tenha representado de 4,3 a 85,1% da Q7,10 observada, a vazão consumida apresentou pouca influência na vazão média de longa duração.The Paracatu River is the main tributary of the São Francisco River. As a consequence of the huge development of the irrigation in the Paracatu Basin, in the early 70-s, serious conflicts for the water use began to take place in several parts of the basin. The objectives of this paper were: to estimate the relative amount of the water consumption by irrigation and by animal and human supply in the Paracatu Basin; and to evaluate the impact of the water withdrawals for irrigation in the stream flow in the Paracatu River and tributaries. The average stream flow, the minimum stream flow of seven days and 10 years of return period (Q7,10 and the stream flow associated with the duration of 95% of permanence (Q95 were calculated from 1970 to 1996 for 18 stations used to measure the stream flow in the

  8. Estimation of net groundwater use in irrigated river basins using geo-information techniques. A case study in Rechna Doab, Pakistan

    NARCIS (Netherlands)

    Mobin-ud-Din Ahmad,

    2002-01-01

    Keywords: remote sensing, GIS, water balance, groundwater, net groundwater use, recharge, water management, Rechna Doab, Pakistan.Over-exploitation of groundwater resources threatens the future of irrigated agriculture, especially in the arid and semi-arid regions of the world. In order to reverse t

  9. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1...

  10. 基于数值模拟的太湖流域地区节水条件下水田灌排水量研究%Research on the Irrigation and Drainage Water Quantity under the Condition of Water-saving Measures in the Area of Taihu Basin Based on Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    林刚毅; 沈爱春; 王跃奎; 高怡

    2012-01-01

    太湖流域内农业用水粗放,水利用效率低下,农业面源污染严重,推广水稻节水灌溉势在必行。为了研究水稻节水灌溉对太湖流域用水总量控制的影响效应以及对太湖流域水资源量和水环境的影响效应,需要弄清在不同保证率下节水灌溉和淹水灌溉单位面积的灌溉水量和排水量。改进了逐日水量平衡法中蒸散发项和渗漏项的计算方法,并对该方法中各个参数的确定做了说明。最后以杭嘉湖区为例,选用1956--2000年系列资料模拟灌溉排水过程,同时采用P-Ⅲ型曲线计算不同保证率下节水灌溉和淹水灌溉的灌溉水量,并比较了两者的效益。%Agricultural irrigation water quantity in TaiHu Basin is so extensive that a high utilization efficiency of water is impossible, plus, the agriculture non-point poIlution is very serious, therefore it is important to develop water-saving irrigation. In order to re- search the impact of water-saving irrigation on the total water requirement controls of the Taihu Basin and the water resources and water environment of the Taihu Basin, it is needed to make sure about irrigation and displacement water quantity per unit area of wa- ter-saving irrigation and inundative irrigation in the different probability of irrigation conditions. This paper improved calculation method of the evapotranspiration and leakage items of the daily water balance method, and illustrated how to estimate calculation pa- rameters. Finally, taking Hangjiahu area as an example, the author selected a series of data from 1956 to 2000 to simulate the irriga- tion and drainage process, while used P-Ⅲ curve to calculate the irrigation and drainage water quantity of water-saving irrigation and inundative irrigation with the different probability of irrigation, and compared the benefits of both.

  11. Irrigation System

    Science.gov (United States)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  12. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

    Science.gov (United States)

    Lathuillière, Michael J.; Coe, Michael T.; Johnson, Mark S.

    2016-06-01

    The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green-blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

  13. Impacts of climate change on irrigated maize production in Shiyang and Daling River Basins%气候变化对石羊河、大凌河流域灌溉玉米生产的影响

    Institute of Scientific and Technical Information of China (English)

    熊伟; 冯颖竹; 高清竹; 李迎春

    2011-01-01

    Climate change and its impacts receive great concern in both global and regional scale. In China, the impacts in arid and semi-arid areas in northern China bear greater attentions due to the vulnerable ecosystem and higher magnitude of climate change in these areas. Agricuhure in northern part of China with vulnerable ecosystem is becoming more susceptible to climate change in the future. By using the modeling approaches, we investigated the impacts of climate change on irrigated maize production in two typical vulnerable basins: Shiyang River basin and Daling River basin. Regional climate model PRECIS ( Providing Regional Climate for Impact Studies) and CERES ( Crop - Environment Resource Synthesis) - Maize crop model were linked to simulate irrigated maize growth under baseline ( BS, 1961 - 1990) and two climate change scenarios (A2 and B2 2011 -2100). Day to maturity,yield, evapotranspiration (ET) and irrigation demand are retrieved from simulations to analyze the responses of maize growth to climate change. Changes in monetary benefits of maize production are estimated based on simulated yields, inputs and assumed unchanged prices. Possible adaptation options are prescribed according to the changes in yields, benefits and climate. Results demonstrate that climate change poses negative influences on maize production in the two basins, indicating by increased possibility of lower yields and enhanced yield variability, consequently induces farmers' monetary loss in maize cultivation if present agronomic practices are kept unchanged in the future. Climate change scenario A2 produces greater negative effects than B2, particularly in the 2080s, due to its higher magnitude of changes in temperature and precipitation. CO2 fertilization effect mitigates the decreases in yields and reduces the yield variability to some extent, which is explained by the increased photosynthesis and decreased ET under higher CO2 concentration. ET and irrigation demand during the whole

  14. Scenario of agricultural hydric demand for the irrigation optimization for small producers from the flat lands of the Guabas river basin; Escenario de demanda hídrica agrícola para la optimización del riego de los pequeños productores de la zona plana de la cuenca del río Guabas.

    Directory of Open Access Journals (Sweden)

    Sara Marcela Paz

    2012-12-01

    Full Text Available The Association of Users of the Guabas River basin (ASOGUABAS, inagreement with the research group on integral management of irrigationfor agricultural development and food security (WATER from Universidad del Valle, conducted a study to determine thewater demand of small producers from the flat areaof the drainage basin of the Guabas River, as a firststep toward efficient use of water.Climatic and cartographic information was collectedof the flat area of the municipalities of Guacaríand Ginebra, department of Valle del Cauca. Subsequently,the agricultural zone of each propertywas determined by using geo-global positioningtechnology. The water needs of crops, contributionof rainfall, needs of irrigation, and water demand ona monthly level were calculated.Results indicate that, according to the behavior of theevapo-transpiration and precipitation in the study area, twotimes of irrigation needs exist associated to rain periods(bimodal behavior. In addition, it was identified that thecurrent demand is high due to the poor state of infrastructurein existing water distribution channels; hence, despitehaving irrigation methods located on the farms, a criticalmodule of irrigation of 0.85 ls-1 is present. On the basis ofthe above, a simulation of a scenario of demand improvingthe efficiencies of the transmission and distribution systemof irrigation water was performed and a critical module of0.4 ls-1 was achieved.

  15. Irrigation and groundwater in Pakistan

    Science.gov (United States)

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  16. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil

    NARCIS (Netherlands)

    Castro Teixeira, de A.H.; Bastiaanssen, W.G.M.; Bassoi, L.H.

    2007-01-01

    Energy and water balance parameters were measured in two commercial vineyards in the semiarid region of the São Francisco river basin, Brazil. Actual evapotranspiration (ET) was acquired with the Bowen ratio surface energy balance method. The ratio of the latent heat flux to the available energy, or

  17. REE distribution characteristics of sewage irrigation in Sidaoshahe basin of Baotou City%包头市四道沙河流域污灌区稀土元素的分布特征

    Institute of Scientific and Technical Information of China (English)

    张庆辉; 王贵; 赵捷; 朱晋; 程莉; 同丽嘎

    2012-01-01

    [Objective] The research was to study characteristics of rare earth elements (REE) distribution in stream sediment and farmland surface soil of sewage irrigation in Sidaoshahe basin of Baotou, providing a scientific basis to evaluate the soil environmental quality of sewage irrigation area and repair of heavy metal pollution in soil. [Method] Stream sediments and farmland soils samples were collected in Sidaoshahe basin in the southern suburbs of Baotou to determine the content of REE. Distribution characteris- tics and fractionation characteristics were analyzed systematically in stream sediments and farmland soils. [Result] The results indicated that the average total content of light rare earth elements (LRE) was 42.43 times of heavy rare earth elements(HRE). The value of ∑LRE/∑ HRE was 12. 36--128. 72, LRE and HRE separated obviously,showing LRE relatively rich. Eu was relatively slightly lost and Ce showed significantly abnormal in some places. [Conclusion] Full enrichment LRE was found in the study area because human activities lead to excess accumulation of exogenous LRE in the environment of sewage irrigation, external LRE to soil ecological environment in sewage irrigation in the southern suburbs of Baotou City has a significant impact.%【目的】研究包头四道沙河流域污灌区水系沉积物、表层土壤中的稀土元素分布特征,旨在为污灌区的土壤环境质量评价及土壤重金属污染修复提供依据。【方法】采集包头市南郊四道沙河流域污灌区的水系沉积物、农田土壤样品,测定样品中不同稀土元素含量,系统分析污灌区水系沉积物、农田土壤中的稀土元素分布特征和分馏特征。【结果】污灌区的轻稀土元素总量是重稀土元素的42.43倍,轻稀土元素与重稀土元素总量的比值为12.36~128.72。研究区轻、重稀土元素分馏非常明显,且以轻稀土元素的富集度较高,Eu元素有相对微弱亏损,Ce元素在

  18. Demanda de irrigação da cultura da uva na Bacia do Rio São Francisco Irrigation demand for grape crop in San Francisco River Basin

    Directory of Open Access Journals (Sweden)

    Wallisson da S. Freitas

    2006-09-01

    Full Text Available Visando subsidiar o planejamento de projetos agrícolas para o dimensionamento de projetos de irrigação e a gestão de recursos hídricos, estimou-se e se espacializou a demanda de irrigação da videira (Vitis vinifera L., cv. Itália, na bacia do Rio São Francisco. Utilizaram-se séries históricas de dados de 81 estações climáticas distribuídas na bacia. Para cada estação calculou-se os valores, máximos diários e o total anual, da evapotranspiração de referência (ETo, da evapotranspiração da cultura (ETc, da demanda suplementar da cultura e da demanda suplementar de irrigação (este com eficiência de 70%. Com base nos resultados obtidos, concluiu-se que: (a a ETc máxima diária variou, em grande parte da bacia, de 4,5 a 5,7 mm d-1, tendo média anual de 943 mm; (b em média, a demanda anual suplementar da cultura foi 839,5 mm, equivalente a 103,5 mm inferior à ETc; (c o fato do sistema funcionar com 70% de eficiência, em vez de 90%, implica em acréscimo estimado de 18.808.755 m³ de água por ano, somente nas microrregiões de Juazeiro, BA e Petrolina, PE.The irrigation water demand of the grapevine (Vitis vinifera L. cv. Italy was estimated and spatialized in San Francisco River Basin, in order to subsidize the agricultural project planning and water resource management. Historical data series relative to 81 climatic stations distributed throughout the basin were used. The maximum daily values and the annual total values of the reference evapotranspiration (ETo, crop evapotranspiration (ETc, supplementary demand of the crop and the supplementary irrigation demand (70% efficiency were calculated for each station. According to the results, the following conclusions were drawn: (a in a large area of the basin, the maximum daily ETc varied from 4.5 to 5.7 mm d-1, with an annual mean of 943 mm; (b the supplementary annual demand of the crop averaged 839.5 mm, corresponding to 103.5 mm less than ETc; and (c the irrigation

  19. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada and Adjacent Areas in Nevada and Utah Field Verification Global Position System (GPS) Waypoints

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Delineated irrigated acreage in 2005 was field verified from September 26 to 29 and November 1 to 3 , 2005. Fields were visited to confirm that irrigation had...

  20. Year 3 Summary Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin

    Science.gov (United States)

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2008-01-01

    This report summarizes findings from the third year of a 4-year-long field investigation to document selected baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water quality and fish species were measured at roughly quarterly intervals from April 2007 to January 2008. The water quality measurements included total suspended solids and total (particulate plus dissolved) selenium. In addition, during April and October 2007, water samples were collected from seven intensively monitored drains for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices (particulate organic detritus, filamentous algae, net plankton, and midge [chironomid] larvae), and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for desert pupfish (Cyprinodon macularius), an endangered species that we were not permitted to take for selenium determinations. Water quality values were typical of surface waters in a hot desert climate. A few drains exhibited brackish, near anoxic conditions especially during the summer and fall when water temperatures occasionally exceeded 30 degrees C. In general, total selenium concentrations in water varied directly with conductivity and inversely with pH. Although desert pupfish were found in several drains, sometimes in relatively high numbers, the fish faunas of most drains and ponds were dominated by nonnative species, especially red shiner (Cyprinella lutrensis), mosquitofish, and mollies. Dissolved selenium in water samples from the seven intensively monitored drains ranged from 0.700 to 24.1 ug/L, with selenate as the major constituent in all samples. Selenium

  1. Water savings potentials of irrigation systems: dynamic global simulation

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values ( 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential

  2. Impact and sustainability of low-head drip irrigation kits, in the semi-arid Gwanda and Beitbridge Districts, Mzingwane Catchment, Limpopo Basin, Zimbabwe

    Science.gov (United States)

    Moyo, Richard; Love, David; Mul, Marloes; Mupangwa, Walter; Twomlow, Steve

    the wet season. This suggests that most households use the drip kits as supplementary irrigation. Conflicts between beneficiaries and water point committees or other water users developed in some areas especially during the dry season. The main finding from this study was that low cost drip kit programs can only be a sustainable intervention if implemented as an integral part of a long-term development program, not short-term relief programs and the programme should involve a broad range of stakeholders. A first step in any such program, especially in water scarce areas such as Gwanda and Beitbridge, is a detailed analysis of the existing water resources to assess availability and potential conflicts, prior to distribution of drip kits.

  3. Irrigation and Autocracy

    OpenAIRE

    Jeanet Sinding Bentzen; Nicolai Kaarsen; Asger Moll Wingender

    2012-01-01

    We show that societies with a history of irrigation-based agriculture have been less likely to adopt democracy than societies with a history of rainfed agriculture. Rather than actual irrigation, the empirical analysis is based on how much irrigation potentially can increase yields. Irrigation potential is derived from a range of exogenous geographic factors, and reverse causality is therefore ruled out. Our results hold both at the cross-country level, and at the subnational level in premode...

  4. Root canal irrigants

    OpenAIRE

    Kandaswamy Deivanayagam; Venkateshbabu Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are...

  5. Water Requirements Of Irrigated Garlic

    Science.gov (United States)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  6. ESTIMATING IRRIGATION COSTS

    Science.gov (United States)

    Having accurate estimates of the cost of irrigation is important when making irrigation decisions. Estimates of fixed costs are critical for investment decisions. Operating cost estimates can assist in decisions regarding additional irrigations. This fact sheet examines the costs associated with ...

  7. Predicting deep percolation with eddy covariance under mulch drip irrigation

    Science.gov (United States)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  8. Hydronomics and terranomics in the Nyando basin of Western Kenya.

    OpenAIRE

    Onyango, Leah; Swallow, Brent; Meinzen-Dick, Ruth

    2005-01-01

    This paper uses the concepts of hydronomics as systems of rules that define water management and terranomics as systems of rules that define land management and explores their linkages in rainfed agriculture and irrigation areas in the Nyando basin. The upper reaches of the basin have experienced a change from large scale commercial farming to more intensive small holder farming while in the flood prone lower reaches of the basin several irrigation schemes have been set up. The basin has a co...

  9. Assessment of equity and adequacy of water delivery in irrigation systems using remote sensing-based indicators in semi-arid region, Morocco

    OpenAIRE

    Kharrou, M.H.; Le Page, M.; Chehbouni, A.; Simonneaux, Vincent; Er-Raki, S.; Jarlan, Lionel; Ouzine, L.; Khabba, S.; Chehbouni, Abdelghani

    2013-01-01

    The irrigation performance criteria of equity and adequacy are of primary concern for irrigation managers. The input data required at various scales to assess irrigation performance, often not available, need costly intensive field campaigns. Remote sensing techniques, used to directly estimate crop evapotranspiration (ETc), became recently an attractive option to assess irrigation performance from individual fields to irrigation scheme or river basin scale. In this study, ETc maps were obtai...

  10. Estudo hidrológico de pequenas bacias e sua aplicação à irrigação Hydrologic studies of small basins with application to irrigation

    Directory of Open Access Journals (Sweden)

    Rino N. Tosello

    1961-01-01

    devido ao fenômeno de retenção de água pelo solo. Essa defasagem assume aspectos de particular importância nos estudos de disponibilidade de água, revelando ser bastante precário o método de determinação da vazão, em uma época qualquer, sem a continuidade necessária.Some hidrologic studies were undertaken in the period of June 1945 up to July 1947, on small basins located in the «Dr. Theodureto de Camargo» Experiment Station, of the Instituto Agronômico in Campinas. Two of the basins, respectively of 120 and 180 hectares, were envelopped by a third basin of 522 hectare limited downstream by an earth dam. The inflow and outflow of the impounded water have been measured, as well as the flow of the two basins. The data collected were analysed by means of simple and mass diagrams of surface flow and rainfall. Comparisons of the evapotranspiration data obtained from the hydrologic studies were made with potencial evapotranspiration data obtained by using Thornthwaite's empirical formula, with coincidentally remarkable agreement, with an average monthly evapotranspiration of about 80 milimeters. The percentages of surface flow in relation to total rainfall were found to average about 26.5% from which a small portion only (3% of the total rainfall was atributed to surface runoff. The remaining 23.5% is believed to be the percolated water which appeared as ground water flow. Total losses (infiltration + evaporation, occurring due to the accumulation of water by the old existing earth dam were estimated to be of the order of 50% of the total inflow, thus indicating that only 50% of the initial inflow could be used, the remaining being accounted as unavoidable losses. It is believed that part of these losses could be minimized if the dam structure were built according to modern techniques. Rippl diagrams were used and its usefulness in solving problems of storage of water for irrigation purpose was shown by practical examples. The method used in this work to

  11. Production Technical Rule of Alfalfa under Sprinkler Irrigation on the Thin and Arenaceous Soil at Ili River Basin in Xinjiang%新疆伊犁河流域砂质薄土层苜蓿喷灌生产技术规程

    Institute of Scientific and Technical Information of China (English)

    丁峰; 秦巧; 蒲胜海; 冯广平; 杨培林; 段生莲; 马雪琴

    2012-01-01

    为了规范新疆伊犁河流域砂质薄土层苜蓿的生产,针对伊犁河流域水土开发区域面临砂质薄土层的灌溉问题和苜蓿生产中存在的问题,依据国家及行业标准,对新疆伊犁河流域砂质薄土层新垦耕地的喷灌苜蓿种植的灌溉生产管理等提出了具体要求.针对新疆伊犁河流域砂质薄土层新垦耕地特殊的地理气候条件,对其苜蓿生产中的品种选择、培肥地力、平整土地、灌溉管理和配套栽培措施等进行了具体规定.该生产技术规程的实施对新疆伊犁河流域砂质薄土层新垦耕地苜蓿喷灌生产具有重要的现实指导意义,将显著提高饲草产量,增加农民收入,促进新疆伊犁州畜牧业的可持续发展和农村经济的快速发展.%In order to regulate the production of alfalfa on thin and arenaceous soil which was newly cultivated at Ili River basin in Xinjiang, a technical rule was presented based on national and industry standard, and the problems in irrigation question and alfalfa production on thin and arenaceous soil at Hi River basin. The technical rule was against the specific geological and climate conditions of the newly cultivated land on thin and arenaceous soil at Ili River basin in Xinjiang. It concluded variety selection, fertilization ability, land levelling, irrigation management and relevant cultivation measures. This production technical rule could be a reference to alfalfa production with sprinkler irrigation on the thin and arenaceous soil at Hi River basin in Xinjiang. With its implementation the yield of forage grass and fanner's income might be largely increased and it might promote sustainable development of animal husbandry and rural economy in Xinjiang.

  12. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  13. Irrigation Systems. Student's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  14. Irrigation Systems. Instructor's Guide.

    Science.gov (United States)

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  15. Irrigation Without Waste

    Science.gov (United States)

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  16. Root canal irrigants

    Directory of Open Access Journals (Sweden)

    Kandaswamy Deivanayagam

    2010-01-01

    Full Text Available Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ′root canal irrigants′ and ′endodontic irrigants.′ The reference lists of each article were manually checked for additional articles of relevance.

  17. Effect of Agricultural Water Price Adjustment on the Quantity of Irrigational Water in Tarim River Basin%塔里木河流域农业水价调整对灌水量的需求弹性效应分析

    Institute of Scientific and Technical Information of China (English)

    孙建光; 韩桂兰

    2009-01-01

    According to the materials of the different water price and the quantity of irrigational water, the paper analyzes the effect of adjustment of agricultural water price on the quantity of irrigational water in Tarim river basin and further makes its model, and uses it to give an analysis for the effect of water price on the basis of agricultural cost water price and adjusted elastically parameter of demand of water price. The results indicates as follows: the elasticity of water price is very little, but its effect on the quantity of irrigational water is relatively great in the pri-mary period. The elasticity of water price is relatively high in the Tarim river basin that water resource is plentiful, and its utilization ratio is relative low. It is more effective on the quantity of irrigational water to improve water price to the cost price and use adjusted elastically parameter of demand of water price by comparison with the ad-justment of cost water price respectively.%基于塔里木河流域主要水价调整年份的农业水价和相应的灌水量资料,分析了塔里木河流域农业水价调整的节水效应和水价调整的需求弹性;构建了塔里木河流域农业水价调整的需求效应模型,基于成本水价和调整的需求弹性系数,分析了农业成本水价对灌水量的效应.结果表明,尽管塔里木河流域农业水价调整的需求弹性很小,但可促进初期灌水量大幅降低;流域内水资源丰富、利用率低的源流和干流上游农业水价调整的需求弹性高;与单纯提高水价到成本价比较,同时提高水价需求弹性系数对灌水量的节水效应更大.

  18. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix F: Irrigation, Municipal and Industrial/Water Supply.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operations Review (U.S.); United States. Bonneville Power Administration; United States. Army. Corps of Engineers. North Pacific Division; United States. Bureau of Reclamation. Pacific Northwest Region.

    1995-11-01

    Since the 1930`s, the Columbia River has been harnessed for the benefit of the Northwest and the nation. Federal agencies have built 30 major dams on the river and its tributaries. Dozens of non-Federal projects have been developed as well. The dams provide flood control, irrigation, navigation, hydro-electric power generation, recreation, fish and wildlife, and streamflows for wildlife, anadromous fish, resident fish, and water quality. This is Appendix F of the Environmental Impact Statement for the Columbia River System, focusing on irrigation issues and concerns arrising from the Irrigation and Mitigation of impacts (M&I) working Group of the SOR process. Major subheadings include the following: Scope and process of irrigation/M&I studies; Irrigation/M&I in the Columbia Basin Today including overview, irrigated acreage and water rights, Irrigation and M&I issues basin-wide and at specific locations; and the analysis of impacts and alternative for the Environmental Impact Statement.

  19. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errormodelling. The RS irrigated areas and actual evapotranspiration can be used to: (i) understand irrigation dynamics, (ii) constrain irrigation models in data scarce regions, as well as (iii) pinpointing areas that require better ground

  20. Vision of irrigation

    Directory of Open Access Journals (Sweden)

    Fernando Braz-Tangerino

    2014-08-01

    Full Text Available Irrigation not only has been a key factor for the development and maintenance of human societies but it still plays this role now and it is foreseen that in the future as well. Its evolution has been constrained to the advance in knowledge on matters regarding Agronomy and Water Engineering and in technology however, many challenges deserve further research. It is worth to note that Brazil has strongly promoted irrigation in the last decade. Within the limited extension of this article, some current topics in irrigation, some of them are innovative such us the research line studying water flow in soil-plant in Mediterranean plants and its consequences on water use,. and future challenges are presented with the purpose of stimulate publication of Irrigation papers in the journal “Ingeniería del Agua” among Portuguese and Spanish language communities.

  1. EVALUATION OF PHYSICO-CHEMICAL PARAMETERS OF AGRICULTURAL SOILS IRRIGATED BY THE WATERS OF THE HYDROLIC BASIN OF SEBOU RIVER AND THEIR INFLUENCES ON THE TRANSFER OF TRACE ELEMENTS INTO SUGAR CROPS (THE CASE OF SUGAR CANE

    Directory of Open Access Journals (Sweden)

    N. Benlkhoubi

    2016-05-01

    Full Text Available This research was conducted in Kenitra (northwestern Morocco to determine the physicochemical parameters and metallic concentrations at three levels: surface water of Sebou and Beht intended for irrigation, agricultural soils and sugarcane. The spectrometric analysis of source plasma emission (ICP has identified eight trace elements contained in the materials taken from zone 1 (As, Cd, Co, Zn, Ni, Pb, Cu and Cr.The obtained results showed that the interaction between the different physicochemical parameters of agricultural soils decides the transfer of the metal elements to the plants. Indeed, for the soil which is used in this agriculture (for sugar cane, its irrigation water, and the contents of Cr, Cd and As exceeds the accepted standards.The principal component analysis of the levels of trace metal supports in area 1, allowed to distinguish between the items with a high tolerance for bagasse (Zn, Cu, Ni, Cd and Pb, compared to Cr, Co, and As.

  2. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  3. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  4. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Aniketh

    2015-04-01

    Full Text Available Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and contents be eliminated as sources of infection. As the Enterococcus faecalis is a lso found to be the most important cause for endodontic failures, the action and efficacy of fewer irrigants against E. faecalis should also be given prime importance as of others. Therefore, the introduction of an antimicrobial endodontic irrigant during root canal therapy should be given priority in the hierarchy of root canal treatment. The purpose of this article is to analyse root canal irrigants, irrigation techniques and irrigation protocol.

  5. Irrigation water quality as indicator of sustainable rural development

    Directory of Open Access Journals (Sweden)

    Trajković Slaviša 1

    2004-01-01

    Full Text Available The sustainable rural development more and more depends on the efficient usage of water resources. Most often, at least in one part of the year, the rain is not sufficient for plant growth and rain plant production significantly depends on the yearly precipitation variation. The increase and stability of the agricultural production is possible in the irrigation conditions. The most part (around 70% of the global water resources is used for food production. Irrigation water quality indicator is used to show if the available water resources have the required quality for application in agriculture. Irrigation is characterised by the complex water-plant-soil relationship, and in that eco-system the man as the end user of the irrigated fields occupies a very important place. That explains the difficulties in producing one universal classification of irrigation water quality. The paper analyses numerous water quality classifications from the aspect of the applicability on the quantifying of this indicator. The adopted classification should possess understandable, qualified and internationally comparable indicator. Thus, local classifications (Neigebauer, Miljkovic cannot be used for this indicator. United Nation Food and Agricultural Organization (FAO and US Salinity Laboratory (USSL classifications are used for the evaluation of the irrigation water quality throughout the world. FAO classification gives the complex picture of the usability of the irrigation water from the point of its influence on the soil and the plants. However, the scope of the analyses is not often suited to the needs of that classification, which makes it difficult to apply. The conclusion is that the USSL (US Salinity Laboratory classification is best suited to this range of chemical water analyses. The evaluation of the irrigation water quality indicator in the Juzna Morava river basin, upstream from the Toplica river estuary is given in this paper. Based on the obtained

  6. SEDIMENT CONTROL FOR IRRIGATION INTAKES

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The analysis of the sediment problems in irrigation engineeringwas carried out, and the layout, the method as well as the effect of sediment control for irrigation intake structures in China were briefly introduced.

  7. Sustainable conjunctive use of surface and groundwater: modeling on the basin scale

    NARCIS (Netherlands)

    Alam, N.; Olsthoorn, T.N.

    2011-01-01

    Farmers in the Indus basin, Pakistan have generally switched to groundwater for additional water supplies due to the irregular supply of irrigation water; currently over 50% of the agricultural land in the basin is at least partially irrigated by tube-wells. These wells pump fresh groundwater, which

  8. Planning for an Irrigation System.

    Science.gov (United States)

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  9. Impact of irrigation on the South Asian summer monsoon

    Science.gov (United States)

    Saeed, Fahad; Hagemann, Stefan; Jacob, Daniela

    2009-10-01

    The Indian subcontinent is one of the most intensely irrigated regions of the world and state of the art climate models do not account for the representation of irrigation. Sensitivity studies with the regional climate model REMO show distinct feedbacks between the simulation of the monsoon circulation with and without irrigation processes. We find that the temperature and mean sea level pressure, where the standard REMO version without irrigation shows a significant bias over the areas of Indus basin, is highly sensitive to the water used for irrigation. In our sensitivity test we find that removal of this bias has caused less differential heating between land and sea masses. This in turns reduces the westerlies entering into land from Arabian Sea, hence creating conditions favorable for currents from Bay of Bengal to intrude deep into western India and Pakistan that have been unrealistically suppressed before. We conclude that the representation of irrigated water is unavoidable for realistic simulation of south Asian summer monsoon and its response under global warming.

  10. Investing in Smallholder Irrigation

    OpenAIRE

    Naugle, Jon; Sellen, Daniel; Darghouth, Salah; Dinar, Ariel

    2006-01-01

    Smallholder irrigated horticulture has proven to be a viable and attractive option for poor farmers in developing countries. This paper relates two important lessons learned: low-cost productive technologies must be available to smallholders in terms of both location and price and must correspond to their needs, and the importance of a market-led approach for financing technology acquisi...

  11. Root canal irrigation

    NARCIS (Netherlands)

    L. van der Sluis; C. Boutsioukis; L.M. Jiang; R. Macedo; B. Verhaagen; M. Versluis

    2015-01-01

    The aims of root canal irrigation are the chemical dissolution or disruption and the mechanical detachment of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products from the root canal wall, their removal out of the root cana

  12. Review on Trickle Irrigation Application in Groundwater Irrigation Schemes

    Directory of Open Access Journals (Sweden)

    Prastowo

    2006-04-01

    Full Text Available The Government of Indonesia has developed groundwater irrigation schemes in some province e.g. East Java, Central Java, Yogyakarta, Wast Java, Bali, West Nusa Tenggara and East Nusa Tenggara. However, not all regions were able to optimally utilize it. The irrigation effeciency of groundwater irrigation scheme was about 59%, while the wells-pumping efficiencies were varied from 28 to 98 %. In thefuture, the irrigation effieciency should be increased to anticipate water deficit during dry season. The application of trickle irrigation in indonesia has not been widely developed. Although trickle system has been used, however, it is still limited for few commercial agribusinesses. Trickle irrigation systems have a prospect to be developed in some regions having limited water resources. For preliminary stage, the systems could be applied in groundwater irrigation schemes that have been developed either by farmers or government.

  13. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    OpenAIRE

    M. Fader; Shi, S; W. von Bloh; Bondeau, A.; W. Cramer

    2015-01-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming l...

  14. Qualidade da água subterrânea para irrigação na bacia hidrográfica do Rio Piauí, em Sergipe Groundwater quality for irrigation purposes in Piauí River Basin in the State of Sergipe, Brazil

    Directory of Open Access Journals (Sweden)

    Julio R. A. de Amorim

    2010-01-01

    . Physicochemical data of water from 278 deep wells located in Piauí River Basin, in the State of Sergipe, Brazil, were used considering the FAO restriction criteria for irrigation purposes. Maps of spatial distribution of groundwater quality indicators in the watershed were prepared by ordinary kriging procedures. Groundwaters showed good quality for irrigation use, mainly in the center-downstream portion of the river basin. There was a trend in increasing the salt concentration in water from the coast to inland in the Piauí River Basin area.

  15. Research on the Effect of the Future Adjustment of Agricultural Water Pricing Based on the Resource and Environment Water Price on the Quantity of Irrigation Water in Tarim River Basin%基于资源环境水价的塔里木河流域农业水价的节水效应

    Institute of Scientific and Technical Information of China (English)

    孙建光; 韩桂兰

    2012-01-01

    According to the models of water fees and environment water prices and relevant data, on the basis of the cost price of water supply, this paper further calculates the future agricultural water price based on water resources fee and environment water prices. Then the paper establishes the model of the effect of agricultural water price on the quantity of irrigation water in Tarim River Basin by using the data of agricultural water prices and the amount of irrigation water use in the basin, and it is used to analyze the effect of the future adjustment of agricultural water prices based on different agricultural saving water prices two elastic parameters of de- mand of water prices(adjusted and unadjusted) ~ the results indicate that the effect of the adjustment of the future agricultural water on the quantity of irrigational water is very high, but the function of the environmental water price is to carry out the economical compensation of the environmental water use to protect the ecological environment in Tarim River Basin. It is the key approach to improving the effects of the future agricultural water prices by the cooperation of the adjustment of water prices with the high effec- tive water-saving techniques. Especially the research of the effect of saving water of the future agricultural water price is related to the safety of food production and the issue of the farmer's carrying capacity of water prices, is the key contents for the future adjustment of agricultural water priees to discuss, so that the research can be used to guide the future a~ricultural wztor nri~qncr%在塔里木河流域农业供水成本水价基础上,基于已有研究的流域水资源费和环境水价模型与相关资料,首先构建了流域基于资源环境水价的未来农业水价;然后,利用流域农业水价和灌水量资料构建了流域农业水价的需求效应模型,分析了未来塔河流域基于资源环境水价的未来农业水价的节水效应

  16. Pakistan: Indus Basin Water Strategy – Past, Present and Future

    OpenAIRE

    Shahid Amjad Chaudhry

    2010-01-01

    This paper looks at the Indus Basin Water Strategy for Pakistan. It begins with a historical overview of the Indus Basin Irrigation System (IBIS), the Indus Basin Replacement Works (1960-1980) and the Indus Basin Salinity Control Efforts (1960-2000). The paper then looks at the IBIS irrigation and salinity control investments that have taken place over the last decade (2000-2010). The paper goes on to look at the present situation of the IBIS as well as discuss an IBIS strategy for the next d...

  17. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    Science.gov (United States)

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-errordata scarce regions, as well as (iii) pinpointing areas that require better ground-based monitoring. PMID:26520262

  18. 济南市邢家渡灌区废弃沉沙池生态风险等级评价研究%STUDY ON THE GRADE EVALUATION OF ECOLOGICAL RISK IN WASTE SAND BASIN OF XING JIADU YELLOW RIVER IRRIGATION AREA IN JINAN

    Institute of Scientific and Technical Information of China (English)

    石礼文; 苏红鲁; 张扩成; 张厚芹

    2016-01-01

    The waste sand basin of Xing Jiadu in Jinan was a major desilting basin in downstream of the Xing Jiadu Yellow River irrigation area,before and after operation for nearly 30 years,it had stopped using in 2002,and there are about 204 hm2 land was abandoned,which had become sandstorm source of Jinan. Study on waste sand basin ecological risk level,has important significance to the regional development,environmental governance. Using ArcGIS software,three evaluation index of the wind,erosion modulus,vegetation coverage and soil sand content was selected to evaluate the ecological risk level by using conditional filtering method. The results showed that the area of moderate risk,heavy risk and severe risk are accounting for 92. 92% of the total area of the waste sand basin. Ecological risk is relatively high,and the regional ecological security status of the overall assessment is not safe.%济南市邢家渡沉沙池曾是黄河下游邢家渡引黄灌区上的一个主干沉沙池,运行近30年,于2002年停止使用,沉沙池约204 hm2的土地彻底废弃,已成为济南市区风沙的源头之一.研究废弃沉沙池生态风险等级,对区域开发、环境治理有重要的意义.利用ARCGIS软件,选取风蚀模数,植被覆盖度,土壤含沙量三个评价指标,利用条件过滤法,进行生态风险等级评价研究.结果表明,中度风险、较重风险、重度风险的面积,占废弃沉沙池总面积的92.92%,生态风险较高,该区域生态安全状态总体评价为不安全.

  19. Asian irrigation, African rain: Remote impacts of irrigation

    Science.gov (United States)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  20. ROOT CANAL IRRIGANTS AND IRRIGATION TECHNIQUES: A REVIEW

    OpenAIRE

    Aniketh; Mohamed; Geeta; Nandakishore; Gourav Kumar; Patrick Timothy; Jayson Mathew; Sahle Abdul

    2015-01-01

    Root canal irrigation is not much emphasised in endodontic therapy. Most articles discussed are on root canal shaping and obturation not much emphasis is given for irrigation. There are many irrigation solutions which are introduced into market. The primary objective of root canal therapy is the ret ention of the pulpless or pulpally involved tooth with its associated periapical tissues in a healthy state. Achievement of this objective requires that the pulpal spaces and con...

  1. Soil cover and water quality for irrigation purposes

    Directory of Open Access Journals (Sweden)

    Ana Paula Bertossi

    2014-02-01

    Full Text Available In order to assess the relationship between land cover and water quality for irrigation in the sub-basin of the stream Horizonte, located in the Espírito Santo State, Brazil, we selected five places in the sub-basin to collect surface water and groundwater, each influenced by different soil cover types: pasture, forest, coffee, upstream and downstream of the urban area. Collecting samples were made during periods of drought and rainfall. The physical-chemical analysis of water was made by determining the pH, electrical conductivity, calcium, magnesium, sodium and calculated sodium adsorption ratio (SAR. According to the results we can conclude that the soil cover did not change the quality of water for irrigation and water evaluated, both surface and groundwater, showed no risk of soil salinization, but can cause problems sodification, making it difficult to water infiltration.

  2. Irrigation infrastructure and water appropriation rules for food security

    Science.gov (United States)

    Gohar, Abdelaziz A.; Amer, Saud A.; Ward, Frank A.

    2015-01-01

    In the developing world's irrigated areas, water management and planning is often motivated by the need for lasting food security. Two important policy measures to address this need are improving the flexibility of water appropriation rules and developing irrigation storage infrastructure. Little research to date has investigated the performance of these two policy measures in a single analysis while maintaining a basin wide water balance. This paper examines impacts of storage capacity and water appropriation rules on total economic welfare in irrigated agriculture, while maintaining a water balance. The application is to a river basin in northern Afghanistan. A constrained optimization framework is developed to examine economic consequences on food security and farm income resulting from each policy measure. Results show that significant improvements in both policy aims can be achieved through expanding existing storage capacity to capture up to 150 percent of long-term average annual water supplies when added capacity is combined with either a proportional sharing of water shortages or unrestricted water trading. An important contribution of the paper is to show how the benefits of storage and a changed water appropriation system operate under a variable climate. Results show that the hardship of droughts can be substantially lessened, with the largest rewards taking place in the most difficult periods. Findings provide a comprehensive framework for addressing future water scarcity, rural livelihoods, and food security in the developing world's irrigated regions.

  3. Salinity contamination response to changes in irrigation management. Application of geochemical codes

    OpenAIRE

    Iker Garcia-Garizabal; Maria J. Gimeno; Luis F. Auque; Jesus Causape

    2014-01-01

    Salinity contamination caused by irrigation has been widely studied but the analysis of geochemical processes regarding agronomic variables has not adequately been considered yet. The research presented here analyzes the influence of changes in irrigation management on salinity contamination, through the use of geochemical modeling techniques, in an agricultural basin during the hydrological year of 2001 and within the period 2005-2008. The results indicate that the changes implemented in irr...

  4. Catchment scale analysis on river-return ratio of irrigation water from densely developed paddy areas

    Science.gov (United States)

    Yoshida, T.; Masumoto, T.; Horikawa, N.; Kudo, R.; Minakawa, H.; Nawa, N.

    2013-12-01

    could hardly distinguish them. Thus, we calculate time-averaged river-return ratio by assuming complete mixing of irrigation and rainfall during an averaging period. That is, outflux from an irrigation area reflects the ratio of rainfall and irrigation during an averaging period. We applied this method to a case study basin, the Seki River Basin in Japan (1,140km2). Three irrigated paddy areas extend both side of the main river course; the total of which is 9,200ha. Three diversion weirs on the main river divert water for each irrigation area, while 5 small weirs exist on its tributaries to supply additional water for downstream areas. We calculated the river-return ratio of each irrigation area for 33 years (1976-2008) by using the model with 1km grid-cells. Here, we set the averaging period to be an entire irrigation period (25 Apr to 10 Sep). The average river-return ratio for each irrigation area ranged from 0.696 to 0.720 with standard deviation of 0.03. By using the spatial information on outflux grid-cells, we also explored how the river-return flow contributed to river flows at diversion weirs along tributaries. The averaged ratio of river-return ratio to the total river flow ranged from 0.2 to 0.65 according to the location of the weirs. The results suggested that densely developed irrigation systems contribute to good water use efficiency at catchment scale.

  5. Reconfiguring an Irrigation Landscape to Improve Provision of Ecosystem Services

    OpenAIRE

    Crossman, Neville D.; Jeffrey D Connor; Bryan, Brett A.; David A Summers; John Ginnivan

    2009-01-01

    Over-allocation of fresh water resources to consumptive uses, coupled with recurring drought and the prospect of climate change, is compromising the stocks of natural capital in the world’s basins and reducing their ability to provide ecosystem services. To combat this, governments world wide are making significant investment in efforts to improve sharing of water between consumptive uses and the environment, with many investments centred on modernisation of inefficient irrigation delivery sy...

  6. Efficient operation of a multi-purpose reservoir in Chile: Tradeoffs between irrigation and hydropower production

    Science.gov (United States)

    Gonzalez Cabrera, J. M., Sr.; Olivares, M. A.

    2015-12-01

    This study proposes a method to develop efficient operational policies for a reservoir the southern Chile. The main water uses in this system are hydropower and irrigation, with conflicting seasonal demands. The conflict between these two uses is currently managed through a so-called "irrigation agreement" which defines a series of operational conditions on the reservoir by restricting volumes used for power production depending on reservoir storage level. Other than that, the reservoir operation is driven by cost-minimization over the power grid. Recent evidence shows an increasing degree of conflict in this basin, which suggests that the static approach of irrigation agreements, might no longer be appropriate. Moreover, this agreement could be revised in light of decreased water availability. This problem poses a challenge related to the spatial scope of analysis. Thus, irrigation benefits are driven by decisions made within the basin, whereas hydropower benefits depend on the operation of the entire power grid. Exploring the tradeoffs between these two water uses involves modeling both scales. The proposed methodology integrates information from both a grid-wide power operations model and a basin-wide agro-economic model into a decision model for optimal reservoir operation. The first model, a hydrothermal coordination tool, schedules power production by each plant in the grid, and allows capturing technical and economic aspects to the operation of hydropower reservoirs. The agro-economic model incorporates economic features of irrigation in the basin, and allows obtaining irrigation water demand functions. Finally, the results of both models are integrated into a single model for optimal reservoir operation considering the tradeoffs between the two uses. The result of the joint operation of water resources, show a flexible coordination of uses, revealing the opportunity cost of irrigation, which it gives the possibility of negotiating transfers of water to

  7. Automatic Irrigation System using WSNs

    OpenAIRE

    Ravinder Singh Dhanoa1; Ravinder Singh

    2014-01-01

    During the entire, I went through various electronics equipment for the project. I learned about Controller 8051, Contact type sensors, Comparator and a little about other electrical equipments. Irrigation systems are as old as man itself since agriculture is the foremost occupation of civilized humanity. To irrigate large areas of plants is an onerous job. In order to overcome this problem many irrigation scheduling techniques have been developed which are mainly based on mon...

  8. Agriculture Irrigation and Water Use

    OpenAIRE

    Bajwa, Rajinder S.; Crosswhite, William M.; Hostetler, John E.; Wright, Olivia W.; United States Department of Agriculture, Economic Research Service

    1992-01-01

    The 17 Western States, plus Arkansas, Florida, and Louisiana, account for 91 percent of all U.S. irrigated acreage, with the Western States alone contributing over 85 percent. This report integrates data on the distribution, characteristics, uses, and management of water resources from a wide variety of data sources. The report includes charts and tables on water use in irrigation; farm data comparing selected characteristics of irrigated and nonirrigated farms; and data on water applicatio...

  9. Water Conservation Through Irrigation Technology

    OpenAIRE

    Negri, Donald H.; Hanchar, John J.; United States Department of Agriculture, Economic Research Service

    1989-01-01

    Improved irrigation technology and advanced farm management practices offer an opportunity for agriculture to use water more efficiently. Farmers may install new equipment, such as drip irrigation systems, or adopt advanced water management practices to conserve water without sacrificing crop yields. While farmers' decision to adopt water-saving irrigation technology responds to the cost of water, physical properties of the land such as topography or soil properties of the land such as topo...

  10. Irrigation performance assessment tool (IPAT)

    OpenAIRE

    Roerink, G.J.; Noordman, E.J.M.

    2007-01-01

    Currently, the use of remote sensing data in irrigation water management is very limited, due to its low user-friendliness and the limited acquaintance of irrigation engineers with the remote sensing possibilities. To overcome these problems an easy to use GIS/Remote Sensing user interface is developed (by Alterra and WaterWatch), called Irrigation Performance Assessment Tool (IPAT), in consultation with the end users. IPAT is successfully tested and demonstrated for three pilot areas in Arge...

  11. Sediment transport in irrigation canals

    OpenAIRE

    Méndez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high crop production. Irrigation has been the largest recipient of public agricultural investment in the developing world. Hence, continued investment in irrigation along with reforms in institutional a...

  12. Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model

    Science.gov (United States)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.

  13. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    Science.gov (United States)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  14. Application of Landsat to Evaluate Effects of Irrigation Forbearance

    OpenAIRE

    Yutaka Hagimoto; Shannon P. Ciotti; Richard H. Cuenca

    2013-01-01

    Thirty-meter resolution Landsat data were used to evaluate the effects of irrigation management in the Wood River Valley, Upper Klamath Basin, Oregon. In an effort to reduce water use and leave more of the water resource in-stream, 4,674 ha of previously flood irrigated pasture was managed as dryland pasture. Ground-based measurements over one irrigated and one unirrigated pasture site were used to monitor the difference in evapotranspiration (ET) using the Bowen ratio-energy balance method. ...

  15. Irrigation trends in Kansas, 1991–2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas...

  16. Soil Water Distribution and Irrigation Uniformity Under Alternative Furrow Irrigation

    Institute of Scientific and Technical Information of China (English)

    PAN Ying-hua; KANG Shao-zhong; DU Tai-sheng; YANG Xiu-ying

    2003-01-01

    Field experiments were conducted to investigate the spatial-temporal distribution and the uni-formity of soil water under alternative furrow irrigation in spring maize field in Gansu Province. Resultsshowed that during the crop growing season, alternative drying and wetting furrows could incur crops to en-dure a water stress, thus the adsorptive ability of root system could be enhanced. As there was no zero fluxplane between irrigated furrows and non-irrigated furrows under alternative furrow irrigation, lateral infiltra-tion of water was obviously increased, thus decreasing the deep percolation. Compared with the conventionalirrigation, although the water consumption in alternative furrow irrigation was reduced, the uniformity of soilwater was not obviously affected.

  17. Energy requirements in pressure irrigation systems

    OpenAIRE

    Sánchez Calvo, Raúl; Rodríguez Sinobas, Leonor; Juana Sirgado, Luis; Laguna Peñuelas, Francisco; Castañon Lion, Guillermo; Gil Rodríguez, María; Benitez Buelga, Javier

    2012-01-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure –sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are co...

  18. Are There Infinite Irrigation Trees?

    Science.gov (United States)

    Bernot, M.; Caselles, V.; Morel, J. M.

    2006-08-01

    In many natural or artificial flow systems, a fluid flow network succeeds in irrigating every point of a volume from a source. Examples are the blood vessels, the bronchial tree and many irrigation and draining systems. Such systems have raised recently a lot of interest and some attempts have been made to formalize their description, as a finite tree of tubes, and their scaling laws [25], [26]. In contrast, several mathematical models [5], [22], [10], propose an idealization of these irrigation trees, where a countable set of tubes irrigates any point of a volume with positive Lebesgue measure. There is no geometric obstruction to this infinitesimal model and general existence and structure theorems have been proved. As we show, there may instead be an energetic obstruction. Under Poiseuille law R(s) = s -2 for the resistance of tubes with section s, the dissipated power of a volume irrigating tree cannot be finite. In other terms, infinite irrigation trees seem to be impossible from the fluid mechanics viewpoint. This also implies that the usual principle analysis performed for the biological models needs not to impose a minimal size for the tubes of an irrigating tree; the existence of the minimal size can be proven from the only two obvious conditions for such irrigation trees, namely the Kirchhoff and Poiseuille laws.

  19. Evapotranspiration of deficit irrigated sorghum

    Science.gov (United States)

    Deficit irrigation is used commonly in regions with reduced or limited irrigation capacity to increase water use efficiency (WUE). This research measured sorghum (Sorghum bicolor L. Moench) water use (ET) and yield so WUE could be determined. Two precision weighing lysimeters were used to accurate...

  20. Salinity contamination response to changes in irrigation management. Application of geochemical codes

    Directory of Open Access Journals (Sweden)

    Iker Garcia-Garizabal

    2014-04-01

    Full Text Available Salinity contamination caused by irrigation has been widely studied but the analysis of geochemical processes regarding agronomic variables has not adequately been considered yet. The research presented here analyzes the influence of changes in irrigation management on salinity contamination, through the use of geochemical modeling techniques, in an agricultural basin during the hydrological year of 2001 and within the period 2005-2008. The results indicate that the changes implemented in irrigation management reduced the masses of salts exported in 72%, although water salinity increased by 25% (this salinity level does not restrict its use for irrigation. The different ionic ratios in drainage water, the results of the salinity balances, and the results of geochemical calculations (mass balances and speciation-solubility indicate, mainly, precipitation of calcite, dissolution of gypsum and halite and cation exchange. The salt contamination index decreased from approximately 70% to levels close to those presented in modern irrigation areas, indicating that the changes in irrigation management were effective. Petrocalcic genesis and punctual sodification of soils can constitute an agroenvironmental problem that requires adequate management of irrigation and drainage considering future modernization of irrigation areas.

  1. Experimental Study on Desilting Effect of First Setting Basin in Drip Irrigation System%滴灌系统首部沉沙池沉沙效果试验研究

    Institute of Scientific and Technical Information of China (English)

    贾艳霞; 白寅虎; 贾艳梅

    2013-01-01

    在多沙河流地区,当微灌系统采用水源为地表水时,有必要在河渠水和微灌系统之间设置沉沙池,合理的布置沉沙池可有效的防止微灌系统的堵塞,减轻过滤器的负担。经过反复试验,基本上可以得到沉沙池的沉沙率与沉砂池尺寸的关系,以及沉砂池的尺寸与沉沙粒径的关系。据此,在实际生产中对于沉沙池的选用,可根据河流中泥沙的级配和取水流量以及对沉沙效果的要求,来选取不同尺寸的沉砂池。%Insandyriversregions,whenthemicro-irrigationsystemusingwaterissurfacewater,itisnecessarytosetupthedesiltingbasinbe-tweenwaterinthecanalsandthemicro-irrigationsystem,becauseareasonablearrangementofsandbasincaneffectivelypreventtheblockageof micro-irrigationsystem,andreducetheburdenofthefilter.Afterrepeatedexperiments,webasicallycangettherelationshipbetweensinksand rate in sand basin and the size of the grit chamber, and the relationship the size of the grit chamber with heavy sand particle size. For the selec-tionofsandbasinintheactualproduction,accordingtothegradingofriversedimentandwaterflowrateaswellastherequirementfordesilting effects,we can choose different sizesof grit chambers.

  2. Sensing technologies for precision irrigation

    CERN Document Server

    Ćulibrk, Dubravko; Minic, Vladan; Alonso Fernandez, Marta; Alvarez Osuna, Javier; Crnojevic, Vladimir

    2014-01-01

    This brief provides an overview of state-of-the-art sensing technologies relevant to the problem of precision irrigation, an emerging field within the domain of precision agriculture. Applications of wireless sensor networks, satellite data and geographic information systems in the domain are covered. This brief presents the basic concepts of the technologies and emphasizes the practical aspects that enable the implementation of intelligent irrigation systems. The authors target a broad audience interested in this theme and organize the content in five chapters, each concerned with a specific technology needed to address the problem of optimal crop irrigation. Professionals and researchers will find the text a thorough survey with practical applications.

  3. Sprinkler irrigation-pesticide best management systems

    OpenAIRE

    Ranjha, A. Y.; Peralta, R. C.; Hill, R. W.; Requena, A. M.; Deer, H. M.; Ehteshami, M.

    1992-01-01

    The relative reduction in potential groundwater contamination due to pesticides at several sites in Utah was determined by comparing alternative irrigation system designs, water management practices, and pesticides. Alternative sprinkler irrigation distribution coefficients were used to estimate irrigation application depths. The movement of pesticides through soils following sprinkler irrigations was simulated with a one-dimensional model. Pesticide contamination of groundwater can be reduce...

  4. Wireless sensor networks for irrigation management

    Science.gov (United States)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  5. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    Science.gov (United States)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  6. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    Directory of Open Access Journals (Sweden)

    M. Fader

    2015-08-01

    Full Text Available Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively. Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to

  7. Water savings potentials of irrigation systems: global simulation of processes and linkages

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-07-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values ( 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km3 (2004-2009 average); irrigation water consumption is calculated to be 1257 km3, of which 608 km3 are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing

  8. Constraints, Opportunities and Options in Irrigation Development

    OpenAIRE

    David, Wilfredo P.

    2000-01-01

    There is a dearth of information on the extent of irrigation development in the country. As a result, there has been a great deal of confusion over the statistics on the state of irrigation development. The NIA defines an irrigation service area as an area with irrigation facilities. In reality, the actual area served is much less than the service area. The disturbing implication is that we are very inefficient in the planning and implementation of irrigation projects. This very low actual ov...

  9. A MICROCOMPUTER MODEL FOR IRRIGATION SYSTEM EVALUATION

    OpenAIRE

    Williams, Jeffery R.; Buller, Orlan H.; Dvorak, Gary J.; Manges, Harry L.

    1988-01-01

    ICEASE (Irrigation Cost Estimator and System Evaluator) is a microcomputer model designed and developed to meet the need for conducting economic evaluation of adjustments to irrigation systems and management techniques to improve the use of irrigated water. ICEASE can calculate the annual operating costs for irrigation systems and has five options that can be used to economically evaluate improvements in the pumping plant or the way the irrigation system is used for crop production.

  10. Swing Set Irrigation System

    Directory of Open Access Journals (Sweden)

    Ambe Verma

    2015-05-01

    Full Text Available ABSTRACT India is a vast country based on agriculture and irrigation is the most important factor for agriculture. In India there are many sources provide for irrigation. Every day new technologies are emerged in the world which brings a revolutionary change in the nature of this world. day by day the energy resources used by the large population of this world are coming on the last stage This project give the idea that how the other different form of energy can be used and implemented efficiently to overcome from this problem The aim of this project is to achieve the objective of energy lasting problem which is likely to be faced over in coming decades. Energy lasting is a big problem in India. This is faced by every people who live in the country. Swing energy is the form of energy. In this paper we have represented the methodology of swing energy using for rural area of application. This paper is all about Swing Set Water Pump in which the water pump will execute with the help of a swing set of canopy type. As we need a motor to operate the water pump but in this project we use the swing in the place of motor and we use oscillatory motion of swing in the place of rotating motion of a motor. Everybody has needed the energy at an increasing rate ever since he came on the Earth. Because of this lot of energy has been exhausted and wasted. All the member are dedicated the amount of their important time to participate in multiple meetings read and research for making the content to the report. We would especially like to thanks for the efficient condition of the entire Advisory member and their experiences. This study was initial and performed within the BUDDHA INSTITUTE OF TECHNOLOGY GIDA Gorakhpur the final report represents the labour and interest of the entire member working for this project. Finally we would like to thanks to all the member of our college workshop who helped us in manufacturing of this project model.

  11. The Price of Irrigation Water

    OpenAIRE

    Tisdell, J. G.

    1996-01-01

    User-pays as a principle for charging for the supply of regulated irrigation water is gaining acceptability by water authorities. This paper is concerned with the level of water charges, in particular, the capacity of farmers to pay increased prices for irrigation water. The main objective is to provide empirical estimates of water demand and supply, and to note the differences between statutory charges and market price, under different weather conditions in the Border Rivers Region of Queens...

  12. Ground-water resources of Riverton irrigation project area, Wyoming

    Science.gov (United States)

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    The Riverton irrigation project area is in the northwestern part of the Wind River basin in west-central Wyoming. Because the annual precipitation is only about 9 inches, agriculture, which is the principal occupation in the area, is dependent upon irrigation. Irrigation by surface-water diversion was begum is 1906; water is now supplied to 77,716 acres and irrigation has been proposed for an additional 31,344 acres. This study of the geology and ground-water resources of the Riverton irrigation project, of adjacent irrigated land, and of nearby land proposed for irrigation was begun during the summer of 1948 and was completed in 1951. The purpose of the investigation was to evaluate the ground-water resources of the area and to study the factors that should be considered in the solution of drainage and erosional problems within the area. The Riverton irrigation project area is characterized by flat to gently sloping stream terraces, which are flanked by a combination of badlands, pediment slopes, and broad valleys. These features were formed by long-continued erosion in an arid climate of the essentially horizontal, poorly consolidated beds of the Wind River formation. The principal streams of the area flow south-eastward. Wind River and Fivemile Creek are perennial streams and the others are intermittent. Ground-water discharge and irrigation return flow have created a major problem in erosion control along Fivemile Creek. Similar conditions might develop along Muddy and lower Cottonwood Creeks when land in their drainage basins is irrigated. The bedrock exposed in the area ranges in age from Late Cretaceous to early Tertiary (middle Eocene). The Wind River formation of early and middle Eocene age forms the uppermost bedrock formation in the greater part of the area. Unconsolidated deposits of Quaternary age, which consist of terrace gravel, colluvium, eolian sand and silt. and alluvium, mantle the Wind River formation in much of the area. In the irrigated parts

  13. A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling

    OpenAIRE

    Belaqziz, S.; Khabba, S.; Er-Raki, S.; Jarlan, Lionel; Le Page, M.; Kharrou, M.H.; El Adnani, M.; Chehbouni, Abdelghani

    2013-01-01

    Irrigation scheduling has become an important tool that significantly influences growth, development and production of crops, especially in arid and semi-arid regions of the South Mediterranean. In these regions, most of the irrigation scheduling of the gravity irrigation networks are not optimized in terms of timing and water quantity. In this paper, we present a way of characterizing the irrigation distribution by the extensively used irrigation systems through a new irrigation index: the "...

  14. Geospatial Dataset of Agricultural Lands in the Upper Colorado River Basin, 2007 - 10

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents the extent and spatial distribution of irrigated agricultural lands in the Upper Colorado River Basin for 2007-10. The boundaries in this...

  15. 75 FR 11554 - Yakima River Basin Conservation Advisory Group Charter Renewal; Notice of Charter Renewal

    Science.gov (United States)

    2010-03-11

    ... improved streamflows for fish and wildlife and improve the reliability of water supplies for irrigation...). The purpose of the CAG is to provide recommendations to the Secretary of the Interior and the State of... consultation with the State, the Yakama Nation, Yakima River basin irrigators, and other interested and...

  16. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  17. Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the southern High Plains, Texas

    Science.gov (United States)

    Scanlon, B. R.; Gates, J. B.; Reedy, R. C.; Jackson, W. A.; Bordovsky, J. P.

    2010-09-01

    Trade-offs between water-resource depletion and salinization need to be understood when promoting water-conservative irrigation practices. This companion paper assesses impacts of groundwater-fed irrigation on soil water and groundwater quality using data from the southern High Plains (SHP). Unsaturated zone soil samples from 13 boreholes beneath irrigated agroecosystems were analyzed for water-extractable anions. Salt accumulation in soils varies with irrigation water quality, which ranges from low salinity in the north (median Cl: 21 mg/L) to higher salinity in the south (median Cl: 180 mg/L). Large Cl bulges under irrigated agroecosystems in the south are similar to those under natural ecosystems, but they accumulated over decades rather than millennia typical of natural ecosystems. Profile peak Cl concentrations (1200-6400 mg/L) correspond to irrigation efficiencies of 92-98% with respect to drainage and are attributed to deficit irrigation with minimal flushing. Perchlorate (ClO4) also accumulates under irrigated agroecosystems, primarily from irrigation water, and behaves similarly to Cl. Most NO3-N accumulation is below the root zone. Groundwater total dissolved solids (TDS) have increased by ≤960 mg/L and NO3-N by ≤9.4 mg/L since the early 1960s. Mobilization of salts that have accumulated under irrigated agroecosystems is projected to degrade groundwater much more in the future because of the essentially closed-basin status of the aquifer, with discharge occurring primarily through irrigation pumpage. TDS are projected to increase by an additional 2200 mg/L (median), ClO4 by 21 μg/L, and NO3-N by 52 mg/L. Water and salt balances should be considered in irrigation management in order to minimize salinization issues.

  18. Economic assessment of acquiring water for environmental flows in the Murray Basin

    OpenAIRE

    Qureshi, Muhammad Ejaz; Connor, Jeffery D.; Kirby, Mac; Mainuddin, Mohammed

    2002-01-01

    This article is an economic analysis of reallocating River Murray Basin water from agriculture to the environment with and without the possibility of interregional water trade. Acquiring environmental flows as an equal percentage of water allocations from all irrigation regions in the Basin is estimated to reduce returns to irrigation. When the same volume of water is taken from selected low-value regions only, the net revenue reduction is less. In all scenarios considered, net revenue gains ...

  19. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  20. Salinity management in southern Italy irrigation areas

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    2011-02-01

    Full Text Available After a synthetic review of the most worrisome pressures applied over soils and waters, general criterions and normative principles that have to lead the technical intervention on soil and water protection are accounted, both with respect to farm activity and land planning. The salinity problem is faced, then, through the analysis of the nature and origin of saline soil and of the complex quantitative relationships able to interpret the accumulation and leaching of soil salts. Having specified the theoretical bases of salinity, the related technical features are then considered in order to define a proper management of soil and waters. Particular relevance is assigned to the irrigation and leaching techniques as well as, more briefly, to other agronomic interventions in order to guarantee the most effective salinity control. Another relevant technical facet of salinity control, although quite often neglected or retained of secondary importance in comparison to irrigation, is the drainage and disposal of leached water. The increased sensibility on the environmental impacts that the disposal of these waters can produce has raised today the level of attention on these procedures that are disciplined by norms of law and, therefore, require appropriate techniques of intervention. Finally, after the different scale orders involved in the management of salinity are defined (from the field and farm level up to the land and basin, the fundamental elements in order to work out a risk analysis and an action program are illustrated; some indications about the most up to date salinity monitoring and mapping methods are also provided, considering their great importance to continuously check the possible broadening of salinization and to carefully maintain its control.

  1. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    Science.gov (United States)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  2. Radiological Evaluation of Penetration of the Irrigant according to Three Endodontic Irrigation Techniques

    Science.gov (United States)

    Benkiran, Imane; El Ouazzani, Amal

    2016-01-01

    Introduction. This experimental study is to compare radiographs based on the penetration depth of the irrigant following three final irrigation techniques. Material and Method. A sample of sixty teeth with single roots were prepared with stainless steel K files followed by mechanized Ni-Ti files iRace® under irrigation with 2.5% sodium hypochlorite. Radiopaque solution was utilized to measure the penetration depth of the irrigant. Three irrigation techniques were performed during this study: (i) passive irrigation, (ii) manually activated irrigation, and (iii) passive irrigation with an endodontic needle CANAL CLEAN®. Radiographs were performed to measure the length of irrigant penetration in each technique. Results. In comparison, passive irrigation with a conventional syringe showed infiltration of the irrigant by an average of 0.682 ± 0.105, whereas the manually activated irrigation technique indicated an average of 0.876 ± 0.066 infiltration. Irrigation with an endodontic syringe showed an average infiltration of 0.910 ± 0.043. The results revealed highly significant difference between the three irrigation techniques (α = 5%). Conclusion. Adding manual activation to the irrigant improved the result by 20%. This study indicates that passive irrigation with an endodontic needle has proved to be the most effective irrigation technique of the canal system. PMID:27433162

  3. Application of Landsat to Evaluate Effects of Irrigation Forbearance

    Directory of Open Access Journals (Sweden)

    Yutaka Hagimoto

    2013-08-01

    Full Text Available Thirty-meter resolution Landsat data were used to evaluate the effects of irrigation management in the Wood River Valley, Upper Klamath Basin, Oregon. In an effort to reduce water use and leave more of the water resource in-stream, 4,674 ha of previously flood irrigated pasture was managed as dryland pasture. Ground-based measurements over one irrigated and one unirrigated pasture site were used to monitor the difference in evapotranspiration (ET using the Bowen ratio-energy balance method. These data sets represent point measurements of the response to irrigation, but do not allow for the spatial integration of effects of irrigated versus unirrigated land treatment. Four Landsat scenes of the Wood River Valley during the 2004 growing season were evaluated using reconstructed METRIC algorithms. Comparisons of ET algorithm output with ground-based data for all components of the energy balance, including net radiation, soil heat flux, sensible heat flux and evapotranspiration, were made for the four scenes. The excellent net radiation estimates, along with reasonable estimates of the other components, are demonstrated along with the capability to integrate results to the basin scale.

  4. AGROCLIMATIC DETERMINANTS OF IRRIGATION NEEDS

    Directory of Open Access Journals (Sweden)

    Leszek Łabędzki

    2016-05-01

    Full Text Available The paper is a review of the so far used in Poland methods and criteria for assessing the needs of irrigation for planning purposes, the assessment because of the agroclimatic conditions and taking into account the soil water retention. Irrigation needs of the most are determined taking into account crop water deficits. This is the factor that is characterized by a shortage of precipitation in relation to the water requirements of crops. Some methods use only the meteorological parameters that determine the state of the atmosphere-soil-plant system, and some also take into account soil water retention and its availability for plants.

  5. Ghana - Ghana Compact I Irrigation Schemes

    Data.gov (United States)

    Millenium Challenge Corporation — The Millennium Development Authority (MiDA) financed the construction of a new irrigation scheme in Kpong and the renovation of two irrigation schemes in Botanga...

  6. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  7. Making the user visible: analysing irrigation practices and farmers’ logic to explain actual drip irrigation performance

    NARCIS (Netherlands)

    Benouniche, M.; Kuper, M.; Hammani, A.; Boesveld, H.

    2014-01-01

    The actual performance of drip irrigation (irrigation efficiency, distribution uniformity) in the field is often quite different from that obtained in experimental stations. We developed an approach to explain the actual irrigation performance of drip irrigation systems by linking measured performan

  8. Sustainable management after irrigation system transfer : experiences in Colombia - the RUT irrigation district

    NARCIS (Netherlands)

    Urrutia Cobo, N.

    2006-01-01

    Colombiais a tropical country located in South America. It has a total area of 114 million ha. In Colombia two irrigation sectors are distinguished: the small-scale irrigation and the large-scale irrigation sector. The small-scale irrigation sector is developed on lands locat

  9. GSM BASED IRRIGATION CONTROL AND MONITORING SYSTEM

    OpenAIRE

    GODFREY A. MILLS; STEPHEN K. ARMOO; AGYEMAN K. ROCKSON; ROBERT A. SOWAH; MOSES A. ACQUAH

    2013-01-01

    Irrigated agriculture is one of the primary water consumers in most parts of the world. With developments in technology, efforts are being channeled into automation of irrigation systems to facilitate remote control of the irrigation system and optimize crop production and cost effectiveness. This paper describes an on-going work on GSM based irrigation monitoring and control systems. The objective of the work is to provide an approach that helps farmers to easily access, manage and regulate ...

  10. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  11. Newer Root Canal Irrigants in Horizon: A Review

    OpenAIRE

    Prashant P. Jaju; Sushma Jaju

    2011-01-01

    Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  12. Newer Root Canal Irrigants in Horizon: A Review

    Directory of Open Access Journals (Sweden)

    Sushma Jaju

    2011-01-01

    Full Text Available Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation.

  13. Climatic effects of irrigation over the Huang-Huai-Hai Plain in China simulated by the weather research and forecasting model

    Science.gov (United States)

    Yang, Ben; Zhang, Yaocun; Qian, Yun; Tang, Jian; Liu, Dongqing

    2016-03-01

    The climatic effects of irrigation over the Huang-Huai-Hai Plain (3HP) in China are investigated by using the weather research and forecasting model coupled with an operational-like irrigation scheme. Multiple numerical experiments with irrigation off/on during spring, summer, and both spring and summer are conducted. Results show that the warm bias in surface temperature and dry bias in soil moisture are reduced over the 3HP region during the growing seasons by considering the irrigation in the model. The air temperature during nongrowing seasons is also affected by irrigation because of the persistent effects of soil moisture on land-air energy exchanges and ground heat storage. Irrigation can induce significant cooling in the planetary boundary layer (PBL) during the growing seasons and lead to a relatively wet PBL with increased low-level clouds during spring but a relatively dry condition in summer. Further analyses indicate that irrigation leads to increased summer precipitation over the Yangtze River Basin and decreased summer precipitation in southern and northern China. These responses are associated with the changes in the large-scale circulation induced by irrigation. Irrigation tends to cool the atmosphere and forces a possible southward shift of the upper level jet that can further affect the precipitation distribution. Our model results suggest that in addition to local-scale processes, large-scale impacts should also be considered when studying the precipitation response to irrigation over East Asia.

  14. Monthly Optimal Reservoirs Operation for Multicrop Deficit Irrigation under Fuzzy Stochastic Uncertainties

    Directory of Open Access Journals (Sweden)

    Liudong Zhang

    2014-01-01

    Full Text Available An uncertain monthly reservoirs operation and multicrop deficit irrigation model was proposed under conjunctive use of underground and surface water for water resources optimization management. The objective is to maximize the total crop yield of the entire irrigation districts. Meanwhile, ecological water remained for the downstream demand. Because of the shortage of water resources, the monthly crop water production function was adopted for multiperiod deficit irrigation management. The model reflects the characteristics of water resources repetitive transformation in typical inland rivers irrigation system. The model was used as an example for water resources optimization management in Shiyang River Basin, China. Uncertainties in reservoir management shown as fuzzy probability were treated through chance-constraint parameter for decision makers. Necessity of dominance (ND was used to analyse the advantages of the method. The optimization results including reservoirs real-time operation policy, deficit irrigation management, and the available water resource allocation could be used to provide decision support for local irrigation management. Besides, the strategies obtained could help with the risk analysis of reservoirs operation stochastically.

  15. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    OpenAIRE

    Zhou Beibei; Wang Quanjiu; Tan Shuai

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately...

  16. Sediment transport in irrigation canals.

    NARCIS (Netherlands)

    Mendez V., N.J.

    1998-01-01

    The world population is rapidly increasing and is expected to double to about 10 billion by the year 2050. To support an increasing population in terms of food sufficiency, more and more water will be required. Irrigation is the most critical component of the modern package of inputs to effect high

  17. Irrigation systems: some organizational considerations

    NARCIS (Netherlands)

    Kalshoven, G.

    1976-01-01

    The paper attempts to present a framework for a number of sociological considerations involved in the analysis of water resources development practices. Special emphasis is given to the nature of some organizational implications connected in irrigated areas in tropical countries and to various const

  18. Environmental flow deficit at global scale - implication on irrigated agriculture

    Science.gov (United States)

    Pastor, Amandine; Ludwig, Fulco; Biemans, Hester; Kabat, Pavel

    2016-04-01

    Freshwater species belong to the most degraded ecosystem on earth. At the beginning of the 21st century, scientists have developed the concept of environmental flow requirements (Brisbane declaration 2003) with the aim of protecting freshwater species in the long term. However, the ecological state of rivers is different across the world depending on their fragmentation, on the presence of dams and reservoirs and on the degree of pollution. To implement new regulations on river flow, it is necessary to evaluate the degree of alteration of rivers which we called "environmental flow deficit". The European water framework directive is still working on evaluating the ecological states of river across Europe. In this study, we calculated monthly environmental flow deficit with the global vegetation dynamic and hydrological model LPJml. Environmental flow requirements were first calculated with the Variable Monthly Flow method (Pastor et al., 2014). Then, we checked in each river basin where and when the actual flow (flow minus abstraction for irrigation) does not satisfy environmental flow requirements. We finally show examples of different river basins such as the Nile and the Amazon to show how climate and irrigation can impact river flow and harm freshwater ecosystems.

  19. Sediment control - an appropriate solution for small irrigation channels

    International Nuclear Information System (INIS)

    Sediment control is one of the key factors considered prior to the design of an irrigation channel. When the channel takes off from its headworks, its slope is usually smaller than that of the parent stream to obtain required head. If the sediment load is heavy then the channel can not maintain equilibrium since the high influx can not be transported fully due to its small gradient. This results in the deposition of part incoming sediment in the channel itself. A typical irrigation intake suitable for small schemes, which consists of a simple settling basin with double orifice: one at the inlet from the river and the other at the outlet to the canal. The basin is provided with a side spill weir near its downstream end, to discharge flows in excess of the maximum canal capacity. This paper deals with the experimental study of such an arrangement. Different flows were run covering a range of levels in the river, from minimum to flood flows to check the hydraulic performance of the layout and in particular to study its effectiveness in settling sediment at low flows and avoiding excessive sediment input to the canal during flood. (author)

  20. The Sustainability of Irrigation Schemes Under Climate Change

    Science.gov (United States)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  1. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  2. Application of LANDSAT Data for Field-Scale Comparisons and Basin-Scale Estimates of Evapotranspiration in the Wood River Valley, Upper Klamath Basin, Oregon.

    Science.gov (United States)

    Peterson, S. T.; Cuenca, R. H.

    2006-12-01

    30 meter resolution LANDSAT data were used to evaluate the effects of irrigation management decisions in the Wood River Valley, Upper Klamath Basin, Oregon. The Klamath Basin is well known as an over-allocated system that strains to provide adequate water for agriculture, recreational, and wildlife needs. In an effort to provide increased stream flows after the water shutoff to irrigators in 2001 and disastrous fish kills in 2002, a program was established with cooperative ranchers to withhold irrigation from their cattle pastures in the Wood River Valley, just above Upper Klamath Lake. From 2003 to 2006, ground-based measurements over one irrigated and one unirrigated pasture site were used to monitor the difference in evapotranspiration using the Bowen ratio energy balance method. These data sets represent point measurements of the response to irrigation, but do not allow for the spatial integration of effects of irrigated versus unirrigated lands. The SEBAL and later METRIC algorithms were developed to evaluate evapotranspiration on a field- or basin-wide scale using LANDSAT data. Four LANDSAT scenes of the Wood River basin during the 2004 growing season were evaluated using re-derived and updated METRIC algorithms. The Bowen ratio station micrometeorological data were utilized in the METRIC algorithms. Comparisons of METRIC algorithm output with ground-based data for all components of the energy balance, including net radiation, soil heat flux, sensible heat flux and evapotranspiration, were made for the four scenes. The excellent net radiation estimates, along with less accurate estimates of the other components, is demonstrated. The ability to integrate the effects of withholding irrigation on evapotranspiration and the water balance on irrigated and unirrigated lands within the basin is demonstrated. The results exhibit application of the METRIC algorithms to partition water balance components at the watershed scale.

  3. A DYNAMIC ANALYSIS OF WATER SAVINGS FROM ADVANCED IRRIGATION TECHNOLOGY

    OpenAIRE

    Hornbaker, Robert H.; Mapp, Harry P., Jr.

    1988-01-01

    A computerized grain sorghum plant growth model is combined with recursive programming to analyze the potential irrigation water savings from adopting irrigation scheduling and low pressure center pivot irrigation technology. Results indicate that irrigation pumping can be reduced with increased yields and net returns by adopting low energy precision application (LEPA) irrigation systems. Variations in input and output prices affect optimal irrigation quantities for low pressure irrigation sy...

  4. Indus Basin Floods: Mechanisms, Impacts, and Management

    OpenAIRE

    Asian Development Bank (ADB)

    2013-01-01

    More than 138 million people in the Indus River Basin in Pakistan depend on irrigated agriculture. But rising population pressures, climate change, and the continuous degradation of ecosystem services have resulted in increased flood risks, worsened by inadequate flood planning and management. The devastating 2010 flood alone caused damage of about $10 billion. This report proposes a contemporary holistic approach, applying scientific assessments that take people, land, and water into account...

  5. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  6. Precision Irrigation in South Africa

    OpenAIRE

    Dennis, H.J.; Nell, Wilhelm T.

    2002-01-01

    The Republic of South Africa covers an area of 122 million hectare of which 18 million hectare is potential land for cultivation. Eight percent of the potential arable land are under irrigation, which accounts for nearly half of the water requirement in South Africa. With a population of 42 million and an estimated annual population growth of 1,7%, urbanisation and industrialisation will increase the pressure on the availability of water resources and the allocation thereof in South Africa. T...

  7. Irrigation externalities: pricing and charges

    OpenAIRE

    Gavan Dwyer; Robert Douglas; Deb Peterson; Jo Chong; Kate Maddern

    2006-01-01

    The Productivity Commission Staff Working Paper ‘Irrigation externalities: pricing and charges. by Gavan Dwyer, Robert Douglas, Deb Peterson, Jo Chong and Kate Maddern was released on 14 March 2006. The paper discusses the nature and causes of environmental change related to rural water use, and provides a taxonomy of the many diverse types. It also examines the issues surrounding possible charges on water use for water related externalities. There have been few attempts by water utilities to...

  8. Center Pivot Irrigated Agriculture, Libya

    Science.gov (United States)

    1981-01-01

    A view of the Faregh Agricultural Station in the Great Calanscio Sand Sea, Libya (26.5N, 22.0E) about 300 miles southeast of Benghazi. A pattern of water wells have been drilled several miles apart to support a quarter mile center-pivot-swing-arm agricultural irrigation system. The crop grown is alfalfa which is eaten on location by flocks of sheep following the swing arm as it rotates. At maturity, the sheep are flown to market throughout Libya.

  9. Impactos das mudanças climáticas na demanda de irrigação da bananeira na Bacia do Jaguaribe Impact of climate change on irrigation requirement of banana in Jaguaribe river Basin, Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Rubens S. Gondim

    2011-06-01

    Full Text Available As mudanças climáticas têm potencial de alterar os processos do ciclo hidrológico, tais como precipitação, que afeta o escoamento superficial, temperatura e umidade relativa do ar devido à sua estreita relação com evaporação e vazão em corpos hídricos e evapotranspiração das plantas. O objetivo do presente trabalho foi analisar os impactos das mudanças climáticas na necessidade hídrica da cultura da bananeira, considerando-se cenários de mudanças climáticas em escala local, em nível de bacia hidrográfica (rio Jaguaribe, no trecho compreendido entre as barragens do Castanhão e de Itaiçaba. Um conjunto composto de uma baseline (climatologia de base do modelo de 1961-1990 e de projeções climáticas, foi processado. Os dados foram então extraídos considerando-se as coordenadas geográficas da região em estudo, com resolução de 0,44 x 0,44º, a fim de abranger toda a área. Estimou-se a evapotranspiração de referência (ETo através de dados da temperatura média mensal e se projetou uma elevação na necessidade hídrica bruta média anual para 2040 com relação às condições iniciais, de 1.989 mm para 2.536 mm e 2.491 mm (27,50 e 25,24% para os cenários A2 e B2, elaborados pelo Painel Intergovernamental de Mudanças Climáticas, respectivamente.Climate change has a potential to impact hydrologic cycle processes, such as rainfall, which affect run-off, temperature and air humidity that have relationship to evaporation over water bodies and plant evapotranspiration. The purpose of this study was to assess impacts of climate change on irrigation water demand of banana, at the river basin level (Jaguaribe river, between Castanhão and Itaiçaba Dams. A climate data set was generated by a climate model for 1961-90 (baseline and the future. The output climate data has been generated, considering a georreferenced coordenated system of the study area in a 0.44 x 0.44º resolution, generating spatial distribution output

  10. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    OpenAIRE

    M. Fader; Shi, S; W. von Bloh; Bondeau, A.; W. Cramer

    2016-01-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080–2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of...

  11. When should irrigators invest in more water-efficient technologies as an adaptation to climate change?

    Science.gov (United States)

    Malek, K.; Adam, J. C.; Stockle, C.; Brady, M.; Yoder, J.

    2015-12-01

    The western US is expected to experience more frequent droughts with higher magnitudes and persistence due to the climate change, with potentially large impacts on agricultural productivity and the economy. Irrigated farmers have many options for minimizing drought impacts including changing crops, engaging in water markets, and switching irrigation technologies. Switching to more efficient irrigation technologies, which increase water availability in the crop root zone through reduction of irrigation losses, receives significant attention because of the promise of maintaining current production with less. However, more efficient irrigation systems are almost always more capital-intensive adaptation strategy particularly compared to changing crops or trading water. A farmer's decision to switch will depend on how much money they project to save from reducing drought damages. The objective of this study is to explore when (and under what climate change scenarios) it makes sense economically for farmers to invest in a new irrigation system. This study was performed over the Yakima River Basin (YRB) in Washington State, although the tools and information gained from this study are transferable to other watersheds in the western US. We used VIC-CropSyst, a large-scale grid-based modeling framework that simulates hydrological processes while mechanistically capturing crop water use, growth and development. The water flows simulated by VIC-CropSyst were used to run the RiverWare river system and water management model (YAK-RW), which simulates river processes and calculates regional water availability for agricultural use each day (i.e., the prorationing ratio). An automated computational platform has been developed and programed to perform the economic analysis for each grid cell, crop types and future climate projections separately, which allows us to explore whether or not implementing a new irrigation system is economically viable. Results of this study indicate that

  12. Human impacts on terrestrial hydrology: climate change versus pumping and irrigation

    International Nuclear Information System (INIS)

    Global climate change is altering terrestrial water and energy budgets, with subsequent impacts on surface and groundwater resources; recent studies have shown that local water management practices such as groundwater pumping and irrigation similarly alter terrestrial water and energy budgets over many agricultural regions, with potential feedbacks on weather and climate. Here we use a fully-integrated hydrologic model to directly compare effects of climate change and water management on terrestrial water and energy budgets of a representative agricultural watershed in the semi-arid Southern Great Plains, USA. At local scales, we find that the impacts of pumping and irrigation on latent heat flux, potential recharge and water table depth are similar in magnitude to the impacts of changing temperature and precipitation; however, the spatial distributions of climate and management impacts are substantially different. At the basin scale, the impacts on stream discharge and groundwater storage are remarkably similar. Notably, for the watershed and scenarios studied here, the changes in groundwater storage and stream discharge in response to a 2.5 °C temperature increase are nearly equivalent to those from groundwater-fed irrigation. Our results imply that many semi-arid basins worldwide that practice groundwater pumping and irrigation may already be experiencing similar impacts on surface water and groundwater resources to a warming climate. These results demonstrate that accurate assessment of climate change impacts and development of effective adaptation and mitigation strategies must account for local water management practices. (letter)

  13. Productivity of Onions Using Subsurface Drip Irrigation versus Furrow Irrigation Systems with an Internet Based Irrigation Scheduling Program

    OpenAIRE

    Juan Enciso; John Jifon; Juan Anciso; Luis Ribera

    2015-01-01

    Selection of the proper irrigation method will be advantageous to manage limited water supplies and increase crop profitability. The overall objective of this study was to evaluate the effect of subsurface drip irrigation (SDI) and furrow irrigation on onion yield and irrigation use efficiency. This study was conducted in two locations, a commercial field and a field located at the Texas A&M AgriLife Research Center in Weslaco, TX. This study was conducted as a split-plot design for both site...

  14. Importance économique de l'oignon cultivé sur billons sur terrain plat avec irrigation à la raie

    OpenAIRE

    M'Biandoun, M.; Essang, T.

    2008-01-01

    The Economic Importance of Onion Cultivated on Ridges on Flat Ground with Furrow Irrigation. In order to improve qualitatively and quantitatively the production of onion in the Northern Province, a test putting in comparison three treatments has been put in place in several localities of the province. The treatment consisting to cultivate onions on ridges with furrow irrigation appeared better than the one where the culture of the onion was made in a basin where the seedlings were flooded of ...

  15. Impacts of changing water price and availability on irrigated dairy farms in northern Victoria

    OpenAIRE

    Ho, Christie K.M.; Armstrong, Dan P.; Doyle, Peter T.; Malcolm, Bill

    2005-01-01

    Farming systems throughout the Murray-Darling Basin are under increasing scrutiny from the perspective of ecological sustainability of farm and catchment systems. In northern Victoria, the dairy industry is a major user of water, and contributes to the environmental issues. Changes in irrigation water price, availability and policy will invariably impact on the viability of dairy farming in this region, but the diversity of dairy farm systems suggests that the impact will vary between farms. ...

  16. Effects of Irrigation in India on the Atmospheric Water Budget

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P.

    2014-01-01

    The effect of large-scale irrigation in India on the moisture budget of the atmosphere was investigated using three regional climate models and one global climate model, all of which performed an irrigated run and a natural run without irrigation. Using a common irrigation map, year-round irrigation

  17. 76 FR 26759 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-05-09

    ... Federal Register on November 1, 2010 (75 FR 67095) to propose adjustments to the irrigation assessment... Begay, Acting Project Manager Irrigation Project Clarence Begay, Irrigation Manager Joint Works P.O. Box..., Superintendent ] Irrigation Project Dale Thomas, Irrigation Manager P.O. Box 130 Fort Duchesne, UT...

  18. Effect of low-cost irrigation methods on microbial contamination of lettuce irrigated with untreated wastewater

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, P.;

    2007-01-01

    OBJECTIVE: To assess the effectiveness of simple irrigation methods such as drip irrigation kits, furrow irrigation and use of watering cans in reducing contamination of lettuce irrigated with polluted water in urban farming in Ghana. METHODS: Trials on drip kits, furrow irrigation and watering...... were analysed for thermotolerant coliforms and helminth eggs. RESULTS: Lettuce irrigated with drip kits had the lowest levels of contamination, with, on average, 4 log units per 100 g, fewer thermotolerant coliforms than that irrigated with watering cans. However, drip kits often got clogged, required...... without caps from a height >1 m. CONCLUSION: Simple, cheap and easily adoptable irrigation methods have great potential to reduce crop contamination in low-income areas. When used in combination with other on-farm and post-harvest risk reduction measures, these will help to comprehensively reduce public...

  19. Area environmental characterization report of the Dalhart and Palo Duro basins in the Texas Panhandle. Volume I. Dalhart Basin

    International Nuclear Information System (INIS)

    This area report describes the environmental characteristics of the Dalhart and Palo Duro basins of the Texas Panhandle portion of the Permian basin. Both basins are rather sparsely populated, and the overall population is decreasing. The economic base is centered on agribusiness and manufacturing. Most of the potentially conflicting land uses in both basins (i.e., parks, historic sites) occupy small land areas, with the exception of a national grassland in the Dalhart and military air training routes in both basins. Ground transportation in the Dalhart basin is adequate, and it is well developed in the Palo Duro basin. In both basins irrigation constitutes the principal water use, and groundwater is the principal source. However, the dominant aquifer, the Ogallala, is being depleted. Both basins consist primarily of grasslands, rangelands, and agricultural areas. No critical terrestrial or aquatic habitats have been identified in the basins, though several endangered, threatened, or rare terrestrial species occur in or near the basins. Aquatic resources in both basins are limited because of the intermittent availability of water and the high salt content of some water bodies. Playa lakes are common, though usually seasonal or rain dependent. The climate of the area is semiarid, with low humidity, relatively high wind speeds, and highly variable prcipitation. Restrictive dispersion conditions are infrequent. National ambient secondary air quality standards for particulates are being exceeded in the area, largely because of fugitive dust, although there are some particulate point sources

  20. Irrigation Management and Water Pricing in Turkey

    OpenAIRE

    Cakmak, Erol H.

    2010-01-01

    Irrigated agriculture in Turkey currently consumes 75 percent of the total water consumption, which corresponds to about 30 percent of the renewable water supply. Unfavorable future global climate and economic conditions will increase the stress in the water sector. The operation and maintenance (O&M) of almost all large surface irrigation schemes developed by the state has been transferred to irrigation associations governed by the farmers. The purpose of this paper is to provide an overview...

  1. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  2. Design of Solar Steam Irrigation Pump

    OpenAIRE

    Vishal Kumar Dhimmar, Jay Prajapti, Mital Patel, Dhruv Patel, Banti Mistry, Jignesh Parmar

    2014-01-01

    Solar irrigation pump is this type of device which uses solar energy for water pumping. Water pumping is an energy intensive activity and consumes a large amount man power, diesel and electricity. Smallholder farmers in low income countries can benefit from affordable irrigation pump systems as they enable cultivation of high value crops during dry season. Currently the majority of small irrigation pumps are manually operated which is time consuming and require...

  3. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    OpenAIRE

    Milanović Ana

    2006-01-01

    Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin). The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out unti...

  4. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    OpenAIRE

    Aydin, Yusuf; KANBER, Rıza; ÜNLÜ, Mustafa

    2014-01-01

    The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP) of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigatio...

  5. Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series

    Directory of Open Access Journals (Sweden)

    Thomas Koellner

    2012-12-01

    Full Text Available The expansion of irrigated agriculture during the Soviet Union (SU era made Central Asia a leading cotton production region in the world. However, the successor states of the SU in Central Asia face on-going environmental damages and soil degradation that are endangering the sustainability of agricultural production. With Landsat MSS and TM data from 1972/73, 1977, 1987, 1998, and 2000 the expansion and densification of the irrigated cropland could be reconstructed in the Kashkadarya Province of Uzbekistan, Central Asia. Classification trees were generated by interpreting multitemporal normalized difference vegetation index data and crop phenological knowledge. Assessments based on image-derived validation samples showed good accuracy. Official statistics were found to be of limited use for analyzing the plausibility of the results, because they hardly represent the area that is cropped in the very dry study region. The cropping area increased from 134,800 ha in 1972/73 to 470,000 ha in 2009. Overlaying a historical soil map illustrated that initially sierozems were preferred for irrigated agriculture, but later the less favorable solonchaks and solonetzs were also explored, illustrating the strategy of agricultural expansion in the Aral Sea Basin. Winter wheat cultivation doubled between 1987 and 1998 to approximately 211,000 ha demonstrating its growing relevance for modern Uzbekistan. The spatial-temporal approach used enhances the understanding of natural conditions before irrigation is employed and supports decision-making for investments in irrigation infrastructure and land cultivation throughout the Landsat era.

  6. Outline of the water resources of the Status Creek basin, Yakima Indian Reservation, Washington

    Science.gov (United States)

    Molenaar, Dee

    1976-01-01

    On the Yakima Indian Reservation, Washington, only about 5 percent of the Satus Creek basin--in the relatively flat eastern lowland adjacent to and including part of the Yakima River lowland--is agriculturally developed, mostly through irrigation. Because the basin 's streams do not contain adequate water for irrigation, most irrigation is by canal diversion from the adjoining Toppenish Creek basin. Irrigation application of as much as 9.25 acre-feet per acre per year, combined with the presence of poorly drained silt and clay layers in this area, and the natural upward discharge of ground water from deeper aquifers (water-bearing layers), has contributed to a waterlogging problem, which has affected about 10,500 acres, or about 25 percent of the irrigated area. In the upland of the basin, a large average annual base flow of about 30 cubic feet per second in Logy Creek indicates the presence of a potentially highly productive aquifer in young (shallow) basalt lavas underlying the higher western parts of the upland. This aquifer may provide a reservoir from which streamflow may be augmented by ground-water pumping or, alternatively, it may be used as a source of ground water for irrigation of upland areas directly. (Woodard-USGS)

  7. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; Sluis, van der L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  8. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    NARCIS (Netherlands)

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Ken

  9. Economic performance of irrigation capacity development to adapt to climate in the American Southwest

    Science.gov (United States)

    Ward, Frank A.; Crawford, Terry L.

    2016-09-01

    Growing demands for food security to feed increasing populations worldwide have intensified the search for improved performance of irrigation, the world's largest water user. These challenges are raised in the face of climate variability and from growing environmental demands. Adaptation measures in irrigated agriculture include fallowing land, shifting cropping patterns, increased groundwater pumping, reservoir storage capacity expansion, and increased production of risk-averse crops. Water users in the Gila Basin headwaters of the U.S. Lower Colorado Basin have faced a long history of high water supply fluctuations producing low-valued defensive cropping patterns. To date, little research grade analysis has investigated economically viable measures for irrigation development to adjust to variable climate. This gap has made it hard to inform water resource policy decisions on workable measures to adapt to climate in the world's dry rural areas. This paper's contribution is to illustrate, formulate, develop, and apply a new methodology to examine the economic performance from irrigation capacity improvements in the Gila Basin of the American Southwest. An integrated empirical optimization model using mathematical programming is developed to forecast cropping patterns and farm income under two scenarios (1) status quo without added storage capacity and (2) with added storage capacity in which existing barriers to development of higher valued crops are dissolved. We find that storage capacity development can lead to a higher valued portfolio of irrigation production systems as well as more sustained and higher valued farm livelihoods. Results show that compared to scenario (1), scenario (2) increases regional farm income by 30%, in which some sub regions secure income gains exceeding 900% compared to base levels. Additional storage is most economically productive when institutional and technical constraints facing irrigated agriculture are dissolved. Along with

  10. Irrigation as an Historical Climate Forcing

    Science.gov (United States)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  11. Drip irrigation design for hopfield as a part of a large irrigation system

    OpenAIRE

    Bosnar, Blaž

    2016-01-01

    The hop industry was striving for stable long-time production in the eighties of the 20th century and began to emerge desire for irrigation hopfields and the construction of large irrigation systems in the Lower Savinja Valley. The former embodiment has been designed on the base of drum rolomats, which are known as large water users. Newer technology is drip irrigation, which ensures the rational use of water and its use is gaining over the years. Drip irrigation system for irrigation of hopf...

  12. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2015-07-01

    Full Text Available Consumptive water footprint (WF reduction in irrigated crop production is essential given the increasing competition for fresh water. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET and yield (Y and thus the consumptive WF of crops (ET/Y. The management practices are: four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD; four irrigation strategies (full (FI, deficit (DI, supplementary (SI and no irrigation; and three mulching practices (no mulching, organic (OML and synthetic (SML mulching. Various cases were considered: arid, semi-arid, sub-humid and humid environments; wet, normal and dry years; three soil types; and three crops. The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching. The average reduction in the consumptive WF is: 8–10 % if we change from the reference to drip or SSD; 13 % when changing to OML; 17–18 % when moving to drip or SSD in combination with OML; and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow is lower.

  13. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y.

    2015-12-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thus the consumptive WF of crops (ET / Y). The management practices are four irrigation techniques (furrow, sprinkler, drip and subsurface drip (SSD)), four irrigation strategies (full (FI), deficit (DI), supplementary (SI) and no irrigation), and three mulching practices (no mulching, organic (OML) and synthetic (SML) mulching). Various cases were considered: arid, semi-arid, sub-humid and humid environments in Israel, Spain, Italy and the UK, respectively; wet, normal and dry years; three soil types (sand, sandy loam and silty clay loam); and three crops (maize, potato and tomato). The AquaCrop model and the global WF accounting standard were used to relate the management practices to effects on ET, Y and WF. For each management practice, the associated green, blue and total consumptive WF were compared to the reference case (furrow irrigation, full irrigation, no mulching). The average reduction in the consumptive WF is 8-10 % if we change from the reference to drip or SSD, 13 % when changing to OML, 17-18 % when moving to drip or SSD in combination with OML, and 28 % for drip or SSD in combination with SML. All before-mentioned reductions increase by one or a few per cent when moving from full to deficit irrigation. Reduction in overall consumptive WF always goes together with an increasing ratio of green to blue WF. The WF of growing a crop for a particular environment is smallest under DI, followed by FI, SI and rain-fed. Growing crops with sprinkler irrigation has the largest consumptive WF, followed by furrow, drip and SSD. Furrow irrigation has a smaller consumptive WF compared with sprinkler, even though the classical measure of "irrigation efficiency" for furrow

  14. Syringe irrigation: blending endodontics and fluid dynamics

    NARCIS (Netherlands)

    C. Boutsioukis; L.W.M. van der Sluis

    2015-01-01

    Syringe irrigation remains a widely used irrigant delivery method during root canal treatment. An interdisciplinary approach involving well-established methods from the field of fluid dynamics can provide new insights into the mechanisms involved in cleaning and disinfection of the root canal system

  15. Dutch experience in irrigation water management modelling

    NARCIS (Netherlands)

    Broek, van den B.J.

    1996-01-01

    The first workshop organized by the National Committee of the Netherlands of the International Commission on Irrigation and Drainage (ICID) has brought many Dutch scientists together in the field of irrigation water management to exchange their experiences in modelling. The models range from rather

  16. Scheduling Irrigation on Non-Flooded Rice

    Science.gov (United States)

    While continuous-flood irrigation, the most common method for US rice production, can have a fairly high application efficiency, factors such as soil variability and the size of most Mid-South farming operations combine to reduce the efficiency in many cases. Center pivot irrigation is one potential...

  17. Tomato Root Response to Subsurface Drip Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHUGE Yu-Ping; ZHANG Xu-Dong; ZHANG Yu-Long; LI Jun; YANG Li-Juan; HUANG Yi; LIU Ming-Da

    2004-01-01

    Four depth treatments of subsurface drip irrigation pipes were designated as 1) at 20,2) 30 and 3) 40 cm depths all with a drip-proof flumes underneath,and 4) at 30 cm without a drip-proof flume to investigate the responses of a tomato root system to different technical parameters of subsurface drip irrigation in a glass greenhouse,to evaluate tomato growth as affected by subsurface drip irrigation,and to develop an integrated subsurface drip irrigation method for optimal tomato yield and water use in a glass greenhouse. Tomato seedlings were planted above the subsurface drip irrigation pipe. Most of the tomato roots in treatment 1 were found in the top 0-20 cm soil depth with weak root activity but with yield and water use efficiency (WUE) significantly less (P ---- 0.05) than treatment 2; root activity and tomato yield were significantly higher (P = 0.05) with treatment 3 compared to treatment 1; and with treatment 2 the tomato roots and shoots grew harmoniously with root activity,nutrient uptake,tomato yield and WUE significantly higher (P= 0.05) or as high as the other treatments. These findings suggested that subsurface drip irrigation with pipes at 30 cm depth with a drip-proof flume placed underneath was best for tomato production in greenhouses. In addition,the irrigation interval should be about 7-8 days and the irrigation rate should be set to 225 m3 ha-1 per event.

  18. Soil Enzyme Activities with Greenhouse Subsurface Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Long; WANG Yao-Sheng

    2006-01-01

    Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion(MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast,the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.

  19. Men, Masculinities and Water Powers in Irrigation

    NARCIS (Netherlands)

    Zwarteveen, M.Z.

    2008-01-01

    ABSTRACT: The aim of this article is to provide an informed plea for more explicitly identifying, naming and unravelling the linkages between water control and gender in irrigation. The fact that power, expertise and status in irrigation tend to have a strong masculine connotation is by now quite we

  20. 76 FR 58293 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2011-09-20

    ...- 1202. San Carlos Irrigation Project Ferris Begay, Acting Project Joint Works. Manager, Clarence Begay...-3372. Uintah Irrigation Project......... Dinah Peltier, Acting Superintendent, Dale Thomas,...

  1. Infiltration of unconsumed irrigation water in Utah

    Science.gov (United States)

    Brothers, William C.; Thiros, Susan A.

    1991-01-01

    The ground-water hydrology of Panguitch Valley and adjacent areas, south-central Utah, was studied during 1988-90. One objective of the study was to measure ground-water recharge from infiltration of unconsumed irrigation water. Water-level and soil-moisture data were used to estimate travel times for water moving down through the soil profile, and to compare quantities of water reaching the water table after application of flood and sprinkler irrigation. During this study, estimates of travel times from land surface to the water table ranged from 11 days in June 1989 to 2 days in September 1989. Estimates of irrigation water recharging the ground-water system ranged from 25 to 75 percent of the water applied to the flood-irrigated field. Virtually no recharge was apparent for the sprinkler-irrigated field.

  2. Deficit irrigation in semi-arid zone irrigation projects: Case studies in Turkey

    International Nuclear Information System (INIS)

    Results of several field experiments on deficit irrigation programmes in Turkey are discussed. Deficit irrigation of sugarbeet with water stress imposed during ripening stage saved nearly 22% water, yet with not significant yield decrease. An experiment, conducted in Trakya Region, the European part of Turkey, and aimed at studying water production functions of sunflower (i.e. yield vs water consumption), revealed that water stress imposed at either head forming or seed filling stages influences yield the least, and 40% savings of irrigation water supply compared with traditional practices in the region can be achieved without significant yield reduction. Water stress imposed at vegetative and flowering stages of corn had the most detrimental effect on yield. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A three year experiment on irrigation programmes of cotton was conducted to test if irrigation schedules could be modified (changed) to increase field water use efficiency and thereby increase effective use of restricted irrigation water supply during dry seasons. The results showed that a 20-day irrigation interval, resulting 3 to 4 irrigations, would give optimum cotton yield with approximately 26% savings in irrigation water, when compared with general practices commonly used in the area. Under severe shortage of water supply, the irrigation interval can even be extended to 30 days, which would result to 30 to 35% overall yield reduction but 50% savings in water use. A four year field experiment aiming at developing deficit irrigation strategies for soybean showed that soybean was the most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. (author). 35 refs, 5 figs, 3 tabs

  3. Historical influence of irrigation on climate extremes

    Science.gov (United States)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  4. Scenario of agricultural hydric demand for the irrigation optimization for small producers from the flat lands of the Guabas river basin; Escenario de demanda hídrica agrícola para la optimización del riego de los pequeños productores de la zona plana de la cuenca del río Guabas.

    OpenAIRE

    Sara Marcela Paz; Valentina Muñoz Agudelo; Andrés Fernando Echeverri S; Norberto Urrutia Cobo

    2012-01-01

    The Association of Users of the Guabas River basin (ASOGUABAS), inagreement with the research group on integral management of irrigationfor agricultural development and food security (WATER) from Universidad del Valle, conducted a study to determine thewater demand of small producers from the flat areaof the drainage basin of the Guabas River, as a firststep toward efficient use of water.Climatic and cartographic information was collectedof the flat area of the municipalities of Guacaríand Gi...

  5. Determination of Water Use Effectiveness in Hayrabolu Irrigation Scheme

    Directory of Open Access Journals (Sweden)

    A.N.Yuksel

    2005-05-01

    Full Text Available This study was conducted to determine the effectiveness of irrigation water use in HayraboluIrrigation Scheme, established in 1987 and transferred to irrigation cooperative. The study was completed intwo years in order to minimize the meteorological and environmental effects on evapotranspiration andirrigation water requirement. Irrigation application efficiency and sufficiency of farmer irrigation applicationwere investigated at 20 different farmers’ fields.Pressurized irrigation was prevailed (51 % and irrigation efficiency for sprinkler and surfaceirrigation methods were 61 and 62 %, respectively. Irrigation water losses on the scheme basis was 11,91 %.It was further determined that farmers irrigated their crops according to the phonological observation, did nottake the permissible consumption level of water content and applied insufficient water to satisfy the fieldcapacity. Among the predominantly grown crops, wheat and sunflower were not irrigated assuming that theprecipitation was sufficient to meet their demand while onion and corn were under-supplied. Generally, aneffective irrigation programme was not realised.

  6. Integrated assessment of policy interventions for promoting sustainable irrigation in semi-arid environments: a hydro-economic modeling approach.

    Science.gov (United States)

    Blanco-Gutiérrez, Irene; Varela-Ortega, Consuelo; Purkey, David R

    2013-10-15

    Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD's goal of restoring the 'good ecological status' of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute

  7. Groundwater balance estimation and sustainability in the Sandıklı Basin (Afyonkarahisar/Turkey)

    Indian Academy of Sciences (India)

    Fatma Aksever; Ayşen Davraz; Remzi Karaguzel

    2015-06-01

    The Sandıklı (Afyonkarahisar) Basin is located in the southwest of Turkey and is a semi-closed basin. Groundwater is widely used for drinking, domestic and irrigation purposes in the basin. The mismanagement of groundwater resources in the basin causes negative effects including depletion of the aquifer storage and groundwater level decline. To assure sustainability of the basin, determination of groundwater budget is necessary. In this study, the water-table fluctuation (WTF) and the meteorological water budget (MWB) methods were used to estimate groundwater budget in the Sandıklı basin (Turkey). Conceptual hydrogeological model of the basin was used for understanding the relation between budget parameters. The groundwater potential of the basin calculated with MWB method as 42.10 × 106 m3/year. In addition, it is also calculated with simplified WTF method as 38.48 × 106 m3/year.

  8. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    Science.gov (United States)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  9. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2012-11-01

    The paper describes the application of a new Water Accounting Plus (WA+) framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3). The "landscape ET" (depletion directly from rainfall) was 344 km3 (69% of total consumption). "Blue water" depletion ("utilized flow") was 158 km3 (31%). Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3), of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha-1 and 7.8 t ha-1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast declining storage.

  10. Debris and irrigant extrusion potential of 2 rotary systems and irrigation needles.

    Science.gov (United States)

    Altundasar, Emre; Nagas, Emre; Uyanik, Ozgur; Serper, Ahmet

    2011-10-01

    The purpose of this study was to compare the amount of apically extruded irrigant using 2 Ni-Ti rotary systems. Forty mandibular premolars with single canals were randomly assigned into 4 groups. Flower arrangement foam cubes were weighed with a precision balance before being attached to the apical portions of all teeth. In group 1, preparation was completed with ProTaper files. In group 2 canals were prepared with RaCe files. In groups 1 and 2, the irrigant was delivered with a 30-gauge conventional dental needle. In groups 3 and 4, teeth were prepared as in groups 1 and 2 with the exception that the irrigant was delivered with a side-vented irrigation needle. The weight of the extruded material (irrigant and debris) for each group was calculated by comparing the pre- and postinstrumentation weights of the foams used for periapical modeling. Obtained data were analyzed by Kruskal-Wallis and Mann-Whitney U tests, with P equals .05 as the level for statistical significance. ProTaper files used with regular needle irrigation had the highest fluid extrusion. The lowest irrigant extrusion was observed with the RaCe system combined with a side-vented irrigation needle. Within the limitations of this study, it can be concluded that irrigation needle and rotary instruments have an effect on the amount of extruded root canal irrigant.

  11. Biological degradation of chernozems under irrigation

    Directory of Open Access Journals (Sweden)

    Oksana Naydyonova

    2014-12-01

    Full Text Available We studied the changes in the state of microbial cenosis of Ukraine’s chernozems under irrigation. Considerable part of Ukraine’s chernozems is located in the areas where humidification is insufficient and unstable. Irrigation is a soil-reclamation measure for chernozems of Ukrainian Forest-steppe and Steppe which enables getting the assured yield, especially vegetable and fodder crops. At the same time, irrigation is a powerful anthropogenic factor that affects the soil, causes a significant transformation of many of its properties and regimes including biological ones. Often these changes are negative. The purpose of our investigation was to identify changes in the state of microbial cenoses of chernozem soils under irrigation which depend on such factors as the quality of irrigation water, the duration and intensity of irrigation, the initial properties of soil, the structure of crop rotation, usage of fertilizing systems and agroameliorative techniques. We identified direction and evaluated a degree of changes in biological properties of chernozems under influence of irrigation in different agro-irrigational and soil-climatic conditions. In the long-term stationary field experiments we identified the following biological indices of irrigated soils and their non-irrigated analogues: a number of microorganisms which belong to main ecological-trophic groups, activity of soil enzymes (dehydrogenase, invertase, phenol oxidase, soil phytotoxic activity, cellulose destroying capacity of soil, indices of oligotrophy and mineralization, summary biological index (SBI and index of biological degradation (BDI. Results of researches showed that irrigation unbalanced the soil ecosystem and stipulated the forming of microbial cenosis with new parameters. Long-term intensive irrigation of typical chernozem (Kharkiv Region with fresh water under condition of 4-fields vegetable crop rotation led to the degradation changes of its microbial cenosis such as

  12. Irrigation Water Management in Latin America

    Directory of Open Access Journals (Sweden)

    Aureo S de Oliveira

    2009-12-01

    Full Text Available Latin American countries show a great potential for expanding their irrigated areas. Irrigation is important for strengthening local and regional economy and for enhancing food security. The present paper aimed at providing a brief review on key aspects of irrigation management in Latin America. Poor irrigation management can have great impact on crop production and on environment while good management reduces the waste of soil and water and help farmers maximizing their profits. It was found that additional research is needed to allow a better understanding of crop water requirements under Latin American conditions as well as to provide farmers with local derived information for irrigation scheduling. The advantages of deficit irrigation practices and the present and future opportunities with the application of remote sensing tools for water management were also considered. It is clear that due to the importance of irrigated agriculture, collaborative work among Latin American researchers and institutions is of paramount importance to face the challenges imposed by a growing population, environment degradation, and competition in the global market.

  13. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  14. Irrigation water use in Kansas, 2013

    Science.gov (United States)

    Lanning-Rush, Jennifer L.

    2016-03-22

    This report, prepared by the U.S. Geological Survey in cooperation with the Kansas Department of Agriculture, Division of Water Resources, presents derivative statistics of 2013 irrigation water use in Kansas. The published regional and county-level statistics from the previous 4 years (2009–12) are shown with the 2013 statistics and are used to calculate a 5-year average. An overall Kansas average and regional averages also are calculated and presented. Total reported irrigation water use in 2013 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.

  15. Solar Energy Based Automated Irrigation System

    OpenAIRE

    Prof. Lodhi A. K.; Mr. Honrao Sachin B.

    2013-01-01

    In the field of agriculture, use of proper method of irrigation is important because the main reason is the lack of rains {&} scarcity of land reservoir water. The continuous extraction of water from earth is reducing the water level due to which lot of land is coming slowly in the zones of un-irrigated land. Another very important reason of this is due to unplanned use of water due to which a significant amount of water goes waste. For this purpose; we use this automatic plant irrigation sys...

  16. Reform in Indian canal irrigation: does technology matter?

    NARCIS (Netherlands)

    Narain, V.

    2008-01-01

    This paper examines the implications of technology - the design of canal irrigation for irrigation management reform. With reference to two different design systems in Indian irrigation - shejpali and warabandi - it shows that the potential for reform varies with the design of canal irrigation. Thre

  17. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    Science.gov (United States)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  18. GlobWat – a global water balance model to assess water use in irrigated agriculture

    Directory of Open Access Journals (Sweden)

    J. Hoogeveen

    2015-01-01

    Full Text Available GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water. The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  19. Irrigation Cost Estimation Procedures Used in the Irrigation Economics Evaluation System (lEES)

    OpenAIRE

    Williams, Jeffery R.; Llewelyn, Richard V.; DeLano, Dan; Thangavelu, Ilango

    1996-01-01

    Establishment of efficient farm irrigation practices is influenced by the knowledge the irrigator has concerning both the economic and technological aspects of irrigation. The eventual goal of water conservation research is to have water users establish conservation techniques as parts of their continuing operating procedures. However, this will happen only when economic incentives exist. The farm manager requires a basic understanding of the economics of water use in order to evaluate adjust...

  20. Irrigation Patterns and Scheduling of a Telecontrolled Irrigation District in Northeastern Spain

    OpenAIRE

    Stambouli, Talel; Zapata Ruiz, Nery; Faci González, José María

    2012-01-01

    Over the last 10 years, telecontrol systems have been incorporated into the majority of modern collective pressurized irrigation networks in Spain. This type of infrastructure provides many opportunities for irrigation management but actually, in Spain, is only used for standardized network operations. The Candasnos irrigation district (CID), located in northeastern Spain, is equipped with this system, and contains a variety of different pressurized systems. Telecontrol data and crop water re...

  1. Farmers’ Willingness to Pay for Irrigation Water: A Case of Tank Irrigation Systems in South India

    OpenAIRE

    Karthikeyan Chandrasekaran; Sureshkumar Devarajulu; Palanisami Kuppannan

    2009-01-01

    The economic value of tank irrigation water was determined through Contingency Valuation Method by analyzing farmers’ willingness to pay for irrigation water under improved water supply conditions during wet and dry seasons of paddy cultivation. Quadratic production function was also used to determine the value of irrigation water. The comparison of the economic value of water estimated using different methods strongly suggests that the present water use pattern will not lead to sustainable u...

  2. IRRIGATION WATER PRICING AND COST RECUPERATION FOR SUSTAINABILITY OF IRRIGATION PROJECTS IN NYANYADZI, ZIMBABWE

    OpenAIRE

    Ephraim Chifamba; Takupiwa Nyanga; Simbarashe Gukurume

    2013-01-01

    Water pricing and recuperation of the costs of irrigation investment have been litigious issues for many decades in the dry area of Nyanyadzi because the community view irrigation as a development expenditure, financed by donors and the government for backward areas through lowering of food prices and reduction of tariffs. The soaring charges for irrigation water are questioned, as well as, the diminutive percentage of farmers who fundamentally recompense the charges. The failure to institute...

  3. Role of sediment in the design and management of irrigation canals : Sunsari Morang Irrigation Scheme, Nepal

    OpenAIRE

    Paudel, K.

    2010-01-01

    Sediment transport in irrigation canals The sediment transport aspect is a major factor in irrigation development as it determines to a large extent the sustainability of an irrigation scheme, particularly in case of unlined canals in alluvial soils. Investigations in this respect started since Kennedy published his channel-forming discharge theory in 1895. Subsequently different theories have been developed and are used around the world. All of them assume uniform and steady flow conditions ...

  4. Review of ultrasonic irrigation in endodontics: increasing action of irrigating solutions

    OpenAIRE

    Mozo, Sandra; Llena, Carmen; Forner, Leopoldo

    2011-01-01

    Introduction: Effective irrigant delivery and agitation are prerequisites for successful endodontic treatment. Ultrasonic irrigation can be performed with or without simultaneous ultrasonic instrumentation. Existing literature reveals that ultrasonic irrigation may have a very positive effect on chemical, biological and physical debridement of the root canal system as investigated in many in vitro studies. Objective: The purpose of this review article was to summarize and discuss the availabl...

  5. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development. In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment. Field dye staining experiments were conducted at different soils with various irrigation amount. Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency. Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage efficiency, and uniformity. Under the same irrigation condition, soil chemical distributions were more heterogeneous than soil water distributions. The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount. Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount. Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uniformity, which resulted in high environmental risks of groundwater pollution.

  6. Treatment and reuse for irrigation of wastewater in Cagliari

    International Nuclear Information System (INIS)

    D.M. 12 June 2003 n. 185 gives national rules about wastewater recycling and reuse. Increasing in water consumption for new agricultural practise and uncertainty about availability of water resource in summer due to climatic instability make necessary to search new available fonts. In most part of Italian territory surface water volumes are taken into civil water distribution system for domestic use and, in summer, rivers are often in dry condition before arriving in urban tracts and in quality condition typical of domestic wastewater more or less treated in downstream. This work explains an experience in reclamation and irrigation reuse of a large flowrate of domestic wastewater carried out in Cagliari and discuss results in order to test reliability and efficiency with reference to existent Italian laws about discharge (D.Lgs n. 152/99) and reuse (D.M. n. 185/2003). Simbrizzi artificial basin make possible agricultural recycling and reuse realizing adequate retention basins for storage and final finishing of wastewater, at the same time permits to avoid every discharge in seawater during summer

  7. Some Unsettled Problems of Irrigation (1911)

    OpenAIRE

    Katharine Coman

    2011-01-01

    A reprint of the lead article in the inaugural issue of the American Economic Review , "Some Unsettled Problems of Irrigation," by Katharine Coman, who examined the common property resource problem as applied to water in the Western United States.

  8. Estimated Irrigated Agricultural Water Use In 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is a 100-meter cell resolution raster dataset of estimated use of irrigated agricultural water use data for the southwestern U.S. The dataset was...

  9. Water and energy management in an automated irrigation district

    OpenAIRE

    Stambouli, Talel; Faci González, José María; Zapata Ruiz, Nery

    2014-01-01

    An important modernization process providing pressurized irrigation systems to the traditional surface irrigation districts has taken place in Spain over the last 20 years However, an adverse consequence of modernization is the important increase in the energy cost in the modernized irrigation districts, which is aggravated by the current high energy prices. The Almudévar irrigation district (AID), a traditional surface irrigation district, was transformed into a pressurized sprinkler irrigat...

  10. Evaluation of Modern Irrigation Techniques with Brackish Water

    OpenAIRE

    Aboulila, Tarek Selim

    2012-01-01

    Modern irrigation techniques are becoming increasingly important in water-scarce countries especially in arid and semiarid regions. Higher crop production and better water use efficiency are usually achieved by drip irrigation as compared to other irrigation methods. Furthermore, by using drip irrigation simultaneously with brackish irrigation water, some of the water stress due to shortage of fresh water resources can be managed. The objective of the current study was to investigate the infl...

  11. An Economic Analysis of Supplementary Irrigation in Skane

    OpenAIRE

    Anderson Jr., R.J.

    1981-01-01

    This report analyzes the water demand for supplementary irrigation in Skane. It attempts to answer questions raised by previous IIASA studies: what is the potential demand for irrigation water at current crop prices and irrigation costs; what effect would this have on the crop market, and how would the changed market subsequently effect the demand for irrigation; and what effect would a significant increase in the cost of irrigation have on the quantity of water used. The studies are based on...

  12. SANITARY SEWAGE REUSE IN AGRICULTURAL CROP IRRIGATION

    OpenAIRE

    Lidiane Bittencourt Barroso; Delmira Beatriz Wolff

    2011-01-01

    The water availability was exceeded by demand, becoming a limiting factor in irrigated agriculture. This study aimed to provide a general theoretical framework on the issue of water reuse for agricultural purposes. This is due to the fact that we need a prior knowledge of the state of the art concerning the matter. To that end, we performed a review of irrigated agriculture, the effects on cultivated land and the development of agricultural crops as well as aspects of security to protect grou...

  13. Evaluation of surface water quality and pollution in Lepenica river basin

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2007-01-01

    Full Text Available Lepenica river basin is axis of economic and urban development of Šumadija region. However, because of disorderly water regime of Lepenica river and its tributaries, it appears several hydrologic problems on this territory, as example insufficiency of drinking and irrigating water by one cite, and floods and torrents (especially in Kragujevac valley by other cite. Particular problem is water quality and pollution in river basin. In this paper will be analyzed water quality of Lepenica river and artificial lakes, built in its river basin, according to the data of Republic Hydrometeorologic Institute of Serbia. Also, it will be present polluter cadastre in river basin.

  14. Grower demand for sensor-controlled irrigation

    Science.gov (United States)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  15. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    Science.gov (United States)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  16. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    Science.gov (United States)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting

  17. What role can information play in improved equity in Pakistan's irrigation system? Evidence from an experimental game in Punjab

    Directory of Open Access Journals (Sweden)

    Andrew Reid. Bell

    2015-03-01

    Full Text Available The Indus Basin Irrigation System suffers significant inequity in access to surface water across its millions of users. Information, i.e., monitoring and reporting of water availability, may be of value in improving conditions across the basin, and we investigated this via an experimental game of water distribution in Punjab, Pakistan. We found evidence that flow information allowed players to take more effective action to target overuse, and that overall activities that might bring social disapproval were reduced with information. However, we did not find any overall improvement in equity across the system, suggesting that information on its own might not be sufficient to lead to better water distribution among irrigators.

  18. Adult anopheline ecology and malaria transmission in irrigated areas of South Punjab, Pakistan

    DEFF Research Database (Denmark)

    Herrel, N; Amerasinghe, F P; Ensink, J;

    2004-01-01

    Surface irrigation in the Punjab province of Pakistan has been carried out on a large scale since the development of the Indus Basin Irrigation System in the late 19th century. The objective of our study was to understand how the population dynamics of adult anopheline mosquitoes (Diptera....... Mosquitoes were collected from bedrooms using the pyrethroid spraycatch method and from vegetation and animal sheds using backpack aspirators. Overall, Anopheles subpictus Grassi sensu lato predominated (55.6%), followed by An. stephensi Liston s.l. (41.4%), An. culicifacies Giles s.l. (2.0%), An....... pulcherrimus Theobald (1.0%) and An. peditaeniatus Leicester (0.1%). Most mosquitoes (98.8%) were collected from indoor resting-sites whereas collections from potential resting-sites outdoors accounted for only 1.2% of total anopheline densities, confirming the endophilic behaviour of anophelines in Pakistan...

  19. The Value of Weather Forecast in Irrigation

    Science.gov (United States)

    Cai, X.; Wang, D.

    2007-12-01

    This paper studies irrigation scheduling (when and how much water to apply during the crop growth season) in the Havana Lowlands region, Illinois, using meteorological, agronomic and agricultural production data from 2002. Irrigation scheduling determines the timing and amount of water applied to an irrigated cropland during the crop growing season. In this study a hydrologic-agronomic simulation is coupled with an optimization algorithm to search for the optimal irrigation schedule under various weather forecast horizons. The economic profit of irrigated corn from an optimized scheduling is compared to that from and the actual schedule, which is adopted from a pervious study. Extended and reliable climate prediction and weather forecast are found to be significantly valuable. If a weather forecast horizon is long enough to include the critical crop growth stage, in which crop yield bears the maximum loss over all stages, much economic loss can be avoided. Climate predictions of one to two months, which can cover the critical period, might be even more beneficial during a dry year. The other purpose of this paper is to analyze farmers' behavior in irrigation scheduling by comparing the "actual" schedule to the "optimized" ones. The ultimate goal of irrigation schedule optimization is to provide information to farmers so that they may modify their behavior. In practice, farmers' decision may not follow an optimal irrigation schedule due to the impact of various factors such as natural conditions, policies, farmers' habits and empirical knowledge, and the uncertain or inexact information that they receive. In this study farmers' behavior in irrigation decision making is analyzed by comparing the "actual" schedule to the "optimized" ones. This study finds that the identification of the crop growth stage with the most severe water stress is critical for irrigation scheduling. For the case study site in the year of 2002, framers' response to water stress was found to be

  20. Performing drip irrigation by the farmer managed Seguia Khrichfa irrigation system, Morocco

    NARCIS (Netherlands)

    Kooij, van der S.

    2016-01-01

    Drip irrigation is represented in literature and agricultural policies as a modern and water saving technology. Because this technology is often associated with ‘modern’ agriculture and development, it seems out-of-place in ‘traditional’ farmer managed irrigation systems (FMI

  1. Sustainable management after irrigation system transfer: experiences in Colombia: the RUT irrigation district

    NARCIS (Netherlands)

    Cobo, N.U.

    2006-01-01

    This book is focused in the formulation of a framework for the sustainable management of the irrigation systems transferred to the users organizations by the government. It describes the experience of the irrigation management transfer in Colombia, the impacts from a technical, social, environment a

  2. Reducing microbial contamination on wastewater-irrigated lettuce by cessation of irrigation before harvesting

    DEFF Research Database (Denmark)

    Keraita, Bernard; Konradsen, Flemming; Drechsel, Pay;

    2007-01-01

    OBJECTIVE: To assess the effectiveness of cessation of irrigation before harvesting in reducing microbial contamination of lettuce irrigated with wastewater in urban vegetable farming in Ghana. METHODS: Assessment was done under actual field conditions with urban vegetable farmers in Ghana. Trials...

  3. Regulated deficit irrigation and partial rootzone drying as irrigation management techniques for grapevines

    International Nuclear Information System (INIS)

    Regulated deficit irrigation (RDI), an irrigation scheduling technique originally developed for pome and stone fruit orchards, has been adapted successfully for winegrape production. Water deficit is applied during the post-set period of berry development to reduce vegetative growth and, as necessary, berry size of red-winegrape varieties. However, water deficit is avoided during the berry-ripening period, and precise irrigation management is required to ensure minimal competition between ripening berries and vegetative growth. For the variety Shiraz, in particular, this irrigation practice has resulted in significant improvements in wine quality. Partial rootzone drying (PRD) is a new irrigation technique that improves the water use efficiency of winegrape production without significant crop reduction. The technique was developed on the basis of knowledge of the mechanisms controlling transpiration, and requires that approximately half of the root system be always in a dry or drying state while the remainder is irrigated. The wetted and dried sides of the root system are alternated on a 10- to 14-day cycle. PRD irrigation reduced significantly stomatal conductance of vines when compared with vines receiving water to the entire root system. Both systems require high management skills, and accurate monitoring of soil water content is recommended. Drip and other forms of micro-irrigation facilitate the application of RDI and PRD. (author)

  4. Factors affecting irrigant extrusion during root canal irrigation: a systematic review.

    Science.gov (United States)

    Boutsioukis, C; Psimma, Z; van der Sluis, L W M

    2013-07-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted in Cochrane Library, LILACS, PubMed, SciELO, Scopus and Web of Knowledge using a combination of the terms 'irrigant', 'rinse', 'extrusion', 'injection', 'complication', 'accident', 'iatrogenic', 'root canal', 'tooth' and 'endodontic'. Additional studies were identified by hand-searching of six endodontic journals and the relevant chapters of four endodontic textbooks, resulting in a total of 460 titles. No language restriction was imposed. After applying screening and strict eligibility criteria by two independent reviewers, 40 case reports and 10 ex vivo studies were included in the review. A lack of clinical studies focusing on irrigant extrusion during root canal irrigation was evident. The reviewed case reports focused mainly on the clinical manifestations and management of the accidents and did not provide adequate details on the possible factors that may influence irrigant extrusion. The data from the included ex vivo studies were inconclusive due to major methodological limitations, such as not simulating the presence of periapical tissues and not assessing the validity of irrigant detection methods. The extensive variability in the protocols employed hindered quantitative synthesis. The choice of factors investigated in ex vivo studies seems not to have been driven by the available clinical evidence. These issues need to be addressed in future studies. PMID:23289914

  5. Effects of irrigation models on and yield the space distribution of root system of winter wheat%灌水模式对冬小麦根系空间分布及多年产量的影响

    Institute of Scientific and Technical Information of China (English)

    王建东; 龚时宏; 许迪; 于颖多

    2011-01-01

    以田间连续多年试验为手段,探讨了精细地面灌(水平格田灌)、地表滴灌和地下滴灌3种灌水模式分别在4种灌溉制度下对冬小麦根系空间分布以及多年产量的影响,试验结果表明,在灌水下限和灌溉定额相同时,灌水方式对冬小麦根系在行上和行间的空间分布规律存在显著影响,精细地面灌和地表滴灌显著促进根系在0—50cm土壤中的分布,而地下滴灌条件下作物根系在0~100cm土壤中分布的相对均匀一些;冬小麦的产量与灌溉定额呈现一定正相关性,灌溉制度对冬小麦产量存在显著影响,滴灌模式下作物产量多年连续稳定的几率大于精细地面灌。此外,非充分灌条件下,滴灌模式较精细地面灌提高作物产量的优势明显。%In this paper, different irrigation methods, including basin irrigation, drip irrigation and subsurface drip irrigation, and four irrigation schedules for each irrigation method were selected to investigate the effects of different irrigation models on the space distribution of root system and yield of winter wheat by field experiment for three years. The results revealed that irrigation methods affect the space distribution of root system obviously under the same irrigation schedule. The basin irrigation and drip irrigation significantly boosted space distribution of root system at 0-50cm soil layer compared to subsurface drip irrigation, but the space distribution of root system appeared even at 0-100cm soil layer under subsurface drip irrigation. The research results also revealed the positive correlation of crop yield to irrigation norm, and the irrigation schedules had significant effect on crop yield, and drip irrigation models could attain continuous and stable crop yields for many years compared with basin irrigation. In addition, drip irrigation models had notable advantages in terms of increasing crop yield compared with basin irrigation under

  6. Irrigation Analysis Based on Long-Term Weather Data

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-08-01

    Full Text Available Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the crop’s water need is determined by calculating evapotranspiration (ET using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc for irrigation. Thirty years (1975–2004 of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 L·min−1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline.

  7. ASPECTS OF DRIP IRRIGATION ON SLOPES

    Directory of Open Access Journals (Sweden)

    Oprea Radu

    2010-01-01

    Full Text Available Nowadays, water and its supply raise problems of strategic importance, of great complexity, being considered one of the keys to sustainable human development. Drip irrigation consists in the slow and controlled administration of water in the area of the root system of the plants for the purposes of fulfilling their physiological needs and is considered to be one of the variants of localized irrigation. Water is distributed in a uniform and slow manner, drop by drop, in a quantity and with a frequency that depend on the needs of the plant, thanks to the exact regulation of the water flow rate and pressure, as well as to the activation of the irrigation based on the information recorded by the tensiometer with regard to soil humidity. This method enables the exact dosage of the water quantity necessary in the various evolution stages of the plant, thus eliminating losses. By applying the irrigation with 5 liters of water per linear meter, at a 7 days interval, in the month of august, for a vine cultivated on a slope, in layers covered with black film and irrigated via dropping, soil humidity immediately after irrigation reaches its highest level, but within the limits of active humidity, on the line of the irrigation band. Three days later, the water content of the soil in the layer is relatively uniform, and, after this interval, it is higher in the points situated at the basis of the film. This technology of cultivation on slopes favors the accumulation, in the soil, of the water resulted from heavy rains and reduces soil losses as a result of erosion.

  8. Irrigation Training Manual. Planning, Design, Operation, and Management of Small-Scale Irrigation Systems [and] Irrigation Reference Manual. A Technical Reference to Be Used with the Peace Corps Irrigation Training Manual T0076 in the Selection, Planning, Design, Operation, and Management of Small-Scale Irrigation Systems.

    Science.gov (United States)

    Salazar, LeRoy; And Others

    This resource for trainers involved in irrigated agriculture training for Peace Corps volunteers consists of two parts: irrigation training manual and irrigation reference manual. The complete course should fully prepare volunteers serving as irrigation, specialists to plan, implement, evaluate and manage small-scale irrigation projects in arid,…

  9. Conceptual design of small retention basin in Hruševo

    OpenAIRE

    Mejavšek, Janez

    2014-01-01

    Small retention basins are water managing objects for acumulation of water for the purpose of cultivating land, cattle feeding and other. They are mostly used by individual rural economies for their own local needs for irrigation of smaller agricultural areas (orchards, smaller plantations etc.) or source of water for their livestock. At the beginning of this work all types of small retention basins are presented, regarding the available water sources, restrictions and requirements in accorda...

  10. Climate change and climate uncertainty in the Murray-Darling Basin

    OpenAIRE

    Adamson, David; Mallawaarachchi, Thilak; Quiggin, John

    2007-01-01

    Human activity has modified the environment at all scales from the smallest ecosystems to the global climate systems. In the analysis of the Murray-Darling Basin, it is necessary to take account of effects of human activity ranging from local changes in water tables and soil structure through basin-level effects of the expansion of irrigation to changes in precipitation pattern arising from the accumulation of greenhouse gases in the atmosphere. In this paper, we analyse the impact of, and ad...

  11. The quality of our Nation's waters: water quality in basin-fill aquifers of the southwestern United States: Arizona, California, Colorado, Nevada, New Mexico, and Utah, 1993-2009

    Science.gov (United States)

    Thiros, Susan A.; Paul, Angela P.; Bexfield, Laura M.; Anning, David W.

    2015-01-01

    The Southwest Principal Aquifers consist of many basin-fill aquifers in California, Nevada, Utah, Arizona, New Mexico, and Colorado. Demands for irrigation and drinking water have substantially increased groundwater withdrawals and irrigation return flow to some of these aquifers. These changes have increased the movement of contaminants from geologic and human sources to depths used to supply drinking water in several basin-fill aquifers in the Southwest.

  12. Irrigation Water Quality Evaluation of Aldelam Groundwater

    Directory of Open Access Journals (Sweden)

    Abdullah A. Alsheikh

    2015-09-01

    Full Text Available Good quality water helps to maintain agricultural productivity and sustain soil fertility. Agricultural activities in Saudi Arabia depend on surface water and groundwater as the main sources for irrigation. Groundwater is the main source used for irrigation purposes in this area. This study was done to evaluate the status of groundwater quality and its suitability for irrigated agriculture. To achieve this objective, water samples from fourteen wells were collected from different areas of Aldelam in May and July of 2011. The water quality of these wells in the study area was estimated from different water quality parameters such as chloride, bicarbonate, sodium, calcium, total dissolved solids (TDS, EC, pH, sodium adsorption ratio, and percentage of sodium. The results showed that the overall concentration of all the ions was very high, but the sodium hazard in the well water was moderate. About 78 percent of the wells had suitable water quality for boron, and they had a concentration below the permissible limit for crop irrigation. TDS in the groundwater ranged between 1114.88 to 2897.71 ppm during the investigation period. High EC and low SAR in all the wells showed that the water from these wells could be used for irrigation purposes with special management.

  13. Municipal Treated Wastewater Irrigation: Microbiological Risk Evaluation

    Directory of Open Access Journals (Sweden)

    Antonio Lonigro

    2008-06-01

    Full Text Available Municipal wastewater for irrigation, though treated, can contain substances and pathogens toxic for humans and animals. Pathogens, although not harmful from an agronomical aspect, undoubtedly represent a major concern with regards to sanitary and hygienic profile. In fact, vegetable crops irrigated with treated wastewater exalt the risk of infection since these products can also be eaten raw, as well as transformed or cooked. Practically, the evaluation of the microbiological risk is important to verify if the microbial limits imposed by law for treated municipal wastewater for irrigation, are valid, thus justifying the treatments costs, or if they are too low and, therefore, they don’ t justify them. Different probabilistic models have been studied to assess the microbiological risk; among these, the Beta-Poisson model resulted the most reliable. Thus, the Dipartimento di Scienze delle Produzioni Vegetali of the University of Bari, which has been carrying out researches on irrigation with municipal filtered wastewater for several years, considered interesting to verify if the microbial limits imposed by the italian law n.185/03 are too severe, estimating the biological risk by the probabilistic Beta-Poisson model. Results of field trials on vegetable crops irrigated by municipal filtered wastewater, processed by the Beta-Poisson model, show that the probability to get infection and/or illness is extremely low, and that the actual italian microbial limits are excessively restrictive.

  14. How to perform irrigation of the eye.

    Science.gov (United States)

    Marsden, Janet

    2016-02-01

    rationale and key points: This article aims to help nurses to understand the importance of performing irrigation immediately following chemical injury to the eye, and outlines the most effective technique. It is essential that irrigation of the eye is understood and performed correctly. Chemical injury to the eye is an ophthalmic emergency. It presents a serious risk to the patient's vision and may cause blindness. The length of time the chemical remains in contact with the eye determines the severity of the injury. Immediate irrigation of the eye is essential to minimise preventable loss of vision. REFLECTIVE ACTIVITY: Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How you would ensure immediate irrigation following chemical injury to the eye in your clinical area. 2. How you know when you have irrigated the eye for long enough, if you have previously performed this procedure, and how reading this article might influence your practice. Subscribers can upload their reflective accounts at: rcni.com/portfolio . PMID:26838655

  15. Effects of irrigation and plastic mulch on soil properties on semi-arid abandoned fields

    OpenAIRE

    Meulen, van der, A.; Nol, L.; Cammeraat, L.H.

    2006-01-01

    The Guadalentín Basin in Spain is one of the driest areas of Europe and has problems with high evaporation rates, and high risks of desertification exist including soil quality loss and soil erosion. Farmers in this semi-arid region use polyethylene covers on their irrigated croplands to reduce evaporation in order to enhance crop yield. When farmers abandon the acres, they leave the plastic covers on the fields. Up to now research has been concentrating on the effects of plastic covers on cr...

  16. Constraining uncertainties in water supply reliability in a tropical data scarce basin

    Science.gov (United States)

    Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte

    2015-04-01

    Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.

  17. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    Science.gov (United States)

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  18. Design of Solar Steam Irrigation Pump

    Directory of Open Access Journals (Sweden)

    Vishal Kumar Dhimmar, Jay Prajapti, Mital Patel, Dhruv Patel, Banti Mistry, Jignesh Parmar

    2014-05-01

    Full Text Available Solar irrigation pump is this type of device which uses solar energy for water pumping. Water pumping is an energy intensive activity and consumes a large amount man power, diesel and electricity. Smallholder farmers in low income countries can benefit from affordable irrigation pump systems as they enable cultivation of high value crops during dry season. Currently the majority of small irrigation pumps are manually operated which is time consuming and requires a high level of physical exertion. There is a potential market for a low cost solar thermal pump that produces a high volume of water as well as reducing the labour burden. This will allow more crops to be grown and free up time for other productive tasks. Compared to the existing manual systems, many hours could be saved each day through reduced labour input.

  19. Irrigation of treated wastewater in Braunschweig, Germany

    DEFF Research Database (Denmark)

    Ternes, T.A.; Bonerz, M.; Herrmann, N.;

    2007-01-01

    of digested sludge, because many polar compounds do not sorb to sludge and lipophilic compounds are not mobile in the soil-aquifer. Most of the selected PPCPs were never detected in any of the lysimeter or groundwater samples, although they were present in the treated wastewater irrigated onto the fields...... of the sewage treatment plant (STP) of Braunschweig is used for irrigation, while during summer digested sludge is mixed with the effluent. In the present case study six wells and four lysimeters located in one of the irrigated agricultural fields were monitored with regard to the occurrence of 52....... In the groundwater and lysimeter samples primarily the ICM diatrizoate and iopamidol, the antiepileptic carbamazepine and the antibiotic sulfamethoxazole were detected up to several mu g l(-1), while the acidic pharmaceuticals, musk fragrances, estrogens and betablockers were likely sorbed or transformed while...

  20. The impact of irrigation on the quality of drainage water in a new irrigation district

    Directory of Open Access Journals (Sweden)

    J.M. Villar Mir

    2015-10-01

    Full Text Available The water quality of two agricultural drainage systems was monitored over two irrigation seasons in order to determine the sustainability of a new area of irrigated land (the Algerri-Balager irrigation district located in the northeast of Spain. The average electrical conductivity of the drainage water was around 4 dS·m-1, and the waters were enriched with boron, phosphorous and nitrate. Drainage represented 17% of total applied irrigation water (measured leached fraction and is considered necessary to minimize the risk of soil salinization in semiarid environments. The most common ions in the drainage waters were magnesium, sulphate, and calcium and others related with dissolved soil minerals present in the area. The presence of Fe, Cu, Mn, Zn and pesticides was negligible. The information provided by this research was very useful for the irrigation district, and it’s transferable to other irrigation districts, as it could help to improve agricultural practices and be used to control the quality and quantity of irrigation drainage.

  1. 77 FR 13585 - Three Sisters Irrigation District; Notice of Application Accepted for Filing and Soliciting...

    Science.gov (United States)

    2012-03-07

    ... COMMISSION Three Sisters Irrigation District; Notice of Application Accepted for Filing and Soliciting..., 2012. d. Applicant: Three Sisters Irrigation District. e. Name of Project: Three Sisters Irrigation District Hydroelectric Project. f. Location: The proposed Three Sisters Irrigation District...

  2. Declining Groundwater Levels in North India: Understanding Sources of Irrigation Inefficiency

    Science.gov (United States)

    O'Keeffe, J.; Buytaert, W.; Mijic, A.; Brozovic, N.

    2014-12-01

    Over the last half century, the green revolution has transformed India from a famine-prone, drought-susceptible country, into the world's third largest grain producer and one of the most intensely irrigated regions on the planet. This is in no small part due to the country's vast water resources along with an increase in tubewells and more advanced abstraction methods. While agricultural intensification has had undeniable benefits, it has, and continues to have a significant impact on water resources. Unless solutions which take into consideration the ever evolving socio-economic, hydrological and climatic conditions are found, India's agricultural future looks bleak.This research examines the irrigation behaviour of farmers, using data collected during field work in the State of Uttar Pradesh within the Ganges Basin of North India. Significant differences in farmer behaviour and irrigation practices are highlighted, not only between State districts but between individual farmers. This includes the volume of irrigation water applied and the price paid, as well as differences in the yields of crops produced. Analyses of results suggest that this is due to a number of factors, particularly the source of irrigation water. Study areas which had access to cheaper, but crucially less reliable, canal water were found to invest in more efficient water saving technologies in order to reduce the overall cost of irrigation during periods where less expensive canal water is not available. As a result, overall water use and irrigation cost is lower and yields are higher despite very similar climatic conditions. While cheap canal water is not an option for all farmers, the results show that the introduction of more efficient water saving technologies, despite the significant capital expenditure is a viable option for many farmers and costs can be recovered in a relatively short space of time. In addition, the reduction of declining water levels mean that water is abstracted from

  3. Dwarf cashew growth irrigated with saline waters

    Directory of Open Access Journals (Sweden)

    Hugo Orlando Carvallo Guerra

    2009-12-01

    Full Text Available The cashew production is one of the most important agricultural activities from the social-economical viewpoint for the North East of Brazil; besides to produce a great deal of hand labor, it is very important as an exporting commodity. The inadequate use of irrigation in the semi arid regions of the North East of Brazil has induced soil salinization and consequently problems for the irrigated agriculture. In spite of this, few works have been conducted to study the effect of saline stress on the growth and development of the cashew. Because of the lack of information for this crop, an experiment was conducted to study the effect of salinity stress on the phytomass production and nutrient accumulation on the different organs of the precocious dwarf cashew (Anacardium occidentale L. clone CCP76. The study was conducted under controlled conditions using as statistical scheme a randomized block design factorial with six replicates. Five salinity treatments were considered for the irrigation water (electrical conductivities of 0.8, 1.6, 2.4, 3.2 and 4.0 dS m-1 at 25oC. The increasing in salinity of the irrigation water reduced the phytomass at different organs of the studied plant. The nitrogen, phosphorus, potassium, chloride and sodium in the plant varied with the salinity of the irrigation water according with the part of the plant analyzed; in some parts increased, in others decreased, in others increased initially and decreased afterwards, and finally, in other part of the plant the salinity of the irrigation water did not affect the nutrient concentration.

  4. Strategy of Irrigation Branch in Russia

    Science.gov (United States)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  5. Cytotoxic effect of endodontic irrigants in vitro

    OpenAIRE

    Bajrami, Donika; Hoxha, Veton; Gorduysus, Omer; Muftuoglu, Sevda; Zeybek, Naciye Dilara; Küçükkaya, Selen

    2014-01-01

    Background Cytotoxicity of root canal irrigants is important due to their close contact with host tissues. The aim of this study was to assess the cytotoxic effect of NaOCl 3%, Chx 2%, and MTAD on rat periodontal ligament fibroblasts, at 0.1 and 100 μl/mL, using WST-1 colorimetric method. Material/Method Rat ligamental fibroblasts were exposed to the irrigants and their viability was assessed after 1, 24, 48, and 72 h. The measurements were determined using WST-1 assay, using a micro ELISA re...

  6. Genotoxicity of vegetables irrigated by industrial wastewater

    Institute of Scientific and Technical Information of China (English)

    Nupur Mathur; Pradeep Bhatnagar; Hemraj Verma

    2006-01-01

    Wastewater effluents from textile dyeing and printing industries of Sanganer are discharged directly, without any treatment,into Amani Shah Nallah drainage. The drainage water takes the dissolved toxicants to flora and fauna, including crops and seasonal vegetables, being grown in the land adjoining the Nallah drainage. Thus mutagenic potential of vegetables irrigated by the water of Amani Shah Nallah drainage was investigated in the present study. The vegetables irrigated by ground water from Sanganer have also been analyzed to determine possible adverse effects of these wastewater effluents on aqua duct.

  7. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Plauborg, Finn; Andersen, Mathias Neumann;

    2011-01-01

    Root distribution of field grown potatoes (cv. Folva) was studied in 4.32 m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand......, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm...... root per cm3 soil) compared with root development in fully irrigated (FI) potatoes. Highest RLD existed in the top 30–40 cm of the ridge below which it decreased sharply. The RLD was distributed homogenously along the ridge and furrow but heterogeneously across the ridge and furrow with highest root...

  8. Wireless sensor networks for canopy temperature sensing and irrigation management

    Science.gov (United States)

    For researchers, canopy temperature measurements have proven useful in characterizing crop water stress and developing protocols for irrigation management. Today, there is heightened interest in using remote canopy temperature measurements for real-time irrigation scheduling. However, without the us...

  9. 75 FR 67095 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2010-11-01

    ..., Project Manager, Joint Works. Clarence Begay, Irrigation Manager, P.O. Box 250, Coolidge, AZ 85228..., Superintendent, Dale Thomas, Irrigation Manager, P.O. Box 130, Fort Duchesne, UT 84026, Telephone: (435)...

  10. 77 FR 63850 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-10-17

    .... Clarence Begay, Irrigation Manager, P.O. Box 250, Coolidge, AZ 85128, Telephone: (520) 723-6203. San Carlos...) 562-3372. Uintah Irrigation Project.... Johanna Blackhair, Superintendent, Dale Thomas,...

  11. Metaphor in Natural Resource Gaming: Insights from the RIVER BASIN GAME

    Science.gov (United States)

    Lankford, Bruce; Watson, Drennan

    2007-01-01

    The RIVER BASIN GAME is a dialogue tool for decision makers and water users tested in Tanzania and Nigeria. It comprises a physical representation of a river catchment. A central channel flows between an upper watershed and a downstream wetland and has on it several intakes into irrigation systems. Glass marbles, representing water, roll down the…

  12. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching

    NARCIS (Netherlands)

    Chukalla, A.D.; Krol, M.S; Hoekstra, A.Y.

    2015-01-01

    Consumptive water footprint (WF) reduction in irrigated crop production is essential given the increasing competition for freshwater. This study explores the effect of three management practices on the soil water balance and plant growth, specifically on evapotranspiration (ET) and yield (Y) and thu

  13. Automatic programmers for solid set sprinkler irrigation systems

    OpenAIRE

    Zapata Ruiz, Nery; Salvador Esteban, Raquel; Cavero Campo, José; Lecina Brau, Sergio; Playán Jubillar, Enrique

    2012-01-01

    Introduction: The application of new technologies to the control and automation of irrigation processes is becoming very important in the last decade. Although automation of irrigation execution (irrigation programmers) is now widespread the automatic generation and execution of irrigation schedules is receiving growing attention due to the possibilities offered by the telemetry / remote control systems currently being installed in collective pressurized networks. In this paper, a protot...

  14. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    OpenAIRE

    Jochen Hemming; Paolo Marzialetti; Bernardo Rapi; Laura Bacci; Piero Battista; Fernando Malorgio; Giorgio Incrocci; Luca Incrocci; Alberto Pardossi; Jos Balendonck

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on th...

  15. A knowledge based system for irrigation planning in Virginia

    OpenAIRE

    Kumar, Dipmani

    1990-01-01

    Problems associated with irrigation in humid regions include uncertainty of whether irrigation will be necessary in a given year, and the question of whether crop response will be sufficient to make the required investment profitable in the long run. A prototype knowledge based system (KBS) has been developed to determine the economic feasibility of a range of irrigation systems for site specific conditions. The KBS uses information input by the user to determine possible irrig...

  16. Urban landscape irrigation requirements: the case study of Mirandela, Portugal

    OpenAIRE

    A.C. RIBEIRO; Ferreiro, Gualter

    2013-01-01

    The technological development is leading to the emergence of modern equipment for the automation of irrigation systems, with especial relevance for landscape irrigation systems. Thus, the development of methodologies for irrigation requirements of landscape, that allowed an improvement of the utilization of those technologies and equipment, and consequently to an improvement in irrigation management, is very timely and opportune. In this study, water requirements for landscape irrigatio...

  17. A management perspective on the performance of the irrigation subsector.

    OpenAIRE

    Nijman, Ch.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the performance of irrigation investments was far below its potential. The size of this underperformance is well represented by Seckler's alarming conclusion that the average irrigation investment costs twi...

  18. Soil and Water Management in Spate Irrigation Systems in Eritrea

    OpenAIRE

    Tesfai, M.H.

    2001-01-01

    Spate irrigation has been practised over 100 years in the Red Sea coastal zone of Eritrea such as the Sheeb area. Main problem of the spate irrigation system is water shortage caused by irregular rainfall in the highlands of Eritrea and breaching of the irrigation structures by destructive big floods. Annually, a tremendous amount of soil with nutrients is eroded from the adjacent highlands, transported by seasonal streams (wadis) and deposited on the lowlands in the irrigated fields. The dom...

  19. Preventing pesticide contamination of groundwater while maximizing irrigated crop yield

    OpenAIRE

    Peralta, R C; Hegazy, M. A.; Musharrafieh, G.

    1994-01-01

    A simulation/optimization model is developed for maximizing irrigated crop yield while avoiding unacceptable pesticide leaching. The optimization model is designed to help managers prevent non-point source contamination of shallow groundwater aquifers. It computes optimal irrigation amounts for given soil, crop, chemical, and weather data and irrigation frequencies. It directly computes the minimum irrigated crop yield reduction needed to prevent groundwater contamination. Constraint equation...

  20. Information technology and decision support tools for stakeholder-driven river basin salinity management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  1. Optimization of the main parameters of the subsoil irrigation systems

    OpenAIRE

    Elena Akytneva; Askar Akhmedov

    2014-01-01

    This article discusses the issues of optimization of the basic parameters of soil irrigation systems with application of the plan of Regardera second order. The obtained optimal parameters of soil irrigation systems that can be used for designing and construction of this method of irrigation.

  2. 21 CFR 886.4360 - Ocular surgery irrigation device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ocular surgery irrigation device. 886.4360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4360 Ocular surgery irrigation device. (a) Identification. An ocular surgery irrigation device is a device intended to be suspended over...

  3. A land suitability system for spate irrigation schemes in Eritrea

    NARCIS (Netherlands)

    Tesfai, M.H.

    2002-01-01

    Spate irrigation is a system used for wetting land prior to planting. Use is made of seasonal rivers (wadis) producing flash floods in the uplands, which are directed by structures to irrigate fields in the lowlands. A land suitability system for spate irrigation schemes in Eritrea was studied in th

  4. Technical descriptions of ten irrigation technologies for conserving energy

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Wilfert, G.L.

    1983-05-01

    Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

  5. Irrigation scheduling by ET and soil water sensing

    Science.gov (United States)

    Irrigation scheduling is the process of deciding when, where and how much to irrigate, usually with the goal of optimizing economic return on investment in land, equipment, inputs and personnel. This hour-long seminar presents methods of irrigation scheduling based, on the one hand on estimates of t...

  6. Allocation of Ground Water in Irrigated Crop Production

    OpenAIRE

    Chanyalew, Demese; Featherstone, Allen M.; Buller, Orlan H.

    1987-01-01

    A mathematical programming model with estimated nonlinear water response functions is used to explore the allocation of limited ground water to flood irrigated corn, flood-irrigated grain sorghum, and dryland sorghum in western Kansas. Results suggest that as ground water availability decreases, more dryland sorghum and less irrigated corn should be produced.

  7. 21 CFR 876.5220 - Colonic irrigation system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colonic irrigation system. 876.5220 Section 876...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system. (a) Identification. A colonic irrigation system is a device intended to instill water into the...

  8. 77 FR 10767 - Rate Adjustments for Indian Irrigation Projects

    Science.gov (United States)

    2012-02-23

    ... Federal Register on September 20, 2011 (76 FR 58293) to propose adjustments to the irrigation assessment... Project Manager, Clarence Begay, Irrigation Manager, P.O. Box 250, Coolidge, AZ 85228, Telephone: (520..., Dale Thomas, Irrigation Manager, P.O. Box 130, Fort Duchesne, UT 84026, Telephone: (435)...

  9. Irrigated Lands and Features, Irrigated Areas in Arizona - 1960's, Published in unknown, Arizona State Land Department.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Irrigated Lands and Features dataset as of unknown. It is described as 'Irrigated Areas in Arizona - 1960's'. Data by this publisher are often provided in UTM...

  10. Attributes for NHDPlus Catchments (Version 1.1) in the Conterminous United States: Artificial Drainage (1992) and Irrigation Types (1997)

    Science.gov (United States)

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular dataset represents the estimated area of artificial drainage for the year 1992 and irrigation types for the year 1997 compiled for every catchment of NHDPlus for the conterminous United States. The source datasets were derived from tabular National Resource Inventory (NRI) datasets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 1997). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others 2007) The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that

  11. Assessing best management practices for remediation of selenium loading in groundwater to streams in an irrigated region

    Science.gov (United States)

    Bailey, Ryan T.; Romero, Erica C.; Gates, Timothy K.

    2015-02-01

    Selenium (Se) contamination in groundwater and surface water in numerous river basins worldwide has become a critical issue in recent decades. An essential micro-nutrient, Se can prove harmful to fish, water fowl, livestock, and even humans at elevated concentrations. In an overall effort to curb Se contamination in environmental systems, this study aims to identify best-management practices (BMPs) that can assist in remediating Se contamination in irrigated river basins. Using multi-decadal simulations of a calibrated and tested groundwater flow model (MODFLOW-UZF) and Se chemical reactive transport model (UZF-RT3D), the impact of water- and land-management strategies in reducing Se contamination are explored for a 500 km2 study region in the Lower Arkansas River Valley (LARV) in southeastern Colorado. The effectiveness of reduced applied irrigation volumes, sealing of earthen irrigation canals, rotational fallowing of cultivated land, reduced fertilizer loading, and enhanced riparian buffer zones, implemented individually as well as concurrently in various combinations, is explored. Results indicate that significant (>10%) decreases in Se mass loading to the Arkansas River system (main stem and tributaries) can be achieved when individual BMPs are implemented, with land fallowing, reduced irrigation, and enhanced riparian buffer zones providing the best results (13-14% load reduction). Even greater impacts (20-50% Se load reduction) can be achieved with 3 or 4 BMPs implemented concurrently. Results demonstrate that Se remediation can potentially be achieved within the LARV, and also can serve as a guide for other Se-affected river basins within the western United States and throughout the world.

  12. Identifying and locating land irrigated by center-pivot irrigation systems using satellite imagery

    Science.gov (United States)

    Hoffman, R. O.

    1980-01-01

    A methodology for using Landsat imagery for the identification and location of land irrigated by center-pivot irrigation systems is presented. The procedure involves the use of sets of Landsat band 5 imagery taken separated in time by about three weeks during the irrigation season, a zoom transfer scope and mylar base maps to record the locations of center pivots. Further computer processing of the data has been used to obtain plots of center-pivot irrigation systems and tables indicating the distribution and growth of systems by county for the state of Nebraska, and has been found to be in 95% agreement with current high-altitude IR photography. The information obtainable can be used for models of ground-water aquifers or resource planning.

  13. Simulation of soil wetting patterns in drip and sdi irrigation. Effects in design and irrigation management variables

    OpenAIRE

    Rodríguez Sinobas, Leonor; Gil Rodríguez, María; Sánchez Calvo, Raúl; Losada, Ana; Castañon Lion, Guillermo; Juana Sirgado, Luis; Laguna Peñuelas, Francisco; Benitez Buelga, Javier

    2010-01-01

    Conventional drip irrigation is considered one of the most efficient irrigation systems. Alternatively to traditional surface drip irrigation systems (DI), laterals are deployed underneath the soil surface, as in subsurface drip irrigation (SDI), leading to a higher potential efficiency, which is of especial interest in places where water is a limited source. The design and management of DI and SDI systems involve selection of an appropriate combination of emitter discharge rate and spacing bet...

  14. Effects of irrigation on streamflow in the Central Sand Plain of Wisconsin

    Science.gov (United States)

    Weeks, E.P.; Stangland, H.G.

    1971-01-01

    ground-water reservoir. Irrigation development should continue in the sand plain; future development probably will include improved artificial drainage and land clearing. The hydrology of the sand-plain area was studied from water budgets for seven basins and from water balances for eight types of vegetative cover or land use. During the study period about 16-20 inches of the 28- to 30-inch average annual precipitation were lost to evapotranspiration from different basins in the area, Evapotranspiration from different types of vegetative cover or land use ranged from about 14 inches per year for bare ground to about 25 inches per year from land covered by phreatophytes. Evapotranspiration is about 19 inches from forested land, about 16 inches from grassland and unirrigated row crops, about 19 inches from irrigated beans, and about 22 inches from irrigated potatoes. Variations in evapotranspiration from the different types of vegetative cover result mainly from differences in soil moisture available to the plants. Available soil moisture ranges from about 1 inch for shallow-rooted grasses and row crops to about 3 inches for forest. Most of the precipitation not used by plants or to replenish soil moisture seeps to the water table, and ground-water recharge in the area averages about 12-14 inches per year. However, computed recharge ranged from about 3 inches to about 22 inches during the 1948-67 period, depending upon the amount and seasonal distribution of precipitation. Of the average 12-14 inches of recharge, about lo-13 inches are discharged to the streams draining the area, and about l-2 inches are used by phreatophytes or by irrigated crops. Annual streamflow in the area averages about 11-12 inches per year, and because it is sustained mainly by ground water, its seasonal distribution is fairly uniform, However, streamflow varies seasonally, being highest in the spring, low in the summer, higher

  15. Decision support for optimised irrigation scheduling

    NARCIS (Netherlands)

    Anastasiou, A.; Sawas, D.; Pasgianos, G.; Sigrimis, N.; Stanghellini, C.; Kempkes, F.L.K.

    2009-01-01

    The system, developed under the FLOW-AID (an FP6 project), is a farm level water management system of special value in situations where the water availability and quality is limited. This market-ready precision irrigation management system features new models, hardware and software. The hardware pla

  16. New soil water sensors for irrigation management

    Science.gov (United States)

    Effective irrigation management is key to obtaining the most crop production per unit of water applied and increasing production in the face of competing demands on water resources. Management methods have included calculating crop water needs based on weather station measurements, calculating soil ...

  17. Using a System Model for Irrigation Management

    Science.gov (United States)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  18. Growth and yield of papaya under irrigation

    Directory of Open Access Journals (Sweden)

    Almeida Frederico Terra de

    2003-01-01

    Full Text Available Thermal units or degree day systems can both be used to quantify relationships between plants and air temperature. The Northern Fluminense region holds no tradition for irrigated papaya (Carica papaya L. cropping and, because of the need for irrigation, it is important knowing its growth and development characteristics under these conditions. This study aimed to determine the relationship between growth rate of papaya plants and degree days, and its effect on crop productivity, under different irrigation levels. An experiment was set up with the cultivar "Improved Sunrise Soil 72/12", in a randomized blocks design, with seven irrigation water depths and three repetitions; crop growth and yield parameters were evaluated. There were significant correlations between water depths and degree days. Polynomial models of 2nd and 3rd order appropriately fitted the relationships degree day versus plant height, stem diameter, crown diameter and number of emitted leaves, for each water depth. Growth parameters related to degree days and to the applied treatments are indicative of yield potential. The total water depth that promoted the greatest fruit yield was 2,937 mm.

  19. Precision agriculture approach for improving cotton irrigation

    Science.gov (United States)

    Cotton is a vital part of the southeast Missouri economy and while we’re not currently facing problems with groundwater decline, it’s still important to apply the right amount of irrigation at the proper time. We currently have several projects at the Fisher Delta Research Center with that aim. For ...

  20. SANITARY SEWAGE REUSE IN AGRICULTURAL CROP IRRIGATION

    Directory of Open Access Journals (Sweden)

    Lidiane Bittencourt Barroso

    2011-10-01

    Full Text Available The water availability was exceeded by demand, becoming a limiting factor in irrigated agriculture. This study aimed to provide a general theoretical framework on the issue of water reuse for agricultural purposes. This is due to the fact that we need a prior knowledge of the state of the art concerning the matter. To that end, we performed a review of irrigated agriculture, the effects on cultivated land and the development of agricultural crops as well as aspects of security to protect groups at risk. The amount of macro and micronutrients in the effluent may reduce or eliminate the use of commercial fertilizers. And this addition of organic matter acts as a soil conditioner, increasing its capacity to retain water. Depending on the characteristics of sewage, the practice of irrigation for long periods may lead to accumulation of toxic compounds and the significant increase of salinity. The inhibition of plant growth by salinity may be due to osmotic effect, causing drought and / or specific effects of ions, which can cause toxicity or nutritional imbalance. The minimization of human exposure to the practice of agricultural reuse is based on a set of mitigation measures that must be implemented by the authorities responsible for operating and monitoring systems for water recycling. It is concluded that the use of sewage depends on management of irrigation, monitoring of soil characteristics and culture.

  1. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  2. Strategies of Smallholder Irrigation Management in Zimbabwe

    NARCIS (Netherlands)

    Manzungu, E.

    1999-01-01

    The smallholder irrigation sub-sector in Zimbabwe, according to literature sources, is under threat due to what are called management problems. Poor water management and low crop yields have been cited, as has also been poor financial and economic viability, resulting in heavy government subsidies.

  3. Multicriteria analysis for irrigation sustainable development: design and selection of irrigation systems

    OpenAIRE

    Darouich, Hanaa

    2014-01-01

    Doutoramento em Engenharia dos Biossistemas - Instituto Superior de Agronomia This study aimed to select the most sustainable irrigation methods able to obtain high water productivity considering economic aspects and water saving criteria for wheat and cotton in NE Syria. The models used are PROASPER for sprinkler, SADREG for surface and MIRRIG for drip irrigation. Multicriteria analysis (MCA) was used to rank a set of design alternatives considering water saving and economic priorities. F...

  4. Sustainable management after irrigation system transfer: experiences in Colombia: the RUT irrigation district

    OpenAIRE

    Cobo, N.U.

    2006-01-01

    This book is focused in the formulation of a framework for the sustainable management of the irrigation systems transferred to the users organizations by the government. It describes the experience of the irrigation management transfer in Colombia, the impacts from a technical, social, environment and economic point of view, the current status of some transferred systems and proposes management alternatives in view of sustainability based on an integrated and participatory approach.

  5. Intervention Processes and Irrigation Institutions: Sustainability of Farmer Managed Irrigation Systems in Nepal

    OpenAIRE

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management practices in irrigation systems in Nepal. In this respect, this study aimed to understand the social, administrative and political processes involved in the social and institutional changes brough...

  6. Comparative anti-microbial efficacy of Azadirachta indica irrigant with standard endodontic irrigants: A preliminary study

    OpenAIRE

    Arindam Dutta; Mala Kundabala

    2014-01-01

    Objective: The anti-microbial efficacy of 2.5% sodium hypochlorite (SHC) and 0.2% chlorhexidine gluconate were compared with an experimental irrigant formulated from the Neem tree, Azadirachta indica A. Juss. Materials and Methods: A sample of 36 single rooted anterior teeth with periapical radiolucency and absence of response to vitality tests that required root canal treatment were selected for this study. The test irrigants and their combinations were assigned to five different groups ...

  7. The Effect of Three Irrigants on the Coronal Leakage of the Root Canals System Irrigants

    OpenAIRE

    Zare Jahromi, Maryam; Barekatain, Mehrdad; Ebrahimi, Maziar; Askari, Bahare

    2010-01-01

    INTRODUCTION The production of smear layer during canal instrumentation is thought to increase coronal microleakage even after canal obturation. Previous studies have shown that the type of irrigant does not necessarily affect the seal of the obturation. Our study aimed to evaluate the effect of three irrigation solutions (MTAD, citric acid and EDTA/NaOCl) on the coronal microleakage of root canals. MATERIALS AND METHODS Fifty five intact single rooted teeth were instrumented and randomly div...

  8. Furrow-irrigated chufa crops in Valencia (Spain). I: Productive response to two irrigation strategies

    OpenAIRE

    N. Pascual-Seva; San Bautista, A.; S. Lopez-Galarza; J. V. Maroto; Pascual, B

    2013-01-01

    Chufa (Cyperus esculentus L. var. sativus Boeck.) is an important vegetable crop in Valencia (Spain), where its tubers are used to produce a refreshing drink called ¿horchata¿. Water is relatively inexpensive, there are no data regarding the volumes of water used to grow chufa, and the irrigation water use efficiency (IWUE) has neither been determined. The aim of this research was to compare the productive responses of the chufa crop to two irrigation strategies (IS). The volumetr...

  9. Identifying the potential for irrigation development in Mozambique: Capitalizing on the drivers behind farmer-led irrigation expansion

    NARCIS (Netherlands)

    Beekman, P.W.; Veldwisch, G.J.A.; Bolding, J.A.

    2014-01-01

    Smallholder irrigation in Central Mozambique predominantly takes place in an informal setting. This renders these smallholders and their activities invisible for policy purposes. Identification efforts of smallholder irrigation as well as the potential for new irrigation development are often the ba

  10. Identifying the potential for irrigation development in Mozambique: Capitalizing on the drivers behind farmer-led irrigation expansion

    Science.gov (United States)

    Beekman, W.; Veldwisch, G. J.; Bolding, A.

    Smallholder irrigation in Central Mozambique predominantly takes place in an informal setting. This renders these smallholders and their activities invisible for policy purposes. Identification efforts of smallholder irrigation as well as the potential for new irrigation development are often the basis for policy setting. But the potential is often approached technocratically: the technical availability of water and land with the assumption that smallholder irrigation is not happening and should be developed. Although more and more effort is done to include social economical aspects into the identification as well, it remains a GIS exercise, based on incomplete data using large pixel sizes, analyzing countries or continents as a whole. This study describes and presents the methodology and the results of an irrigation potential identification exercise carried out in two studies in Central Mozambique. Apart from describing the identification methods used, this study highlights the extent of farmer-led irrigation development, its drivers and the potential for farmer-led smallholder irrigation development. This study demonstrates the prolific nature of smallholder irrigation, arguing for the recognition that smallholder farmers are already developing irrigation and that this should lead to changing the focus of identification efforts towards the drivers behind farmer-led irrigation development. Using these context-specific drivers to define the potential for new irrigation development should result in a better response in policy to both the technical and socio-economical potential of smallholder irrigation development.

  11. Using a Smart-phone for Collecting Discharge Data in Irrigation Furrows in Tanzania.

    Science.gov (United States)

    Pena-Haro, S.; Lüthi, B.; Philippe, T.; Naudascher, R.; Siegfried, T.

    2015-12-01

    When managed effectively and sustainably crop yield in irrigated agriculture can be up to three times than in rainfed agriculture. Unsurprisingly, irrigation agriculture is globally gaining in importance. This is especially true in Africa where the share of irrigated to rainfed agriculture in terms of area cultivated is below global averages. A large-scale expansion of irrigation, nonetheless has the potential to alter the natural hydrological cycle at local up to basin scales. In all cases, a good understanding of the water balance is needed. However, and especially in the developing context, data are scarce and knowledge about the available resources is most often not present. Some of the key reasons are: a) traditional monitoring approaches do not scale in terms of costs, b) repair is difficult and c) vandalism. There is a clear need of cheaper and easy-to-use methods for gathering information on water use and water availability.We have developed a mobile device application for measuring discharge in rivers and irrigation furrows. The discharge is computed by analysing a few seconds of a movie recorded using the built-in camera. The great advantage is that the only requirement is that the field of view contains two reference markers with known scale and with known position relative to the channel geometry, a priori knowledge on the channel geometry and its roughness. The other great advantage is that the data collected (water level, surface velocity and discharge) can be sent via SMS or web-service to a central database.The app is being currently used in a formerly ungauged catchment, the Themi River, which is part of the Pangani Basin in Tanzania. Furrow leaders and community members measure furrow discharges on-farm and monitor water levels in rivers off-farm. These community members were given a smartphone and received thorough training. Additionally, off-grid members have received a mobile recharging solution. Operational Expenses of the community members

  12. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China.

    Science.gov (United States)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca(2+)-HCO3(-) water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na(+)-Cl(-) water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B(3+), F(-), and SO4(2-) and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future. PMID:24221557

  13. Assessment of the Hydrogeochemistry and Groundwater Quality of the Tarim River Basin in an Extreme Arid Region, NW China

    Science.gov (United States)

    Xiao, Jun; Jin, Zhangdong; Wang, Jin

    2014-01-01

    The concentrations of the major and trace elements in the groundwater of the Tarim River Basin (TRB), the largest inland river basin of China, were analyzed before and during rainy seasons to determine the hydrogeochemistry and to assess the groundwater quality for irrigation and drinking purposes. The groundwater within the TRB was slightly alkaline and characterized by high ionic concentrations. The groundwater in the northern sub-basin was fresh water with a Ca2+-HCO3 - water type, whereas the groundwater in the southern and central sub-basins was brackish with a Na+-Cl- water type. Evaporite dissolution and carbonate weathering were the primary and secondary sources of solutes in the groundwater within the basin, whereas silicate weathering played a minor role. The sodium adsorption ratio (SAR), water quality index (WQI), and sodium percentage (%Na) indicated that the groundwater in the northern sub-basin was suitable for irrigation and drinking, but that in the southern and central sub-basins was not suitable. The groundwater quality was slightly better in the wet season than in the dry season. The groundwater could be used for drinking after treatment for B3+, F-, and SO4 2- and for irrigation after control of the sodium and salinity hazards. Considering the high corrosivity ratio of the groundwater in this area, noncorrosive pipes should be used for the groundwater supply. For sustainable development, integrated management of the surface water and the groundwater is needed in the future.

  14. Evaluation of the ground water resources within the Lewiston basin

    International Nuclear Information System (INIS)

    The Lewiston Basin located in North Idaho covers approximately 550 square miles and includes the cities of Lewiston, Idaho and Clarkston, Washington. The deep aquifer in the Lewiston Basin has been declared a sole source aquifer. This system provides the primary water supply for the City of Clarkston Washington and a partial water supply for the City of Lewiston and the Lewiston Orchards Irrigation District. Questions have been raised relative to the maximum yield of the aquifer system with the continued growth of the area. This study addresses the hydrogeology of the basin, along with the locations and mechanisms for recharge and discharge. The geology of the Lewiston Basin consist of Miocene-Pliocene basalt flows overlain by quaternary sediments. The basalt flows were structurally deformed during and after emplacement, thus creating a structural basin with numerous faults. The lower most basalt unit of the Lewiston Basin is the Imnaha Basalt, which is overlain by the Grande Ronde and Wanapum Basalts. The boundaries of the ground water flow system are the same as the structural basin. 7 refs., 4 figs

  15. Bayesian Belief Networks Approach for Modeling Irrigation Behavior

    Science.gov (United States)

    Andriyas, S.; McKee, M.

    2012-12-01

    Canal operators need information to manage water deliveries to irrigators. Short-term irrigation demand forecasts can potentially valuable information for a canal operator who must manage an on-demand system. Such forecasts could be generated by using information about the decision-making processes of irrigators. Bayesian models of irrigation behavior can provide insight into the likely criteria which farmers use to make irrigation decisions. This paper develops a Bayesian belief network (BBN) to learn irrigation decision-making behavior of farmers and utilizes the resulting model to make forecasts of future irrigation decisions based on factor interaction and posterior probabilities. Models for studying irrigation behavior have been rarely explored in the past. The model discussed here was built from a combination of data about biotic, climatic, and edaphic conditions under which observed irrigation decisions were made. The paper includes a case study using data collected from the Canal B region of the Sevier River, near Delta, Utah. Alfalfa, barley and corn are the main crops of the location. The model has been tested with a portion of the data to affirm the model predictive capabilities. Irrigation rules were deduced in the process of learning and verified in the testing phase. It was found that most of the farmers used consistent rules throughout all years and across different types of crops. Soil moisture stress, which indicates the level of water available to the plant in the soil profile, was found to be one of the most significant likely driving forces for irrigation. Irrigations appeared to be triggered by a farmer's perception of soil stress, or by a perception of combined factors such as information about a neighbor irrigating or an apparent preference to irrigate on a weekend. Soil stress resulted in irrigation probabilities of 94.4% for alfalfa. With additional factors like weekend and irrigating when a neighbor irrigates, alfalfa irrigation

  16. Ecological risk analysis of pesticides used on irrigated rice crops in southern Brazil.

    Science.gov (United States)

    Vieira, Danielle Cristina; Noldin, José Alberto; Deschamps, Francisco C; Resgalla, Charrid

    2016-11-01

    Based on studies conducted in the past decade in the southern region of Brazil to determine residue levels of the pesticides normally used on irrigated rice crops, changes can be observed in relation to the presence of pesticides in the waters of the main river basins in Santa Catarina State. In previous harvests, the presence of residues of 7 pesticides was determined, with the herbicide bentazon and the insecticide carbofuran being the products showing highest frequency. Following toxicological tests conducted with 8 different test organisms, deterministic and probabilistic risk analysis was performed to assess the situation of the river basins in areas used for the production of irrigated rice. Of the species tested, the herbicide bentazon showed greatest toxicity toward plants, but did not present an ecological risk because in the worst-case scenario the highest concentration of this pesticide in the environment is 37 times lower than the lowest EC50/LC50 value obtained in the tests. The insecticide carbofuran, which had the highest toxicity toward the organisms used in the tests, presented an ecological risk in the deterministic analysis, but without any associated probability. The results highlight the need for increased efforts in training farmers in crop management practices and for the continual monitor of water bodies for the presence of pesticide residues. PMID:27479455

  17. Ecological risk assessment of irrigation drainage selenium to the endangered razorback sucker

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.B. [Bureau of Reclamation, Salt Lake City, UT (United States)

    1995-12-31

    The razorback sucker is an endangered species in the Colorado River Basin that is nearing extinction. A remnant population is threatened by contamination from irrigation drainage and other sources. Biomarkers and toxicity tests indicate reproductive impairment to adults and acute and chronic toxicity to larval fish. Adult fish are generally more than 20 years old, and no recruitment is occurring. The assessment evaluates all selenium sources, natural and man induced, to the Green River. Selenium discharged directly to the river as inorganic selenate represents a decrease in exposure compared to organic dietary sources introduced to a critical habitat. Fate and transport modeling, biotransformation, and profiling exposure at critical life history ecological boundaries are all important considerations in the risk analysis. Determining realistic safety factors for naturally occurring and essential but potentially toxic trace elements is also essential to formulate alternatives that make common sense. Establishing an obtainable cleanup criteria must consider natural background concentrations, cost effectiveness, and public acceptability. In this case it is more cost effective and provides a greater overall benefit to the river basin to remediate a non-irrigation selenium source. A multi-agency task force has been formed to select and implement remediation that is economically feasible, scientifically sound, politically acceptable, makes common sense, and that protects the razorback sucker.

  18. Hydrological forecast of maximal water level in Lepenica river basin and flood control measures

    Directory of Open Access Journals (Sweden)

    Milanović Ana

    2006-01-01

    Full Text Available Lepenica river basin territory has became axis of economic and urban development of Šumadija district. However, considering Lepenica River with its tributaries, and their disordered river regime, there is insufficient of water for water supply and irrigation, while on the other hand, this area is suffering big flood and torrent damages (especially Kragujevac basin. The paper presents flood problems in the river basin, maximum water level forecasts, and flood control measures carried out until now. Some of the potential solutions, aiming to achieve the effective flood control, are suggested as well.

  19. Satellite surveillance of evaporative depletion across the Indus Basin

    Science.gov (United States)

    Bastiaanssen, Wim G. M.; Ahmad, Mobin-Ud-Din; Chemin, Yann

    2002-12-01

    The irrigated Indus Basin in Pakistan has insufficient water resources to supply all its stakeholders. Information on evaporative depletion across the Basin is an important requirement if the water resources are to be managed efficiently. This paper presents the Surface Energy Balance Algorithm for Land (SEBAL) method used to compute actual evapotranspiration for large areas based on public domain National Oceanic and Atmospheric Administration (NOAA) satellite data. Computational procedures for retrieving actual evapotranspiration from satellites have been developed over the last 20 years. The current work is among the first applications used to estimate actual evapotranspiration on an annual scale across a vast river basin system with a minimum of ground data. Only sunshine duration and wind speed are required as input data for the remote sensing flux algorithm. The results were validated in the Indus Basin by comparing results from a field-scale transient moisture flow model, in situ Bowen ratio measurements, and residual water balance analyses for an area of 3 million ha. The accuracy of assessing time-integrated actual annual evapotranspiration varied from 0% to 10% on a field scale to 5% at the regional level. Spatiotemporal information on actual evapotranspiration helps to evaluate water distribution and water use between large irrigation project areas. Wide variations in evaporative depletion between project areas and crop types were found. Satellite-based measurements can provide such information and avoid the need to rely on field databases.

  20. Simulated errors in deep drainage beneath irrigated settings: Partitioning vegetation, texture and irrigation effects using Monte Carlo

    Science.gov (United States)

    Gibson, J. P.; Gates, J. B.; Nasta, P.

    2014-12-01

    Groundwater in irrigated regions is impacted by timing and rates of deep drainage. Because field monitoring of deep drainage is often cost prohibitive, numerical soil water models are frequently the main method of estimation. Unfortunately, few studies have quantified the relative importance of likely error sources. In this study, three potential error sources are considered within a Monte Carlo framework: water retention parameters, rooting depth, and irrigation practice. Error distributions for water retention parameters were determined by 1) laboratory hydraulic measurements and 2) pedotransfer functions. Error distributions for rooting depth were developed from literature values. Three irrigation scheduling regimes were considered: one representing pre-scheduled irrigation ignoring preceding rainfall, one representing pre-scheduled irrigation that was altered based on preceding rainfall, and one representing algorithmic irrigation scheduling informed by profile matric potential sensors. This approach was applied to an experimental site in Nebraska with silt loam soils and irrigated corn for 2002-2012. Results are based on Six Monte-Carlo simulations, each consisting of 1000 Hydrus 1D simulations at daily timesteps, facilitated by parallelization on a 12-node computing cluster. Results indicate greater sensitivity to irrigation regime than to hydraulic or vegetation parameters (median values for prescheduled irrigation, prescheduled irrigation altered by rainfall, and algorithmic irrigation were 310 ,100, and 110 mm/yr, respectively). Error ranges were up to 700% higher for pedotransfer functions than for laboratory-measured hydraulic functions. Deep drainage was negatively correlated with alpha and maximum root zone depth and, for some scenarios, positively correlated with n. The relative importance of error sources differed amongst the irrigation scenarios because of nonlinearities amongst parameter values, profile wetness, and deep drainage. Compared to pre

  1. Precision overhead irrigation is suitable for several Central Valley crops

    Directory of Open Access Journals (Sweden)

    Jeffrey P. Mitchell

    2016-04-01

    Full Text Available Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotton, tomato, onion and broccoli as an alternative to furrow and drip irrigation. With the exception of tomato, equal or increased yields were achieved with overhead irrigation. Many variables are involved in the choice of an irrigation system, but our results suggest that, with more research to support best management practices, overhead irrigation may be useful to a wider set of California farmers than currently use it.

  2. Basin-wide water accounting using remote sensing data: the case of transboundary Indus Basin

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2012-11-01

    Full Text Available The paper describes the application of a new Water Accounting Plus (WA+ framework to produce spatial information on water flows, sinks, uses, storages and assets, in the Indus Basin, South Asia. It demonstrates how satellite-derived estimates of land use, land cover, rainfall, evaporation (E, transpiration (T, interception (I and biomass production can be used in the context of WA+. The results for one selected year showed that total annual water depletion in the basin (502 km3 plus outflows (21 km3 exceeded total precipitation (482 km3. The deficit in supply was augmented through abstractions beyond actual capacity, mainly from groundwater storage (30 km3. The "landscape ET" (depletion directly from rainfall was 344 km3 (69% of total consumption. "Blue water" depletion ("utilized flow" was 158 km3 (31%. Agriculture was the biggest water consumer and accounted for 59% of the total depletion (297 km3, of which 85% (254 km3 was through irrigated agriculture and the remaining 15% (44 km3 through rainfed systems. While the estimated basin irrigation efficiency was 0.84, due to excessive evaporative losses in agricultural areas, half of all water consumption in the basin was non-beneficial. Average rainfed crop yields were 0.9 t ha−1 and 7.8 t ha−1 for two irrigated crop growing seasons combined. Water productivity was low due to a lack of proper agronomical practices and poor farm water management. The paper concludes that the opportunity for a food-secured and sustainable future for the Indus Basin lies in focusing on reducing soil evaporation. Results of future scenario analyses suggest that by implementing techniques to convert soil evaporation to crop transpiration will not only increase production but can also result in significant water savings that would ease the pressure on the fast

  3. Preserving the World Second Largest Hypersaline Lake under Future Irrigation and Climate Change

    Science.gov (United States)

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle; Pastor, Amandine; Kabat, Pavel

    2016-04-01

    Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.9•109 m3 water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake.

  4. Incorporating local institutions in irrigation experiments: evidence from rural communities in Pakistan

    Directory of Open Access Journals (Sweden)

    Aneeque Javaid

    2015-06-01

    Full Text Available Many irrigation systems are special cases of common-pool resources (CPRs in which some users have preferential access to the resource, which in theory aggravates collective action challenges such as the under-provision of necessary infrastructure as a result of unequal appropriation of water resources. We present experimental evidence based on an irrigation game played in communities that are dependent on one of the largest contiguous irrigation network: the Indus basin irrigation system in Punjab, Pakistan. Furthermore, we simulate two institutional mechanisms that are neglected in experimental studies, despite their importance in many CPR governance systems: traditional authorities and legal pluralism. In our experiments, Punjabi farmers (N = 160 managed to provide the CPR at a level close to the social optimum, even without communication or enforcement opportunities. The equal investment in water infrastructure seems to be a strong social norm, even though those in disadvantageous positions (tail-users earn less than those who have preferential access (head-users. At the same time, head-users restrain themselves from maximum resource extraction, which could be interpreted either as a norm or a stationary bandit strategy. In contrast to one of the most consistent findings of previous experimental studies, the participants in our experiment increased their earnings over the experimental rounds by using the available resources in a more efficient manner. One explanation for this behavior could be the availability of social information in our game. Starting from a high level of cooperation during baseline rounds, the treatments did not change the group investment significantly. The introduction of external sanctions created additional coordination problems, which led to a decrease in the level of group welfare. More specifically, head-users reduced their water extraction in the face of possible external sanctions to a level that the remaining

  5. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    Science.gov (United States)

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

  6. Preserving the world second largest hypersaline lake under future irrigation and climate change.

    Science.gov (United States)

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle T H; Pastor, Amandine; Kabat, Pavel

    2016-07-15

    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10(9)m(3) water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake.

  7. Preserving the world second largest hypersaline lake under future irrigation and climate change.

    Science.gov (United States)

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle T H; Pastor, Amandine; Kabat, Pavel

    2016-07-15

    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10(9)m(3) water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake. PMID:27070383

  8. Groundwater use for irrigation – a global inventory

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2010-06-01

    Full Text Available Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1 277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha, China (19 million ha and the United States of America (17 million ha. Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  9. Groundwater use for irrigation – a global inventory

    Directory of Open Access Journals (Sweden)

    S. Siebert

    2010-10-01

    Full Text Available Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr−1, or 43% of the total consumptive irrigation water use of 1277 km3 yr−1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha, China (19 million ha and the USA (17 million ha. Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  10. Drip irrigation management in different chufa planting strategies: yield and irrigation water use efficiency

    Science.gov (United States)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo

    2013-04-01

    In a study presented in the EGU assembly 2012, it was analysed how yield and irrigation water use efficiency (IWUE) in chufa (Cyperus esculentus L. var. sativus), crop, were affected by planting strategy (ridges and flat raised beds, with two and three plant rows along them) and irrigation system [furrow (FI) and drip irrigation (DI)]. Each irrigation session started when the Volumetric Soil Water Content (VSWC) in ridges dropped to 80% of field capacity; beds were irrigated simultaneously with ridges and with the same irrigation duration. R produced lower yield than the two types of beds, and yields in DI were higher than those FI. Ridges led to the highest IWUE with DI, and to the lowest with FI. Then, it was decided to analyse, in DI, how yield and IWUE responded to start each irrigation session when the VSWC in the central point of different planting strategies [ridges (R), and flat raised beds with two (b) and three (B) plant rows along them] dropped to 80% of field capacity. In R and b, plants were irrigated by a single dripline per plant row, while in B two irrigation layouts were assayed: a single dripline per plant row (B3) and two driplines per bed (B2), placing each dripline between two planting rows. Irrigation session stop was also automated as a function of the VSWC. Results show that yield was affected (P˜0.01) by planting strategy; the greatest yield was obtained in b (2.4 kgm-2), differing (P˜0.05) from that obtained in R (2.1 kgm-2), with intermediate yields in B2 (2.3 kgm-2) and B3 (2.3 kgm-2). Yield was not affected (P˜0.05) by the utilisation of two or three driplines in B. Considerably less irrigation water was applied (IWA) in R (376 mm) than in B3 (465 mm), B2 (475 mm) and b (502 mm). This automatic irrigation management, as a function of the VSWC in each planting strategy, lead to adjust the IWA to the plant water requirements, which were similar in all three flat raised beds, since they correspond to the same planting density, that was

  11. Improving irrigation management in L'Horta Nord (Valencia, Spain)

    Science.gov (United States)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, Jose Vicente; Pascual, Bernardo

    2014-05-01

    L'Horta Nord is an important irrigation district in Valencia (Spain), especially for vegetable crops. The traditional cropping pattern in the region consists of a rotation of chufa with crops such as potato, onion, lettuce, escarole and red cabbage, being all these crops furrow irrigated. Currently, the quality of the water used is acceptable, water is not expensive and there are no limitations on supply. Consequently, growers are not aware of the volumes of water used, application efficiencies, nor water productivity for any of the crops cited. The European Framework Directive 2000/60, based on the precautionary principle, considers preventive action for measures to be taken; moreover, drought periods are becoming more frequent and extended, and water is being diverted to other uses. Thus, water use is an issue to improve. In this sense, the current situation of the irrigation in the area is analysed using chufa (Cyperus esculentus L. var. sativus Boeck.) as representative of the crops, since most of the crops in the area have shallow root systems, as chufa, which are irrigated in similar patterns. In order to analyse the irrigation performance of the traditional chufa crop as well as to achieve more sustainable results, different studies have been carried out, during the last decade. Efforts have been directed to increase water productivity, increasing yield and minimising the volumes of water applied. Different planting configurations and different irrigation thresholds, not only in furrow irrigation but also in drip irrigation, are examples of how the irrigation performance could be improved. Herein is presented a two-year study, comparing, in both furrow and drip irrigation, two irrigation schedules based on the volumetric soil water content, which was continuously monitored using capacitance sensors. Yield was significantly affected by the growing season, the irrigation system and by the irrigation schedule, and by the second order interactions of the

  12. Deficit subsurface drip irrigation of cotton

    International Nuclear Information System (INIS)

    An experiment in arid west Texas, United States of America, grew cotton with subsurface drip irrigation providing four basic levels of water resource and three row widths (1.02 m, 0.76 m, and approximately 0.38 m). The former two row-width treatments contained three planting configurations (a full pattern and two skip patterns). In all, there were seven row-width-pattern configurations, each of which had four water levels, for a total of 28 treatments. Where farmers do not have enough water with which to irrigate their crops, they may choose: (1) to reduce their planted area and apply more water (up to the full water requirement) on this portion of their land; or (2) plant the entire area, whereby they apply a quantity of irrigation water that only partially meets consumptive use requirements. The purpose of this study was to develop mathematical characterizations for yield as a function of water resource for various popular row width/patterns, and then to use these equations in crop budget models to determine economically optimum scenarios for local cotton growers. The full cotton production budgets were based on a 405-ha farm. The assumed water resource varied from scarcely any to enough, with proper management, to supply the majority of crop water needs. In almost all scenarios, it was economically sound to stretch the water resource over the entire farm, rather than to try to maximize yield on portions of the farm. A break-even economic water resource between covering the entire farm irrigating only portions of it was about 2.0 mm/day. Ultra-narrow-row treatments significantly exceeded the treatments with traditional row widths at all four water levels. The highest yield of lint was 1 833 kg/ha. Applying large portions of the moisture requirement as pre-planting irrigation enabled yields of 600-900 kg/ha of lint for the full pattern width treatments on the smallest water treatment, which applied 36 mm of in-season irrigation. The skip-row patterns did not yield

  13. The fluid mechanics of root canal irrigation.

    Science.gov (United States)

    Gulabivala, K; Ng, Y-L; Gilbertson, M; Eames, I

    2010-12-01

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  14. The fluid mechanics of root canal irrigation

    International Nuclear Information System (INIS)

    Root canal treatment is a common dental operation aimed at removing the contents of the geometrically complex canal chambers within teeth; its purpose is to remove diseased or infected tissue. The complex chamber is first enlarged and shaped by instruments to a size sufficient to deliver antibacterial fluids. These irrigants help to dissolve dying tissue, disinfect the canal walls and space and flush out debris. The effectiveness of the procedure is limited by access to the canal terminus. Endodontic research is focused on finding the instruments and clinical procedures that might improve success rates by more effectively reaching the apical anatomy. The individual factors affecting treatment outcome have not been unequivocally deciphered, partly because of the difficulty in isolating them and in making the link between simplified, general experimental models and the complex biological objects that are teeth. Explicitly considering the physical processes within the root canal can contribute to the resolution of these problems. The central problem is one of fluid motion in a confined geometry, which makes the dispersion and mixing of irrigant more difficult because of the absence of turbulence over much of the canal volume. The effects of treatments can be understood through the use of scale models, mathematical modelling and numerical computations. A particular concern in treatment is that caustic irrigant may penetrate beyond the root canal, causing chemical damage to the jawbone. In fact, a stagnation plane exists beyond the needle tip, which the irrigant cannot penetrate. The goal is therefore to shift the stagnation plane apically to be coincident with the canal terminus without extending beyond it. Needle design may solve some of the problems but the best design for irrigant penetration conflicts with that for optimal removal of the bacterial biofilm from the canal wall. Both irrigant penetration and biofilm removal may be improved through canal fluid

  15. Utilizing geophysical methods for asessment and characterization of canal seepage in El Paso's lower valley irrigation delivery systems

    Science.gov (United States)

    Cegon, Amanda Brooke

    El Paso County Water Improvement District No. 1 (EPCWID No.1) delivers the Rio Grande water for agricultural production and urban uses through numerous networked irrigation canals. Of the nearly 86 billion gallons of water released annually for irrigation uses in Texas, billions are lost due to evaporation and seepage in unlined canals with 56 million gallons of the billions are lost in Franklin Canal annually due to improper lining and sediment variation of the canals. To characterize seepage patterns and identify areas of high seepage, Electrical Resistivity, Ground Truthing via soil sample analysis were used along three, half-mile long sectioned canals during irrigation and non-irrigation seasons. The data lines acquired were processed in EARTHIMAGER 2D to create 2D vertical resistivity inversion profiles to locate potential areas of high seepage/high resistivity. The research results will help El Paso County Water Improvement District No. 1 to develop management strategies to conserve water and improve the delivery efficiency systems which leads to economic growth in the Rio Grande Basin.

  16. EVALUATION OF WATER QUALITY FOR IRRIGATION IN

    Directory of Open Access Journals (Sweden)

    Erivelto Mercante

    2011-04-01

    Full Text Available Given the quest for sustainable development and rational use of resources natural, the implementation of irrigation systems becomes a necessity in regions of seasonal scarcity of water and great agricultural productivity, as in case of Paraná. Thus, the objective was to evaluate the parameters Physico-chemical water quality in the city of Salto do Lontra –Paraná. The Physical-chemical analysis included: pH, Electrical Conductivity (EC, Total Solids Soluble (STS, nitrate (N-NO3, RAS, Sodium (Na++, chlorine (Cl- and bicarbonate (HCO3, being held in 40 properties, according to APHA (1998. The analysis Statistical surveys were performed using the Minitab 15 software. The results in the study period, showed average values in the range limits recommended by FAO for the use ofirrigation water considering all parameters measured and there was no restrictions on water use in irrigation.

  17. Genetic base of Brazilian irrigated rice cultivars

    Directory of Open Access Journals (Sweden)

    Hudson de Oliveira Rabelo

    2015-08-01

    Full Text Available The aim of this study was to estimate the genetic base of Brazilian irrigated rice cultivars released in the period from 1965 to 2012. The genealogies of the cultivars were obtained based on information from marketing folders, websites, crossings records, and scientific articles. The following factors were calculated: relative genetic contribution (RGC, accumulated genetic contribution (AGC, frequency (in percentage of each ancestor in the genealogy (FAG, number of ancestors that constitute each cultivar (NAC,number of ancestors responsible for 60%, 70%, 80% and 90% of the genetic base (NAGB, and average number of ancestor per cultivar (ANAC. The cultivars were also grouped based on the period of release (1965-1980, 1981-1990, 1991-2000 and 2001-2012. For each grouping, the previously described factors were also estimated. A total of 110 cultivars were studied and it was concluded that the genetic base of Brazilian irrigated rice cultivars is narrow.

  18. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.;

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P ... and height and caused delay and reduction in seed emergence, quinoa was shown to be more resistant than chickpea. Dry biomass, seed yield, harvest index and crop water productivity were affected significantly (P ... and seed yield for both quinoa and chickpea while increasing salinity resulted in increase - in the case of quinoa - and decrease - in the case of chickpea - in harvest index and crop water productivity. Na+ and Na+/K+ ratio increased with increasing irrigation water salinity, while K+ content decreased...

  19. Development of Strategies for Sustainable Irrigation Water Management in Russia

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    During 1960 - 1990 years irrigated areas in Russia have increased rapidly, helping to boost agricultural output. Although the impressive achievements of irrigation in this period its large experience indicates problems and failures of irrigation water management. In addition to large water use and low irrigation water efficiency, environmental concerns (excessive water depletion, water quality reduction, water logging, soil degradation) are usually considered like the most significant problem of the irrigation sector. Despite of considerable shrinking of irrigated areas in Russia and decreasing of water withdrawal for irrigation purposes during two last decades a degradation of environment as well as degradation of soil and water resources in irrigated areas was prolonged and will probably continue if current irrigation practices are maintained. Nowadays, in different regions of Russia there are societal demand to restore agricultural irrigation in Russia as answer to challenges from climate pattern changes and degradation of land & water resources. In the respect of these demands there is a need to develop strategies for sustainability of agricultural irrigation in Russia that should be based on three main societal objectives: costeffective use of water in irrigated agriculture at farm level, and satisfactory preserving the natural environment. Therefore sustainable irrigation water management is not only an objective at farm level but also an overall goal at the local and regional as well. A way to achieve sustainability in irrigation water management is to solve the local conflicts arising from the interactions between water use at irrigation areas and surrounding environment. Thus should be based on the development of irrigation framework program including on the irrigation water management issues, policies & decisions making at federal and regional levels should be based on the indicators of environment & irrigation water efficiency monitoring promoting the

  20. Mapping Soil hydrologic features in a semi-arid irrigated area in Spain

    Science.gov (United States)

    Jiménez-Aguirre, M.° Teresa; Isidoro, Daniel; Usón, Asunción

    2016-04-01

    The lack of soil information is a managerial problem in irrigated areas in Spain. The Violada Irrigation District (VID; 5234 ha) is a gypsic, semi-arid region in the Middle Ebro River Basin, northeast Spain. VID is under irrigation since the 1940's. The implementation of the flood irrigation system gave rise to waterlogging problems, solved along the years with the installation of an artificial drainage network. Aggregated water balances have been performed in VID since the early 1980's considering average soil properties and aggregated irrigation data for the calculations (crop evapotranspiration, canal seepage, and soil drainage). In 2008-2009, 91% of the VID was modernized to sprinkler irrigation. This new system provides detailed irrigation management information that together with detailed soil information would allow for disaggregated water balances for a better understanding of the system. Our goal was to draw a semi-detailed soil map of VID presenting the main soil characteristics related to irrigation management. A second step of the work was to set up pedotransfer functions (PTF) to estimate the water content and saturated hydraulic conductivity (Ks) from easily measurable parameters. Thirty four pits were opened, described and sampled for chemical and physical properties. Thirty three additional auger holes were sampled for water holding capacity (WHC; down to 60 cm), helping to draw the soil units boundaries. And 15 Ks tests (inverse auger hole method) were made. The WHC was determined as the difference between the field capacity (FC) and wilting point (WP) measured in samples dried at 40°C during 5 days. The comparison with old values dried at 105°C for 2 days highlighted the importance of the method when gypsum is present in order to avoid water removal from gypsum molecules. The soil map was drawn down to family level. Thirteen soil units were defined by the combination of five subgroups [Typic Calcixerept (A), Petrocalcic Calcixerept (B), Gypsic

  1. Solar Energy Based Automated Irrigation System

    Directory of Open Access Journals (Sweden)

    Prof. Lodhi A. K.

    2013-09-01

    Full Text Available In the field of agriculture, use of proper method of irrigation is important because the main reason is the lack of rains {&} scarcity of land reservoir water. The continuous extraction of water from earth is reducing the water level due to which lot of land is coming slowly in the zones of un-irrigated land. Another very important reason of this is due to unplanned use of water due to which a significant amount of water goes waste. For this purpose; we use this automatic plant irrigation system. In this project we use solar energy which is used to operate the irrigation pump. The circuit comprises of sensor parts built using op-amp IC LM358. Op-amp are configured here as a comparator. Two stiff copper wires are inserted in the soil to sense whether the soil is wet or dry. The Microcontroller is used to control the whole system by monitoring the sensors and when sensors sense the dry condition then the microcontroller will send command to relay driver IC the contacts of which are used to switch on the motor and it will switch off the motor when all the sensors are in wet condition. The microcontroller does the above job as it receives the signal from the sensors through the output of the comparator, and these signals operate under the control of software which is stored in ROM of the Microcontroller. The condition of the pump i.e., ON/OFF is displayed on a 16X2 LCD

  2. Antimicrobial Irrigants in the Endodontic Therapy

    OpenAIRE

    Iqbal, Azhar

    2012-01-01

    This paper highlights the importance of root canal disinfection. It discusses the different endodontic irrigants available and comments on how these can be used most effectively. Eliminating bacteria from the root canal system is an essential stage in endodontic therapy. An objective of endodontic treatment is removal of diseased tissue, elimination of bacteria from the canal system and prevention of recontamination. (1) Disinfection of the root canal system, as part of endodontic therapy, by...

  3. Surfactant improves irrigant penetration into unoperated sinuses

    OpenAIRE

    Rohrer, Joseph W.; Dion, Greg R.; Brenner, Pryor S.; Abadie, Wesley M.; McMains, Kevin C.; Thomas, Roy F.; Weitzel, Erik K.

    2012-01-01

    Background: Saline irrigations are proving to be a valuable intervention in the treatment of chronic sinusitis. The use of surfactants is a well established additive to topical treatments known to reduce surface tension and may prove to be a simple, nonoperative intervention to improve intrasinus douching penetration. Methods: Six 30-mL, flat-bottomed medicine cups with circular holes cut through the bottom center and varying in diameter from 1 to 6 mm were created with punch biopsies. Water,...

  4. Future dairy farming systems in irrigation regions

    OpenAIRE

    Ho, Christie K.M.; Nesseler, R.; Doyle, Peter T.; Malcolm, Bill

    2005-01-01

    The dairy industry in northern Victoria has been subject to rapid change in recent years, resulting in great diversity in the irrigated dairy farming systems in the region. Continuing analysis is needed of the various farming systems that may be viable in the future. This study examined possible development options for different farm systems to enable them to maintain financial viability. Four case studies, representative of different farm systems, were used. All four had options to combat th...

  5. Comparative anti-microbial efficacy of Azadirachta indica irrigant with standard endodontic irrigants: A preliminary study

    Directory of Open Access Journals (Sweden)

    Arindam Dutta

    2014-01-01

    Full Text Available Objective: The anti-microbial efficacy of 2.5% sodium hypochlorite (SHC and 0.2% chlorhexidine gluconate were compared with an experimental irrigant formulated from the Neem tree, Azadirachta indica A. Juss. Materials and Methods: A sample of 36 single rooted anterior teeth with periapical radiolucency and absence of response to vitality tests that required root canal treatment were selected for this study. The test irrigants and their combinations were assigned to five different groups and saline served as the control. Access cavities were prepared using an aseptic technique and samples collected for both anaerobic culture and Gram stained smears, followed by irrigation and sample collection again. The number of organisms were expressed in colony forming units/ml after 72 h of incubation; the smears were analyzed for their microbial loads and tissue clearance and assessed as per defined criteria. Results: Our results found the maximum reduction in microbial loads, when analyzed by culture method, with a combination of SHC and the experimental neem irrigant. Maximum tissue clearance on the Gram Stained smears was also found with the same combination. Conclusion: Neem irrigant has anti-microbial efficacy and can be considered for endodontic use.

  6. EFFECT OF GROUNDWATER TABLE CONTROL ON WATER SAVING IRRIGATION STRATEGIES IN THE QINGTONGXIA IRRIGATION DISTRICT

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-gui; HOLLANDERS P. H. J.

    2004-01-01

    This paper focuses on the analysis of the effects of groundwater table control under different irrigation water amounts on the water and salinity balance and on crop yield. Two experimental areas, the Pingluo and Huinong experimental sites, were selected to collect the required data.The agro-hydrological model Soil-Water Atmosphere-Plant(SWAP) was used to analyse the water flows and salt transport processes for different groundwater levels and irrigation scenarios. Six scenarios, which resulted from different groundwater table regimes combined with different irrigation amounts, were simulated. The results show that high groundwater tables due to the excessive irrigation are the main cause of the large amount of drainage water and low crop yield;reducing irrigation water without a lower groundwater table will not lead to a large reduction of the drainage water, and will reduce the crop yield even more; to lower the groundwater table is a good measure to control the drainage water and increase crop yield.

  7. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    Directory of Open Access Journals (Sweden)

    Jochen Hemming

    2009-04-01

    Full Text Available Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of efficient irrigation systems, which includes the implementation of a suitable method for precise scheduling. At the farm level, irrigation is generally scheduled based on the grower’s experience or on the determination of soil water balance (weather-based method. An alternative approach entails the measurement of soil water status. Expensive and sophisticated root zone sensors (RZS, such as neutron probes, are available for the use of soil and plant scientists, while cheap and practical devices are needed for irrigation management in commercial crops. The paper illustrates the main features of RZS’ (for both soil moisture and salinity marketed for the irrigation industry and discusses how such sensors may be integrated in a wireless network for computer-controlled irrigation and used for innovative irrigation strategies, such as deficit or dual-water irrigation. The paper also consider the main results of recent or current research works conducted by the authors in Tuscany (Italy on the irrigation management of container-grown ornamental plants, which is an important agricultural sector in Italy.

  8. Effects of irrigation efficiency on chemical transport processes

    Institute of Scientific and Technical Information of China (English)

    WANG Kang; ZHANG RenDuo; SHENG Feng

    2009-01-01

    Irrigation practices greatly affect sustainable agriculture development.In this study, we investigated the effects of irrigation efficiency on water flow and chemical transport in soils, which had significant impact on the environment.Field dye staining experiments were conducted at different soils with various irrigation amount.Image analysis was conducted to study the heterogeneous flow patterns and their relationships with the irrigation efficiency.Irrigation efficiency and its environmental effects were evaluated using various indictors, including application efficiency, deep percolation ratio, storage effi-ciency, and uniformity.Under the same irrigation condition, soil chemical distributions were more het-erogeneous than soil water distributions.The distributions were mainly affected by soil texture, initial soil water content, and irrigation amount.Storage efficiency, irrigation uniformity, and deep percolation ratio increased with irrigation amount.Since the chemical distribution uniformity was lower than the water uniformity, the amount of chemical leaching increased sharply with decrease of irrigation uni-formity, which resulted in high environmental risks of groundwater pollution.

  9. Effects of traditional flood irrigation on invertebrates in lowland meadows.

    Directory of Open Access Journals (Sweden)

    Jens Schirmel

    Full Text Available Lowland meadow irrigation used to be widespread in Central Europe, but has largely been abandoned during the 20th century. As a result of agri-environment schemes and nature conservation efforts, meadow irrigation is now being re-established in some European regions. In the absence of natural flood events, irrigation is expected to favour fauna typical of lowland wet meadows. We analysed the effects of traditional flood irrigation on diversity, densities and species composition of three invertebrate indicator taxa in lowland meadows in Germany. Unexpectedly, alpha diversity (species richness and Simpson diversity and beta diversity (multivariate homogeneity of group dispersions of orthopterans, carabids, and spiders were not significantly different between irrigated and non-irrigated meadows. However, spider densities were significantly higher in irrigated meadows. Furthermore, irrigation and elevated humidity affected species composition and shifted assemblages towards moisture-dependent species. The number of species of conservation concern, however, did not differ between irrigated and non-irrigated meadows. More variable and intensive (higher duration and/or frequency flooding regimes might provide stronger conservation benefits, additional species and enhance habitat heterogeneity on a landscape scale.

  10. Climate Change Impacts of Irrigation on the Central High Plains

    Science.gov (United States)

    Cotterman, K. A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2015-12-01

    Since the 1940s, the High Plains Aquifer (HPA) has been pivotal for irrigation over the Central High Plains (CHP), a region spanning parts of five states in the central U.S.. Today after decades of over-pumping, many areas of the CHP are no longer able to irrigate due to localized depletion of the HPA. With a range of global climate models predicting an increase in temperature and decrease in growing-season precipitation for the CHP, demand for irrigation is likely to increase and exacerbate drawdown and depletion of the aquifer. Here we apply the Landscape Hydrology Model (LHM) coupled with the crop simulation model SALUS to simulate irrigation water use in response to historical climate and land use. This model is validated using historical groundwater levels. We then simulate future climate scenarios to predict how irrigation demand and water availability will alter the hydrology of the CHP. This study provides a predictive relationship of future irrigation demand linked to both climate change and agricultural management, and presents a modeling approach to answer two questions: How will future climate change affect irrigation demand? How will climate change and irrigation demand affect groundwater availability for the future? Different climate scenarios based on the representative concentration pathways (RCPs) are used to simulate the impact of different projected future climate conditions through the year 2100. By examining predicted groundwater levels along with saturated thickness we analyze where irrigation is likely to be viable in the future and compare this to current irrigation extent.

  11. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  12. Men, Masculinities and Water Powers in Irrigation

    Directory of Open Access Journals (Sweden)

    Margreet Zwarteveen

    2008-06-01

    Full Text Available The aim of this article is to provide an informed plea for more explicitly identifying, naming and unravelling the linkages between water control and gender in irrigation. The fact that power, expertise and status in irrigation tend to have a strong masculine connotation is by now quite well established, and underlies calls for more women in water decision making, engineering education and professions. Yet, the questions of how and why water control, status and expertise are linked to masculinity, and of whether and how such links work to legitimise the exercise of power, are seldom asked. To date, associations between masculinity and professional water performance have largely been taken for granted and remained unexamined. The resulting perceived normalcy makes mechanisms of (gendered power and politics in water appear self-evident, unchangeable, and indeed gender-neutral. The article reviews examples of the masculinity of irrigation in different domains to argue that exposing and challenging such hitherto hidden dimensions of (gendered power is important for the identification of new avenues of gender progressive change, and for shedding a new and interesting light on the workings of power in water.

  13. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  14. Land and Water Use in Rice-upland Crop Rotation Areas in Lower Ili River Basin, Kazakhstan

    Institute of Scientific and Technical Information of China (English)

    SHIMIZU Katsuyuki; KITAMURA Yoshinobu; ANZAI Toshihiko; KUBOTA Jumpei

    2010-01-01

    The lower Ili River Basin is located in semi-arid area, and the annual rainfall is 177 mm. Therefore, the irrigation is inevitable for agriculture. Large-scale irrigated agriculture had been developed since 1960's in the lower parts of the river and the total irrigated area is about 32 000 hm2. In the project area, the paddy nee-upland crop rotation has been practiced. Due to the domestic water use for hydropower and agriculture as well as water use among riparian countries, the deficit of water for agriculture in the lower part has been concerned. The authors, therefore, conducted the field survey and water balance analysis of the Akdara irrigation project in the lower Ili River Basin in order to assess the land and water uses. Moreover, the impact of the water use on water environment to the basin was analyzed. The following results were obtained as following (1) the groundwater level in the irrigated district varied from 1.5 m to 3.5 m through year. (2) 1970's groundwater level was drastically raised from 8 m to 3 m and the groundwater had been recharged in this period. (3) Water use efficiency of agriculture, which is the ratio of total evapotranspiration to the total water withdrawal was as low as 0.23.

  15. Economic impact of alternative policy responses to prolonged and severe drought in the Rio Grande Basin

    Science.gov (United States)

    Booker, James F.; Michelsen, Ari M.; Ward, Frank A.

    2005-02-01

    In the Rio Grande Basin, water is overallocated, demands are growing, and river flows and uses are vulnerable to drought and climate change. Currently, the basin is in the third year of severe drought; irrigation and municipal water diversions have been severely curtailed; extensive diversions threaten endangered species, and reservoir volumes are nearly depleted. A central challenge is development of policies that efficiently and equitably allocate the basin's water resources among competing uses across political and institutional jurisdictions. A basin-wide, nonlinear programming model optimizes resource allocations and water use levels for the upper part of the Rio Grande Basin to test whether institutional adjustments can reduce damages caused by drought. Compared to existing institutions, we find that future drought damages could be reduced by 20 and 33% per year through intracompact and interstate water markets, respectively, that would allow water transfers across water management jurisdictions. Results reveal economic tradeoffs among water uses, regions, and drought control strategies.

  16. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  17. Irrigation-based livelihood challenges and opportunities : a gendered technology of irrigation development intervention in the Lower Moshi irrigation scheme Tanzania

    NARCIS (Netherlands)

    Kissawike, K.

    2008-01-01

    This thesis is a study of a modernised irrigation scheme in Tanzania. It aims to understand how irrigation and agricultural technologies have interacted with local society to transform production, paying particular attention to gender relations and changes for women farmers. The thesis seeks to c

  18. Energy performance of sprinkler irrigated maize, wheat and sunflower in Vigia irrigation district

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Sandra; Rodrigues, Goncalo Caleia; Paredes, Paula; Pereira, Luis S. [Centro de Engenharia dos Biossistemas (CEER/ISA), Lisboa (Portugal)], E-mail: lspereira@isa.utl.pt

    2008-07-01

    The energy potential of a crop may be evaluated through life cycle assessment methodologies. These refer to the computation of the crop's energy balance and other related indicators, such as the energy ratio and the energetic efficiency, that may be used as to assess how a given irrigated crop may be used for production of biofuel. This study concerns sprinkler irrigated sunflower, wheat and maize crops using data relative to the campaign of 2007 in the Vigia Irrigation District, Alentejo. A model was developed and various scenarios were considered. The modelling results lead to the conclusion that the maize crop is the most efficient in producing energy and sunflower is the least one for all the alternative scenarios considered. (author)

  19. Assessing the costs of water and electrical energy for banana irrigated by sprinkler in State of Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    José Dantas Neto

    2008-12-01

    Full Text Available The main goal of this research was carried out an evaluation on costs of water and electricity for fruit irrigated by sprinkler irrigation in agricultural planning. Originally was obtained the demands of gross water and electricity for the cultivation of bananas for 15 municipalities spread over the Paraiba River, in the state of Paraiba, which was used sprinkler irrigation system. The city of João Pessoa, located in the lower Rio Paraiba, is the site of lowest consumption of water, requiring 37.71% of the amount required at county of Desterro for papaya. Desterro, is located in the sub-basin of the Taperoá, had the highest annual and daily evapotranspiration, combined with the lowest annual rainfall likely at a 75% probability of occurring. The cities were chosen because they had a greater variance in terms of climate, in order to examine various demands for irrigation. The rate of energy for Campina Grande has CELB as concessionaire of energy, and for other localities, SAELPA. The results showed that municipalities belonging to the sub-basin of the Taperoá require a higher water demand due to a higher evapotranspiration, and a low rainfall and hence a greater impact on costs.

  20. Traditional Irrigation Management in Betmera-Hiwane, Ethiopia: The Main Peculiarities for the Persistence of Irrigation Practices

    Institute of Scientific and Technical Information of China (English)

    Solomon Habtu; Kitamura Yoshinobu

    2006-01-01

    Traditional irrigation, as part of the ancient agricultural practices in northern Ethiopia (Tigray), has persisted for long time since 500 B.C.,while many newly introduced irrigation projects have usually failed there. The main objective of this study is thus to investigate the peculiarities pertinent to irrigation management and those having contributed for the persistence of traditional irrigation practices for a long period of time. The experience gained from such areas can definitely help make irrigation management system of new irrigation schemes sustainable. Betmera-Hiwane, one of the ancient traditional irrigation areas in Tigray region, was selected for the field study. Direct observations through field visits accompanied by interviews to farmers, local officials, local knowledgeable individuals and higher officials were made. After analyzing the collected primary and secondary information, the main peculiarities that contributed to the persistence of traditional irrigation areas were identified, and they are: the presence of communally constructed local rules, locally designed hydraulic control structures, ownership feeling of the irrigators and accountability of water distributors to the irrigation management, the culture for mobilizing communal resources and the culture of self-initiating local water management strategies.

  1. Impacts of Irrigation on the Heat Fluxes and Near-Surface Temperature in an Inland Irrigation Area of Northern China

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-03-01

    Full Text Available Irrigated agriculture has the potential to alter regional to global climate significantly. We investigate how irrigation will affect regional climate in the future in an inland irrigation area of northern China, focusing on its effects on heat fluxes and near-surface temperature. Using the Weather Research and Forecasting (WRF model, we compare simulations among three land cover scenarios: the control scenario (CON, the irrigation scenario (IRR, and the irrigated cropland expansion scenario (ICE. Our results show that the surface energy budgets and temperature are sensitive to changes in the extent and spatial pattern of irrigated land. Conversion to irrigated agriculture at the contemporary scale leads to an increase in annual mean latent heat fluxes of 12.10 W m−2, a decrease in annual mean sensible heat fluxes of 8.85 W m−2, and a decrease in annual mean temperature of 1.3 °C across the study region. Further expansion of irrigated land increases annual mean latent heat fluxes by 18.08 W m−2, decreases annual mean sensible heat fluxes by 12.31 W m−2, and decreases annual mean temperature by 1.7 °C. Our simulated effects of irrigation show that changes in land use management such as irrigation can be an important component of climate change and need to be considered together with greenhouse forcing in climate change assessments.

  2. Impact of alternate furrow irrigation with different irrigation intervals on yield, water use efficiency, and economic return of corn

    Directory of Open Access Journals (Sweden)

    Awad Abd El-Halim

    2013-06-01

    Full Text Available Alternate furrow irrigation with proper irrigation intervals could save irrigation water and result in high grain yield with low irrigation costs in arid areas. Two field experiments were conducted in the Middle Nile Delta area of Egypt during the 2010 and 2011 seasons to investigate the impact of alternate furrow irrigation with 7-d (AFI7 and 14-d intervals (AFI14 on yield, crop water use efficiency, irrigation water productivity, and economic return of corn (Zea mays L. as compared with every-furrow irrigation (EFI, conventional method with 14-d interval. Results indicated that grain yield increased under the AFI7 treatment, whereas it tended to decrease under AFI14 as compared with EFI. Irrigation water saving in the AFI7 and AFI14 treatments was approximately 7% and 17%, respectively, as compared to the EFI treatment. The AFI14 and AFI7 treatments improved both crop water use efficiency and irrigation water productivity as compared with EFI. Results also indicated that the AFI7 treatment did not only increase grain yield, but also increased the benefit-cost ratio, net return, and irrigation water saving. Therefore, if low cost water is available and excess water delivery to the field does not require any additional expense, then the AFI7 treatment will essentially be the best choice under the study area conditions.

  3. Comparative Assessment of Irrigation Water Quality in Sri Lanka's Tank-Cascade and Mahaweli Irrigation Schemes

    Science.gov (United States)

    Gunda, T.; Hornberger, G. M.

    2013-12-01

    Two distinct irrigation systems dominate the landscape in the dry zone of Sri Lanka. The tank-cascade system, which originates from third century BC, is a small-scale system that has been the traditional method for communities to meet their farming water needs. The Mahaweli reservoir system, in contrast, is a large-scale irrigation scheme initiated in the 1970s that diverts water across hundreds of kilometers from the headwaters of the Mahaweli River to farmers. Although approximately equal amounts of paddy land are irrigated under these two systems, very little comparative analysis has been conducted on the spatial variation of irrigation water quality in Sri Lanka. An exploratory study was conducted in June 2013 in Anuradhapura district, an area that experiences the highest level of paddy production instability and has had long-standing irrigation water quality issues. A total of 30 water samples from both cascade systems and Mahaweli system H-7 were analyzed for pH, temperature, conductivity, turbidity, and chromatic dissolved organic matter using field instruments. A subset of these samples was further analyzed for nitrate and ammonia using colorimetric methods. While the sparse data from our study revealed some interesting trends, it is difficult to extrapolate in detail. Therefore, we compare inferences drawn about the Sri Lanka data to a more detailed analysis of chromatic dissolved organic matter in a Tennessee watershed. This comparison will provide insight into possible interpretations relative to the water quality data collected in Sri Lanka. As Sri Lanka continues to develop its irrigation resources, water quality assessments such as this one are critical for identifying factors limiting paddy production in the country.

  4. Preliminary studies on growth and fresh weight of lettuce (Lactuca sativa) as affected by clay pot irrigation and spacing.

    Science.gov (United States)

    Abubakari, Abdul-Halim; Nyarko, George; Maalinyuur, Sheila

    2011-07-15

    An experiment (Completely Randomized Design) was set up to determine the effects of Clay Pot Sub-surface Irrigation (CPSI) and spacing on the growth and fresh weight of lettuce (Lactuca sativa). The treatments were: CPSI with spacing; 15 x 15 cm, 20 x 20 cm and 30 x 30 cm. Control treatments were Watering Can Irrigation (WCI) with the same spacing as above. Treatments were replicated three times given a total of 18 experimental units. Eighteen large enamel basins of 50/20 cm (diameter/height) were filled with good topsoil and a clay pot buried neck deep in each of the basins. Seedlings were planted in all the eighteen basins. Five Hundred mL of wastewater was applied daily to plants in each container having either clay pot or watering can treatment. Plant height increased from 2.50 to 4.25 cm within 6 Weeks after Transplanting (WAT) under CPSI and only increased from 2.14 to 2.99 cm under WCI. The CPSI also supported better leave growth and fresh weight. The fresh weight of lettuce increased almost two fold under 15 x 15 cm spacing compared to 20 x 20 and 30 x 30 cm. PMID:22308659

  5. Adjunctive Role of Supra- and Subgingival irrigation in Periodontal therapy

    Directory of Open Access Journals (Sweden)

    Akhilesh Shewale

    2016-03-01

    Full Text Available The primary purpose of irrigation is to nonspecifically reduce the bacteria and their by-products that lead to the initiation or progression of periodontal diseases. Supragingival irrigation allows for the disruption and dilution of marginal bacteria and their by-products which helps to prevent or treat gingivitis. Subgingival irrigation interferes with the complex ecosystem required for the initiation and continued destruction of the compromised periodontium in the susceptible host. The literature presented here exemplifies an important fact that, like all other therapeutic modalities, irrigation has both limitations and benefits. This review encompasses many new studies investigating various aspects of supragingival and subgingival irrigation including: new devices and methods of delivery by clinicians and patients; effect on plaque toxicity; depth of solution penetration; various chemotherapeutic agents employed; ultrasonics and antimicrobials; safety; and bacteremia associated with irrigation.

  6. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao;

    2015-01-01

    resources optimal allocation model and④The hydrological ecosystem analysis in irrigation district. Our analysis showed that there are four major problems in domestic irrigation water resources allocation:Policies for rational water resources allocation and protection are not in place, unified management......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area....... The progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...

  7. Comparison of Manual and Automatic Irrigation of Pot Experiments

    DEFF Research Database (Denmark)

    Haahr, Vagner

    1975-01-01

    . Productions of grain and straw and chemical composition were almost the same after the two irrigation methods, and it was concluded that the laborious manual watering could be replaced by automatic irrigation. Comparison of the yield from individual plants in the pots showed a large difference between centre......An air-lift principle for transport of water was adapted for automatic irrigation of experimental pots originally constructed for manual irrigation by the weighing method. The two irrigation techniques were compared in an experiment with increasing amounts of nitrogen fertilizer to spring barley...... plants and border plants independent of irrigation principle. The increase in yield per pot with increasing N fertilization was at the highest N level caused only by an increase in yield of the border plants....

  8. Methane efflux in rice paddy field under different irrigation managements

    Directory of Open Access Journals (Sweden)

    Diovane Freire Moterle

    2013-04-01

    Full Text Available Paddy rice fields may contribute to methane (CH4 emission from soil due to anaerobic conditions after flooding. Alternatives to continuous flooding irrigation in rice have been developed to mitigate CH4 efflux into the atmosphere. This study aims to investigate the effects of irrigation managements in the CH4 efflux during the rice growing season. An experiment was carried out at in Santa Maria, Rio Grande do Sul State, Brazil, during 2007/08 and 2009/10 growing seasons. The treatments were continuous flooding and intermittent irrigation in 2007/08 and continuous flooding, intermittent irrigation and flush irrigation in 2009/10. Intermittent irrigation is effective in mitigating CH4 efflux from rice fields when climatic conditions enable water absence during cultivation, but its efficiency depends on the electrochemical soil conditions during the flooding cycles.

  9. Transpirative Deficit Index (TDI) for the management of water scarcity in irrigated areas: development and application in northern Italy

    Science.gov (United States)

    Borghi, Anna; Facchi, Arianna; Rienzner, Michele; Gandolfi, Claudio

    2016-04-01

    In Europe, the monitoring and assessment of drought is entrusted to the European Drought Observatory (EDO). EDO indicators are calculated considering rainfed agriculture and delivered on a 5 km grid. However, in southern Europe, irrigation may compensate for potentially severe agricultural droughts and specific water scarcity indicators that explicitly consider irrigation are needed. In the Po River Plain, irrigated crops cover more than 70% of the agricultural land, massive amounts of water are diverted from rivers for irrigation, and surface irrigation methods are largely applied. Nowadays, the region is not a water scarce basin, but irrigation water shortages have occurred with increased frequency during the last two decades. Moreover, a recent EU report shows that the Po River Plain is included among areas in Europe that by 2030 shall be affected by water scarcity. In this context, a study was started to select and develop indicators for the management and prevention of Water Scarcity and Drought (WS&D) based on the synergic use of hydrological modelling and Earth Observation data applied at a spatial scale of interest for end-users (250m grid). These indicators shall be better suited for the assessment of WS&D in Italy as well as in other southern European countries. This work presents the development and the application of the TDI (Transpirative Deficit Index) to a study area, within the Po River Plain. TDI is an agricultural drought index based on the transpiration deficit (TDx, calculated as the difference between potential and actual transpiration), computed by the spatially distributed hydrological model IDRAGRA and cumulated over a period of x days. TDx for each day of a specific year is compared to the long-term TDx probability distribution (e.g., over 20-30 years), which is transformed into a standardized normal distribution. The non-exceedance probability of TDx is finally expressed in terms of unit of standard deviation (TDI), following the approach

  10. Precision overhead irrigation is suitable for several Central Valley crops

    OpenAIRE

    Mitchell, Jeffrey P; Anil Shrestha; Joy Hollingsworth; Daniel Munk; Hembree, Kurt J; Tom A. Turini

    2016-01-01

    Overhead systems are the dominant irrigation technology in many parts of the world, but they are not widely used in California even though they have higher water application efficiency than furrow irrigation systems and lower labor requirements than drip systems. With water and labor perennial concerns in California, the suitability of overhead systems merits consideration. From 2008 through 2013, in studies near Five Points, California, we evaluated overhead irrigation for wheat, corn, cotto...

  11. Priority investment irrigation methodology in depressed rural areas

    OpenAIRE

    Díaz Ortiz, Jaime E.; Carlos Alfredo Ramírez

    2010-01-01

    The infrastructure for small irrigation systems demands costly investment which may become increased as many social and technical aspects related to the concerns of regions susceptible to investment remain unknown. The lack of both information and a social network supporting planning and design tasks constitute factors affecting many irrigation projects, consigning them to failure. Some indicators were prepared for constructing an irrigation system in the north of the Cauca department in Colo...

  12. Water Supply Planning for Landscape Irrigation in Virginia

    OpenAIRE

    Tucker, Adrienne Janel LaBranche

    2009-01-01

    A water supply plan approach was used to investigate irrigation application on landscaped areas in Virginia with a focus on turfgrass. The economically-important turfgrass industry in Virginia should be proactive in conserving drinking water supplies to meet human consumption needs, especially in drought times. This thesis investigates current irrigation water supplies, water supply sustainability, and alternative water sources to meet irrigation demands and offers an insight on how potable w...

  13. IRRIGATION DISTRICT ADOPTION OF WATER CONSERVING RATE STRUCTURES

    OpenAIRE

    Michelsen, Ari M.; McGuckin, J. Thomas; Taylor, R. Garth; Huffaker, Ray G.

    1998-01-01

    A binary choice model was used to identify the attributes that influence irrigation district adoption of conservation rate structures. Using principles of rate design and irrigation district administration as a framework, measures of irrigation district rate structure objectives and physical and economic conditions were developed. The factors investigated characterize the constraints under which districts operate, value and cost of water, quantity of water delivered and revenue risk for distr...

  14. Irrigation and planting density affect river red gum growth

    OpenAIRE

    Cockerham, Stephen T.

    2004-01-01

    In a 6-year study, production of river red gum, an excellent fuel-wood source, was evaluated for responses to three levels of irrigation, fertilization and planting density. Irrigation and planting density had the greatest influence on tree growth. Irrigation in the fifth and sixth years produced greater wood volume and weight per tree. Tree size was greatest in the wide spacing of the lower planting density. Fertilizer had no effect on any of the treatments. Per acre volume and weight yields...

  15. Institutionalizing the Informal: Irrigation and government intervention in Bali

    OpenAIRE

    Stephan Lorenzen; Rachel P Lorenzen

    2008-01-01

    Although there is greater acceptance that farmers can manage their irrigation systems efficiently, many irrigation experts believe that a shift from informal to more formal management strategies will lead to even better water-flow management. Stephan and Rachel Lorenzen examine a case in Bali where attempts to introduce formal institutions led to confusion within the farming community. They argue that irrigation improvement projects need to engage with the local context and encourage a minimu...

  16. MANAGEMENT OF IRRIGATION AND NITROGEN FERTILIZERS TO REDUCE AMMONIA VOLATILIZATION

    Directory of Open Access Journals (Sweden)

    Fernando Viero

    2015-12-01

    Full Text Available ABSTRACT Nitrogen losses by ammonia (NH3 volatilization can be reduced by appropriate irrigation management or by alternative N sources, replacing urea. The objective of this study was to evaluate the efficiency of irrigation management and N source combinations in decreasing NH3 volatilization from an Argissolo Vermelho Distrófico típico cultivated for 28 years with black oat (Avena strigosa and maize (Zea mays, under no-tillage in the region of Depressão Central, Rio Grande do Sul, Brazil. The experiment was arranged in a randomized block design with split plots with three replications, where the main plots consisted of irrigation systems: no irrigation; irrigation immediately before and irrigation immediately after fertilization. The subplots were treated with different N sources: urea, urea with urease inhibitor and slow-release fertilizer, at an N rate of 180 kg ha-1, broadcast over maize, plus a control treatment without N fertilization. Ammonia volatilization was assessed using semi-open static collectors for 1, 2, 4, 6, and 10 days after N fertilization. In general, more than 90 % of total NH3-N losses occurred until three days after N fertilization, with peaks up to 15.4 kg ha-1 d-1. The irrigation was efficient to reduce NH3 losses only when applied after N fertilization. However, reductions varied according to the N fertilizer, and were higher for urea (67 % and slightly lower for urea with urease inhibitor (50 % and slow-release fertilizer (40 %, compared with the mean of the treatments without irrigation and irrigation before fertilization. The use of urea with urease inhibitor instead of urea was only promising under volatilization-favorable conditions (no irrigation or irrigation before N fertilization. Compared to urea, slow-release fertilizer did not reduce ammonia volatilization in any of the rainfed or irrigated treatments.

  17. Decalcifying efficacy of different irrigating solutions: effect of cetrimide addition

    OpenAIRE

    Poggio, Claudio; Dagna, Alberto; Colombo, Marco; Scribante, Andrea; Chiesa, Marco

    2014-01-01

    The objective of the present study was to evaluate and compare the influence of cetrimide on decalcifying capability of different irrigating solutions. Fifteen maxillary central incisor teeth has been collected. The canals were prepared in order to obtain four samples from each root. The specimens were randomly divided into 6 experimental groups (n=10) according to tested irrigating agents. Irrigating agents consisted in different composition of EDTA and citric acid solutions, addicted or not...

  18. Performance indices for pumping stations in irrigated rice fields

    OpenAIRE

    Luciana Marini Köpp; Marcia Xavier Peiter; Adroaldo Dias Robaina; Leonita Beatriz Girardi

    2016-01-01

    ABSTRACT: Performance indices can be used as indices of energy use in irrigation systems. Pumping stations (PSs) are elements that require energy for irrigation of rice fields by conventional flood irrigation. Interplay of physical, hydraulic, and electrical parameters generates indices that determine the performance in the diagnosis of PSs, operation, and projects for new sets. In this study, it was proposed and classified performance indices for PSs in rice fields, focusing on the efficient...

  19. Climate Risks on Water and Agriculture in the Indus Basin of Pakistan

    Science.gov (United States)

    Yang, Y. E.; Brown, C. M.; Yu, W.

    2012-12-01

    Pakistan relies on the largest contiguous irrigation system in the world, known as the Indus Basin Irrigation System (IBIS) for its basic food security and water supply for all sectors of the economy. The basin that supports this irrigation system consists of the Indus River mainsteam and its major tributaries. The integrated systems framework used in this analysis provides a broad and unique approach to estimating the hydrologic and crop impacts of climate change risks, the macro-economic and household-level responses and an effective method for assessing a variety of adaptation investments and policies. In assessing the impacts, several different modeling environments must be integrated to provide a more nuanced and complete picture of how water and agriculture inter-relate. Moreover, such a framework allows for extensive scenario analysis to identify and understand key sensitivities. This is critical to making decisions in a highly uncertain future. Finally, through this integration of multiple disciplines, a richer and more robust set of adaptation investment options and policies for the agriculture and water sectors can be identified and tested. Continued refinements to the assessment approach developed in this volume will further help to sharpen critical policies and interventions by the Pakistan government. Fig 2. Impacts of climate change on GDP, Ag-GDP and Household income in the Indus Basin Fig1. The Indus River Basin

  20. Intensifying groundnut production in the Sudan savanna zone of Nigeria: including groundnut in the irrigated cropping systems.

    Science.gov (United States)

    Mukhtar, A A

    2011-11-15

    Inadequate and erratic rainfall pattern and extreme temperature variations induced by climate change being experienced in Sudan savanna areas have compromised the cropping systems of these areas. A change in the cropping patterns is required to maintain and improve upon crop output levels. The pod yield ha(-1) and other growth and yield components of three varieties of groundnut grown under irrigated conditions were measured in a field experiment conducted at the Irrigation Research Station of the Institute for Agricultural Research, Zaria, from 2003 to 2006 dry seasons. Treatments consisted of three plant populations (50,000, 100,000 and 200,000 plants ha(-1)), three varieties (Samnut 23, Samnut 21 and Samnut 11) and three basin sizes (3 x 3, 3 x 4 and 3 x 5 m) arranged in a split plot design with population and variety as main plot and basin size as sub plot. Treatments were randomly assigned and replicated three times. Plant populations significantly affected plant height and canopy spread but had no effect on number of branches plant. Plants grew significantly taller at 200,000 plants ha(-1) while plant canopy spread was significantly widest at 50,000 plants ha(-1). Samnut 23 grew significantly taller than Samnut 21 and 11 although they exhibited wider canopies. Pod yield ha(-1) and 100 seed weight were significantly highest at 200,000 plants ha(-1). Samnut 23 produced the significantly highest pod yield ha(-1) and number of pods plant(-1). Samnut 11 produced significantly highest 100 seed weight. Samnut 23 planted at 200,000 plants ha(-1) in 3 x 4 m basins is most promising for irrigated groundnut cultivation in the Sudan savanna of Nigeria. PMID:22514881

  1. Agro-Ecology and Irrigation Technology : Comparative Research on Farmer-Management Irrigation Systems in the Mid- Hills of Nepal

    OpenAIRE

    Parajuli, U.N.

    1999-01-01

    Design and management of irrigation infrastructure in farmer managed irrigation systems (FMISs) are strongly influenced by social and agro-ecological conditions of an area. This thesis analyzes the elements of social and agro-ecological conditions in FMISs in the mid-hills of Nepal and examines their relationships with irrigation infrastructure, especially water division structures. Of the various types of water division structures, this thesis concentrates mainly on the proportioning weir, w...

  2. Direct and Total Benefits of Irrigation in India and its Implications to Irrigation Financing and Cost Recovery

    OpenAIRE

    Bhattarai, Madhusudan; Narayanamoorthy, Annasamy; Barker, Randolph

    2006-01-01

    Who benefits from irrigation development in an economy and who should pay for the cost? This question so far has not been well addressed in the irrigation literature. To answer this question we need to know, in addition to the information on farmers' level benefits (increased crop productivity), the magnitude of the total economy wide benefits derived by the farm and non-farm sector in the economy from irrigation development. In this study, taking an example from India, we have estimated the ...

  3. Appropriate designs and appropriating irrigation systems : irrigation infrastructure development and users' management capability in Bolivia

    NARCIS (Netherlands)

    Gutierrez Pérez, Z.

    2005-01-01

    The objectives of this book are to explore and demonstrate the 'divorce' that is taking place in how critical actors think about irrigation infrastructure design and management, and in how designers often impose their own narrow preferences in infrastructure composition and performance without refle

  4. Effects of Irrigation Practices on Some Soil Chemical Properties on OMI Irrigation Scheme

    Directory of Open Access Journals (Sweden)

    M.A. Adejumobi

    2014-10-01

    Full Text Available Irrigation practices have been observed to impact scheme soil properties and other parameters negatively. These could be as a result of irrigation water quality, method of application and nature of scheme soil. This study was therefore conducted to study the effects of irrigation practices on the soils of Omi irrigation scheme Kogi state, Nigeria after 13years of operation. Soil samples were taken at depths 0 – 20 cm (A1, 20 – 80 cm (A2 and 80 – 120 cm (A3 from two operating lands (OL; OL 5 and OL 18 of the study area. The samples were analysed for chemical parameters (pH, CEC, ESP, Mg2+, Ca2+, OM, and OC. The soil pH which was in the neutral range (pH=6.65 to 7.00 at inception of scheme, has become slightly acidic (pH=6.53 to 6.60. Cation exchange capacity (CEC levels have also increased from 10cmol+kg-1 to 35cmol+kg-1. While Organic matter (OM and Organic carbon (OC also have marked increase in their levels (baseline as 0.93 to 1.08; for year 2013 as 9.52 to 9.79. Generally, the analysis indicated a need for proper monitoring of the scheme soil to prevent further deterioration.

  5. Irrigating lives : Development intervention and dynamics of social relationships in an irrigation project

    NARCIS (Netherlands)

    Magadlela, D.

    2000-01-01

    This study is about rural agricultural development and social processes of change in rural Zimbabwe. It is aimed at understanding how irrigation intervention in a remote rural context changed the cultural, social, political and farming lives of people. It is a study of people coping with changes in

  6. Intervention Processes and Irrigation Institutions: Sustainability of Farmer Managed Irrigation Systems in Nepal

    NARCIS (Netherlands)

    Pant, D.R.

    2000-01-01

    With the support from various donors, His Majesty's Government of Nepal has implemented support programmes with a view to transform water availability, improve production, and increase the institutional capabilities of farmers to develop and sustain efficient, fair and reliable irrigation management

  7. Irrigation and fertigation with drip and alternative micro irrigation systems in northern highbush blueberry

    Science.gov (United States)

    The effects of nitrogen (N) fertigation using conventional drip and alternative micro irrigation systems were evaluated in six cultivars of northern highbush blueberry. The drip system consisted of two laterals of drip tubing, with 2 L/h in-line emitters (point source) spaced every 0.45 m, on each s...

  8. Laser assisted irrigation and hand irrigation for root canal decontamination: a comparison

    Science.gov (United States)

    Olivi, M.; Stefanucci, M.; Todea, C.

    2014-01-01

    Aim: to compare the bactericidal efficiency of conventional method and LAI for root canal decontamination. Material and method: 22 human single root teeth, extracted for periodontal problems, mechanically prepared up to ISO 25 at the working lenght were divided in 2 groups: after sterilization, the teeth were infected with enterococcus faecalis and incubated for 4 weeks. Group A: 10 teeth were irrigated with conventional hand technique (CI): 3ml of 5% NaClO were used for two times of 30s each and after washing with sterile bi-distilled water for 20s, a final irrigation was performed with 3ml of 17% EDTA. Group B: 10 teeth were irrigated with 3ml of NaClO and activated by erbium laser, two cycles of 30s; also the final irrigation with 3ml of 17% EDTA was activated by erbium laser. In both the groups a resting time of 30s was used between the two sessions to allow the reaction rate of NaClO. The Erbium laser 2940 nm (LightWalker AT, Fotona; Lublijana, Slovenia) was used with 50microsecond pulse duration, at 15Hz, 20mJ, with a 600micron PIPS tip. Two samples were used as positive and negative control.

  9. A generic open-source toolbox to help long term irrigation monitoring for integrated water management in semi-arid Mediterranean areas.

    Science.gov (United States)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lili Chabaane, Zohra

    2016-04-01

    In semi arid areas, irrigated plains are often the major consumer of water well beyond other water demands. Traditionally fed by surface water, irrigation has massively shifted to a more reliable resource: groundwater. This shift occurred in the late thirty years has also provoked an extension and intensification of irrigation, often translated into impressive groundwater table decreases. Integrated water management needs a systematic and robust way to estimate the water demands by the agricultural sector. We propose a generic toolbox based on the FAO-56 method and the Crop Coefficient/NDVI approach used in Remote Sensing. The toolbox can be separated in three main areas: 1) It facilitates the preparation of different input datasets: download, domain extraction, homogenization of formats, or spatial interpolation. 2) A collection of algorithms based on the analysis of NDVI time series is proposed: Separation of irrigated vs non-irrigated area, a simplified annual land cover classification, Crop Coefficient, Fraction Cover and Efficient Rainfall. 3) Synthesis against points or areas produces the output data at the desired spatial and temporal resolution for Integrated Water Modeling or data analysis and comparison. The toolbox has been used in order to build a WEAP21 model of the Merguellil basin in Tunisia for the period of 2000-2014. Different meteorological forcings were easily used and compared: WFDEI, AGRI4CAST, MED-CORDEX. A local rain gauges database was used to produce a daily rainfall gridded dataset. MODIS MOD13Q1 (16 days, 250m) data was used to produce the NDVI derived datasets (Kc, Fc, RainEff). Punctual evapotranspiration was compared to actual measurements obtained by flux towers on wheat and barley showing good agreements on a daily basis (r2=0.77). Finally, the comparison to monthly statistics of three irrigated commands was performed over 4 years. This late comparison showed a bad agreement which led us to suppose two things: First, the simple

  10. Dynamic evaluation of groundwater resources in Zhangye Basin

    Institute of Scientific and Technical Information of China (English)

    LiNa Mi; HongLang Xiao; ZhengLiang Yin; ShengChun Xiao

    2016-01-01

    Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×108 m3, and annual average depletion rate reached 1.64×108 m3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×108 m3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and re-spective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.

  11. Irrigation in a changing world: a global systems analysis perspective

    Science.gov (United States)

    Doell, P.

    2003-04-01

    The global issues of water security and food security are closely linked. Sustainable plant production requires a sustained provisioning of water, either in the form of "green" or of "blue" water (as introduced by Malin Falkenmark in 1993). Green water is defined as the fraction of water that is evapotranspirated, i.e. the water supply for all non-irrigated vegetation. Blue water refers to the water flows in groundwater and surface water. It represents the water that can be withdrawn, e.g. for irrigation. In areas without enough green water in the soil to achieve satisfactory crop growth, crops can be irrigated with blue water. The distinction between green and blue water helps to understand the linkages between rainfall, soil, land productivity and water availability for irrigation and other human uses. Today, about 67% of the current global water withdrawals and about 87% of the consumptive water use (withdrawal minus return flow) is for irrigation purposes. Irrigated land comprises less than one-fifth of all cropped area but produces about two-fifth of the world's cereals. Due to the high and reliable productivity of irrigated land, an extension of irrigation appears to be an appropriate strategy to feed the world's growing population However, will there be enough water available for the necessary extension? To assess this question, both water availability and demand must be analyzed. At the global scale, such an assessment is supported by the global model of water resources and use model WaterGAP 2, which, with a spatial resolution of 0.5 degrees, computes both water resources and water use by irrigation, livestock, households, manufacturing and thermal power plants. WaterGAP is applied to derive scenarios that show the impact of climate change as well as demographic, economic and technological changes. The Global Irrigation Model of WaterGAP computes, for example, the impact of climate change on irrigation requirements on net irrigation requirements. This is

  12. Effects of global irrigation on the near-surface climate

    Energy Technology Data Exchange (ETDEWEB)

    Sacks, William J. [University of Wisconsin-Madison, Center for Sustainability and the Global Environment, Madison, WI (United States); Cook, Benjamin I. [Lamont-Doherty Earth Observatory, Ocean and Climate Physics, Palisades, NY (United States); NASA Goddard Institute for Space Studies, New York, NY (United States); Buenning, Nikolaus [University of Colorado-Boulder, Department of Atmospheric and Oceanic Sciences and Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States); Levis, Samuel [National Center for Atmospheric Research, Climate and Global Dynamics Division, Boulder, CO (United States); Helkowski, Joseph H. [Earth Tech, Miami, FL (United States)

    2009-08-15

    Irrigation delivers about 2,600 km{sup 3} of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by {proportional_to}0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by {proportional_to}1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery. (orig.)

  13. Irrigation and fertigation frequencies with nitrogen in the watermelon culture

    Directory of Open Access Journals (Sweden)

    Carlos Newdmar Vieira Fernandes

    2014-06-01

    Full Text Available This study evaluates the influence of different irrigation frequencies and different nitrogen fertigation frequencies on the growth performance of the watermelon (Citrullus lanatus culture. Two experiments were conducted at the Paraguay farm in the Cruz municipality, Ceará, Brazil. They was randomized blocks design with six treatments and four replications. The irrigation frequency experiment consisted of the application of different irrigation frequencies. The treatments were: DM - daily irrigation in the morning with 100% daily dosage; DT - daily irrigation in the afternoon, with 100% daily dosage; DMT - twice daily irrigation, with 50% daily dosage in the morning and 50% daily dosage in the afternoon; 2D - irrigation every two days; 3D - irrigation every three days and 4D - irrigation every four days. To the experiment with different nitrogen fertigation frequencies, the treatments used were: 2F - 2 fertigations in a cycle; 4F - 4 fertigations in a cycle; 8F - 8 fertigations in a cycle; 16F - 16 fertigations in a cycle; 32F - 32 fertigations in a cycle and 64F - 64 fertigations in a cycle. We evaluated the marketable yield (PC, fruit weight (M, polar diameter (DP, equatorial diameter (DE, shell thickness (EC and soluble solids (SS. The irrigation frequency treatments influenced all variables significantly, with twice daily irrigation (DMT, 50% in the morning and the 50% in the afternoon promoting the highest productivity (69.79 t ha-1. The different frequencies of fertigation also significantly influenced all variables, except for the shell thickness, the highest yield (80.69 t ha-1 being obtained with treatment 64 fertigations in a cycle.

  14. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  15. River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.

    Science.gov (United States)

    Monteagudo, Laura; Moreno, José Luis; Picazo, Félix

    2012-05-15

    The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture. PMID:22417740

  16. PRODUCTION OF TOMATO SEEDLINGS UNDER SALINE IRRIGATION

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Brasiliano Campos

    2007-01-01

    Full Text Available Processing tomato is the most important vegetable crop of the Brazilian agribusiness and few researches have been conducted to evaluate the tolerance of this crop to saline stress. In this study, the effects of five levels of salinity of the irrigation water (1, 2, 3, 4 and 5 dS m-1 and three equivalent proportions of Na:Ca:Mg (1:1:0.5, 4:1:0.5 and 7:1:0.5 were tested on the emergence and vigor of processing tomato, cultivar IPA 6. Seeds were sowed in expanded polystyrene tray (128 cells and each tray received 1 L of water after sowing. The trays were piled and, four days after sowing, they were placed on suspended supports in a greenhouse. Irrigation was accomplished daily from the fifth day after sowing. Only dry weight of shoot and root was affected by sodium proportions, while linear reductions of the speed of emergence, stem length and the dry weight of shoot and root were observed with increasing salinity. Root was more affected than shoot by salinity and relative growth ratioincreased with salinity levels on the 14-21 days after sowing period, indicating that the crop showed a certain increase of salinity tolerance with the time of exposure to salts.

  17. Estimates of Savings Achievable from Irrigation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  18. Irrigation Costs and Prices: An Institutional Economic Analysis of Pricing Strategies in the Office Du Niger and Small Pump-Irrigated Village Perimeters in Mali

    OpenAIRE

    Schrecongost, Alyse

    2005-01-01

    This paper explores the link between cost and price in two irrigation schemes in Mali - the Office du Niger (ON), a large-scale gravity irrigation authority, and a number of small pump-irrigated fields at village perimeters along the Niger River (Petits Perimetres d'Irrigation Villagois). I argue that the effectiveness of cost-recovery pricing strategies for improving the long-run financial sustainability of irrigation systems and advancing national development objectives is a function of dec...

  19. The effects of deifcit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon

    Institute of Scientific and Technical Information of China (English)

    Seluk zmen; Rza Kanber; Nebahat Sar; Mustafa nl

    2015-01-01

    The aim of this study is to determine the effects of deifcit irrigation on nitrogen consumption, yield, and quality in grafted and ungrafted watermelon. The study was conducted in Çukurova region, Eastern Mediterranean, Turkey, between 2006 and 2008, and employed 3 irrigation rates (ful irrigation (I100) with no stress, moderate irrigation (DI70), and low irrigation (DI50);DI70 and DI50 were considered deifcit irrigation) on grafted (CTJ, Crimson Tide+Jumbo) and the ungrafted (CT, Crim-son Tide) watermelon. The amount of irrigation water (IR) applied to the study plots were calculated based on cumulative pan evaporation that occurred during the irrigation intervals. Nitrogen consumption was 16%lower in CTJ plants than in CT plants. On the other hand, consumption of nitrogen was 28%higher in DI50 plants than in DI70 plants while it was 23%higher in DI50 plants than in I100 plants. By grafting, the average amount of nitrogen content in seeds, pulps and peels for CTJ was 30, 43 and 56%more than those of CT, respectively. The yield and the quality were not signiifcantly affected by the deifcit irrigation. In this respect, grafting of watermelon gave higher yield, but, it had a slight effect on fruit quality. The highest yield values of 16.90 and 19.32 kg plant–1 in 2008 were obtained with I100 and in CTJ plants, respectively. However, DI50 treatment could be taken into account for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited. Additional y, the yield increased by applying CTJ treatment to the watermelon production.

  20. NUTRIENT CONTENT IN SUNFLOWERS IRRIGATED WITH OIL EXPLORATION WATER

    Directory of Open Access Journals (Sweden)

    ADERVAN FERNANDES SOUSA

    2016-01-01

    Full Text Available Irrigation using produced water, which is generated during crude oil and gas recovery and treated by the exploration industry, could be an option for irrigated agriculture in semiarid regions. To determine the viability of this option, the effects of this treated water on the nutritional status of plants should be assessed. For this purpose, we examined the nutritional changes in sunflowers after they were irrigated with oil - produced water and the effects of this water on plant biomass and seed production. The sunflower cultivar BRS 321 was grown for three crop cycles in areas irrigated with filtered produced water (FPW, reverse osmosis - treated produced water (OPW, or ground water (GW. At the end of each cycle, roots, shoots, and seeds were collected to examine their nutrient concentrations. Produced water irrigation affected nutrient accumulation in the sunflower plants. OPW irrigation promoted the accumulation of Ca, Na, N, P, and Mg. FPW irrigation favored the accumulation of Na in both roots and shoots, and biomass and seed production were negatively affected. The Na in the shoots of plants irrigated with FPW increased throughout the three crop cycles. Under controlled conditions, it is possible to reuse reverse osmosis - treated produced water in agriculture. However, more long - term research is needed to understand its cumulative effects on the chemical and biological properties of the soil and crop production.

  1. INSTRUMENTATION AND CONTROL FOR WIRELESS SENSOR NETWORK FOR AUTOMATED IRRIGATION

    Science.gov (United States)

    An in-field sensor-based irrigation system is of benefit to producers in efficient water management. A distributed wireless sensor network eliminates difficulties to wire sensor stations across the field and reduces maintenance cost. Implementing wireless sensor-based irrigation system is challengin...

  2. Evapotranspiration of deficit irrigated sorghum and winter wheat

    Science.gov (United States)

    Deficit irrigation commonly is used in regions with reduced or limited irrigation capacity to increase water use efficiency (WUE). This research measured winter wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L. Moench) water use (ET) and yields so WUE could be determined. Two precision ...

  3. Effects of irrigation strategies and soils on field grown potatoes

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Plauborg, Finn;

    2010-01-01

    Yield and water productivity of potatoes grown in 4.32 m2 lysimeters were measured in coarse sand, loamy sand, and sandy loam and imposed to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. PRD and DI as water-saving irrigation treatments received 65% of FI after...

  4. Micro-irrigation systems, automation and fertigation in citrus

    Directory of Open Access Journals (Sweden)

    Parameshwar Sidramappa Shirgure

    2012-11-01

    Full Text Available Citrus is number one group of fruits grown in more than 140 countries in the world. Micro-irrigation systems and fertigation management is one of the main concerns of the modem citrus fruit production irrespective of availability of soil, water and fertilizer resources. A variety of recommendations have emerged world over on irrigation systems and fertigation based on soil and leaf analysis of the nutrients, evapo-transpiration and water use pattern. The research review of literature has revealed best promising results on irrigation scheduling based on depletion pattern of soil available water content, irrigation systems and fertigation. Various micro-irrigation systems have established their superiority over traditionally used flood irrigation with micro-jets having little edge over rest of the others. Similarly, fertigation has shown good responses on growth, yield, quality and uniform distribution pattern of applied nutrients within the plant rootzone compared to band placement involving comparatively localized fertilization. Automated fertigation in citrus orchards is a new concept, which would be the only solitary choice amongst many irrigation monitoring methods in near future. The present status of the review on micro-irrigation and fertigation in citrus cultivars is clearly indicated in this article.

  5. Root Zone Sensors for Irrigation Management in Intensive Agriculture

    NARCIS (Netherlands)

    Pardossi, A.; Incrocci, L.; Incrocci, G.; Marlorgio, F.; Battista, P.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J.

    2009-01-01

    Crop irrigation uses more than 70% of the world’s water, and thus, improving irrigation efficiency is decisive to sustain the food demand from a fast-growing world population. This objective may be accomplished by cultivating more water-efficient crop species and/or through the application of effici

  6. Wireless sensor network effectively controls center pivot irrigation of sorghum

    Science.gov (United States)

    Robust automatic irrigation scheduling has been demonstrated using wired sensors and sensor network systems with subsurface drip and moving irrigation systems. However, there are limited studies that report on crop yield and water use efficiency resulting from the use of wireless networks to automat...

  7. Climate Change, Irrigation, and Israeli Agriculture : Will Warming Be Harmful?

    OpenAIRE

    Fleischer, Aliza; Lichtman, Ivgenia; Mendelsohn, Robert

    2007-01-01

    The authors use a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. They find that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts that climate change is strictly beneficial. But with water included, th...

  8. Status and migration of irrigation in the USA

    Science.gov (United States)

    Irrigated agriculture produces 49% of crop market value on 18% of cropped lands in the USA. Irrigation is essential to the most highly productive, intensely managed, and internationally competitive sectors of our agricultural economy, which play a key role in meeting growing global food, fiber, and ...

  9. Preventing pesticide contamination of groundwater while maximizing irrigated crop yield

    Science.gov (United States)

    Peralta, R. C.; Hegazy, M. A.; Musharrafieh, G. R.

    1994-11-01

    A simulation/optimization model is developed for maximizing irrigated crop yield while avoiding unacceptable pesticide leaching. The optimization model is designed to help managers prevent non-point source contamination of shallow groundwater aquifers. It computes optimal irrigation amounts for given soil, crop, chemical, and weather data and irrigation frequencies. It directly computes the minimum irrigated crop yield reduction needed to prevent groundwater contamination. Constraint equations used in the model maintain a layered soil moisture volume balance; describe percolation, downward unsaturated zone solute transport and pesticide degradation; and limit the amount of pesticide reaching groundwater. Constraints are linear, piecewise linear, nonlinear, and exponential. The problem is solved using nonlinear programming optimization. The model is tested for different scenarios of irrigating corn. The modeling approach is promising as a tool to aid in the development of environmentally sound agricultural production practices. It allows direct estimation of trade-offs between crop production and groundwater protection for different management approaches. More frequent irrigation tends to give better crop yield and reduce solute movement. Trade-offs decrease with increasing irrigation frequency. More frequent irrigation reduces yield loss due to moisture stress and requires less water to fill the root zone to field capacity. This prevents the solute from moving to deeper soil layers. Yield-environmental quality trade-offs are smaller for deeper groundwater tables because deeper groundwater allows more time for chemical degradation.

  10. Bureaucratic designs : the paradox of irrigation management transfer in Indonesia

    NARCIS (Netherlands)

    Suhardiman, D.

    2008-01-01

    Irrigation Management Transfer (IMT) policy has been formulated and implemented worldwide, relying on three basic assumptions: that the irrigation agency are motivated to adapt their role in the sector's development; that farmers are willing to take over the system management; and that the process o

  11. Performance evaluation of a center pivot variable rate irrigation system

    Science.gov (United States)

    Variable Rate Irrigation (VRI) for center pivots offers potential to match specific application rates to non-uniform soil conditions along the length of the lateral. The benefit of such systems is influenced by the areal extent of these variations and the smallest scale to which the irrigation syste...

  12. Atmospheric effects of irrigation in monsoon climate: the Indian subcontinent

    NARCIS (Netherlands)

    Tuinenburg, O.A.

    2013-01-01

    During the 20th century, an increasing population increased the demand for food.  As a consequence, agricultural activity has expanded and become more intense. A  part of this intensification is the use of irrigation systems to water crops. Due to this  irrigation, dams and channeling

  13. A management perspective on the performance of the irrigation subsector.

    NARCIS (Netherlands)

    Nijman, Ch.

    1993-01-01

    INVESTMENT IN IRRIGATION has been immense in the past. Estimated average annual investments of US$ 15 billion makes irrigation the largest subsector of the agricultural sector, that is itself by far the largest sector of development investment. Since the mid-1960s the awareness spread that the perfo

  14. Consumptive Water Use and Crop Coefficients of Irrigated Sunflower

    Science.gov (United States)

    In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing...

  15. The SRFR 5 modeling system for surface irrigation

    Science.gov (United States)

    The SRFR program is a modeling system for surface irrigation. It is a central component of WinSRFR, a software package for the hydraulic analysis of surface irrigation systems. SRFR solves simplified versions of the equations of unsteady open channel flow coupled to a user selected infiltration mod...

  16. Wedlock or deadlock? Feminists' attempts to engage irrigation engineers

    NARCIS (Netherlands)

    Zwarteveen, M.Z.

    2006-01-01

    In this thesis I describe my search for ways of thinking about, and conceptualizing, irrigation realities that allow recognition of gender as constitutive of such realities. This effort logically follows from the realization that in mainstream conceptualizations of irrigation it is difficult to accu

  17. Using models to determine irrigation applications for water management

    Science.gov (United States)

    Simple models are used by field researchers and production agriculture to estimate crop water use for the purpose of scheduling irrigation applications. These are generally based on a simple volume balance approach based on estimates of soil water holding capacity, irrigation application amounts, pr...

  18. Remote sensing, GIS and hydrological modelling for irrigation management

    NARCIS (Netherlands)

    Menenti, M.; Azzali, S.; d'Urso, G.

    1996-01-01

    This paper gives an overview of literature and of work done by the authors between 1988 and 1993. It was presented at a NATO expert meeting on sustainability of irrigated agriculture in 1994. The paper deals with crop water requirements and crop waterstress, assessing irrigation performance with sat

  19. The future of irrigation on the High Plains

    Science.gov (United States)

    The future of irrigation on the U.S. High Plains was examined through the lens of past changes in water supply and innovations in irrigation technology, management and agronomy. The innovations have greatly increased the efficiency of water application and use, and the agricultural productivity of t...

  20. Irrigation science and water quality challenges in Ukbekistan

    Science.gov (United States)

    Agriculture in Uzbekistan is nearly entirely irrigated due to the semi-arid to arid climate. Similar conditions exist in the U.S. Southern High Plains, and several irrigation crops are important to both regions, including cotton, maize and winter wheat. This presentation discussed cooperative resear...

  1. The politics of policy : participatory irrigation management in Andhra Pradesh

    NARCIS (Netherlands)

    Nikku, B.R.

    2006-01-01

    This thesis studies the emergence, process and politics of the Andhra Pradesh reform policy of Participatory Irrigation Management (PIM). The reform has been labeled as the 'A? model' of irrigation reforms and supported by external aid agencies like World Bank. Within a short span of time Andhra Pra

  2. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.; Cheema, M. J. M.

    2013-07-01

    The paper demonstrates the application of a new water accounting plus (WA+) framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E), transpiration (T), interception (I) and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007) showed that total annual water depletion in the basin (501 km3) plus outflows (21 km3) exceeded total precipitation (482 km3). The water storage systems that were effected are groundwater storage (30 km3), surface water storage (9 km3), and glaciers and snow storage (2 km3). Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion). "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion). Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3) was through irrigated agriculture and the remaining 15% (44 km3) through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.

  3. Basin-wide water accounting based on remote sensing data: an application for the Indus Basin

    Directory of Open Access Journals (Sweden)

    P. Karimi

    2013-07-01

    Full Text Available The paper demonstrates the application of a new water accounting plus (WA+ framework to produce information on depletion of water resources, storage change, and land and water productivity in the Indus basin. It shows how satellite-derived estimates of land use, rainfall, evaporation (E, transpiration (T, interception (I and biomass production can be used in addition to measured basin outflow, for water accounting with WA+. It is demonstrated how the accounting results can be interpreted to identify existing issues and examine solutions for the future. The results for one selected year (2007 showed that total annual water depletion in the basin (501 km3 plus outflows (21 km3 exceeded total precipitation (482 km3. The water storage systems that were effected are groundwater storage (30 km3, surface water storage (9 km3, and glaciers and snow storage (2 km3. Evapotranspiration of rainfall or "landscape ET" was 344 km3 (69 % of total depletion. "Incremental ET" due to utilized flow was 157 km3 (31% of total depletion. Agriculture depleted 297 km3, or 59% of the total depletion, of which 85% (254 km3 was through irrigated agriculture and the remaining 15% (44 km3 through rainfed systems. Due to excessive soil evaporation in agricultural areas, half of all water depletion in the basin was non-beneficial. Based on the results of this accounting exercise loss of storage, low beneficial depletion, and low land and water productivity were identified as the main water resources management issues. Future scenarios to address these issues were chosen and their impacts on the Indus Basin water accounts were tested using the new WA+ framework.

  4. Impact evaluation of the irrigation management reform in northern China

    Science.gov (United States)

    Huang, Qiuqiong

    2014-05-01

    The paper evaluates the reform in the irrigation sector in northern China, in particular, the transfer of irrigation management to water user associations or contractors from the village committee. With a set of panel data collected in randomly selected villages in northern China, a fixed effects model at the canal level with instrumental variable estimation is used to control for unobservable heterogeneity and endogeneity problem. The results show that WUAs have increased maintenance expenditures, the timeliness of water deliveries, the percent of irrigated area and the rates of fee collection. There are also improvements in irrigation systems managed by contractors but with magnitudes smaller than in the case of WUAs. WUAs or contracting, however, have limited impacts on water use and crop production. Discussions on reasons for the findings of limited impacts offer some suggestions for the next steps of the irrigation reform and call for continued research efforts to collect more data for further impact evaluations.

  5. Sustainable Irrigation with Brackish Groundwater in Heilonggang Region, China

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Saline groundwater is widely distributed in Heilonggang region. While deep confined water is being mined, saline water has not been used in most part of the region. Extension of saline water irrigation is of significance to resolve water shortage, slow down environmental degradation and support the sustainable development of the local agriculture. Four key points are proposed to be managed by comprehensive measures: (1) adapting salt-resistant ability; (2) reducing salt input; (3) decreasing soil surface evaporation and salt accumulation in the root zone, and (4) washing away salt from the root zone. Experiments and farming practices demonstrated that brackish water with TDS (total dissolved solids) of 2-5 g/l can be used for crop irrigation. For example, winter wheat can be sustainably irrigated by brackish water with a water limitation of 120 mm every year. Irrigation in combination with different comprehensive measures can increase the efficiency of saline water irrigation.

  6. Response of potato to drip and gun irrigation systems

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Andersen, Mathias Neumann; Plauborg, Finn;

    2015-01-01

    The objective of this study was to evaluate effects of different irrigation and N fertilization regimes by gun irrigation and drip-fertigation on potato production, and subsequently optimize the supply of water and N fertilizer to the growth condition of the specific season and minimize nitrate......-fertigation system (DFdsNds) and two gun irrigation systems (GIdsN120 and GIaN120) to display the differences on growth, yield and water use efficiency of potato. All treatments were irrigated according to model simulated soil water content. For fertilization all treatments received a basic dressing at planting of P......, K, Mg and micronutrients, and in addition 120 kg N/ha in the gun irrigated treatments and 36 kg N/ha in the drip-fertigated. For the latter, portion of 20 kg N/ha was applied whenever plant N concentration approached a critical value as simulated by the Daisy model. As a result differences in soil...

  7. Lost conservation opportunities in the Pacific Northwest irrigation sector

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, B.J.; Hattrup, M.P.

    1987-06-01

    Initial efforts in the study were focused on identifying potential lost opportunities. Results of these efforts resulted in the following measures being identified as potential lost opportunities in the irrigation sector: pumping plant efficiency improvements on both existing and new sprinkler irrigated acres, low-pressure irrigation on new sprinkler acres, and mainline modification and fittings redesign on new sprinkler acres. All of these potential lost opportunities except fittings design were subject to more detailed analyses through a survey of irrigation equipment dealers, pump repairers and country extension agents. Fittings design was omitted from the survey. Results of the survey indicated that only high-efficiency electric motors and correct pump selection methods on existing and new sprinkler systems and low-pressure irrigation on new handmove/sideroll systems should be considered lost opportunities.

  8. Growth and ionic content of quinoa under saline irrigation

    DEFF Research Database (Denmark)

    Riccardi, M.; Pulvento, C.; Lavini, A.;

    2014-01-01

    Drought and salinity are the most important abiotic stresses that affect plant's growth and productivity. The aim of the present work was to evaluate the effect of salt and water deficit on water relations, growth parameters and capacity to accumulate inorganic solutes in quinoa plants....... Actual evapotranspiration (ETa), water productivity (WP), biomass allocation, relative growth rate (RGR), net assimilation rate (NAR), specific leaf area, leaf area ratio and ions accumulation of quinoa plants were evaluated. WP and plant growth were not influenced by saline irrigation, as quinoa plants....... An irrigation experiment was carried out in 2009 and 2010 in the Volturno river plain. Three treatments irrigated with fresh water (Q100, Q50 and Q25) and three irrigated with saline water (Q100S, Q50S and Q25S) were tested. For saline irrigation, water with an electrical conductivity of 22 dS m-1 was used...

  9. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    Science.gov (United States)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  10. Priority investment irrigation methodology in depressed rural areas

    Directory of Open Access Journals (Sweden)

    Jaime E. Díaz Ortiz

    2010-10-01

    Full Text Available The infrastructure for small irrigation systems demands costly investment which may become increased as many social and technical aspects related to the concerns of regions susceptible to investment remain unknown. The lack of both information and a social network supporting planning and design tasks constitute factors affecting many irrigation projects, consigning them to failure. Some indicators were prepared for constructing an irrigation system in the north of the Cauca department in Colombia which, in turn, led to determining investment priorities and facilitated decisionmaking. The indicators guaranteed that the construction would benefit the greatest number of users, assuring wider irrigation coverage. The project lasted forty-two months; the basic irrigation system was designed and constructed during this time, alternating direct reception via surface water sources and digging wells to use groundwater. Investment costs were lower than estimated FAO reference ones.

  11. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil.

    Science.gov (United States)

    Reche, Maria Helena L R; Machado, Vilmar; Saul, Danilo A; Macedo, Vera R M; Marcolin, Elio; Knaak, Neiva; Fiuza, Lidia M

    2016-03-01

    This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin.

  12. Microbial, physical and chemical properties of irrigation water in rice fields of Southern Brazil.

    Science.gov (United States)

    Reche, Maria Helena L R; Machado, Vilmar; Saul, Danilo A; Macedo, Vera R M; Marcolin, Elio; Knaak, Neiva; Fiuza, Lidia M

    2016-03-01

    This paper presents the results of the statistical analysis of microbiological, physical and chemical parameters related to the quality of the water used in rice fields in Southern Brazil. Data were collected during three consecutive crop years, within structure of a comprehensive monitoring program. The indicators used were: potential hydrogen, electrical conductivity, turbidity, nitrogen, phosphorus, potassium, calcium, total and fecal coliforms. Principal Component and Discriminant Analysis showed consistent differences between the water irrigation and drainage, as the temporal variation demonstrated a clear reduction in the concentration of most of the variables analyzed. The pattern of this reduction is not the same in the two regions - that is, the importance of each of the different variables in the observed differentiation is modified in two locations. These results suggested that the variations in the water quality utilized for rice irrigation was influenced by certain specific aspects of each rice region in South Brazilian - such as anthropic action or soil/climate conditions in each hydrographic basin. PMID:26959326

  13. Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-01-01

    The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared...

  14. Grain sorghum response to irrigation scheduling with the time-temperature threshold method and deficit irrigation levels

    Science.gov (United States)

    Studies using the Time Temperature Threshold (TTT) method for irrigation scheduling have been documented for cotton, corn, and soybean. However, there are limited studies of the irrigation management of grain sorghum (Sorghum bicolor, L.) with this plant-feedback system. In this two-year study, th...

  15. A new method for real-time quantification of irrigant extrusion during root canal irrigation ex vivo

    NARCIS (Netherlands)

    Psimma, Z.; Boutsioukis, C.; Vasiliadis, L.; Kastrinakis, E.

    2013-01-01

    Aim (i) To introduce a new method of quantifying extruded irrigant during root canal irrigation ex vivo. (ii) to evaluate the effect of periapical tissue simulation and pressure equalization and (iii) to determine the effect of needle type, apical preparation size and apical constriction diameter

  16. Wheat Irrigation Management Using Multispectral Crop Coefficients: II. Irrigation Scheduling Performance, Grain Yield, and Water Use Efficiency

    Science.gov (United States)

    Current irrigation scheduling is based on well-established crop coefficient-reference evapotranspiration methods. However, appropriate irrigation scheduling can be negated when crop evapotranspiration (ETc) is poor due to imprecise crop coefficients. The premise of this research is that real-time mo...

  17. Conceptual Model of Water Resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, L. Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  18. Yield and Irrigation Water Use Efficiency Response of Chufa (Cyperus esculentus L. var. sativus Boeck.) to Drip Irrigation Management

    Science.gov (United States)

    Pascual-Seva, Nuria; San Bautista, Alberto; López-Galarza, Salvador; Maroto, José Vicente; Pascual, Bernardo

    2016-04-01

    Chufa, also known as tigernut, is a typical crop in Valencia, Spain, where it is cultivated in ridges with furrow irrigation. Its cultivation uses large amounts of water, in the order of 10,000 m3 ha‑1 year‑1, so different studies have been undertaken in order to maximize the irrigation water use efficiency (IWUE). One of these studies faced the application of drip irrigation in the chufa cultivation, comparing three different irrigation strategies. These strategies differed on the volumetric soil water content (VSWC) when each irrigation event started. Starting each irrigation when the VSWC dropped to 90% of field capacity (FC) leaded to the highest yield, while the highest IWUE was obtained when irrigation started at 80% FC. It can be stated that starting each irrigation event when the VSWC is between 80 and 90% FC leads to the best results in terms of yield and IWUE. However, these results may still be improved by defining the best strategy in the irrigation stop, which is the aim of the herein presented research. This investigation comprises the productive response of the chufa crop with drip irrigation, determining yield and IWUE. The VSWC was monitored using multi-depth capacitance probes, with sensors at 0.10, 0.20 and 0.30 m below the top of the ridge. Each irrigation event started when the volumetric soil water content at 0.10 m dropped to 85% FC. Three irrigation strategies were considered, T1: each event being stopped when the average of the VSWC values at 0.10, 0.20 and 0.30 m depth reached the corresponding FC value; T2: each event being stopped when the VSWC values at 0.20 m reached the corresponding FC value; T3 each irrigation event lasted 30 min (corresponding to 7.33 mm). The largest yield (P ≤0.05) was obtained in T2 (2.31 kg m‑2), with no statistical differences (P ≤0.05) between T1 (1.94 kg m‑2) and T3 (1.92 kg m‑2). The highest yield in T2 was obtained with the largest volume of irrigation water applied (722 mm), resulting in the

  19. Experimental Investigation of Soil Evaporation and Evapotranspiration of Winter Wheat Under Sprinkler Irrigation

    Institute of Scientific and Technical Information of China (English)

    YU Li-peng; HUANG Guan-hua; LIU Hai-jun; WANG Xiang-ping; WANG Ming-qiang

    2009-01-01

    Sprinkler irrigation is one of the typical irrigation technologies used for the winter wheat-summer maize double cropping system in the North China Plain. To evaluate the evapotranspiration (ET) of winter wheat under sprinkler irrigation in Beijing area, field experiments were conducted in growing seasons through 2005-2008, in the experimental station located in Tongzhou County, Beijing, China, with different irrigation depths. Results indicated that a relatively large variation of soil water content occurred within 0-40 cm soil layer. The seasonal ET of winter wheat generally increased with increasing irrigation amount, while the seasonal usage of soil water had a negative relationship with irrigation amount. Soil evaporation (Es) was about 25% of winter wheat ET during the period from reviving to maturity. Es increased while Es/ET decreased with increasing irrigation amount. Sprinkler irrigation scheduling with relatively large irrigation quota and low irrigation frequency can reduce E, and promote the irrigation water use efficiency.

  20. Past and future water conflicts in the Upper Klamath Basin: An economic appraisal

    Science.gov (United States)

    Boehlert, Brent B.; Jaeger, William K.

    2010-10-01

    The water conflict in the Upper Klamath Basin typifies the growing competition between agricultural and environmental water uses. In 2001, drought conditions triggered Endangered Species Act-related requirements that curtailed irrigation diversions to the Klamath Reclamation Project, costing irrigators tens of millions of dollars. Although this event has significantly elevated the perceived risk of future economic catastrophe in the basin (and therefore the level of conflict among water users), several key changes related to water availability have occurred since 2001. These changes include reduced ESA requirements and increased groundwater pumping capacity, which have lowered the actual risk and severity of future water shortages. In this paper, we use a mathematical programming model to evaluate how these changes alter the likelihood and economic consequences of future shortages. We also consider the effect of more flexible transfers among irrigators via water markets. Our analysis indicates that future drought conditions like those seen in 2001 would have more modest economic impacts than in 2001 and that when combined with contingent groundwater supplementation and water transfer mechanisms such as water markets, both the likelihood and magnitude of economic losses among irrigators would be greatly reduced.

  1. Bird use of fields treated postharvest with two types of flooding in Tulare Basin, California

    Science.gov (United States)

    Fleskes, Joseph P.; Skalos, Daniel A.; Farinha, Melissa A.

    2012-01-01

    We surveyed birds on grain and non-grain fields in the Tulare Basin of California treated post-harvest with two types of flooding that varied in duration and depth of water applied (Flooded-type fields [FLD]: 1 week; Irrigated-type fields [IRG]: 1 week) flooding increased waterbird use of grain fields in the Tulare Basin more than in the northern Central Valley. Thus, even though water costs are high in the Tulare Basin, if net benefit to waterbirds is considered, management programs that increase availability of FLD-type fields (especially grain) in the Tulare Basin may be a cost-effective option to help meet waterbird habitat conservation goals in the Central Valley of California.

  2. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-12-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  3. Particle tracking for selected groundwater wells in the lower Yakima River Basin, Washington

    Science.gov (United States)

    Bachmann, Matthew P.

    2015-10-21

    The Yakima River Basin in south-central Washington has a long history of irrigated agriculture and a more recent history of large-scale livestock operations, both of which may contribute nutrients to the groundwater system. Nitrate concentrations in water samples from shallow groundwater wells in the lower Yakima River Basin exceeded the U.S. Environmental Protection Agency drinking-water standard, generating concerns that current applications of fertilizer and animal waste may be exceeding the rate at which plants can uptake nutrients, and thus contributing to groundwater contamination.

  4. What is the Optimal Water Productivity Index for Irrigated Grapevines? Case of 'Godello' and 'Albariño' cultivars

    Science.gov (United States)

    Fandiño, María; Martínez, Emma M.; Rey, Benjamín J.; Cancela, Javier J.

    2015-04-01

    productivity indexes are cultivar depending, similar values was achieved in near locations (data not showed). Special care must be taken when analysing water productivity indexes at the farm level, considering identical irrigation depth, density, canopy management system, age of the plantation, management practices, among other factors, which may affect of water consumed or supplied to the vineyard. Agronomical economic aspects should be studied, taken into account irrigation systems cost and benefit crop yield, at basin scale. Temperate viticulture should pursue greater WUE and WP, identifying the most productive cultivars adapted to near-future climate conditions. References: Flexas J, Galmés J, Gallé A, Gulías J, Pou A, Ribas-Carbo M, Tomàs M, Medrano H (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16(s1):106-121 Pereira LS, Cordery I, Iacovides I (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural Water Management, 108:39-51 Scheierling SM, Treguer DO, Booker JF, Decker E (2014). How to assess agricultural water productivity? looking for water in the agricultural productivity and efficiency literature. Looking for Water in the Agricultural Productivity and Efficiency Literature (July 1, 2014). World Bank Policy Research Working Paper, (6982)

  5. Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali

    OpenAIRE

    Adama Toure; Bernd Diekkrüger; Adama Mariko

    2016-01-01

    Investigations of groundwater resources in order to understand aquifer system behavior are vital to the inhabitants of the Klela Basin, Mali, because groundwater is the only permanent water resource and is used for drinking water and irrigation. Due to climate change, this vital resource is being threatened. Therefore, MODFLOW was applied in this study to simulate groundwater dynamics. The aim of this study was to evaluate the impact of climate change on groundwater resources in the Klela bas...

  6. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    OpenAIRE

    Kahil, Mohamed Taher; Ward, Frank A.; Albiac Murillo, José; Eggleston, Jack; Sanz, David

    2016-01-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. ...

  7. Measurements of energy and water vapor fluxes over different surfaces in the Heihe River Basin, China

    OpenAIRE

    Liu, S.; Xu, Z.; Wang, W.; J. Bai; Jia, Z; Zhu, M.; Wang, J.

    2010-01-01

    We analyzed the seasonal variations of energy and water vapor fluxes over three different surfaces: irrigated cropland (Yingke, YK), alpine meadow (A'rou, AR), and spruce forest (Guantan, GT). The energy and water vapor fluxes were measured using eddy covariance systems (EC) and a large aperture scintillometer (LAS) in the Heihe River Basin, China, in 2008 and 2009. We also determined the source areas of the EC and LAS measurements with a footprint model for each site, and discussed th...

  8. Recent Trends in Temperature and Precipitation in the Langat River Basin, Malaysia

    OpenAIRE

    Mahdi Amirabadizadeh; Yuk Feng Huang; Teang Shui Lee

    2015-01-01

    A study was undertaken to detect long-term trends in the annual and seasonal series of maximum and minimum temperatures. Measurements were taken at 11 meteorological stations located in the Langat River Basin in Malaysia. The rainfall and maximum and minimum temperature data were obtained from the Malaysia Meteorological Department (MMD) and the Department of Irrigation and Drainage (DID) Malaysia. The procedures used included the Mann-Kendall test, the Mann-Kendall rank statistic test, and t...

  9. Assessment of Potential Dam Sites in the Kabul River Basin Using GIS

    Directory of Open Access Journals (Sweden)

    RASOOLI Ahmadullah

    2015-02-01

    Full Text Available The research focuses on Kabul River Basin (KRB water resources infrastructure, management and development as there are many dams already in the basin and many dams are planned and are being studied with multi-purposes objectives such as power generation, irrigation and providing water to industry and domestics. KB has been centralized all water resources related information in an integrated relational geo-database this KB is centralized repository for information river basin management with the main objectives of optimizing information collection, retrieval and organization. In addition, in this paper information and characteristics of the KRB has been presented such as drainage network or hydrology, irrigation, population, climate and surface pattern other necessary features of the basin by the use of GIS in order to invest and implement infrastracture projects. The first step in doing any kind of hydrologic modeling involves delineating streams and watersheds, and getting some basic watershed properties such as area, slope, flow length, stream network density, etc. Traditionally this was (and still is being done manually by using topographic/contour maps. With the availability of Digital Elevation Models (DEM and GIS tools, watershed properties can be extracted by using automated procedures. The processing of DEM to delineate watersheds is referred to as terrain pre-processing. Besides that, it produced the necessary thematic maps, base maps and other detailed maps for illustrating of basin characteristics and features GIS Based.

  10. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  11. Input and output constraints affecting irrigation development

    Science.gov (United States)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  12. A comparison of integrated river basin management strategies: A global perspective

    Science.gov (United States)

    Zhao, Chunhong; Wang, Pei; Zhang, Guanghong

    In order to achieve the integrated river basin management in the arid and rapid developing region, the Heihe River Basin (HRB) in Northwestern China, one of critical river basins were selected as a representative example, while the Murray-Darling Basin (MDB) in Australia and the Colorado River Basin (CRB) in the USA were selected for comparative analysis in this paper. Firstly, the comparable characters and hydrological contexts of these three watersheds were introduced in this paper. Then, based on comparative studies on the river basin challenges in terms of the drought, intensive irrigation, and rapid industrialization, the hydrological background of the MDB, the CRB and the HRB was presented. Subsequently, the river management strategies were compared in three aspects: water allocation, water organizations, and water act and scientific projects. Finally, we proposed recommendations for integrated river basin management for the HRB: (1) Water allocation strategies should be based on laws and markets on the whole basin; (2) Public participation should be stressed by the channels between governance organizations and local communities; (3) Scientific research should be integrated into river management to understand the interactions between the human and nature.

  13. Availability of fresh and slightly saline ground water in the basins of westernmost Texas

    Science.gov (United States)

    Gates, Joseph Spencer; Stanley, W.D.; Ackermann, H.D.

    1978-01-01

    Significant quantities of fresh ground water occur in the basin fill of the northern Hueco bolson and lower Mesilla Valley and in the Wildhorse Flat, Michigan Flat, Lobo Flat, and Ryan Flat areas of the Salt Basin; and may occur in Red Light Draw, Presidio bolson, and Green River valley. More than 20 million acre-feet of freshwater is estimated to be in storage in the basin fill of westernmost Texas. About 12 million acre-feet, or more than half, is in El Paso County in the Hueco bolson and Mesilla Valley. In addition, the basins contain about 7 million acre-feet of slightly saline water in basin fill, in Rio Grande alluvium in the Hueco bolson and lower Mesilla Valley, and in the Capitan Limestone in the northern Salt Basin. Ground-water pumping for municipal supply and industrial use in the El Paso area caused water-level declines of as much as 74 feet during 1903-73, and pumping for irrigation in the Salt Basin caused a maximum decline of 150 feet at Lobo Flat during 1949-73. Additional development of ground water in westernmost Texas will be accompanied by further declines in water levels, and will probably induce local migration of slightly saline or poorer quality water into freshwater areas. Land-surface subsidence could occur in local areas where water-level declines are large and the basin fill contains large amounts of compressible clay. (Kosco-USGS)

  14. Hydraulic jump stilling basins

    Science.gov (United States)

    An outlet works is a combination of structures and equipment required for the safe operation and control of water released from a reservoir to serve various purposes like regulating stream flow and water quality; releasing floodwater; and/or providing irrigation, municipal, or industrial water. Out...

  15. Subsurface drip irrigation in different planting spacing of sugarcane

    Science.gov (United States)

    Pires, R. C. M.; Barbosa, E. A. A.; Arruda, F. B.; Silva, T. J. A.; Sakai, E.; Landell, M. G. A.

    2012-04-01

    The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficits conditions. The SDI provides better water use efficiency, due to the water and nutrients application in root zone plants. However, it is important to investigate the long-term effect of irrigation in the yield and technological quality in different ecological condition cultivation. Thus, the aim of this work was to evaluate the effect of SDI in sugarcane cultivated in different planting spacings on technological quality, yield and theoretical recoverable sugar during four cycles of sugarcane cultivation. The experiment was carried out at Colorado Mill, Guaíra, São Paulo State in Brazil, in a clay soil. The experiment was installed in randomized blocks, with six replications. The treatments were three different planting spacings (S1 - 1.5 m between rows; S2 - 1.8 m between rows and S3 - planting in double line of 0.5 m x 1.3 m between planting rows) which were subdivided in irrigated and non-irrigated plots. In S1 and S2 treatments were installed one drip line in each plant row and in treatment S3 one drip line was installed between the rows with smaller spacing (0.5 m). The RB855536 genotype was used and the planting date occurred in May, 25th 2005. The analyzed parameters were: percentage of soluble solids (brix), percent apparent sucrose juice (Pol), total recoverable sugar (ATR), yield and theoretically recoverable sugar (RTR). Four years of yield (plant cane and first, second and third ratoon) were analyzed. Data were submitted to variance analysis and the averages compared by Duncan test at 5% probability. Two months before the first harvest a yield estimate was realized. According to the observed results the irrigated plants provided increase of about 20 % compared to non irrigated plants. However there was a great tipping of plants specially in irrigated plots. The

  16. Impact of Irrigation on Local Climate over Northwestern China

    Science.gov (United States)

    Wen, L.; Jin, J.

    2009-12-01

    Three dominant land use types in northwestern China are irrigated cropland, grassland and desert. Observational analysis indicates that irrigated cropland has both the coolest surface and the slowest warming trend of the three land use types for the period of 1979-2005. The single column atmospheric model (SCAM) developed by the National Center for Atmospheric Research was used to investigate and better understand the differences in long-term climate conditions and change over these three land use types. The results indicate that the SCAM can reasonably reproduce the observed climate conditions in this region. The irrigated cropland of the region generates strong evaporation that cools the surface, slows the warming trend, and produces stronger precipitation when compared to the natural grassland and desert. The irrigated cropland region receives its irrigated water primarily from melting snowpack from the nearby mountains, and a series of sensitivity SCAM simulations indicate that a drier and warmer climate occurs with the shrinking of this irrigated cropland region. Thus, the irrigation process has a profound impact on the local climate in northwestern China.

  17. Silicate fertilizer and irrigation depth in corn production

    Directory of Open Access Journals (Sweden)

    Edvaldo Eloy Dantas Júnior

    2013-08-01

    Full Text Available Calcium-magnesium silicates improve the soil physicochemical properties and provide benefits to plant nutrition, since they are sources of silica, calcium and magnesium. The objective of this study was to evaluate the grain yield of irrigated corn fertilized with calcium-magnesium silicate. The experiment was carried out in a greenhouse in Campina Grande - PB, Brazil, using plastic pots containing 80 kg of soil. The treatments consisted of the combination of four irrigation depths, related to water replacement of 50, 75, 100 and 125% of the crop evapotranspiration, with fertilizer levels of 0, 82, 164 and 246 g of calcium-magnesium silicate, with three replications. The experimental design was in randomized blocks, with the irrigation depths distributed in bands while the silicon levels constituted the subplots. Corn yield was influenced by calcium-magnesium silicate and by irrigation depth, obtaining the greatest grain yield with the dose of 164 g pot-1 irrigated at the highest water level. The water-use efficiency of in corn production tended to decrease when the irrigation depth was increased. The best water-use efficiency was observed when the irrigation level was between 87 and 174 mm, and the dose of silicate was 164 g pot-1.

  18. Modelling the influence of irrigation abstractions on Scotland's water resources.

    Science.gov (United States)

    Dunn, S M; Chalmers, N; Stalham, M; Lilly, A; Crabtree, B; Johnston, L

    2003-01-01

    Legislation to control abstraction of water in Scotland is limited and for purposes such as irrigation there are no restrictions in place over most of the country. This situation is set to change with implementation of the European Water Framework Directive. As a first step towards the development of appropriate policy for irrigation control there is a need to assess the current scale of irrigation practices in Scotland. This paper presents a modelling approach that has been used to quantify spatially the volume of water abstractions across the country for irrigation of potato crops under typical climatic conditions. A water balance model was developed to calculate soil moisture deficits and identify the potential need for irrigation. The results were then combined with spatial data on potato cropping and integrated to the sub-catchment scale to identify the river systems most at risk from over-abstraction. The results highlight that the areas that have greatest need for irrigation of potatoes are all concentrated in the central east-coast area of Scotland. The difference between irrigation demand in wet and dry years is very significant, although spatial patterns of the distribution are similar.

  19. Yield response of groundnut grown under rainfed and irrigated conditions

    International Nuclear Information System (INIS)

    A rainfed treatment and two irrigated treatments of groundnut were compared in terms of yield and water use. The rainfed treatment (Treatment A) was considered the control treatment. Treatment B consisted of irrigation at 7-day intervals taking into consideration rainfall. Treatment C was the other irrigation treatment consisting of irrigations made whenever readings of tensiometeres at the 20-cm soil depth were equal to or less than -30 kPa. Results showed that there was no significant difference in yield between the two irrigation treatments. The average groundnut yields obtained from treatments A, B and C were 1.9, 3.1 and 3.2 t.ha-1, respectively. The crop in the rainfed plot was exposed to water stress during its flowering stage owing to limited rainfall in August: The total water use of groundnut for a 30-day period beginning 30 days after planting (DAP) was 64.5, 124.5 and 152 mm for rainfed, irrigated B and irrigated C, respectively. The low water use in the rainfed plot resulted in a low yield. As indicated by a continuously decreasing value of the hydraulic head value to < -70 kPa in the rainfed plot from 35 to 54 DAP, the soil at 20-cm depth was continuously dry. With the yield response factor ky for flowering stage being 0.74, the decrease in groundnut yield due to water deficit during flowering stage is relatively large. (author). 9 refs, 5 figs, 2 tabs

  20. Impacts of Irrigation and Drought on Salem Ground Water

    Directory of Open Access Journals (Sweden)

    T. Subramani

    2014-06-01

    Full Text Available This investigation is the first of three phases of a ground-water management study. In this report, effects of irrigation and drought on the ground-water resources of Salem are examined. Irrigation water use for five soil types is estimated from a monthly water budget model on the basis of precipitation and temperature data from the last 30 years at selected weather stations across Salem. Moisture deficits are computed for each soil type on the basis of the water requirements of a corn crop. It is assumed that irrigation is used to make up the moisture deficit in those places where irrigation systems already exist. Irrigation water use from each township with irrigated acreage is added to municipal and industrial ground-water use data and then compared to aquifer potential yields. The spatial analysis is accomplished with a statewide geographic information system. An important distinction is made between the seasonal effects of irrigation water use and the annual or long-term effects.