WorldWideScience

Sample records for basin in-situ decommissioning

  1. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and

  2. Technology Requirements For In Situ Decommissioning Workshop Report

    International Nuclear Information System (INIS)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-01-01

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private

  3. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  4. Remediation of SRS Basins by In Situ Stabilization/Solidification

    International Nuclear Information System (INIS)

    Ganguly, A.

    1999-01-01

    In the late summer of 1998, the Savannah River Site began remediation of two radiologically contaminated basins using in situ stabilization. These two high-risk, unlined basins contain radiological contaminants, which potentially pose significant risks to human health and the environment. The selected remedy involves in situ stabilization/solidification of the contaminated wastes (basin and pipeline soils, pipelines, vegetation, and other debris) followed by installation of a low permeability soil cover

  5. Use of Cementitious Materials for SRS Reactor Facility In-Situ Decommissioning

    International Nuclear Information System (INIS)

    Langton, C.A.; Stefanko, D.B.; Serrato, M.G.; Blankenship, J.K.; Griffin, W.G.; Long, J.T.

    2013-01-01

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD project requires approximately 250000 cubic yards of cementitious materials to fill the below-grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Funding is being provided under the American Recovery and Reinvestment Act (ARRA). Cementitious materials were designed for the following applications: (A) Below-grade massive voids / rooms: Portland cement-based structural flowable fills for: (A.1) Bulk filling; (A.2) Restricted placement and (A.3) Underwater placement. (B) Special below-grade applications for reduced load bearing capacity needs: (B.1) Cellular portland cement lightweight fill. (C) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels (C.1) Blended calcium aluminate - calcium sulfate based flowable fill; (C.2) Magnesium potassium phosphate flowable fill. (D) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: (D.1) Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured

  6. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  7. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  8. Study on tertiary in-situ leachable uranium mineralization conditions in South Songliao basin

    International Nuclear Information System (INIS)

    Zhang Zhenqiang; Li Guokuan; Zhao Zonghua; Zhang Jingxun

    2001-01-01

    Tertiary in-situ leachable mineralization in Songliao Basin was analyzed in theory in the past. Since 1998, regional investigation at 1:200000 scale has been done with about 120 holes drilled. Based on drill holes recording, section compiling and sample analysis, the authors investigate into the Tertiary in-situ leachable conditions including rock character, sedimentary facies, rock chemistry, organic substances, uranium content, sandstone porosity, sandstone bodies, interlayer oxidation, and hydro-dynamic value. The study would play important role in prospecting for in-situ leachable uranium in South Songliao basin

  9. In situ characterization of Hanford K Basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-06

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel.

  10. New Materials Developed To Meet Regulatory And Technical Requirements Associated With In-Situ Decommissioning Of Nuclear Reactors And Associated Facilities

    International Nuclear Information System (INIS)

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-01

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m 3 (250,000 yd 3 ) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent industrial worker exposure to

  11. In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Z.P.; Zhang, J.C.; Wang, R. [Shell Exploration & Production Co, Houston, TX (United States)

    2011-01-15

    This study focuses on the in-situ stress, pore pressure and permeability in the Southern Qinshui Basin, one of largest coalbed methane basins in China. Well tests show that permeability in this basin is higher than other coalbed methane reservoirs. This is because it is located in an extensional basin, where the normal faulting stress regime is dominated. This in-situ stress regime is advantageous to keep coal cleats open. Hydraulic fracturing tests indicate that the fracture gradient or minimum horizontal stress is much lower than the shales in the Gulf of Mexico and other oil basins. The minimum horizontal stress model is proposed with consideration of the stress coefficient based on the uniaxial strain method. This model provides a fairly good prediction on the minimum stress. Permeability data show that the effective stress-dependent permeability is pronounced in the coalbed methane reservoir. This is significant for the dual-porosity and dual-permeability coal reservoirs, which consist of coal porous matrices and cleats. The reason is that a rapid increase in effective stress can induce the closure of cleats, which may cause a permanent loss of permeability in the cleats. This reduces the connectivity between the cleats and coal matrices, hence the coal matrices cannot deliver gas pressure to the cleats for supporting the cleat space. Therefore, slowing down the effective stress change during production (e.g. slowing reservoir drawdown) can decelerate the permeability reduction. This is particularly important for the reservoir in which the pore pressure is not significantly overpressured, such that in the Southern Qinshui Basin.

  12. Validation of remotely-sensed soil moisture in the absence of in situ soil moisture: the case of the Yankin Basin, a tributary of the Niger River basin

    CSIR Research Space (South Africa)

    Badou, DF

    2017-10-01

    Full Text Available Soil moisture is known to be important in hydrology, agronomy, floods and drought forecasting. Acquisition of in situ soil moisture data is time consuming, costly, and does not cover the scale required for basin analysis. The consideration...

  13. An analysis of prominent prospect of in-situ sandstone type uranium deposits in Yanji basins group, Jilin province

    International Nuclear Information System (INIS)

    Peng Zhidong; Zhang Shuyi

    2003-01-01

    In Mesozoic-Cenozoic era, many medium-small-sized sedimentary basins had been formed in Yanbian draped-faulted region of Jilin Province. The basement of these basins is constituted of U-riched granite body produced during late Hercynian-early Yanshan period. Uranium-mineralization has been found in coal-bearing formation, oil-bearing formation and in tint layer of red formation. On the bases of analyzing of uranium source, geologic tectonic, paleoclimatology, paleogeography, hydrogeology and reconstruction, it is concluded that there is a prominent prospect to discover large in-situ sandstone-type uranium deposits in Yanji basins. (authors)

  14. Analysis on metallogenetic prospect of in-situ leachable sandstone-type uranium deposit in Chaoshui-Yabulai basin

    International Nuclear Information System (INIS)

    Jiang Minzhong; Wang Huaiwu

    2002-01-01

    Based on the regional geologic background, and results of high-sensitive airborne magnetic and air-borne radioactive surveys, and the interpretation of remote sensing images, ground geophysical and geochemical survey data, authors comprehensively analyse uranium-metallogenic geologic conditions for in-situ leachable sandstone-type uranium deposits in Chaoshui-Yabulai basin and have selected favourable target areas for uranium ore-formation

  15. Long-term erosion rates of Panamanian drainage basins determined using in situ 10Be

    Science.gov (United States)

    Gonzalez, Veronica Sosa; Bierman, Paul R.; Nichols, Kyle K.; Rood, Dylan H.

    2016-12-01

    Erosion rates of tropical landscapes are poorly known. Using measurements of in situ-produced 10Be in quartz extracted from river and landslide sediment samples, we calculate long-term erosion rates for many physiographic regions of Panama. We collected river sediment samples from a wide variety of watersheds (n = 35), and then quantified 24 landscape-scale variables (physiographic, climatic, seismic, geologic, and land-use proxies) for each watershed before determining the relationship between these variables and long-term erosion rates using linear regression, multiple regression, and analysis of variance (ANOVA). We also used grain-size-specific 10Be analysis to infer the effect of landslides on the concentration of 10Be in fluvial sediment and thus on erosion rates. Cosmogenic 10Be-inferred, background erosion rates in Panama range from 26 to 595 m My- 1, with an arithmetic average of 201 m My- 1, and an area-weighted average of 144 m My- 1. The strongest and most significant relationship in the dataset was between erosion rate and silicate weathering rate, the mass of material leaving the basin in solution. None of the topographic variables showed a significant relationship with erosion rate at the 95% significance level; we observed weak but significant correlation between erosion rates and several climatic variables related to precipitation and temperature. On average, erosion rates in Panama are higher than other cosmogenically-derived erosion rates in tropical climates including those from Puerto Rico, Madagascar, Australia and Sri Lanka, likely the result of Panama's active tectonic setting and thus high rates of seismicity and uplift. Contemporary sediment yield and cosmogenically-derived erosion rates for three of the rivers we studied are similar, suggesting that human activities are not increasing sediment yield above long-term erosion rate averages in Panama. 10Be concentration is inversely proportional to grain size in landslide and fluvial samples

  16. In-situ stress, pore pressure, and hydrocarbon migration and accumulation in sedimentary basins

    Science.gov (United States)

    Finkbeiner, Thomas

    1999-11-01

    An important concept for understanding fluid flow in hydrocarbon fields is that dynamic mechanisms governed by the stress state present drive oil and gas migration and accumulation. The principal goals in this dissertation are to constrain the full in-situ stress tensor and reservoir pore pressure conditions, identify hydrocarbon migration pathways, and test dynamic processes controlling fluid flow and rock deformation. For this purpose I analyze various types of downhole measurements from two hydrocarbon producing sedimentary basins. In the Santa Maria Basin, on- and offshore California, stress orientations derived from borehole breakouts and inversion of earthquake focal plane mechanisms indicate a rather uniform stress field consistent with the regional trend. Analysis of borehole wall images reveal ubiquitous fractures and faults that exhibit great variations in orientation and occurrence. These variations can be correlated with changes of lithology and physical properties. Permeability appears to be enhanced in the vicinity of fractures and faults that are active and optimally oriented for failure in the current stress field. In the South Eugene Island 330 field, Gulf of Mexico, drilling induced borehole breakouts, reveal least principal horizontal stress orientations, that are predominantly perpendicular to active normal faults. Minimum principal stress magnitudes show significant scatter revealing fracture gradients that cannot be correlated with previously published models from this area. Reservoir pore pressures are highly variable and range from hydrostatic to severely overpressured indicating compartmentalization and production induced depletion. Reservoir depletion, pore pressures, and hydrocarbon column heights in individual reservoirs appear to be a function of stratigraphy. Shallow sands are hydrostatically pressured, well drained, and normally compacted. Oil and gas columns are long and controlled by a spill point. At intermediate stratigraphic

  17. Long-term erosion rates of Panamanian drainage basins determined using in situ 10Be

    OpenAIRE

    Gonzalez, VS; Bierman, PR; Nichols, KK; Rood, DH

    2016-01-01

    Erosion rates of tropical landscapes are poorly known. Using measurements of in situ-produced 10Be in quartz extracted from river and landslide sediment samples, we calculate long-term erosion rates for many physiographic regions of Panama. We collected river sediment samples from a wide variety of watersheds (n = 35), and then quantified 24 landscape-scale variables (physiographic, climatic, seismic, geologic, and land-use proxies) for each watershed before determining the relationship betwe...

  18. Acoustic velocity in rift basin mudstones: effects of in situ stress and sample lithology, and its relation to formation strength

    Science.gov (United States)

    Zakharova, N. V.; Goldberg, D.

    2017-12-01

    Acoustic/sonic velocity (Vp) provides one of the best proxies for formation strength, which is essential for geomechanical modeling and formation evaluation. Vp-strength relations need to be built empirically for specific basins and/or rock types. Since velocity is stress- and frequency-dependent, such relations can be very sensitive to experimental conditions; therefore, it is important to quantify their effect on velocity values. In this study, we present confined velocity and strength measurements for over 70 samples from the Newark Rift basin, a candidate site for carbon sequestration, and one of the largest in a series of the Mesozoic rift basins on the eastern North-American coast. Acoustic velocity measurements were obtained for a range of confining pressures from 0 to 6,000 psi, roughly corresponding to in situ confining pressure range. Although, overall, Vp values tend to increase with increasing pressure, the degree of Vp response to stress varies dramatically from sample to sample, and does not appear to correlate directly to lithology or porosity. Select samples exhibit near-zero change in Vp with increasing confining pressure, while others are characterized by up to 15% Vp change with 3,000 psi increase in confining pressure. Compared to sonic logs, the low-stress Vp values usually underestimate sonic velocities, while high-stress values tend to overestimate them. Therefore, a systematic frequency-dependent core-log difference is not observed in these rift basin formations, but accounting for Vp dependence on confining pressure is important. We quantify the Vp-pressure dependence using laboratory acoustic measurements, and develop depth-dependent Vp-strength relation, which could be used with sonic logs for geomechanical analysis in similar Mesozoic rift basin formations.

  19. Past terrestrial water storage (1980–2008 in the Amazon Basin reconstructed from GRACE and in situ river gauging data

    Directory of Open Access Journals (Sweden)

    M. Becker

    2011-02-01

    Full Text Available Terrestrial water storage (TWS composed of surface waters, soil moisture, groundwater and snow where appropriate, is a key element of global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE space gravimetry mission provides a new tool to measure large-scale TWS variations. However, for the past few decades, direct estimate of TWS variability is accessible from hydrological modeling only. Here we propose a novel approach that combines GRACE-based TWS spatial patterns with multi-decadal-long in situ river level records, to reconstruct past 2-D TWS over a river basin. Results are presented for the Amazon Basin for the period 1980–2008, focusing on the interannual time scale. Results are compared with past TWS estimated by the global hydrological model ISBA-TRIP. Correlations between reconstructed past interannual TWS variability and known climate forcing modes over the region (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation are also estimated. This method offers new perspective for improving our knowledge of past interannual TWS in world river basins where natural climate variability (as opposed to direct anthropogenic forcing drives TWS variations.

  20. In situ spores from Pennsylvanian ferns from Upper Silesian basin (Czech Republic, Poland)

    Czech Academy of Sciences Publication Activity Database

    Pšenička, J.; Bek, Jiří

    2008-01-01

    Roč. 2008, č. 2 (2008), s. 228-228 ISSN 0946-8978. [International Palynological Congress /12./ ; International Organisation of Palaeobotany Conference /8./. 30.08.2008-05.09.2008, Bonn] R&D Projects: GA AV ČR IAA300130503 Institutional research plan: CEZ:AV0Z30130516 Keywords : spores * Upper Silesian Basin Subject RIV: DB - Geology ; Mineralogy

  1. Pre-selection tests on geophysical and geochemical exploration methods for in-situ leachable sandstone-type uranium deposit in Erlian Basin

    International Nuclear Information System (INIS)

    Zhang Shouben; Tan Chenglong; Jiang Yongyi; Wu Duanyang

    1997-01-01

    The authors introduce the application tests and their results on the Nuheting deposit using non-conventional geophysical and geochemical methods. Through effective analysis on the screened methods, a method combination for the exploration of the in-situ leachable sandstone-type uranium deposit in Erlian Basin has been presented

  2. Decommissioning Handbook

    International Nuclear Information System (INIS)

    Cusack, J.G.; Dalfonso, P.H.; Lenyk, R.G.

    1994-01-01

    The Decommissioning Handbook provides technical guidance on conducting decommissioning projects. Information presented ranges from planning logic, regulations affecting decommissioning, technology discussion, health and safety requirements, an developing a cost estimate. The major focus of the handbook are the technologies -- decontamination technologies, waste treatment, dismantling/segmenting/demolition, and remote operations. Over 90 technologies are discussed in the handbook providing descriptions, applications, and advantages/disadvantages. The handbook was prepared to provide a compendium of available or potentially available technologies in order to aid the planner in meeting the specific needs of each decommissioning project. Other subjects presented in the Decommissioning Handbook include the decommissioning plan, characterization, final project configuration based planning, environmental protection, and packaging/transportation. These discussions are presented to complement the technologies presented in the handbook

  3. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  4. Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin, California

    Science.gov (United States)

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D.

    1997-01-01

    We used borehole televiewer (BHTV) data from four wells within the onshore and offshore Santa Maria basin, California, to investigate the relationships among fracture distribution, orientation, and variation with depth and in-situ stress. Our analysis of stress-induced well-bore breakouts shows a uniform northeast maximum horizontal stress (SH max) orientation in each well. This direction is consistent with the SH max direction determined from well-bore breakouts in other wells in this region, the northwest trend of active fold axes, and kinematic inversion of nearby earthquake focal plane mechanisms. In contrast to the uniformity of the stress field, fracture orientation, dip, and frequency vary considerably from well to well and within each well. With depth, fractures can be divided into distinct subsets on the basis of fracture frequency and orientation, which correlate with changes of lithology and physical properties. Although factors such as tectonic history, diagenesis, and structural variations obviously have influenced fracture distribution, integration of the in-situ stress and fracture data sets indicates that many of the fractures, faults, and bedding planes are active, small-scale strike-slip and reverse faults in the current northeast-trending transpressive stress field. In fact, we observed local breakout rotations in the wells, providing kinematic evidence for recent shear motion along fracture and bedding-parallel planes. Only in the onshore well do steeply dipping fractures strike parallel to SHmax. Drill-stem tests from two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the wells where fractures are favorably oriented for shear failure in the modern stress field. Thus, relatively small-scale active faults provide important conduits along which fluids migrate.

  5. Evidence for In-situ Cretaceous Volcanism From La Conception Quarry in the Noumea Basin, New Caledonia

    Science.gov (United States)

    Rickey, C.; Alexander, A.; Grande, R.; Robinson, S.; Nicholson, K.

    2009-05-01

    The Noumea Basin in New Caledonia, forms a narrow band, about 10-30km wide that extends from the city of Noumea north-westward towards La Tontouta for about 60km. The Noumea Basin represents a sequence of late Cretaceous basalts, rhyolites and marginal marine sedimentary typical of continental margin volcanic arcs. Directly north of the Tina Peninsula, in the Bay of La Conception, there is an old basalt quarry known as the La Conception Quarry. This project involved mapping La Conception quarry, which may be an extinct volcano. This is of particular importance as it is one of the only in-situ volcanic centers that exist in the South Pacific during the late Cretaceous. Through petrophraphic analyses of the basalts we determined that they have experienced minimal low-grade metamorphism, and that the temperatures and pressures never increased enough to re-orientate the phenocrysts. The quarry is roughly oval in shape, and is oriented north-south. The area of the exposed rock is roughly 0.5km2 and the quarry lake itself encompasses about of the exposed area. We mapped this site by using orientation of phenocrysts and vesicles to determine the direction of flow. We took measurements on the exposed rock every meter by setting up a square meter grid around the entire quarry. This was achieved by establishing a starting point, with a known GPS position, in the quarry and then having two groups of two people move directly north and south from that point. Compasses were used to orientate the lines of the grid; spray paint was used to mark the grid. According to the data we compiled, there are three different basaltic flows in La Conception quarry. These flows were discernable only on the west side of the quarry lake, and are stacked one on top of the other, forming a steep sided mound. On the east side of the quarry all orientations were random and there were no recognizable flows. Of the three flows we identified, the upper flow has random orientation of phenocrysts, the

  6. In-situ observations and modeling of spring snowmelt processes in an Altay Mountains river basin

    Science.gov (United States)

    Wu, Xuejiao; Wang, Ninglian; Shen, Yongping; He, Jianqiao; Zhang, Wei

    2014-01-01

    Snowmelt is a principal source for ground-water recharge and stream flows in mountainous regions of northwestern China. Knowledge of the timing, magnitude, and processes of snowmelt under changing climate conditions is required for appropriate water resource management. The Utah energy balance (UEB) model was used to simulate the development and melting of spring (March 2012) snow cover at an observation site in the Kayiertesi River Basin in the Altay Mountains in Xinjiang. The modeled results were validated by field measurements and remotely sensed data. Results show that the simulation of the snowmelt process lasted for 24 days and the modeled snow water equivalent (SWE) closely matched the observed SWE, with a mean relative error of 7.2%. During the snowmelt process, net radiation was the major energy source of the snow layer. The variation of the snowmelt outflow was closely related to the snowmelt amounts and air temperature. The initial results of this modeling process show that our calibrated parameters were reasonable and the UEB model can be used for simulating and forecasting peak snowmelt outflows in this region.

  7. Demonstration of plasma in-situ vitrification at the K-Reactor seepage basin (904-65G)

    International Nuclear Information System (INIS)

    Blundy, R.F.; Zionkowski, P.; Schumacher, R.F.; Herman, D.T.

    1996-01-01

    The Savannah River Technology Center at SRS had begun investigating the possibility of utilizing a plasma torch for ''bottoms up'' in-situ vitrification and had funded pilot plant scale testing at the Georgia Institute of Technology (GIT) and at Clemson University. By the spring of 1996, the GIT trials had indicated that the process was potentially viable for vitrification of SRS soils but that the process needed to be validated on a clean site at a near production scale, before deployment into a radioactive environment could be contemplated. Environmental Restoration Division organized this demonstration at a clean location adjacent to the 904-65G, K-Reactor Seepage basin with the objectives of: developing realistic cost/effectiveness data for evaluation of the process against other competing remediation technologies such as soil grouting; developing the engineering data necessary for possible subsequent full scale deployment at an SRS radiologically contaminated waste unit; and evaluating commercially available non-intrusive subsurface monitoring techniques as potential methods for regulatory compliance verification. This Interim Technical Report provides a preliminary description of the demonstration with conclusions and recommendations based on observations made during the period of the demonstration. A detailed engineering report will be compiled in the near future providing all the data pertaining to the demonstration, together with the cost comparisons, product quality determinations and engineering recommendations for future actions

  8. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Directory of Open Access Journals (Sweden)

    V. Pedinotti

    2012-06-01

    Full Text Available During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002–2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA. Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong

  9. Relationship between in-situ stress and fractures and faults in the Monterey Formation, Santa Maria Basin, California

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D. (Stanford Univ., CA (United States))

    1996-01-01

    Borehole televiewer (BHTV) data from four wells within the on- and offshore Santa Maria Basin were utilized to investigate the relationship between fracture distribution, orientation, and variation with depth and in situ stress. Analysis of stress-induced wellbore breakouts in each well shows a uniform NE-SW maximum horizontal stress (S[sub Hmax]) orientation with depth. This is consistent with the regional S[sub Hmax] direction throughout the entire seismogenic part of the crust as determined from other wellbore breakout data, NW-SE trends of active fold axes and results of kinematic stress-inversion of earthquake focal plane mechanisms. In marked contrast to the uniform stress field, analysis of fractures indicates that their orientation, dip, and frequency vary considerably within each well and laterally among them. With depth, fractures can be generally divided into distinct subsets on the basis of fracture frequency and predominant strike and dip directions. These subsets correlate with changes of lithology and physical properties indicating that factors such as tectonic history, diagenesis and structural variations may have strongly influenced the initiation and propagation of fractures. Only in the onshore well do steeply-dipping fractures strike parallel to S[sub Hmax] and are interpreted as Mode I extension fractures. In the three offshore wells, the fracture strike is mainly oblique or orthogonal to S[sub Hmax] suggesting that they may be distributed strike-slip or reverse faults. We believe currently active faults in the NE-SW transpressional deformation regime play a crucial role for fluid migration by providing permeability enhanced flow paths. Drill stem tests conducted in two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the well where fractures strike predominantly perpendicular to S[sub Hmax] and dip at moderate to steep angles.

  10. Relationship between in-situ stress and fractures and faults in the Monterey Formation, Santa Maria Basin, California

    Energy Technology Data Exchange (ETDEWEB)

    Finkbeiner, T.; Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States)

    1996-12-31

    Borehole televiewer (BHTV) data from four wells within the on- and offshore Santa Maria Basin were utilized to investigate the relationship between fracture distribution, orientation, and variation with depth and in situ stress. Analysis of stress-induced wellbore breakouts in each well shows a uniform NE-SW maximum horizontal stress (S{sub Hmax}) orientation with depth. This is consistent with the regional S{sub Hmax} direction throughout the entire seismogenic part of the crust as determined from other wellbore breakout data, NW-SE trends of active fold axes and results of kinematic stress-inversion of earthquake focal plane mechanisms. In marked contrast to the uniform stress field, analysis of fractures indicates that their orientation, dip, and frequency vary considerably within each well and laterally among them. With depth, fractures can be generally divided into distinct subsets on the basis of fracture frequency and predominant strike and dip directions. These subsets correlate with changes of lithology and physical properties indicating that factors such as tectonic history, diagenesis and structural variations may have strongly influenced the initiation and propagation of fractures. Only in the onshore well do steeply-dipping fractures strike parallel to S{sub Hmax} and are interpreted as Mode I extension fractures. In the three offshore wells, the fracture strike is mainly oblique or orthogonal to S{sub Hmax} suggesting that they may be distributed strike-slip or reverse faults. We believe currently active faults in the NE-SW transpressional deformation regime play a crucial role for fluid migration by providing permeability enhanced flow paths. Drill stem tests conducted in two of the offshore wells indicate that formation permeability is greatly enhanced in sections of the well where fractures strike predominantly perpendicular to S{sub Hmax} and dip at moderate to steep angles.

  11. Comparison of Vertical Distributions of Prokaryotic Assemblages in the Anoxic Cariaco Basin and Black Sea by Use of Fluorescence In Situ Hybridization†

    Science.gov (United States)

    Lin, Xueju; Wakeham, Stuart G.; Putnam, Isabell F.; Astor, Yrene M.; Scranton, Mary I.; Chistoserdov, Andrei Y.; Taylor, Gordon T.

    2006-01-01

    Individual prokaryotic cells from two major anoxic basins, the Cariaco Basin and the Black Sea, were enumerated throughout their water columns using fluorescence in situ hybridization (FISH) with the fluorochrome Cy3 or horseradish peroxidase-modified oligonucleotide probes. For both basins, significant differences in total prokaryotic abundance and phylogenetic composition were observed among oxic, anoxic, and transitional (redoxcline) waters. Epsilon-proteobacteria, Crenarchaeota, and Euryarchaeota were more prevalent in the redoxclines, where previous studies reported high rates of chemoautotrophic production relative to those in waters above and below the redoxclines. Relative abundances of Archaea in both systems varied between 1% and 28% of total prokaryotes, depending on depth. The prokaryotic community composition varied between the two anoxic basins, consistent with distinct geochemical and physical conditions. In the Black Sea, the relative contributions of group I Crenarchaeota (median, 5.5%) to prokaryotic communities were significantly higher (P < 0.001; n = 20) than those of group II Euryarchaeota (median, 2.9%). In contrast, their proportions were nearly equivalent in the Cariaco Basin. Beta-proteobacteria were unexpectedly common throughout the Cariaco Basin's water column, accounting for an average of 47% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells. This group was below the detection limit (<1%) in the Black Sea samples. Compositional differences between basins may reflect temporal variability in microbial populations and/or systematic differences in environmental conditions and the populations for which they select. PMID:16597973

  12. Decommissioning handbook

    International Nuclear Information System (INIS)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained

  13. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  14. Basin-wide erosion rates of a relict surface in the southeastern Tibetan Plateau from in-situ produced 10Be in fluvial sediments

    Science.gov (United States)

    Fu, Ping; Stroeven, Arjen; Harbor, Jonathan; Heyman, Jakob; Caffee, Marc

    2017-04-01

    Over geological time Earth's surface undergoes radical changes. Few regions display these changes more than the Tibetan Plateau, a dynamic region undergoing changes brought about by tectonic and climatic forcing. Our goal is to quantify surface erosion rates on the Tibetan Plateau. Characterizing the surficial changes and the underlying causes are significant goals that require quantitative tools. With the development of AMS and improved understanding of nuclide production rates, in-situ produced cosmogenic nuclide dating has become increasingly effective for quantifying surface exposure age and erosion rates. Likewise, in-situ cosmogenic 10Be has been successfully to determine basin-wide erosion rates in many geological setting. However, quantifying fluvial erosion rates from glaciated basins using cosmogenic nuclide concentrations in fluvial sediments has limitations because burial by ice and glacial erosion can strongly reduce concentrations or entirely reset the cosmogenic nuclide clock in a landscape, which in turn leads to overestimation of fluvial erosion rates. In this study, we measured 10Be concentrations in river sand samples from both previously glaciated basins and non-glaciated basins, on a low-relief relict surface and the surrounding mountain area, respectively, in the southeastern Tibetan Plateau. The results show that fluvial sediments from glaciated basins have higher cosmogenic nuclide concentrations than expected given the deglaciation ages for these basins. Derived basin wide erosion rates are therefore significantly lower for glaciated basins than for non-glaciated basins. We interpret the high cosmogenic nuclide concentrations as a result of nuclide inheritance from before the last glaciation. In contrast to others studies indicating that overestimation of fluvial erosion rates can occur due to glacial erosion, our results suggest that in the case of a formerly glaciated relict surface in southeastern Tibet (largely preserved under non

  15. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Lawton, H.

    1987-01-01

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  16. Planning and management for reactor decommissioning

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    2001-01-01

    This report describes decommissioning strategy, planning process, regulation, management and organization, radiological characterization and safety. Planning is used to identify, define and organize the requirements for decommissioning including decommissioning options, items to be accomplished (objective, scope), to solve problems of how it is to be accomplished (methods, means and procedures), questions of who will execute it (resources, organization and responsibilities, interfacing), and time when it will be executed (schedule for meeting the objectives). A plan is highly dependent on the quality of the management team assembled to carry it out. Radiological characterization involves a survey of existing data, calculation, in situ measurements and/or sampling and analyses. Using this databases decommissioning planner may assess options, considering: decontamination processes, dismantling procedures, tools required, radiological protection of workers and public/environment, waste classification, and resulting costs. Comparison and optimization of these factors will lead to selection of a decommissioning strategy, i.e. typically, immediate or deferred dismantling. The planning and implementation of decommissioning for nuclear reactors should be referred both recent dismantling techniques and many decommissioning experiences. The technical lessons learned from many projects will help in the planning for future decommissioning projects. And systematic planning and management are essential to successful completion of a decommissioning project. (author)

  17. A preliminary analysis and assessment of hydrogeological conditions for in-situ leach mining of sandstone-type uranium deposit in northern Ordos basin

    International Nuclear Information System (INIS)

    Chen Fazheng; Zhao Jinfeng; Chang Baocheng; Gao Junyi

    2006-01-01

    A systematic analysis and assessment on hydrogeologic condition, the lithology and hydrogeologic structure of ore-hosting aquitfers, hydrodynamic condition, hydrochemical characteristics at a sandstone-type uranium deposit in northern Ordos basin is made in this paper. It has been concluded, that hydrogeologic condition in the study area is favorable, meeting the requirements for in-situ leach mining of the deposit. Aimed at the low artesian pressure head and low water output and based on the results of pumping-injection tests which led to the significant increase of water output, a technical scheme of pressured water injection has been proposed to artificially raise the artesian pressure head and increase the output of groundwater to satisfy the requirements of in-situ leach mining. (authors)

  18. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    International Nuclear Information System (INIS)

    Blundy, R.F.; Zionkowki, P.G.

    1997-01-01

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy's (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment

  19. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  20. 1982 international decommissioning symposium

    International Nuclear Information System (INIS)

    Mickelson, S.

    1982-01-01

    Sixty-four papers were presented at the following sessions: policy, regulations, and standards; management of decommissioning wastes; decommissioning experience; decommissioning tooling and techniques; radiological concerns; and planning and engineering

  1. An Early Permian epithermal gold system in the Tulasu Basin in North Xinjiang, NW China: Constraints from in situ oxygen-sulfur isotopes and geochronology

    Science.gov (United States)

    Dong, Leilei; Wan, Bo; Deng, Chen; Cai, Keda; Xiao, Wenjiao

    2018-03-01

    The Axi and Jingxi-Yelmand gold deposits, being the largest gold deposits in the Chinese North Tianshan, NW China, are located ca. l0 km apart in the Tulasu Basin, and are hosted by the Late Devonian - Early Carboniferous Dahalajunshan Formation. In situ LA-ICP-MS titanium analyses on quartz from the Axi and Jingxi-Yelmand deposits are broadly identical. Accordingly, the calculated ore-forming temperatures by Ti-in-quartz thermometer give average temperatures of 279 °C and 294 °C, respectively. Results of in situ SIMS analyses of oxygen and sulfur isotopes on quartz and pyrite from these two deposits are similar. Temperature-corrected fluids of the Axi deposit have δ18O values of 2.6-8.1‰ and δ34S values of 0.8-2.4‰, whereas the fluids of the Jingxi-Yelmand deposit have δ18O of 6.4-8.9‰ and δ34S of -0.4 to 4.0‰. The oxygen and sulfur isotopes from the two deposits indicate a magmatic origin. LA-ICP-MS zircon U-Pb ages of Aqialehe Formation sandstone provided a lower limit for the mineralization timing of the Axi deposit (288 Ma). In situ SIMS U-Pb analyses on entrapped zircon (297 Ma) and newly recognized 284.5 Ma columnar rhyolite implies that the Jingxi-Yelmand deposit formed in the Early Permian. Based on the magmatic affinity of the ore fluids, similar age and ore-formation temperatures, we propose that the Axi and Jingxi-Yelmand deposits comprise an epithermal gold system, which was driven by the same Permian magma in the Tulasu Basin. The ore geological features together with our new results indicate that the Axi and Jingxi-Yelmand deposits are intermediate and high sulfidation type epithermal deposits, respectively.

  2. Workshop on decommissioning

    International Nuclear Information System (INIS)

    Broden, K.

    2005-12-01

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  3. Decommissioning of Brennilis NPP

    International Nuclear Information System (INIS)

    Baize, Jean-Marc

    1998-01-01

    This EDF press communique give information related to the decommissioning of the Brennilis NPP. The following five items are developed in this report: 1. the level-2 decommissioning operations at the Brennilis NPP; 2. the Brennilis NPP, a pilot operation from the commissioning up to the decommissioning; 3. history of the Brennilis NPP decommissioning; 4. the types of radioactive wastes generated by the Brennilis NPP decommissioning; 5. the Brennilis NPP - a yard management as a function of the wastes. The document contains also seven appendices addressing the following subjects: 1. the share of decommissioning assigned to EDF and the decommissioning steps; 2. the EDF installations in course of decommissioning; 3. the CEA decommissioned installations or in course of decommissioning; 4. regulations; 5. costs; 6. waste management - principles; 7. data on the decommissioning yard

  4. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Williams, D.H.

    1982-01-01

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  5. Decommissioning and decontamination

    International Nuclear Information System (INIS)

    Dadoumont, J.; Cantrel, E.; Valenduc, P.; Noynaert, L.

    2009-01-01

    The SCK-CEN has built a large know-how in decommissioning and decontamination, thanks to its BR3 decommissioning project. In 2007, the decommissioning activities at BR3 have been continued according to the strategy. This article discusses main realisations the following domains: decommissioning of the neutron shield tank and installation of new ventilation for the controlled area, dismantling of the former one and characterization of the stack

  6. Recommended IAEA decommissioning levels

    International Nuclear Information System (INIS)

    Jacquemin, M.

    1977-01-01

    The areas covered by each of the two terms 'decommissioning' and 'dismantling' of a nuclear installation are defined in order to distinguish them with greater accuracy. Decommissioning is first an administrative decision and afterwards all the material operations involved by this decision. Dismantling is only one of the material operations of the decommissioning but it can be the most important. For the IAEA the possible outcomes for a decommissioned installation fall under three main headings (stages) which we call 'decommissioning levels'. - level 1: shut-down with surveillance, - level 2: conditional release for another use, - level 3: unconditional release of the site [fr

  7. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Buck, S.; Colquhoun, A.

    1990-01-01

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  8. Economic aspects of decommissioning

    International Nuclear Information System (INIS)

    Jenne, C.

    1988-01-01

    Two viewpoints on decommissioning are quoted; the first suggests that decommissioning can be viewed as a technical detail that is of limited relevance whereas the second suggests that decommissioning is a key financial issue. Both are specifically relevant to United Kingdom nuclear power stations. This paper attempts to reconcile the two views. It suggests that decommissioning does raise some important issues for regulation and financing of a privatised industry but, despite this, the economics of nuclear do remain insensitive. The paper begins by examining the significance of decommissioning costs in a number of contexts, including nuclear unit generating costs and financing requirements. It then addresses the degree of uncertainty in the decommissioning cost estimates. With privatisation on the horizon, the paper considers the significance of decommissioning and the associated uncertainty for the investor; this last section considers regulatory issues raised in relation to funding, accounting policy and electricity pricing. (author)

  9. Financial aspects of decommissioning (key aspects of decommissioning costing)

    International Nuclear Information System (INIS)

    Danska, V.

    2009-01-01

    In this presentation the following aspects of NPPs decommissioning are discussed: Requirements and purpose of decommissioning costing; Decommissioning costing methodologies; Standardised decommissioning cost structure; Input data for cost estimate process; Waste management in cost estimate process; Grading aspects in cost estimating; Cost control in decommissioning projects; Summary of the cost estimation process; Conclusions and recommendations.

  10. Net community production in the South China Sea Basin estimated from in situ O2 measurements on an Argo profiling float

    Science.gov (United States)

    Huang, Yibin; Yang, Bo; Chen, Bingzhang; Qiu, Guoqiang; Wang, Haili; Huang, Bangqin

    2018-01-01

    For the first time, the net community production (NCP) was estimated over a complete annual cycle in the basin of the South China Sea (SCS) using in situ oxygen measurements from an Argo profiling float and an oxygen mass balance model. The annual NCP from July 2014 to July 2015 was estimated to be 2.7 mol C m-2 yr-1 (calculated to the deepest winter mixed layer depth of 56 m), with the uncertainties ranging from 0.9 2.2 mol C m-2 yr-1. NCP estimates followed a monsoonal pattern with higher values in the cold season (November to April) when northeast monsoon prevailed and low values in the warm season (June to September) when this area was dominated by the southwest monsoon. Most of the net heterotrophic events occurred in the warm season. The magnitude and seasonal pattern derived from our results agree with previous export production studies based on discrete measurements. Comparison with satellite-derived NCP revealed that the results derived with NPP from Carbon-based Production Model (CbPM) were closer to the Argo measurements than the results derived with NPP from Vertically Generalized Production Model (VGPM) in magnitude; while the VGPM-based approach did a better job in reproducing the seasonal cycle of NCP in this area. This novel approach provides the possibilities to study the carbon cycle in the SCS with a much higher temporal and spatial resolution, as well as more insights for metabolic state in the oligotrophic subtropical gyres.

  11. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Science.gov (United States)

    Liu, S.; Mo, X.; Zhao, W.; Naeimi, V.; Dai, D.; Shu, C.; Mao, L.

    2009-07-01

    The change pattern and trend of soil moisture (SM) in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH) variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET), leaf area index (LAI), and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV) of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1) and increasing tendency of temperature (α=0.01). The decreasing tendency of runoff has higher significance level (α=0.001). Because of SM's decreasing tendency, soil evaporation (ES) is also decreasing (α=0.05). The tendency of net radiation (Rn), evapotranspiration (ET), transpiration (EC), canopy intercept (EI) is not obvious. Net primary productivity (NPP), of which the significance level is lower than α=0.1, and gross primary productivity (GPP) at α=0.01 are in increasing tendency.

  12. Nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Yaziz Yunus

    1986-01-01

    A number of issues have to be taken into account before the introduction of any nuclear power plant in any country. These issues include reactor safety (site and operational), waste disposal and, lastly, the decommissioning of the reactor inself. Because of the radioactive nature of the components, nuclear power plants require a different approach to decommission compared to other plants. Until recently, issues on reactor safety and waste disposal were the main topics discussed. As for reactor decommissioning, the debates have been academic until now. Although reactors have operated for 25 years, decommissioning of retired reactors has simply not been fully planned. But the Shippingport Atomic Power Plant in Pennysylvania, the first large scale power reactor to be retired, is now being decommissioned. The work has rekindled the debate in the light of reality. Outside the United States, decommissioning is also being confronted on a new plane. (author)

  13. Radiological considerations for decommissioning

    International Nuclear Information System (INIS)

    Adler, J.J.

    1993-01-01

    It has been said, by those uninitiated to decommissioning work, that radiological considerations required for decommissioning are the same as those for an operating facility. In reality, nothing could be further from the truth. The act of decommissioning can be likened to cutting off a tree limb while sitting on it. This paper discusses some of the unique radiological aspects that are associated with implementing a decommissioning health physics program. There are physical constraints that may cause major differences between a normal operational and a decommissioning health physics program. Throughout the decommissioning process, the installed equipment and services that were needed to support an operational program are constantly being removed or may already be disabled due to the age of the facility. Those affecting radiological protection programs typically would include radiation shielding, ventilation systems, breathing air supply for respiratory protection, and radiological monitoring systems

  14. Training for decommissioning

    International Nuclear Information System (INIS)

    Dietzold, A.

    2009-01-01

    Plants entering decommissioning face many challenges One of the most important is the challenge of training for decommissioning This is important because: The facility operators and management have spent many years successfully operating the facility; The facility management arrangements are geared to operation; Decommissioning will include non-nuclear specialists and other stakeholders; Other skills are needed to decommission successfully. UKAEA has decommissioned many facilities at its sites in Dounreay, Windscale, Harwell and Winfrith in the UK. We have faced all of the challenges previously described and have developed many training methods for ensuring the challenges are met safely and effectively. We have developed courses for specialised skills such as safety cases which can be deployed to support any decommissioning. (author)

  15. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Harmon, K.M.; Jenkins, C.E.; Waite, D.A.; Brooksbank, R.E.; Lunis, B.C.; Nemec, J.F.

    1976-01-01

    This paper describes the currently accepted alternatives for decommissioning retired light water reactor fuel cycle facilities and the current state of decommissioning technology. Three alternatives are recognized: Protective Storage; Entombment; and Dismantling. Application of these alternatives to the following types of facilities is briefly described: light water reactors; fuel reprocessing plants, and mixed oxide fuel fabrication plants. Brief descriptions are given of decommissioning operations and results at a number of sites, and recent studies of the future decommissioning of prototype fuel cycle facilities are reviewed. An overview is provided of the types of operations performed and tools used in common decontamination and decommissioning techniques and needs for improved technology are suggested. Planning for decommissioning a nuclear facility is dependent upon the maximum permitted levels of residual radioactive contamination. Proposed guides and recently developed methodology for development of site release criteria are reviewed. 21 fig, 32 references

  16. Decommissioning of NPP A-1

    International Nuclear Information System (INIS)

    Anon

    2009-01-01

    In this presentation the Operation history of A1 NPP, Project 'Decommissioning of A1 NPP' - I stage, Project 'Decommissioning of A1 NPP ' - II stage and Next stages of Project 'Decommissioning of A1 NPP ' are discussed.

  17. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  18. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    Novsak, M.; Fink, K.; Spiler, J.

    1996-01-01

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  19. Feasibility studies for decommissioning

    International Nuclear Information System (INIS)

    Hladky, E.

    2000-01-01

    In this presentation author deals with planning of decommission of the NPPs A1, V1 and V2 Bohunice and Mochovce. It was concluded that: Used model for decommissioning parameters assessment has been suitable for elaboration of initial decommissioning plans (feasibility studies); Basic assessment of main decommissioning parameters and basic comparison of various decommissioning options have been possible; Improvement of the model and corresponding software is desirable and works on software improvement began one year ago; V1-NPP initial decommissioning plan should be actualized, because initial decommissioning plan does not correspond by its content and structure to requirements of Act No. 130/98 and Nuclear Regulatory Authority Degree No. 246/99; Strategy of radioactive wastes treatment and conditioning together with technical provisions at Jaslovske Bohunice site was changed in comparison with the assumptions in 1991-92; Considered V1 NPP decommissioning options are necessary to be re-evaluated in accordance with latest development of knowledge and approaches to NPP decommissioning in the world; Specific unit costs are substantially and differentially changed in comparison with the assumptions in 1991-92; Necessity to take into account technical changes resulted from V1 NPP reconstruction. (author)

  20. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Directory of Open Access Journals (Sweden)

    C. Shu

    2009-07-01

    Full Text Available The change pattern and trend of soil moisture (SM in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET, leaf area index (LAI, and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1 and increasing tendency of temperature (α=0.01. The decreasing tendency of runoff has higher significance level (α=0.001. Because of SM's decreasing tendency, soil evaporation (ES is also decreasing (α=0.05. The tendency of net radiation (Rn, evapotranspiration (ET, transpiration (EC, canopy intercept (EI is not obvious. Net primary productivity (NPP, of which the significance level is lower than α=0.1, and gross primary productivity (GPP at α=0.01 are in increasing tendency.

  1. Decommissioning and jobs

    International Nuclear Information System (INIS)

    John, B.S.

    1990-01-01

    One aspect of the decommissioning web is its effect on socioeconomics, particularly jobs. What will reactor retirement mean to jobs, especially in rural communities where power plant operations may be the most reliable and dominant source of direct and indirect employment in the area? The problems which any plant closure produces for job security are generally understood, but the decommissioning of nuclear power plants is different because of the residual radioactivity and because of the greater isolation of the power plant sites. For example, what will be the specific employment effects of several possible decommissioning scenarios such as immediate dismantlement and delayed dismantlement? The varying effects of decommissioning on jobs is discussed. It is concluded that the decommissioning of nuclear power plants in some areas such as Wales could bring benefits to the surrounding communities. (author)

  2. In situ

    Science.gov (United States)

    Tremsin, Anton S; Makowska, Małgorzata G; Perrodin, Didier; Shalapska, Tetiana; Khodyuk, Ivan V; Trtik, Pavel; Boillat, Pierre; Vogel, Sven C; Losko, Adrian S; Strobl, Markus; Kuhn, L Theil; Bizarri, Gregory A; Bourret-Courchesne, Edith D

    2016-06-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed ( e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5-7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures.

  3. Nuclear decommissioning and society

    International Nuclear Information System (INIS)

    Pasqualetti, M.J.

    1990-01-01

    Links between decommissioning in general, reactor decommissioning in particular, and the public are indexed. The established links are recognised and others, such as jobs, are discussed. Finally the links with policy, such as political geography, and wider issues of the environment and public concern over waste disposal are considered. Decommissioning is a relatively new field where public opinion must now be considered but it has implications both for existing nuclear power plants and those planned for the future, especially in their siting. This book looks especially at the situation in the United Kingdom. There are twelve papers, all indexed separately. (UK)

  4. Variability of apparent and inherent optical properties of sediment-laden waters in large river basins - lessons from in situ measurements and bio-optical modeling.

    Science.gov (United States)

    Pinet, Sylvain; Martinez, Jean-Michel; Ouillon, Sylvain; Lartiges, Bruno; Villar, Raul Espinoza

    2017-04-17

    We investigated the relationships between inherent and apparent optical properties (IOP and AOP, respectively) and suspended sediment concentrations (SSC) in the main Amazonian river waters. In situ measurements of SSC, remote sensing reflectance (Rrs), the diffuse light attenuation coefficient (Kd) and the total and non-algal particle (NAP) absorption coefficients (aTOT and aNAP, respectively) were conducted during three sampling trips along different streams of the Amazon River catchment (104 stations). The size distribution and chemical characteristics of the suspended sediment were also determined for 85 stations. We show that the particle size distribution (PSD) in the river water is best described by a segmented Junge power law distribution with a smaller slope value for the smallest particles (J1 = 2.4) and a larger slope value (J2 = 4.1) for the largest particles (> 10 µm). A strong relationship was found between AOPs and IOPs and SSC when the entire data set was considered. However, for the Madeira River, the primary Amazon River tributary in terms of suspended sediment discharge, a significant dispersion was detected for the Rrs - SSC relationship but not for the Kd - SSC relationship. This dispersion has been shown by a previous study, using MODIS data, to display a seasonal pattern, which we investigated in this study using Mie modeling calibrated with suspended sediment characteristics. In the Madeira River, suspended sediment had a finer distribution size and a different mineralogy (e.g., a greater smectite content and a lower kaolinite content) during the rising water stage. Spectral variations of the imaginary part n'(λ) of the refraction index also showed significant differences during the rising water stage. In contrast, other streams of the Amazon basin had very stable properties with respect to granulometry and mineralogy. Model simulations made possible to reproduce both field and satellite observations, showing that the Rrs hysteresis

  5. Data needs for decommissioning

    International Nuclear Information System (INIS)

    Lippincott, E.P.

    1993-01-01

    The paper describes the most important concerns that the author has encountered in the planning for decommissioning of the Ft. St. Vrain graphite reactor and in disposal of PWR components that undergo high irradiation. 3 tabs

  6. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    Massaut, V.

    2000-01-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  7. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Opluštil, S.; Pšenička, J.; Libertín, M.; Bashforth, A. R.; Šimůnek, Z.; Drábková, J.; Dašková, Jiřina

    2009-01-01

    Roč. 155, 3-4 (2009), s. 234-274 ISSN 0034-6667 R&D Projects: GA ČR GA205/05/0105 Institutional research plan: CEZ:AV0Z30130516 Keywords : Pennsylvanian * tuff * in situ * plant taphonomy * palaeoecology * peat-forming mires Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.145, year: 2009

  8. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    DEFF Research Database (Denmark)

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan

    2009-01-01

    The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains repres...

  9. In situ

    Science.gov (United States)

    Chamlagain, Bhawani; Sugito, Tessa A; Deptula, Paulina; Edelmann, Minnamari; Kariluoto, Susanna; Varmanen, Pekka; Piironen, Vieno

    2018-01-01

    The in situ production of active vitamin B12 was investigated in aqueous cereal-based matrices with three strains of food-grade Propionibacterium freudenreichii . Matrices prepared from malted barley flour (33% w/v; BM), barley flour (6%; BF), and wheat aleurone (15%; AM) were fermented. The effect of cobalt and the lower ligand 5,6-dimethylbenzimidazole (DMBI) or its natural precursors (riboflavin and nicotinamide) on active B12 production was evaluated. Active B12 production was confirmed by UHPLC-UV-MS analysis. A B12 content of 12-37 μg·kg -1 was produced in BM; this content increased 10-fold with cobalt and reached 940-1,480 μg·kg -1 with both cobalt and DMBI. With riboflavin and nicotinamide, B12 production in cobalt-supplemented BM increased to 712 μg·kg -1 . Approximately, 10 μg·kg -1 was achieved in BF and AM and was increased to 80 μg·kg -1 in BF and 260 μg·kg -1 in AM with cobalt and DMBI. The UHPLC and microbiological assay (MBA) results agreed when both cobalt and DMBI or riboflavin and nicotinamide were supplemented. However, MBA gave ca. 20%-40% higher results in BM and AM supplemented with cobalt, indicating the presence of human inactive analogues, such as pseudovitamin B12. This study demonstrates that cereal products can be naturally fortified with active B12 to a nutritionally relevant level by fermenting with P. freudenreichii .

  10. Time-variations of equivalent water heights'from Grace Mission and in-situ river stages in the Amazon basin Variações temporais do equivalente à altura d'água obtidas da Missão Grace e da altura d'água in-situ nos rios da bacia Amazônica

    Directory of Open Access Journals (Sweden)

    Flavio Guilherme Vaz de Almeida

    2012-03-01

    Full Text Available Gravity Recovery and Climate Experiment (GRACE mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS at a 10-day interval were converted into equivalent water height (EWH for a ~4-year period in the Amazon basin (from July-2002 to May-2006. The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm and spectrum truncation (10 ~ 15 mm. Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80% is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.A missão espacial Gravity Recovery and Climate Experiment (GRACE é dedicada às medidas das variações temporais no campo gravitacional da Terra. Neste estudo, os coeficientes de Stokes disponibilizados pelo Groupe de Recherche en Géodésie Spatiale (GRGS com intervalos de 10 dias foram convertidos no equivalente à altura d'água (EWH para um período de 4 anos na bacia Amazônica (de julho de 2002 a maio de 2006

  11. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process.

  12. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  13. Decommissioning in western Europe

    International Nuclear Information System (INIS)

    Lundqvist, K.

    1999-12-01

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe and waterproof conditions for a longer period of

  14. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    Chirica, T.; Havris, A.

    2003-01-01

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  15. Decommissioning strategy selection

    International Nuclear Information System (INIS)

    Warnecke, E.

    2005-01-01

    At the end of their useful life nuclear facilities have to be decommissioned. The strategy selection on how to decommission a facility is a highly important decision at the very beginning of decommissioning planning. Basically, a facility may be subject to (a) immediate dismantling; (b) deferred dismantling after a period of ''safe enclosure'' or (c) entombment where a facility is turned into a near surface disposal facility. The first two strategies are normally applied. The third one may be accepted in countries without significant nuclear activities and hence without disposal facilities for radioactive waste. A large number of factors has to be taken into account when a decision on the decommissioning strategy is being made. Many of the factors cannot be quantified. They may be qualitative or subject to public opinion which may change with time. At present, a trend can be observed towards immediate dismantling of nuclear facilities, mainly because it is associated with less uncertainty, less local impact, a better public acceptance, and the availability of operational expertise and know how. A detailed evaluation of the various factors relevant to strategy selection and a few examples showing the situation regarding decommissioning strategy in a number of selected countries are presented in the following article. (orig.)

  16. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    Science.gov (United States)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the

  17. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    2006-01-01

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  18. 77 FR 70486 - Supplemental Environmental Impact Statement for Proposed Dewey-Burdock In-Situ Uranium Recovery...

    Science.gov (United States)

    2012-11-26

    ..., operation, aquifer restoration, and decommissioning of an in-situ leach uranium milling facility (also known..., 2009. The applicant proposes the construction, operation, aquifer restoration, and decommissioning of... contiguous mining units: the Burdock Unit and the Dewey Unit. The Draft SEIS is being issued as part of the...

  19. Scheduling for decommissioning projects

    International Nuclear Information System (INIS)

    Podmajersky, O.E.

    1987-01-01

    This paper describes the Project Scheduling system being employed by the Decommissioning Operations Contractor at the Shippingport Station Decommissioning Project (SSDP). Results from the planning system show that the project continues to achieve its cost and schedule goals. An integrated cost and schedule control system (C/SCS) which uses the concept of earned value for measurement of performance was instituted in accordance with DOE orders. The schedule and cost variances generated by the C/SCS system are used to confirm management's assessment of project status. This paper describes the types of schedules and tools used on the SSDP project to plan and monitor the work, and identifies factors that are unique to a decommissioning project that make scheduling critical to the achievement of the project's goals. 1 fig

  20. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  1. Site decommissioning management plan

    International Nuclear Information System (INIS)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff's strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites

  2. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project

  3. Decommissioning nuclear installations

    International Nuclear Information System (INIS)

    Dadoumont, J.

    2010-01-01

    When a nuclear installation is permanently shut down, it is crucial to completely dismantle and decontaminate it on account of radiological safety. The expertise that SCK-CEN has built up in the decommissioning operation of its own BR3 reactor is now available nationally and internationally. Last year SCK-CEN played an important role in the newly started dismantling and decontamination of the MOX plant (Mixed Oxide) of Belgonucleaire in Dessel, and the decommissioning of the university research reactor Thetis in Ghent.

  4. Decommissioning of IFEC

    International Nuclear Information System (INIS)

    Ceccotti, G.; Sberze, L.

    1995-05-01

    The IFEC nuclear fuel fabrication plant operated in Italy for more then thirty years and has now been successfully decommissioned. The rules and regulations relating to Quality Assurance established during the fabrication of Cirene reactor fuel have been adhered to during the decommissioning phase. The use of personnel with large experience in the nuclear field has resulted in vast majority of cares of material and apparatus to be reutilized in conventional activities without the need of calling on the assistance of external firms. The whole decontamination process was successfully completed on time and in particular the quantity of contaminated wastes was kept to eminimun

  5. Decommissioning and Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V

    2000-07-01

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised.

  6. Platform decommissioning costs

    International Nuclear Information System (INIS)

    Rodger, David

    1998-01-01

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  7. Information management for decommissioning projects

    International Nuclear Information System (INIS)

    LeClair, A.N.; Lemire, D.S.

    2011-01-01

    This paper explores the importance of records and information management for decommissioning projects. Key decommissioning information and elements of a sound information management strategy are identified. Various knowledge management strategies and tools are discussed as opportunities for leveraging decommissioning information. The paper also examines the implementation of Atomic Energy of Canada Limited's (AECL) strategy for the long term preservation of decommissioning information, and its initiatives in leveraging of information with the application of several knowledge management strategies and tools. The implementation of AECL's strategy illustrates common as well as unique information and knowledge management challenges and opportunities for decommissioning projects. (author)

  8. Shippingport Station Decommissioning Project

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the decontamination of plant components and structures at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities in support of the shipment of radioactive wastes and the unconditional release of the site and structural materials. 1 ref., 16 figs., 4 tabs

  9. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  10. Decommissioning, mothballing and revamping

    International Nuclear Information System (INIS)

    Briggs, M.; Buck, S.; Smith, M.

    1997-01-01

    This guide, written to assist those concerned with the decommissioning of redundant facilities, is applicable to nuclear, chemical and power plants. Legal aspects and risk management is covered in the pre-project stage. Preparation for and execution of renovation, modification or mothballing of various plants is also covered. Dismantling operations and the necessary follow-up conclude the book. (UK)

  11. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Lunning, W.H.

    1977-01-01

    Collaborative studies are in progress in the U.K. between the U.K.A.E.A., the Generating Boards and other outside bodies, to identify the development issues and practical aspects of decommissioning redundant nuclear facilities. The various types of U.K.A.E.A. experimental reactors (D.F.R., W.A.G.R , S.G.H.W.R.) in support of the nuclear power development programme, together with the currently operating commercial 26 Magnox reactors in 11 stations, totalling some 5 GW will be retired before the end of the century and attention is focussed on these. The actual timing of withdrawal from service will be dictated by development programme requirements in the case of experimental reactors and by commercial and technical considerations in the case of electricity production reactors. Decommissioning studies have so far been confined to technical appraisals including the sequence logic of achieving specific objectives and are based on the generally accepted three stage progression. Stage 1, which is essentially a defuelling and coolant removal operation, is an interim phase. Stage 2 is a storage situation, the duration of which will be influenced by environmental pressures or economic factors including the re-use of existing sites. Stage 3, which implies removal of all active and non-active waste material and returning the site to general use, must be the ultimate objective. The engineering features and the radioactive inventory of the system must be assessed in detail to avoid personnel or environmental hazards during Stage 2. These factors will also influence decisions on the degree of Stage 2 decommissioning and its duration, bearing in mind that for Stage 3 activation may govern the waste disposal route and the associated radiation man-rem exposure during dismantling. Ideally, planning for decommissioning should be considered at the design stage of the facility. An objective of present studies is to identify features which would assist decommissioning of future systems

  12. Decommissioning - The worldwide challenge

    International Nuclear Information System (INIS)

    McKeown, John

    2002-01-01

    Full text: Whatever the future may hold for nuclear power, there are closed or ageing nuclear facilities in many countries around the world. While these may be in safe care and maintenance at present, a sustainable long term solution is required. Facilities need to be decommissioned, contaminated land remediated, and wastes conditioned for safe storage or disposal. Practical nuclear site restoration has been demonstrated internationally. This experience has revealed generic challenges in dealing with old, often experimental, facilities. These include: Facilities not designed for ease of decommissioning; Records of plant construction and operation, and of the materials utilised and wastes produced, not to modern standards; Fuels and wastes stored for long periods in less than optimal conditions, leading to deterioration and handling problems; The historic use of experimental fuels and materials, giving rise to unique waste streams requiring unique waste management solutions; The application of modern safety and environmental standards to plant which dates from the 1940s, 50s and 60s, requiring investment before decommissioning can even commence. These problems can be tackled, as examples from UKAEA's own programme will illustrate. But two fundamental issues must be recognised and considered. First, the costs of decommissioning older facilities are very high, and may place a heavy burden on national budgets, despite using best efforts to control them. We can limit these costs by learning from one another's experience and sharing the development of new techniques and technologies. UKAEA has already initiated a programme of international collaboration, and hopes that other IAEA countries will be encouraged to follow suit. But whilst the costs of decommissioning may be high, the process normally meets with public acceptance. This is seldom the case for long term waste storage or disposal. Until waste management routes are available - either nationally or internationally

  13. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  14. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  15. In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers.

    Science.gov (United States)

    Pisanello, Francesca; Marziali, Laura; Rosignoli, Federica; Poma, Giulia; Roscioli, Claudio; Pozzoni, Fiorenzo; Guzzella, Licia

    2016-06-01

    DDT and mercury (Hg) contamination in the Toce River (Northern Italy) was caused by a factory producing technical DDT and using a mercury-cell chlor-alkali plant. In this study, DDT and Hg contamination and bioavailability were assessed by using different approaches: (1) direct evaluation of sediment contamination, (2) assessment of bioaccumulation in native benthic invertebrates belonging to different taxonomic/functional groups, and (3) evaluation of the in situ bioavailability of DDT and Hg using passive samplers. Sampling sites were selected upstream and downstream the industrial plant along the river axis. Benthic invertebrates (Gammaridae, Heptageniidae, and Diptera) and sediments were collected in three seasons and analyzed for DDT and Hg content and the results were used to calculate the biota sediment accumulation factor (BSAF). Polyethylene passive samplers (PEs) for DDT and diffusive gradients in thin films (DGTs) for Hg were deployed in sediments to estimate the concentration of the toxicants in pore water. Analysis for (DDx) were performed using GC-MS. Accuracy was within ±30 % of the certified values and precision was >20 % relative standard deviation (RSD). Total mercury concentrations were determined using an automated Hg mercury analyzer. Precision was >5 % and accuracy was within ±10 % of certified values. The results of all the approaches (analysis of sediment, biota, and passive samplers) showed an increasing contamination from upstream to downstream sites. BSAF values revealed the bioavailability of both contaminants in the study sites, with values up to 49 for DDx and up to 3.1 for Hg. No correlation was found between values in sediments and the organisms. Concentrations calculated using passive samplers were correlated with values in benthic invertebrates, while no correlation was found with concentrations in sediments. Thus, direct analysis of toxicant in sediments does not provide a measurement of bioavailability. On the contrary

  16. Decommissioning of facilities for mining and milling or radioactive ores and closeout of residues

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of this report is to provide information to Member States in order to assist in planning and implementing the decommissioning/closeout of uranium mine/mill facilities, mines, tailings impoundments, mining debris piles, leach residues and unprocessed ore stockpiles. The report presents an overview of the factors involved in planning and implementing the decommissioning/closeout of uranium mine/mill facilities. The information applies to mines, mills, tailings piles, mining debris piles and leach residues that are present as operational, mothballed or abandoned projects, as well as to future mining and milling projects. The report identifies the major factors that need to be considered in the decommissioning/closeout activities, including regulatory considerations; decommissioning of the mine/mill buildings, structures and facilities; decommissioning/closeout of open pit and underground mines; decommissioning/closeout of tailings impoundments; decommissioning/closeout of mining debris piles, unprocessed ore and other contaminated material such as heap leach piles, in situe leach facilities and contaminated soils; restoration of the site, vicinity properties and groundwater; radiation protection and health and safety considerations; and an assessment of costs and post-decommissioning or post-closeout maintenance and monitoring needs. 55 refs, figs and tabs

  17. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  18. INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

  19. In situ Remediation Technologies

    NARCIS (Netherlands)

    Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2011-01-01

    A summary of two decades of developments of In Situ remediation is presented in this chapter. The basic principles of In Situ technology application are addressed, such as equilibrium relations between contaminant phases, factors controlling biological and geochemical processes, contaminant

  20. Decommissioning of nuclear submarines

    International Nuclear Information System (INIS)

    1989-01-01

    The intention of this Report is to set out in simple terms the options open to the Ministry of Defence in disposing of nuclear submarines, and the extent of the problem. To this end oral evidence was taken from United Kingdom Nirex Limited (Nirex) and from the Ministry of Defence, and written evidence was taken from MoD, Nirex, the United Kingdom Atomic Energy Authority and Rolls-Royce and Associates Limited. The immediate problem is what to do with the nuclear submarine, DREADNOUGHT. Since decommissioning in 1982, the submarine has been lying at Rosyth Naval Base on the Firth of Forth. Upon decommissioning, the highly radioactive reactor core with the uranium fuel was removed and transported to the Sellafield reprocessing plant. The remaining radioactive part is the reactor compartment and it is the size of this, not its level of radioactivity which makes it hard to deal with. By the year 2000 a further seven nuclear submarines will have been decommissioned. There are three main options for disposing of the reactor compartments; dumping at sea, land burial in a shallow trench and land burial in a deep repository. Dumping at sea is the option favoured by the Ministry of Defence and Government, but shallow land burial remains an option. Deep burial is not an option which is available immediately as there will not be a repository ready until 2005. (author)

  1. Recordkeeping in the decommissioning process

    International Nuclear Information System (INIS)

    Boing, L. E.

    2000-01-01

    In the US, there are two sets of key decommissioning records clearly identified -- those that are essential for planning the D and D of a facility and then those that are the result of the decommissioning process itself. In some cases, the regulatory authorities require and in others advise the licensees of the records that may be useful or which are required to be kept from the decommissioning. In the remainder of the paper, the author attempts to highlight some important aspects of decommissioning recordkeeping

  2. Detritiation studies for JET decommissioning

    International Nuclear Information System (INIS)

    Perevezentsev, A.N.; Bell, A.C.; Williams, J.; Brennan, P.D.

    2007-01-01

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T 2 ) in 1991, the Trace Tritium Experiment (5g T 2 ) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T 2 ) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, ''oxygen-free'' copper, aluminium bronze), carbon fibre composite tiles, ''carbon'' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  3. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    Directory of Open Access Journals (Sweden)

    Jukka Havento

    2009-04-01

    Full Text Available Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications.

  4. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User's Perspective.

    Science.gov (United States)

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications.

  5. Workshop on decommissioning; Seminarium om avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. (ed.)

    2005-12-15

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  6. BNFL decommissioning strategy and techniques

    International Nuclear Information System (INIS)

    Taylor, D.

    2002-01-01

    This paper provides an overview of the range of reactor decommissioning projects being managed by BNFL, both on its own sites and for other client organizations in the UK and abroad. It also describes the decommissioning strategies and techniques that have been developed by BNFL and adopted in order to carry out this work

  7. ORNL decontamination and decommissioning program

    International Nuclear Information System (INIS)

    Bell, J.P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed

  8. Decommissioning of nuclear power stations

    International Nuclear Information System (INIS)

    Gregory, A.R.

    1988-01-01

    In the United Kingdom the Electricity Boards, the United Kingdom Atomic Energy Authority (UKAEA) and BNFL cooperate on all matters relating to the decommissioning of nuclear plant. The Central Electricity Generating Board's (CEGB) policy endorses the continuing need for nuclear power, the principle of reusing existing sites where possible and the building up of sufficient funds during the operating life of a nuclear power station to meet the cost of its complete clearance in the future. The safety of the plant is the responsibility of the licensee even in the decommissioning phase. The CEGB has carried out decommissioning studies on Magnox stations in general and Bradwell and Berkeley in particular. It has also been involved in the UKAEA Windscale AGR decommissioning programme. The options as to which stage to decommission to are considered. Methods, costs and waste management are also considered. (U.K.)

  9. Decommissioning Funding: Ethics, Implementation, Uncertainties

    International Nuclear Information System (INIS)

    2007-01-01

    This status report on decommissioning funding: ethics, implementation, uncertainties is based on a review of recent literature and materials presented at NEA meetings in 2003 and 2004, and particularly at a topical session organised in November 2004 on funding issues associated with the decommissioning of nuclear power facilities. The report also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). This report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems

  10. Po-Basin Atmospheric Composition during the Pegasos Field Campaign (summer 2012): Evaluation of ninfa/aodeM Simulation with In-Situ e Remote Sensing Observations

    Science.gov (United States)

    Landi, Tony C.; Bonafe, Giovanni; Stortini, Michele; Minguzzi, Enrico; Cristofanelli, Paolo; Marinoni, Angela; Giulianelli, Lara; Sandrini, Silvia; Gilardoni, Stefania; Rinaldi, Matteo; Ricciardelli, Isabella

    2014-05-01

    Within the EU project PEGASOS one of three field campaigns took place in the Po Valley during the summer of 2012. Photochemistry, particle formation, and particle properties related to diurnal evolution of the PBL were investigated through both in-situ and airborne measurements on board a Zeppelin NT air ship. In addition, 3-D air quality modeling systems were implemented over the Po valley for the summer 2012 to better characterize the atmospheric conditions, in terms of meteorological parameters and chemical composition. In this work, we present a comparison between atmospheric composition simulations carried out by the modeling system NINFA/AODEM with measurements performed during the PEGASOS field campaign for the period 13 June - 12 July 2012. NINFA (Stortini et al., 2007) is based on the chemical transport model CHIMERE (Bessagnet et al., 2008), driven by COSMO-I7, the meteorological Italian Limited Area Model, (Steppeler et al., 2003). Boundary conditions are provided by Prev'air data (www.prevair.org), and emission data input are based on regional, national and European inventory. Besides, a post-processing tool for aerosol optical properties calculation, called AODEM (Landi T. C. 2013) was implemented. Thus, predictions of Aerosol Optical Depth and aerosol extinction coefficient were also used for model comparison to vertical-resolved observations. For this experiment, NINFA/AODEM has been also evaluated by using measurements of size-segregated aerosol samples, number particles concentration and aerosol optical properties collected on hourly basis at the 3 different sampling sites representative of urban background (Bologna), rural background (San Pietro Capofiume) and remote high altitude station (Monte Cimone 2165 ma.s.l.). ). In addition, we focused on new particles formations events and long range transports from Northern Africa observed during the field campaign. References Bessagnet, Bertrand, Laurent Menut, Gabriele Curci, Alma Hodzic, Bruno

  11. Shippingport Station Decommissioning Project Start of Physical Decommissioning

    International Nuclear Information System (INIS)

    Crimi, F. P.

    1987-01-01

    The Shippingport Atomic Power Station consists of the nuclear steam supply system and associated radioactive waste processing systems, which are owned by the United States Department of Energy, and the turbine-generator and balance of plant, which is owned by the Duquesne Light Company. The station is located at Shippingport, Pennsylvania on seven acres of land leased by DOE from Duquesne Light Company. The Shippingport Station Decommissioning Project is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, Morrison-Knudsen Company. as the Decommissioning Operations Contractor. This paper describes the current status of the physical decommissioning work, which started September 1985. The preparations required to start a major decommissioning work effort in a safe and cost effective manner are discussed including the development and implementation of a cost/schedule control system. The detailed plan required to ensure that people, property, and procedures are ready in sufficient time to support the start of physical decommissioning is also discussed. The total estimated cost of the Shippingport Station Decommissioning Project should be $98.3 M, with the Project scheduled for completion in April 1990. As the decommissioning of the first commercial-scale nuclear power plant, the Shippingport Project is expected to set the standard for safe, cost-effective demolition of nuclear plants

  12. Funding Decommissioning - UK Experience

    International Nuclear Information System (INIS)

    MacKerron, Gordon

    2006-01-01

    'Funding' started with CEGB and SSEB (state-owned electric utilities) in 1976 using the internal un-segregated fund route (i.e unfunded). This continued until privatisation of electricity industry (excluding nuclear) in 1990. Assets bought with the internal un-segregated fund were mostly transferred into non-nuclear private utilities. New state-owned Nuclear Electric (England and Wales) was given a 'Fossil Fuel Levy', a consumer charge of 10% on retail bills, amounting to c. BP 1 bn. annually. This allowed Nuclear Electric to trade legally (A reserve of BP 2.5 bn. was available from Government if company ran out of money). By 1996 the newer nuclear stations (AGRS plus PWR) were privatised as British Energy. British Energy started an external segregated fund, the Nuclear Decommissioning Fund, with a starting endowment of c. BP 225 m. - and BE made annual contributions of British Pound 16 m. into the Fund. Assumptions were that BE had 70 to accumulate cash and could get a 3.5% average annual real return. Older stations (Magnox) were left in private sector and went to BNFL in 1997. Magnox inherited the surplus cash in BE - mostly unspent Fossil Fuel Levy receipts - of c. BP 2.6 bn. Government gave an 'Undertaking' to pay BP 3.8 bn. (escalating at 4.5% real annually) for Magnox liabilities, should Magnox Electric run out of cash. BNFL inherited the BP 2.6 bn. and by 2000 had a 'Nuclear Liabilities Investment Portfolio' of c. BP 4 bn. This was a quasi-segregated internal fund for liabilities in general. [Note: overall UK nuclear liabilities in civilian sector were running at c. BP 48 bn. by now]. BE started profitable and paid BP 100 m. annually in dividends to private investors for several years. BE ran into severe financial problems after 2001 and Government organised restructuring aid, now approved by European Commission. Terms include: - BE now to contribute BP 20 m. a year into an expanded Nuclear Liabilities Fund; - A bond issue of BP 275 m. to go to Fund; - 65

  13. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    Baumann, B.L.

    1983-01-01

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  14. The decommissioning information management system

    International Nuclear Information System (INIS)

    Park, Seung-Kook; Moon, Jei-Kwon

    2015-01-01

    At the Korea Atomic Energy Research Institute (KAERI), the Korea Research Reactor (KRR-2) and one uranium conversion plant (UCP) were decommissioned. A project was launched in 1997, for the decommissioning of KRR-2 reactor with the goal of completion by 2008. Another project for the decommissioning of the UCP was launched in 2001. The physical dismantling works were started in August 2003 and the entire project was completed by the end of 2010. KAERI has developed a computer information system, named DECOMMIS, for an information management with an increased effectiveness for decommissioning projects and for record keeping for the future decommissioning projects. This decommissioning information system consists of three sub-systems; code management system, data input system (DDIS) and data processing and output system (DDPS). Through the DDIS, the data can be directly inputted at sites to minimize the time gap between the dismantling activities and the evaluation of the data by the project staff. The DDPS provides useful information to the staff for more effective project management and this information includes several fields, such as project progress management, man power management, waste management, and radiation dose control of workers and so on. The DECOMMIS was applied to the decommissioning projects of the KRR-2 and the UCP, and was utilized to give information to the staff for making decisions regarding the progress of projects. It is also to prepare the reference data for the R and D program which is for the development of the decommissioning engineering system tools and to maintain the decommissioning data for the next projects. In this paper, the overall system will be explained and the several examples of its utilization, focused on waste management and manpower control, will be introduced. (author)

  15. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    International Nuclear Information System (INIS)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon

    2014-01-01

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist

  16. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist.

  17. The Chinon A decommissioning plan

    International Nuclear Information System (INIS)

    Le Dantec, M.

    1991-01-01

    The three Chinon-A reactor units have been permanently shut down. Reactor Al is now International Atomic Energy Authority level one and has been turned into a tourist museum. Reactor A2 is an IEAE level 2 site. Reactor fuel is being unloaded from reactor A3 as of July 1991. A brief description of each reactor decommissioning state is given. The decommissioning strategy for A2, drawn up in 1986 and revised in 1991 is outlined. The technical studies and their results are described. An economic analysis of decommissioning costs was also undertaken. (UK)

  18. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    Kiyota, M.; Yanagihara, S.

    1995-01-01

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  19. Approaches to estimating decommissioning costs

    International Nuclear Information System (INIS)

    Smith, R.I.

    1990-07-01

    The chronological development of methodology for estimating the cost of nuclear reactor power station decommissioning is traced from the mid-1970s through 1990. Three techniques for developing decommissioning cost estimates are described. The two viable techniques are compared by examining estimates developed for the same nuclear power station using both methods. The comparison shows that the differences between the estimates are due largely to differing assumptions regarding the size of the utility and operating contractor overhead staffs. It is concluded that the two methods provide bounding estimates on a range of manageable costs, and provide reasonable bases for the utility rate adjustments necessary to pay for future decommissioning costs. 6 refs

  20. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  1. Decommissioning. Success with preparation

    International Nuclear Information System (INIS)

    Klasen, Joerg; Schulz, Rolf; Wilhelm, Oliver

    2017-01-01

    The decommissioning of a nuclear power plant poses a significant challenge for the operating company. The business model is turned upside down and a working culture developed for power operation has to be adapted while necessary know- how for the upcoming tasks has to be built up. The trauma for the employees induced by the final plant shut-down has to be considered and respected. The change of working culture in the enterprise has to be managed and the organization has to be prepared for the future. Here the methods of Change-Management offer a systematic and effective approach. Confidence in the employee's competencies is one of the key success factors for the change into the future.

  2. Decommissioning Cost Assessment

    International Nuclear Information System (INIS)

    Labor, Bea

    2012-03-01

    The future costs for dismantling, decommissioning and handling of associated radioactive waste of nuclear installations represents substantial liabilities. It is the generations that benefits from the use of nuclear installations that shall carry the financial burden. Nuclear waste programmes have occasionally encountered set-backs related to the trust from society. This has resulted in delayed, redirected or halted activities, which has the common denominator of costs increases. In modern democratic countries, information sharing, knowledge transfer and open communication about costs for the management of radioactive waste are prerequisites for the task to develop modern methods for public participation and thus to develop well-founded and justified confidence for further development of nuclear energy. Nuclear and radiation safety Authorities have a clear role to provide unbiased information on any health, safety, financial and environmental related issues. This task requires a good understanding of the values and opinion of the public, and especially those of the younger generation

  3. DECOM experience with decommissioning costing

    International Nuclear Information System (INIS)

    Daniska, V.; Zachar, M.

    2015-01-01

    The OMEGA code has been used in numerous Slovak and international decommissioning planning and costing projects and in IAEA R and D projects and is continuously updated and upgraded. The next goal for the DECOM costing activities is to develop an universal and user-friendly ISDC costing tool accessible via internet - eOMEGA taking over the advantages of the long-term experience of DECOM and being in line with up-to date trends in decommissioning costing. DECOM members participate in international expert groups for further improvement of costing methodologies, such as the uncertainties, cost practices and cost peer reviews in decommissioning costing. DECOM members participate also in IAEA projects, expert missions and training courses related to decommissioning costing and planning. (authors)

  4. Decommissioning challenges - an industrial reality

    International Nuclear Information System (INIS)

    Moore, H.; Mort, P.; Hutton, E.

    2008-01-01

    Sellafield Limited has undergone many transformations in previous years. The Nuclear Decommissioning Authority (NDA) has managed the site from April 2005, and a new Parent Body Organisation (PBO) is soon to be announced. In addition, it is an exciting time for the nuclear industry following the announcement of the UK government support new reactor builds. Should the site be selected for new build, the impact on Sellafield, its decommissioning program and economic impact on the local area can only be speculated at the current time. Every past, present and future decommissioning project at the Sellafield Limited site offers complex challenges, as each facility is unique. Specialist skills and experience must be engaged at pre-planned phases to result in a safe, efficient and successful decommissioning project. This paper provides an overview of a small selection of decommissioning projects, including examples of stakeholder engagement, plant and equipment dismantling using remote handling equipment and the application of innovative techniques and technologies. In addition, the final section provides a summary upon how future technologies required by the decommissioning projects are being assessed and developed. (authors)

  5. An outsider's view of decommissioning

    International Nuclear Information System (INIS)

    Wilkie, T.

    1996-01-01

    The decommissioning of nuclear facilities is not just a technical or even a financial issue. Presenting decommissioning as a technically difficult task overcome by superhuman effort on the part of the industry will not gain much credit amongst sophisticated consumers who now require that any complex technology will work and work safely. Any engineering problems are surmountable given the money to find the solution. Some of the financial aspects of decommissioning are worrying, however, given their open-ended nature. The cost of waste disposal is one of these. Despite a lapse of fifty years since the start-up of its first reactor, the United Kingdom is unlikely to have available a repository for the disposal of intermediate level waste until about 2020. Waste disposal is a large consideration in decommissioning and the industry's forecasts of cost in this area lack credibility in the light of a poor track record in financial prediction. Financial engineering in the form of the segregated fund set up in March 1996 to cover the decommissioning of nuclear power stations in the United Kingdom is likely to provide only short term reassurance in the light of doubts about a credible future for nuclear power. This lack of confidence over the wider problems of nuclear power creates particular problems for decommissioning which go beyond technical difficulties and complicate financial considerations. (UK)

  6. Human resource development for decommissioning

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2016-01-01

    This paper summarized the features of decommissioning work and the methods how to develop human resources. The general flow of decommissioning includes the following steps: (1) evaluation of facility characteristics, (2) planning, (3) decontamination and disassembly of equipment and structures contaminated with radioactivity, (4) radioactivity measurement, (5) treatment and disposal of radioactive waste, and (6) release from legal restrictions (termination of decommissioning). For this purpose, techniques in various fields are required. In the evaluation of facility characteristics, radiation measurement and calculation of activation amount in the core part are required. In decontamination and dismantling, cutting technology (mechanical cutting, thermal cutting, etc.), decontamination technology, and remote control technology are required. In the nuclear power education in the past, the fields related to design, construction, operation, and maintenance among the plant life cycle were the main parts. Much attention was not payed to decommissioning and the treatment/disposal of radioactive waste in the second half of life cycle. As university education, Hokkaido University and Fukui University have lectures on decommissioning. Furthermore, the education and research for students are proceeding at seven universities, with a focus on common reactors including those of Fukushima Daiichi Power Station. It is a key for promoting decommissioning, to incorporate project management, risk analysis, cost evaluation, and decision making into education, and to foster human resources heading toward challenging problems including social problems. (A.O.)

  7. Money Related Decommissioning and Funding Decision Making

    International Nuclear Information System (INIS)

    Goodman, Lynne S.

    2008-01-01

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds

  8. NPP Decommissioning: the concept; state of activities

    International Nuclear Information System (INIS)

    Nemytov, S.; Zimin, V.

    2001-01-01

    The main principles of NPP decommissioning concept in Russia are given. The conditions with fulfillment of works on NPP unit pre-decommissioning and decommissioning including: development of the normative documentation, creation of special fund for financing NPP decommissioning activities, deriving the Gosatomnadzor license for decommissioning of shut down NPP units, development of the equipment and technologies for waste and spent fuel management are presented. The decommissioning cost and labour intensity of one WWER-440 unit are shown. The practical works, executed on shut down units at Beloyarsk NPP (Unit1 and 2) and Novo Voronezh NPP (Unit 1 and 2) are outlined

  9. Decommissioning the Windscale AGR

    International Nuclear Information System (INIS)

    Boorman, T.

    1987-01-01

    The advanced gas cooled reactor at Windscale (WAGR) is being dismantled, that is, all fuel and coolant will be discharged and the plant dismantled completely with waste disposed of to a permanent repository. It is the first power-producing reactor to be dismantled in the UK. From a study of the main categories of materials to be disposed of it can be seen that the task of reactor decommissioning can be considered as the segregation of waste materials into appropriate categories and their disposal according to the regulations governing those categories. In the radioactive categories (only 10% of the total) only low and intermediate level wastes are involved. The high level waste was from the spent fuel which has already been removed. The remote controlled cutting, handling and packaging equipment is described. All equipment to be used has first to be tested after development. One building has been allocated as the waste packaging building and modified suitably. Dismantling is seen as a feasible process. (UK)

  10. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  11. Financial assurance for decontamination and decommissioning: a Texas perspective

    International Nuclear Information System (INIS)

    Rao, C.D.; Etter, S.D.; Dziuk, T.W.

    1986-01-01

    The Texas Department of Health (TDH) has the regulatory responsibility to ensure that funds are available for decontamination, decommissioning, and reclamation of uranium recovery facilities in Texas. Uranium recovery licensees are required to post financial security with the Agency for that purpose. Texas uranium facilities include (1) conventional surface mining and milling plants, including tailings ponds, and (2) in situ solution mining plants, each with somewhat different cost elements for decontamination, decommissioning, reclamation, and closure. Cost estimates for decontamination, decommissioning, and reclamation, along with a facility closure plan, are initially submitted to the Agency by the licensees. These are verified and compared with detailed independent cost estimates prepared by Agency staff. Significant differences between the two estimates are examined and resolved by negotiation and/or recalculation to the satisfaction of the state. The Texas philosophy for maintaining financial security permits flexibility in the closure plan without jeopardizing or compromising the ultimate long-term objectives of closure. Review of closure plans incorporates new technological developments In contrast, financial security is established expeditiously by applying the best available cost data to necessarily conservative estimates of the work involved. Financial security cost estimates are subject to annual review and adjustment

  12. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  13. Decommissioning Plan for European Spallation Source

    Science.gov (United States)

    Ene, Daniela

    2017-09-01

    This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  14. Decommissioning Plan for European Spallation Source

    Directory of Open Access Journals (Sweden)

    Ene Daniela

    2017-01-01

    Full Text Available This paper is a survey of the European Spallation Source initial decommissioning plan developed in compliance with Swedish Regulatory Authority requirements. The report outlines the decommissioning strategy selected and the baseline plan for decommissioning. Types and quantities of radioactive waste estimated to be generated at the final shut-down of the facility are further provided. The paper ends up with the analysis of the key elements of the decommissioning plan and the recommendations to the ESS management team..

  15. Waste management considerations in nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Elder, H.K.; Murphy, E.S.

    1981-01-01

    Decommissioning of nuclear facilities involves the management of significant quantities of radioactive waste. This paper summarizes information on volumes of waste requiring disposal and waste management costs developed in a series of decommissioning studies performed for the U.S. Nuclear Regulatory Commission by the Pacific Northwest Laboratory. These studies indicate that waste management is an important cost factor in the decommissioning of nuclear facilities. Alternatives for managing decommissioning wastes are defined and recommendations are made for improvements in waste management practices

  16. The Italian decommissioning industry

    International Nuclear Information System (INIS)

    Adinolfi, R.

    2005-01-01

    Full text: Italy's step out from nuclear activities in 1987 deeply affected an industry that, in the previous years, had managed to grow up in quality and technology levels to meet the nuclear standards. Only a few companies were able to partially retain their skills through activities abroad. The decommissioning program represents a new challenge for the Italian industry at large and will require a consistent effort to properly qualify the potential suppliers. On the other side, a program with such implications in terms of investments and so depending from social aspects cannot be effectively implemented without a significant involvement of the local industry. Essential conditions for the success are a reliable program, as well as a careful supply management scheme, which must facilitate aggregation of skills spread among different subjects. 'Human Resources: Maintaining a Nuclear Culture in Italy' Bruno Panella Politecnico di Torino, Giuseppe Forasassi, Universita di Pisa, Inter-University Consortium for the Nuclear Technological Research (CIRTEN). After a brief history of the nuclear engineering education in Italy within the international and national nuclear energy scenario, the present situation, with reference to the Italian universities, is shown. In order to maintain a nuclear culture in Italy the solution, exploited with different peculiarities in each University, is to carry out high quality research activities in reciprocal collaboration (mostly within the CIRTEN inter university Consortium) as well as with the Industry and research Organisations and to collaborate actively in establishing a stable network and a synergy of teaching activities in Europe in the field of Nuclear Engineering Education. The aim is to maintain at a high level and as updated as possible the Italian educational offer in nuclear engineering and also to attract the best students for the enrolment. (author)

  17. Redevelopment of nuclear facilities after decommissioning

    International Nuclear Information System (INIS)

    2006-01-01

    Being aware of reuse options for decommissioned sites is an important aspect of the decommissioning process. Early planning for site reuse can facilitate the transition from operation to decommissioning, possibly reduce the financial burden associated with decommissioning, re-employ workers and specialist staff, and alleviate the overall impact of decommissioning on the local community. Conversely, the lack of early planning for site reuse after completion of the decommissioning process can become a hindrance to implementing decommissioning in a cost effective and optimized manner. This strategic inadequacy may be caused by insufficient knowledge of experience with redevelopment opportunities that were exploited successfully in industries elsewhere. This report provides an overview of decommissioning projects implemented worldwide with reuse of the decommissioned sites for new purposes after delicensing. Lessons learned from these projects and practical guidance on factors creating reuse opportunities are highlighted. Operators of nuclear facilities, decision makers at government level, regulators/authorities and elected officials at all levels, environmental planners and the general public are all important stakeholders in the site redevelopment process. The subject area addressed in this report has not previously been addressed in IAEA publications on decommissioning except in only a marginal fashion. This report is intended to contribute to the systematic coverage of the entire range of decommissioning aspects within the IAEA's decommissioning programme

  18. Platform decommissioning. Environmental challenges and practical solutions

    International Nuclear Information System (INIS)

    Kvalvik, Inge

    1998-01-01

    The publication gives a short introduction of platform decommissioning, followed by an overview of what to be decommissioned and removed. This will be followed by some of the vital technologies and methods within decommissioning, abandonment of wells, removal and handling of remains that is reuse and scrapping. A final presentation with a view of current research and developments is given. 3 figs

  19. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  20. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  1. Decommissioning in British Nuclear Fuels plc

    International Nuclear Information System (INIS)

    Colquhoun, A.

    1988-01-01

    Decommissioning projects at the BNFL Sellafield site have been selected taking the following into account; the need to gain experience in preparation for the decommissioning of the Magnox reactors and for the post Magnox stage; the need to develop larger scale projects; the need to be cost effective and to foster long term safety. The balance between prompt or delayed decommissioning has to consider operator dose uptake and radioactive waste management. The ten year plan for decommissioning at Sellafield is described briefly. Currently decommissioning is of the fuel pond and decanning plant, the Windscale Pile Chimneys, the coprecipitation plant and the uranium recovery plant. (author)

  2. Uranium in situ leaching

    International Nuclear Information System (INIS)

    1993-09-01

    Despite the depressed situation that has affected the uranium industry during the past years, the second Technical Committee Meeting on Uranium In Situ Leaching, organized by the International Atomic Energy Agency and held in Vienna from 5 to 8 October 1992, has attracted a relatively large number of participants. A notable development since the first meeting was that the majority of the contributions came from the actual operators of in situ leaching uranium production. At the present meeting, presentations on operations in the USA were balanced by those of the eastern European and Asian countries. Contributions from Bulgaria, China, Czechoslovakia, Germany (from the operation in the former German Democratic Republic), the Russian Federation and Uzbekistan represent new information not commonly available. In situ leach mining is defined in one of the paper presented as a ''mining method where the ore mineral is preferentially leached from the host rock in place, or in situ, by the use of leach solutions, and the mineral value is recovered. Refs, figs and tabs

  3. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  4. In Situ Cometary Cosmochemistry

    Science.gov (United States)

    Wright, I. P.; Andrews, D. J.; Barber, S. J.; Sheridan, S.; Morgan, G. H.; Morse, A. D.

    2013-09-01

    In 2014 the Rosetta space mission arrives at comet 67P. Herein we describe the ambitions of one of the instruments, Ptolemy, included on the lander. Our aim is to make in situ measurements of isotopic compositions of elements such as H, C, N and O.

  5. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  6. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  7. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias

    2013-06-01

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  8. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  9. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  10. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  11. Decommissioning program-sharing experience

    International Nuclear Information System (INIS)

    Sheil, A.E.; Hall, M.

    1996-01-01

    When the current reprocessing programs are complete, British Nuclear Fuels plc's (BNFL's) Sellafield site will have ∼120 radioactive plants, all of which will require decommissioning. A formal program was initiated in the early 1980s and has expanded to reach the current level of 18 plants undergoing decommissioning and a plan of work stretching over several decades. In addition to these chemical plants, BNFL's decommissioning program extends to other sites in the United Kingdom, including fuel and enrichment facilities. The BNFL has been managing a huge program, including the technical solutions adopted to meet safety and cost targets, the interaction with regulatory bodies, and the management of the site work. Particular attention has been paid to the methods used to minimize dose exposure to operators and the minimization and management of waste. Novel approaches have been used for the integration of plant and remote equipment control systems to reduce demands on operators and improve productivity. Other aspects of the extensive development program have been carried out in support of decommissioning

  12. 76 FR 35511 - Decommissioning Planning

    Science.gov (United States)

    2011-06-17

    ... licensees to conduct their operations to minimize the introduction of residual radioactivity into the site... additional information on the costs of decommissioning and spent fuel management. DATES: The final rule is... Agencywide Documents Access and Management System (ADAMS): Publicly available documents created or received...

  13. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  14. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    International Nuclear Information System (INIS)

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs

  15. Nuclear decommissioning in Italy

    International Nuclear Information System (INIS)

    Tripputi, I.

    2005-01-01

    in the oil market, both in terms of barrel cost and in terms of security of supplies, and the severe black-outs that have plagued also Italy (the major one in September 2003 lasting in some areas for about 24 hours), have started a widespread discussion about energy alternatives and strategic energy plans. In this frame an increasing number of politicians and scientists are calling for a reconsideration of nuclear energy as a viable option also for Italy in a new energy mix. It is clear that public acceptance of nuclear energy is strictly connected not only to the demonstration of high safety standards of future plants, but also to the solution of radioactive waste disposal and of plant decommissioning. This is the link that could make the SOGIN mission even more strategic for the country

  16. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    offered in situ simulation faculty with a model for integrating reported critical incidents and adverse events with contextual needs analysis and short-term observations. Furthermore the research group is working on detailing the barriers of in situ simulation such as resources for team training despite...... emergencies. It contains 12 questions, which are rated using a five-point scale, and covers four categories; leadership, teamwork and task management, and an overall score on team performance. Results: 16 simulations were conducted with 16 different teams of 10 doctors and 32 nurses. First, this study took...... of handovers. The team performance varied greatly according to how well the team members knew each other professionally as confirmed by video recordings. SAQ, and TEAM observational data are being analyzed by the research group with focus on correlation with teamwork and handovers. In summary, this study...

  17. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  18. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  19. Planning activities for ANPP decommissioning

    International Nuclear Information System (INIS)

    Ghazaryan, K.G.

    2002-01-01

    The Armenian NPP consists of two WWER-440, model 270 pressurized water reactors. After an earthquake in northern Armenia in December 1988 both units were shut down for safety reasons: Unit 1 in February 1988, Unit 2 in March 1989, respectively. Unit 2 was restarted in November 1995 after a number of safety upgrades. Unit 1 remains in a long-term shutdown mode. The design lifetime of Unit 2 expires in 2015. Opportunity to shutdown earlier has been discussed in the last years. In particular a statement has been issued by EC asking for an early shutdown of Unit 2 in exchange for the TACIS support in implementing the safety upgrades in a short term. Currently the safety improvement program is being successfully implemented in the framework of US DOE and TACIS assistance. At the moment the date of the permanent plant shutdown is not specified. As with many older reactors throughout the world, a decommissioning plan has not been developed for Armenian NPP at the design stage. After shutdown of ANPP in 1988-1989 the radiological characterization campaign at Unit 1 had been carried out. Recently two studies in the decommissioning area have been performed for ANPP. The first one has been carried out under the US DOE Assistance Program. The purpose of this study was to identify and evaluate feasible decommissioning options for ANPP. Some critical issues related to the waste management had been specified and the near-term activities within this project will be focused on issues of waste characterization and information data base creation as an important prerequisite to manage waste safely. The model used to calculate many of the decommissioning costs was NRC CECP reprogrammed for WWER NPPs. The second study had been carried out in the framework of TACIS project 'Assistance to Energy Strategic Center'. The purpose of the study was to select the best strategy to phase-out and decommission the ANPP and evaluate conditions, implications and consequence of this decision. A

  20. Atomics International's recent decommissioning experience

    International Nuclear Information System (INIS)

    Kittinger, W.D.

    1981-01-01

    A program for decommissioning eight nuclear facilities has been underway by the Atomics International (AI) Division of Rockwell International during the past five years. The facilities are located at the Rockwell Santa Susana Field Laboratory, approximately 30 miles from the center of Los Angeles. The facilities served experimental and development programs for space nuclear power, liquid metal technology, and commercial power generation. The land involved is under lease to the Federal government and may revert to private ownership. The programs conducted in these facilities were terminated in the 1960s, and the facilities were placed in a layaway status. They were designated as being surplus to programmatic needs in the early 1970s, and decommissioning project authorization was received from the government in 1974

  1. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  2. Fort St. Vrain defueling ampersand decommissioning considerations

    International Nuclear Information System (INIS)

    Warembourg, D.

    1994-01-01

    Fort St. Vrain Nuclear Generating Station (FSV) is one of the first commercial reactors to be decommissioned under NRC's decommissioning rule. The defueling and decommissioning of this 330 MWe High Temperature Gas Cooled Reactor (HTGR) has involved many challenges for Public Service Company of Colorado (PSC) including defueling to an Independent Spent Fuel Storage Installation (ISFSI), establishing decommissioning funding, obtaining regulatory approvals, arranging for waste disposal, and managing a large fixed price decommissioning contract. In 1990, a team comprised of the Westinghouse Corporation and Morrison Knudsen Corporation, with the Scientific Ecology Group as a major subcontractor, was contracted by PSC to perform the decommissioning under a fixed price contract. Physical work activities began in August 1992. Currently, physical dismantlement activities are about 45% complete, the project is on schedule, and is within budget

  3. The decommissioning of Berkeley II

    International Nuclear Information System (INIS)

    Hannan, A.

    2002-01-01

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m 3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  4. IDMT, Integrated Decommissioning Management Tools

    International Nuclear Information System (INIS)

    Alemberti, A.; Castagna, P.; Marsiletti, M.; Orlandi, S.; Perasso, L.; Susco, M.

    2005-01-01

    Nuclear Power Plant decommissioning requires a number of demolition activities related to civil works and systems as well as the construction of temporary facilities used for treatment and conditioning of the dismantled parts. The presence of a radiological, potentially hazardous, environment due to the specific configuration and history of the plant require a professional, expert and qualified approach approved by the national safety authority. Dismantling activities must be designed, planned and analysed in detail during an evaluation phase taking into account different scenarios generated by possible dismantling sequences and specific waste treatments to be implemented. The optimisation process of the activities becomes very challenging taking into account the requirement of the minimisation of the radiological impact on exposed workers and people during normal and accident conditions. While remote operated equipment, waste treatment and conditioning facilities may be designed taking into account this primary goal also a centralised management system and corresponding software tools have to be designed and operated in order to guarantee the fulfilment of the imposed limits as well as the traceability of wastes. Ansaldo Nuclear Division has been strongly involved in the development of a qualified and certified software environment to manage the most critical activities of a decommissioning project. The IDMT system (Integrated Decommissioning Management Tools) provide a set of stand alone user friendly applications able to work in an integrated configuration to guarantee waste identification, traceability during treatment and conditioning process as well as location and identification at the Final Repository site. Additionally, the system can be used to identify, analyse and compare different specific operating scenarios to be optimised in term of both economical and radiological considerations. The paper provides an overview of the different phases of

  5. Experience of TTR-1 decommissioning

    International Nuclear Information System (INIS)

    Kato, Hiroaki; Nobuoka, Yoshishige; Yoshimura, Yukio; Homma, Hitoshi; Nakai, Masaru

    2005-01-01

    Toshiba Training Reactor-1 (TTR-1) was planned for improvement of technical level from the standpoint of nuclear reactor manufacturer, training of a nuclear engineer, and research of nuclear physics, radiochemistry, radiation shielding and others. TTR-1 was permitted for construction in May 1960, attained at the first criticality in March 1962 and has continued to operate over 40 years. TTR-1 was permanently shut down in March 2001, accomplishing the planned target. From the initial criticality to the shut down, total operating time amounts to 15,300 hours and 31 MWds. Decommissioning plan was submitted to the Ministry of Education, Culture, Sports, Science and Technology on August 8, 2001 and dismantling work was started. The spent fuel was transported outside the laboratory, and the first phase and the second phase dismantling work were completed at the end of February 2004. Some of the reactor equipments continue maintaining their performance, and waste materials generated from dismantling work are under the state of managed storage, until disposal of the dismantling radioactive waste becomes clear, when the third phase of dismantling work will be started. At the end of the third phase work, all the TTR-1 equipments are dismantled and all waste materials are removed from TTR-1, then decommissioning of TTR-1 is completed. The outline of the decommissioning plan, the actually performed dismantling work, and spent fuel transportation work is briefly described. (author)

  6. Planning For Armenian NPP Decommissioning

    International Nuclear Information System (INIS)

    Ghazaryan, K.; Atoyan, V.; Pyuskyulyan, K.

    2008-01-01

    Armenian Nuclear Power Plant (ANPP) is situated in Ararat valley near the Metzamor town, approximately 30 km west of Yerevan. The plant consists of two units of WWER-440 Model V-270 that is seismically upgraded version of standard V-230 design. The two units were put in commercial operation in 1976 and 1980 respectively. An earthquake in northern Armenia occurred in December 1988. Although both plants continued to operate after the earthquake, the USSR Council of Ministers ordered the shutdown of both plants for safety reasons. Unit 1 was shutdown in February 1989; Unit 2 was shutdown in March 1989. Shortly after Armenia became an independent republic, the ''energy crisis'' began, leaving the country with virtually no power for five years. The Armenian Government ordered the restart of Unit 2 ANPP. Unit 2 was restarted in November 1995. Unit 1 remains in a long-term shutdown mode. Currently nuclear share in total electricity generation is about 45%. The design life of Unit 2 expires in 2016. As with many older reactors throughout the world the decommissioning issues had not been considered for ANPP at the design stage. The planning activities for ANPP decommissioning were started in 2002 taking into account the IAEA recommendations that early planning will facilitate future decommissioning activities, and the complexity of preparatory and D and D activities as well. (author)

  7. Preliminary nuclear decommissioning cost study

    International Nuclear Information System (INIS)

    Sissingh, R.A.P.

    1981-04-01

    The decommissioning of a nuclear power plant may involve one or more of three possible options: storage with surveillance (SWS), restricted site release (RSR), and unrestricted site use(USU). This preliminary study concentrates on the logistical, technical and cost aspects of decommissioning a multi-unit CANDU generating station using Pickering GS as the reference design. The procedure chosen for evaluation is: i) removal of the fuel and heavy water followed by decontamination prior to placing the station in SWS for thiry years; ii) complete dismantlement to achieve a USU state. The combination of SWS and USU with an interim period of surveillance allows for radioactive decay and hence less occupational exposure in achieving USU. The study excludes the conventional side of the station, assumes waste disposal repositories are available 1600 km away from the station, and uses only presently available technologies. The dismantlement of all systems except the reactor core can be accomplished using Ontario Hydro's current operating, maintenance and construction procedures. The total decommissioning period is spread out over approximately 40 years, with major activities concentrated in the first and last five years. The estimated dose would be approximately 1800 rem. Overall Pickering GS A costs would be $162,000,000 (1980 Canadian dollars)

  8. Decommissioning program of JRR-2

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Banba, Masao; Arigane, Kenji

    1999-01-01

    Japan Research Reactor No.2(JRR-2), heavy water moderated and cooled tank type research reactor with maximum thermal power of 10 MW, was used over 36 years, and was permanently shut down in December, 1996. Afterward, dismantling report was submitted to the STA, and dismantling was begun in 1997. Decommissioning of JRR-2 is planned in 11 years from 1997 to 2007, and the program is divided into 4 phases. Phase 1 had already been ended, phase 2 is being executed at present. Reactor body will be removed in phase 4 by one piece removal or caisson techniques. On reactor building, it is planned to use effectively as a hot experimental facilities after decommissioning ends. How to treat heavy water and primary cooling system contaminated by tritium becomes an important problem to lead decommissioning to success because JRR-2 is heavy water reactor. On heavy water, transportation to foreign country is planned in phase 2. On primary cooling system, it is planned to remove and dispose the majority in phase 3, and tritium decontamination with technique established by the proof test is planned before them. As a preparation for them, various investigation and examination are being advanced at present. (author)

  9. Decommissioning of naval nuclear ships

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1993-10-01

    During the next decade the two major nuclear powers will each have to decommission more than 100 naval nuclear vessels, in particular submarines. The problems connected with this task is considered in this report. Firstly the size of the task is considered, i.e. the number of nuclear vessels that has to be decommissioned. Secondly the reactors of these vessels, their fuel elements, their power level, the number of reactors per vessel and the amount of radioactivity to be handled are discussed. Thirdly the decommissioning procedures, i.e. The removal of fuel from the vessels, the temporary storage of the reactor fuel near the base, and the cleaning and disposal of the reactor and the primary circuit components are reviewed. Finally alternative uses of the newer submarines are briefly considered. It should be emphasizes that much of the detailed information on which this report is based, may be of dubious nature, and that may to some extent affect the validity of the conclusions of the report. (au)

  10. Decommissioning of CANDU nuclear power stations

    International Nuclear Information System (INIS)

    Unsworth, G.N.

    1979-04-01

    This report summarizes the results of a detailed study of the various procedures and costs associated with decommissioning a CANDU reactor. The three internationally recognized 'stages' of decommissioning (mothballing, encasement, and dismantling) are discussed. It is concluded that decommissioning is possible with presently available technology, and that costs could be financed by only a marginal increase in the cost of electricity during the life of the reactor. The environmental impact would be no greater than that of any large construction project. (auth)

  11. IAEA Perspectives on Preparation for Decommissioning

    International Nuclear Information System (INIS)

    Michal, Vladimir; Ljubenov, Vladan

    2016-01-01

    There are about 160 power reactors in decommissioning phase worldwide. In addition, more than 400 other nuclear facilities, such as research reactors or nuclear fuel cycle facilities, have been shutdown for decommissioning, have been undergoing active decommissioning or have already been fully dismantled. Planned and systematic preparation for decommissioning is very important for further effective implementation of dismantling activities. While some preparatory activities for decommissioning start early in the facility life-cycle, the main preparatory activities are implemented towards the end of the operational period and during the transition period from operation to decommissioning. These may include a wide range of technical actions, such as physical and radiological characterization, pre-decommissioning decontamination, management of spent fuel and operational waste, establishment of new waste management facilities and modification of safety systems needed to support decommissioning. In parallel, some non-technical tasks are to be completed, e.g. preparation of the final decommissioning plan and its supporting documents, licensing activities, organizational changes, training of personnel for decommissioning, etc. Preparatory activities may be organized in various ways depending on considered decommissioning strategies and physical and radiological status of the nuclear facility after its routine operation is over. The IAEA published numerous safety and technical reports providing guidance, recommendations, experiences, good practices and lessons learned, fully or to some extent covering the preparatory phase for decommissioning. Many training courses, workshops, seminars etc. were organized to support sharing of good practices among specialists and organizations involved. This paper provides an overview of relevant activities and perspectives of the IAEA in this area. The paper also draws some general conclusions and identifies lessons learned on the basis of

  12. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1988-01-01

    US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decommissioned, decontaminated, and dismantled the world's first, nuclear fueled, commercial size, electric power plant. SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. Objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper presents a working definition for technology transfer. Direction is provided for access and availability for SSDP technology acquisition

  13. The waste management implications of decommissioning

    International Nuclear Information System (INIS)

    Passant, F.H.

    1988-01-01

    Decommissioning policy can only be framed in the light of radioactive waste management policy. What can be done with the waste materials, how and when, will determine the overall decommissioning plans and costs. In this paper the waste management options and their costs are reviewed for the decommissioning of the Central Electricity Generating Boards civil nuclear power stations. The paper concentrates on the decommissioning of Magnox stations, although comparative information on waste volumes and costs are given for the AGR programme and a typical PWR. (author)

  14. Human resource development for management of decommissioning

    International Nuclear Information System (INIS)

    Tanaka, Kenichi

    2017-01-01

    This paper described the contents of 'Human resource development for the planning and implementation of safe and reasonable nuclear power plant decommissioning' as the nuclear human resource development project by the Ministry of Education, Culture, Sports, Science and Technology. The decommissioning of a nuclear power plant takes 30 to 40 years for its implementation, costing tens of billions of yen. As the period of decommissioning is almost the same as the operation period, it is necessary to provide a systematic and continuous supply of engineers who understand the essence of the decommissioning project. The engineers required here should have project management ability to take charge of preparation, implementation, and termination of decommissioning, and have the ability to perform not only technology, but also factor management, cost management, and the like. As the preconditions of these abilities, it is important to develop human resources who possess qualities that can oversee decommissioning in the future. The contents of human resource education are as follows; (1) desk training (teaching materials: facilities of nuclear power plants, management of nuclear fuels, related laws, decommissioning work, decontamination, dismantling, disposal of waste, etc.), (2) field training (simulators, inspection of power station under decommissioning, etc.), (3) practical training (radiation inventory evaluation, and safety assessment), and (4) inspection of overseas decommissioning, etc. (A.O.)

  15. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kang, Y. A.; Kim, G. H.

    2007-06-01

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  16. Decommissioning Technology Development for Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kang, Y. A.; Kim, G. H. (and others)

    2007-06-15

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely.

  17. Financing the Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-01-01

    Decommissioning of both commercial and R and D nuclear facilities is expected to increase significantly in the coming years, and the largest of such industrial decommissioning projects could command considerable budgets. It is important to understand the costs of decommissioning projects in order to develop realistic cost estimates as early as possible based on preliminary decommissioning plans, but also to develop funding mechanisms to ensure that future decommissioning expenses can be adequately covered. Sound financial provisions need to be accumulated early on to reduce the potential risk for residual, unfunded liabilities and the burden on future generations, while ensuring environmental protection. Decommissioning planning can be subject to considerable uncertainties, particularly in relation to potential changes in financial markets, in energy policies or in the conditions and requirements for decommissioning individual nuclear installations, and such uncertainties need to be reflected in regularly updated cost estimates. This booklet offers a useful overview of the relevant aspects of financing the decommissioning of nuclear facilities. It provides information on cost estimation for decommissioning, as well as details about funding mechanisms and the management of funds based on current practice in NEA member countries. (authors)

  18. Status of the Fort St. Vrain decommissioning

    International Nuclear Information System (INIS)

    Fisher, M.J.

    1990-01-01

    Fort St. Vrain is a high temperature gas cooled reactor. It has been shut down as a result of financial and technical difficulties. Fort St. Vrain has been planning for defueling and decommissioning for at least three years. The preliminary decommissioning plan, in accordance with the NRC's final rule, has been submitted and is being reviewed by the NRC. The basis of the preliminary decommissioning plan has been SAFSTOR. Public Service Company, who is the owner and operator of FSV, is scheduled to submit a proposed decommissioning plan to the NRC in the fourth quarter of 1990. PSC has gone out for bid on the decontamination and dismantlement of FSV. This paper includes the defueling schedule, the independent spent fuel storage installation status, the probability of shipping fuel to DOE, the status of the preliminary decommissioning plan submittal, the issuance of a possession only license and what are the results of obtaining this license amendment, preliminary decommissioning activities allowed prior to the approval of a proposed decommissioning plan, the preparation of a proposed decommissioning plan and the status of our decision to proceed with SAFSTOR or DECON as identified in the NRC's final decommissioning rule

  19. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  20. Experiences in teaching decommissioning - 16179

    International Nuclear Information System (INIS)

    Catlow, Fred

    2009-01-01

    The paper describes the experience gained by the author in teaching decommissioning in the Highlands of Scotland. Initially when asked to teach the subject of decommissioning to students sitting for a BSc degree in 'Electrical or Mechanical Engineering with Decommissioning Studies', the author was taken aback, not having previously taught degree students and there was no precedent since there was no previous material or examples to build on. It was just as difficult for the students since whilst some had progressed from completing HND studies, the majority were employed at the Dounreay site and were mature students with families who were availing themselves of the opportunity for career advancement (CPD). Some of the students were from the UKAEA and its contractors whilst others were from Rolls-Royce working at Vulcan, the Royal Navy's establishment for testing nuclear reactors for submarines. A number of the students had not been in a formal learning environment for many years. The College which had originally been funded by the UKAEA and the nuclear industry in the 1950's was anxious to break into the new field of Decommissioning and were keen to promote these courses in order to support the work progressing on site. Many families in Thurso, and in Caithness, have a long tradition of working in the nuclear industry and it was thought at the time that expertise in nuclear decommissioning could be developed and indeed exported elsewhere. In addition the courses being promoted by the College would attract students from other parts so that a centre of excellence could be established. In parallel with formal teaching, online courses were also developed to extend the reach of the College. The material was developed as a mixture of power point presentations and formal notes and was obtained from existing literature, web searches and interactive discussions with people in the industry as well as case studies obtained from actual situations. Assignments were set and

  1. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  2. Evaluation of the I. Stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1

    International Nuclear Information System (INIS)

    Hrasnova, E.

    2015-01-01

    In this paper author deals with following aspects: 1. Introduction of company Nuclear and Decommissioning Company, plc; 2. Evaluation of the I. stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1; (author)

  3. Principles of record keeping for decommissioning purposes

    International Nuclear Information System (INIS)

    Laraia, M.

    2003-01-01

    At the siting and conceptual design stage of a nuclear facility the first records pertaining to that facility are produced and stored. Subsequent phases in the facility's life cycle (detailed design, construction, commissioning, operation and shutdown) will include the production and retention of a large variety of records. Design, as-built drawings and operational records are essential for safe and efficient operation of any nuclear facility. This set of records is constantly updated and augmented during operation. Records from all phases of a nuclear facility are important for planning its decommissioning. Although not all of these records need to be included explicitly in the decommissioning plan itself, the process of initial, ongoing and final planning utilizes pertinent records for, and ultimately achieves, safe and cost effective decommissioning. When a nuclear facility is shutdown for decommissioning, current operating experience may be lost. Therefore, one important element of planning is to identify, secure and store appropriate operational records to support decommissioning. This process is preferably initiated during the design and construction phase and continues throughout operation including shutdown. Part of the records inventory from operation will become records for decommissioning and it is cost effective to identify these records before final facility shutdown. Experience shows that lack of attention to record keeping may result in an undue waste of time, other resources and additional costs. The newly established Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management recognizes the importance of keeping decommissioning-related records. In addition, the systematic management of records is an essential part of quality assurance and is often a licence condition. A good comprehensive decommissioning records management system (RMS) is one specific application of the broader concepts of 'Protection

  4. Costing for decommissioning: Continuing NEA engagement

    International Nuclear Information System (INIS)

    Gillogly, Mari; Weber, Inge; ); Siemann, Michael; )

    2017-01-01

    On 20-21 September 2016, the International Conference on Financing of Decommissioning of nuclear power plants was held in Stockholm, Sweden. The conference focused on the exchange and sharing of information on current and emerging issues in the financing of nuclear power plant decommissioning and the underlying costs of decommissioning. It aimed at providing a good picture of the variety of financing systems in place to cover the costs of decommissioning of nuclear facilities. As an increasing number of nuclear reactors are expected to be permanently shut-down and enter into the decommissioning phase, the conference highlighted challenges for financing and delivering these decommissioning activities and explored the ways in which they were being addressed. This also included consideration of the implications of potentially under-funded or uncertain decommissioning liabilities. The insights gained in the course of the conference informed future development of work on these issues. The conference addressed a variety of issues from a range of perspectives under three main themes: financing systems - the variety of financing systems in place to provide the financial resources needed for decommissioning, including the arrangements for collecting and developing financial resources during operation and drawing down the assets during decommissioning activities, as well as oversight and reporting issues; decommissioning costing - understanding the cost estimates, quality and interpretation issues in decommissioning costing, the challenges of assurance, comparisons of estimates and actual costs, exploring ways to remedy the current lack of comparable actual cost data, possible benchmarking, etc.; [financial] risk management - effective management of financial assets, risk management strategies, the changing of markets and investment strategies for financial assets, balancing the rates of return and the reduction of risk, implications of the major changes in the energy and

  5. In-Situ Burning of Crude Oil on Water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens

    in the small scale water basin. Boilovers were also observed during the burning of a heavy crude oil with a substantial light fraction without a water layer, however, which suggests that water is not essential for boilover occurrence. Further studies are required to determine the conditions under which......The fire dynamics and fire chemistry of in-situ burning of crude oil on water was studied in order to improve predictions on the suitability of this oil spill response method. For this purpose, several operational parameters were studied to determine the factors that control the burning efficiency...... of in-situ burning, i.e. the amount of oil (in wt%) removed from the water surface by the burning process. The burning efficiency is the main parameter for expressing the oil removal effectiveness of in-situ burning as response method and is thus relevant for suitability predictions of in-situ burning...

  6. Brief Assessment of Krsko NPP Decommissioning Costs

    International Nuclear Information System (INIS)

    Skanata, D.; Medakovic, S.; Debrecin, N.

    2000-01-01

    The first part of the paper gives a brief description of decommissioning scenarios and models of financing the decommissioning of NPPs. The second part contains a review of decommissioning costs for certain PWR plants with a brief description of methods used for that purpose. The third part of the paper the authors dedicated to the assessment of decommissioning costs for Krsko NPP. It does not deal with ownership relations and obligations ensuing from them. It starts from the simple point that decommissioning is an structure of the decommissioning fund is composed of three basic cost items of which the first refers to radioactive waste management, the second to storage and disposal of the spent nuclear fuel and the third to decommissioning itself. The assessment belongs to the category of preliminary activities and as such has a limited scope and meaning. Nevertheless, the authors believe that it offers a useful insight into the basic costs that will burden the decommissioning fund of Krsko NPP. (author)

  7. Decommissioning regulations and programme (in Belgium)

    International Nuclear Information System (INIS)

    Braeckeveldt, M.; Schrauben, M.

    1995-01-01

    A regulatory process for decommissioning in Belgium has been implemented since 1991. The National Agency for Radioactive Waste and Enriched Fissile Materials NIRAS/ONDRAF has been entrusted with some assignments regarding decommissioning for all national nuclear installations. Furthermore, the Agency is responsible since 1980 for the safe management of all radioactive waste produced in Belgium, including decommissioning waste. The Agency's assignments in the field of decommissioning cover data collection and evaluations of nuclear plants with the aim to plan future waste management strategies and to provide the necessary fundings for decommissioning during the plant operational life-time. Furthermore, the Agency may be in charge of the execution of the decommissioning programmes in case of request or failure of the operator/owner of a plant or for the so-called ''Nuclear Liabilities'', in which case the Agency is entrusted by the Belgian State with the execution of the programmes. To fulfill its legal assignments, NIRAS/ONDRAF has made recommendations to nuclear plant owners for drawing up decommissioning plans and has set up an integrated data processing system to evaluate decommissioning programmes. (Author)

  8. Decommissioning alternatives, process and work activities

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The following outlines the topics discussed under Decommissioning Alternatives, Process and Work Activities: (1) decommissioning alternatives, (2) work activities for prompt removal/dismantling, (3) work activities for entombment with delayed dismantling, and (4) work activities for mothballing with delayed dismantling

  9. Criteria development methodology for DOE decommissioning operations

    International Nuclear Information System (INIS)

    Denham, D.H.

    1981-01-01

    The Radiological Guide for DOE Decommissioning Operations provides a uniform basis for assessing hazard inventories, making risk analyses, performing site characterizations, and certifying decommissioning operations. While initially addressed to radioactive contaminants, in all likelihood it will be extended to include other contaminants

  10. Impact of decommissioning on electricity generation costs

    International Nuclear Information System (INIS)

    Crijns, M.J.; Vira, J.

    1987-01-01

    By definition, the levelized decommissioning cost is the weighted average cost that should be charged for each unit of electricity produced through the lifetime of the facility, to precisely cover all the costs that the decommissioning of the facility give rise to. Although the mode in which decommissioning costs enter the electricity rates depends on utility and regulatory practices, the levelization offers a consistent means for estimating the cost impact of decommissioning. An international group of experts, called together under the auspices of the OECD Nuclear Energy Agency (NEA), has prepared estimates on levelized decommissioning costs for nuclear power plants, starting from the cost information provided by some of its Member countries. Three basic strategies for decommissioning were considered, including immediate dismantling and two strategies for deferred dismantling. The Working Group calculated the levelized decommissioning costs for several assumptions on discount rates and reactor lifetimes. The calculations showed that decommissioning has a very small impact on electricity generation cost of a large nuclear power plant. The uncertainties in cost estimates, applicable interest rates or facility operating lifetimes are large but still unlikely to significantly affect this conclusion

  11. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Science.gov (United States)

    2011-01-21

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BF08 Nuclear Decommissioning Funds; Correction AGENCY... decommissioning nuclear power plants. DATES: This correction is effective on January 21, 2011, and is applicable... interest in a nuclear power plant. * * * * * (e) * * * (3) * * * Example 2. * * * Pursuant to paragraph (e...

  12. 75 FR 80697 - Nuclear Decommissioning Funds

    Science.gov (United States)

    2010-12-23

    ... Nuclear Decommissioning Funds AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Final regulations... decommissioning nuclear power plants. These final regulations affect taxpayers that own an interest in a nuclear... Energy Policy Act of 2005 (the Energy Policy Act), Public Law 109-58 (119 Stat. 594). Written, electronic...

  13. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Kusler, L.E.

    1977-01-01

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  14. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Moore, E.B. Jr.

    1979-12-01

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  15. Decommissioning of nuclear facilities 1977 edition

    International Nuclear Information System (INIS)

    1978-01-01

    The need for development or refinement of some technical aspects of decommissioning and for international acceptance of definition of ''stages'' is reviewed. The bases for a code of practice and a guide to the code for decommissioning land based reactors are outlined

  16. EPRI nuclear power plant decommissioning technology program

    International Nuclear Information System (INIS)

    Kim, Karen S.; Bushart, Sean P.; Naughton, Michael; McGrath, Richard

    2011-01-01

    The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. (author)

  17. AREVA decommissioning strategy and programme

    International Nuclear Information System (INIS)

    Gay, A.

    2008-01-01

    As with any industrial installation, a nuclear facility has an operating life that requires accounting for its shutdown. In compliance with its sustainable development commitments, AREVA accounts this via its own decommissioning resources to value and make sites fit for further use. These capabilities guarantee the reversibility of the nuclear industry. Thus, the nuclear site value development constitutes an important activity for AREVA, which contributes to the acceptance of nuclear in line with the AREVA continuous policy of sustainable development which is to be fully responsible from the creation, during the operation, to the dismantling of its facilities in all respects with safety, local acceptance and environment. AREVA has already performed a large variety of operation during the life-time of its installations such as heavy maintenance, equipment replacement, upgrading operation. Nowadays, a completely different dimension is emerging with industrial decommissioning operations of nuclear fuel cycle installations: enrichment gaseous diffusion plant, fuel assembly plants, recycling and reprocessing facilities. These activities constitute a major know-how for AREVA. For this reason, the group decided, beginning of 2008, to gather 4 projects in one business unit called Nuclear Site Value Development - a reprocessing plant UP2 400 on AREVA La Hague site, a reprocessing plant UP1 on AREVA Marcoule site, a MOX fuel plant on Cadarache and 2 sites (SICN Veurey and Annecy) that handled GCR fuel fabrication). The main objectives are to enhance the feed back, to contribute to performance improvements, to value professionals and to put innovation forward. The following article will describe in a first part the main decommissioning programmes managed by AREVA NC Nuclear Site Value Development Business Unit. The second part will deal with strategic approaches. A more efficient organization with integration of the supply chain and innovation will be part of the main drivers

  18. In situ measurement system

    Science.gov (United States)

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  19. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells.

  20. In-Situ

    Science.gov (United States)

    Sasayama, Kohki; Hayashi, Tetsushi; Kohno, Hideo

    2018-08-01

    Flattening of a carbon nanotube with a switching of the flattening direction results in the formation of a nanotetrahedron/nanoribbon structure. In this study, behavior of individual carbon nanotetra-hedron/nanoribbon structures under a tensile load is observed by means of in-situ scanning electron microscopy using micro-manipulators. Positions of breakage caused by a tensile load are not necessarily at a nanotetrahedron/nanoribbon junction. The results indicate that the nanotetrahedron/nanoribbon junctions are not mechanical weak points under a tensile load, and the nanotetra-hedron/nanoribbon structures are as strong as simple multi-walled carbon nanotubes. In addition, the nanostructures maintain their shape and do not transformed to a tubular form.

  1. Decontamination and decommissioning: a bibliography

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contain information on decontamination and decommissioning included in the Department of Energy's Data Base from January 1981 through October 1982. The abstracts are grouped by subject category. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: corporate author, personal author, subject, contract number, and report umber. (468 abstracts)

  2. Cost estimation for decommissioning of research reactors

    International Nuclear Information System (INIS)

    Grossi, Pablo Andrade; Tello, Cledola Cassia Oliveira de; Segabinaze, Roberto de Oliveira; Daniska, Vladimir

    2013-01-01

    In the case of research reactors, the limited data that is available tends to provide only overall decommissioning costs, without any breakdown of the main cost elements. In order to address this subject, it is important to collect and analyse all available data of decommissioning costs for the research reactors. The IAEA has started the DACCORD Project focused on data analysis and costing of research reactors decommissioning. Data collection is organized in accordance with the International Structure for Decommissioning Costing (ISDC), developed jointly by the IAEA, the OECD Nuclear Energy Agency and the European Commission. The specific aims of the project include the development of representative and comparative data and datasets for preliminary costing for decommissioning. This paper will focus on presenting a technique to consider several representative input data in accordance with the ISDC structure and using the CERREX (Cost Estimation for Research Reactors in Excel) software developed by IAEA. (author)

  3. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1993-08-01

    The objectives of this coordinated research programme (CRP) were to promote the exchange of information on the practical experience by Member States in decontamination and decommissioning. The scope of the programme included several areas of decontamination and decommissioning rather than focusing on a single aspect of it, in line with recommendation of the experts who participated in Phase 1 of the CRP. Experts felt that this format would generate better awareness of decontamination and decommissioning and would be more effective vehicle for the exchange of information by stimulating broader discussion on all aspects of decontamination and decommissioning. Special emphasis was given to the development of principles and methodologies to facilitate decommissioning and to the new methods and techniques for optimization of decontamination and disassembly of equipment. Refs, figs, tabs

  4. Preparatory activities of the Fugen decommissioning

    International Nuclear Information System (INIS)

    Iguchi, Y.; Tajiri, T.; Kiyota, S.

    2004-01-01

    The Advanced Thermal Reactor Fugen is a 165 MWe, heavy water moderated, light-water cooled, pressure-tube type reactor. In February 1998, the Atomic Energy Commission of Japan introduced a new policy that development and research of decommissioning of Fugen should be promoted in order to carry out the decommissioning smoothly after the shutdown. The Fugen reactor was shut down definitely in March 2003, and Fugen has been preparing for the project, including necessary development of technologies. The development of decommissioning for Fugen is divided into two areas. One area is the development of unique technology for dismantling special components such as the reactor core and the heavy water system. Another area is the improvement and enhancement of existing technologies. Especially the former area requires effort and comprises development of the reactor dismantlement, tritium decontamination of heavy water system and engineering support systems. The activities are as follows: the density and amount of radioactive nuclides in all equipment or concrete including the reactor core need to be evaluated for the decommissioning. To prepare for decommissioning, analysis, measurement and evaluation of the neutron flux density have been executed during reactor operation. Special dismantling process is necessary for the heavy water system and the reactor that are unique to Fugen. Some studies and tests are going on for the safe dismantling based on existing technologies and their combination. Systems engineering approach is necessary in order to optimize the work load, exposure dose, waste mass and cost by selecting appropriate dismantling process at the planning stage of the decommissioning. For this reason, in order to make a decommissioning plan efficiently, we have been developing an Engineering Support System for decommissioning by adopting new information technologies such as three-dimensional computer-aided design system and virtual reality system. Moreover, the

  5. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C.; Angeles, A.

    2000-01-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  6. Shippingport Station decommissioning project overview

    International Nuclear Information System (INIS)

    Schreiber, J.J.

    1985-01-01

    The U.S. Department of Energy is in the process of decommissioning the Shippingport Atomic Power Station located on the Ohio River, 30 miles northwest of Pittsburgh, Pennsylvania. The Shippingport Station is the first commercial size nuclear power plant to undergo decommissioning in the United Staes. The plant is located on approximately 7 acres of land owned by the Duquesne Light Company (DLC) and leased to the U.S. Government. DLC operates two nuclear power plants, Beaver Valley 1 and 2, located immediately adjacent to the site and the Bruce Mansfield coal-fired power plant is also within the immediate area. The Station was shutdown in October, 1982. Defueling operations began in 1983 and were completed by September, 1984. The Shippingport Station consists of a 275' x 60' fuel handling building containing the reactor containment chamber, the service building, the turbine building, the radioactive waste processing building, the administration building and other smaller support buildings. The Station has four coolant loops and most of the containment structures are located below grade. Structures owned by the U.S. Government including the fuel handling building, service building, contaminated equipment room, the boiler chambers, the radioactive waste processing building and the decontamination and laydown buildings will be dismantled and removed to 3 feet below grade. The area will then be filled with clean soil and graded. The turbine building, testing and training building and the administration building are owned by DLC and will remain

  7. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    Santos, Ivan

    2008-01-01

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF 6 ) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  8. Planning of the BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    Klepikov, A.Kh.; Tazhibayeva, I.L.; Zhantikin, T.M.; Baldov, A.N.; Nazarenko, P.I.; Koltyshev, S.M.; Wells, P.B.

    2002-01-01

    The experimental and commercial BN-350 NPP equipped with a fast neutron sodium cooled reactor is located in Kazakhstan near the Aktau city on the Caspian Sea coast. It was commissioned in 1973 and intended for weapon-grade plutonium production and as stream supply to a water desalination facility and the turbines of the Mangyshlak Atomic Energy Complex. Taking into account technical, financial and political issues, the Government of Kazakhstan enacted the Decree no. 456 'On Decommissioning of the Reactor BN-350 in the Aktau City of the Mangystau Region'. Because the decision on reactor decommissioning was adopted before the end of scheduled operation (2003), the plan to decommission the BN-350 reactor has not yet been developed. To determine the activities required for ensuring reactor safety and in preparation for decommission in the period prior, the development and ensuring approval by the Republic of Kazakhstan Government of the decommissioning plan, a 'Plan of Priority Actions for BN-350 Reactor Decommissioning' was developed and approved. Actions provided for in the plan include the following: Development of BN-350 Reactor Decommissioning Plan; Accident prevention during the period of transition; Unloading nuclear fuel from reactor and draining the coolant from the heat exchange circuits. Decommission is defined as a complex of administrative and technical actions taken to allow the removal of some or all of regulatory controls over a nuclear facility. These actions involve decontamination, dismantling and removal of radioactive materials, waste, components and structures. They are carried out to achieve a progressive and systematic reduction in radiological hazards and are undertaken on the basis of planning and assessment in order to ensure safety decommissioning operations. In accordance with the decision of Kazakhstan Government, three basic stages for BN-350 reactor decommissioning are envisaged: First stage - Placement of BN-350 into long-term storage

  9. Government Assigns New Supervisory Task. Safe Decommissioning

    International Nuclear Information System (INIS)

    Lekberg, Anna

    2003-01-01

    When the Government decided to shutdown one of the two Barsebaeck reactors in February of 1998, it presented SKI with a task that came much earlier than expected; the supervision of the decommissioning of a reactor. As a result of proposals presented in Parliament, SKI began the formulation of a long-term strategy in 1997 for the inspection of a nuclear plant during the decommissioning process. As a preliminary task, SKI started a research programme dealing with the potential risks associated with the transition from normal operations through shutdown to final deconstruction of the power plant. Emphasis was laid on safety culture issues and on questions of organization, as opposed to an earlier stress on the purely technical aspects of decommissioning. After a long period of uncertainty, following much discussion, in July 1998 a Government decision was finally reached to shutdown the first reactor at Barsebaeck. This was carried out in November 1999. It is still uncertain as to when the other reactor will be decommissioned; a decision is expected at the earliest in 2004. This uncertainty, resulting from the prolonged decision making process, could be detrimental to the safety culture on the site; motivation could diminish, and key personnel could be lost. Decommissioning is a new phase in the life cycle of a plant, giving rise to new inspection issues of supervision. During the period of uncertainty, while awaiting SKI has identified ten key areas, dealing with the safety culture of the organization, in connection with the decommissioning of Barsebaeck 1. 1. Obtaining and retaining staff competence during decommissioning; 2. Sustaining organizational memory; 3. Identifying key organizational functions and management skills that are critical during the transition from operations to decommissioning. 4. Sustaining organizational viability and accountability for decommissioning; 5. Sustaining motivation and trust in management of dismantlement; 6. Overseeing

  10. Decommissioning standards: the radioactive waste impact

    International Nuclear Information System (INIS)

    Russell, J.L.; Crofford, W.N.

    1979-01-01

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  11. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1986-01-01

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  12. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  13. Decommissioning of underground structures, systems and components

    International Nuclear Information System (INIS)

    2006-01-01

    A large number of operational and shut down nuclear installations have underground systems, structures and components such as pipes, tanks or vaults. This practice of incorporating such features into the design of nuclear facilities has been in use for an extended period of time during which decommissioning was not perceived as a serious issue and was rarely considered in plant design and construction. Underground features can present formidable decontamination and/or dismantling issues, and these are addressed in this report. Decommissioning issues include, among others, difficulty of access, the possible need for remotely operated technologies, leakage of the contents and the resulting contamination of foundations and soil, as well as issues such as problematic radiological characterization. Although to date there have been more than 40 IAEA publications on decommissioning, none of them has ever addressed this subject. Although cases of decommissioning of such facilities have been described in the technical literature, no systematic treatment of relevant decommissioning strategies and technologies is currently available. It was perhaps assumed that generic decontamination and dismantling approaches would also be adequate for these 'difficult' facilities. This may be only partly true due to a number of unique physical, layout and radiological characteristics. With growing experience in the decommissioning field, it is timely to address this subject in a systematic and comprehensive fashion. Practical guidance is given in this report on relevant decommissioning strategies and technologies for underground features of facilities. Also described are alternative design and construction approaches that could facilitate a smoother path forward through the decommissioning process. The objective of this report is to highlight important points in the decommissioning of underground systems, structures or components for policy makers, operators, waste managers and other

  14. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    Abramenkovs, A.; Malnacs, J.

    2012-01-01

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  15. Decommissioning of French nuclear submarines

    International Nuclear Information System (INIS)

    Robin, B.; Buzonniere, A. de; Chenais, J.

    2003-01-01

    Since the beginning of the sixties, France has developed a fleet of nuclear powered vessels. Insofar as the ships of the 2. generation are being built, the older ones are decommissioned and enter the dismantling process. The average rate is presently one submarine decommissioned every two or three years. The overall strategy for the decommissioning of French nuclear submarines can be brought down to 3 phases: 1. Level 1 dismantling which essentially consists in: - unloading the spent fuel and storing it in a pool ; - possibly emptying the circuits which contain radioactive liquids. The level 1 is easily achieved, as it is not very different from the plant situation during ship overhaul or major refits. 2. Level 2 dismantling which consists in isolating the nuclear reactor compartment from the rest of the submarine and conditioning it for interim storage on a ground facility located inside Cherbourg Naval Dockyard. The rest of the ship is decontaminated, controlled and set for scrap like any conventional submarine. Up to now, the policy has been to keep the reactor compartment in this intermediate storage facility for at least 20 years, a duration calculated to allow enough time for short life corrosion products to disappear and hence, reduce the radioactive dose to workers during the level 3 dismantling operations. 3. Level 3 dismantling of the nuclear reactor compartment after a storage period. These operations consist in cutting into pieces all remaining structures and equipment, conditioning and sending them to ANDRA for disposal. The SSBN Le Redoutable, first French nuclear submarine which was removed from active service en 1991, underwent the first two phases but, forward and stern parts after cutting of the reactor compartment have been sealed and turned into a museum which is now part of 'La Cite de la Mer' in Cherbourg. Among the three other SSBNs removed from active service, two are at the end of phase 1 just before the separation of the reactor

  16. Impact of nuclear installation decommissioning on the environment

    International Nuclear Information System (INIS)

    Hrncir, T.; Tatransky, P.

    2007-01-01

    The aim of the present paper is to describe the decommissioning process in terms of its impact on the environment and population. This paper briefly outlines the issue of decommissioning, given impact of decommissioning on the environment and population. Finally, this paper indicates the materials produced during the decommissioning process as well as their distribution on the basis of their activities. Contribution is terminated with scheme of decommissioning impact on the environment. (authors)

  17. Decommissioning and decontrolling the R1-reactor

    International Nuclear Information System (INIS)

    Bergman, C.; Holmberg, B.T.

    1985-01-01

    Sweden's first nuclear reactor - the research reactor R1 - situated in bedrock under the Royal Technical Institute of Stockholm, has in the period 1981-1983 been subject to a complete decommissioning. The National Institute for Radiation Protection has followed the work in detail, and has after the completion of the decommissioning performed measurements of radioactivity on site. The report gives an account of the work the Institute has done in preparation for- and during decommissioning and specifically report on the measurements for classification of the local as free for non-nuclear use. (aa)

  18. Licensing and decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Working Group 1 (Licensing and Decommissioning of Nuclear Installations) investigated the question, 'Should it be recommended to work out international principles and rules on the licensing and decommissioning of nuclear installations and to make them subject to international instruments'. It was found that the legal systems in the countries examined are still too disparate to allow for a recommendation aiming at harmonizing the provisions for licensing. With respect to decommissioning, the WG considers the IAEA three-stage-plan to be a valuable first step towards standardisation. (CW) [de

  19. Quality management in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    Garonis, Omar H.

    2002-01-01

    Internationally, the decommissioning organizations of nuclear facilities carry out the decommissioning according to the safety requirements established for the regulatory bodies. Some of them perform their activities in compliance with a quality assurance system. This work establishes standardization through a Specifications Requirement Document, for the management system of the nuclear facilities decommissioning organizations. It integrates with aspects of the quality, environmental, occupational safety and health management systems, and also makes these aspects compatible with all the requirements of the nuclear industry recommended for the International Atomic Energy Agency (IAEA). (author)

  20. Development of a Decommissioning Certificate Program

    International Nuclear Information System (INIS)

    Morton, M. R.

    1999-01-01

    A Decommissioning Certificate Program has been developed at Washington State University Tri-Cities (WSU TC) in conjunction with Bechtel Hanford, Inc. (BHI), and the U.S. Department of Energy (DOE)to address the increasing need for qualified professionals to direct and manage decommissioning projects. The cooperative effort between academia, industry, and government in the development and delivery of this Program of education and training is described, as well as the Program's design to prepare students to contribute sooner, and at a higher level, to decommissioning projects

  1. Social effects of decommissioning Trawsfynydd Power Station

    International Nuclear Information System (INIS)

    Jones, H.

    2001-01-01

    The decision to close Trawsfynydd in 1993 had significant implications for the staff and local community. The site is situated within a National Park and local employment opportunities are limited. The staff and local communities were consulted regarding the issues arising from closure and decommissioning. This consultation influenced the decommissioning strategy for the site, with emphasis placed on the mitigation of the effects of closure. Subsequent studies have shown that the adopted strategies have served to limit the social and economic effects. The experience at Trawsfynydd has proved to be generally applicable at other decommissioning sites. (author)

  2. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  3. Criticality issues in decommissioning activities at Sellafield

    International Nuclear Information System (INIS)

    Walls, S.J.; Harris, N.

    1996-01-01

    Since 1983 British Nuclear Fuels plc (BNFL) at Sellafield has been actively involved in the decommissioning of its old plant, with 7 projects being fully completed, 6 projects in the practical phase, and 12 currently in the planning design and strategy studies phase. These projects vary from the dismantling of a single large alpha-contaminated glove box to the decommissioning of an entire 11-story building housing redundant reprocessing facilities. This paper provides an overview of the facilities involved and highlights the criticality issues that have been addressed for safety to support the decommissioning activities

  4. Portable instrumentation for quantitatively measuring radioactive contamination levels and for monitoring the effectiveness of decontamination and decommissioning activities

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1983-06-01

    Two completely portable high-resolution germanium diode spectrometer systems are described. These detectors are capable of measuring transuranics, activation products, and fission products, including 90 Sr, at sensitivities below the uncontrolled release criteria. The detectors measure x-rays, gamma-rays, or bremsstrahlung radiation as required and have been calibrated for a variety of decontamination and decommissioning scenarios. A description of a new technology for the in-situ determination of 90 Sr is given

  5. Portable instrumentation for quantitatively measuring radioactive contamination levels and for monitoring the effectiveness of decontamination and decommissioning activities

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, R.L.

    1983-06-01

    Two completely portable high-resolution germanium diode spectrometer systems are described. These detectors are capable of measuring transuranics, activation products, and fission products, including /sup 90/Sr, at sensitivities below the uncontrolled release criteria. The detectors measure x-rays, gamma-rays, or bremsstrahlung radiation as required and have been calibrated for a variety of decontamination and decommissioning scenarios. A description of a new technology for the in-situ determination of /sup 90/Sr is given.

  6. Decommissioning information management in decommissioning planning and operations at AECL (Ref 5054)

    International Nuclear Information System (INIS)

    Lemire, D.S.

    2006-01-01

    As the AECL Decommissioning program has grown over the past few years, particularly with regard to long-term planning, so has its need to manage the records and information required to support the program. The program encompasses a diverse variety of facilities, including prototype and research reactors, fuel processing facilities, research laboratories, waste processing facilities, buildings, structures, lands and waste storage areas, many of which have changed over time. The decommissioning program involves planning, assessing, monitoring and executing projects to decommission the facilities. The efficient and effective decommissioning planning, assessment, monitoring and execution for the facilities and projects are dependent on a sound information base, upon which decisions can be made. A vital part of this Information Base is the ongoing management of historical facility records, including decommissioning records, throughout the full life cycle of the facilities. This paper describes AECL's and particularly DP and O's approach to: 1) Establishing a decommissioning records and information framework, which identifies what records and information are relevant to decommissioning, prioritizing the decommissioning facilities, identifying sources of relevant information and providing a user-friendly, electronic, search and retrieval tool for facility information accessible to staff. 2) Systematically, gathering, assessing, archiving and identifying important information and making that information available to staff to support their ongoing decommissioning work. 3) Continually managing and enhancing the records and information base and its support infrastructure to ensure its long-term availability. 4) Executing special information enhancement projects, which transform historic records into information for analysis. (author)

  7. Interim status of closure/post-closure plan for 183-H solar evaporation basins

    International Nuclear Information System (INIS)

    1988-03-01

    This report describes a plan for decommissioning several solar evaporation basins on the Hanford reservation. The document describes procedures for sampling during decommissioning and a plan for certification of the resulting completed landfill. Additional plans deal with the training, security of the site, and post-closure monitoring

  8. ECED 2013: Eastern and Central Europe Decommissioning. International Conference on Decommissioning of Nuclear Facilities. Conference Guide and Book of Abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The Conference included the following sessions: (I) Opening session (2 contributions); (II) Managerial and Funding Aspects of Decommissioning (5 contributions); (III) Technical Aspects of Decommissioning I (6 contributions); (IV) Experience with Present Decommissioning Projects (4 contributions); (V) Poster Session (14 contributions); (VI) Eastern and Central Europe Decommissioning - Panel Discussion; (VII) Release of Materials, Waste Management and Spent Fuel Management (6 contributions); (VIII) Technical Aspects of Decommissioning II (5 contributions).

  9. The NEA Co-operative Programme on Decommissioning. A Decade of Progress

    International Nuclear Information System (INIS)

    2006-01-01

    -operative Programme on Decommissioning, and in particular through the information exchange and review within the TAG, it has become evident that: decommissioning can and has been done in a safe, cost-effective and environmentally friendly manner; current technologies have demonstrated their effectiveness and robust performance in numerous decommissioning activities; and feedback of experience on design, construction and operation is a considerable help for reliable planning, cost evaluation and successful realisation of a decommissioning project. Regarding technical challenges, specific trends have been observed over the last decade. Large contaminated components, for example heat exchangers, steam generators, large tanks etc., that have been segmented in situ into smaller pieces, are increasingly removed 'in one piece' and transported outside the contained area into separated facilities for further processing. Regarding the use of robotics, the CPD observed that industrial robots may have a limited applicability in decommissioning, in contrary to earlier expectations that robotic methods would be extensively used in the dismantling of radioactive components, especially in the high radiation areas in fuel facilities. Experience collected within the CPD also pointed to challenges in the release of alpha contaminated areas, where seepage of contamination into cracks and reappearance of activity in walls previously declared as 'clean' posed specific problems. On the side of organisational trends a movement towards sequential licensing has been observed. This is seen as being advantageous for the management of projects, but also increases the efforts needed for documentation. Other challenges for management raise from company reorganisation, privatisation and budgetary difficulties. The lessons learnt by the participants in the CPD have been helpful for individual projects in making project decisions and in many cases have influenced general project directions. Key examples concern

  10. Commercialization of nuclear power plant decommissioning technology

    International Nuclear Information System (INIS)

    Williams, D.H.

    1983-01-01

    The commercialization of nuclear power plant decommissioning is presented as a step in the commercialization of nuclear energy. Opportunities for technology application advances are identified. Utility planning needs are presented

  11. Decommissioning and disposal costs in Switzerland

    International Nuclear Information System (INIS)

    Zurkinden, Auguste

    2003-01-01

    Introduction Goal: Secure sufficient financial resources. Question: How much money is needed? Mean: Concrete plans for decommissioning and waste disposal. - It is the task of the operators to elaborate these plans and to evaluate the corresponding costs - Plans and costs are to be reviewed by the authorities Decommissioning Plans and Costs - Comprise decommissioning, dismantling and management (including disposal) of the waste. - New studies 2001 for each Swiss nuclear power plant (KKB 2 x 380 MWe, KKM 370 MWe, KKG 1020 MWe, KKL 1180 MWe). - Studies performed by NIS (D). - Last developments taken into account (Niederaichbach, Gundremmingen, Kahl). Decommissioning: Results and Review Results: Total cost estimates decreasing (billion CHF) 1994 1998 2001 13.7 13.1 11.8 Lower costs for spent fuel conditioning and BE/HAA/LMA repository (Opalinus Clay) Split in 2025: 5.6 bil. CHF paid by NPP 6.2 billion CHF in Fund Review: Concentrates on disposal, ongoing

  12. Nuclear submarine decommissioning and related environmental problems

    International Nuclear Information System (INIS)

    Sarkisov, A.

    1998-01-01

    The issue of nuclear powered submarines occupies a particular place among the problems related to nuclear wastes. Nuclear submarines that were withdrawn from military service as well as those intended fro utilization represent a potential source of both nuclear and radiation hazard. By the beginning of 1966 more than one hundred and fifty nuclear powered vessels were decommissioned in Russia both for the reason of expiration of their service life and due to treaties on reduction of strategic offensive weapons. By 200 this number is expected to increase to one hundred and seventy-eighty units. According to published data the number of nuclear submarines decommissioned in USA to date exceeds twenty units. Major problems associated with utilization of nuclear submarines are related to safety and special security measures are to undertaken for decommissioned nuclear submarines. One of the most significant problems is related with management and/or storage of spent fuel from decommissioned nuclear submarines

  13. The cost of decommissioning uranium mill tailings

    International Nuclear Information System (INIS)

    Lush, D.L.; Lendrum, C.; Hostovsky, C.; Eedy, W.; Ashbrook, A.

    1986-04-01

    This report identifies several key operations that are commonly carried out during decommissioning of tailings areas in the Canadian environment. These operations are unit costed for a generic site to provide a base reference case. The unit costs have also been scaled to the quantities required for the decommissioning of four Canadian sites and these scaled quantities compared with site-specific engineering cost estimates and actual costs incurred in carrying out the decommissioning activities. Variances in costing are discussed. The report also recommends a generic monitoring regime upon which both short- and longer-term environmental monitoring costs are calculated. Although every site must be addressed as a site-specific case, and monitoring programs must be tailored to fit a specific site, it would appear that for the conventional decommissioning and monitoring practices that have been employed to date, costs can be reasonably estimated when site-specific conditions are taken into account

  14. Decommissioning of DR 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2006-01-15

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  15. Health physics considerations in decontamination and decommissioning

    International Nuclear Information System (INIS)

    1985-12-01

    These proceedings contain papers on legal considerations, environmental aspects, decommissioning equipment and methods, instrumentation, applied health physics, waste classification and disposal, and project experience. Separate abstracts have been prepared for individual papers

  16. Environmental impact assessment of NPP decommissioning

    International Nuclear Information System (INIS)

    Hinca, R.

    2009-01-01

    In this presentation the following potential impacts of decommissioning of NPP are discussed: - Impacts on population; Impacts on natural environment; Land impacts; Impacts on urban complex and land utilisation; Possible impacts on area as a result of failure.

  17. Knowledge Management Aspects of Decommissioning. Case Study

    International Nuclear Information System (INIS)

    Pironkov, Lyubomir

    2017-01-01

    Kozloduy NPP: Units 5&6, type VVER-1000 - in operation. SE RAW SD “Decommissioning of units 1-4” (type VVER-440); SD “Radioactive Waste – Kozloduy”; SD “National Repository for Radioactive Waste“; SD “Permanent Repository for Radioactive Waste – Novi Han”. Decommissioning Strategy: Strategy Target: “Brown Field”. Initial Version: Safe enclosure – completing by 2050. Updated Version: Continuous dismantling of equipment; Completing the process of Decommissioning of Units 1-4 by 2030. Major Phases: 1.Pre-decommissioning activities; 2.Facility shutdown activities; 3.Procurement of equipment; 4.Dismantling activities; 5.Treatment of RAM and RAW and delivery for disposal; 6.Site management and support; 7.Project management and engineering; 8.Management of SNF and activated materials

  18. Canadian decommissioning experience from policy to project

    International Nuclear Information System (INIS)

    Pare, F.E.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada Limited (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, this paper explains its foundations and describes how it has and soon will be applied to various facilities. It terminates by providing a brief summary of the experience gained up to date on the implementation of this strategy

  19. AECL's strategy for decommissioning Canadian nuclear facilities

    International Nuclear Information System (INIS)

    Joubert, W.M.; Pare, F.E.; Pratapagiri, G.

    1992-01-01

    The Canadian policy on decommissioning of nuclear facilities as defined in the Atomic Energy Control Act and Regulations is administered by the Atomic Energy Control Board (AECB), a Federal Government agency. It requires that these facilities be decommissioned according to approved plans which are to be developed by the owner of the nuclear facility during its early stages of design and to be refined during its operating life. In this regulatory environment, Atomic Energy of Canada (AECL) has developed a decommissioning strategy for power stations which consists of three distinctive phases. After presenting AECL's decommissioning philosophy, its foundations are explained and it is described how it has and soon will be applied to various facilities. A brief summary is provided of the experience gained up to date on the implementation of this strategy. (author) 3 figs.; 1 tab

  20. NPP A-1 decommissioning - Phase I

    International Nuclear Information System (INIS)

    Krstenik, A.; Blazek, J.

    2000-01-01

    Nuclear power plant A-1 with output 150 MW e , with metallic natural uranium fuelled, CO 2 cooled and heavy water moderated reactor had been prematurely finally shut down in 1977. It is necessary to mention that neither operator nor regulatory and other authorities have been prepared for the solution of such situation. During next two consecutive years after shutdown main effort of operator focused on technical and administrative activities which are described in the previous paper together with approach, condition and constraints for NPP A-1 decommissioning as well as the work and research carried out up to the development and approval of the Project for NPP A-1 decommissioning - I. phase. Subject of this paper is description of: (1) An approach to NPP A -1 decommissioning; (2) An approach to development of the project for NPP A-1 decommissioning; (3) Project - tasks, scope, objectives; (4) Mode of the Project realisation; (5) Progress achieved up to the 1999 year. (authors)

  1. A nationwide modelling approach to decommissioning - 16182

    International Nuclear Information System (INIS)

    Kelly, Bernard; Lowe, Andy; Mort, Paul

    2009-01-01

    In this paper we describe a proposed UK national approach to modelling decommissioning. For the first time, we shall have an insight into optimizing the safety and efficiency of a national decommissioning strategy. To do this we use the General Case Integrated Waste Algorithm (GIA), a universal model of decommissioning nuclear plant, power plant, waste arisings and the associated knowledge capture. The model scales from individual items of plant through cells, groups of cells, buildings, whole sites and then on up to a national scale. We describe the national vision for GIA which can be broken down into three levels: 1) the capture of the chronological order of activities that an experienced decommissioner would use to decommission any nuclear facility anywhere in the world - this is Level 1 of GIA; 2) the construction of an Operational Research (OR) model based on Level 1 to allow rapid what if scenarios to be tested quickly (Level 2); 3) the construction of a state of the art knowledge capture capability that allows future generations to learn from our current decommissioning experience (Level 3). We show the progress to date in developing GIA in levels 1 and 2. As part of level 1, GIA has assisted in the development of an IMechE professional decommissioning qualification. Furthermore, we describe GIA as the basis of a UK-Owned database of decommissioning norms for such things as costs, productivity, durations etc. From level 2, we report on a pilot study that has successfully tested the basic principles for the OR numerical simulation of the algorithm. We then highlight the advantages of applying the OR modelling approach nationally. In essence, a series of 'what if...' scenarios can be tested that will improve the safety and efficiency of decommissioning. (authors)

  2. Decommissioning co-operation in Europe

    International Nuclear Information System (INIS)

    Simon, R.A.

    1992-01-01

    Under the provisions of the Euratom treaty, member states of the European Community have since 1978 been conducting successive five-year R and D programmes in the field of decommissioning on the basis of cost-sharing contracts. The main objective of the programmes is to establish safe, socially acceptable and economic decommissioning strategies for obsolete nuclear plant. The programmes share the common aim of all Euratom activities in promoting cooperation, scientific exchange and industrial competition within the Community. (author)

  3. The cost of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    This report sets out the results of a National Audit Office investigation to determine the extent of the potential Government liability for nuclear decommissioning, how this is to be financed and the possible implications for the taxpayer. Further effort are needed to improve the nuclear industry's estimates, improve efficiency and face up to the costs of decommissioning. This should also ensure that the full cost of nuclear energy is identified. (author)

  4. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    Fournier, Vincent

    2016-01-01

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter

  5. Policy on the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This Regulatory Policy Statement describes the policy of the Atomic Energy Control Board (AECB) on the decommissioning of those facilities defined as nuclear facilities in the Atomic Energy Control (AEC) Regulations. It is intended as a formal statement, primarily for the information of licensees, or potential licensees, of the regulatory process and requirements generally applicable to the decommissioning of nuclear facilities licensed and regulated by the AECB pursuant to the authority of the AEC Act and Regulations

  6. Decommissioning Project Manager's Implementing Instructions (PMII)

    International Nuclear Information System (INIS)

    Mihalic, M.A.

    1998-02-01

    Decommissioning Project personnel are responsible for complying with these PMII. If at any time in the performance of their duties a conflict between these instructions and other written or verbal direction is recognized or perceived, the supervisor or worker shall place his/her work place in a safe condition, stop work, and seek resolution of the conflict from the Decommissioning Project Manager or his designee

  7. Applicability of EPRI Decommissioning Pre-Planning Manual to International Decommissioning Projects

    International Nuclear Information System (INIS)

    Lessard, Leo; Kay, Jim; Lefrancois, Donald; Furr, Richard; Lucas, Matthieu; Schauer, Konrad

    2016-01-01

    Industry models for planning the efficient decommissioning of a nuclear power plant continue to evolve. Effective planning is a key to cost control, a critical aspect of decommissioning. In 2001, the Electric Power Research Institute (EPRI) published the 'Decommissioning Pre-Planning Manual', referred to as the 'Manual'. The goal of the Manual was to develop a framework for use in pre-planning the decommissioning of a nuclear power plant. The original research was based on information collected during the active decommissioning of power reactors in New England, and the ongoing decommissioning planning of another reactor still in operation. The research team identified thirty-two (32) major Decommissioning Tasks that support the strategic and tactical planning that can be conducted in advance of plant shutdown. The Decommissioning Tasks were organized in a logical sequence of execution, and sorted in common discipline groupings. Owners of U.S. nuclear plants that have shut down prematurely during the past 5 years have found the EPRI Decommissioning Pre-Planning Manual useful in developing their transition plans from an operating to shutdown facility. Concurrently, during the past 15 years, the IAEA has published numerous technical and safety reports on nuclear reactor decommissioning planning and execution. IAEA's goal is to provide its global members with useful and timely guidance for the planning and execution of nuclear decommissioning projects. This information has been used extensively by international nuclear plant operators. One of the key objectives will be to develop a road-map linking the 32 EPRI Decommissioning Tasks with the comparable (or equivalent) topics covered in the IAEA library of decommissioning knowledge. The logical and convenient structure of the Manual will be cross-referenced to the IAEA topics to aid in organizing the development of decommissioning plans. The road-map will serve to provide a basis for improved

  8. The Importance of Experience Based Decommissioning Planning

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2016-01-01

    Decommissioning of a nuclear facility is an extensive and multidisciplinary task, which involves the management and technical actions associated with ceasing operation and thereafter the step-by-step transfer of the facility from an operating plant to an object under decommissioning. The decommissioning phase includes dismantling of systems and components, decontamination and clearance, demolition of buildings, remediation of any contaminated ground and finally a survey of the site. Several of these activities generate radioactive or potentially radioactive waste, which has to be managed properly prior to clearance or disposal. What makes decommissioning of nuclear installations unique is to large extent the radioactive waste management. No other industries have that complex regulatory framework for the waste management. If decommissioning project in the nuclear industry does not consider the waste aspects to the extent required, there is a large risk of failure causing a reduced trust by the regulators and other stakeholders as well as cost and schedule overruns. This paper will give an overview of important aspects and findings gathered during decades of planning and conducting decommissioning and nuclear facility modernization projects. (authors)

  9. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    Correa Sainz, Cristina

    2016-01-01

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  10. In Situ Planetary Geochronology Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — This project's purpose was to determine whether a Pulsed Neutron Generator (PNG) could be used in an instrument that could perform in situ age dating of planetary...

  11. In Situ Activation of Microcapsules

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Disclosed are microcapsules comprising a polymer shell enclosing two or more immiscible liquid phases in which a drug, or a prodrug and a drug activator are partitioned into separate phases. or prevented from diffusing out of the microcapsule by a liquid phase in which the drug is poorly soluble. Also disclosed are methods of using the microcapsules for in situ activation of drugs where upon exposure to an appropriate energy source the internal phases mix and the drug is activated in situ.

  12. Research and development of treatment techniques for LLW from decommissioning: Decontamination and volume reduction techniques

    International Nuclear Information System (INIS)

    Hirabayashi, T.; Kameo, Y.; Nakashio, N.

    2001-01-01

    For the purpose of reducing the amount and/or volume of low-level radioactive waste (LLW) arising from decommissioning of nuclear reactor, the Japan Atomic Energy Research Institute (JAERI) has been developing four decontamination techniques. They are: (a) Gas-carrying abrasive method, (b) In-situ remote electropolishing method for pipe system before dismantling, (c) Bead reaction - thermal shock method, and (d) Laser induced chemical method for components after dismantling. JAERI in developing techniques are also carrying out melting tests of metal and non-metal. Melting was confirmed to be effective in reducing the volume, homogenizing, and furthermore stabilizing non-metallic wastes. (author)

  13. Post decommissioning monitoring of uranium mines; a watershed monitoring program based on biological response

    International Nuclear Information System (INIS)

    Russel, C.; Coggan, A.; Ludgate, I.

    2006-01-01

    Rio Algom Limited and Denison Mines own and operated uranium mines in the Elliot Lake area. The mines operated from the late 1950's to the mid 1960's and again for the early 1970's to the 1990's when the mines ceased operations. There are eleven decommissioned mines in the Serpent River watershed. At the time of decommissioning each mine had it's own monitoring program, which had evolved over the operating life of the mine and did not necessarily reflect the objectives associated with the monitoring of decommissioned sites. In order to assess the effectiveness of the decommissioning plans and monitoring the cumulative effects within the watershed, a single watershed monitoring program was developed in 1999: the Serpent River Watershed Monitoring Program which focused on water and sediment quality within the watershed and response of the biological community over time. In order to address other 'source area' monitoring, three complimentary objective-focused programs were developed 1) the In- Basin Monitoring Program, 2) the Source Area Monitoring Program and 3) the TMA Operational Monitoring Program. Through development this program framework and monitoring programs that were objective- focused, more meaningful data has been provided while providing a significant reduction in the cost of monitoring. These programs allow for the reduction in scope over time in response to improvement in the watershed. This talk will describe the development of these programs, their implementation and effectiveness. (author)

  14. Securing decommissioning funds. Why organization matters?

    International Nuclear Information System (INIS)

    Tchapga, F.

    2005-01-01

    Full text: Securing decommissioning funds requires that the financial resources set aside for the purpose of decommissioning be managed prudently. Decommissioning of nuclear power plant is prescribed by National Atomic Laws or by other nuclear legislation. It is a mandatory operation. The operators of nuclear power plants set money aside for that purpose. This is known as 'Decommissioning reserve fund'. Decommissioning implies costs very distant in time. Thus, it is obvious, from an economic point of view, that the funds set aside should be managed. As decommissioning is mandatory, the funds accumulated should be secured. In others words, they should be available when needed. Availability of funds is influenced by endogenous and exogenous factors. Endogenous factors are a matter of design of the reserve funds. They include the management of the funds, its monitoring and control... Availability of funds is influenced by these factors, depending on the rules to which the behaviour of the manager of the funds is subjected. In contrast, exogenous factors deal with the energy context. These factors are mainly the electricity sector organisation and/or the overall economic situation. They are decisive factors of the economic performance of the reserve fund for a given design. Therefore, the requirement of availability of funds, when needed, is a matter of compatibility between the design of the decommissioning funds and the electricity context. Put differently, reserve fund's design need to be consistent with the electricity context's features in respect of the availability of funds. Current reserve funds were designed in a context of monopoly regime. In this context, availability of decommissioning funds was not questionable. At least, as far as the design of the reserve funds is concerned. This is because nuclear generator didn't confront any competition pressure. Electricity prices were set trough rate base mechanism, and all the business risks were borne by the

  15. Closing responsibilities: decommissioning and the law

    International Nuclear Information System (INIS)

    Macrory, R.

    1990-01-01

    Laws change over time, with the times. Interpretations of old laws shift and the need for new laws emerges. There are endless reasons for these necessary changes, but the basic impetus is the changing nature of societal circumstance. Fifty years ago there were no laws directly governing nuclear power in any way. Today we know that nuclear power touches people from their wallets to their descendants. Currently, many laws related to nuclear power are in place, laws which protect all sectors of society from electricity generating bodies to a newborn child, and the Chernobyl accident has broadened the legal ramifications of nuclear power even more. This expanding body of nuclear law reflects our expanding understanding of nuclear power from its technical beginnings to its societal consequences and implications. The law is now beginning to reflect the growing significance of decommissioning. What are the relationships between decommissioning and the existing laws, government agencies, and policies? Ironically, although the UK will lead the world in addressing decommissioning responsibilities, there are no explicit laws in place to govern the process. In the absence of specific legislation governing decommissioning, the primary responsibilities fall to the operators of the power plants, a circumstance not lost on those involved in privatization. In this chapter, the wide and varied legal ramifications of decommissioning are examined. (author)

  16. Systematic Approach for Decommissioning Planning and Estimating

    International Nuclear Information System (INIS)

    Dam, A. S.

    2002-01-01

    Nuclear facility decommissioning, satisfactorily completed at the lowest cost, relies on a systematic approach to the planning, estimating, and documenting the work. High quality information is needed to properly perform the planning and estimating. A systematic approach to collecting and maintaining the needed information is recommended using a knowledgebase system for information management. A systematic approach is also recommended to develop the decommissioning plan, cost estimate and schedule. A probabilistic project cost and schedule risk analysis is included as part of the planning process. The entire effort is performed by a experienced team of decommissioning planners, cost estimators, schedulers, and facility knowledgeable owner representatives. The plant data, work plans, cost and schedule are entered into a knowledgebase. This systematic approach has been used successfully for decommissioning planning and cost estimating for a commercial nuclear power plant. Elements of this approach have been used for numerous cost estimates and estimate reviews. The plan and estimate in the knowledgebase should be a living document, updated periodically, to support decommissioning fund provisioning, with the plan ready for use when the need arises

  17. Technical and cost aspects of radioactive wastes from decommissioning

    International Nuclear Information System (INIS)

    Claes, J.; Menon, S.

    2001-01-01

    The OECD Nuclear Energy Agency's Co-operative Programme on Decommissioning was established in 1985 to share the experience and information emerging from on-going decommissioning projects within member countries. The main aim of the programme is to gather and collate such data, which can then provide the basis for planning the future industrial phase of decommissioning of commercial nuclear plants. Starting with 10 decommissioning projects in 1985, today the programme has 35 participating projects from 12 countries. Apart from exchanging valuable information, task groups have been set up for in-depth analysis and studies of areas of common interest, among which are the recycling of material from decommissioning projects and decommissioning costs. This paper will describe the structure and mode of operation of the programme. Some of the results of the work in the task groups will be presented, with particular emphasis on the management of materials from decommissioning and on decommissioning costs. (author)

  18. Decommissioning and radioactive waste management. The European Commission overview

    International Nuclear Information System (INIS)

    Rehak, M

    2010-01-01

    In this lecture author deals with the European Commission overview on the decommissioning and radioactive waste management. Financial support of European Commission of decommissioning of the Ignalina NPP, Bohunice V1 NPP and Kozloduy Units 1 and 2 is presented.

  19. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  20. In situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  1. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  2. Eastern and Central Europe Decommissioning, ECED 2015 - Book of Abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    Scientific conference deals with problems of reactor decommissioning and radioactive waste management in the Central Europe. The Conference included the following sessions: (1): Characterisation and Radioactive Waste Management; (2) Managerial Aspects of Decommissioning; (3) JAVYS Experience with Back-End of Nuclear Power Engineering - Progress in Last 2 Years; (4) Decommissioning Planning and Costing and Education; (5) Technical Aspects of Decommissioning; (6) Radioactive Waste Management; (4) Poster Session. The Book of Abstracts contains two invitation speeches and 30 abstracts.

  3. Decommissioning in western Europe; Kaernkraftsavveckling i Vaesteuropa

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Castor arbetslivskonsulter AB, Stockholm (Sweden)

    1999-12-01

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe

  4. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  5. Platform decommissioning: Socio-economic impacts

    International Nuclear Information System (INIS)

    Scheelhaase, Janina D.

    1998-01-01

    The object of this presentation is to evaluate the socio-economic effects of the decommissioning of steel jacket platforms in the North Sea and in the North East Atlantic in the period up to 2020 in their entirety. It is focused on two different decommissioning options, namely total and partial removal of installations. Partial removal applies only to installations in water deeper than 75 meters. All other installations, i.e those in waters shallower than 75 meters, have to be totally removed and brought onshore for disposal. Areas being analyzed cover costs of different decommissioning options, effects of the different options on employment, fiscal aspects of the different options, and aspects of recycling onshore. 6 figs., 13 tabs

  6. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Model Regulations for Decommissioning of Facilities

    International Nuclear Information System (INIS)

    2017-07-01

    The IAEA has systematic programmes to provide Member States with the guidance, services and training necessary for establishing a legal and regulatory framework, including the planning and implementation of decommissioning. The model regulations provided in this publication cover all aspects of the planning, conduct and termination of the decommissioning of facilities and management of the associated waste, in accordance with the relevant requirements of the IAEA safety standards. They provide a framework for establishing regulatory requirements and conditions of authorization to be incorporated into individual authorizations for the decommissioning of specific facilities. The model regulations also establish criteria to be used for assessing compliance with regulatory requirements. The publication will be of assistance to Member States in appraising the adequacy of their existing regulations and regulatory guides, and serves as a reference for those Member States developing regulations for the first time.

  8. Mound's decommissioning experience, tooling, and techniques

    International Nuclear Information System (INIS)

    Combs, A.B.; Davis, W.P.; Elswick, T.C.; Garner, J.M.; Geichman, J.R.

    1982-01-01

    Monsanto Research Corporation (MRC), which operates Mound for the Department of Energy (DOE), has been decommissioning radioactively contaminated facilities since 1949. We are currently decommissioning three plutonium-238 contaminated facilities (approximately 50,000 ft 2 ) that contained 1100 linear ft of gloveboxes; 900 linear ft of conveyor housing; 2650 linear ft of dual underground liquid waste lines; and associated contaminated piping, services, equipment, structures, and soil. As of June 1982, over 29,000 Ci of plutonium-238 have been removed in waste and scrap residues. As a result of the current and previous decommissioning projects, valuable experience has been gained in tooling and techniques. Special techniques have been developed in planning, exposure control, contamination control, equipment removal, structural decontamination, and waste packaging

  9. The Ministry of Dilemmas [decommissioning nuclear submarines

    International Nuclear Information System (INIS)

    Peden, W.

    1995-01-01

    A consultant for Greenpeace, the anti-nuclear campaigners, looks at the United Kingdom Government's problems with decommissioning of its nuclear submarine fleet as the vessels become obsolete, and at the transport and storage of spent fuels from the submarine's propulsion reactors. It is argued that no proper plans exist to decommission the vessels safely. The Ministry of Defence sites such as Rosyth and Devonport are immune from inspection by regulatory bodies, so there is no public knowledge of any potential radioactive hazards from the stored out-of-service carcasses, floating in dock, awaiting more active strategies. The author questions the wisdom of building new nuclear submarines, when no proper program exists to decommission existing vessels and their operational waste. (U.K.)

  10. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety.

  11. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    Chatzis, Irena

    2016-01-01

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  12. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2014-01-01

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  13. Nuclear data requirements for fission reactor decommissioning

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1993-01-01

    The meeting was attended by 13 participants from 8 Member States and 2 International Organizations who reviewed the status of the nuclear data libraries and computer codes used to calculate the radioactive inventory in the reactor unit components for the decommissioning purposes. Nuclides and nuclear reactions important for determination of the radiation fields during decommissioning and for the final disposal of radioactive waste from the decommissioned units were identified. Accuracy requirements for the relevant nuclear data were considered. The present publication contains the text of the reports by the participants and their recommendations to the Nuclear Data Section of the IAEA. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  14. Decommissioning strategy for reactor AM, Russian Federation

    International Nuclear Information System (INIS)

    Suvorov, A.P.; Mukhamadeev, R.I.

    2002-01-01

    This paper presents the results of studies into the various aspects of decommissioning the oldest Russian research reactor, the AM reactor. Experimental and calculation results of a study to determine the inventory of long lived radioactive materials at the AM reactor are presented, along with a comparison to comparable data for other similar reactors. An analysis, by calculation, of the decay time needed to allow manual dismantling of the reactor vessel and stack, without remote operated equipment, defined it as 90 years. The possibility of burning most of the irradiated graphite to decrease the amount of long lived radioactive wastes was confirmed. The problems associated with the dismantling of the reactor components, contaminated with radioactive corrosion products, were analyzed. A decommissioning strategy for reactor AM was formed which is deferred dismantling, placing most of the radiological areas into long term safe enclosure. An overall decommissioning plan for reactor AM is given. (author)

  15. Site Decommissioning Management Plan. Supplement 1

    International Nuclear Information System (INIS)

    Fauver, D.N.; Weber, M.F.; Johnson, T.C.; Kinneman, J.D.

    1995-11-01

    The Nuclear Regulatory Commission (NRC) staff has identified 51 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety, they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC stairs strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 51 sites and describes the status of decommissioning activities at the sites. This is supplement number one to NUREG-1444, which was published in October 1993

  16. Decommissioning of the Neuherberg Research Reactor (FRN)

    International Nuclear Information System (INIS)

    Demmeler, M.; Rau, G.; Strube, D.

    1982-01-01

    The Neuherberg Research Reactor is of type TRIGA MARK III with 1 MW steady state power and pulsable up to 2000 MW. During more than ten years of operation 12000 MWh and 6000 reactor pulses had been performed. In spite of its good technical condition and of permanent safe operation without any failures, the decommissioning of the Neuherberg research reactor was decided by the GSF board of directors to save costs for maintaining and personnel. As the mode of decommissioning the safe enclosure was chosen which means that the fuel elements will be transferred back to the USA. All other radioactive reactor components will be enclosed in the reactor block. Procedures for licensing of the decommissioning, dismantling procedures and time tables are presented

  17. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  18. Technical and legal aspects of the decommissioning of nuclear installations

    International Nuclear Information System (INIS)

    Rowden, M.A.; Fowler, S.E.

    1983-01-01

    Many of the plants licensed at the start of nuclear power programmes will require decommissioning in the 1990's and this issue should now be confronted by the nuclear industry, its regulators and governments. This paper deals with the United States programme and experience in the decommissioning of nuclear installations and describes alternative decommissioning methods including safety and financial aspects. (NEA) [fr

  19. General principles underlying the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-03-01

    Previous statements on the use of the term 'decommissioning' by the International Atomic Energy Agency, the Atomic Energy Control Board, and the Advisory Committee on Nuclear Safety are reviewed, culminating in a particular definition for its use in this paper. Three decommissioning phases are identified and discussed, leading to eight general principles governing decommissioning including one related to financing

  20. Technology, safety and costs of decommissioning reference independent spent fuel storage installations. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Ludwick, J D; Moore, E B

    1984-01-01

    Safety and cost information is developed for the conceptual decommissioning of five different types of reference independent spent fuel storage installations (ISFSIs), each of which is being given consideration for interim storage of spent nuclear fuel in the United States. These include one water basin-type ISFSI (wet) and four dry ISFSIs (drywell, silo, vault, and cask). The reference ISFSIs include all component parts necessary for the receipt, handling and storage of spent fuel in a safe and efficient manner. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, and potential radiation doses to the public. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment followed by long-term surveillance).

  1. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, P.O.

    1992-05-01

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  2. Decommissioning of a tritium-contaminated laboratory

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1981-11-01

    A tritium laboratory facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned in 1979. The project involved dismantling the laboratory equipment and disposing of the equipment and debris at an on-site waste disposal/storage area. The laboratory was constructed in 1953 and was in service for tritium research and fabrication of lithium tritide components until 1974. The major features of the laboratory included some 25 meters of gloveboxes and hoods, associated vacuum lines, utility lines, exhaust ducts, electrodryers, blowers, and laboratory benches. This report presents details on the decommissioning, health physics, waste management, environmental surveillance, and costs for the operation

  3. Towards Greater Harmonisation of Decommissioning Cost Estimates

    International Nuclear Information System (INIS)

    O'Sullivan, Patrick; ); Laraia, Michele; ); LaGuardia, Thomas S.

    2010-01-01

    The NEA Decommissioning Cost Estimation Group (DCEG), in collaboration with the IAEA Waste Technology Section and the EC Directorate-General for Energy and Transport, has recently studied cost estimation practices in 12 countries - Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, Slovakia, Spain, Sweden, the United Kingdom and the United States. Its findings are to be published in an OECD/NEA report entitled Cost Estimation for Decommissioning: An International Overview of Cost Elements, Estimation Practices and Reporting Requirements. This booklet highlights the findings contained in the full report. (authors)

  4. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    McKernan, M.L.

    1989-01-01

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  5. Optimization in the decommissioning of uranium tailings

    International Nuclear Information System (INIS)

    1987-06-01

    This report examines in detail the problem of choosing the optimal decommissioning approach for uranium and mill tailings sites. Various decision methods are discussed and evaluated, and their application in similar decision problems are summarized. This report includes, by means of a demonstration, a step by step guide of how a number of selected techniques can be applied to a decommissioning problem. The strengths and weaknesses of various methods are highlighted. A decision system approach is recommended for its flexibility and incorporation of many of the strengths found in other decision methods

  6. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...

  7. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2016-06-01

    applied to the soil (see Figure 5-3). iv. The benthic community was sampled for abundance, taxa richness, Biotic Index, functional feeding groups ...1 Figure 1-2 Freshwater Tidal Wetland...process (Chadwick, 2008). Figure 1-2 Freshwater Tidal Wetland ESTCP Project ER-200825 In Situ Wetland Restoration Demonstration ER-200825 Final

  8. In Situ Cardiovascular Tissue Engineering

    NARCIS (Netherlands)

    Talacua, H

    2016-01-01

    In this thesis, the feasibility of in situ TE for vascular and valvular purposes were tested with the use of different materials, and animal models. First, the feasibility of a decellularized biological scaffold (pSIS-ECM) as pulmonary heart valve prosthesis is examined in sheep (Chapter 2). Next,

  9. The institutional framework of decommissioning in Italy

    International Nuclear Information System (INIS)

    Goti, Massimo

    2005-01-01

    Full text: Decommissioning of the NPP is generally viewed in a negative framework. On the contrary, it is an activity which aims is said to obtain the final removal of the risk factors from the environment. It is the last step of the production cycle, whose importance is underlined by the Regulation recently issued for the correct management of resources in the territory. Decommissioning NPP involves the final arrangements of the radioactive wastes, produced either during the past operation period or resulting from the dismantling operation. All the radioactive wastes must be conditioned and maintained in safe conditions. Radioactive waste management is no longer a problem for those countries that decided to face it, that is the majority of the industrialised countries. Correct technological solutions exist, due exist, respectful of the environment, of the people, of the ethical principles. The centrality of the problem is also decreed by the fact that sometimes now, the European Commission has been working on the issue of the directive on waste management, an effort which Italy has strongly supported, also during the Presidency period. Decommissioning on NPP is moreover an activity that implies advanced technological solutions, multilateral overlapping programs, working of style situations. Not many countries have completed yet (the) decommissioning of their plants: such activity should therefore be seen as an opportunity for the growth and the assertion of the Italian industry, also in view of the potential new market and the alliance with European industries. Of the 530 nuclear reactors present in world today, approximately 100 are undergoing decommissioning. In the next 2 years another 100 will reach the end of their operative life. Probably after the necessary system improvement many of them will continue to work, but it is clear that the international market of the decommissioning will continue to grow in the next years. Italy can play an important role in

  10. Needs for European decommissioning academy (EDA)

    International Nuclear Information System (INIS)

    Slugen, Vladimir

    2014-01-01

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year. Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning, as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the over-bridging this gap. The main goal is - from about 74% of nuclearized experts (graduated at different technical Universities and increased their nuclear knowledge and skills mostly via on-job training and often in the area of NPP operation) to create nuclear experts for decommissioning via our post-gradual coursed organized in two semester study at our Academy, which will include the lessons, practical exercises in our laboratories, on-site training at NPP V-1 in Jaslovske Bohunice, Slovakia as well as 3 days technical tour to JAVYS (Slovakia), UJV Rez (Czech Rep.) and PURAM (Hungary), respectively. Beside the exams in selected topics (courses), the final thesis written under supervision of recognized experts will be the precondition for graduation and certification of the participants. For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe. The growing decommissioning market creates a potential for new activities, with highly skilled jobs in an innovative field, involving high-level technologies. A clear global positioning of the EU will stimulate the export of know-how to

  11. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    1986-01-01

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  12. Offshore decommissioning issues: Deductibility and transferability

    International Nuclear Information System (INIS)

    Parente, Virginia; Ferreira, Doneivan; Moutinho dos Santos, Edmilson; Luczynski, Estanislau

    2006-01-01

    Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international 'best practices' standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions

  13. Shippingport station decommissioning project ALARA Program

    Energy Technology Data Exchange (ETDEWEB)

    Crimi, F.P. [Lockheed Environmental Systems and Technology Co., Houston, TX (United States)

    1995-03-01

    Properly planned and implemented ALARA programs help to maintain nuclear worker radiation exposures {open_quotes}As Low As Reasonably Achievable.{close_quotes}. This paper describes the ALARA program developed and implemented for the decontamination and decommissioning (D&D) of the Shippingport Atomic Power Station. The elements required for a successful ALARA program are discussed along with examples of good ALARA practices. The Shippingport Atomic Power Station (SAPS) was the first commercial nuclear power plant to be built in the United States. It was located 35 miles northwest of Pittsburgh, PA on the south bank of the Ohio river. The reactor plant achieved initial criticality in December 1959. During its 25-year life, it produced 7.5 billion kilowatts of electricity. The SAPS was shut down in October 1982 and was the first large-scale U.S. nuclear power plant to be totally decommissioned and the site released for unrestricted use. The Decommission Project was estimated to take 1,007 man-rem of radiation exposure and $.98.3 million to complete. Physical decommissioning commenced in September 1985 and was completed in September 1989. The actual man-rem of exposure was 155. The project was completed 6 months ahead of schedule at a cost of $91.3 million.

  14. Vandellos 1 NPP decommissioning feedback experience

    International Nuclear Information System (INIS)

    Fernandez, Rodriguez A.

    2003-01-01

    The Vandellos 1 Nuclear Power Plant (CNV1) is located on the Mediterranean coast in the province of Tarragona (Spain). The Plant is of the European Natural Uranium Graphite-Gas type. The thermal power of the plant amounts to 1,670 MWt, its electrical output being 500 Mwe. The Plant started-up commercial service in May 1972; its final shutdown, due to a fire in the turbines, occurred in October 1989, after 17 years of operation with an accumulated energy production of 55,647 GWh. The option of decommissioning accepted by the Ministry of Industry, consists of first removing the spent fuel and conditioning the operating radioactive wastes, and then undertaking dismantling of almost all the structures and components located outside the reactor vessel, except those ensuring confinement of the vessel itself and the safety and surveillance of the facility and site. No action will be taken with respect to the vessel, in which the reactor will remain confined without nuclear fuel and with its internal components intact until completion of the waiting (dormancy) period. The site itself will be kept under surveillance during dormancy phase, following partial clearance, the remaining installations being left within the new site perimeter in a situation of monitored confinement. Following the dormancy period, which will last some 30 years, total dismantling of the remaining installations will be undertaken, this implying subsequent complete clearance of the site. The project was started in November of 1992, and the works on site began in 1998. The safe enclosure consists only in the reactor pressure vessel, which will be left on site. The activity content of the vessel is about 100 000 Ci, mostly Co 60. Part of the Stage 2 concept is the total static isolation of this vessel. The vessel has 1 700 penetrations, the pipes of which were cut, seal-welded and inspected. After five years of works in Vandellos 1 NPP decommissioning, ENRESA has an experience and knowledge, that is

  15. BNFL nuclear decommissioning liabilities management program

    International Nuclear Information System (INIS)

    Colquhoun, A.P.

    1995-01-01

    The objective of this paper is to describe BNFL's policy and strategy for decommissioning and also to summarize the overall scope of nuclear liabilities in the wider field of waste retrieval and storage, as well as the dismantling and demolition aspects of decommissioning. BNFL's recently established organisational arrangements for discharging all types of these liabilities are explained, together with a review of practical progress in dealing with them. Organisational changes in recent years have amalgamated decommissioning work with operations covering waste storage and retrieval operations. A strategy of minimising residual activity in shutdown plants is pursued, followed by dismantling and demolition on appropriate time scales to minimise risk and cost. Since April 1995, a new BNFL subsidiary, Nuclear Liabilities Management Company Limited has taken responsibility for discharge of BNFL's Waste Retrieval and Decommissioning liabilities on all BNFL sites. NLM has the objectives of optimal and lowest cost management of liabilities and much clearer segregation of physical operations from project specification and planning. The Ministry of Defense (MoD) policy, strategy, work programmes and progress for the Atomic Weapons Establishment (AWE) are also outlined. MoD/AEA has established an equivalent strategy for dealing with its liabilities. (J.S.). 5 refs., 2 figs., 4 appends

  16. Decommissioning: returning the Niederaichbach site to nature

    International Nuclear Information System (INIS)

    Krieger, F.; Obst, J.

    1985-01-01

    The German Niederaichbach plant is expected to be the first reactor in Western Europe to be returned to a green-field site. A remote-controlled cutting and handling system, developed to carry out the decommissioning is described. The dismantling procedure and the project status are outlined. (author)

  17. Offshore decommissioning issues: deductibility and transferability

    Energy Technology Data Exchange (ETDEWEB)

    Parente, V.; Santos, M. dos [University of Sao Paulo (Brazil). Instituto de Electrotecnica; Ferreira, D. [State University of Campinas (Brazil). Dept. of Geology and Natural Resources; Luczynski, E. [Grupo de Estudos e Pesquisas Economico-Energeticas, Belem (Brazil)

    2006-10-15

    Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international ''best practices'' standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions. (author)

  18. Decommissioning of the Northrop TRIGA reactor

    International Nuclear Information System (INIS)

    Cozens, George B.; Woo, Harry; Benveniste, Jack; Candall, Walter E.; Adams-Chalmers, Jeanne

    1986-01-01

    An overview of the administrative and operational aspects of decommissioning and dismantling the Northrop Mark F TRIGA Reactor, including: planning and preparation, personnel requirements, government interfacing, costs, contractor negotiations, fuel shipments, demolition, disposal of low level waste, final survey and disposition of the concrete biological shielding. (author)

  19. Decontamination and decommissioning focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities

  20. MODELLING OF NUCLEAR POWER PLANT DECOMMISSIONING FINANCING

    Czech Academy of Sciences Publication Activity Database

    Bemš, J.; Knápek, J.; Králík, T.; Hejhal, M.; Kubančák, Ján; Vašíček, J.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 519-522 ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : nuclear power plant * methodology * future decommissioning costs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  1. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    Bierschbach, M.C.

    1997-01-01

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  2. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, S. K.; Kim, Y. K.

    2004-03-01

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  3. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  4. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  5. A database structure for radiological optimization analyses of decommissioning operations

    International Nuclear Information System (INIS)

    Zeevaert, T.; Van de Walle, B.

    1995-09-01

    The structure of a database for decommissioning experiences is described. Radiological optimization is a major radiation protection principle in practices and interventions, involving radiological protection factors, economic costs, social factors. An important lack of knowledge with respect to these factors exists in the domain of the decommissioning of nuclear power plants, due to the low number of decommissioning operations already performed. Moreover, decommissioning takes place only once for a installation. Tasks, techniques, and procedures are in most cases rather specific, limiting the use of past experiences in the radiological optimization analyses of new decommissioning operations. Therefore, it is important that relevant data or information be acquired from decommissioning experiences. These data have to be stored in a database in a way they can be used efficiently in ALARA analyses of future decommissioning activities

  6. Radiological characterization and challenges at decommissioning sites

    International Nuclear Information System (INIS)

    Moore, Scott

    2002-01-01

    Scott Moore described the dose-based radiological characterisation process used in the USA, and four current characterisation issues faced there. His paper emphasized the importance of characterisation to control decommissioning hazards and costs: The License Termination Rule (LTR), Subpart E to 10 CFR Part 20, provides the dose-based criteria that the U.S. Nuclear Regulatory Commission (NRC) uses as the basis for regulating cleanup at material and reactor sites. The LTR permits the release of sites for unrestricted use, if the radioactivity that is distinguishable from background results in a total effective dose equivalent to an average member of a critical group that does not exceed 0.25 milli-Sievert per year (mSv/yr) (25 milli-rem/year) and the residual radioactivity has been reduced to levels that are as low as reasonably achievable. Additionally, the LTR establishes criteria for license termination with restrictions on future land use, which allow for a dose to the critical group of 0.25 mSv/yr (25 milli-rem/year) with restrictions in place, and 1 mSv/yr (100 milli-rem/year) if the restrictions fail. In certain circumstances as outlined in Subpart E, a dose as high as 5 mSv/yr (500 milli-rem/year) is permitted if restrictions fail. Following issuance of the dose-based LTR in 1997, NRC staff developed the Standard Review Plan for Decommissioning Plans (NUREG-1727). NUREG-1727 is a guidance document that describes the methods that NRC has determined are acceptable for implementing the LTR and other decommissioning regulations. While NUREG-1727 is focused on the review of decommissioning plans for nuclear material sites, it provides general guidance that in many cases is applicable to reactor sites (e.g., review criteria for dose-modeling and radiological surveys). In addition to NUREG-1727, staff developed the Standard Review Plan for Evaluating Nuclear Power Reactor License Termination Plans (NUREG-1700) as specific guidance for reactor decommissioning. NUREG

  7. Decommissioning of NPP A1 - HWGCR type

    International Nuclear Information System (INIS)

    Burclova, J.

    1998-01-01

    Prototype nuclear power plant A-1 located at Jaslovske Bohunice, was a HWGCR with channel type reactor KS 150 (refuelling during operation) and capacity of 143 MWe. Single unit has been constructed with reactor hall building containing reactor vessel, heavy water system and equipment for spent fuel handling. Another compartment of main building contents coolant system piping, six steam generators and six turbo compressors, the turbine hall was equipped by three turbines. Unit also shares liquid radwaste treatment and storage buildings and ventilation systems including chimney. It started operation in 1972 and was shutdown in 1977 after primary coolant system integrity accident. In 1979 a final decision was made to decommission this plant. The absence of waste treatment technologies and repository and not sufficient storage capacity affected the planning and realization of decommissioning for NPP A-1. The decommissioning policy for the first stage is for lack of regulations based on 'case by case' strategy. For these reasons and for not existence of Decommissioning Found until 1995 the preferred decommissioning option is based on differed decommissioning with safe enclosure of confinement. Transfer of undamaged spent fuel cooled in organic coolant to Russia was finished in 1990. It was necessary to develop new technology for the damaged fuel preparation for transport. The barriers check-up and dismantling of secondary circuit and cooling towers was performed during 1989/90. The complex plan for the first phase of A-1 decommissioning - the status with treated operational radwaste, removed contamination and restored treated waste and spent fuel (in case of interruption of transfer to Russia) was developed in 1993-1994. Under this project bituminization of all liquid operational radwaste (concentrates) was performed during 1995/96, vitrification of inorganic spent fuel coolant started at 1996, decontamination of spent fuel pool coolant occurs (under AEA Technology

  8. Management of Decommissioning on a Multi-Facility Site

    International Nuclear Information System (INIS)

    Laraia, Michele; McIntyre, Peter; Visagie, Abrie

    2008-01-01

    The management of the decommissioning of multi-facility sites may be inadequate or inappropriate if based on approaches and strategies developed for sites consisting of only a single facility. The varied nature of activities undertaken, their interfaces and their interdependencies are likely to complicate the management of decommissioning. These issues can be exacerbated where some facilities are entering the decommissioning phase while others are still operational or even new facilities are being built. Multi-facility sites are not uncommon worldwide but perhaps insufficient attention has been paid to optimizing the overall site decommissioning in the context of the entire life cycle of facilities. Decommissioning management arrangements need to be established taking a view across the whole site. A site-wide decommissioning management system is required. This should include a project evaluation and approval process and specific arrangements to manage identified interfaces and interdependencies. A group should be created to manage decommissioning across the site, ensuring adequate and consistent practices in accordance with the management system. Decommissioning management should be aimed at the entire life cycle of facilities. In the case of multi facility sites, the process becomes more complex and decommissioning management arrangements need to be established with a view to the whole site. A site decommissioning management system, a group that is responsible for decommissioning on site, a site project evaluation and approval process and specific arrangements to manage the identified interfaces are key areas of a site decommissioning management structure that need to be addressed to ensure adequate and consistent decommissioning practices. A decommissioning strategy based on single facilities in a sequential manner is deemed inadequate

  9. European Nuclear Decommissioning Training Facility II

    International Nuclear Information System (INIS)

    Demeulemeester, Y.

    2005-01-01

    SCK-CEN co-ordinates a project called European Nuclear Decommissioning Training Facility II (EUNDETRAF II) in the Sixth Framework Programme on Community activities in the field of research, technological development and demonstration for the period 2002 to 2006. This was a continuation of the FP5 project EUNDETRAF. EUNDETRAF II is a consortium of main European decommissioners, such as SCK-CEN, EWN (Energie Werke Nord, Greifswald Germany), Belgatom (Belgium), SOGIN Societa Gestione Impiantio Nucleari, Italy), Universitaet Hannover (Germany), RWE NUKEM (United Kingdom), DECOM Slovakia Slovakia), CEA Centre d'Energie Atomique, France), UKAEA (United Kingdom's Atomic Energy Agency, United Kingdom) and NRG (Nuclear Research and consultancy Group, Netherlands). The primary objective of this project is to bring together this vast skill base and experience; to consolidate it for easy assimilation and to transfer to future generations by organising a comprehensive training programme.Each training course has a one-week theoretical and a one-week practical component. The theoretical part is for a broader audience and consists of lectures covering all the main aspects of a decommissioning. The practical part of the course includes site visits and desk top solutions of anticipated decommissioning problems. Due to operational constraints and safety considerations, the number of participants to this part of the course is strictly limited. The partners intend to organise altogether two two-week EUNDETRAF II training courses over a period of three years. Another goal is to disseminate the existing theory as well as the practical know-how to personnel of the third countries. Finally it is important to bring together the principal decommissioning organisations undertaking various decommissioning activities. The project creates a forum for regular contacts to exchange information and experiences for mutual benefit of these organisations as well as to enhance skill base in Europe to

  10. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    Huang Chongyuan; Meng Jin; Li Weicai

    2003-01-01

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m 3 , the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m 3 /(m 2 ·d)

  11. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  12. Oldest biliary endoprosthesis in situ.

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-07-16

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing "irretrievable stones" include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis.

  13. Oldest biliary endoprosthesis in situ

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-01-01

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing “irretrievable stones” include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis. PMID:23858381

  14. Unintended and in situ amorphisation of pharmaceuticals

    DEFF Research Database (Denmark)

    Priemel, P A; Grohganz, H; Rades, T

    2016-01-01

    by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use...... of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability....

  15. SOGIN Decommissioning strategy and funding (Italy)

    International Nuclear Information System (INIS)

    2006-01-01

    Statement: In Italy, as it is well known, there are no more operational NPPs. The four existing nuclear plants are definitely shutdown and ready for decommissioning. Considerations on decommissioning funding system have to take into account this particular situation. Strategy for decommissioning: New inputs given to SOGIN by the Italian Government are: conditioning all radioactive waste existing on the NPPs within the year 2010, release all nuclear sites - free of radiological constraints - by 2020. The last task is conditioned by availability of the national waste repository by the year 2009. Strategy for decommissioning: Key issue is prompt dismantling considering No more nuclear activities in Italy and Progressive loss of competencies. Previously Existing funds: Before plant shutdown, ENEL has cumulated provisions for decommissioning, even in absence of a clear regulatory framework. These provisions were not sufficient for decommissioning, considering the early closure of the plants. An additional fund was granted to ENEL by the government, in the form of a 'credit' to be paid by the 'electric system' (CCSE). This fund (provisions + credit) was considered sufficient by ENEL for a decommissioning with Safe Store strategy (fund = discounted foreseen costs). The total fund (provisions + credit) was assigned to Sogin at the incorporation date. The amount, money 1999, was about 800 M euros. Considering the new context: new strategy (Prompt Dismantling with site release by 2020), Sogin constitution (societal costs), new economic conditions. The fund was not considered sufficient for all Sogin tasks. This conclusion was agreed upon also by the independent 'Authority for electric energy and gas'. A new regulatory framework was therefore defined. Regulatory aspects: The Legislative Decree 79/99 has stated that costs for the decommissioning of NPP, fuel cycle back end and related activities should be considered as stranded costs for the general electric system. The same

  16. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook

  17. NMSS handbook for decommissioning fuel cycle and materials licensees

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  18. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  19. On Decommissioning Costs of the Ranstad Site

    International Nuclear Information System (INIS)

    Varley, Geoff

    2010-08-01

    The main objective of this study has been to extend the review of the future cost to decommission and dismantling the industrial area at the site of the old uranium mine at Ranstad in Sweden. The feedback of experience and actual costs from a decommissioning project in the United Kingdom (A26 in Springfields) has been used to help in the assessment of the reasonableness of the estimated costs for decommissioning of the old uranium mine in Ranstad. A quantitative (albeit subjective) statement about the accuracy of the Ranstad cost estimate has been developed. Also, the factors relevant to the allocation of costs between the Swedish state and the current owners of the old uranium mine site have been evaluated and presented. The study has developed the following main conclusions: - The importance of thorough characterization/radiological mapping to the selection of the optimum decommissioning approach (technique) has been reinforced very strongly. - Thorough characterization has the related consequence of being able to better define the costs of decommissioning, in terms of equipment needed, labour hours required and, importantly, the volumes of different categories of waste requiring different routes (and associated different unit costs) for ultimate disposition. - Uncertainties in the Ranstad decommissioning cost estimate nevertheless remain, in particular relating to the viability of the proposed approach to dismantling and decontaminating the acid proof bricks that line the pools in the Large Leaching Hall; a method that is acknowledged to be not proven. The outcome could have an impact on actual dismantling and decontamination costs, as well as on the costs of ultimate waste disposition. The KB2010 cost estimate report does not offer an alternative in the event that the base plan proves to be unfeasible. - On balance it would appear that the continued presence of RMA at the Ranstad site ultimately will provide a net cost benefit to the program. The extra costs

  20. Decommissioning of the Olkiluoto nuclear power plant

    International Nuclear Information System (INIS)

    Nykyri, M.; Peltonen, E.; Poellaenen, L.; Salonen, P.

    1987-12-01

    A conceptual plan is presented for the decommissioning of the Olkiluoto nuclear power plant. Deferred dismantlement after a storage period of 30 years is the main alternative. No detailed work plan for the demolition of structures is included. However, the world-wide development of demolition techniques for nuclear facilities has proven that the task can be performed using the existing technology. The decommissioning waste will be packed into concrete containers and wooden boxes. The total package volume is estimated at 8.000 and 30.000 m 3 depending on the treatment method. The higher figure stands for packing without any volume reduction. The activated reactor core components (fuel channels, control rods, neutron flux detectors) from the operational time of the Olkiluoto power plant are included in the decommissioning plan. The total activity of the contaminated and activated structures to be dismantled will be about 1x10 16 Bq after 30 years from the shut-down. The corresponding figure for the activated core components will be about 2x10 16 Bq. The radiation doses to personnel can be kept very low if the surface contamination of the large systems remains at a low level as it has done so far. The decommissioning waste is planned to be disposed of at the Olkiluoto site next to the reactor waste repository in the granitic bedrock at a depth of 50-100 m. The decommissioning waste repository will consist of two silos for the low-level waste and a hall for the activated metal waste. The barriers in the case of the metal waste hall will consist of the waste packages themselves, of 0.75 and 1 m thick concrete walls, of the 1 m thick bentonite/crushed rock backfill, and of the bedrock. The dismantlement will be finished by the year 2050, and the repository can be closed and sealed by 2055. The estimated decommissioning cost is FIM 808 million including the long-term storage and disposal

  1. Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

  2. Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  3. Decommissioning of offshore oil and gas installations

    International Nuclear Information System (INIS)

    Day, M.D.; Marks, M.H.

    1997-01-01

    A task facing the offshore oil and gas industry is the removal of about 7000 platforms. In this chapter, the legal framework for offshore platform decommissioning is first discussed. The various phases of abandonment are then described. The first and most critical of these is the planning phase which should be initiated years in advance when depletion plans for a field are recommended. Seven discrete activities are identified in the abandonment process itself and briefly discussed. These are: the permanent plugging and abandonment of non-productive well bores; pre-abandonment surveys and data gathering to gain knowledge about the platform and its condition; decommissioning; structure removal; disposal, recycle or reuse of platform components on or off shore; site clearance. (13 figures; 13 references) (UK)

  4. Decommissioning? Why not use a robot

    International Nuclear Information System (INIS)

    Bares, L.C.

    1995-01-01

    Tasks which may be accomplished by robots alone or in conjunction with human workers in decommissioning nuclear facilities include: routine surveillance in contaminated areas; radiation surveys and sampling; preparation of work area; decontamination of walls and floors; disassembly of contaminated equipment and piping; internal decontamination of piping and waste storage/processing tanks; sorting materials; removal of large activated/contaminated structures; asbestos removal and packaging; transport of waste from disassembly areas; tending waste processing equipment; waste packaging for storage. The status of the technology is briefly reviewed and examples of the use of robots in decommissioning work in the USA are described. Although the use of robots in this field is not extensive so far, that use is increasing and information on its costs and benefits are becoming available. (UK)

  5. A survey of strippable and tie-down coatings for use in the decommissioning of alpha-active facilities

    International Nuclear Information System (INIS)

    Turner, A.D.; Worrall, G.; Dalton, J.T.

    1987-04-01

    The paper concerns temporary coatings for use in decommissioning operations of alpha-active facilities. The various temporary coating options are described with respect to: decontamination by removal of a previously applied protective coating, and the in-situ application of a coating for tie-down or decontamination duties. The specifications for coating systems to be used in active areas are defined in general terms. A survey of currently available temporary coating material is given, as well as the suitability of commercially available coating systems. (U.K.)

  6. Study on archive management for nuclear facility decommissioning projects

    International Nuclear Information System (INIS)

    Huang Ling; Gong Jing; Luo Ning; Liao Bing; Zhou Hao

    2011-01-01

    This paper introduces the main features and status of the archive management for nuclear facility decommissioning projects, and explores and discusses the countermeasures in its archive management. Taking the practice of the archive management system of a reactor decommissioning project as an example, the paper illustrates the establishment of archive management system for the nuclear facility decommissioning projects. The results show that the development of a systematic archive management principle and system for nuclear decommissioning projects and the construction of project archives for the whole process from the design to the decommissioning by digitalized archive management system are one effective route to improve the complete, accurate and systematic archiving of project documents, to promote the standardization and effectiveness of the archive management and to ensure the traceability of the nuclear facility decommissioning projects. (authors)

  7. Health physics program for the Edgemont Uranium Mill decommissioning project

    International Nuclear Information System (INIS)

    Polehn, J.L.; Wallace, R.G.; Reed, R.P.; Wilson, G.T.

    1986-01-01

    The Tennessee Valley Authority (TVA) is actively involved in decommissioning a uranium mill located near the town of Edgemont, South Dakota. The Edgemont Mill Decommissioning Project, which is unique in many respects, will involve dismantlement of the old inactive mill building and excavation and transportation of several million tons of uranium mill tailings to a permanent disposal site. To ensure that workers are adequately protected from radiation exposure during decommissioning operations, a health physics program appropriate for the decommissioning situation was developed. The Edgemont Mill Decommissioning Project Health Physics Manual (HPM) gives the programmatic requirements for worker radiation protection. The requirements of the HPM are implemented by means of detailed onsite operating procedures. The Edgemont project health physics program was developed using currently available regulations and guidance for an operating uranium mill with appropriate modifications for decommissioning. This paper discusses the development, implementation, and documentation of that program

  8. Some studies related to decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    Bergman, C.; Menon, S.

    1990-02-01

    Decommissioning of large nuclear reactors has not yet taken place in the Nordic countries. Small nuclear installations, however, have been dismantled. This NKA-programme has dealt with some interesting and important factors which have to be analysed before a large scale decommissioning programme starts. Prior to decommissioning, knowledge is required regarding the nuclide inventory in various parts of the reactor. Measurements were performed in regions close to the reactor tank and the biological shield. These experimental data are used to verify theoretical calculations. All radioactive waste generated during decommissioning will have to be tansported to a repository. Studies show that in all the Nordic countries there are adequate transport systems with which decommissioning waste can be transported. Another requirement for orderly decommissioning planning is that sufficient information about the plant and its operation history must be available. It appears that if properly handled and sorted, all such information can be extracted from existing documentation. (authors)

  9. Decommissioning and decontamination (burial ground stabilization) studies

    International Nuclear Information System (INIS)

    Cline, J.F.

    1980-01-01

    The decommissioning and decontamination of retired Hanford facilities and the future use of surrounding landscapes require isolation of contaminated wastes from the biosphere. Burial ground stabilization studies were conducted to determine the effectiveness of physical barriers for isolating contaminated wastes in shallow-land burial sites from plants and animals. This study was undertaken to determine the effectiveness of using a layer of loose rock between the waste and the surface soil covering to prevent both plant root and animal penetrations

  10. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-08-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, removal and decontamination of large cell internals, and of large equipment such as glove boxes and steel boxes, in addition to dose commitments, are explained. Tables illustrating the analysis of smear tests, constants for contamination level examination, contamination and radiation levels after cleaning and total contamination versus measured radiation are included. (AB)

  11. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1989-06-01

    Since 1973, when the IAEA first introduced the subject of decontamination and decommissioning into its programme, twelve Agency reports reflecting the needs of the Member States on these topics have been published. These reports summarize the work done by various Technical Committees, Advisory Groups, and International Symposia. While the basic technology to accomplish decontamination and decommissioning (D and D) is fairly well developed, the Agency feels that a more rapid exchange of information and co-ordination of work are required to foster technology, reduce duplication of effort, and provide useful results for Member States planning D and D activities. Although the Agency's limited financial resources do not make possible direct support of every research work in this field, the IAEA Co-ordinated Research Programme (CRP) creates a forum for outstanding workers from different Member States brought into closer contact with one another to provide for more effective interaction and, perhaps subsequently, closer collaboration. The first IAEA Co-ordinated Research Programme (CRP) on decontamination and decommissioning was initiated in 1984. Nineteen experts from 11 Member States and two international organizations (CEC, OECD/NEA) took part in the three Research Co-ordination Meetings (RCM) during 1984-87. The final RCM took place in Pittsburgh, USA, in conjunction with the 1987 International Decommissioning Symposium (sponsored by the US DOE and organized in co-operation with the IAEA and OECD/NEA). The present document summarizes the salient features and achievements of the co-ordinated research work performed during the 1984-87 programme period. The document consists of two parts: Part 1, Summary of the three research co-ordination meetings and Part 2, Final submissions by participants on the research work performed during 1984-1987. A separate abstract was prepared for each of the 7 reports presented. Refs, figs and tabs

  12. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-02-01

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  13. Governments' role in decommissioning nuclear power facilities

    International Nuclear Information System (INIS)

    Guindon, S.; Wendling, R.D.; Gordelier, S.; Soederberg, O.; Averous, J.; Orlando, D.

    2005-01-01

    Many nuclear power plants will reach the end of their operating lives over the next 20 years; some may be life-extended, others may not. This development will precipitate enhanced industrial and regulatory activities in the area of decommissioning. We are also witnessing in many countries a significant shift in the role of government itself: new pressures on governments, such as enhanced attention on environmental impact/mitigation and strategies to implement market-oriented approaches in a variety of sectors, including the energy sector are driving the public policy agenda. The paper will examine the range of policy issues, drawing from recent NEA studies on decommissioning policies and the recent NEA study on Government and Nuclear Energy and, strategies and costs, and other current trends and developments in the nuclear industry and in the nuclear policy fields. The paper will reflect on issues to be addressed during the conference and draw conclusions on the appropriate role of government in this area. Decommissioning policy is very specific and focused: it is not a high level policy/political issue in most instances and rarely gets the same attention as the issue surrounding the future of nuclear energy itself and public concerns regarding safety, waste and economics. One reason why decommissioning does not get the same attention as for example disposal of spent nuclear fuel might be the fact that technology is available for decommissioning, while technology for disposal of spent nuclear fuel is under development. High profile or not, it will remain an important issue for governments and industry alike particularly because of the cost and long lead times involved. In some instances, governments are the owners of the facilities to be decommissioned. In addition, decommissioning factors into issues surrounding the economics of nuclear energy and the sustainability of the nuclear option. Based on results of the Tarragona Seminar (Spain, September 2-4, 2003) and

  14. Decommissioning strategies for facilities using radioactive material

    International Nuclear Information System (INIS)

    2007-01-01

    The planning for the decommissioning of facilities that have used radioactive material is similar in many respects to other typical engineering projects. However, decommissioning differs because it involves equipment and materials that are radioactive and therefore have to be handled and controlled appropriately. The project management principles are the same. As with all engineering projects, the desired end state of the project must be known before the work begins and there are a number of strategies that can be used to reach this end state. The selection of the appropriate strategy to be used to decommission a facility can vary depending on a number of factors. No two facilities are exactly the same and their locations and conditions can result in different strategies being considered acceptable. The factors that are considered cover a wide range of topics from purely technical issues to social and economic issues. Each factor alone may not have a substantial impact on which strategy to select, but their combination could lead to the selection of the preferred or best strategy for a particular facility. This Safety Report identifies the factors that are normally considered when deciding on the most appropriate strategy to select for a particular facility. It describes the impact that each factor can have on the strategy selection and also how the factors in combination can be used to select an optimum strategy

  15. Decommissioning Cost Estimating -The ''Price'' Approach

    International Nuclear Information System (INIS)

    Manning, R.; Gilmour, J.

    2002-01-01

    Over the past 9 years UKAEA has developed a formalized approach to decommissioning cost estimating. The estimating methodology and computer-based application are known collectively as the PRICE system. At the heart of the system is a database (the knowledge base) which holds resource demand data on a comprehensive range of decommissioning activities. This data is used in conjunction with project specific information (the quantities of specific components) to produce decommissioning cost estimates. PRICE is a dynamic cost-estimating tool, which can satisfy both strategic planning and project management needs. With a relatively limited analysis a basic PRICE estimate can be produced and used for the purposes of strategic planning. This same estimate can be enhanced and improved, primarily by the improvement of detail, to support sanction expenditure proposals, and also as a tender assessment and project management tool. The paper will: describe the principles of the PRICE estimating system; report on the experiences of applying the system to a wide range of projects from contaminated car parks to nuclear reactors; provide information on the performance of the system in relation to historic estimates, tender bids, and outturn costs

  16. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  17. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1988-03-01

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  18. Kapradiny hornoslezské pánve a jejich spory in situ

    Czech Academy of Sciences Publication Activity Database

    Pšenička, J.; Bek, Jiří

    2009-01-01

    Roč. 2008, - (2009), s. 105-108 ISSN 0514-8057 R&D Projects: GA AV ČR(CZ) IAA300130503 Institutional research plan: CEZ:AV0Z30130516 Keywords : Upper Silesian Basin * Upper Carboniferous * ferns * in situ spores * spores Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2008/2008-30.pdf

  19. Administrative requirements of financial securities to cover decommissioning operations

    International Nuclear Information System (INIS)

    Sanchez, J.L.

    1983-01-01

    This paper points out that the lack of experience in decommissioning of nuclear power plants is reflected by the absence of specific legislation regarding the economic, fiscal and accounting aspects of the process. The author suggests that a fund be created for decommissioning costs through contributions deriving from plant operation. The paper analyses the procedures to be followed and draws attention to the need for clear legislation on decommissioning. (NEA) [fr

  20. Provision for decommissioning LWR power plants by the German utilities

    International Nuclear Information System (INIS)

    Essmann, J.; Brosche, D.; Thalmann, G.; Vollradt, J.; Watzel, G.V.P.

    1979-01-01

    In the Federal Republic of Germany the licensing procedure for nuclear power plants under the Atomic Energy Act requires provision of proof that the plants can be decommissioned and removed at the end of their operating time. In particular, the requirement is specified that the design of the plants must take account of decommissioning. The German utilities which operate nuclear power plants have long concerned themselves with aspects of decommissioning, and they have especially studied the question of whether there are aspects of decommissioning which could necessitate a change in the concept of the plant. For this purpose, an engineering company was given a contract to make a study with the objective of analysing the entire spectrum of decommissioning, ranging from determination of the decommissioning techniques and extending to the calculation of the masses of decommissioning wastes and the costs expected to be incurred during the decommissioning. Initial results of this study are now available and are described in this paper. These results already indicate that changes in the concept of the plant for decommissioning reasons are not necessary. Using these results of the study it is possible to indicate to the licensing authorities what range of techniques can be applied to decommission a nuclear power plant. The purpose of these studies is not to establish the decommissionability of every plant individually, but instead to point out the feasibility in general of decommissioning a large-scale plant. Finally, an estimate will be presented of the maximum costs which can be expected in a decommissioning operation and of what influence these costs will have on power production costs. (author)

  1. Managing LLRW from decommissioning of nuclear facilities - a Canadian perspective

    International Nuclear Information System (INIS)

    Donders, R.E.; De, P.L.

    1994-03-01

    In Canada, considerable experience has been gained recently in decommissioning nuclear facilities and managing the resulting waste. This experience has raised important issues from both the decommissioning and waste management perspectives. This paper focuses on the waste management aspects of decommissioning. Past experience is reviewed, preliminary estimates of waste volumes and characteristics are provided, and the major technical and regulatory issues are discussed. (author). 5 refs., 1 tab., 2 figs

  2. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R.; Noynaert, L.; Harnie, S.; Marien, J.

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  3. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bourassa, J.; Clark, C.R.; Kazennov, A.; Laraia, M.; Rodriguez, M.; Scott, A.; Yoder, J.

    2006-01-01

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  4. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  5. Decommissioning of nuclear installations - regulations - financing - responsibility - insurance

    International Nuclear Information System (INIS)

    Hubert, E.H.; Andersson, C.; Deprimoz, J.; Mayoux, J.C.; Richard, M.; Sartorelli, C.; Nocera, F.

    1983-01-01

    This paper highlights three aspects of decommissioning of nuclear installations which relate, more or less directly, to legal options already applied or advocated. It reviews the regulatory conditions for decommissioning a nuclear installation and indicates legal provisions for financing decommissioning expenditures. It also describes the legal provisions to determine liabilities in case of nuclear damage and the assistance which insurers may provide to cover the consequences of such liabilities. (NEA) [fr

  6. Decommissioning of nuclear facilities: a growing activity in the world

    International Nuclear Information System (INIS)

    Anasco, Raul

    2001-01-01

    Nuclear power plants and nuclear facilities are no different from normal buildings and factories. Eventually, they become worn-out or old fashioned, too expensive to maintain or remodel. Decommissioning a nuclear facility is different from retiring other types because of the radioactivity involved. The most important consideration in nuclear decommissioning is to protect workers and the public from exposure to harmful levels of radiation. General criteria and strategies for the decommissioning of nuclear facilities are described as well as the present decommissioning activities of the Argentine CNEA (author)

  7. Automatized material and radioactivity flow control tool in decommissioning process

    International Nuclear Information System (INIS)

    Rehak, I.; Vasko, M.; Daniska, V.; Schultz, O.

    2009-01-01

    In this presentation the automatized material and radioactivity flow control tool in decommissioning process is discussed. It is concluded that: computer simulation of the decommissioning process is one of the important attributes of computer code Omega; one of the basic tools of computer optimisation of decommissioning waste processing are the tools of integral material and radioactivity flow; all the calculated parameters of materials are stored in each point of calculation process and they can be viewed; computer code Omega represents opened modular system, which can be improved; improvement of the module of optimisation of decommissioning waste processing will be performed in the frame of improvement of material procedures and scenarios.

  8. Decommissioning wind energy projects: An economic and political analysis

    International Nuclear Information System (INIS)

    Ferrell, Shannon L.; DeVuyst, Eric A.

    2013-01-01

    Wind energy is the fastest-growing segment of new electrical power capacity in the United States, with the potential for significant growth in the future. To facilitate such growth, a number of concerns between developers and landowners must be resolved, including assurance of wind turbine decommissioning at the end of their useful lives. Oklahoma legislators enlisted the authors to develop an economically-sound proposal to ensure developers complete their decommissioning obligations. Economic analysis of turbine decommissioning is complicated by a lack of operational experience, as few U.S. projects have been decommissioned. This leads to a lack of data regarding decommissioning costs. Politically, the negotiation leading to the finally-enacted solution juxtaposed economic theory against political pragmatism, leading to a different but hopefully sound solution. This article will provide background for the decommissioning issue, chronicle the development of the decommissioning component of the Oklahoma Wind Energy Act, and frame issues that remain for policymakers in regulating wind power development. - Highlights: ► Wind energy is the fastest-growing component of U.S. power generation. ► Decommissioning wind projects is policy concern for wind development. ► Little public information on wind turbine decommissioning costs exists. ► Oklahoma’s solution attempts to account for both costs and risks. ► Additional research is needed to create a more precise policy solution.

  9. Radiation protection in connection with the decommissioning of nuclear plants

    International Nuclear Information System (INIS)

    1997-04-01

    This document presents the SSI preliminary views and position concerning the decommissioning of nuclear plants. To prevent the exposure of the decommissioning personnel and the general public to unacceptable levels of radiation and to protect the environment and future generations, it is SSI's task to formulate and issue the necessary terms and regulations with which the reactor licensees must comply during the decommissioning work. The views and principles presented here are the basis of SSI's continued work on guidelines and regulations for the decommissioning of nuclear plants

  10. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    Burns, R.E.; Henderson, J.S.; Pollard, W.; Pryor, T.; Chen, Y.M.

    1982-10-01

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  11. Decommissioning of nuclear facilities: Feasibility, needs and costs

    International Nuclear Information System (INIS)

    DeLaney, E.G.; Mickelson, J.R.

    1985-01-01

    The Nuclear Energy Agency's Working Group on Decommissioning is preparing a study entitled ''Decommissioning of Nuclear Facilities: Feasibility, Needs and Costs.'' The study addresses the economics, technical feasibility and waste management aspects of decommissioning larger commercial reactors and nuclear support facilities. Experience on decommissioning small reactors and fuel cycle facilities shows that current technology is generally adequate. Several major projects that are either underway or planned will demonstrate decommissioning of the larger and more complex facilities. This experience will provide a framework for planning and engineering the decommissioning of the larger commercial reactors and fuel cycle facilities. Several areas of technology development are desired for worker productivity improvement, occupational exposure reduction, and waste volume reduction. In order to assess and plan for the decommissioning of large commercial nuclear facilities, projections have been made of the capacity of these facilities that may be decommissioned in the future and the radioactive waste that would be produced from the decommissioning of these facilities. These projections through the year 2025 are based on current data and the OECD reactor capacity forecast through the year 2000. A 25-year operating lifetime for electrical power generation was assumed. The possibilities of plant lifetime extension and the deferral of plant dismantlement make this projection very conservative

  12. Radiological characterisation and decommissioning in Denmark

    International Nuclear Information System (INIS)

    Nellemenn, Thomas

    2012-01-01

    Danish Decommissioning (DD) is currently decommissioning the last Danish research reactor (DR3) and the Hot Cell facility. The DR3 project will soon finish dismantling of the external parts of the reactor (January 2012). The approval for dismantling of neutron activated and tritium contaminated heavy water pumps and tubing was granted in December 2011. DD will begin the work on the inner parts as the tendering process for equipment will start in 2012. Hereafter the dismantling of the top of the reactor will begin using the obtained remote controlled equipment. The Hot Cell facility consists of 6 contaminated cells. The first cell have been opened and cleaned. Currently the work progresses by removing parts and hot spots from the other cells with the use of robotic equipment. Challenges, lack of conventional and radiological documentation, dose rates and contamination higher than expected and the confined space in the cells have delayed the project. No final repository exists in Denmark. Therefore no official Waste Acceptance Criteria (WAC) have been formulated. However the Danish authority (SIS) does require a description of the waste in the interim storage facility (Inventory). Furthermore radiological characterisation of key nuclides is needed during decommissioning and dismantling. The information gained from the characterisation helps in the planning phase prior to the dismantling and for inventory calculations for later use. DD performs the radiological characterisation via both non-destructive and destructive analysis on samples. The samples are measured with gamma spectroscopy using mathematical and geometrical analysis. Scaling factors are used for neutron activated waste (DR3) to determine the difficult-to-measure isotopes and pure beta emitters. The primary scaling isotope is Co-60. Waste from the Hot Cell facility is alpha contaminated and scaling procedures for determination of alpha contamination are currently used in the planning process. Scaling of

  13. Global solutions through simulation for better decommissioning

    International Nuclear Information System (INIS)

    Scoto Di Suoccio, Ines; Testard, Vincent

    2016-01-01

    Decommissioning is a new activity in sense that it only exists a limited experience. Moreover, each facility is different due to their own history and there is no rule about choosing a decommissioning strategy. There are three major decommissioning strategies. First, 'immediate dismantling', which means the action of decommissioning begins immediately after the transfer of waste and nuclear material. Second, 'deferred dismantling strategy', which means that the facility is maintained into a containment zone from thirty to one hundred years before being decommissioned. Finally, 'entombment', means the facility is placed into a reinforced containment until the radionuclides decay and reach a level allowing the site release. When a strategy is decided many factors have to be taken into account. Into a major project such as a reactor decommissioning, there are many smaller projects. The decommissioning strategy can be different among these smaller projects. For some reasons, some entry data are not perfectly known. For example, dosimetric activity has not been updated through time or after specific events. Indeed, because of uncertainties and/or hypothesis existing around projects and their high level of interdependency, global solutions are a good way to choose the best decommissioning strategy. Actually, each entry data has consequences on output results whether it is on costs, cumulated dose, waste or delays. These output data are interdependent and cannot be taken apart from each other. Whether the dose, delays or waste management, all have impact on costs. To obtain an optimal scenario into a special environment, it is necessary to deal with all these items together. This global solution can be implemented thanks to simulation in dedicated software which helps to define the global strategy, to optimize the scenario, and to prevent contingencies. As a complete scenario simulation can be done quickly and efficiently, many strategies can

  14. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f...... to team intervention and philosophies informing what good situated learning research is. This study generates system knowledge that might inform scenario development for in situ simulation.......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...

  15. Decommissioning of nuclear power plants: policies, strategies and costs

    International Nuclear Information System (INIS)

    Lund, I.

    2004-01-01

    As many nuclear power plants will reach the end of their lifetime during the next 20 years or so, decommissioning is an increasingly important topic for governments, regulators and industries. From a governmental viewpoint, particularly in a deregulated market, one essential aspect is to ensure that money for the decommissioning of nuclear installations will be available at the time it is needed, and that no 'stranded' liabilities will be left to be financed by the taxpayers rather than by the electricity consumers. For this reason, there is governmental interest in understanding decommissioning costs, and in periodically reviewing decommissioning cost estimates from nuclear installation owners. Robust cost estimates are key elements in designing and implementing a coherent and comprehensive national decommissioning policy including the legal and regulatory bases for the collection, saving and use of decommissioning funds. From the industry viewpoint, it is essential to assess and monitor decommissioning costs in order to develop a coherent decommissioning strategy that reflects national policy and assures worker and public safety, whilst also being cost effective. For these reasons, nuclear power plant owners are interested in understanding decommissioning costs as best as possible and in identifying major cost drivers, whether they be policy, strategy or 'physical' in nature. National policy considerations will guide the development of national regulations that are relevant for decommissioning activities. Following these policies and regulations, industrial managers responsible for decommissioning activities will develop strategies which best suit their needs, while appropriately meeting all government requirements. Decommissioning costs will be determined by technical and economic conditions, as well as by the strategy adopted. Against this backdrop, the study analyses the relationships among decommissioning policy as developed by governments, decommissioning

  16. IAEA Assistance on Decommissioning of Small Facilities with Limited Resources

    International Nuclear Information System (INIS)

    Batandjieva, B.; Warnecke, E.

    2008-01-01

    The number of facilities reaching their lifetime is increasing and drawing the attention of operators, regulators, public and other interested parties (potential users of the site after decommissioning) on the importance of adequate planning, funding and implementation of decommissioning activities in compliance with regulatory requirements and criteria. Specific attention is required for small facilities that have been used for research purposes and in most cases state owned by and dependent on state funding. With the current tendency for expansion of the nuclear industry such small facilities could become less of importance for the operators which can increase the probability that these facilities become abandoned, hazardous and imposing undue burden to future generations. This concern is more related to countries with limited human and financial resources at the operating organizations and the regulatory body. The International Atomic Energy Agency (IAEA) has been working on the; (i) establishment of internationally recognized safety standards on decommissioning and (ii) providing Member States with assistance on the application of these standards. The recent international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Practices (Athens, Greece, 2006) has demonstrated that the set of IAEA standards is almost complete and that the International Action Plan on Decommissioning (2004), that is addressing decommissioning of small facilities, is being successfully implemented. However the need for further assistance on decommissioning of small facilities in countries with limited resources was also recognized and the Agency is planning its future work in this field. The IAEA also addresses the needs of small nuclear countries that have only a limited number of nuclear facilities, e.g. a research reactor, in its R esearch Reactor Decommissioning Demonstration Project (R 2 D 2 P. The Philippine Research Reactor

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation.

  18. Technology, safety and costs of decommissioning a refernce boiling water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Konzek, G.J.; Smith, R.I.

    1988-07-01

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies of conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference boiling water reactor (BWR) described in the earlier study; and defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs. This report presents the results of recent PNL studies to provide supporting information in three areas concerning decommissioning of the reference BWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  19. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    decreased survival rate was found in diabetics (p treatment of critical ischaemia of the lower limb in diabetic patients. The overall results in diabetic patients, whether insulin-dependent or not, were equal to those in non-diabetic......From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...... = 0.005). Critical limb-ischaemia was more often present in diabetic than non-diabetic patients (DM:57%, NDM:36%, p = 0.0002). Diabetic patients had a significantly lower distal anastomosis than non-diabetic patients (p = 0.00001). There were no differences among diabetic and non-diabetic patients...

  20. In-situ measurement system

    Science.gov (United States)

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  1. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  2. INL - NNL an International Technology Collaboration Case Study - Advanced Fogging Technologies for Decommissioning - 13463

    International Nuclear Information System (INIS)

    Banford, Anthony; Edwards, Jeremy; Demmer, Rick; Rankin, Richard; Hastings, Jeremy

    2013-01-01

    International collaboration and partnerships have become a reality as markets continue to globalize. This is the case in nuclear sector where over recent years partnerships commonly form to bid for capital projects internationally in the increasingly contractorized world and international consortia regularly bid and lead Management and Operations (M and O) / Parent Body Organization (PBO) site management contracts. International collaboration can also benefit research and technology development. The Idaho National Laboratory (INL) and the UK National Nuclear Laboratory (NNL) are internationally recognized organizations delivering leading science and technology development programmes both nationally and internationally. The Laboratories are actively collaborating in several areas with benefits to both the laboratories and their customers. Recent collaborations have focused on fuel cycle separations, systems engineering supporting waste management and decommissioning, the use of misting for decontamination and in-situ waste characterisation. This paper focuses on a case study illustrating how integration of two technologies developed on different sides of the Atlantic are being integrated through international collaboration to address real decommissioning challenges using fogging technology. (authors)

  3. In Situ Transmission Electron Microscopy for Electronics

    OpenAIRE

    Arita, Masashi; Hamada, Kouichi; Takahashi, Yasuo; Sueoka, Kazuhisa; Shibayama, Tamaki

    2015-01-01

    Electronic devices are strongly influenced by their microstructures. In situ transmission electron microscopy (in situ TEM) with capability to measure electrical properties is an effective method to dynamically correlate electric properties with microstructures. We have developed tools and in situ TEM experimental procedures for measuring electronic devices, including TEM sample holders and sample preparation methods. The method was used to study metallic nanowire by electromigration, magn...

  4. In Situ Hybridization Pada Kanker Payudara

    OpenAIRE

    Diah Witari, Ni Putu

    2014-01-01

    Kesulitan yang dijumpai pada penanganan kanker payudara adalah terjadinya kekambuhan atau relaps. Deteksi status HER2 pada pasien merupakan salah satu upaya untuk mendeteksi terjadinya relaps dan juga untuk menentukan jenis terapi yang ada diberikan. Ekspresi protein HER2 dapat dideteksi dengan immunohistochemistry (IHC), sedangkan mutasi gen HER2 dapat dideteksi dengan teknik in situ hybridization baik berupa fluorescence in situ hybridization (FISH) ataupun chromogenic in situ hy...

  5. Training for teamwork through in situ simulations

    Science.gov (United States)

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response to postpartum hemorrhage. PMID:26294962

  6. The SENSEI Generic In Situ Interface

    Energy Technology Data Exchange (ETDEWEB)

    Ayachit, Utkarsh [Kitware, Inc., Clifton Park, NY (United States); Whitlock, Brad [Intelligent Light, Rutherford, NJ (United States); Wolf, Matthew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Loring, Burlen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geveci, Berk [Kitware, Inc., Clifton Park, NY (United States); Lonie, David [Kitware, Inc., Clifton Park, NY (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-11

    The SENSEI generic in situ interface is an API that promotes code portability and reusability. From the simulation view, a developer can instrument their code with the SENSEI API and then make make use of any number of in situ infrastructures. From the method view, a developer can write an in situ method using the SENSEI API, then expect it to run in any number of in situ infrastructures, or be invoked directly from a simulation code, with little or no modification. This paper presents the design principles underlying the SENSEI generic interface, along with some simplified coding examples.

  7. Chernobyl NPP decommissioning efforts - Past, Present and Future. Decommissioning Efforts on Chernobyl NPP site - Past, Present

    International Nuclear Information System (INIS)

    Kuchinskiy, V.

    2017-01-01

    Two unique large-scale projects are underway at the moment within the Chernobyl - Exclusion zone - Shelter object transformation into ecologically safe system and the decommissioning of 3 Chernobyl NPP Units. As a result of beyond design accident in 1986 the entire territory of the industrial site and facilities located on it was heavily contaminated. Priority measures were carried out at the damaged Unit under very difficult conditions to reduce the accident consequences and works to ensure nuclear and radiation safety are continuous, and the Unit four in 1986 was transformed into the Shelter object. Currently, works at the Shelter object are in progress. Under assistance of the International Community new protective construction was built above the existing Shelter object - New Safe Confinement, which will ensure the SO Safety for the long term - within up to 100 years. The second major project is the simultaneous decommissioning of Chernobyl NPP Units 1, 2 and 3. Currently existing Chernobyl NPP decommissioning Strategy has been continuously improved starting from the Concept of 1992. Over the years the following was analyzed and taken into account: the results of numerous research and development works, international experience in decommissioning, IAEA recommendations, comments and suggestions from the governmental and regulatory bodies in the fields of nuclear energy use and radioactive waste management. In 2008 the final decommissioning strategy option for Chernobyl NPP was approved, that was deferred gradual dismantling (SAFSTOR). In accordance with this strategy, decommissioning will be carried out in 3 stages (Final Shutdown and Preservation, Safe Enclosure, Dismantling). The SAFSTOR strategy stipulates: -) the preservation of the reactor, the primary circuit and the reactor compartment equipment; -) the dismantling of the equipment external in relation to the reactor; -) the safe enclosure (under the supervision); -) the gradual dismantling of the primary

  8. Innovative Nuclear Power Plant Building Arrangement Considering Decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2015-01-01

    There are mainly two decommissioning strategies for a nuclear power plant: immediate dismantling and deferred dismantling. In the immediate dismantling strategy, decommissioning is started immediately after the permanent shutdown of a nuclear power plant, giving a benefit of recovery and being able to reuse the decommissioned site quickly. The deferred dismantling strategy has 40-60 years safe storage period after permanent shutdown. It reduces radiation and radioactive decommissioning waste generation. A utility company planning to decommission its nuclear power plant should choose either immediate dismantling strategy for higher utilization of the site or deferred dismantling for lower radiation and less radioactive waste generation. Innovative nuclear power plant buildings arrangement (INBA) is proposed to solve a dilemma in choosing a decommissioning strategy by bringing out the advantage of immediate dismantling and deferred dismantling together. Recent studies about decommissioning cost show it to continually rise, and it is one of main causes to deteriorate economics of nuclear power. To recover it, we need a solution to improve the economics of a nuclear power plant over its entire life time including decommissioning

  9. Licensing and decommissioning of nuclear installations in France

    International Nuclear Information System (INIS)

    Derche, B.

    1986-01-01

    Nuclear licensing procedure in France is characterized by a great number of different kinds of licensing procedures with the possibility of mutual control and intervention. The effectiveness is achieved through centralisation of the licensing decisions. Only the degree of December 11, 1963 contains a regulation for decommissioning, still there exist practical experiences with decommissioning. (CW) [de

  10. Studies on future decommissioning of the Swiss nuclear power plants

    International Nuclear Information System (INIS)

    Achermann, H.; Gunten, A. von; Heep, W.; Kaiser, P.; Maxeiner, H.; Paul, R.; Utzinger, E.

    2001-01-01

    The financing of future decommissioning of the Swiss nuclear power plants and the permanent, safe disposal of the wastes arising therefrom is secured by payments into a legally established decommissioning fund. In order to update the required level of payments into the fund, which have been ongoing since 1984, 20 years after the first study the costs of decommissioning have been re-calculated from scratch using complete decommissioning studies for each plant. Following the specification of boundary conditions which take into account the specific situation in Switzerland, decommissioning concepts are drawn up for the individual plants. The measures outlined in these concepts are integrated into a cost structuring plan and the decommissioning costs are then calculated using standard models (e.g. STILLKO). The radiological inventory, which is re-calculated for each plant, has a significant influence on costs. Furthermore, the disposal costs which can be allocated to decommissioning waste have to be determined; these are based on a concept in which only two types of containers are considered for disposal. The studies have resulted in decommissioning costs which, with a range between 200 and 390 million Euro, are comparable with costs in other countries. (orig.)

  11. The regulatory process for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this publication is to provide general guidance to Member States for regulating the decommissioning of nuclear facilities within the established nuclear regulatory framework. The Guide should also be useful to those responsible for, or interested in, the decommissioning of nuclear facilities. The Guide describes in general terms the process to be used in regulating decommissioning and the considerations to be applied in the development of decommissioning regulations and guides. It also delineates the responsibilities of the regulatory body and the licensee in decommissioning. The provisions of this Guide are intended to apply to all facilities within the nuclear fuel cycle and larger industrial installations using long lived radionuclides. For smaller installations, however, less extensive planning and less complex regulatory control systems should be acceptable. The Guide deals primarily with decommissioning after planned shutdown. Most provisions, however, are also applicable to decommissioning after an abnormal event, once cleanup operations have been terminated. The decommissioning planning in this case must take account of the abnormal event. 28 refs, 1 fig

  12. Shippingport Station Decommissioning Project: Contaminated concrete removal: Topical report

    International Nuclear Information System (INIS)

    1989-01-01

    This Topical Report is a synopsis of the removal of contaminated concrete from the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the decontamination activities in support of site release in the decommissioning of a nuclear power reactor. 4 refs., 8 figs., 2 tabs

  13. Aspects of the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Brosche, D.; Essmann, J.

    1976-01-01

    Some aspects of the decommissioning of nuclear power plants are discussed, and practical experience from the USA and Switzerland is studied in detail. With the increasing number of nuclear power plants in the FRG, discussions tend to center on the question whether these nuclear power plants can be decommissioned later on and how. In the safety criteria for nuclear power plants, published in 1974 by the Federal Ministry of the Interiar, criterion 2.10. makes the following statement: 'Nuclear power plants must be constructed in such a way that radiation protection specifications are met during decommissioning. There must be a concept for dismantling after final decommissioning which takes into account radiation protection regulations.' As a result of this criterion, a document of this type has been required in the licensing procedures for some nuclear power plant projects. The public utilities have been pondering about the decommissioning of nuclear power plants for some time. Now, criterion 2.10 has caused them to intensify their attempts and to prove that, from the present point of view, a nuclear power plant may be decommissioned at the end of its service life without changing their concept. The considerations made so far have also taken into account decommissioning experience in the USA and, on a European scale, decommissionings carried out and planned in Switzerland and the FRG. (orig./HP) [de

  14. Structure and function design for nuclear facilities decommissioning information database

    International Nuclear Information System (INIS)

    Liu Yongkuo; Song Yi; Wu Xiaotian; Liu Zhen

    2014-01-01

    The decommissioning of nuclear facilities is a radioactive and high-risk project which has to consider the effect of radiation and nuclear waste disposal, so the information system of nuclear facilities decommissioning project must be established to ensure the safety of the project. In this study, by collecting the decommissioning activity data, the decommissioning database was established, and based on the database, the decommissioning information database (DID) was developed. The DID can perform some basic operations, such as input, delete, modification and query of the decommissioning information data, and in accordance with processing characteristics of various types of information data, it can also perform information management with different function models. On this basis, analysis of the different information data will be done. The system is helpful for enhancing the management capability of the decommissioning process and optimizing the arrangements of the project, it also can reduce radiation dose of the workers, so the system is quite necessary for safe decommissioning of nuclear facilities. (authors)

  15. Storage with surveillance versus immediate decommissioning for nuclear reactors

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This book reviews the current debate over whether the decommissioning of nuclear facilities should be immediate or delayed for decades or centuries. It also reports the consensus of a group of experts on the principal criteria to be considered in the selection of decommissioning options

  16. Cost estimation method for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Matsuo, Kiyoshi; Shiraishi, Kunio; Watabe, Kozou

    2005-01-01

    Japanese Government decided that Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC) shall be consolidated to a New Organization as of October 2005, which organization would be an institute for comprehensive research and development for atomic energy. Through the preparation for unification, JAERI and JNC have been developing the decommissioning program for own facilities, estimating decommissioning cost and the amount of waste from the decommissioning, and developing management program. With planning the decommissioning program, it is important to estimate decommissioning cost effectively, because JAERI and JNC retain approximate 230 nuclear facilities which are reactors, fuel cycle and research facilities. Then a decommissioning cost estimation method has been developed based on several dismantling and replacement experiences. This method adopted more estimation formulae for decommissioning various works than ever, so as to be more reliable. And decommissioning cost for the facilities has been estimated under the common condition. This method should be improved, reflecting future nuclear facilities dismantling and replacement events. This paper shows the cost estimation method for nuclear facilities and the cost evaluation result for approximate 230 facilities of both JAERI and JNC. (author)

  17. Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.

    Science.gov (United States)

    Pollock, Cynthia

    The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…

  18. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    1983-01-01

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  19. Optimising waste management performance - The key to successful decommissioning

    International Nuclear Information System (INIS)

    Keep, Matthew

    2007-01-01

    Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

  20. Decommissioning and disposal of foreign uranium mine and mill facilities

    International Nuclear Information System (INIS)

    Pan Yingjie; Xue Jianxin; Yuan Baixiang; Xu Lechang

    2012-01-01

    Disposal techniques in decommissioning of foreign uranium mine and mill facilities are systematically discussed, including covering of uranium tailing impoundment, drainaging and consolidation of uranium tailing, and treatment of mining waste water and polluted groundwater, and the costs associated with disposal are analyzed. The necessity of strengthening the decommissioning disposal technology research and international exchanges and cooperation is emphasized. (authors)

  1. Shippingport station decommissioning project irradiated components transfer: Topical report

    International Nuclear Information System (INIS)

    1988-01-01

    This topical report is a synopsis of the transfer of irradiated components into the Shippingport Reactor Pressure Vessel (RPV) performed at the Shippingport Station Decommissioning Project (SSDP). The information is provided as a part of the Technology Transfer Program to document the preparation activities for the decommissioning of a nuclear power reactor to be removed in one piece

  2. Feedback from the decommissioning of two accelerators

    International Nuclear Information System (INIS)

    Aubert, M-C; Damoy, F.; Joly, J-M

    2003-01-01

    Saclay Linear Accelerator (ALS) and Saturne synchrotron, both well known as international research instruments, have definitively stopped operating in 1990 and 1997 respectively. The French Atomic Energy Commission (CEA) has decided proceeding with the appropriate actions in order to dismantle these two nuclear installations (NIs) known as INB 43 (ALS) and INB 48 (Saturne). The SDA (Accelerator Decommissioning Division) was created to be in charge of the dismantling procedure of the above NIs under the following conditions: - to maintain within the team a few employees from the previous exploitation of two NIs, in order not to loose the details and history of accelerator operation; - to import the necessary skills for a good management of dismantling operation such as waste management, ANDRA rules, project AMEC34omelt.com. Learn more about GeoMelt ats-gssr410nuclear safety, radiation protection, ALARA concepts, etc. Presently the dismantling operations are well under way at INB 43 and nearly finished at INB 48. The project organisation established by SDA has allowed meeting both the schedule and cost requirements of the decommissioning. At the beginning, major decommissioning safety characteristics of large research instruments will be presented and dismantling aspects in particular. Afterwards, the organization of both projects will be detailed, emphasizing their statutory aspects (e.g., safety documents, zoning, traceability, etc.) and technical difficulties. Waste characterisation as well as the choice of evacuation paths for each category of the waste will then be described in detail for both accelerators. A number of difficulties met during these procedures will be analysed and proposals will be made in order to improve the statutory framework in particular, both on technical and nuclear safety aspects. The application of the above experience to the dismantling of two fuel cycle installations, namely the research nuclear reactors, is presently under study

  3. Recovery of decommissioning and spent fuel charges

    International Nuclear Information System (INIS)

    Bermanis, G.

    1982-01-01

    The licensing and financial aspects of NPP decommissioning, deactivation and dismantling of radioactive equipment in the USA are considered. Data on the costs of spent fuel transport and conservation are given. The state of the problem development in other countries is briefly described. It is pointed out that the technical aspect of the problem is much better studied than that of license-financial problem. At the same time in contrast to TPP NPP use is connected with considerable expenses after the end of a power plant sevice time

  4. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  5. Decommissioning of surplus facilities at ORNL

    International Nuclear Information System (INIS)

    Myrick, T.E.; Coobs, J.H.

    1985-01-01

    The Surplus Facilities Management Program (SFMP) at Oak Ridge National Laboratory (ORNL) is part of the Department of Energy's (DOE) National SFMP, administered by the Richland Operations Office. This program was established to provide for the management of certain DOE surplus radioactively contaminated facilities from the end of their operating life until final facility disposition is completed. As part of this program, the ORNL SFMP oversees some 75 facilities, ranging in complexity from abandoned waste storage tanks to large experimental reactors. This paper describes the scope of the ORNL program and outlines the decommissioning activities currently underway, including a brief description of the decontamination techniques being utilized. 4 refs., 3 figs., 2 tabs

  6. Allocation of Decommissioning and Waste Liabilities

    International Nuclear Information System (INIS)

    Varley, Geoff

    2011-11-01

    The work demonstrates that there are a number of methods available for cost allocation, the pros and cons of which are examined. The study investigates potential proportional and incremental methods in some depth. A recommendation in principle to use the latter methodology is given. It is concluded that a 'fair assumption' is that the potential allocation of costs for 'the RMA Leaching Hall' probably is small, in relation to the total costs, and estimated to be not more than about 175 kSEK, plus any costs associated with decommissioning/ disposal of a number of small pieces of equipment added by the current operator

  7. Decommissioning of nuclear installations at CIEMAT

    International Nuclear Information System (INIS)

    Villoria, A.; Romero, N.; Garcia, J.L.; Sama, J.

    2002-01-01

    This report presents the work carried out by CIEMAT in the frame of decommissioning the research reactor JEN-1. Studies for evaluating different metal cutting techniques, including plasma-arc cutting, contact-arc cutting and mechanical saw cutting led to assessing the performance, advantages and associated problems for each technique. The main metallic material studied was aluminium, but some experiments with stainless steel were also conducted. Melting was also studied as a decontamination technique and as a way to reduce volume and facilitate the management of radioactive waste. (author)

  8. Decommissioning and equipment replacement of nuclear power plants under uncertainty

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Naito, Yuta; Kimura, Hiroshi; Madarame, Haruki

    2007-01-01

    This study examines the optimal timing for the decommissioning and equipment replacement of nuclear power plants. We consider that the firm has two options of decommissioning and equipment replacement, and determines to exercise these options under electricity price uncertainty. This problem is formulated as two optimal stopping problems. The solution of this model provides the value of the nuclear power plant and the threshold values for decommissioning and replacement. The dependence of decommissioning and replacement strategies on uncertainty and each cost is shown. In order to investigate the probability of events for decommissioning and replacement, Monte Carlo calculations are performed. We also show the probability distribution and the conditional expected time for each event. (author)

  9. Apollo decommissioning project, Apollo, Pennsylvania. Final technical report

    International Nuclear Information System (INIS)

    1997-01-01

    In November, 1991 Babcock and Wilcox (B and W) received a grant to partially fund the decommissioning of the former Apollo Nuclear Fuel Facility. The decommissioning was performed in accordance with a Nuclear Regulatory Commission (NRC) approved decommissioning plan. This report summarizes the decommissioning of the Apollo Nuclear Fuel Facility and the radiological surveying of the site to demonstrate that these decommissioning activities were effective in reducing residual activity well below NRC's criteria for release for unrestricted use. The Apollo Nuclear Fuel Facility was utilized by the Nuclear Materials and Equipment Corporation (NUMEC) and B and W for nuclear research and production under Atomic Energy Commission and Department of Energy (DOE) contracts during 20 plus years of nuclear fuel manufacturing operations

  10. Comparing nuclear decommissioning in the UK and France

    International Nuclear Information System (INIS)

    Walls, J.; Garcier, R.

    2008-01-01

    In this paper we will compare the decommissioning policies in the UK and France. Both countries have a long nuclear history and decommissioning has taken place since the 1960. However, the proposed decommissioning of Magnox and AGR sites in the UK and of UNGG sites in France brings decommissioning efforts to a new level. Whilst we explore in detail the approaches and methodologies adopted in each country we remain sensitive to the effects that political and economic history play in shaping the policy response. In this paper we draw upon interviews conducted with a range of key stakeholders including: national regulators, companies involved in decommissioning, local politicians and community representatives. We also analyse key academic and non academic literature. (authors)

  11. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  12. Windscale advanced gas-cooled reactor (WAGR) decommissioning project overview

    International Nuclear Information System (INIS)

    Pattinson, A.

    2003-01-01

    The current BNFL reactor decommissioning projects are presented. The projects concern power reactor sites at Berkely, Trawsfynydd, Hunterstone, Bradwell, Hinkley Point; UKAEA Windscale Pile 1; Research reactors within UK Scottish Universities at East Kilbride and ICI (both complete); WAGR. The BNFL environmental role include contract management; effective dismantling strategy development; implementation and operation; sentencing, encapsulation and transportation of waste. In addition for the own sites it includes strategy development; baseline decommissioning planning; site management and regulator interface. The project objectives for the Windscale Advanced Gas-Cooled Reactor (WAGR) are 1) Safe and efficient decommissioning; 2) Building of good relationships with customer; 3) Completion of reactor decommissioning in 2005. The completed WAGR decommissioning campaigns are: Operational Waste; Hot Box; Loop Tubes; Neutron Shield; Graphite Core and Restrain System; Thermal Shield. The current campaign is Lower Structures and the remaining are: Pressure vessel and Insulation; Thermal Columns and Outer Vault Membrane. An overview of each campaign is presented

  13. Financial aspects of decommissioning. Report by an expert group

    International Nuclear Information System (INIS)

    2005-11-01

    Estimating decommissioning costs and collecting funds for eventual decommissioning of facilities that have used radioactive material is a prerequisite for safe, timely and cost effective decommissioning. A comprehensive overview of decommissioning costs and funding mechanisms was missing in the IAEA literature although the subject had been marginally dealt with in a few IAEA publications. Costing and funding issues were partially addressed by other international organizations, but there is a need to address the subject from the standpoint of the diverse social, economic and cultural environments that constitute IAEA membership. In its role of an international expert committee assisting the IAEA, the Technical Group on Decommissioning (TEGDE) debates and draws conclusions on topics omitted from general guidance. TEGDE members met in Vienna in 2003, 2004 and 2005 to develop the basis for this publication. The views expressed here reflect those of TEGDE and not necessarily those of the IAEA

  14. U.S. experience with organizational issues during decommissioning

    International Nuclear Information System (INIS)

    Durbin, N.E.; Harty, R.

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant

  15. Review of decommissioning, spent fuel and radwaste management in Slovakia

    International Nuclear Information System (INIS)

    Jamrich, J.

    2000-01-01

    Two nuclear power plants with two WWER reactors are currently under operation in Jaslovske Bohunice and NPP A-1 is under decommissioning on the same site. At the second nuclear site in the Slovak Republic in Mochovce third nuclear power plant with two units is in operation. In accordance with the basic Slovak legislation (Act on Peaceful Utilisation of Nuclear Energy) defining the responsibilities, roles and authorities for all organisations involved in the decommissioning of nuclear installations Nuclear Regulatory Authority requires submission of conceptual decommissioning plans by the licensee. The term 'decommissioning' is used to describe the set of actions to be taken at the end of the useful life of a facility, in order to retire the facility from service while, simultaneously, ensuring proper protection of the workers, the general public and the environment. This set of activities is in principle comprised of planning and organisation of decommissioning inclusive strategy development, post-operational activities, implementation of decommissioning (physical and radiological characterisation, decontamination, dismantling and demolition, waste and spent fuel management), radiological, aspects, completion of decommissioning as well as ensuring of funding for these activities. Responsibility for nuclear installations decommissioning, radwaste and spent fuel, management in Slovakia is with a subsidiary of Slovak Electric called Nuclear Installations Decommissioning Radwaste and Spent Fuel Management (acronym SE VYZ), established on January 1, 1996. This paper provides description of an approach to planning of the NPP A-1 and NPPs with WWER reactors decommissioning, realisation of treatment, conditioning and disposal of radwaste, as well as spent fuel management in Slovakia. It takes into account that detail papers on all these issues will follow later during this meeting. (author)

  16. U.S. experience with organizational issues during decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting, Kirkland, WA (United States); Harty, R. [Battelle Pacific Northwest National Laboratory, Richland, WA (United States)

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant.

  17. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle; Determinacion de Uranio en Muestras Procedentes del Desmantelamiento de Instalaciones de la Primera Parte del Cielo del Combustible Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C. [Ciemat, Madrid (Spain); Angeles, A.

    2000-07-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  18. Technology assessment of in situ uranium mining

    International Nuclear Information System (INIS)

    Cowan, C.E.

    1981-01-01

    The objective of the PNL portion of the Technology Assessment project is to provide a description of the current in situ uranium mining technology; to evaluate, based on available data, the environmental impacts and, in a limited fashion, the health effects; and to explore the impediments to development and deployment of the in situ uranium mining technology

  19. PRINS and in situ PCR protocols

    National Research Council Canada - National Science Library

    Gosden, John R

    1997-01-01

    ... mapping of DNA sequences on chromosomes and location of gene expression followed the invention and refinement of in situ hybridization. Among the most recent technical developments has been the use of oligonucleotide primers to detect and amplify or extend complementary sequences in situ, and it is to this novel field that PRINS and In S...

  20. A study of a decommissioning activities classification structure for decommissioning of the project management of a nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Ha, Jei Hyun; Moon, Jei kwon

    2015-01-01

    Decommissioning activities and requirements that was established in the planning stage should be organized systematically in the course of dismantling the NPP. The work breakdown structure is essential to ensuring that all the project scope is identified, estimated and executed. The project manager needs to ensure that a WBS is established early in the project and maintained throughout the project life cycle. A project management system is ongoing under the circumstance of having no experience dismantling the NPP. The system related to the NPP decommissioning should have technical criteria as well as regulatory requirements in the full scale of decommissioning stage. In the dismantling stage, decommissioning plan document should include the results of radiation/radioactivity characterization, evaluation of the amount of dismantled waste, calculation of the expose dose rate, evaluation of decommissioning cost and schedule after shutdown

  1. Decommissioning situation and research and development for the decommissioning of the commercial nuclear power station in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Tatsumi.

    1996-01-01

    There are 48 commercial nuclear power stations in operation in Japan as of January 1, 1995, which supplies about 28% (2.2 x 10 8 MWh) of total annual electricity generation in FY 1992. Accordingly, as the nuclear power contributes so much in electricity generation, there is a growing concern in the public toward the safety on decommissioning nuclear power station. It is gravely important to secure the safety throughout the decommissioning. This paper discusses: the decommissioning situation in Japan; the Japanese national policy for decommissioning of commercial nuclear power stations; R and D for decommissioning of commercial nuclear power stations in Japan; and the present conditions of low-level radioactive wastes disposal in Japan

  2. Demonstration of safety of decommissioning of facilities using radioactive material

    International Nuclear Information System (INIS)

    Batandjieva, Borislava; O'Donnell, Patricio

    2008-01-01

    Full text:The development of nuclear industry worldwide in the recent years has particular impact on the approach of operators, regulators and interested parties to the implementation of the final phases (decommissioning) of all facilities that use radioactive material (from nuclear power plants, fuel fabrication facilities, research reactors to small research or medical laboratories). Decommissioning is becoming an increasingly important activity for two main reasons - termination of the practice in a safe manner with the view to use the facility or the site for other purposes, or termination of the practice and reuse the facility or site for new built nuclear facilities. The latter is of special relevance to multi-facility sites where for example new nuclear power plants and envisaged. However, limited countries have the adequate legal and regulatory framework, and experience necessary for decommissioning. In order to respond to this challenge of the nuclear industry and assist Member States in the adequate planning, conduct and termination of decommissioning of wide range of facilities, over the last decade the IAEA has implemented and initiated several projects in this field. One of the main focuses of this assistance to operators, regulators and specialists involved in decommissioning is the evaluation and demonstration of safety of decommissioning. This importance of these Agency activities was also highlighted in the International Action Plan on Decommissioning, during the second Joint Convention meeting in 2006 and the International Conference on Lessons Learned from Decommissioning in Athens in 2006. The IAEA has been providing technical support to its Member States in this field through several mechanisms: (1) the establishment of a framework of safety standards on decommissioning and development of a supporting technical documents; (2) the establishment of an international peer review mechanism for decommissioning; (3) the technical cooperation projects

  3. BN-350 nuclear power plant. Regulatory aspects of decommissioning

    International Nuclear Information System (INIS)

    Shiganakov, S.; Zhantikin, T.; Kim, A.

    2002-01-01

    Full text: The BN-350 reactor is a fast breeder reactor using liquid sodium as a coolant [1]. This reactor was commissioned in 1973 and operated for its design life of 20 years. Thereafter, it was operated on the basis of annual licenses, and the final shutdown was initially planned in 2003. In 1999, however, the Government of the Republic of Kazakhstan adopted Decree on the Decommissioning of BN-350 Reactor. This Decree establishes the conception of the reactor plant decommissioning. The conception envisages three stages of decommissioning. The first stage of decommissioning aims at putting the installation into a state of long term safe enclosure. The main goal is an achievement of nuclear-and radiation-safe condition and industrial safety level. The completion criteria for the stage are as follows: spent fuel is removed and placed in long term storage; radioactive liquid metal coolant is drained from the reactor and processed; liquid and solid radioactive wastes are reprocessed and long-term stored; systems and equipment, that are decommissioned at the moment of reactor safe store, are disassembled; radiation monitoring of the reactor building and environment is provided. The completion criteria of the second stage are as follows: 50 years is up; a decision about beginning of works by realization of dismantling and burial design is accepted. The goal of the third stage is partial or total dismantling of equipment, buildings and structure and burial. Since the decision on the decommissioning of BN-350 Reactor Facility was accepted before end of scheduled service life (2003), to this moment 'The Decommissioning Plan' (which in Kazakhstan is called 'Design of BN-350 reactor Decommission') was not worked out. For realization of the Governmental Decree and for determination of activities by the reactor safety provision and for preparation of its decommission for the period till Design approval the following documents were developed: 1. Special Technical Requirements

  4. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  5. A large decommissioning project with added value

    International Nuclear Information System (INIS)

    Clements, D.W.

    1998-01-01

    The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, is a centerpiece for the Department of Energy's Reindustrialization program, which seeks to convert formerly used facilities for broad, industrial purposes. BNFL and its partners have been charged with the decommissioning and decontamination of three large gaseous diffusion buildings. BNFL's prior experience with a similar site, Capenhurst, in the United Kingdom was successful in reducing the quantities and costs of low level wastes for disposal. In that program, over 99% of 160,000 tonnes of surface-contaminated materials were safely and cost-effectively treated. Resulting materials could thus be recycled for complete unrestricted re-use within the UK. Decommissioning and decontamination at the ETTP site will be informed by the prior experience and lessons learned. Specialized technologies and approaches developed at Capenhurst will find expression at ETTP. The result will be safe, cost-effective techniques that permit maximum recycle and further use of presently contaminated buildings for industrial purposes. (author)

  6. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  7. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  8. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  9. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies

  10. Green Vinca - Vinca Institute nuclear decommissioning program

    International Nuclear Information System (INIS)

    Pesic, M.; Subotic, K.; Ljubenov, V.; Sotic, O.

    2003-01-01

    Current conditions related to the nuclear and radiation safety in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro are the result of the previous nuclear programs in the former Yugoslavia and strong economic crisis during the previous decade. These conditions have to be improved as soon as possible. The process of establishment and initialisation of the Vinca Institute Nuclear Decommissioning (VIND) Program, known also as the 'Green Vinca' Program supported by the Government of the Republic Serbia, is described in this paper. It is supposed to solve all problems related to the accumulated spent nuclear fuel, radioactive waste and decommissioning of RA research reactor. Particularly, materials associated to the RA reactor facility and radioactive wastes from the research, industrial, medical and other applications, generated in the previous period, which are stored in the Vinca Institute, are supposed to be proper repackaged and removed from the Vinca site to some other disposal site, to be decided yet. Beside that, a research and development program in the modern nuclear technologies is proposed with the aim to preserve experts, manpower and to establish a solid ground for new researchers in field of nuclear research and development. (author)

  11. Nuclear facility decommissioning and site remedial actions

    International Nuclear Information System (INIS)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords

  12. In situ vitrification: A review

    International Nuclear Information System (INIS)

    Cole, L.L.; Fields, D.E.

    1989-11-01

    The in situ vitrification process (ISV) converts contaminated soils and sludges to a glass and crystalline product. The process appears to be ideally suited for on site treatment of both wet and dry wastes. Basically, the system requires four molybdenum electrodes, an electrical power system for vitrifying the soil, a hood to trap gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. Mounted in three transportable trailers, the ISV process can be moved from site to site. The process has the potential for treating contaminated soils at most 13 m deep. The ISV project has won a number of outstanding achievement awards. The process has also been patented with exclusive worldwide rights being granted to Battelle Memorial Institute for nonradioactive applications. While federal applications still belong to the Department of Energy, Battelle transferred the rights of ISV for non-federal government, chemical hazardous wastes to a separate corporation in 1989 called Geosafe. This report gives a review of the process including current operational behavior and applications

  13. In situ bioremediation in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Porta, A. [Battelle Europe, Geneva (CH); Young, J.K.; Molton, P.M. [Pacific Northwest Lab., Richland, WA (US)

    1993-06-01

    Site remediation activity in Europe is increasing, even if not at the forced pace of the US. Although there is a better understanding of the benefits of bioremediation than of other approaches, especially about in situ bioremediation of contaminated soils, relatively few projects have been carried out full-scale in Europe or in the US. Some engineering companies and large industrial companies in Europe are investigating bioremediation and biotreatment technologies, in some cases to solve their internal waste problems. Technologies related to the application of microorganisms to the soil, release of nutrients into the soil, and enhancement of microbial decontamination are being tested through various additives such as surfactants, ion exchange resins, limestone, or dolomite. New equipment has been developed for crushing and mixing or injecting and sparging the microorganisms, as have new reactor technologies (e.g., rotating aerator reactors, biometal sludge reactors, and special mobile containers for simultaneous storage, transportation, and biodegradation of contaminated soil). Some work has also been done with immobilized enzymes to support and restore enzymatic activities related to partial or total xenobiotic decontamination. Finally, some major programs funded by public and private institutions confirm that increasing numbers of firms have a working interest in bioremediation.

  14. Environmental TEM in the in situ Toolbox

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal

    Studies of materials using in situ techniques usually involve a compromise of the in situ conditions in order to fulfil the requirements compatible with the instrumentation for characterization. These requirements include sample geometry, temperature, gas environment etc. Environmental TEM depends...... transfer holders have been used to transfer catalyst samples between reactor set-ups and TEM at room temperature in inert atmosphere [3]. To take the full advantage of the complementary in situ techniques transfer under reactions conditions is essential. Here we introduce the in situ transfer concept...... by use of a dedicated TEM transfer holder that is able to enclose the sample in a gaseous environment at temperatures up to approx. 900°C. The holder is compatible with other in situ technique set-ups. Another route for using complementary techniques without compromising the sample conditions is bringing...

  15. Stakeholder involvement in the decommissioning of Dounreay

    International Nuclear Information System (INIS)

    Harrisson, Norman; LOVE, June; Murray, Marc

    2006-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) was established in the 1950's to pioneer the development of nuclear energy within the UK. Today its primary mission is to decommission UK's former nuclear research sites and restore its environment in a way that is safe and secure, environmentally friendly, value for money and publicly Acceptable. UKAEA Dounreay celebrated its 50 birthday in 2005, having pioneered the development of fast reactor technology since 1955. Today the site is now leading the way in decommissioning. The Dounreay nuclear site licence covers an area of approximately 140 acres and includes 3 reactors: the Dounreay Material Test Reactor (DMTR), the Dounreay Fast Reactor (DFR), and the Prototype Fast Reactor (PFR). In addition there are 180 facilities on site which have supported the fast reactor programme, including a fuel reprocessing capability, laboratories and administration buildings. The reactors are now all in advanced stages of decommissioning. In October 2000 the Dounreay Site Restoration Plan (DSRP) was published to provide a framework for the site's restoration. The plan's objective was to reduce the site's hazards progressively by decontaminating and dismantling the plant, equipment and facilities, remediating contaminated ground and treating and packaging waste so it is suitable for long term storage or disposal. Whilst hailed as the most detailed plan integrating some 1500 activities and spanning 60 years it was criticised for having no stakeholder involvement. In response to this criticism, UKAEA developed a process for public participation over the following 2 years and launched its stakeholder engagement programme in October 2002. In order to provide a larger platform for the engagement process an advertisement was placed in the Scottish media inviting people to register as stakeholders in the Dounreay Site Restoration Plan. The stakeholder list now total over 1000. In October 2002 UKAEA launched their commitment to public

  16. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my decommissioning... Decommissioning Decommissioning Applications § 285.907 How will MMS process my decommissioning application? (a) Based upon your inclusion of all the information required by § 285.906, MMS will compare your...

  17. Decommissioning and transport of teletherapy machines and irradiators

    International Nuclear Information System (INIS)

    Wilson, T.; Ord, M.

    2001-01-01

    Full text: The management and control of high activity gamma sources in non-power applications is a particular challenge for regulators of health and safety and the environment, throughout Member States. These sources (typically 60 Co or 137 Cs) are used in medical, educational or industrial applications, to benefit the health and quality of life of the general public. They do however present a significant risk to both people and the environment if not maintained, managed and controlled in accordance with radiation safety principals and the relevant legislation. This is particularly pertinent as these machines come to the end of their working lives and require decommissioning. Teletherapy machines are those which have been used for patient cancer treatment. These units are almost always found in radiotherapy departments in hospitals, although a few have been used in industrial non-destructive testing (NDT) applications, or for calibration. They are 'mass produced' and designed to be re-sourced in-situ and therefore have proven and documented load/unload procedures. The sources in these units are usually held in a shielded 'head', often containing depleted uranium. Due to its own radioactive properties, the depleted uranium shielding presents at least as much of a disposal challenge as the source itself. In the majority of cases, purpose designed mating plates exist for transferring sources from these units into approved transport containers. Irradiators present different challenges and often require a novel approach due to age of sources and mass of inherent shielding. Many of the units now destined for decommissioning were originally constructed in the sixties and have often been customised to meet customers' specific requirements, or even home-made by the physicists. There are therefore many variations, for which there is little or no information available and rarely any detail on how or if the source(s) can be extracted. Many of these units date back to an era

  18. Decommissioning of NPP A-1 Phase I, Jaslovske Bohunice. Documentation for application for permission to Phase II of decommissioning of NPP A-1. Schedule stage II of decommissioning of NPP A-1

    International Nuclear Information System (INIS)

    2007-04-01

    In this study documentation for application for permission to Phase II of decommissioning of NPP A-1 and the schedule stage II of decommissioning of NPP A-1 are presented. This study consists of ten appendixes.

  19. The French decommissioning program: a stakeholder point of view

    International Nuclear Information System (INIS)

    Chatry, Jean-Paul; Grenouillet, Jean-Jacques

    2006-01-01

    In January 2001, EDF owner of 56 plants in operation and 9 plants in decommissioning stage decided to accelerate the decommissioning of its first nine nuclear generation units in order to achieve final decommissioning in 25 years' time. An engineering center dedicated to decommissioning, radwaste management and environment was set up to implement this strategy. Four years after its creation, the first lessons learned in the fields of organization, project and program management can now be described. During the 4 years that have elapsed since the creation of CIDEN in 2001 to implement EDF's new decommissioning strategy, its organization has constantly improved to ensure success of its decommissioning projects. The aim has been to build an efficient organization with clearly defined roles for the key players. Simultaneously, the Program Management activities have received increasing consideration and specific mechanisms have been implemented to bring financing and licensing flexibility to the program. The continuous improvement of its organization and the development of new project or program management methodologies is a constant preoccupation of EDF. Its aim is to successfully implement its decommissioning strategy, one of the key issues for guaranteeing the future of a safe economic and environment friendly nuclear energy in France

  20. Radiation protection in decommissioning of the NPP V1

    International Nuclear Information System (INIS)

    Svitek, J.; Kaizer, J.; Siska, J.

    2014-01-01

    What's new in decommissioning of the NPP V1? In 2014 the first stage of the decommissioning should be finished. The program of the first stage was characterized by decommissioning of the non-contaminated facilities and buildings (facilities and buildings out of the control area). However, during the first stage, two key activities were done during which radiation protection had to be especially supervised: BIDSF project - Treatment and Conditioning of Wet Historical Waste - Sludge and Sorbents in the operational tanks NPP V1 (the treatment has been the condition of the regulatory body for the ending of the first stage) and preparation of decontamination of both primary circuits NPP (without reactors). In the year 2015, the second stage of decommissioning should be started. Program for the second stage is broad and it includes fragmentation and treatment of activated parts of the primary circuits (reactors, their internal parts, shielding cassettes). Modification of the radiation protection equipment on the NPP site has been made by BIDSF projects. During the first stage, two basic projects have been done: C12 - Refurbishment of the radiation protection monitoring equipment and C-10 - Free release of decommissioning materials. The present state of monitoring systems, as the result of the aforementioned projects, and the first experiences are main part of this presentation. Another activity, which prepared basic conditions for an execution of radiation protection in the second stage of decommissioning, was the preparation of documents for the procurement of license for the second stage of decommissioning. (authors)

  1. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Benjamin, Serge; Descures, Sylvain; Du Pasquier, Louis; Francois, Patrice; Buonarotti, Stefano; Mariotti, Giovanni; Tarakonov, Jurij; Daniska, Vladimir; Bergh, Niklas; Carroll, Simon; AaSTRoeM, Annika; Cato, Anna; De La Gardie, Fredrik; Haenggi, Hannes; Rodriguez, Jose; Laird, Alastair; Ridpath, Andy; La Guardia, Thomas; O'Sullivan, Patrick; ); Weber, Inge; )

    2017-01-01

    The cost estimation process of decommissioning nuclear facilities has continued to evolve in recent years, with a general trend towards demonstrating greater levels of detail in the estimate and more explicit consideration of uncertainties, the latter of which may have an impact on decommissioning project costs. The 2012 report on the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations, a joint recommendation by the Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the European Commission, proposes a standardised structure of cost items for decommissioning projects that can be used either directly for the production of cost estimates or for mapping of cost items for benchmarking purposes. The ISDC, however, provides only limited guidance on the treatment of uncertainty when preparing cost estimates. Addressing Uncertainties in Cost Estimates for Decommissioning Nuclear Facilities, prepared jointly by the NEA and IAEA, is intended to complement the ISDC, assisting cost estimators and reviewers in systematically addressing uncertainties in decommissioning cost estimates. Based on experiences gained in participating countries and projects, the report describes how uncertainty and risks can be analysed and incorporated in decommissioning cost estimates, while presenting the outcomes in a transparent manner

  2. Development of decommissioning technologies in Sumitomo Mitsui Construction Co., Ltd

    International Nuclear Information System (INIS)

    Maruyama, Shinichiro; Suzuki, Toru; Ogane, Daisuke

    2011-01-01

    The decommissioning program of nuclear reactors in Japan first started in December 2001 on the Japan's first commercial nuclear power station Tokai Power Plant. In February 2008, the decommissioning of 'Fugen' was first approved as the program on a large-scale water reactor in Japan, and was started. From now on, decommissioning programs of LWRs constructed in the early stage of nuclear development will gradually increase. Decommissioning projects are required more than 20 years for completing the entire processes, because of its characteristics to placing the utmost priority to safety. Diverse types of element technologies are fully utilized in decommissioning projects, such as technology of evaluating remaining radioactivity, decontamination, dismantling/remote control, and treatment/disposal/recycling. Also there are a lot of civil engineering or building technologies and its applied technologies in these element technologies. Sumitomo Mitsui Construction Co., Ltd. has been committed to contributing to the promotion of decommissioning projects in Japan, and has carried out investigation/evaluation of applicability of the existing dismantling technologies to dismantling of reactors, seismic evaluation of the buildings for dismantling the reactor zone, development of recycling of concrete, and discussion of rational waste treatment/disposal methods. In this thesis, we present our decommissioning technologies focusing on the element technologies that our company has investigated and developed so far. (author)

  3. Education and Training in Decommissioning Needs, Opportunities and Challenges

    International Nuclear Information System (INIS)

    Kockerols, Pierre; Schneider, Hans Guenther; ); Freer, Martin

    2016-01-01

    The decommissioning of nuclear facilities is an industrial activity that is growing worldwide, creating job opportunities at all educational levels. Over the last decades, European companies have been involved in decommissioning projects that are targeted at delivering an environmentally friendly end-product, in line with the 'circular economy', as promoted by EU and national policies. European industry has acquired know-how and today Europe can position itself at the top level in the world decommissioning market. However, in view of the preparation of future decommissioning programmes, efforts are necessary to ensure and share the underpinning knowledge, skills and competences. In this perspective, the University of Birmingham in association with the European Commission's Joint Research Centre have organised a joint seminar to address the following questions in relation to education and training in nuclear decommissioning: - What are the competence needs for the future? - What are the education and training opportunities? - How can we stimulate interest and future talent? In answering these questions a report has been published which provides suggestions for helping the development, coordination and promotion of adequate education and training programmes at EU level in nuclear decommissioning. It highlights, in particular, the necessity to improve the long term planning of the resources and competences, addressing the specifics of decommissioning activities, to give more visibility to the career possibilities in the sector, and to enhance the cooperation between the existing education and training programmes, providing also more clarity in the learning outcomes. (authors)

  4. When a plant shuts down: The psychology of decommissioning

    International Nuclear Information System (INIS)

    Schulz, J.; Crawford, A.C.

    1993-01-01

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant after a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine

  5. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    International Nuclear Information System (INIS)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-01

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites

  6. Operating Procedures to Identify Wastes of Decommissioning

    International Nuclear Information System (INIS)

    Gatea, M.A.

    2016-01-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive material. Many of these sites suffered substantial physical damage during the Gulf Wars as well as the challenging of the difficult security situation in the country.The destruction of the former nuclear facilities during the 1991 Gulf war aggravated the problem. As a result of these events, many of these nuclear facilities have lost their containment of the radioactive material and it now has an increased potential to be dispersed into the environment.Iraqi Decommissioning Directorate (IDD) is one of the Ministry of Science and Technology (MoST) formations. It deals with decommissioning of former Iraqi nuclear sites. It considers a producer of radioactive waste.Therefore, waste management represents the vital requirement to work accomplishment.The work carries out on-site waste pretreatment which considers as a minimization of waste management.W M is necessary to: Segregate 'at source' as much materials as possible to minimize quantities of radioactive waste, clear or exempt as much materials as possible and decontaminate and recycle as much radioactive waste as possible. And in more general terms: to control and account for radioactive waste to protect human health and the environment, to make sure we do not leave unnecessary burdens for future generations, to concentrate, contain and isolate the waste from the environment therefore, this make any releases to the environment to be restricted and subject to regulatory control.This procedure applies on-site waste pretreatment which comprises segregating, characterizing, minimizing, classifying, packaging and relocating of generated wastes during decommissioning of destroyed nuclear facilities. The stationary waste treatment activities are the responsibility of RWTD/MoST.The (RPC/MoE) is the national regulatory body during the whole radioactive waste management

  7. Decommissioning and demolition of the Greifswald nuclear power station

    International Nuclear Information System (INIS)

    Sterner, H.; Leushacke, D.; Rittscher, D.

    1995-01-01

    The unexpected decision to decommission the plants in Greifswald makes the management and disposal of fuels and plant waste a major issue to be solved as a precondition for decommissioning and dismantling. The decisive point in waste management is the existence of an interim store or repository of sufficient capacity to accept both the nuclear fuel and the plant waste and the considerable volumes of radioactive residues arising in dismantling. Current major activities include planning for decommissioning and demolition, and drafting of the licensing documents; removal of the fuel elements from the reactor units; construction of the northern interim store for fuel elements and residues. (orig./HP)

  8. R and D and Innovation Needs for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Farr, Harvey; LaGuardia, Thomas S.

    2014-01-01

    Nuclear decommissioning activities can greatly benefit from research and development (R and D) projects. This report examines applicable emergent technologies, current research efforts and innovation needs to build a base of knowledge regarding the status of decommissioning technology and R and D. This base knowledge can be used to obtain consensus on future R and D that is worth funding. It can also assist in deciding how to collaborate and optimise the limited pool of financial resources available among NEA member countries for nuclear decommissioning R and D. (authors)

  9. Relative evaluation on decommissioning accident scenarios of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Choi, Byung-Seon; Moon, Jei-Kwon; Hyun, Dong-Jun; Kim, Geun-Ho; Kim, Tae-Hyoung; Jo, Kyung-Hwa; Seo, Jae-Seok; Jeong, Seong-Young; Lee, Jung-Jun

    2012-01-01

    Highlights: ► This paper suggests relative importance on accident scenarios during decommissioning of nuclear facilities. ► The importance of scenarios can be performed by using AHP and Sugeno fuzzy method. ► The AHP and Sugeno fuzzy method guarantee reliability of the importance evaluation. -- Abstract: This paper suggests the evaluation method of relative importance on accident scenarios during decommissioning of nuclear facilities. The evaluation method consists of AHP method and Sugeno fuzzy integral method. This method will guarantee the reliability of relative importance evaluation for decommissioning accident scenarios.

  10. Nuclear reactor decommissioning: an analysis of the regulatory environments

    International Nuclear Information System (INIS)

    Cantor, R.

    1984-04-01

    The purpose of this study is to highlight some of the current and likely regulations that will significantly affect the costs, technical alternatives and financing schemes for reactor decommissioning encountered by electric utilities and their customers. The paper includes a general review of the decommissioning literature, as well as information on specific regulations at the federal, state, and utility levels. Available estimated costs for the decommissioning of individual reactors are also presented. Finally, classification of the specific policies into common trends and practices among the various regulatory bodies is used to examine more general regulatory environments and their potential financial implications

  11. The decommissioning of nuclear plant: timing, cost and regulation

    International Nuclear Information System (INIS)

    MacKerron, Gordon

    1989-01-01

    The feasibility, costs and timing of decommissioning full-scale nuclear reactors is examined in the context of the tighter environmental regulation that will inevitably grow up in this area. It is concluded that delayed decommissioning may result from waste disposal site constraints rather than conscious intention, that taking account of the interests of future generations is unlikely to place very heavy burdens on the present generation, and that a balance of environmental considerations, mediated through regulatory and political processes, is likely to predominate in determining the future course of decommissioning decisions. (Author)

  12. Stakeholders involvement in the decommissioning processes in Italy

    International Nuclear Information System (INIS)

    Dionisi, Mario

    2006-01-01

    The aim of this paper is to present the situation about stakeholders involvement in Italy in the framework of the decommissioning process of the Italian nuclear installations, and in particular the specific experience of the Italian Regulatory Body APAT. Specific aspects and APAT initiatives for building confidence of stakeholders in the process of the release of solid material from the regulatory control are presented. Content: Decommissioning activities in Italy, Decommissioning licensing procedures (Site and material release, APAT - ARPA Partnership approach in the clearance process)

  13. Decommissioning of unit 1 of Ignalina NPP - Donors conference

    International Nuclear Information System (INIS)

    Vaitkus, R.

    2000-01-01

    Decision to decommission unit 1 of Ignalina NPP was related with possible financial assistance from foreign countries, first of from EU. Government of Lithuania jointly with European Commission on 20 - 21 June 2000 is organising Donors conference in order to collect necessary funds for the decommissioning of unit 1. Preparation to the donors conference is described. Information on the preparation to the decommissioning of unit 1 of Ignalina NPP and the Donors Conference is available on the Internet, web-site address www.ekm.lt/decom

  14. Radiological planning and implementation for nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Valentine, A.M.

    1982-01-01

    The need and scope of radiological planning required to support nuclear facility decommissioning are issues addressed in this paper. The role of radiation protection engineering and monitoring professionals during project implementation and closeout is also addressed. Most of the discussion focuses on worker protection considerations; however, project support, environmental protection and site release certification considerations are also covered. One objective is to identify radiological safety issues that must be addressed. The importance of the issues will vary depending on the type of facility being decommissioned; however, by giving appropriate attention to these issues difficult decommissioning projects can be accomplished in a safer manner with workers and the public receiving minimal radiation exposures

  15. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells.

    Science.gov (United States)

    Boothroyd, I M; Almond, S; Qassim, S M; Worrall, F; Davies, R J

    2016-03-15

    This study considered the fugitive emissions of methane (CH4) from former oil and gas exploration and production wells drilled to exploit conventional hydrocarbon reservoirs onshore in the UK. This study selected from the 66% of all onshore wells in the UK which appeared to be properly decommissioned (abandoned) that came from 4 different basins and were between 8 and 79 years old. The soil gas above each well was analysed and assessed relative to a nearby control site of similar land use and soil type. The results showed that of the 102 wells considered 30% had soil gas CH4 at the soil surface that was significantly greater than their respective control. Conversely, 39% of well sites had significant lower surface soil gas CH4 concentrations than their respective control. We interpret elevated soil gas CH4 concentrations to be the result of well integrity failure, but do not know the source of the gas nor the route to the surface. Where elevated CH4 was detected it appears to have occurred within a decade of it being drilled. The flux of CH4 from wells was 364 ± 677 kg CO2eq/well/year with a 27% chance that the well would have a negative flux to the atmosphere independent of well age. This flux is low relative to the activity commonly used on decommissioned well sites (e.g. sheep grazing), however, fluxes from wells that have not been appropriately decommissioned would be expected to be higher. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  17. Organization and management for decommissioning of large nuclear facilities

    International Nuclear Information System (INIS)

    2000-01-01

    For nuclear facilities, decommissioning is the final phase in the life-cycle after siting, design, construction, commissioning and operation. It is a complex process involving operations such as detailed surveys, decontamination and dismantling of plant equipment and facilities, demolition of buildings and structures, and management of resulting waste and other materials, whilst taking into account aspects of health and safety of the operating personnel and the general public, and protection of the environment. Careful planning and management is essential to ensure that decommissioning is accomplished in a safe and cost effective manner. Guidance on organizational aspects may lead to better decision making, reductions in time and resources, lower doses to the workers and reduced impact on public health and the environment. The objective of this report is to provide information and guidance on the organization and management aspects for the decommissioning of large nuclear facilities which will be useful for licensees responsible for discharging these responsibilities. The information contained in the report may also be useful to policy makers, regulatory bodies and other organizations interested in the planning and management of decommissioning. In this report, the term 'decommissioning' refers to those actions that are taken at the end of the useful life of a nuclear facility in withdrawing it from service with adequate regard for the health and safety of workers and members of the public and for the protection of the environment. The term 'large nuclear facilities' involves nuclear power plants, large nuclear research reactors and other fuel cycle facilities such as reprocessing plants, fuel conversion, fabrication and enrichment plants, as well as spent fuel storage and waste management plants. Information on the planning and management for decommissioning of smaller research reactors or other small nuclear facilities can be found elsewhere. The report covers

  18. Decommissioning of the Zirovski Vrh Uranium Mill

    International Nuclear Information System (INIS)

    Zabukovec, I.; Logar, Z.; Arh, S.

    1996-01-01

    First of the inventions, which will ensure the beginning of the permanent closure of uranium ore exploitation and prevent the consequences of mining in the Zirovski Vrh Uranium Mine, abandoned according to the law from July 1992, will be soon realized. After obtaining the location permit for dismantling the equipment, foundations and installations in four main buildings of the uranium mill, current procedures are carried out in order to obtain the permission for performing the mentioned activities and to make contracts with acting organizations. Those buildings contain sources of radiation, which were considered within the legal procedures and design of technical documentation. Instructions for decontamination and protection against radiation, both issued with those projects, highly contribute to the Slovenian experience in the field of practical management of radiation sources. Additional requirement, which enters difference between decommissioning of similar mills worldwide and the one mentioned, is preservation of buildings in order to change their purpose. (author)

  19. Decommissioning of the Shippingport Atomic Power Station

    International Nuclear Information System (INIS)

    LaGuardia, T.S.

    1988-01-01

    The Shippingport reactor was originally designed as a pressurized water reactor and operated for approximately 10 years in that mode. Later, in 1967 it was converted to a light water breeder reactor and continued its operation until 1985, when the reactor was shut down. However, the decommissioning planning for Shippingport was begun in 1979. Detailed engineering and planning was undertaken to look at alternatives for disposal of the reactor vessel, the overall detailed estimated costs, the exposure to the workers and the waste volume generated and to prepare activity specifications for performance of the work. The program scope and component removal are detailed. The scarification of contaminated concrete, building demolition, special tools and equipment needed and work performance data are described. The successful removal of the primary system components and piping has been completed. (author)

  20. Radionuclide metrology research for nuclear site decommissioning

    Science.gov (United States)

    Judge, S. M.; Regan, P. H.

    2017-11-01

    The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.

  1. Decontamination, decommissioning, and vendor advertorial issue, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  2. Decommissioning support system, using RFID and USN

    International Nuclear Information System (INIS)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Lee, K. I.; Moon, J. K.

    2012-01-01

    RFID and USN are key technology in the ubiquitous computing systems. Actual physical environmental information can be used to remote control systems and management using various sensor technology and wireless network. These are used to managing physical distribution systems, complex monitoring environments such as fire detecting and various environments in the field of u-healthcare. Recently, decontamination and dismantling for nuclear plant have increasing interest after Fucushima nuclear accident. In this paper, a decommissioning support system is suggested for an effective management and control of work efficiency and of worker's status. This system makes effective real-time monitoring worker's location, work status and radiation exposure and effective response for worker's safety and emergency situation

  3. Decommissioning of the Risoe hot cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1992-02-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, of large contaminated equipment from the concrete cell line and a separate shielded storage facility, and the removal of large contaminated facilities such as out cell parts of a tube transport system between a concrete cell and a lead shielded steel box and a remotely operated Reichert Telatom microscope housed in a lead shielded glove box is described in addition to the initial mapping of radiation levels related to the decontamination of concrete cells. The dose commitment of 17.7 mSv was ascribed to 12 persons in the 2nd half of 1991. The work resulting in these doses was mainly handling of waste together with the frogman entrances in order to repair the in-cell crane and power manipulator. The overall time schedule for the project still appears to be applicable. (AB)

  4. Uranium enrichment decontamination and decommissioning fund

    International Nuclear Information System (INIS)

    1994-01-01

    One of the most challenging issues facing the Department of Energy's Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge

  5. Large packages for reactor decommissioning waste

    International Nuclear Information System (INIS)

    Price, M.S.T.

    1991-01-01

    This study was carried out jointly by the Atomic Energy Establishment at Winfrith (now called the Winfrith Technology Centre), Windscale Laboratory and Ove Arup and Partners. The work involved the investigation of the design of large transport containers for intermediate level reactor decommissioning waste, ie waste which requires shielding, and is aimed at European requirements (ie for both LWR and gas cooled reactors). It proposes a design methodology for such containers covering the whole lifetime of a waste disposal package. The design methodology presented takes account of various relevant constraints. Both large self shielded and returnable shielded concepts were developed. The work was generic, rather than specific; the results obtained, and the lessons learned, remain to be applied in practice

  6. Decommissioning and deactivation of nuclear facilities

    International Nuclear Information System (INIS)

    Anasco, Roberto; Harriague, Santiago; Hey, Alfredo M.; Fabbri, Silvio; Garonis, Omar H.

    2003-01-01

    The National Atomic Energy Commission (CNEA) is responsible for the decommissioning and deactivation of all relevant nuclear facilities in Argentina. A D and D Subprogram was created in 2000, within Technology Branch of the CNEA, in order to fulfill this responsibility. The D and D Subprogram has organized its activities in four fields: Planning; Technology development; Human resources development and training; International cooperation. The paper describes the work already done in those 4 areas, as well as the nuclear facilities existing in the country. Planning is being developed for the decommissioning of research reactors, beginning with RA-1, as well as for the Atucha I nuclear power station. An integral Management System has been developed, compatibilizing requirements from ISO 9001, ISO 14001, the national norm for Safety and Occupational Health (equivalent to BS 8800), and IAEA 50-SG Q series. Technology development is for the time being concentrated on mechanical decontamination and concrete demolition. A review has been made of technologies already developed both by CNEA and Nucleoelectrica Argentina S.A. (the nuclear power utility) in areas of chemical and electrochemical decontamination, cutting techniques and robotics. Human resources development has been based on training abroad in the areas of decontamination, cutting techniques, quality assurance and planning, as well as on specific courses, seminars and workshops. An IAEA regional training course on D and D has been given on April 2002 at CNEA's Constituyentes Atomic Center, with the assistance of 22 university graduates from 13 countries in the Latin American and Caribbean Region, and 11 from Argentina. CNEA has also given fellowships for PhD and Master thesis on the subject. International cooperation has been intense, and based on: - IAEA Technical Cooperation Project and experts missions; - Cooperation agreement with the US Department of Energy; - Cooperation agreement with Germany

  7. HANFORD DECOMMISSIONING UPDATE 09/2007

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-08-20

    Fluor Hanford's K Basins Closure (KBC) Project tallied three major accomplishments at the U.S. Department of Energy's (DOE's) Hanford Site in Southeastern Washington State this past summer. The Project finished emptying the aging K East Basin of both sludge and the last pieces of scrap spent nuclear fuel. It also Completed vacuuming the bulk of the sludge in the K West Basin into underwater containers. The 54-year-old concrete basins once held more than four million pounds of spent nuclear fuel and sit less than 400 yards from the Columbia River. Each basin holds more than a million gallons of radioactive water. In 2004, Fluor finished removing all the spent nuclear fuel from the K Basins. Nearly 50 cubic meters of sludge remained--a combination of dirt, sand, small pieces of corroded uranium fuel and fuel cladding, corrosion products from racks and canisters, ion-exchange resin beads, polychlorinated biphenyls, and fission products that had formed during the decades that the spent nuclear fuel was stored underwater. Capturing the sludge into underwater containers in the K East Basin took more than two years, and vacuuming the much smaller volume of sludge into containers in the K West Basin required seven months. Workers stood on grating above the basin water and vacuumed the sludge through long, heavy hoses. The work was complicated by murky water and contaminated solid waste (debris). Pumping was paused several times to safely remove and package debris that totaled more than 370 tons. In October 2006, Fluor Hanford workers began pumping the sludge captured in the K East Basin containers out through a specially designed pipeline to underwater containers in the K West Basin, about a half mile away. They used a heavy but flexible, double-walled ''hose-in-hose'' system. Pumping work progressed slowly at first, but ramped up in spring 2007 and was completed on May 31. Just a week before sludge transfers finished, the KBC Project

  8. In Situ Aerosol Detector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  9. Development of an in situ fatigue sensor.

    Science.gov (United States)

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  10. Decommissioning a nuclear power plant: the tax effects

    International Nuclear Information System (INIS)

    Foyt, W.W.

    1982-01-01

    The tax treatment of decommissioning costs is as important a consideration as construction costs. The principles also apply to offshore operations and pipeline systems having a negative salvage value. Estimates place the cost at somewhere between 15 and 100% of construction costs, depending on how the decommissioning is done. It is essential to find an accurate way to project decommissioning costs and to decide how they should be reported for tax purposes. The Internal Revenue Service (IRS) does not plan to apply Section 167, which deals with negative net salvage. Utility customers will ultimately provide the funds, but current IRS rulings count these funds as ordinary income and do not allow matching the additional revenue with decommissioning expenses

  11. Construction times and the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Erramuspe, H.J.

    1988-01-01

    The construction and the decommissioning periods of nuclear power plants (NPP), are studied, due to their importance in the generation costs. With reference to the construction periods of these plants, a review is made of the situation and technical improvements made in different countries, with the purpose of shortening them. In regard to the decommissioning of NPP, the present and future situations are reviewed in connection with different stages of decommissioning and their related problems, as the residual radioactivity of different components, and the size of the final wastes to be disposed of. The possibilities of plant life extensions are also revised in connection with these problems. Finally, the expected decommissioning costs are analyzed. (Author) [es

  12. Decommissioning of the ICI TRIGA Mark I reactor

    International Nuclear Information System (INIS)

    Parry, D.R.; England, M.R.; Ward, A.; Green, D.

    2000-01-01

    This paper considers the fuel removal, transportation and subsequent decommissioning of the ICI TRIGA Mark I Reactor at Billingham, UK. BNFL Waste Management and Decommissioning carried out this work on behalf of ICI. The decommissioning methodology was considered in the four stages to be described, namely Preparatory Works, Reactor Defueling, Intermediate Level Waste Removal and Low Level Waste Removal. This paper describes the principal methodologies involved in the defueling of the reactor and subsequent decommissioning operations, highlighting in particular the design and safety case methodologies used in order to achieve a solution which was completed without incident or accident and resulted in a cumulative radiation dose to personnel of only 1.57 mSv. (author)

  13. Challenges of Ignalina NPP Decommissioning - View of Lithuanian Operator

    International Nuclear Information System (INIS)

    Aksionov, P.

    2017-01-01

    The state enterprise Ignalina Nuclear Power Plant (INPP) operates 2 similar design units of RBMK-1500 water-cooled graphite-moderated channel-type power reactors (1500 MW electrical power). INPP is carrying out the decommissioning project of the 2 reactors which includes: -) the retrieval of the spent nuclear fuel from the power units and its transportation into the Interim Spent Fuel Storage Facility; -) equipment and building decontamination and dismantling; -) radioactive waste treatment and storage; and -) the operation of key systems to ensure nuclear, radiation and fire protection. Ignalina NPP decommissioning project is planned to be completed by 2038. The presentation will be focused on the ongoing decommissioning activities at Ignalina NPP. The overview of main aspects and challenges of INPP decommissioning will be provided

  14. Scheme of database structure on decommissioning of the research reactor

    International Nuclear Information System (INIS)

    Park, H. S.; Park, S. K.; Kim, H. R.; Lee, D. K.; Jung, K. J.

    2001-01-01

    ISP (Information Strategy Planning), which is the first step of the whole database development, has been studied to manage effectively information and data related to the decommissioning activities of the Korea Research Reactor 1 and 2 (KRR-1 and 2). Since Korea has not acquired the technology of the decommissioning database management system, some record management system (RMS) of large nuclear facilities of national experience such as in the U.S.A, Japan, Belgium, and Russian were reviewed. In order to construct the database structure of the whole decommissioning activities such as the working information, radioactive waste treatment, and radiological surveying and analysis has been extracted from the whole dismantling process. These information and data will be used as the basic data to analyzed the matrix to find the entity relationship diagram and will contribute to the establishment of a business system design and the development of a decommissioning database system as well

  15. JAEA involvement in Education and Training for Decommissioning

    International Nuclear Information System (INIS)

    Nakayama, Shinichi

    2017-01-01

    Education and Training for Decommissioning in Japan: E&T for decommissioning in Japan is: prioritized to decommissioning of TEPCO’s Fukushima Daiichi NPS; mostly government-funded: - Ministry Of Education, Culture, Sports, Science And Technology; -Ministry Of Economy, Trade And Industry; performed through collaborative R&D activities between research institutes, university/college, and academic societies. JAEA is involved in the E&T through: - University summer schools on robotics, decommissioning robot competition; - Participation in and/or invitation to JAEA’s international Fukushima Research Conferences, and to cooperative courses with scientific institutions; - Lectures at universities/colleges; - Hot facility construction/operation for engineers, characterization of radioactive wastes and fuel debris for radiochemists and technicians

  16. The International Atomic Energy Agency's program on decontamination and decommissioning

    International Nuclear Information System (INIS)

    Feraday, M.A.

    1989-01-01

    The International Atomic energy Agency (IAEA) is developing an integrated information base that will systematically cover the technical, regulatory, radiation protection, planning, and economic aspects related to the decontamination and decommissioning (D/D) of nuclear facilities. The object of this program is to assist member states in developing the required expertise, equipment, and programs so that they can decommission their nuclear facilities in a safe, timely, and cost-effective manner. In addition to providing information, the IAEA encourages research and provides technical assistance in the form of expert missions, equipment design and procurement, etc., to assist member states in implementing their D/D programs. The technology contained in some recent IAEA reports is reviewed, including the decontamination, segmentation, and demolition of concrete and steel; the recycle/reuse of components from decommissioning; and the reduction of occupational exposures in D/D and the regulatory process in decommissioning. The IAEA's future program is briefly reviewed

  17. FIR 1 TRIGA activity inventories for decommissioning planning

    International Nuclear Information System (INIS)

    Raety, Antti; Kotiluoto, Petri

    2016-01-01

    The objective of the study has been to estimate the residual activity in the decommissioning waste of TRIGA Mark II type research reactor FiR 1 in Finland. Neutron flux distributions were calculated with Monte Carlo code MCNP. These were used in ORIGEN-S point-depletion code to calculate the neutron induced activity of materials at different time points by modelling the irradiation history and radioactive decay. The knowledge of radioactive inventory of irradiated materials is important in the planning of the decommissioning activities and is essential for predicting the radiological impact to personnel and environment. Decommissioning waste consists mainly of ordinary concrete, aluminium, steel and graphite parts. Results include uncertainties due to assumptions on material compositions and possible diffusion of gaseous nuclides. Comparison to activity inventory estimates of two other decommissioned research reactors is also presented. (authors)

  18. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    Science.gov (United States)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  19. DECOST: computer routine for decommissioning cost and funding analysis

    International Nuclear Information System (INIS)

    Mingst, B.C.

    1979-12-01

    One of the major controversies surrounding the decommissioning of nuclear facilities is the lack of financial information on just what the eventual costs will be. The Nuclear Regulatory Commission has studies underway to analyze the costs of decommissioning of nuclear fuel cycle facilities and some other similar studies have also been done by other groups. These studies all deal only with the final cost outlays needed to finance decommissioning in an unchangeable set of circumstances. Funding methods and planning to reduce the costs and financial risks are usually not attempted. The DECOST program package is intended to fill this void and allow wide-ranging study of the various options available when planning for the decommissioning of nuclear facilities

  20. Options for Enhancing Education, Training and Knowledge Management for Decommissioning

    International Nuclear Information System (INIS)

    Roberts, John

    2017-01-01

    UK Nuclear Sites: Decommissioning: 26 Magnox Reactors, 2 Fast Reactors; Operational: 14 AGRs, 1 PWR; 9.6 GWe Total Capacity. Nuclear Technology Education Consortium (NTEC) Decommissioning Modules: N04 Decommissioning, Radioactive Waste and Environmental Management; N07 Nuclear Safety Case Development; N08 Particle & Colloid Engineering in the Nuclear Industry; N09 Policy, Regulation & Licensing; N10 Processing, Storage & Disposal of Nuclear Waste; N31 Management of the Decommissioning Process; N01 Reactor Physics, Criticality & Design; N02 Nuclear Fuel Cycle; N03 Radiation & Radiological Protection; N06 Reactor Materials & Lifetime Behaviour; N11 Radiation Shielding; N12 Reactor Thermal Hydraulics; N13 Criticality Safety Management; N23 Environmental Impact Assessment; N32 Experimental Reactor Physics

  1. Development of the Decommissioning Technology for Nuclear Facilities

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, G. N.; Kim, S. G.

    2010-04-01

    The evaluation technology of decommissioning process must be developed and will be used for the ALARA planning tool of decommissioning process and demonstrated for tools of decommissioning equipment. Also, this technology can be used for tools workplaces with high work difficulty such as large-scale chemical plant, under water and space. The monitoring system for high alpha radioactive contamination measurement will be use in the high radioactivity decommissioning sites such as hot-cell or glove box. Also, it will be use in the general nuclear facilities as the radiation monitoring unit. The preparation technology of the radiation sensor for high radioactive contamination measurement will be transferred to the company for the industrialization. The remote monitoring system can prevent the workers exposure using the optical fiber to separate the sensor and electronics

  2. Decommissioning of DR 2. Experiences learnt from the completion

    International Nuclear Information System (INIS)

    Strufe, N.

    2009-10-01

    The report describes experiences gathered from the decommissioning of DR 2. The experiences encompasses planning and management of the project, methods of accomplishment, and various materials categories. Additionally, the report describes the experience with specific tools used in the project

  3. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program

  4. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  5. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; hide

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  6. Preliminary decommissioning plan of the reactor IPEN-MB01

    International Nuclear Information System (INIS)

    Vivas, Ary de Souza

    2014-01-01

    Around the world, many nuclear plants were built and need to be turned off at a certain time because they are close to their recommended time of use is approximately 50 years. So the IAEA (International Atomic Energy Agency), seeks to guide and recommend a set of guidelines for the conduct of activities of nuclear facilities, with special attention to countries that do not have a framework regulatory Legal that sustain the activities of decommissioning. Brazil, so far, does not have a specific standard to guide the steps of the guidelines regarding decommissioning research reactors. However, in March 2011 a study committee was formed with the main task facing the issues of decommissioning of nuclear installations in Brazil, culminating in Resolution 133 of November 8, 2012, a standard project that treat about the Decommissioning of nucleoelectric plants. O Instituto de Pesquisas Energeticas e Nucleares (IPEN) has two research reactors one being the reactor IPEN/MB-01. The purpose of this master dissertation is to develop a preliminary plan for decommissioning this research reactor, considering the technical documentation of the facility (RAS-Safety Analysis Report), the existing standards of CNEN (National Nuclear Energy Commission), as well as IAEA recommendations. In terms of procedures for decommissioning research reactors, this work was based on what is most modern in experiences, strategies and lessons learned performed and documented in IAEA publications covering techniques and technologies for decommissioning. Considering these technical knowledge and due to the peculiarities of the facility, was selected to immediate dismantling strategy, which corresponds to the start of decommissioning activities once the installation is switched off, dividing it into work sectors. As a resource for monitoring and project management of reactor decommissioning and maintenance of records, we developed a database using Microsoft Access 2007, which contain all the items and

  7. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    International Nuclear Information System (INIS)

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    2013-01-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  8. In situ texture analysis under applied load

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    2005-01-01

    The in-situ measurement of a crystallographic texture is a special type of a non-destructive measurement, which need special equipments. Due to the high photon flux and the excellent brilliance high energetic synchrotron radiations are a fantastic tool particular in fast experimentation. Moreover, a high penetration power allows the investigation of standard tensile sample of the DIN-norm. A loading device with a power up to 20 kN was installed at the hard wiggler beamline BW5 (HASYLAB-DESY) to perform in-situ strain and in-situ texture analysis. Using 100keV X-rays one gets short wavelength so that a 2D image-plate detector offers a wide range of diffraction pattern within the first 10 degree in 2 theta. Thermal neutron is another radiation with a high penetration power, which is the standard method for global texture analysis of bulk samples. As an example rectangular extruded Mg- Az31 was investigated by an in-situ. tensile experiment. Samples with 0 degree, 45 degree and 90 degree to the extrusion direction were cut. In-situ strain studies show the lattice dependent strains perpendicular and parallel to the loading direction. Moreover, in hexagonal Mg-Az31 a strong influence of the initial texture on the tensile behavior can be explained by the combination of texture simulation with in-situ measurements. (author)

  9. The effect of wind, ice and waves on the in-situ burning of emulsions and aged oils

    International Nuclear Information System (INIS)

    Bech, C.; Sveum, P.; Buist, I.

    1993-01-01

    A series of small- and meso-scale in-situ burning tests was conducted on Spitsbergen to define the limitations and burn effectiveness of in-situ burning of water-in-oil emulsions in terms of water content, degree of evaporation, and film thickness; and to study how the presence of ice, waves, and wind affect in-situ burning. The tests were conducted in basins cut into the ice on a fjord. The size of the basins ranged from 4 to 300 m 2 . The largest basin was fitted with a wavemaker. Evaporated water-free oil was found to be easily ignited and to burn with high efficiency. The burn efficiency was not affected by waves. Highly evaporated oil with 25% water was hard to ignite with gelled gasoline. In the presence of waves, it was not possible to ignite a 12.5% stable water-in-oil emulsion. The presence of waves reduced the burn efficiency for emulsion with a low water content. The main problem with in-situ burning of emulsions is flame spreading; emulsions require a large initial burn area for the burn to be self-sustaining. Small ice floes and slush did not influence burn efficiency in a negative way. In-situ burning could not be accomplished in wind speeds above 10 m/s. 2 refs., 5 figs., 5 tabs

  10. Decommissioning the Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I)

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1981-11-01

    The Los Alamos Molten Plutonium Reactor Experiment (LAMPRE I) was decommissioned at the Los Alamos National Laboratory, Los Alamos, New Mexico, in 1980. The LAMPRE I was a sodium-cooled reactor built to develop plutonium fuels for fast breeder applications. It was retired in the mid-1960s. This report describes the decommissioning procedures, the health physics programs, the waste management, and the costs for the operation

  11. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  12. Legal and Regulatory Frameworks for Decommissioning and Waste Management

    International Nuclear Information System (INIS)

    Leech, Jonathan

    2016-01-01

    Safe and efficient decommissioning and waste management requires clear structures for allocating responsibility and funding. Organisation of decommissioning and waste management activities and the regulatory environment within which those activities are undertaken should also allow the supply chain to prosper and, wherever possible, reduce barriers to international availability of resources and waste facilities. Radioactive waste treatment and disposal in particular raises both legal and political challenges to effective international co-operation, yet options for decommissioning and waste management are maximised where international barriers can be minimised. Added to this, international nuclear liabilities issues must be managed so as to avoid unnecessary deterrents to international mobility of capability within the decommissioning market. Contractual terms and insurance arrangements for international shipments of nuclear waste and materials will also need to take into account imminent changes to liabilities conventions, ensuring compliance and management of compliance costs (of both insurance and management time). This paper explores legal and commercial structures intended to support effective decommissioning and waste management and examines regulatory and commercial factors affecting the ability of facility operators to utilise internationally available capability. It focusses on: - strategic approaches developed in the UK to address decommissioning and waste management liabilities associated with the UK's first and second generation civil nuclear sites and comparison of those approaches with other jurisdictions with significant decommissioning liabilities; - liability and compliance risks associated with navigating international nuclear liabilities regimes in context of both mobility of decommissioning capability and international waste shipment; and - regulatory issues affecting international availability of waste treatment facilities, including

  13. Optimization of costs versus radiation exposures in decommissioning

    International Nuclear Information System (INIS)

    Konzek, G.J.

    1979-01-01

    The estimated worth of decommissioning optimization planning during each phase of the reactor's life cycle is dependent on many variables. The major variables are tabulated and relatively ranked. For each phase, optimization qualitative values (i.e., cost, safety, maintainability, ALARA, and decommissioning considerations) are estimated and ranked according to their short-term and long-term potential benefits. These estimates depend on the quality of the input data, interpretation of that data, and engineering judgment. Once identified and ranked, these considerations form an integral part of the information data base from which estimates, decisions, and alternatives are derived. The optimization of costs and the amount of occupational radiation exposure reductions are strongly interrelated during decommissioning. Realizing that building the necessary infrastructure for decommissioning will take time is an important first step in any decommissioning plan. In addition, the following conclusions are established to achieve optimization of costs and reduced occupational radiation exposures: the assignment of cost versus man-rem is item-specific and sensitive to the expertise of many interrelated disciplines; a commitment to long-term decommissioning planning by management will provide the conditions needed to achieve optimization; and, to be most effective, costs and exposure reduction are sensitive to the nearness of the decommissioning operation. For a new plant, it is best to start at the beginning of the cycle, update continually, consider innovations, and realize full potential and benefits of this concept. For an older plant, the life cycle methodology permits a comprehensive review of the plant history and the formulation of an orderly decommissioning program based on planning, organization, and effort

  14. Knowledge management for the decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    Kirschnick, F.; Engelhardt, S.

    2004-01-01

    This paper describes background, objectives and select conceptual components of knowledge management for the decommissioning of nuclear power plants. The concept focuses on the transfer of personal practice experience within and between nuclear power plants. The conceptual insights embrace aspects of knowledge content, structure, KM processes, organization, cooperation, culture, persuasion, leadership, technology, infrastructure, business impact and resilience. Key challenges are discussed, and related advice is provided for KM practitioners with similar endeavours in the field of nuclear power plant decommissioning. (author)

  15. Control of a large hydraulic manipulator for decommissioning tasks

    International Nuclear Information System (INIS)

    Gengenbach, U.; Eberle, F.

    1993-01-01

    A large hydraulic manipulator has been enhanced as a carrier system for decommissioning tools. The enhancements included mechanical modifications, selection and adaption of sensor equipment and control system development. Experiments on a non contaminated test site have taken place in fall 1992. These experiments confirmed the viability of the concept. Work remains to be done in the area of radiation hardening of the components, automation of the tool exchange and automatic performance of decommissioning tasks

  16. Communications programme for the RA nuclear reactor decommission

    International Nuclear Information System (INIS)

    Milanovic, S.; Antic, D.

    2002-01-01

    During the decommissioning of the RA research nuclear reactor at the VINCA Institute of Nuclear Sciences, an adequate number of radiation and contamination surveys should be conduced to assure radiological safety of the workers, the public and the environment. Public would like to know more about the nuclear and radiological safety. The communications programme defines the ways to informing the public, its representatives and the information media about the health and safety aspects of the activities during the RA nuclear reactor decommission. (author)

  17. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  18. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods - mothballing, entombing, or dismantling, or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which requires surveillance and maintenance for a significant period to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for an 1100-MW(e) light-water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as US $200,000. Although some tooling development will be needed for removing highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g. the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund, or annual depreciation type operating allowance, will have little effect on construction or on operating costs. (author)

  19. Technical and economic aspects of nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Glauberman, H.; Manion, W.J.

    1977-01-01

    Nuclear power plants may be decommissioned by one of three primary methods, namely, mothballing, entombing, or dismantling or by using combinations such as mothballing or entombing for a period of time followed by dismantling. Mothballing or entombing both result in an end-product which require surveillance and maintenance for a significant period of time to ensure protection of public health and safety. This paper discusses costs for each of the decommissioning methods, including factors that will influence the method selected as well as the total costs. Decommissioning costs have been estimated for a 1100 MW(e) light water reactor within one year after shutdown following forty years of operation. The basic economic parameters for each decommissioning method were developed using unit cost factors based on known costs of previously decommissioned reactors. Decommissioning cost estimates range from less than four million dollars for mothballing to about forty million dollars for complete dismantling. Estimated cost of entombment is about ten million dollars. Subsequent annual cost of surveillance and maintenance for a reactor facility using the mothballing or entombment method could be as high as $200,000. Although some tooling development will be needed for the removal of the highly activated reactor vessel segments and internals, technology is currently available and has been demonstrated on prior decommissionings, e.g., the BONUS and HALLUM reactor entombments and the Elk River Reactor complete dismantling. Costs associated with decommissioning are significant; however, allowance for them either as a one-time construction period sinking fund or annual depreciation type operating allowance will have little impact on either construction or operating costs

  20. The 'old and the new' of decommissioning Dounreay

    International Nuclear Information System (INIS)

    Thompson, Peter; Chalmers, Tony; Somerville, Susan; Varallo, Giovanna; Watkin, Tim; White, Simon

    2008-01-01

    The Dounreay site is situated on the north coast of Scotland, mainland United Kingdom, and since the 1950s it has been instrumental in fast breeder research and fuel reprocessing plant development. The work programme on the site has changed, and is now one of safe decommissioning and site restoration. Previous papers have discussed and reviewed progress during the very early stages of the decommissioning programme and this paper provides an update on the work programme from a primarily radiation protection perspective. This paper discusses progress in decommissioning the Dounreay site and the adoption of 'tried and tested', as well as innovative techniques to achieve this decommissioning safely. This includes detailed discussion of the radiation protection aspects of decommissioning, and the consideration and implementation of various radiological protection controls within varying decommissioning environments, such as: a) Remote operations; b) Robotics; c) Shielding; d) Remote readout dosimetry (during personnel entry into elevated dose rate areas). The change from an operational to a decommissioning work programme at Dounreay, created a requirement to modify the type and variety of radiological personal protective equipment (PPE) available. The selection of appropriate PPE, utilised following exhaustion of the hierarchy of controls, to remove the residual radiological risk to personnel is discussed within the paper. The benefit of developing this PPE, as well as other controls, in collaboration with the operatives performing the work, is clearly obvious. The paper concludes with a review of the relative merits and success of the decommissioning techniques that have been adopted, from a radiological protection perspective, together with a summary of lessons learnt. (author)

  1. Approach to long- term regalement of nuclear energy installation decommissioning

    International Nuclear Information System (INIS)

    Dryapachenko, Yi.P.; Rudenko, B. A.; Ozimaj, M.S.

    2001-01-01

    In this report we make an accent on because the rules of nuclear installation decommissioning should provide controllability with compounded operations not one generations of the performers. The strategy should take into account problems of the economic completion, environment and standards of health, script of decommissioning and its execution, and so on. These strategies are bound with the social conditions, with accent on work with the low level wastes

  2. Final generic environmental impact statement on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This final generic environmental impact statement was prepared as part of the requirement for considering changes in regulations on decommissioning of commercial nuclear facilities. Consideration is given to the decommissioning of pressurized water reactors, boiling water reactors, research and test reactors, fuel reprocessing plants (FRPs) (currently, use of FRPs in the commercial sector is not being considered), small mixed oxide fuel fabrication plants, uranium hexafluoride conversion plants, uranium fuel fabrication plants, independent spent fuel storage installations, and non-fuel-cycle facilities for handling byproduct, source and special nuclear materials. Decommissioning has many positive environmental impacts such as the return of possibly valuable land to the public domain and the elimination of potential problems associated with increased numbers of radioactively contaminated facilities with a minimal use of resources. Major adverse impacts are shown to be routine occupational radiation doses and the commitment of nominally small amounts of land to radioactive waste disposal. Other impacts, including public radiation doses, are minor. Mitigation of potential health, safety, and environmental impacts requires more specific and detailed regulatory guidance than is currently available. Recommendations are made as to regulatory decommissioning particulars including such aspects as decommissioning alternatives, appropriate preliminary planning requirements at the time of commissioning, final planning requirements prior to termination of facility operations, assurance of funding for decommissioning, environmental review requirements. 26 refs., 7 figs., 68 tabs

  3. Present status of research reactor decommissioning programme in Indonesia

    International Nuclear Information System (INIS)

    Suripto, A.; Mulyanto, N.

    2002-01-01

    At present Indonesia has 3 research reactors, namely the 30 MW MTR-type multipurpose reactor at Serpong Site, two TRIGA-type research reactors, the first one being 1 MW located at Bandung Site and the second one a small reactor of 100 kW at Yogyakarta Site. The TRIGA Reactor at the Bandung Site reached its first criticality at 250 kW in 1964, and then was operated at 1000 kW since 1971. In October 2000 the reactor power was successfully upgraded to 2 MW. This reactor has already been operated for 38 years. There is not yet any decision for the decommissioning of this reactor. However it will surely be an object for the near future decommissioning programme and hence anticipation for the above situation becomes necessary. The regulation on decommissioning of research reactor is already issued by the independent regulatory body (BAPETEN) according to which the decommissioning permit has to be applied by the BATAN. For Indonesia, an early decommissioning strategy for research reactor dictates a restricted re-use of the site for other nuclear installation. This is based on high land price, limited availability of radwaste repository site, and other cost analysis. Spent graphite reflector from the Bandung TRIGA reactor is recommended for a direct disposal after conditioning, without any volume reduction treatment. Development of human resources, technological capability as well as information flow from and exchange with advanced countries are important factors for the future development of research reactor decommissioning programme in Indonesia. (author)

  4. Decommissioning of nuclear facilities: 'it can and has been done'

    International Nuclear Information System (INIS)

    2009-01-01

    Considerable international experience gained over the last 20 years demonstrates that nuclear facilities can be safely dismantled and decommissioned once a decision is made to cease operations and permanently shut them down. The term decommissioning is used to describe all the management and technical actions associated with ceasing operation of a nuclear installation and its subsequent dismantling to facilitate its removal from regulatory control (de-licensing). These actions involve decontamination of structures and components, dismantling of components and demolition of buildings, remediation of any contaminated ground and removal of the resulting waste. Worldwide, of the more than 560 commercial nuclear power plants that are or have been in operation, about 120 plants have been permanently shut down and are at some stage of decommissioning. About 10% of all shutdown plants have been fully decommissioned, including eight reactors of more than 100 MWe. A larger number of various types of fuel cycle and research facilities have also been shut down and decommissioned, including: facilities for the extraction and enrichment of uranium, facilities for fuel fabrication and reprocessing, laboratories, isotope production facilities and particle accelerators. This brochure looks at decommissioning across a spectrum of nuclear facilities and shows worldwide examples of successful projects. Further information can be found in NEA publications and on a number of web-sites

  5. Regulations and financing for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Kumakura, Osamu

    1981-01-01

    The purpose of this report is to survey the French legislation concerning the decommissioning of nuclear facilities and the method of financing for it. There is no clause in French regulations, which states any specific criterion or licensing procedure for the proper decommissioning. The legal problems in this domain are treated within the general regulation system on atomic energy. The decommissioning of nuclear facilities is carried out in accordance with the licensing procedure for constructing nuclear facilities or the permission procedure for operating them, according to the ''Decree on nuclear installations, 1963''. The works for the final shut-down and decommissioning are regarded as the modification to the safety report or the general operation instructions, and new permit is required. In the case that the radioactivity of substances after decommissioning is above the criteria of the Decree, 1963, the new license is required. In the case of below the criteria, the facilities are governed by the ''Act on installations classified for environmental protection, 1976''. The ''Decree on general radiation protection, 1966'', the ''Decree on radiation protection of workers in nuclear installations, 1975'', the ''Ministerial order on transport of dangerous materials, 1945'', and two ministerial orders on radioactive effluent discharge, 1974, are applied to the decommissioning works. (Kako, I.)

  6. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    International Nuclear Information System (INIS)

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee

    2007-01-01

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  7. National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin

    International Nuclear Information System (INIS)

    1994-01-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (''D'') Pit, the fuel segregation pit (including a water tunnel that connects the ''D'' pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels

  8. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    International Nuclear Information System (INIS)

    Bierschbach, M.C.; Haffner, D.R.; Schneider, K.J.; Short, S.M.

    2002-01-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of 3 H-labeled compounds; a laboratory for the manufacture of 14 C-labeled compounds; a laboratory for the manufacture of 123 I-labeled compounds; a laboratory for the manufacture of 137 Cs sealed sources; a laboratory for the manufacture of 241 Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires

  9. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  10. The Reuse of Decommissioned Facilities and Sites as an Emerging Means to Alleviate the Decommissioning Burden and its Potential Applications within IAEA's International Decommissioning Network

    International Nuclear Information System (INIS)

    Laraia, M.

    2009-01-01

    Around the world, but particularly in developing Member States, there are disused nuclear facilities or those approaching the end of their useful lives, for which appropriate decommissioning steps have not been taken, primarily due to limited technical and financial resources or competing priorities. One way of alleviating the financial and social burden associated with the final shutdown and decommissioning of nuclear facilities is the redevelopment of decommissioned facilities and sites for new, productive uses, either nuclear or non-nuclear. Sustainable development implies economic development with maintenance of social and community integrity. This objective can best be served by the sensitive redevelopment of sites to provide continuity of employment and new productive activity. Finally, experience to date with redevelopment both inside and outside the nuclear field suggests that successful engagement of the stakeholders can be a key success factor in promoting outcomes which are both profitable for the operator and recognised as responsible and worthwhile by the wider community. Following a generic discussion on factors and issues inherent to the re-development of decommissioned sites, this paper expands on several examples. It is noted that experience from the non-nuclear industrial sector is much more extensive than from the nuclear sector, and lessons from this sector should not be neglected. Many of world's nuclear facilities are small and widely distributed geographically, e.g. ∼300 aging or shut-down research reactors. Requests for assistance to address this issue from Member States exceed the capability of IAEA (and others) to deliver. However, integrating individual initiative into a designed-for-purpose network may compensate for these limitations. A new IAEA initiative amongst organizations from both potential 'donor' and 'recipient' Member States has taken the form of an 'International Decommissioning Network (IDN)'. The objectives of the IDN are

  11. Barsebaeck NPP in Sweden - Decommissioning Project

    International Nuclear Information System (INIS)

    Hakan, Lorentz

    2009-01-01

    Barsebaeck 1 and 2, type BWR (Boiling Water Reactor) with a capacity of 615 MWe was closed down permanently on 30 November 1999 respective 31 May 2005 due to political decision. Both units together have been in Service operation (Care and maintenance) since 1 December 2006. Barsebaeck NPP will stay in Service operation until beginning of 2018 when Dismantling operation begins with the aim of a free-realized site in the beginning of 2025. That means that the remaining buildings, including equipment should be declared free-released or dismantled. It would then be up to the owner, E.ON Kaernkraft Sverige AB (EKS) to decide what is to be done with the site in the future. There was a re-organisation at Barsebaeck Kraft AB (BKAB) in 1 January 2007 and the company is organised in the following areas of function: site service operation, decommissioning planning, new business and BO replacement. The Organisation at BKAB has gone down from 450 during operation of Barsebaeck 1 and 2 to 50 employees (2009-01-01) involved in Service operation of both units. But still there are in total 250 persons placed at Barsebaeck NPP with different kinds of job assignments. A lot of activities have been carried out since 2000 and up to now for example: - All nuclear fuel has been transported away to interim storage at CLAB in Oskarshamn. - BKAB have built up contact nets and competence by taking part in different kinds of national and international organisations (SKB, IAEA, OECD/NEA TAG, WNA, ENISS, WANO, EPRI etc) commissions. - The Electrical and operational systems have been rebuilt for the actual demands and requirements for the Service operation. - The central control room is unattended since 17 December 2007 and the supervision of the Service operation is handled by a system of VDI (duty engineers) and LOP (alarm operators). - Full system decontamination on unit 1 and 2. Barsebaeck's approach today and for the future dismantling are: - Safer; - Faster; - Cost effective. BKAB

  12. Lessons learned: Past to future [Identification, preservation and incorporation of decommissioning lessons

    International Nuclear Information System (INIS)

    Camper, L.W.

    2007-01-01

    The identification, preservation and incorporation of decommissioning lessons learned are critical to the continued expansion of nuclear power. Decommissioning experience will be developed in Europe and Asia over the next several years and that experience will be invaluable for the decommissioning of the next wave of plants in the USA. Industry and regulators will need to work cooperatively to ensure that the information is preserved and included in the design and operation of all new nuclear facilities, as well as in ongoing decommissioning projects. The paper describes the Nuclear Regulatory Commission's efforts to capture the decommissioning lessons learned from the first wave of decommissioning projects in USA. (author)

  13. An overview of U.S. decommissioning experience -- A basic introduction

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.

    1998-03-09

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  14. Evolution of some important principles on decommissioning of nuclear and radiation facilities

    International Nuclear Information System (INIS)

    Zhao Yamin; Wu Hao

    2004-01-01

    The paper introduces the evolution of some important principles on decommissioning of nuclear and radiation facilities. Decommissioning issue should not be regarded just as an end phase of the facilities operation, but should be taken into consideration as a part of whole operation process. The decommissioning plan and management should be considered in all phases of siting, design, construction and operation. A new term 'Facilitating Decommissioning' is introduced. Three stages principle of decommissioning (storage with surveillance, restricted release and unrestricted release) is being faded. The decommissioning implementation and related regulatory body should pay attention to these principal changes

  15. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports.

  16. Decommissioning strategy of the operating WWER type units in the Ukraine

    International Nuclear Information System (INIS)

    Litvinsky, L.L.; Lobach, Yu.N.; Skripov, A.E.

    2002-01-01

    At present in Ukraine, 13 WWER type units are in operation and two other ones are in the final stage of construction. Decommissioning of these units is expected after the year 2010. General planning of their decommissioning is developed in the framework of the decommissioning strategy of operating WWER type units. The strategy contains the objectives, principles and main tasks of the decommissioning as well as the activities at each phase of decommissioning. It is considered a broad range of factors important for the planning and implementation of decommissioning. (author)

  17. An overview of U.S. decommissioning experience -- A basic introduction

    International Nuclear Information System (INIS)

    Boing, L.E.

    1998-01-01

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community

  18. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  19. Radiation survey and preparing for the decommissioning of research reactor MR, RRC 'Kurchatov Institute'

    International Nuclear Information System (INIS)

    Volkov, V.G.; Volkovich, A.G.; Danilovich, A.S.; Zverkov, Y.A.; Kolyadin, V.I.; Lemus, A.V.; Pavlenko, V.I.; Semenov, S.G.; Smirnov, S.V.; Chesnokov, A.V.; Shisha, A.D.

    2010-01-01

    Works for the rehabilitation of nuclear and radioactively contaminated objects of the RRC Kurchatov Institute, continued for several years and now the experts of the center began work to prepare for the decommissioning of research reactor MR. As part of this work is carried out radiation survey radwaste repositories located in its premises, characterization of high-level waste that has accumulated in the storage basin and the extracts of the CPS, a survey of loop reactor facilities. Radiation survey carried out using robotic tools Brokk, equipped with gamma locator for the identification of intense gamma radiation sources. The gamma locator installed on a robotic tool serves for control and gamma vision of the Brokk. Management of the robotic tool and the gamma locator made from a safe place. Transfer of control signals and measurement data of the gamma locator were carried over by radio channel. For the radiation survey of the waste placed in cooling pools and the gateway of the reactor, the clarification and decontamination of water in these reservoirs was carried out. The clarification of the water was not carried out from 1993, when the reactor MR was shot down. Water purification was executed by standard water treatment systems for small basins. Sand coarse filters water collected radioactive particulate matter present in the pools and the gateway. Upon completion of the filter as radioactive waste were sent to long-term storage of Radon enterprise. Use of standard equipment was fully justified in referring to relatively low costs of conducting operations. In 2008 the characterization of the high level radwaste placed at the storages in the reactor hall was executed. For measuring of specific activities of the casks containing the radwaste the gamma locator installed at robot Brokk was used. The gamma locator allowed measuring of distribution of activity along the casks. This works allowed planning of amount of containers for removing of the high level

  20. Aspects related to the decommissioning of the nuclear power plants

    International Nuclear Information System (INIS)

    Goicea, Andrei; Andrei, Veronica

    2003-01-01

    All power plants, either coal, gas or nuclear, at the end of their life needs to be decommissioned and demolished and thus, to made the site available for other uses. The first generation nuclear power plants were designed for a life of about 30 years and some of them proved capable of continuing well beyond this term. Newer plants have been designed for a 40 to 60 years operating life. To date, other 90 commercial power reactors have been retired from operation. For nuclear power plants and nuclear facilities in general the decommissioning process consists of some or all of the following activities: the safe management of nuclear materials held in the facility, cleaning-up of radioactivity (decontamination), plant dismantling, progressive demolition of the plant and site remediation. Following the decommissioning, the regulatory controls covering facility end, partially or totally, and the safe site is released for appropriate alternative use. Cernavoda NPP is a young plant and it can benefit from the continuously developing experience of the decommissioning process at the international level. The current experience allows the most metallic parts of a nuclear power to be decontaminated and recycled and makes available proven techniques and equipment to dismantle nuclear facilities safely. As experience is gained, decommissioning costs for nuclear power plants, including disposal of associated wastes, are reducing and thus, contribute in a smaller fraction to the total cost of electricity generation. The new specific Romanian regulations establish a funding system for decommissioning and provisions for long-term radioactive waste management. In the near future a decommissioning plan will be made available for Cernavoda NPP. Since the plant has only 7 years operation, that plan can be improved in order to benefit from international experience that is growing. (authors)