WorldWideScience

Sample records for basin in-situ decommissioning

  1. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  2. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  3. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

    2013-07-01

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and

  4. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and

  5. Sensor Network Demonstration for In Situ Decommissioning - 13332

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to

  6. Application of in situ measurement for site remediation and final status survey of decommissioning KRR site

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Bum; Nam, Jong Soo; Choi, Yong Suk; Seo, Bum Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (β) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. In this study, the vertical activity distribution and initial activity of {sup 137}Cs could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

  7. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes

  8. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  9. In-situ determination of radionuclide levels in facilities to be decommissioned using the allowable residual contamination level method

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.J.; Haggard, D.L.

    1989-07-01

    This feasibility study resulted in verification of a direct and two alternate indirect techniques for making in-situ determinations of {sup 90}Sr and other radionuclide levels in a Hanford facility to be decommissioned that was evaluated using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is used to determine the extent of decontamination that will be required before a facility can be decommissioned. A sump in the 1608F Building was chosen for the feasibility study. Hanford decommissioning personnel had previously taken 79 concrete and surface scale samples from the building to be analyzed by radiochemical analysis. The results of the radiochemical analyses compare favorably with the values derived by the in-situ methods presented in this report. Results obtained using a portable spectrometer and thermoluminescent dosimeters (TLDs) were both very close to the radiochemistry results. Surface {sup 90}Sr levels detected on the sump floor were 550 pCi/cm{sup 2} using the spectrometer system and 780 pCi/cm{sup 2} using the TLD data. This compares favorably with the levels determined by radiochemical analyses (i.e., 230 to 730 pCi/cm{sup 2}). Surface {sup 90}Sr levels detected on the sump wall ranged between 10 and 80 pCi/cm{sup 2} using the spectrometer system, compared with a conservative 200 pCi/cm{sup 2} using the TLD data. The radiochemical results ranged between 19 and 77 pCi/cm{sup 2} for the four samples taken from the wall at indeterminate locations. 17 refs., 15 figs., 2 tabs.

  10. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, Kristine E.; Ferguson, Blythe A. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  11. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  12. NEW MATERIALS DEVELOPED TO MEET REGULATORY AND TECHNICAL REQUIREMENTS ASSOCIATED WITH IN-SITU DECOMMISSIONING OF NUCLEAR REACTORS AND ASSOCIATED FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, J.; Langton, C.; Musall, J.; Griffin, W.

    2012-01-18

    For the 2010 ANS Embedded Topical Meeting on Decommissioning, Decontamination and Reutilization and Technology, Savannah River National Laboratory's Mike Serrato reported initial information on the newly developed specialty grout materials necessary to satisfy all requirements associated with in-situ decommissioning of P-Reactor and R-Reactor at the U.S. Department of Energy's Savannah River Site. Since that report, both projects have been successfully completed and extensive test data on both fresh properties and cured properties has been gathered and analyzed for a total of almost 191,150 m{sup 3} (250,000 yd{sup 3}) of new materials placed. The focus of this paper is to describe the (1) special grout mix for filling the P-Reactor vessel (RV) and (2) the new flowable structural fill materials used to fill the below grade portions of the facilities. With a wealth of data now in hand, this paper also captures the test results and reports on the performance of these new materials. Both reactors were constructed and entered service in the early 1950s, producing weapons grade materials for the nation's defense nuclear program. R-Reactor was shut down in 1964 and the P-Reactor in 1991. In-situ decommissioning (ISD) was selected for both facilities and performed as Comprehensive Environmental Response, Compensations and Liability Act actions (an early action for P-Reactor and a removal action for R-Reactor), beginning in October 2009. The U.S. Department of Energy concept for ISD is to physically stabilize and isolate intact, structurally robust facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities), or storing radioactive materials. Funding for accelerated decommissioning was provided under the American Recovery and Reinvestment Act. Decommissioning of both facilities was completed in September 2011. ISD objectives for these CERCLA actions included: (1) Prevent

  13. Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland

    Science.gov (United States)

    Brooke-Barnett, Samuel; Flottmann, Thomas; Paul, Pijush K.; Busetti, Seth; Hennings, Peter; Reid, Ray; Rosenbaum, Gideon

    2015-07-01

    The Jurassic to Cretaceous sedimentary rocks of the Surat Basin in southeast Queensland host a significant volume of coal seam gas resources. Consequently, knowledge of the in situ stress is important for coal permeability enhancement and wellbore stability. Using wireline log data and direct stress measurements, we have calculated stress orientations from 36 wells and stress magnitudes from 7 wells across the Surat Basin. Our results reveal a relationship between high tectonic stress and proximity to structures within the underlying "basement" rocks. The influence of tectonic stresses is diminished with depth in areas with thicker sedimentary cover that are relatively far from the basement structures. We suggest that this relationship is due to the redistribution of in situ stresses around areas where basement is shallower and where basement structures, such as the Leichhardt-Burunga Fault System, are present. This behavior is explained by a lower rigidity in the thickest basin cover, which reduces the ability to maintain higher tectonic stress. Over the entire Surat Basin, a significant amount of variability in in situ stress orientation is observed. The authors attribute this stress variability to complex plate boundary interactions on the northern and eastern margins of the Indo-Australian Plate.

  14. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations

    Science.gov (United States)

    MacDonald, A. M.; Bonsor, H. C.; Ahmed, K. M.; Burgess, W. G.; Basharat, M.; Calow, R. C.; Dixit, A.; Foster, S. S. D.; Gopal, K.; Lapworth, D. J.; Lark, R. M.; Moench, M.; Mukherjee, A.; Rao, M. S.; Shamsudduha, M.; Smith, L.; Taylor, R. G.; Tucker, J.; van Steenbergen, F.; Yadav, S. K.

    2016-10-01

    Groundwater abstraction from the transboundary Indo-Gangetic Basin comprises 25% of global groundwater withdrawals, sustaining agricultural productivity in Pakistan, India, Nepal and Bangladesh. Recent interpretations of satellite gravity data indicate that current abstraction is unsustainable, yet these large-scale interpretations lack the spatio-temporal resolution required to govern groundwater effectively. Here we report new evidence from high-resolution in situ records of groundwater levels, abstraction and groundwater quality, which reveal that sustainable groundwater supplies are constrained more by extensive contamination than depletion. We estimate the volume of groundwater to 200 m depth to be >20 times the combined annual flow of the Indus, Brahmaputra and Ganges, and show the water table has been stable or rising across 70% of the aquifer between 2000 and 2012. Groundwater levels are falling in the remaining 30%, amounting to a net annual depletion of 8.0 +/- 3.0 km3. Within 60% of the aquifer, access to potable groundwater is restricted by excessive salinity or arsenic. Recent groundwater depletion in northern India and Pakistan has occurred within a longer history of groundwater accumulation from extensive canal leakage. This basin-wide synthesis of in situ groundwater observations provides the spatial detail essential for policy development, and the historical context to help evaluate recent satellite gravity data.

  15. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  16. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  17. Long-term erosion rates of Panamanian drainage basins determined using in situ 10Be

    Science.gov (United States)

    Gonzalez, Veronica Sosa; Bierman, Paul R.; Nichols, Kyle K.; Rood, Dylan H.

    2016-12-01

    Erosion rates of tropical landscapes are poorly known. Using measurements of in situ-produced 10Be in quartz extracted from river and landslide sediment samples, we calculate long-term erosion rates for many physiographic regions of Panama. We collected river sediment samples from a wide variety of watersheds (n = 35), and then quantified 24 landscape-scale variables (physiographic, climatic, seismic, geologic, and land-use proxies) for each watershed before determining the relationship between these variables and long-term erosion rates using linear regression, multiple regression, and analysis of variance (ANOVA). We also used grain-size-specific 10Be analysis to infer the effect of landslides on the concentration of 10Be in fluvial sediment and thus on erosion rates. Cosmogenic 10Be-inferred, background erosion rates in Panama range from 26 to 595 m My- 1, with an arithmetic average of 201 m My- 1, and an area-weighted average of 144 m My- 1. The strongest and most significant relationship in the dataset was between erosion rate and silicate weathering rate, the mass of material leaving the basin in solution. None of the topographic variables showed a significant relationship with erosion rate at the 95% significance level; we observed weak but significant correlation between erosion rates and several climatic variables related to precipitation and temperature. On average, erosion rates in Panama are higher than other cosmogenically-derived erosion rates in tropical climates including those from Puerto Rico, Madagascar, Australia and Sri Lanka, likely the result of Panama's active tectonic setting and thus high rates of seismicity and uplift. Contemporary sediment yield and cosmogenically-derived erosion rates for three of the rivers we studied are similar, suggesting that human activities are not increasing sediment yield above long-term erosion rate averages in Panama. 10Be concentration is inversely proportional to grain size in landslide and fluvial samples

  18. In Situ Production of Branched Glycerol Dialkyl Glycerol Tetraethers in a Great Basin Hot Spring (USA

    Directory of Open Access Journals (Sweden)

    Chuanlun eZhang

    2013-07-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are predominantly found in soils and peat bogs. In this study, we analyzed core-bGDGTs and polar (P- bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62-86°C in the Great Basin (USA. First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their Core (C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (Atribacteria. These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear.

  19. Study of Sub-basin Scale Groundwater Variations in Asia Using GRACE, Satellite Altimetry and in-situ Data

    Science.gov (United States)

    Yamamoto, K.; Fukuda, Y.; Taniguchi, M.

    2008-12-01

    A project to assess the effects of human activities on the subsurface environment in Asian developing cities is now in progress (Research Institute for Humanity and Nature., 2008). In the project, precise in situ gravity and landwater observations combined with GRACE (Gravity Recovery and Climate Experiment) satellite gravity data is proposed to evaluate local groundwater level changes of the developing urban areas in Asia. It is necessary for precise and accurate estimation of the local groundwater variations to separate local groundwater level changes from regional or global scale landwater variations. GRACE data is useful to estimate large scale landwater variations. Using GRACE Level 2 monthly gravity field solutions, we previously recovered landwater mass variation around Bangkok, in Thailand, which is one of the test areas of the project and located on the downstream of Chao Phraya river basin in the Indochina Peninsula. However, it is difficult to distinguish landwater signal of Chao Phraya river basin itself with the neighboring 3 large river basins because of the limitation of the spatial resolution of the GRACE monthly solutions. In this study, we recovered mass variation of Chao Phraya river basin using GRACE"fs along track range rate data instead of the monthly solutions. We used the method developed by Chen et al (2007), which uses GRACE"fs line-of-sight range acceleration measurements. We also tested the recoveries of landwater mass variations in other small scale river basins including Jakarta, Seoul and Taipei, which are also study areas of the project. Using the sub-basin scale landwater mass variation recovered by GRACE, we estimated groundwater level change in the project study areas by combing with in situ landwater and gravity observations. Satellite altimetry data is also used to separate groundwater variation from other landwater components as a constraint of river water storage variations.

  20. Study of landwater variation over Chao Phraya river basin using GRACE, satellite altimetry and in situ data

    Science.gov (United States)

    Yamamoto, K.; Fukuda, Y.; Nakaegawa, T.; Taniguchi, M.

    2009-12-01

    in-situ hydrological data observed in the project.

  1. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    Science.gov (United States)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  2. Past terrestrial water storage (1980–2008 in the Amazon Basin reconstructed from GRACE and in situ river gauging data

    Directory of Open Access Journals (Sweden)

    M. Becker

    2011-02-01

    Full Text Available Terrestrial water storage (TWS composed of surface waters, soil moisture, groundwater and snow where appropriate, is a key element of global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE space gravimetry mission provides a new tool to measure large-scale TWS variations. However, for the past few decades, direct estimate of TWS variability is accessible from hydrological modeling only. Here we propose a novel approach that combines GRACE-based TWS spatial patterns with multi-decadal-long in situ river level records, to reconstruct past 2-D TWS over a river basin. Results are presented for the Amazon Basin for the period 1980–2008, focusing on the interannual time scale. Results are compared with past TWS estimated by the global hydrological model ISBA-TRIP. Correlations between reconstructed past interannual TWS variability and known climate forcing modes over the region (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation are also estimated. This method offers new perspective for improving our knowledge of past interannual TWS in world river basins where natural climate variability (as opposed to direct anthropogenic forcing drives TWS variations.

  3. In-situ analysis of solid bitumen in coal: Examples from the Bowen Basin and the Illinois Basin

    Science.gov (United States)

    Mastalerz, Maria; Glikson, M.

    2000-01-01

    Solid bitumen and associated vitrinite from selected coals from the Bowen Basin and the Illinois Basin were studied using electron microprobe and micro-FTIR techniques. The coal studied covers a range of vitrinite reflectance from 0.59% to 1.33%. Carbon content in the bitumen is generally lower than in vitrinite in coals with vitrinite reflectance below 0.67%. In coals with reflectance above 0.67%, carbon content of bitumen is higher than in vitrinite, reflecting higher aromaticity due to hydrocarbon generation. Sulfur and iron content are comparable between vitrinite and bitumen. Functional group distribution suggests the presence of two types of bitumen in the Illinois Basin coals. The more aliphatic variety occurring in veins and cleats is interpreted as pre-gas generation bitumen, and the more aromatic variety filling cells and voids in inertinite as post-gas generation bitumen. (C) 2000 Elsevier Science B.V. All rights reserved.Solid bitumen and associated vitrinite from selected coals from the Bowen Basin and the Illinois Basin were studied using electron microprobe and micro-FTIR techniques. The coal studied covers a range of vitrinite reflectance from 0.59% to 1.33%. Carbon content in the bitumen is generally lower than in vitrinite in coals with vitrinite reflectance below 0.67%. In coals with reflectance above 0.67%, carbon content of bitumen is higher than in vitrinite, reflecting higher aromaticity due to hydrocarbon generation. Sulfur and iron content are comparable between vitrinite and bitumen. Functional group distribution suggests the presence of two types of bitumen in the Illinois Basin coals. The more aliphatic variety occurring in veins and cleats is interpreted as pre-gas generation bitumen, and the more aromatic variety filling cells and voids in inertinite as post-gas generation bitumen.

  4. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    Science.gov (United States)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate

  5. In-situ stresses in the Southern Perth Basin at the GSWA Harvey-1 well site

    Science.gov (United States)

    Rasouli, Vamegh 14Pervukhina, Marina 2Müller, Tobias M. 2Pevzner, Roman

    2013-11-01

    Knowledge of orientations and magnitudes of present-day stresses is important for different applications including fault reactivation, borehole stability and CO2 injection studies. As part of the West Hub Carbon Capture and Storage project, the GSWA Harvey-1 well was drilled in early 2012. It is located ~115km south of Perth and is used to assess the suitability for CO2 underground storage. The aim of this study is to estimate the mechanical properties and state of stress fields in the Southern Perth Basin. The analysis is based on the newly acquired log and VSP data and results of a rock mechanical model including vertical profiles of elastic and strength properties as well as identified breakout zones. The results indicate that the stress regime in the region is dominantly strike-slip. It changes to a reverse faulting system at shallow depths of below ~900m. Stress field orientation is obtained from borehole breakout analysis. The average azimuth of the maximum horizontal stress is 106° and the standard deviation is 10°. This direction of the maximum horizontal stress is broadly consistent with the east-west direction earlier reported for the Perth Basin.

  6. Using in situ REE analysis to study the origin and diagenesis of dolomite of Lower Paleozoic, Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    WANG XiaoLin; JIN ZhiJun; HU WenXuan; ZHANG JunTao; QIAN YiXiong; ZHU JingQuan; LI Qing

    2009-01-01

    In situ REE concentrations of various dolomites from Tarim Basin were obtained by LA-ICP-MS analysis, and the data were normalized to standard seawater (Seawater Normalized=SWN). Most of the samples have a ΣREE range of less than 20 ppm. All samples show similar REE distributions with heavy REE depletion, and positive Ce anomaly, which indicates that they have the same dolomitization fluids (seawater). According to the origin and diagenetic process of dolomite, two types of dolomite are de-termined and described as follows: 1) syndepositional dolomite, with the highest REE concentrations (more than 20 ppm), the cores of which are more enriched in REE compared with their cortexes, indicating that they underwent the dolomitization of calcareous sediments by hypersaline and subsequent diagenesis decreased the REE content of the cortex because of the low REE concentration of the diagenetic fluids; 2) diagenetic dolomite, which can be subdivided into four groups. (1) burial dolomite which has higher REE concentrations than limestone, but lower than syndepositional dolomite. This shows that pore fluids with high salinity dolomitized the pre-existing limestone; (2) void filling dolomite which has the similar REE patterns with the matrix dolomite. In addition, the Eu anomaly is not obvious, suggesting that the dolomitization fluids originated from the diagenetic fluids; (3) recrystallized dolomite, whose REE concentration was obviously decreased, indicating that the REE concentration was decreased during the recrystallization processes; and (4) hydrothermal altered void-filling dolomite, which has the lowest REE concentration, but obvious positive Eu anomaly, reflecting its hydrothermal activity related origin. Thus, the diverse REE signatures, which were recorded in different dolomites, retain the information of their formation conditions and subsequent diagenetic processes. In situ REE analysis of dolomite is an effective probe into the origin and diagenetic process of

  7. Using in situ REE analysis to study the origin and diagenesis of dolomite of Lower Paleozoic,Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In situ REE concentrations of various dolomites from Tarim Basin were obtained by LA-ICP-MS analysis,and the data were normalized to standard seawater(Seawater Normalized=SWN).Most of the samples have a ΣREE range of less than 20 ppm.All samples show similar REESWN distributions with heavy REE depletion,and positive Ce anomaly,which indicates that they have the same dolomitization fluids(seawater).According to the origin and diagenetic process of dolomite,two types of dolomite are determined and described as follows:1) syndepositional dolomite,with the highest REE concentrations(more than 20 ppm),the cores of which are more enriched in REE compared with their cortexes,indicating that they underwent the dolomitization of calcareous sediments by hypersaline and subsequent diagenesis decreased the REE content of the cortex because of the low REE concentration of the diagenetic fluids;2) diagenetic dolomite,which can be subdivided into four groups.(1) burial dolomite which has higher REE concentrations than limestone,but lower than syndepositional dolomite.This shows that pore fluids with high salinity dolomitized the pre-existing limestone;(2) void filling dolomite which has the similar REE patterns with the matrix dolomite.In addition,the Eu anomaly is not obvious,suggesting that the dolomitization fluids originated from the diagenetic fluids;(3) recrystallized dolomite,whose REE concentration was obviously decreased,indicating that the REE concentration was decreased during the recrystallization processes;and(4) hydrothermal altered void-filling dolomite,which has the lowest REE concentration,but obvious positive Eu anomaly,reflecting its hydrothermal activity related origin.Thus,the diverse REE signatures,which were recorded in different dolomites,retain the information of their formation conditions and subsequent diagenetic processes.In situ REE analysis of dolomite is an effective probe into the origin and diagenetic process of dolomite.

  8. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    Science.gov (United States)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  9. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Directory of Open Access Journals (Sweden)

    V. Pedinotti

    2012-06-01

    Full Text Available During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002–2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA. Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong

  10. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Science.gov (United States)

    Pedinotti, V.; Boone, A.; Decharme, B.; Crétaux, J. F.; Mognard, N.; Panthou, G.; Papa, F.; Tanimoun, B. A.

    2012-06-01

    During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002-2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA). Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong reduction of the

  11. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  12. About decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brosche, Dieter [Bayernwerk AG, Muenchen (Germany); Klein, K. [Badenwerk AG, Kalrsruhe (Germany); Vollradt, Juergen [Vereinigte Elektrizitaetswerke Westfalen AG, Dortmund (Germany)

    2015-10-15

    The IAEA organised an International Symposium in 1978, which dealt with the main aspects of decommissioning nuclear plants. Sufficient practical experiences and elaborated decommissioning concepts and techniques are already available. Unsolvable problems or only solvable with tremendous efforts of time and expenses are according to the opinion of experts not to be expected. Important statements concern above all the dose load of the decommissioning staff and the costs for decommissioning.

  13. Placing Absolute Timing on Basin Incision Adjacent to the Colorado Front Range: Results from Meteoric and in Situ 10BE Dating

    Science.gov (United States)

    Duehnforth, M.; Anderson, R. S.; Ward, D.

    2010-12-01

    A sequence of six levels of gravel-capped surfaces, mapped as Pliocene to Holocene in age, are cut into Cretaceous shale in the northwestern part of the Denver Basin immediately adjacent to the Colorado Front Range (CFR). The existing relative age constraints and terrace correlations suggest that the incision of the Denver Basin occurred at a steady and uniform rate of 0.1 mm yr-1 since the Pliocene. As absolute ages in this landscape are rare, they have the potential to test the reliability of the existing chronology, and to illuminate the detailed history of incision. We explore the timing of basin incision and the variability of geomorphic process rates through time by dating the three highest surfaces at the northwestern edge of the Denver Basin using both in situ and meteoric 10Be concentrations. As the tectonic conditions have not changed since the Pliocene, much of the variability of generation and abandonment of alluvial surfaces likely reflects the influence of glacial-interglacial climate variations. We selected Gunbarrel Hill (mapped as pre-Rocky Flats (Pliocene)), Table Mountain (mapped as Rocky Flats (early Pleistocene)), and the Pioneer surface (mapped as Verdos (Pleistocene, ~640 ka)) as sample locations. We took two amalgamated clast samples on the Gunbarrel Hill surface, and dated depth profiles using meteoric and in situ 10Be on the Table Mountain and Pioneer surfaces. In addition, we measured the in situ 10Be concentrations of 6 boulder samples from the Table Mountain surface. We find that all three surfaces are significantly younger than expected and that in situ and meteoric age measurements largely agree with each other. The samples from the pre-Rocky Flats site (Gunbarrel Hill) show ages of 250 and 310 ka, ignoring post-depositional surface erosion. The ages of the Table Mountain and Pioneer sites fall within the 120 to 150 ka window. These absolute ages overlap with the timing of the penultimate glaciation during marine isotope stage (MIS) 6

  14. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  15. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  16. Lessons Learned for Decommissioning Planning

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Wook; Kim, Young-gook; Kim, Hee-keun [Korea Hydro and Nuclear Power Co. LTD, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this paper is to introduce the U.S. nuclear industrial's some key lessons learned especially for decommissioning planning based on which well informed decommissioning planning can be carried out. For a successful decommissioning, it is crucial to carry out a well-organized decommissioning planning before the decommissioning starts. This paper discussed four key factors which should be decided or considered carefully during the decommissioning planning period with introduction of related decommissioning lessons learned of U.S. nuclear industry. Those factors which have been discussed in this paper include the end state of a site, the overall decommissioning strategy, the management of the spent fuels, and the spent fuel pool island. Among them, the end state of a site should be decided first as it directs the whole decommissioning processes. Then, decisions on the overall decommissioning strategy (DECON vs. SAFSTOR) and the management of the spent fuels (wet vs. dry) should follow. Finally, the spent fuel pool island should be given due consideration because its implementation will result in much cost saving. Hopefully, the results of this paper would provide useful inputs to performing the decommissioning planing for the Kori unit 1.

  17. Particle-accelerator decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given.

  18. Evaluation of Groundwater Storage changes at Konya Closed Basin, Turkey using GRACE-based and in-situ measurements

    Science.gov (United States)

    Kamil Yilmaz, Koray; Saber, Mohamed; Tugrul Yilmaz, Mustafa

    2016-04-01

    The Konya Closed Basin (KCB) located in Central Anatolia, Turkey, is the primary grain producer in Turkey. The lack of sufficient surface water resources and recently changing crop patterns have led to over-exploitation of groundwater resources and resulted in significant drop in groundwater levels. For this reason monitoring of the groundwater storage change in this region is critical to understand the potential of the current water resources and to devise effective water management strategies to avoid further depletion of the groundwater resources. Therefore, the main objective of this study is to examine and assess the utility of the Gravity Recovery and Climate Experiment (GRACE) and the Global Land Data Assimilation System (GLDAS) to monitor and investigate the groundwater storage changes in the Konya Closed Basin. Groundwater storage changes are derived using GRACE and GLDAS data and then are compared with the groundwater changes derived from the observed groundwater levels. The initial results of the comparison indicate an acceptable agreement between declining trends in GRACE-based and observed groundwater storage change during the study time period (2002 to 2015). Additionally, the results indicated that the study region exhibited remarkable drought conditions during 2007-2008 period. This study shows that the GRACE/GLDAS datasets can be used to monitor the equivalent groundwater storage changes which is crucial for long-term effective water management strategies.

  19. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  20. Workshop on decommissioning; Seminarium om avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. (ed.)

    2005-12-15

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  1. 76 FR 35511 - Decommissioning Planning

    Science.gov (United States)

    2011-06-17

    ... Planning; Final Rule #0;#0;Federal Register / Vol. 76 , No. 117 / Friday, June 17, 2011 / Rules and... Decommissioning Planning AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or the Commission) is amending its regulations to improve decommissioning...

  2. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist.

  3. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  4. Power Plant decommissioning

    Directory of Open Access Journals (Sweden)

    Mažeika Jonas

    2014-11-01

    Full Text Available On a first attempt, the determination of 14C and 36Cl activity concentrations in basic operational waste (spent ion-exchange resins and perlite mixture, in decommissioning waste (construction concrete, sand, stainless steel and serpentinite and irradiated graphite from the Ignalina NPP has been performed. The samples for measurement of the specific activity of 14C and 36Cl were obtained from the selected places, where the highest values of the dose rate and the activity concentrations of gamma emitters were found. The performed study of the total 14C and 36Cl activity concentrations was based on estimated chemical forms of 14C (inorganic and organic compounds and 36Cl as Cl- ion. The tested methods used in this study were found to be suitable for estimation of activity concentrations of measured radionuclides.

  5. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Directory of Open Access Journals (Sweden)

    C. Shu

    2009-07-01

    Full Text Available The change pattern and trend of soil moisture (SM in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET, leaf area index (LAI, and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1 and increasing tendency of temperature (α=0.01. The decreasing tendency of runoff has higher significance level (α=0.001. Because of SM's decreasing tendency, soil evaporation (ES is also decreasing (α=0.05. The tendency of net radiation (Rn, evapotranspiration (ET, transpiration (EC, canopy intercept (EI is not obvious. Net primary productivity (NPP, of which the significance level is lower than α=0.1, and gross primary productivity (GPP at α=0.01 are in increasing tendency.

  6. FLUOR HANFORD DECOMMISSIONING UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2008-04-21

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat

  7. Systematization of nuclear fuel facility decommissioning technology

    Energy Technology Data Exchange (ETDEWEB)

    Sugitsue, Noritake [Japan Nuclear Cycle Development Inst., Ningyo Toge Environmental Engineering Center, Kamisaibara, Okayama (Japan)

    2001-09-01

    In the Ningyo-Toge Environmental Engineering Center, the nature of all decommissioning works is clarified and, as an information base for planning the promotion of efficiency of a work, the Decommissioning Engineering System is being developed. The Decommissioning Engineering System consists of a function for performing work support for a decommissioning, a function for gathering information results of the decommissioning technology and a general evaluation function for the decommissioning plan on the basis of facilities information collected by three-dimensional CAD. (author)

  8. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  9. Time-variations of equivalent water heights'from Grace Mission and in-situ river stages in the Amazon basin Variações temporais do equivalente à altura d'água obtidas da Missão Grace e da altura d'água in-situ nos rios da bacia Amazônica

    Directory of Open Access Journals (Sweden)

    Flavio Guilherme Vaz de Almeida

    2012-03-01

    Full Text Available Gravity Recovery and Climate Experiment (GRACE mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS at a 10-day interval were converted into equivalent water height (EWH for a ~4-year period in the Amazon basin (from July-2002 to May-2006. The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm and spectrum truncation (10 ~ 15 mm. Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80% is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.A missão espacial Gravity Recovery and Climate Experiment (GRACE é dedicada às medidas das variações temporais no campo gravitacional da Terra. Neste estudo, os coeficientes de Stokes disponibilizados pelo Groupe de Recherche en Géodésie Spatiale (GRGS com intervalos de 10 dias foram convertidos no equivalente à altura d'água (EWH para um período de 4 anos na bacia Amazônica (de julho de 2002 a maio de 2006

  10. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  11. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  12. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  13. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  14. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  15. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    Science.gov (United States)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the

  16. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  17. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  18. Decommissioning: a United Kingdom perspective

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, A.; Reed, D.L.; Bleeze, A. [Health and Safety Executive, London (United Kingdom)

    1995-12-31

    The paper considers the United Kingdom legislative framework relevant to decommissioning of facilities on nuclear licensed sites. It describes the various legislative bodies involved in regulating this activity and the inspectorate concerned. The licensing regime is described in some detail highlighting the UK arrangements whereby a license is granted for the site upon which nuclear facilities are planned or exist. The license remains in place throughout the life of the plant on the site: from initial planning through to the end of decommissioning. A site (of part of) is not de-licensed until it can be stated that there has ceased to be any danger from ionising radiations from anything on the site (or appropriate part of the site). The final part of the paper considers the changes arising from the commercialization of the nuclear power industry in UK and the restatement of the Nuclear Installation Inspectorate`s policy on decommissioning which has arisen as a result of a review made in response to these changes. (author).

  19. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    DEFF Research Database (Denmark)

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan;

    2009-01-01

    The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains...... the same tuff bed in the adjacent, former opencast Ovcín Mine, it appears that species richness in the forest was comparable to some of the less diverse Westphalian peat-forming swamps in the U.S.A. The Lower Radnice mire vegetation was compositionally homogeneous, but had a heterogeneous distribution...... with patchiness occurring at a very ¿ne scale. The preserved plant assemblage most resembles mires dominated by medullosan pteridosperms and Paralycopodites described from upper Westphalian coal balls in the U.S.A., which were characterised by high diversity in all storeys and involved plants centred in high...

  20. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  1. In situ bioavailability of DDT and Hg in sediments of the Toce River (Lake Maggiore basin, Northern Italy): accumulation in benthic invertebrates and passive samplers.

    Science.gov (United States)

    Pisanello, Francesca; Marziali, Laura; Rosignoli, Federica; Poma, Giulia; Roscioli, Claudio; Pozzoni, Fiorenzo; Guzzella, Licia

    2016-06-01

    DDT and mercury (Hg) contamination in the Toce River (Northern Italy) was caused by a factory producing technical DDT and using a mercury-cell chlor-alkali plant. In this study, DDT and Hg contamination and bioavailability were assessed by using different approaches: (1) direct evaluation of sediment contamination, (2) assessment of bioaccumulation in native benthic invertebrates belonging to different taxonomic/functional groups, and (3) evaluation of the in situ bioavailability of DDT and Hg using passive samplers. Sampling sites were selected upstream and downstream the industrial plant along the river axis. Benthic invertebrates (Gammaridae, Heptageniidae, and Diptera) and sediments were collected in three seasons and analyzed for DDT and Hg content and the results were used to calculate the biota sediment accumulation factor (BSAF). Polyethylene passive samplers (PEs) for DDT and diffusive gradients in thin films (DGTs) for Hg were deployed in sediments to estimate the concentration of the toxicants in pore water. Analysis for (DDx) were performed using GC-MS. Accuracy was within ±30 % of the certified values and precision was >20 % relative standard deviation (RSD). Total mercury concentrations were determined using an automated Hg mercury analyzer. Precision was >5 % and accuracy was within ±10 % of certified values. The results of all the approaches (analysis of sediment, biota, and passive samplers) showed an increasing contamination from upstream to downstream sites. BSAF values revealed the bioavailability of both contaminants in the study sites, with values up to 49 for DDx and up to 3.1 for Hg. No correlation was found between values in sediments and the organisms. Concentrations calculated using passive samplers were correlated with values in benthic invertebrates, while no correlation was found with concentrations in sediments. Thus, direct analysis of toxicant in sediments does not provide a measurement of bioavailability. On the contrary

  2. Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto's Mar Piccolo (Ionian Sea, Southern Italy).

    Science.gov (United States)

    Emili, Andrea; Acquavita, Alessandro; Covelli, Stefano; Spada, Lucia; Di Leo, Antonella; Giandomenico, Santina; Cardellicchio, Nicola

    2016-07-01

    In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment-water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m(-2) day(-1)) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in

  3. The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ10Be, 26Al and 21Ne in sediment of the Po river catchment

    Science.gov (United States)

    Wittmann, Hella; Malusà, Marco G.; Resentini, Alberto; Garzanti, Eduardo; Niedermann, Samuel

    2016-10-01

    We analyze the source-to-sink variations of in situ10Be, 26Al and 21Ne concentrations in modern sediment of the Po river catchment, from Alpine, Apennine, floodplain, and delta samples, in order to investigate how the cosmogenic record of orogenic erosion is transmitted across a fast-subsiding foreland basin. The in situ10Be concentrations in the analyzed samples range from ∼ 0.8 ×104 at /gQTZ to ∼ 6.5 ×104 at /gQTZ. The 10Be-derived denudation rates range from 0.1 to 1.5 mm/yr in the Alpine source areas and from 0.3 to 0.5 mm/yr in the Apenninic source areas. The highest 10Be-derived denudation rates are found in the western Central Alps (1.5 mm/yr). From these data, we constrain a sediment flux leaving the Alpine and the Apenninic source areas (>27 Mt/yr and ca. 5 Mt/yr, respectively) that is notably higher than the estimates of sediment export provided by gauging (∼10 Mt/yr at the Po delta). We observe a high variability in 10Be concentrations and 10Be-derived denudation rates in the source areas. In the Po Plain, little variability is observed, and at the same time, the area-weighed 10Be concentration of (2.29 ± 1.57) ×104 at /gQTZ (±1 SD of the dataset) from both the Alps and the Apennines is poorly modified (by tributary input) in sediment of the Po Plain ((2.68 ± 0.78 , ± 1 SD) ×104 at /gQTZ). The buffering effect of the Po floodplain largely removes scatter in 10Be signals. We test for several potential perturbations of the cosmogenic nuclide record during source to sink transfer in the Po basin. We find that sediment trapping in deep glacial lakes or behind dams does not significantly change the 10Be-mountain record. For example, similar 10Be concentrations are measured upstream and downstream of the postglacial Lake Maggiore, suggesting that denudation rates prior to lake formation were similar to today's. On the scale of the entire basin, the 10Be concentration of basins with major dams is similar to those without major dams. A potential

  4. Decommissioning Project for the Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Paik, S. T. (and others)

    2009-02-15

    In 2008, tried to complete the whole decommissioning project of KRR-1 and KRR-2 and preparing work for memorial museum of KRR-1 reactor. Now the project is delayed for 3 months because of finding unexpected soil contamination around facility and treatment of. To do final residual radioactivity assessment applied by MARSSIM procedure. Accumulated decommissioning experiences and technologies will be very usefully to do decommissioning other nuclear related facility. At the decommissioning site of the uranium conversion plant, the decontamination of the dismantled carbon steel waste are being performed and the lagoon 1 sludge waste is being treated this year. The technologies and experiences obtained from the UCP dismantling works are expected to apply to other fuel cycle facilities decommissioning. The lagoon sludge treatment technology is the first applied technology in the actual field and it is expected that this technology could be applied to other country.

  5. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    the German Research Center for Geoscience (GFZ) in Potsdam. The in-situ measurements were obtained by a greenhouse gas (GHG) in-situ analyser operated by NASA's Ames Research Center (ARC). Both instruments were installed aboard a DHC-6 Twin Otter aircraft operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). Initial results - including estimated fugitive emission rates - will be presented for the landfill Olinda Alpha in Brea, Orange County, Los Angeles Basin, California, which was overflown on four different days during the COMEX field campaign in late summer 2014.

  6. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells

    Science.gov (United States)

    Worrall, Fred; boothroyd, Ian; Almond, Sam; Davies, Richard

    2015-04-01

    The aim of this study was to consider the potential legacy of increased onshore, unconventional gas production by examining the integrity of decommissioned, onshore, oil and gas wells in the UK. In the absence of a history of unconventional hydrocarbon exploitation in the UK, conventional onshore sites were considered and an examination of pollution incidents records had suggested that only a small fraction of onshore wells could show integrity failures. In this study the fugitive emissions of methane from former oil and gas production wells onshore in the UK were considered as a measure of well integrity. The survey considered 49 decommissioned (abandoned) wells from 4 different basins that were between 8 and 78 years old; all but one of these wells would be considered as having been decommissioned properly, i.e. wells cut, sealed and buried by soil cover to the extent that the well sites were being used for agriculture. For each well site the soil gas methane was analysed multiple times and assessed relative to a nearby control site of similar land-use and soil type. The results will be expressed in terms of the proportion and extent of well integrity failure, or success, over time since decommissioning and relative to local control sites. The probability of failure and the emissions factor for decommissioned wells will be presented.

  7. Po-Basin Atmospheric Composition during the Pegasos Field Campaign (summer 2012): Evaluation of ninfa/aodeM Simulation with In-Situ e Remote Sensing Observations

    Science.gov (United States)

    Landi, Tony C.; Bonafe, Giovanni; Stortini, Michele; Minguzzi, Enrico; Cristofanelli, Paolo; Marinoni, Angela; Giulianelli, Lara; Sandrini, Silvia; Gilardoni, Stefania; Rinaldi, Matteo; Ricciardelli, Isabella

    2014-05-01

    Within the EU project PEGASOS one of three field campaigns took place in the Po Valley during the summer of 2012. Photochemistry, particle formation, and particle properties related to diurnal evolution of the PBL were investigated through both in-situ and airborne measurements on board a Zeppelin NT air ship. In addition, 3-D air quality modeling systems were implemented over the Po valley for the summer 2012 to better characterize the atmospheric conditions, in terms of meteorological parameters and chemical composition. In this work, we present a comparison between atmospheric composition simulations carried out by the modeling system NINFA/AODEM with measurements performed during the PEGASOS field campaign for the period 13 June - 12 July 2012. NINFA (Stortini et al., 2007) is based on the chemical transport model CHIMERE (Bessagnet et al., 2008), driven by COSMO-I7, the meteorological Italian Limited Area Model, (Steppeler et al., 2003). Boundary conditions are provided by Prev'air data (www.prevair.org), and emission data input are based on regional, national and European inventory. Besides, a post-processing tool for aerosol optical properties calculation, called AODEM (Landi T. C. 2013) was implemented. Thus, predictions of Aerosol Optical Depth and aerosol extinction coefficient were also used for model comparison to vertical-resolved observations. For this experiment, NINFA/AODEM has been also evaluated by using measurements of size-segregated aerosol samples, number particles concentration and aerosol optical properties collected on hourly basis at the 3 different sampling sites representative of urban background (Bologna), rural background (San Pietro Capofiume) and remote high altitude station (Monte Cimone 2165 ma.s.l.). ). In addition, we focused on new particles formations events and long range transports from Northern Africa observed during the field campaign. References Bessagnet, Bertrand, Laurent Menut, Gabriele Curci, Alma Hodzic, Bruno

  8. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  9. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  10. Decommissioning of DR 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2006-01-15

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  11. Sellafield Decommissioning Programme - Update and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  12. Risk Management of Large Component in Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Ku; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down.

  13. Decommissioning of the BR3 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.; Klein, M

    1998-07-01

    The objectives, programme and main achievements of SCK-CEN's decommissioning programme in 1997 are summarised. Particular emphasis is on the BR3 decommissioning project. In 1997, auxiliary equipment and loops were dismantled; concrete antimissile slabs were decontaminated; the radiology of the primary loop was modelled; the quality assurance procedure for dismantling loops and equipment were implemented; a method for the dismantling of the reactor pressure vessel was selected; and contaminated thermal insulation of the primary loop containing asbestos was removed.

  14. Decommissioning of an irradiation unit

    Energy Technology Data Exchange (ETDEWEB)

    Richards, A.G. [Radiation Protection and Safety Services, Univ. of Leeds, Leeds (United Kingdom)

    2000-05-01

    Distributed throughout hospital, research establishments in the United Kingdom and many other countries are Irradiation Units and Teletherapy machines used for either research purposes or treatment of patients for radiotherapy. These Irradiation Units and Teletherapy machines are loaded with radioactive sources of either Cobalt 60 or Caesium 137. The activity of these sources can range from 1 Terabecquerel up to 100 Terabecquerels or more. Where it is possible to load the radioactive sources without removal from the shielded container into a transport package which is suitable for transport decommissioning of a Teletherapy machine is not a major exercise. When the radioactive sources need to be unloaded from the Irradiation Unit or Teletherapy machine the potential exists for very high levels of radiation. The operation outlined in the paper involved the transfer from an Irradiation Unit to a transport package of two 3.25 Terabecquerel sources of Cobalt 60. The operation of the removal and transfer comes within the scope of the United Kingdom Ionising Radiation Regulations 1985 which were made following the Recommendations of the International Commission on Radiological Protection. This paper illustrates a safe method for this operation and how doses received can be kept within ALARA. (author)

  15. Development Of Decommissioning Information Management System for 101 HWRR

    Institute of Scientific and Technical Information of China (English)

    Yi Song

    2016-01-01

    Decommissioning of 101 Heavy Water Research Reactor (HWRR) is radioactive and high-risk project which has to consider the effects of radiation and nuclear waste disposal, so the information system covering 101 HWRR decommissioning project must be established to ensure safety of the project. In this study, by col ecting the decommissioning activity data to establish the decommissioning database, and based on the database to develop information management system.

  16. Decommissioning in western Europe; Kaernkraftsavveckling i Vaesteuropa

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Castor arbetslivskonsulter AB, Stockholm (Sweden)

    1999-12-01

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe

  17. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  18. Decontamination, decommissioning, and vendor advertorial issue, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  19. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  20. Validation of Decommissioning Engineering System Application against KRR-2

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung Gon; Park, Seungkook; Park, Heeseong; Song, Chanho; Ha, Jaehyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    KAERI is the only expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR (Korea Research Reactor)-1 and 2 and UCP (Uranium Conversion Plant) decommission. This paper contains validation results of the KAERI DES by using KRR-2 decommissioning data. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DES application program. One of decommissioning experience data, KRR-2 was used for KAERI DES validation and it successfully is reflected in KAERI DES.

  1. Sodium Reactor Experiment decommissioning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  2. Decontamination and decommissioning of Shippingport commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Dept. of Energy, Pittsburgh, PA (United States)

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  3. Consideration of ISDC for Decommissioning Cost Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Kim, I. S.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    In 2009, they decided to update the Yellow Book, and began to update it by analyzing user experiences. They found that several countries have adopted the proposed standardized cost structure for the production of cost estimates directly or for mapping national estimates onto a common structure. They also made conclusions that more detailed advice should be given on the use of the standardized structure and on the definition of cost items to avoid ambiguity. The revised cost structure, to be known as the International Structure for Decommissioning Costing (ISDC), was published in 2012. The standardized cost structure developed in the report may be used for estimating the costs of decommissioning of any type of nuclear facility. We analyzed this standardized cost structure (ISDC) and applied it to DECOMMIS which was developed by KAERI. The appropriate estimation system for domestic application was examined by comparing the estimation results. KAERI made WBS code in DECOMMIS and data obtained during decommissioning work of KRR2 and UCP. Recently the IAEA updated the decommissioning cost items and its structure by ISDC. The cost estimation items of the DECOMMIS were applied to ISDC structure. For applying, the ISDC code compared with WBS code of DECOMMIS as on text of the activity name from daily report basis. The mapping result of the ISDC items to WBS code of the DECOMMIS is much different. AS results of this study that it need the corresponding cost category which classified in accordance with the national standard price estimates.

  4. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  5. 75 FR 80697 - Nuclear Decommissioning Funds

    Science.gov (United States)

    2010-12-23

    ... collection of information unless the collection of information displays a valid OMB control number. Books or... books on the asset. Section 1.468A- 8T(b)(3)(ii) of the temporary regulations provides that, in the case... connection with the preparation for decommissioning, such as engineering and other planning expenses, and...

  6. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  7. NMSS handbook for decommissioning fuel cycle and materials licensees

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  8. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  9. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  10. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R.; Noynaert, L.; Harnie, S.; Marien, J.

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  11. Initial decommissioning planning for the Budapest research reactor

    Directory of Open Access Journals (Sweden)

    Toth Gabor

    2011-01-01

    Full Text Available The Budapest Research Reactor is the first nuclear research facility in Hungary. The reactor is to remain in operation for at least another 13 years. At the same time, the development of a decommissioning plan is a mandatory requirement under national legislation. The present paper describes the current status of decommissioning planning which is aimed at a timely preparation for the forthcoming decommissioning of the reactor.

  12. Development of a decommissioning strategy for the MR research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bylkin, Boris; Gorlinsky, Yury; Kolyadin, Vyacheslav; Pavlenko, Vitaly [RRC Kurchatov Institute, Moscow (Russian Federation); Craig, David; Fecitt, Lorna [NUKEM Limited, Dounreay (United Kingdom); Harman, Neil; Jackson, Roger [Serco Technical and Assurance Services, Warrington (United Kingdom); Lobach, Yury [Inst. for Nuclear Research of NASU, Kiev (Ukraine)

    2010-03-15

    A description of the selected decommissioning strategy for the research reactor MR at the site of the Kurchatov Institute in Moscow is presented. The MR reactor hall is planned to be used as a temporary fuel store for the other research reactors on the site. On the basis of the site-specific conditions and over-all decommissioning goals, it was identified that phased immediate decommissioning is the preferable option. The current status of the reactor, expected final conditions and the sequence of decommissioning works are shown. (orig.)

  13. The planning of decommissioning activities within nuclear facilities - Generating a Baseline Decommissioning Plan

    Energy Technology Data Exchange (ETDEWEB)

    Meek, N.C.; Ingram, S.; Page, J. [BNFL Environmental Services (United Kingdom)

    2003-07-01

    BNFL Environmental Services has developed planning tools to meet the emerging need for nuclear liabilities management and decommissioning engineering both in the UK and globally. It can provide a comprehensive baseline planning service primarily aimed at nuclear power stations and nuclear plant. The paper develops the following issues: Decommissioning planning; The baseline decommissioning plan;The process; Work package; Compiling the information; Deliverables summary; Customer Benefits; - Planning tool for nuclear liability life-cycle management; - Robust and reliable plans based upon 'real' experience; - Advanced financial planning; - Ascertaining risk; - Strategy and business planning. The following Deliverables are mentioned:1. Site Work Breakdown Structure; 2. Development of site implementation strategy from the high level decommissioning strategy; 3. An end point definition for the site; 4. Buildings, operational systems and plant surveys; 5. A schedule of condition for the site; 6. Development of technical approach for decommissioning for each work package; 7. Cost estimate to WBS level 5 for each work package; 8. Estimate of decommissioning waste arisings for each work package; 9. Preparation of complete decommissioning programme in planning software to suit client; 10. Risk modelling of work package and overall project levels; 11. Roll up of costs into an overall cost model; 12. Cash flow, waste profiling and resource profiling against the decommissioning programme; 13. Preparation and issue of Final Report. Finally The BDP process is represented by a flowchart listing the following stages: [Power Station project assigned] {yields} [Review project and conduct Characterisation review of power station] {yields} [Identify work packages] {yields} [Set up WBS to level 3] {yields} [Assign work packages] {yields} [Update WBS to level 4] {yields}[Develop cost model] {yields} [Develop logic network] {yields} [Develop risk management procedure] ] {yields

  14. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    . In situ simulation in continuing medical education for the health care professions: a systematic review. J Contin Educ Health Prof 2012;32:243-254 (2) Sexton JB, Helmreich RL, Neilands TB, Rowan K, Vella K. The Safety Attitudes Questionnaire: Psychometric properties, benchmarking data, and emerging...... research. BMC Health service research 2006;6:1472-6963 (3) Cooper S. et al. Team Emergency Assessment Measure (TEAM). Resuscitation. 2010;81:446-452 (4) Flanagan JC. The critical incident technique. Psychological bulletin 1954;51:327-359 (5) Haig KM, Sutton RC, Whittington J. SBAR: A shared Mental Model...... emergencies. It contains 12 questions, which are rated using a five-point scale, and covers four categories; leadership, teamwork and task management, and an overall score on team performance. Results: 16 simulations were conducted with 16 different teams of 10 doctors and 32 nurses. First, this study took...

  15. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  16. Treatment of Decommissioning Combustible Wastes with Incineration Technology

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y. Min; Yang, D. S.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The aim of the paper is current status of management for the decommissioning radioactive combustible and metal waste in KAERI. In Korea, two decommissioning projects were carried out for nuclear research facilities (KRR-1 and KRR-2) and a uranium conversion plant (UCP). Through the two decommissioning projects, lots of decommissioning wastes were generated. Decommissioning waste can be divided into radioactive waste and releasable waste. The negative pressure of the incineration chamber remained constant within the specified range. Off-gas flow and temperature were maintained constant or within the desired range. The measures gases and particulate materials in the stack were considerably below the regulatory limits. The achieved average volume reduction ratio during facility operation is about 1/65.

  17. Standard Guide for Radiation Protection Program for Decommissioning Operations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1987-01-01

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  18. U.S. experience with organizational issues during decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, N.E. [MPD Consulting, Kirkland, WA (United States); Harty, R. [Battelle Pacific Northwest National Laboratory, Richland, WA (United States)

    1998-01-01

    The report provides information from a variety of sources, including interviews with US NRC management and staff, interviews and discussions with former employees of a decommissioned plant, discussions with subject matter experts, and relevant published documents. The NRC has modified its rule regarding decommissioning requirements. Two key reasons for these modifications are that plants have been decommissioning early and for economic reasons instead of at the end of their license period and, a desire for a more efficient rule that would more effectively use NRC staff. NRC management and staff expressed the opinion that resource requirements for the regulatory have been higher than anticipated. Key observations about decommissioning included that: The regulator faces new challenges to regulatory authority and performance during decommissioning. The public concern over decommissioning activities can be very high. There are changes in the types of safety concerns during decommissioning. It is important to balance planning and the review of plans with verification of activities. There are important changes in the organizational context at the plant during decommissioning. Retention of key staff is important. In particular, the organizational memory about the plant that is in the staff should not be lost. Six key areas of risk during decommissioning are fuel storage, potential accidents that could cause an offsite release, inappropriate release of contaminated material, radiation protection of workers, industrial accidents, and shipment of hazardous materials. Deconstruction of one unit while a co-located unit is still operating could create risks with regard to shared systems, specific risks of dismantling activities and coordination and management. Experience with co-located units at one site in the US was that there was a lack of attention to the decommissioning plant.

  19. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  20. Nuclear facility decommissioning and site remedial actions

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  1. DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Murray, A.; Abbott, H.

    2003-02-27

    Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

  2. Chromosome studies of Astyanax jacuhiensis Cope, 1894 (Characidae) from the Tramandai River Basin, Brazil, using in situ hybridization with the 18S rDNA probe, DAPI and CMA3 staining.

    Science.gov (United States)

    da Silva, Laura Lahr Lourenço; Giuliano-Caetano, Lucia; Dias, Ana Lúcia

    2012-01-01

    The genus Astyanax comprises 86 species of fish distributed in Brazilian river basins and is considered of the Incertae sedis group within the family Characidae. This study presents an analysis of 12 specimens of Astyanax jacuhiensis from the Tramandai River Basin, RS Brazil: 6 from the Maquiné River and 6 from the Quadros Lagoon. All specimens showed a diploid number equal to 50 chromosomes with different karyotypic formula between the two localities. The population from the Maquiné River showed 10m+26sm+6st+8a (FN=92). Fish from the Quadros Lagoon showed 12m+20sm+6st+12a (FN=88). AgNORs were evidenced in the short arm of one acrocentric chromosome pair in both populations, confirmed by FISH with the 18S rDNA probe. CMA3 fluorochrome corresponded with the AgNOR sites, while DAPI staining was negative in these regions. C banding revealed that heterochromatin was weakly distributed, mainly in the pericentromeric and terminal regions in most chromosomes. Analyses of male gonadal tissue were conducted with the objective of characterizing the meiotic chromosome behavior in A. jacuhiensis. The following stages were evidenced: spermatogonial with 50 chromosomes, pachytene and metaphase I with 25 bivalents, and metaphase II with 25 chromosomes, thus confirming the diploid number of the species. Chromosomal abnormalities were not observed. This study shows preliminary data on A. jacuhiensis from the Tramandai River Basin, contributing with more chromosomal information for this group of fish.

  3. Decontamination and Decommissioned Small Nuclear AIP Hybrid Systems Submarines

    Directory of Open Access Journals (Sweden)

    Guangya Liu

    2013-11-01

    Full Text Available Being equipped with small reactor AIP is the trend of conventional submarine power in 21st century as well as a real power revolution in conventional submarine. Thus, the quantity of small reactor AIP Submarines is on the increase, and its decommissioning and decontamination will also become a significant international issue. However, decommissioning the small reactor AIP submarines is not only a problem that appears beyond the lifetime of the small reactor nuclear devices, but the problem involving the entire process of design, construction, running and closure. In the paper, the problem is explored based on the conception and the feasible decommissioning and decontamination means are supplied to choose from.

  4. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  5. Decontamination, decommissioning, and vendor advertorial issue, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  6. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle; Determinacion de Uranio en Muestras Procedentes del Desmantelamiento de Instalaciones de la Primera Parte del Cielo del Combustible Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C. [Ciemat, Madrid (Spain); Angeles, A.

    2000-07-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  7. In Situ Aerosol Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  8. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program.

  9. Optimization of Decommission Strategy for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen;

    2016-01-01

    The life time of offshore wind farm is around 20 years. After that, the whole farm should be decommissioned which is also one of the main factors that contribute to the high investment. In order to make a costeffective wind farm, a novel optimization method for decommission is addressed in this p......The life time of offshore wind farm is around 20 years. After that, the whole farm should be decommissioned which is also one of the main factors that contribute to the high investment. In order to make a costeffective wind farm, a novel optimization method for decommission is addressed...... in this paper. Instead of abandoning the foundations after the wind farm is running out of its life cycle, the proposed method can make good use of the existing facilities so that the cost of energy (COE) can be reduced. The results show that 12.93% reduction of COE can be realized by using the proposed method....

  10. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  11. Solid Waste from the Operation and Decommissioning of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Marilyn Ann [Georgia Inst. of Technology, Atlanta, GA (United States); D' Arcy, Daniel [Georgia Inst. of Technology, Atlanta, GA (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Isha [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Yufei [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-01-05

    This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants

  12. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    Science.gov (United States)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  13. The Decommissioning of the Trino Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise

  14. BCD: a wiki-based decommissioning knowledge management tool

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, V.; Coudouneau, L.; Goursaud, V. [CEA Marcoule (DEN/MAR/DPAD/SECAD), 30 (France)

    2008-07-01

    Knowledge management allows decommissioning stakeholders to take advantage of past experience (in terms of efficiency, quality, safety, cost, etc.), avoid repeating previous errors, and identify good ideas and practices. It is usually broken down into three processes: collecting information, supplementing and enriching it, and making it available to all decommissioning stakeholders. The CEA has been collecting and centralizing data for many years: the first qualitative assessment of operational experience began in 1991. However, the documents collected were not always relevant for this assessment and, for lack of enrichment and distribution, were generally not used to a significant extent. In order to take advantage of the existing and future body of knowledge and to share this knowledge among decommissioning stakeholders, the CEA decommissioning review unit decided to develop an intranet site known as BCD (from the French acronym for Central Decommissioning Database) using the same wiki technology as the collaborative web encyclopedia, Wikipedia. The objective of BCD is to develop a decommissioning encyclopedia comprising definitions and terminology, the regulatory framework, the lessons of experience with technical or contractual projects, guidelines, statements of results, etc. This article describes BCD and its potential, together with the results observed to date and its prospects for future development. (authors)

  15. Research review and analysis of the heavy metal pollution in-situ of Poyang Lake and its surrounding river basin%鄱阳湖流域重金属污染研究现状分析

    Institute of Scientific and Technical Information of China (English)

    李明俊; 耿军军; 叶皓; 罗旭彪

    2013-01-01

    综述了30年以来国内外关于鄱阳潮流域重金属污染的研究,并就重金属污染的监测、评价以及修复等方面内容的研究现状进行了分析,讨论并提出了未来鄱阳潮流域重金属污染研究应重点加强的几个方向:实时便捷的高科技污染监测技术研究,重金属污染积累的时间趋势及历史过程研究,重金属污染阻断与修复的工程技术研究.%This paper intends to provide a research review of the heavy metal pollution of Poyang Lake and its surrounding river basin in the past thirty years both at home and abroad.As is known,Poyang lake is the largest fresh water body and one of the principal zones suffering from the heavy metal pollution in the lakes of China.And,it is just for this reason that it has become one of the research focuses for years.In spite of this,there remains lack of researches needed in a number of reasons,namely,in four aspects,the investigation evaluation and forecasting of the pollution condition,the distributive characteristics and heavy metal speciation research,pollution monitoring,pollution evaluation and remediation measures.All the above said indicates that the current studies of Poyang Lake and its surrounding river basin are far from being enough to satisfy the actual need if we want to pursue an overall systematic research and the research about the different valence states so as to fully grasp the heavy metal pollution situation and take timely countermeasures.Moreover,what is really needed is the development and application of up-to-date ndvancnd pollution monitoring technology and scientific and technological means to engage in such kinds of research.What is more imporlant,heavy metal pollution research is quite a complicated process/operation; it demands large-scale cooperative efforts of multidisciplinary and cross-disciplinary scholars from eco-environmenlal,chemical,biological,medical and agronomical science and the other fields concerned.So we do

  16. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    Energy Technology Data Exchange (ETDEWEB)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  17. An overview of U.S. decommissioning experience -- A basic introduction

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.

    1998-03-09

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  18. In situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  19. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2001-01-01

    Fundamental concepts on the life extension of the nuclear power plant and decommissioning optimization were established from the domestic abroad information and case analyses. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the standard of the decommissioning(decontamination dismantling) regulation. Moreover, basics were set for the decommissioning of domestic nuclear power plants and research reactors from the analyses on the decommissioning technology and precedence.

  20. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  1. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  2. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Volume 2 comprises six appendices on: facility description; residual radioactivity inventory estimates; description and contamination levels of reference site; derivation of residual contamination levels; decommissioning mode detail; and decommissioning safety assessment details.

  3. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...

  4. In situ dehydration of yugawaralite

    DEFF Research Database (Denmark)

    Artioli, G.; Ståhl, Kenny; Cruciani, G.;

    2001-01-01

    The structural response of the natural zeolite yugawaralite (CaAl2Si6O16. 4H(2)O) upon thermally induced dehydration has been studied by Rietveld analysis of temperature-resolved powder diffraction data collected in situ in the temperature range 315-791 K using synchrotron radiation. The room-tem...

  5. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  6. Design of a requirements system for decommissioning of a nuclear power plant based on systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Seong; Park, Seung Kook; Jin, Hyung Gon; Song, Chan Ho; Choi, Jong won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The nuclear industry has required an advanced system that can manage decommissioning information ever since the Korean government decide to decommission the Gori No.1 nuclear power plant. The D and D division at KAERI has been developing a system that can secure the reliability and sustainability of the decommissioning project based on the engineering system of the KRR-2 (Korean Research Reactor-2). To establish a decommissioning information system, a WBS that needs to be managed for the decommissioning of an NPP has been extracted, and requirements management research composed of system engineering technology has progressed. This paper propose a new type of system based on systems engineering technology. Even though a decommissioning engineering system was developed through the KRR-2, we are now developing an advanced decommissioning information system because it is not easy to apply this system to a commercial nuclear power plant. An NPP decommissioning is a project requiring a high degree of safety and economic feasibility. Therefore, we have to use a systematic project management at the initial phase of the decommissioning. An advanced system can manage the decommissioning information from preparation to remediation by applying a previous system to the systems engineering technology that has been widely used in large-scale government projects. The first phase of the system has progressed the requirements needed for a decommissioning project for a full life cycle. The defined requirements will be used in various types of documents during the decommissioning preparation phase.

  7. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Science.gov (United States)

    2012-12-19

    ... COMMISSION Standard Format and Content for Post-Shutdown Decommissioning Activities Report AGENCY: Nuclear... Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method...) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report,''...

  8. Radiochemical analysis for nuclear waste management in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Radiation Research Div., Roskilde (Denmark))

    2010-07-15

    The NKS-B RadWaste project was launched from June 2009. The on-going decommissioning activities in Nordic countries and current requirements and problems on the radiochemical analysis of decommissioning waste were discussed and overviewed. The radiochemical analytical methods used for determination of various radionuclides in nuclear waste are reviewed, a book was written by the project partners Jukka Lehto and Xiaolin Hou on the chemistry and analysis of radionuclide to be published in 2010. A summary of the methods developed in Nordic laboratories is described in this report. The progresses on the development and optimization of analytical method in the Nordic labs under this project are presented. (author)

  9. In situ vadose zone bioremediation.

    Science.gov (United States)

    Höhener, Patrick; Ponsin, Violaine

    2014-06-01

    Contamination of the vadose zone with various pollutants is a world-wide problem, and often technical or economic constraints impose remediation without excavation. In situ bioremediation in the vadose zone by bioventing has become a standard remediation technology for light spilled petroleum products. In this review, focus is given on new in situ bioremediation strategies in the vadose zone targeting a variety of other pollutants such as perchlorate, nitrate, uranium, chromium, halogenated solvents, explosives and pesticides. The techniques for biostimulation of either oxidative or reductive degradation pathways are presented, and biotransformations to immobile pollutants are discussed in cases of non-degradable pollutants. Furthermore, research on natural attenuation in the vadose zone is presented.

  10. In Situ TEM Electrical Measurements

    DEFF Research Database (Denmark)

    Canepa, Silvia; Alam, Sardar Bilal; Ngo, Duc-The

    2016-01-01

    Transmission electron microscopy (TEM) offers high spatial and temporal resolution that provides unique information for understanding the function and properties of nanostructures on their characteristic length scales. Under controlled environmental conditions and with the ability to dynamically...... influence the sample by external stimuli, e.g. through electrical connections, the TEM becomes a powerful laboratory for performing quantitative real time in situ experiments. Such TEM setups enable the characterization of nanostructures and nanodevices under working conditions, thereby providing a deeper...... materials and devices with the specimen being contacted by electrical, mechanical or other means, with emphasis on in situ electrical measurements performed in a gaseous or liquid environment. We will describe the challenges and prospects of electrical characterization of devices and processes induced...

  11. Oldest biliary endoprosthesis in situ

    Science.gov (United States)

    Consolo, Pierluigi; Scalisi, Giuseppe; Crinò, Stefano F; Tortora, Andrea; Giacobbe, Giuseppa; Cintolo, Marcello; Familiari, Luigi; Pallio, Socrate

    2013-01-01

    The advantages of endoscopic retrograde cholangiopancreatography over open surgery have made it the predominant method of treating patients with choledocholithiasis. After sphincterotomy, however, 10%-15% of common bile duct stones cannot be removed with a basket or balloon. The methods for managing “irretrievable stones” include surgery, mechanical lithotripsy, intraductal or extracorporeal shock wave lithotripsy and biliary stenting. The case presented was a referred 82-year-old Caucasian woman with a 7-year-old plastic biliary endoprosthesis in situ. To the best of our knowledge the examined endoprosthesis is the oldest endoprosthesis in situ reported in the literature. Endoscopic biliary endoprosthesis placement remains a simple and safe procedure for patients with stones that are difficult to manage by conventional endoscopic methods and for patients who are unfit for surgery or who are high surgical risks. To date no consensus has been reached regarding how long a biliary prosthesis should remain in situ. Long-term biliary stenting may have a role in selected elderly patients if stones extraction has failed because the procedure may prevent stones impaction and cholangitis. PMID:23858381

  12. Establishment the code for prediction of waste volume on NPP decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W. H.; Park, S. K.; Choi, Y. D.; Kim, I. S.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In practice, decommissioning waste volume can be estimated appropriately by finding the differences between prediction and actual operation and considering the operational problem or supplementary matters. So in the nuclear developed countries such as U.S. or Japan, the decommissioning waste volume is predicted on the basis of the experience in their own decommissioning projects. Because of the contamination caused by radioactive material, decontamination activity and management of radio-active waste should be considered in decommissioning of nuclear facility unlike the usual plant or facility. As the decommissioning activity is performed repeatedly, data for similar activities are accumulated, and optimal strategy can be achieved by comparison with the predicted strategy. Therefore, a variety of decommissioning experiences are the most important. In Korea, there is no data on the decommissioning of commercial nuclear power plants yet. However, KAERI has accumulated the basis decommissioning data of nuclear facility through decommissioning of research reactor (KRR-2) and uranium conversion plant (UCP). And DECOMMIS(DECOMMissioning Information Management System) was developed to provide and manage the whole data of decommissioning project. Two codes, FAC code and WBS code, were established in this process. FAC code is the one which is classified by decommissioning target of nuclear facility, and WBS code is classified by each decommissioning activity. The reason why two codes where created is that the codes used in DEFACS (Decommissioning Facility Characterization management System) and DEWOCS (Decommissioning Work-unit productivity Calculation System) are different from each other, and they were classified each purpose. DEFACS which manages the facility needs the code that categorizes facility characteristics, and DEWOCS which calculates unit productivity needs the code that categorizes decommissioning waste volume. KAERI has accumulated decommissioning data of KRR

  13. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  14. Noise canceling in-situ detection

    Science.gov (United States)

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  15. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  16. Recent Trends in the Adequacy of Nuclear Plant Decommissioning Funding

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D. G.

    2002-02-26

    Concerned about the potential cost and sufficiency of funds to decommission the nation's nuclear power plants, the Congress asked the U.S. General Accounting Office (GAO) to assess the adequacy, as of December 31, 1997, of electric utilities'; funds to eventually decommission their plants. GAO's report (GAO/RCED-99-75) on this issue addressed three alternative assumption scenarios--baseline (most likely), optimistic, and pessimistic; and was issued in May 1999. This paper updates GAO's baseline assessment of fund adequacy in 1997, and extends the analysis through 2000. In 2000, we estimate that the present value cost to decommission the nation's nuclear plants is about $35 billion; utility fund balances are about $29 billion. Both our two measures of funding adequacy for utilities are on average not only much above ideal levels, but also overall have greatly improved since 1997. However, certain utilities still show less than ideal fund balances and annual contributions. We suggest that the range of these results among the individual utilities is a more important policy measure to assess the adequacy of decommissioning funding than is the funding adequacy for the industry as a whole.

  17. 18 CFR 2.24 - Project decommissioning at relicensing.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  18. Accidental safety analysis methodology development in decommission of the nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, G. H.; Hwang, J. H.; Jae, M. S.; Seong, J. H.; Shin, S. H.; Cheong, S. J.; Pae, J. H.; Ang, G. R.; Lee, J. U. [Seoul National Univ., Seoul (Korea, Republic of)

    2002-03-15

    Decontamination and Decommissioning (D and D) of a nuclear reactor cost about 20% of construction expense and production of nuclear wastes during decommissioning makes environmental issues. Decommissioning of a nuclear reactor in Korea is in a just beginning stage, lacking clear standards and regulations for decommissioning. This work accident safety analysis in decommissioning of the nuclear facility can be a solid ground for the standards and regulations. For source term analysis for Kori-1 reactor vessel, MCNP/ORIGEN calculation methodology was applied. The activity of each important nuclide in the vessel was estimated at a time after 2008, the year Kori-1 plant is supposed to be decommissioned. And a methodology for risk analysis assessment in decommissioning was developed.

  19. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, D.R.; Villelgas, A.J. [Pacific Northwest Lab., Richland, WA (United States)

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  20. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    Energy Technology Data Exchange (ETDEWEB)

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  1. A Review of the Decommissioning Costs of the Ranstad Site

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff (NAC International, Norcross, GA (United States))

    2009-08-15

    The main objective of this study has been to review the future cost to decommission and dismantling the industrial area at the site of the old uranium mine at Ranstad in Sweden. Analyses of some detailed comparative empirical information have been used in the context of preliminary 'bench-marking' studies. The estimated costs for decommissioning of the old uranium mine in Ranstad have been compared with actual costs from other relevant decommissioning projects. In this way it has been possible to give a preliminary qualitative statement about the accuracy of the Ranstad cost estimate. The study gives the following lessons learned: 1. The available information suggests that the overall estimated cost may be reasonable, but there are still some points of weakness that need to be elaborated more in detail before a full statement about the adequacy of the forecast cost will be possible. 2. Especially the costs associated with declassification activities warrant further analysis in order to determine there level of accuracy. 3. There exists the possibility that the estimate might be low concerning decontamination, dismantling and planning and institutional work. 4. Further work and analysis is needed in order to develop a more transparent cost estimate in which the stakeholders can have the highest confidence. 5. A new bidding procedure for the conventional demolition may result in lower estimated costs. Hence, it would be beneficial to obtain an updated estimate based on at least more than one quotation. 6. The method of addressing uncertainty and risk should be more connected to the logistics of specific decommissioning activities, in order to be more transparent and clearer in details. There is a need for further study to develop a better estimate. In the short run follow-up work needs to be undertaken to provide a better understanding of what are the major contributors to risk and cost drivers in the planned decommissioning process at the Ranstad

  2. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR. PART 6 - PRESENTATION OF THE DECOMMISSIONING DEVICE

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2015-05-01

    Full Text Available The objective of this paper is to present a possible solution for the designing of a device for the decommissioning of the horizontal fuel channels in the CANDU 6 nuclear reactor. The decommissioning activities are dismantling, demolition, controlled removal of equipment, components, conventional or hazardous waste (radioactive, toxic in compliance with the international basic safety standards on radiation protection. One as the most important operation in the final phase of the nuclear reactor dismantling is the decommissioning of fuel channels. For the fuel channels decommissioning should be taken into account the detailed description of the fuel channel and its components, the installation documents history, adequate radiological criteria for decommissioning guidance, safety and environmental impact assessment, including radiological and non-radiological analysis of the risks that can occur for workers, public and environment, the description of the proposed program for decommissioning the fuel channel and its components, the description of the quality assurance program and of the monitoring program, the equipments and methods used to verify the compliance with the decommissioning criteria, the planning of performing the final radiological assessment at the end of the fuel channel decommissioning. These will include also, a description of the proposed radiation protection procedures to be used during decommissioning. The dismantling of the fuel channel is performed by one device which shall provide radiation protection during the stages of decommissioning, ensuring radiation protection of the workers. The device shall be designed according to the radiation protection procedures. The decommissioning device assembly of the fuel channel components is composed of the device itself and moving platform support for coupling of the selected channel to be dismantled. The fuel channel decommissioning device is an autonomous device designed for

  3. Radioactive air emissions notice of construction for the 105N Basin Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, E.T. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations.

  4. Development of decommissioning management system for nuclear fuel cycle facilities (DECMAN)

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Tanimoto, Ken-ichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    In making a plan of decommissioning of nuclear fuel facilities, it is important to optimize the plan on the standpoint of a few viewpoints, that is, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost (they are called evaluation indexes). In the midst of decommissioning, the decommissioning plan would be modified suitably to optimize the evaluation indexes adjusting to progress of the decommissioning. The decommissioning management code (DECMAN), that is support system on computer, has been developed to assist the decommissioning planning. The system calculates the evaluation indexes quantitatively. The system consists of three fundamental codes, facility information database code, technical know-how database code and index evaluation code, they are composed using Oracle' database and 'G2' expert system. The functions of the system are as follows. (1) Facility information database code. Information of decommissioning facility and its rooms, machines and pipes in the code. (2) Technical know-how database code. Technical Information of tools to use in decommissioning work, cutting, dose measure, and decontamination are there. (3) Index evaluation code. User build decommissioning program using above two database codes. The code evaluates five indexes, the amount of working days, workers, radioactive waste, exposure dose of worker, and cost, on planning decommissioning program. Results of calculation are shown in table, chart, and etc. (author)

  5. Current status of decommissioning projects and their strategies in advanced countries

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Park, J. H.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-06-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The number of nuclear facilities to be dismantled will be much increased in future and the decommissioning industries will be enlarged. Keeping pace with this increasing tendency, each country formulated their own strategies and regulation systems, and applied their own technologies. The international organizations such as the IAEA and the OECD/NEA also prepared standards in technologies and regulation upon decommissioning and recommended to adopt them to the decommissioning projects. These strategies and technologies are very different country by country due to the different site dependent conditions and it will not be reasonable to evaluate their merits and weakness. The world wide status of the decommissioning, highlighted on that of 5 countries of USA, UK, France, Germany and Japan because they are advanced counties in nuclear industries, are summarized and their site specific conditions are evaluated. The scopes of the evaluation are decommissioning strategies, licensing procedures and requirements focused on decommissioning plan, waste management, technology development and so on. The detailed decommissioning progresses of several typical example sites were introduced. The activities on decommissioning field of the international organization, increased according to the enlarged decommissioning industries, are also summarized.

  6. Evaluation of the UCP Decommissioning Activities in 2008 using DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Park, J. H; Hwang, D. S.; Lee, K. W.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    In early 1992, Korea Atomic Energy Research Institute (KAERI) decided that the operation of the Uranium Conversion Plant (UCP) would be stopped due to a relatively higher production cost than that of the international market. The conversion plant has been shut down and minimally maintained for the prevention of a contamination by a deterioration of the equipment and the lagoon. In 2000, the decommissioning was finally decided upon and a decommissioning program was launched to complete the following tasks by 2010 with the total budget, 10 million US dollars: planning and assessment of the environmental impact; dismantling of the pipes, tanks, vessels and equipment for a canning or reuse; decontamination of the dismantled metal wastes for release, decontamination of the building for an reuse as an another experimental facility, and the treatment of the sludge waste and the demolition of the lagoon. The decommissioning works started in 2004. The Uranium Conversion Plant building is composed 3 stories and the floor area is 2,950 m{sup 2}. The equipment and facilities consist of chemical reactors such as a dissolver and FBR, tanks, pumps, pipes, and electric and electronic equipment. The radiological conditions before a dismantling were as follows; radiation dose 3x10{sup -4}{approx}3x10{sup -2} mSv/hr, surface contamination of equipment and structure 0.001{approx}3.6 Bq/cm{sup 2}, and surface contamination of concrete 0.01{approx}1.4 Bq/cm{sup 2}. The lagoon is used for store the waste water which generated during an operation. The lagoon consists of two artificial ponds constructed by a concrete structure with a lubber coating and the surface area is 760 m{sup 2}. Total weight of the sludge is about 330 tons. The major compounds are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and natural uranium of 1 wt%. Radiological conditions were as follows; radiation dose 1x10{sup -4}{approx}3x10{sup -3} mSv/hr. The DECOMMIS, which is the data base

  7. Offshore Wind Energy Cost Modeling Installation and Decommissioning

    CERN Document Server

    Kaiser, Mark J

    2012-01-01

    Offshore wind energy is one of the most promising and fastest growing alternative energy sources in the world. Offshore Wind Energy Cost Modeling provides a methodological framework to assess installation and decommissioning costs, and using examples from the European experience, provides a broad review of existing processes and systems used in the offshore wind industry. Offshore Wind Energy Cost Modeling provides a step-by-step guide to modeling costs over four sections. These sections cover: ·Background and introductory material, ·Installation processes and vessel requirements, ·Installation cost estimation, and ·Decommissioning methods and cost estimation.  This self-contained and detailed treatment of the key principles in offshore wind development is supported throughout by visual aids and data tables. Offshore Wind Energy Cost Modeling is a key resource for anyone interested in the offshore wind industry, particularly those interested in the technical and economic aspects of installation and decom...

  8. Uranium Enrichment: Analysis of Decontamination and Decommissioning Scenarios

    Science.gov (United States)

    1991-11-01

    from a September 1991 report entitled Preliminary Cost Estimate Decontamination & Decommissioning of the Gaseous Diffusion Plants , prepared for DOE by...DOE) three aging uranium enrichment plants . These plants are located in Oak Ridge, Tennessee; Paducah , Kentucky; and Portsmouth, Ohio. On October 16... Diffusion Plants Assessment of Costs for Remedial Actions. This report was prepared for DOE by Martin Marietta Energy Systems, DOE’s management and

  9. The Tensions of In Situ Visualization.

    Science.gov (United States)

    Moreland, Kenneth

    2016-01-01

    In situ visualization is the coupling of visualization software with a simulation or other data producer to process the data "in memory" before the data are offloaded to a storage system. Although in situ visualization provides superior analysis, it has implementation tradeoffs resulting from conflicts with some traditional expected requirements. Numerous conflicting requirements create tensions that lead to difficult implementation tradeoffs. This article takes a look at the most prevailing tensions of in situ visualization.

  10. Decontamination and decommissioning surveillance and maintenance report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, David B.; Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  11. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.K.; Freemerman, R.L. [Bechtel National, Inc., Oak Ridge, TN (United States)

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  12. Comparison of different strategies for decommissioning a tritium laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dylst, Kris, E-mail: Kris.Dylst@sckcen.be [SCK-CEN, Dismantling, Decontamination and Waste, Boeretang 200, 2400 Mol (Belgium); Slachmuylders, Frederik; Gilissen, Bart [SCK-CEN, Dismantling, Decontamination and Waste, Boeretang 200, 2400 Mol (Belgium)

    2013-10-15

    Highlights: ► Decontamination to below the free release limits is very labour intensive. ► Disposing of contaminated steel to a nuclear melting facility is cost effective. ► It can be advantageous to invest in decontamination of non-steel materials. -- Abstract: Between 2003 and 2009 two rooms that served as tritium laboratory at SCK• CEN and its ventilation system were decommissioned. Initially, the decommissioning strategy was to free release as much materials as possible. However, due to the imposed free release limit this was very labour intensive. Timing restrictions forced us to use a different strategy for the ventilation system. Most of the steel was disposed of to a nuclear melting facility. As a result there was a significant decrease in the required man labour. For the second laboratory room a similar strategy as for the ventilation was used: contaminated steel was disposed of to a nuclear melting facility and other materials that could not be easily decontaminated were disposed of as nuclear waste. At the expense of extra waste generation compared to the first laboratory the decommissioning was done using merely one third of the man hours. Comparison of the used strategies indicated opportunities for cost optimization. Even in absence of time constraints it is best to foresee a safe disposal of metals to a nuclear melting facility, whilst it is worth to invest in the labour intensive decontamination of the other materials to free release them.

  13. Decommissioning of the pool reactor Thetis in Ghent, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Cortenbosch, Geert; Mommaert, Chantal [Bel V, Brussels (Belgium); Tierens, Hubert; Monsieurs, Myriam; Meierlaen, Isabelle; Strijckmans, Karel [Ghent Univ. (Belgium)

    2016-11-15

    The Thetis research pool reactor (with a nominal power of 150 kW) of the Ghent University was operational from 1967 till December 2003. The first phase of the decommissioning of the reactor, the removal of the spent fuel from the site, took place in 2010. The cumulative dose received was only 404 man . μSv. During the second phase, the transition period between the removal of the spent fuel in 2010 and the start of the decommissioning phase in March 2013, 3-monthly internal inspections and inspections by Bel V, were performed. The third and final decommissioning phase started on March 18, 2013. The total dose received between March 2013 and August 2013 was 1561 man . μSv. The declassification from a Class I installation to a Class II installation was possible by the end of 2015. The activated concrete in the reactor pool will remain under regulatory control until the activation levels are lower than the limits for free release.

  14. Experience on Primary System Decommissioning in Jose Cabrera NPP

    Energy Technology Data Exchange (ETDEWEB)

    Paloma Molleda; Leandro Sanchez; David Rodriguez [ENSA, Cantabria (Spain)

    2015-10-15

    Primary System Decommissioning belongs to DCP(Decommissioning and Closure Plan) works and its scope includes: Steam Generator, Pressurizer, Refrigerant Circuit Pump and Primary Circuit Piping. All these dismantling activities were carried out on site, including preliminary steps before their removal (SAS installations, pre decontaminations, cutting and segmentations, segregations, etc.) and delivery to media/low activity nuclear waste disposal site. There are many cutting techniques available in market (most of them proved with positive results) as well as there are many different approaches about how to manage radioactive wastes in decommissioning projects (containers or great components disposal, containers burial, re fusion, etc.). Both issues are linked and, before starting a new project, it might be positive and quite useful to compare and study previous dismantling experiences, especially the lesson learned chapter. Primary System cut with diamond saw has been a challenge target, not only due to the methodology innovation (since until nowadays, the common use of this technology was performed in cutting concrete walls) because it has a huge range of positive aspects that, in our opinion, are attractive (apart from its mentioned versatility, in terms of cutting on site and every type of material)

  15. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    Science.gov (United States)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  16. Operation and dismantling report 2004 for Danish Decommissioning; Drifts- og afviklingsrapport 2004 - Dansk Dekommissionering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The report describes the operations at Danish Decommissioning (DD) that are essential for the nuclear inspection authorities' assessment of safety related issues. The report presents an account of safety and of the work at DD, including the decommissioning projects in 2004 for the nuclear facilities. The radioactive waste treatment facility in operation is described, and inspection and maintenance reports of the nuclear facilities prepared for decommissioning are presented. (ln)

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  18. Role of decommissioning plan and its progress for the PUSPATI TRIGA Reactor

    Science.gov (United States)

    Zakaria, Norasalwa; Mustafa, Muhammad Khairul Ariff; Anuar, Abul Adli; Idris, Hairul Nizam; Ba'an, Rohyiza

    2014-02-01

    Malaysian nuclear research reactor, the PUSPATI TRIGA Reactor, reached its first criticality in 1982, and since then, it has been serving for more than 30 years for training, radioisotope production and research purposes. Realizing the age and the need for its decommissioning sometime in the future, a ground basis of assessment and an elaborative project management need to be established, covering the entire process from termination of reactor operation to the establishment of final status, documented as the Decommissioning Plan. At international level, IAEA recognizes the absence of Decommissioning Plan as one of the factors hampering progress in decommissioning of nuclear facilities in the world. Throughout the years, IAEA has taken initiatives and drawn out projects in promoting progress in decommissioning programmes, like CIDER, DACCORD and R2D2P, for which Malaysia is participating in these projects. This paper highlights the concept of Decommissioning plan and its significances to the Agency. It will also address the progress, way forward and challenges faced in developing the Decommissioning Plan for the PUSPATI TRIGA Reactor. The efforts in the establishment of this plan helps to provide continual national contribution at the international level, as well as meeting the regulatory requirement, if need be. The existing license for the operation of PUSPATI TRIGA Reactor does not impose a requirement for a decommissioning plan; however, the renewal of license may call for a decommissioning plan to be submitted for approval in future.

  19. Status of the Decommissioning Project Management Information System Development of KAERI in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung Gon; Park, Seungkook; Park, Heeseong; Song, Chanho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Various information systems have been developed and used at decommissioning sites for planning a project, record keeping for a post management and cost estimation. KAERI is the only one expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR-1 and 2 and UCP (Uranium Conversion Plant) decommission. KRR-1 and KRR-2 are TRIGA MARK type of research reactor which were constructed worldwide. Hence, there are many chance to use decommissioning experiences and data when other TRIGA MARK type of research reactors start to decommission. KAERI DPMIS stands for Decommissioning Project Management Information System, which is aiming to re-use of data effectively. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DPMIS application program, which is going to be an important mile stone of decommission industry in Korea. User friendly graphical interface and lots of actual data let people well understood on decommission planning. It is expected that continuous effort and funds will be delivered to this research.

  20. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR PART 5 - FUEL CHANEL DECOMMISSIONING

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2014-05-01

    Full Text Available As many nuclear power plants are reaching their end of lifecycle, the decommissioning of these installations has become one of the 21st century’s great challenges. Each project may be managed differently, depending on the country, development policies, financial considerations, and the availability of qualified engineers or specialized companies to handle such projects. The principle objective of decommissioning is to place a facility into such a condition that there is no unacceptable risk from the decommissioned facility to public health and safety of the environment. In order to ensure that at the end of its life the risk from a facility is within acceptable bounds, action is normally required. The overall decommissioning strategy is to deliver a timely, cost-effective program while maintaining high standards of safety, security and environmental protection. If facilities were not decommissioned, they could degrade and potentially present an environmental radiological hazard in the future. Simply abandoning or leaving a facility after ceasing operations is not considered to be an acceptable alternative to decommissioning. The final aim of decommissioning is to recover the geographic site to its original condition.

  1. Chemically enhanced in situ recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sale, T. [CH2M Hill, Denver, CO (United States); Pitts, M.; Wyatt, K. [Surtek, Inc., Golden, CO (United States)] [and others

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  2. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... prewritten scenarios from the simulation lab and transferring them to in situ simulation. (4) Action research – insider or participant action research to obtain in-depth understanding of team processes to guide scenario design. We evaluate the approach relying on Marks’ et al. taxonomy that posits...... the following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  3. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  4. Decommissioning of nuclear facilities in Europe. Status December 2014; Stilllegung kerntechnischer Anlagen in Europa. Stand: Dezember 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, Boris; Imielski, Przemyslaw [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany); Kuehn, Kerstin; Rehs, Bernd

    2015-05-15

    The report on decommissioning activities of nuclear facilities in Europe (status December 2014) summarizes the reasons and plans for decommissioning, the regulations and responsibilities, the decommissioning strategies and the finalized decommissioning projects. The specific activities are described for Armenia, Belgium, Bulgaria, Denmark, Germany, Estonia, Finland, France, Greece, UK, Italy, Croatia, Latvia, Lithuania, Moldavia, Netherlands, Norway, Austria, Poland, Portugal, Rumania, Russia, Sweden, Switzerland, Serbia, Slovakia, Spain, Czech Republic, Turkey, Ukraine, Hungary and Belarus.

  5. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Detailed appendices are presented under the following headings: reference PWR facility description, reference PWR site description, estimates of residual radioactivity, alternative methods for financing decommissioning, radiation dose methodology, generic decommissioning activities, intermediate dismantlement activities, safe storage and deferred dismantlement activities, compilation of unit cost factors, and safety assessment details.

  6. Decommissioning of the Astra research reactor: Review and status on July 2003

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2003-01-01

    Full Text Available The paper describes work on the decommissioning of the ASTRA research reactor at the Austrian Research Centers Seibersdorf. Organizational, planning, and dismantling work done until July 2003 including radiation protection and waste management procedures as well as the current status of the project are presented. Completion of the decommissioning activities is planned for 2006.

  7. Study for reducing radioactive solid waste at ITER decommissioning period

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shinichi; Araki, Masanori; Ohmori, Junji; Ohno, Isamu; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-11-01

    It is one of the foremost goals for ITER to demonstrate the attractiveness with regard to safety and environmental potential. This implies that the radioactive materials and waste at decommissioning phase should carefully be treated with prescribed regulations. As possible activities during the Coordinated Technical Activity (CTA), the authors have performed a feasibility study for searching the possibility of effective reduction in the activated level as reasonably achievable as possible by taking account of minimum material changes while keeping original design concept and structure. Major induced activation in ITER comes from activated nickel and cobalt so that it is effective for the major structural components to minimize their material contents. Employing less Ni and Co steel in place of high-Ni austenitic stainless steel for blanket shield block, vacuum vessel shield material and TF coil casing has been considered as one of the effective plans to reduce the activated materials at the decommissioning phase. In this study, two less-Ni austenitic stainless steels are evaluated; one is high-Mn austenitic stainless steel JK2 which is developing for jacket material of ITER CS coil and the other is SS204L/ASTM-XM-11 which is also high-Mn steel specified in the popular standards such as American Society of Testing and Material (ASTM). Based on the material changes, activation analyses have been performed to investigate the possibility of reducing radioactive wastes. As a most impressive result, at 40 years after the termination some of main components such as a TF coil casing will reach to the clearance level which is specified by IAEA, and most components will be categorized into extremely low level waste except for limited components. These results will give the appropriate short decommissioning period that is assumed to start at 100 years after the termination in the original design. (author)

  8. Radiological Characteristics of decommissioning waste from a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Choi, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahmed, Rizwan; Heo, Gyun Young [Dept. of Nuclear Engineering, Kyung Hee University, Yongin (Korea, Republic of)

    2011-11-15

    The radiological characteristics for waste classification were assessed for neutron-activated decommissioning wastes from a CANDU reactor. The MCNP/ORIGEN2 code system was used for the source term analysis. The neutron flux and activation cross-section library for each structural component generated by MCNP simulation were used in the radionuclide buildup calculation in ORIGEN2. The specific activities of the relevant radionuclides in the activated metal waste were compared with the specified limits of the specific activities listed in the Korean standard and 10 CFR 61. The time-average full-core model of Wolsong Unit 1 was used as the neutron source for activation of in-core and ex-core structural components. The approximated levels of the neutron flux and cross-section, irradiated fuel composition, and a geometry simplification revealing good reliability in a previous study were used in the source term calculation as well. The results revealed the radioactivity, decay heat, hazard index, mass, and solid volume for the activated decommissioning waste to be 1.04 x 10{sup 16} Bq, 2.09 x 10{sup 3} W, 5.31 x 10{sup 14} m{sup 3}-water, 4.69 x 10{sup 5} kg, and 7.38 x 10{sup 1} m{sup 3}, respectively. According to both Korean and US standards, the activated waste of the pressure tubes, calandria tubes, reactivity devices, and reactivity device supporters was greater than Class C, which should be disposed of in a deep geological disposal repository, whereas the side structural components were classified as low- and intermediate-level waste, which can be disposed of in a land disposal repository. Finally, this study confirmed that, regardless of the cooling time of the waste, 15% of the decommissioning waste cannot be disposed of in a land disposal repository. It is expected that the source terms and waste classification evaluated through this study can be widely used to establish a decommissioning/disposal strategy and fuel cycle analysis for CANDU reactors.

  9. Radiochemical analysis of concrete samples for decommission of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, Daniel; Wershofen, Herbert [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100 38116, Braunschweig (Germany); Larijani, Cyrus; Sobrino-Petrirena, Maitane; Garcia-Miranda, Maria; Jerome, Simon M. [National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2014-07-01

    Decommissioning of the oldest nuclear power reactors are some of the most challenging technological legacy issues many countries will face in forthcoming years, as many power reactors reach the end of their design lives. Decommissioning of nuclear reactors generates large amounts of waste that need to be classified according to their radioactive content. Approximately 10 % of the contaminated material ends up in different repositories (depending on their level of contamination) while the rest is decontaminated, measured and released into the environment or sent for recycling. Such classification needs to be done accurately in order to ensure that both the personnel involved in decommissioning and the population at large are not needlessly exposed to radiation or radioactive material and to minimise the environmental impact of such work. However, too conservative classification strategies should not be applied, in order to make proper use of radioactive waste repositories since space is limited and the full process must be cost-effective. Implicit in decommissioning and classification of waste is the need to analyse large amounts of material which usually combine a complex matrix with a non-homogeneous distribution of the radionuclides. Because the costs involved are large, it is possible to make great savings by the adoption of best available practices, such as the use of validated methods for on-site measurements and simultaneous determination of more than one radionuclide whenever possible. The work we present deals with the development and the validation of a procedure for the simultaneous determination of {sup 241}Am, plutonium isotopes, uranium isotopes and {sup 90}Sr in concrete samples. Samples are firstly ground and fused with LiBO{sub 2} and Li{sub 2}B{sub 4}O{sub 7}. After dissolution of the fused sample, silicate and alkaline elements are removed followed by radiochemical separation of the target radionuclides using extraction chromatography. Measurement

  10. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM...... of SiNW were also investigated in situ. SiNWs were grown on silicon microcantilever heaters using the VLS mechanism. When grown across a gap between adjacent cantilevers, contact was formed when the SiNW impinged on the sidewall of an adjacent cantilever. Using in situ TEM, SiNW contact formation...

  11. Progress in the decommissioning planning for the Kiev’s research reactor WWR-M

    Directory of Open Access Journals (Sweden)

    Lobach Yuri N.

    2010-01-01

    Full Text Available The Kiev’s research reactor WWR-M has been in operation for more than 50 years and its further operation is planned for no less than 8-10 years. The acting nuclear legislation of Ukraine demands from the operator to perform the decommissioning planning during the reactor operation stage as early as possible. Recently, the Decommissioning Program has been approved by the regulatory body. The Program is based on the plans for the further use of the reactor site and foresees the strategy of immediate dismantling. The Program covers the whole de- commissioning process and represents the main guiding document during the whole decommissioning period, which determines and substantiates the principal technical and organizational activities on the preparation and implementation of the reactor decommissioning, the consequence of the decommissioning stages, the sequence of planned works and measures as well as the necessary conditions and infrastructure for the provision and safe implementation.

  12. Pre-decommissioning complex engineering and radiation inspection of the WWR-M reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lobach, Yuri N.; Shevel, Valery N. [NASU, Kiev (Ukraine). Inst. for Nuclear Research

    2014-04-15

    The Kiev's research reactor WWR-M has been in operation for more than 50 years. Decommissioning plan should to be prepared and approved before the beginning of the decommissioning activities. A key activity during reactor operation is implementing the pre-decommissioning complex engineering and radiation inspection. It should be done with objective to collect, arrange and analyze the data related to the engineering and radiation conditions of the reactor systems and equipment. Recently, such an inspection has been completed. The analysis of available documentation has consisted in the assessment of design, construction, technological, assembling, operation, maintenance and repair documentation for each system. The radiation survey was performed in two different ways, namely, by doing the experimental measurements and by performing calculations. The collected data are provided a comprehensive technical basis for the development of decommissioning documentation which is required for the planning and implementation of the reactor decommissioning. (orig.)

  13. Selection of relevant items for decommissioning costing estimation of a PWR using fuzzy logic

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys Borges; Busse, Alexander Lucas; Moreira, Joao M.L.; Maiorino, Jose Rubens, E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: alexlucasb@gmail.com, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas. Programa de Pos-Graduacao em Energia e Engenharia da Energia

    2015-07-01

    The decommissioning is an important part of a nuclear power plant life cycle which may occur by technical, economical or safety reasons. Decommissioning requires carrying out a large number of tasks that should be planned in advance, involves cost evaluations, preparation of plans of activity and actual operational actions. Despite the large number of tasks, only part of them is relevant for cost estimation purpose. The technical literature and international regulatory agencies suggest a variety of methods for decommissioning cost estimation. Most of them require a very detailed knowledge of the plant and data available suitable for plants that are starting their decommissioning but not for those in the planning stage. The present work aims to apply fuzzy logic to sort out relevant items to cost estimation in order to reduce the work effort involved. The scheme uses parametric equations for specific cost items, and is applied to specific parts of the process of nuclear power plant decommissioning. (author)

  14. Decommissioning strategy and schedule for a multiple reactor nuclear power plant site

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Deiglys Borges; Moreira, Joao M.L.; Maiorino, Jose Rubens, E-mail: deiglys.monteiro@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: joserubens.maiorino@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    The decommissioning is an important part of every Nuclear Power Plant life cycle gaining importance when there are more than one plant at the same site due to interactions that can arise from the operational ones and a decommissioning plant. In order to prevent undesirable problems, a suitable strategy and a very rigorous schedule should implemented and carried. In this way, decommissioning tasks such as fully decontamination and dismantling of activated and contaminated systems, rooms and structures could be delayed, posing as an interesting option to multiple reactor sites. The present work aims to purpose a strategy and a schedule for the decommissioning of a multiple reactor site highlighting the benefits of delay operational tasks and constructs some auxiliary services in the site during the stand by period of the shutdown plants. As a case study, will be presented a three-reactor site which the decommissioning process actually is in planning stage and that should start in the next decade. (author)

  15. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR. PART 7 - FUNCTIONING OF THE DECOMMISSIONING DEVICE

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2015-05-01

    Full Text Available The scope of this paper is to achieve the device functioning steps for the commissioning of the horizontal fuel channels of calandria vessel. The dismantling of the fuel channel is performed by one device which shall provide radiation protection during the stages of decommissioning, ensuring radiation protection of the workers. For the decommissioning operation design shall be taken to ensure all aspects of security, environmental protection during decommissioning operation steps and creating and implementing work procedures resulting from developed decommissioning plan. The fuel channel decommissioning device is designed for dismantling and extraction of the fuel channel and its components. The decommissioning operation consists of following major steps: platform with device positioning to the fuel channel to be dismantled; coupling and locking the device at the fuel channel; unblock, extract and store the channel closure plug; unblock, extract and store the channel shield plug; block and cut the middle and the end of the pressure tube; block, extract and store the end fitting; block, extract and store the half of pressure tube; mounting of the extended closing plug. The operations steps are performed by the Cutting and Extraction Device and by the extraction actuator from the device handling elements assembly. After each step of dismantling is necessary the confirmation its finalization in order to perform the next operation step. The dismantling operation steps of the fuel channel components are repeated for all the 380 channels of the reactor, from the front of calandria side (plane R as well as the rear side (plane R'.

  16. Scientific rationale of Saturn's in situ exploration

    CERN Document Server

    Mousis, O; Lebreton, J -P; Wurz, P; Cavalié, T; Coustenis, A; Courtin, R; Gautier, D; Helled, R; Irwin, P G J; Morse, A D; Nettelmann, N; Marty, B; Rousselot, P; Venot, O; Atkinson, D H; Waite, J H; Reh, K R; Simon-Miller, A; Atreya, S; André, N; Blanc, M; Daglis, I A; Fischer, G; Geppert, W D; Guillot, T; Hedman, M M; Hueso, R; Lellouch, E; Lunine, J I; Murray, C D; O'Donoghue, J; Rengel, M; Sanchez-Lavega, A; Schmider, F -X; Spiga, A; Spilker, T; Petit, J -M; Tiscareno, M S; Ali-Dib, M; Altwegg, K; Bouquet, A; Briois, C; Fouchet, T; Guerlet, S; Kostiuk, T; Lebleu, D; Moreno, R; Orton, G S; Poncy, J

    2014-01-01

    Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk element...

  17. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  18. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  19. Characterisation of radioactive waste products associated with plant decommissioning.

    Science.gov (United States)

    Sejvar, J; Fero, A H; Gil, C; Hagler, R J; Santiago, J L; Holgado, A; Swenson, R

    2005-01-01

    The inventory of radioactivity that must be considered in the decommissioning of a typical 1000 MWe Spanish pressurised water reactor (PWR) was investigated as part of a generic plant decommissioning study. Analyses based on DORT models (in both R-Z and R-theta geometries) were used with representative plant operating history and core power distribution data in defining the expected neutron environment in regions near the reactor core. The activation analyses were performed by multiplying the DORT scalar fluxes by energy-dependent reaction cross sections (based on ENDF/B-VI data) to generate reaction rates on a per atom basis. The results from the ORIGEN2 computer code were also used for determining the activities associated with certain nuclides where multi-group cross section data were not available. In addition to the bulk material activation of equipment and structures near the reactor, the activated corrosion-product (or 'crud') deposits on system and equipment surfaces were considered. The projected activities associated with these sources were primarily based on plant data and experience from operating PWR plants.

  20. Progress on radiochemical analysis for nuclear waste management in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark. Center for Nuclear Technologies (NuTech), Roskilde (Denmark))

    2012-01-15

    This report summarized the progress in the development and improvement of radioanalytical methods for decommissioning and waste management completed in the NKS-B RadWaste 2011 project. Based on the overview information of the analytical methods in Nordic laboratories and requirement from the nuclear industry provided in the first phase of the RadWaste project (2010), some methods were improved and developed. A method for efficiently separation of Nb from nuclear waste especially metals for measurement of long-lived 94Nb by gamma spectrometry was developed. By systematic investigation of behaviours of technetium in sample treatment and chromatographic separation process, an effective method was developed for the determination of low level 99Tc in waste samples. An AMS approachment was investigated to measure ultra low level 237Np using 242Pu for AMS normalization, the preliminary results show a high potential of this method. Some progress on characterization of waste for decommissioning of Danish DR3 is also presented. (Author)

  1. Decommissioning of the high flux beam reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

    2011-07-01

    The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

  2. Resource book: Decommissioning of contaminated facilities at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

  3. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  4. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  5. The role of the IAEA in international guidance and assistance on decommissioning of small nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laraia, M., E-mail: m.laraia@iaea.or [IAEA, Wagramerstrasse 5, A-1400 Vienna (Austria)

    2010-10-15

    The IAEA has included decommissioning in its regular programmes since the early 1970 decade. Since 1985, decommissioning has been considered as a separate programme within the IAEA. Decommissioning has become a topic of great interest to many countries because of the large number of facilities that have reached or are nearing the end of their operating lifetime. Until recently, attention was focused on the decommissioning of nuclear power plants, and to less extent, other large nuclear facilities like nuclear fuel cycle facilities. Quite a few countries, however, are now being faced with the decommissioning of research reactors and other small non-reactor facilities, which are prevailing in most of our Member States. This factor demands equal attention in IAEA programmes. Not unlike IAEA publications, most of existing technical literature on decommissioning addresses technological and other aspects in decontamination and dismantling of large nuclear facilities. It should however be noted that most nuclear facilities are smaller -in size and complexity- and may present a lower radiological risk in decommissioning than the larger facilities. Such facilities e.g. small research reactors, critical assemblies, biological and medical laboratories, factories manufacturing radioactive products etc. are often located in countries where decommissioning experience and related resources are often limited. The risk here is that even minimum requirements and strategies be disregarded in decommissioning of these facilities resulting in unnecessary costs, delays, and possible safety concerns in the course of decontamination and dismantling activities. Besides, guidance on decommissioning of larger facilities can be misleading for smaller facilities. This paper provides an update on current and foreseen IAEA activities in the field of decommissioning of small nuclear facilities. Most IAEA activities can be included into the following two categories: drafting technical and safety

  6. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  7. A study on the optimization of plant life extension and decommissioning for the improvement of economy in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jae In; Jung, K. J.; Chung, U. S.; Baik, S. T.; Park, S. K.; Lee, D. G.; Kim, H. R.; Park, B. Y

    2000-01-01

    Fundamentals on the plan, the national policy, the safety securities for the life extension of the nuclear power plant was established from the domestic/abroad documents and case studies in relation with the life extension and decommissioning of the nuclear power plant. Concerning the decommissioning of the nuclear power plant, the management according to decommissioning stages was analyzed by the investigation of the domestic/abroad standard of the decommissioning (decontamination. dismantling) technology and regulation. Moreover, the study on the cost estimation method has been carried out for the decommissioning of the nuclear power plant. (author)

  8. In-situ combustion test on outcrops in Kramai oil field

    Energy Technology Data Exchange (ETDEWEB)

    Lang, S.

    1982-01-01

    An in-situ combustion test was performed in Kramai oil field, located in the northwestern border of the Zhungerer Basin, China. The main objectives of the test were to investigate directly the reservoir geology, the petrophysical properties of the reservoir rock, and the flow properties of oil, gas and water within the reservoir. The paper describes the test procedure, including the well pattern, the test pit, operation and inspection techniques, etc., and presents a general discussion of the results obtained.

  9. In situ microcosms in aquifer bioremediation studies.

    Science.gov (United States)

    Mandelbaum, R T; Shati, M R; Ronen, D

    1997-07-01

    The extent to which aquifer microbiota can be studied under laboratory or simulated conditions is limited by our inability to authentically duplicate natural conditions in the laboratory. Therefore, extrapolation of laboratory results to real aquifer situations is often criticized, unless validation of the data is performed in situ. Reliable data acquisition is critical for the estimation of chemical and biological reaction rates of biodegradation processes in groundwater and as input data for mathematical models. Typically, in situ geobiochemical studies relied on the injection of groundwater spiked with compounds or bacteria of interest into the aquifer, followed by monitoring the changes over time and space. In situ microcosms provide a more confined study site for measurements of microbial reactions, yet closer to natural conditions than laboratory microcosms. Two basic types of in situ aquifer microcosm have been described in recent years, and both originated from in situ instruments initially designed for geochemical measurements. Gillham et al. [Ground Water 28 (1990) 858-862] constructed an instrument that isolates a portion of an aquifer for in situ biochemical rate measurements. More recently Shati et al. [Environ. Sci. Technol. 30 (1996) 2646-2653] modified a multilayer sampler for studying the activity of inoculated bacteria in a contaminated aquifer Keeping in mind recent advances in environmental microbiology methodologies such as immunofluorescence direct counts, oligonucleotide and PCR probes, fatty acid methyl esther analysis for the detection and characterization of bacterial communities, measurement of mRNA and expression of proteins, it is evident that much new information can now be gained from in situ work. Using in situ microcosms to study bioremediation efficiencies, the fate of introduced microorganisms and general geobiochemical aquifer processes can shed more realistic light on the microbial underworld. The aim of this paper is to

  10. Preliminary decommissioning plan for Clab (Central interim storage for spent fuels); Preliminaer avvecklingsplan foer Clab

    Energy Technology Data Exchange (ETDEWEB)

    Gatter, Patrik; Wikstroem, Nina [SWECO, Stockholm (Sweden); Hallberg, Bengt [Studsvik Nuclear AB, Nykoeping (Sweden)

    2005-12-15

    In the The Swedish Radiation Protection Authority's Regulations SSI FS 2002:04 and The Swedish Nuclear Power Inspectorate's Regulations SKI FS 2004:1 it is stated that the owner of a nuclear facility must have a preliminary plan for decommissioning of the plant. The present report is a preliminary plan for decommissioning the Central interim storage for spent fuels (Clab). Clab will be decommissioned when all spent fuels and reactor core components have been sent to final disposal. The time for the decommissioning is dependent on the time for phasing out the last Swedish nuclear reactor. At present it is thought that Clab will remain in operation until after year 2050. During the work with this project, nothing has been found that indicates that decommissioning Clab could be more complicated than other plants whose decommissioning is closer in time. On the contrary, smaller radiation doses to the personnel are expected, as well as limited amounts of low and medium activity waste. This plan will be updated and more detailed as the time for decommissioning approaches.

  11. Decontamination and decommissioning technology tree and the current status of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H.J.; Kim, G.N.; Lee, K.W.; Chol, W.K.; Jung, C.H.; Kim, C.J.; Kim, S.H.; Kwon, S.O.; Chung, C.M

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point.

  12. On Younger Stakeholders and Decommissioning of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tyszkiewicz, Bogumila; Labor, Bea

    2009-08-15

    In modern democratic countries, information sharing and effective and open communication concerning dismantling and decommissioning of of nuclear facilities as well as the management of nuclear waste are essential for the task to build the confidence required for any further development of nuclear energy. At the same time, it is often perceived that all decision making processes about nuclear energy policies are probably increasingly influenced by public opinion. Nuclear and radiation safety Authorities have a clear role in this regard to provide unbiased information on any health and safety related issues. In order to meet this need, it is necessary for Authorities and others to understand the values and opinions of the citizens, and especially the younger ones. They hold the key to the future at the same time as their perspective on these issues is the least understood. The need of greater public participation in decision making is becoming increasingly recognised the scientific as well as the political community. Many activities are carried out in order to stimulate to higher levels of public involvement in decision making in this active research area. Younger citizens is a stakeholder group that is often excluded in decision- making processes. The existence of large gaps between the involvement of older and younger stakeholders in decision making processes needs to be addressed, since such imbalances might otherwise lead to unequal opportunities between generations and limit the future consumption level of the coming generations. Another demanding task for the present generation is to assure that appropriate financial resources are injected into the Swedish Nuclear Waste Fund. It will thereby be possible for coming generations to undertake efficient measures in the decommissioning and dismantling of older nuclear facilities. To undertake such measures in line with the environmental and health codex is essential. An appropriate balance in this regard must be

  13. Asset Decommissioning Risk Metrics for Floating Structures in the Gulf of Mexico.

    Science.gov (United States)

    Kaiser, Mark J

    2015-08-01

    Public companies in the United States are required to report standardized values of their proved reserves and asset retirement obligations on an annual basis. When compared, these two measures provide an aggregate indicator of corporate decommissioning risk but, because of their consolidated nature, cannot readily be decomposed at a more granular level. The purpose of this article is to introduce a decommissioning risk metric defined in terms of the ratio of the expected value of an asset's reserves to its expected cost of decommissioning. Asset decommissioning risk (ADR) is more difficult to compute than a consolidated corporate risk measure, but can be used to quantify the decommissioning risk of structures and to perform regional comparisons, and also provides market signals of future decommissioning activity. We formalize two risk metrics for decommissioning and apply the ADR metric to the deepwater Gulf of Mexico (GOM) floater inventory. Deepwater oil and gas structures are expensive to construct, and at the end of their useful life, will be expensive to decommission. The value of proved reserves for the 42 floating structures in the GOM circa January 2013 is estimated to range between $37 and $80 billion for future oil prices between 60 and 120 $/bbl, which is about 10 to 20 times greater than the estimated $4.3 billion to decommission the inventory. Eni's Allegheny and MC Offshore's Jolliet tension leg platforms have ADR metrics less than one and are approaching the end of their useful life. Application of the proposed metrics in the regulatory review of supplemental bonding requirements in the U.S. Outer Continental Shelf is suggested to complement the current suite of financial metrics employed.

  14. A Prediction on the Unit Cost Estimation for Decommissioning Activities Using the Experienced Data from DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Park, Hee Seong; Choi, Yoon Dong; Song, Chan Ho; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The KAERI (Korea Atomic Energy Research Institute) has developed the DECOMMIS (Decommissioning Information Management System) and have been applied for the decommissioning project of the KRR (Korea Research Reactor)-1 and 2 and UCP (Uranium Conversion Plant), as the meaning of the first decommissioning project in Korea. All information and data which are from the decommissioning activities are input, saved, output and managed in the DECOMMIS. This system was consists of the web server and the database server. The users could be access through a web page, depending on the input, processing and output, and be modified the permissions to do such activities can after the decommissioning activities have created the initial system-wide data is stored. When it could be used the experienced data from DECOMMIS, the cost estimation on the new facilities for the decommissioning planning will be established with the basic frame of the WBS structures and its codes. In this paper, the prediction on the cost estimation through using the experienced data which were store in DECOMMIS was studied. For the new decommissioning project on the nuclear facilities in the future, through this paper, the cost estimation for the decommissioning using the experienced data which were WBS codes, unit-work productivity factors and annual governmental unit labor cost is proposed. These data were from the KRR and UCP decommissioning project. The differences on the WBS code sectors and facility characterization between new objected components and experienced dismantled components was reduces as scaling factors. The study on the establishment the scaling factors and cost prediction for the cost estimation is developing with the algorithms from the productivity data, now.

  15. TWRS privatization: Phase I monitoring well engineering study and decommissioning plan

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.A.

    1996-09-11

    This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.

  16. Revised cost estimate for the decommissioning of the reactor DR3

    DEFF Research Database (Denmark)

    2001-01-01

    The report describes a revision of the cost estimate for the decommissioning of the research Reactor DR 3 as described in the report Risø-R-1250(EN). Decommissioning of the Nuclear Facilities at Risø National Laboratory. Edited by Kurt Lauridsen. Therevision has been performed by the planning group...... in the Risø Decommissioning Department, and has been carried out as a discussion and evaluation of procedures methods and necessary resources to overcome the different phases of the the decommissioningtask of the Reactor....

  17. The enigma of prokaryotic life in deep hypersaline anoxic basins

    NARCIS (Netherlands)

    van der Wielen, PWJJ; Bolhuis, H; Borin, S; Daffonchio, D; Corselli, C; Giuliano, L; D'Auria, G; de Lange, GJ; Huebner, A; Varnavas, SP; Thomson, J; Tamburini, C; Marty, D; McGenity, TJ; Timmis, KN

    2005-01-01

    Deep hypersaline anoxic basins in the Mediterranean Sea are a legacy of dissolution of ancient subterranean salt deposits from the Miocene period. Our study revealed that these hypersaline basins are not biogeochemical dead ends, but support in situ sulfate reduction, methanogenesis, and heterotroph

  18. Long term commitments concerning decommissioning and waste management. French perspective

    Energy Technology Data Exchange (ETDEWEB)

    Milliat, Charles [EDF/CIDEN, 35/37, rue Louis-Guerin, BP 1212, 69611 Villeurbanne Cedex (France); Decobert, Guy [COGEMA/AREVA, 1 rue des Herons BP 302, Montigny-le-Bretonneux 78054 Saint Quentin en Yvelines (France); Pochon, Etienne [CEA/DEN/DPA, Centre de Saclay 91191 Gif sur Yvette Cedex (France)

    2006-07-01

    The majority of France decommissioning activities is occurring in two sectors: the civilian nuclear facilities and the nuclear facilities dedicated to deterrent. In France there are four major civilian operators: EDF (Electricite de France), AREVA, CEA (Commissariat a l'Energie Atomique) and ANDRA (Agence Nationale pour les Dechets Radioactifs). Nuclear energy provides France nearly 80% of its electricity. Presently there are 58 EDF's operating nuclear power plants (PWR), all the gas cooled graphite nuclear power plant (6 units) have been definitively shutdown as well as Superphenix, a fast breeder reactor. The fuel cycle industry belongs to AREVA which is operating all the industrial installations from uranium ore prospecting and mining till used fuel reprocessing. In France, most of the nuclear R and D installations belong to the CEA. Many installations have already been dismantled, are presently being dismantled or are on a waiting list (research reactors, laboratories, pilot plant, etc). ANDRA is in charge since 1991 of the studies and the operation of waste disposal centres (LLW, MLW, HLW and VLLW). The first repository for waste containing short lived radio nuclides (CM, Centre de la Manche) has been closed in 1994 after 25 years of operation, more of 530 000 m{sup 3} have been disposed, the Aube centre (CA) comes into operation in 1991 and has a capacity of 1 000 000 m{sup 3}, ANDRA has opened a disposal for very low level waste (VLLW), close to the Aube centre, in september 2003. The contents of the paper is as follows: I. Current status; II. National policy; III. Decommissioning technique and Inspection; IV. Radioactive waste management; V. Organisations and responsibilities; VI. Funding; VII. Competent bodies.

  19. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams.

  20. In situ viscometry by optical trapping interferometry

    DEFF Research Database (Denmark)

    Guzmán, C.; Flyvbjerg, Henrik; Köszali, R.

    2008-01-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the f......We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency...

  1. Development of the scenario-based training system to reduce hazards and prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Choi, Jong-Won; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA.

  2. Ecological aspects of decommissioning and decontamination of facilities on the Hanford Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, W.H.; Klepper, E.L.

    1976-06-01

    The Hanford environment and biota are described in relation to decommissioning of obsolescent facilities contaminated with low-levels of radioactive materials. The aridity at Hanford limits both the productivity and diversity of biota. Both productivity and diversity are increased when water is added, as for example on the margins of ponds. Certain plants, especially Salsola kali (Russian thistle or tumbleweed), are avid accumulators of minerals and will accumulate radioactive materials if their roots come into contact with contaminated soils. Data on concentration ratios (pCi per gDW of plant/pCi per gDW soil) are given for several native plants for long-lived radionuclides. Plants are generally more resistant than animals to ionizing radiation so that impacts of high-level radiation sources would be expected to occur primarily in the animals. Mammals and birds are discussed along with information on where they are to be found on the Reservation and what role they may play in the long-term management of radioactive wastes. Food habits of animals are discussed and plants which are palatable to common herbivores are listed. Food chains leading to man are shown to be very limited, including a soil-plant-mule deer-man path for terrestrial sites and a pond-waterfowl-man pathway for pond sites. Retention basins are discussed as an example of how an ecologically sound decommissioningprogram might be planned. Finally, burial of large volumes of low-level wastes can probably be done if barriers to biological invasion are provided.

  3. 76 FR 8785 - ABB Inc.; License Amendment Request for Decommissioning of the ABB Inc., Combustion Engineering...

    Science.gov (United States)

    2011-02-15

    ... specific DCGLs for Th- 232 and Ra-226. The revised decommissioning plan also includes a description of... NRC E-Filing rule (72 FR 49139, August 28, 2007). The E-Filing process requires participants to...

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  5. 75 FR 54363 - BOEMRE Information Collection Activity: 1010-0142, Decommissioning Activities, Extension of a...

    Science.gov (United States)

    2010-09-07

    ... information. SUPPLEMENTARY INFORMATION: Title: 30 CFR 250, subpart Q, Decommissioning Activities. OMB Control... prevent or minimize the likelihood of blowouts, loss of well control, fires, spillages, physical... equipment and subsea protective covering; or other departures. Subtotal 50 responses 150...

  6. Decommissioning in Germany. Current status and perspectives; Stilllegung in Deutschland. Status und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Michael [VGB Power Tech, Essen (Germany)

    2012-11-01

    In 2011 the German government decided as consequence of the Fukushima accident nuclear phase-out. Eight nuclear power plants were shut down, the operating license was withdrawn, nine nuclear power plants are still operated but have a defined shut-down schedule. In view of the NPP companies this decision is contrary to law, the first constitutional complaints were submitted. The decommissioning has not been planned since shortly before lifetime extension has been agreed by the government. A reference concept for the decommissioning and dismantling of nuclear power plants has been developed during the past, the decommissioning and dismantling technology is no more a challenge. The real challenge is the organization of the decommissioning of many plants at the same time, since manpower in the plants, but also in the authorities has to be increased.

  7. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  8. Estimating Radon Flux and Environmental Radiation Dose from Decommissioning Uranium Mill Tailings and Mining Debris

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Based on a case study on uranium mine No.765 of China National Nuclear Corporation (CNNC), the paper briefly describes disposal program and effect of decommissioning uranium mine/mill facilities and quantitatively evaluates radon fluxes and doses to man of gaseous airborne pathway from mill tailings and mining debris before and after decommissioning, including annual individual effective dose to critical groups and annual collective effective dose to the population within 80 km region of the facilities.

  9. Nuclear reactor decommissioning. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The bibliography contains citations concerning nuclear power and research reactor decommissioning and decontamination plans, costs, and safety standards. References discuss the design and evaluation of protective confinement, entombment, and dismantling systems. Topics include decommissioning regulations and rules, public and occupational radiation exposure estimates, comparative evaluation, and reactor performance under high neutron flux conditions. Waste packaging and disposal, environmental compliance, and public opinion are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Technology, safety, and costs of decommissioning a reference nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, K.J.; Jenkins, C.E.; Rhoads, R.E.

    1977-09-01

    Safety and cost information were developed for the conceptual decommissioning of a fuel reprocessing plant with characteristics similar to the Barnwell Nuclear Fuel Plant. The main process building, spent fuel receiving and storage station, liquid radioactive waste storage tank system, and a conceptual high-level waste-solidification facility were postulated to be decommissioned. The plant was conceptually decommissioned to three decommissioning states or modes; layaway, protective storage, and dismantlement. Assuming favorable work performance, the elapsed time required to perform the decommissioning work in each mode following plant shutdown was estimated to be 2.4 years for layaway, 2.7 years for protective storage, and 5.2 years for dismantlement. In addition to these times, approximately 2 years of planning and preparation are required before plant shutdown. Costs, in constant 1975 dollars, for decommissioning were estimated to be $18 million for layaway, $19 million for protective storage and $58 million for dismantlement. Maintenance and surveillance costs were estimated to be $680,000 per year after layaway and $140,000 per year after protective storage. The combination mode of protective storage followed by dismantlement deferred for 10, 30, and 100 years was estimated to cost $64 million, $67 million and $77 million, respectively, in nondiscounted total 1975 dollars. Present values of these costs give reduced costs as dismantlement is deferred. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year radiation dose commitment to the members of the public from airborne releases from normal decommissioning activities were estimated to be less than 11 man-rem.

  11. SGDes project. Decommissioning management system of Enresa; Proyecto SGDes. Sistema de Gestion de Desmantelamiento de Enresa

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Lopez, M.; Julian, A. de

    2013-03-01

    ENRESA, the public company responsible for managing radioactive waste produced in spain and nuclear facilities decommissioning work, has developed a management information system (SGDes) for the decommissioning of nuclear power plants, critical for the company. SGDes system is capable of responding to operational needs for efficient, controlled and secure way. Dismantling activities require a rigorous operations control within highly specialized, process systematization and safety framework, both the human and technological point of view. (Author)

  12. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Culp

    2006-10-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

  13. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  14. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.W. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2001-07-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  15. Treatment options for carcinoma in situ testis

    DEFF Research Database (Denmark)

    Mortensen, M S; Gundgaard, M.G.; Daugaard, G

    2011-01-01

    Carcinoma in situ testis (CIS) is known as the precursor of germ cell cancer of the testis. International guidelines on diagnosis and treatment are inconsistent. Some countries offer routine biopsies of the contralateral testicle in relation to orchidectomy for testicular cancer, whereas other...

  16. Carcinoma in situ in the testis

    DEFF Research Database (Denmark)

    Rørth, M; Rajpert-De Meyts, E; Andersson, L;

    2000-01-01

    Carcinoma in situ (CIS) of the testis is a common precursor of germ-cell tumours in adults and adolescents, with the exception of spermatocytic seminoma. This article reviews existing knowledge on the pathobiology, genetic aspects and epidemiology of CIS, discusses current hypotheses concerning...

  17. Unannounced in situ simulation of obstetric emergencies

    DEFF Research Database (Denmark)

    Sørensen, Jette Led; Lottrup, Pernille; van der Vleuten, Cees;

    2014-01-01

    AIM: To describe how unannounced in situ simulation (ISS) was perceived by healthcare professionals before and after its implementation, and to describe the organisational impact of ISS. STUDY DESIGN: Ten unannounced ISS involving all staff were scheduled March-August 2007. Questionnaire surveys ...

  18. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  19. Application of Robotics in Decommissioning and Decontamination - 12536

    Energy Technology Data Exchange (ETDEWEB)

    Banford, Anthony; Kuo, Jeffrey A. [National Nuclear Laboratory, Risley, Warrington (United Kingdom); Bowen, R.A. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Szilagyi, Andrew; Kirk, Paula [U.S. Department of Energy, Washington, D.C. (United States)

    2012-07-01

    Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure. However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better

  20. Cost calculations for decommissioning and dismantling of nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, I. (Studsvik Nuclear AB (Sweden)); Backe, S. (Institute for Energy Technology (Norway)); Cato, A.; Lindskog, S. (Swedish Nuclear Power Inspectorate (Sweden)); Efraimsson, H. (Swedish Radiation Protection Authority (Sweden)); Iversen, Klaus (Danish Decommissioning (Denmark)); Salmenhaara, S. (VTT Technical Research Centre of Finland (Finland)); Sjoeblom, R. (Tekedo AB, (Sweden))

    2008-07-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility (planning, building and operation), but it was only in the nineteen seventies that the waste issue really surface. Actually, the IAEA guidelines on decommissioning have been issued as recently as over the last ten years, and international advice on finance of decommissioning is even younger. No general international guideline on cost calculations exists at present. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological prerequisites. Consequently, any cost estimates based mainly on the particulars of the building structures and installations are likely to be gross underestimations. The present study has come about on initiative by the Swedish Nuclear Power Inspectorate (SKI) and is based on a common need in Denmark, Finland, Norway and Sweden. The content of the report may be briefly summarised as follows. The background covers design and operation prerequisites as well as an overview of the various nuclear research facilities in the four participating countries: Denmark, Finland, Norway and Sweden. The purpose of the work has been to identify, compile and exchange information on facilities and on methodologies for cost calculation with the aim of achieving an 80 % level of confidence. The scope has been as follows: 1) to establish a Nordic network 2) to compile dedicated guidance documents on radiological surveying, technical planning and financial risk identification and assessment 3) to compile and describe techniques for precise cost calculations at early stages 4) to compile plant and other relevant data A separate section is devoted in the report to good practice for the specific purpose of early but precise cost calculations for research facilities, and a separate section is devoted to techniques for assessment of cost

  1. In situ observational research of the gap wind "Hijikawa-Arashi" in Japan

    Science.gov (United States)

    Ohashi, Yukitaka; Terao, Toru; Shigeta, Yoshinori; Ohsawa, Teruo

    2015-02-01

    The Hijikawa-arashi, a gap wind occurring in Ozu City, Ehime Prefecture, Japan, was investigated through in situ observations of horizontal and vertical directions. Analysis of surface air temperature data revealed that the inland Ozu Basin was radiatively cooled on the days on which the Hijikawa-arashi events occurred. This induced a greater difference in air temperature between the basin and the estuary of the Hijikawa River in comparison to days that no basin cooling occurred. In addition, the wind speeds of the Hijikawa-arashi observed at the estuary of the Hijikawa River were strongly proportional to the sea-level pressure difference between the inland Ozu Basin and the estuary. Theoretical calculations indicated that this pressure gradient force was sufficient for driving the strong wind of the Hijikawa-arashi. Moreover, calculation of the Froude number using vertical meteorological data revealed that the Hijikawa-arashi developed as a supercritical flow. That is, the flow was intensified at the exit of the gap, in accordance with the hydraulic theory. The vertical observations detected the inversion layer over the Hijikawa-arashi and suggested an application of the shallow water theory to this gap wind. The Hijikawa-arashi is an interesting gap flow with a strong wind, despite its small-scale geography relative to other gap winds worldwide. There is an important trigger getting higher basin pressure upstream due to the radiative cooling of the atmosphere and formation of a cold pool at the basin.

  2. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  3. A State of the Art on the Technology for Recycling and Reuse of the Decommissioning Concrete Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chung Hun; Choi, Wang Kyu; Min, Byung Youn; Oh, Won Zin; Lee, Kun Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-02-15

    This report describes the reduction and recycling technology of decommissioning concrete waste. Decontamination and decommissioning (D and D) becomes one of the most important nuclear markets especially in the developed countries including USA, UK and France where lots of the retired nuclear facilities have been waiting for decommissioning. In our country the KAERI has been carrying out the decommissioning of the retired TRIGA MARK II and III research reactors and an uranium conversion plant as the first national decommissioning project since 1998. One of the most important areas of the decommissioning is a management of a huge amount of a decommissioning waste the cost of which is more than half of the total decommissioning cost. Therefore reduction in decommissioning waste by a reuse or a recycle is an important subject of decommissioning technology development in the world. Recently much countries pay attention to recycle the large amount of concrete dismantling waste resulted from both a nuclear and a non nuclear industries. In our country, much attention was taken in a recycle of concrete dismantling waste as a concrete aggregate, but a little success has been resulted due to the disadvantages such as a weakness of hardness and surface mortar contamination. A recycle in nuclear industry and a self disposal of the radioactively contaminated concrete wastes are main directions of concrete wastes resulted from a nuclear facility decommissioning. In this report it was reviewed the state of art of the related technologies for a reduction and a recycle of concrete wastes from a nuclear decommissioning in the country and abroad. Prior to recycle and reuse in the nuclear sector, however, the regulatory criteria for the recycle and reuse of concrete waste should be established in parallel with the development of the recycling technology.

  4. New in situ crosslinking chemistries for hydrogelation

    Science.gov (United States)

    Roberts, Meredith Colleen

    Over the last half century, hydrogels have found immense value as biomaterials in a vast number of biomedical and pharmaceutical applications. One subset of hydrogels receiving increased attention is in situ forming gels. Gelling by either bioresponsive self-assembly or mixing of binary crosslinking systems, these technologies are useful in minimally invasive applications as well as drug delivery systems in which the sol-to-gel transition aids the formulation's performance. Thus far, the field of in situ crosslinking hydrogels has received limited attention in the development of new crosslinking chemistries. Moreover, not only does the chemical nature of the crosslinking moieties allow these systems to perform in situ, but they contribute dramatically to the mechanical properties of the hydrogel networks. For example, reversible crosslinks with finite lifetimes generate dynamic viscoelastic gels with time-dependent properties, whereas irreversible crosslinks form highly elastic networks. The aim of this dissertation is to explore two new covalent chemistries for their ability to crosslink hydrogels in situ under physiological conditions. First, reversible phenylboronate-salicylhydroxamate crosslinking was implemented in a binary, multivalent polymeric system. These gels formed rapidly and generated hydrogel networks with frequency-dependent dynamic rheological properties. Analysis of the composition-structure-property relationships of these hydrogels---specifically considering the effects of pH, degree of polymer functionality, charge of the polymer backbone and polymer concentration on dynamic theological properties---was performed. These gels demonstrate diverse mechanical properties, due to adjustments in the binding equilibrium of the pH-sensitive crosslinks, and thus have the potential to perform in a range of dynamic or bioresponsive applications. Second, irreversible catalyst-free "click" chemistry was employed in the hydrogelation of multivalent azide

  5. Decommissioning analysis of the scrapers in the NSRL Linac using depth profiling

    Institute of Scientific and Technical Information of China (English)

    何丽娟; 李裕熊; 李为民; 陈裕凯; 任广益

    2015-01-01

    For a high-energy electron facility, estimates of induced radioactivity in materials are of considerable impor-tance to ensure that the exposure of personnel and the environment remains as low as reasonably achievable. In addition, accurate predictions of induced radioactivity are essential to the design, operation, and decommission-ing of a high-energy electron linear accelerator. In the case of the 200-MeV electron linac of the National Syn-chrotron Radiation Laboratory (NSRL), the electrons are accelerated by five acceleration tubes and collimated by copper scrapers. The scrapers, which play a vital role in protecting the acceleration cavity, are bombarded by many electrons over a long-term operation, which causes a significant amount of induced radioactivity. Re-cently, the NSRL Linac is the first high-energy electron linear accelerator in China to be out of commission. Its decommissioning is highly significant for obtaining decommissioning experience. This paper focuses on the measurement of induced radioactivity on the fourth scraper, where the electron energy was 158 MeV. The radionuclides were classified according to their half-lives. Such a classification provides a reliable basis for the formulation of radiation protection and facility decommissioning. To determine the high-radioactivity area and to facilitate the decommissioning process, the slicing method was applied in this study. The specific activity of 60Co in each slice was measured at a cooling time of ten months, and the results were compared with the predictions generated by Monte Carlo program FLUKA. The trend of the measured results is in good agreement with the normalized simulation results. The slicing simulation using Monte Carlo method is useful for the de-termination of high-radiation areas and proper material handling protocols and, therefore, lays a foundation for the accumulation of decommissioning experience.

  6. Aagesta-BR3 Decommissioning Cost. Comparison and Benchmarking Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff [NAC International, Henley on Thames (United Kingdom)

    2002-11-01

    This report presents the results of decommissioning cost analyses focusing on discrete working packages within the decommissioning program of the BR3 reactor in Mol, Belgium and comparison of them with cost estimate data for the Aagesta research reactor in Sweden. The specific BR3 work packages analysed were: Primary coolant piping decontamination; Primary coolant piping dismantling; Vulcain reactor internals dismantling; Westinghouse reactor internals dismantling; Reactor vessel dismantling. The main conclusions to be drawn from the analyses are that: The fixed costs related to decontamination and dismantling activities generally are a very important part of the overall resources needed to execute the work, with the Reactor Pressure Vessel (RPV) seemingly being significantly more demanding than other major components. Cutting activities tend to need something like 150 to 200 labour hours per m{sup 2} of reactor equipment dismantled. Fixed investment costs to set up the equipment needed to cut up major vessels or internals appear to be in the range of MSEK 4 to 8. Consumables costs vary according to the nature of the equipment being dismantled. The thicker the metal being cut, the higher the attrition rate for things such as cutting blades. The range of consumables costs at BR3 have been in the range of MSEK 0.1 to 0.2/m{sup 2} dismantled. The extent of detailed information available in the 1996 Aagesta estimate is not sufficient to enable a full comparison with the BR3 decommissioning results. A global first comparison has been attempted by summing the resources expended on the BR3 work packages described in this report with the combined dismantling data presented in the 1996 Aagesta cost estimate report. Very broadly the cost of decontamination plus dismantling of the main process equipment at Aagesta appears to be in the order of MSEK 70, of which MSEK 4 is labour on preparatory/planning work, MSEK 40 is labour on actual decontamination and dismantling and MSEK

  7. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  8. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    Energy Technology Data Exchange (ETDEWEB)

    Hu, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Reciniello, R. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Holden, N. E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  9. Fission-Product Development Laboratory cell-decommissioning project plan

    Energy Technology Data Exchange (ETDEWEB)

    Myrick, T.E.; Schaich, R.W.; Williams, F.V.

    1983-08-01

    The Fission Product Development Laboratory (FPDL) at Oak Ridge National Laboratory (ORNL) was a full-scale processing facility for separating megacurie quantities of /sup 90/Sr, /sup 137/Cs, and /sup 144/Ce for a variety of source applications, operating at full capacity from 1958 to 1975. Since facility shutdown, the inactive portions of the FPDL have been maintained in a protective storage mode as part of the ORNL Surplus Facilities Management Program (SFMP). Due to the significant radio-nuclide inventory remaining in the facility, the high surveillance and maintenance costs necessary to assure radionuclide containment, and the potential for reuse of the facility by other programs, the decommissioning of the inactive portions of the FPDL has been given a high priority by the SFMP. In response to this program direction, plans are being made for initiation of these activities in late FY 1983. This project plan has been prepared to satisfy the program documentation requirements for SFMP project planning. The plan outlines the scope of the proposed effort, describes the proposed methods of project accomplishment, and provides estimates of the project resource needs and schedule.

  10. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post......Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution......-exposure soft bake steps at 95 degrees C. A further high-temperature treatment at 300 degrees C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ...

  11. Inherently safe in situ uranium recovery

    Science.gov (United States)

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  12. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  13. Squamous cell carcinoma in situ after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kambara, Takeshi; Nishiyama, Takafumi; Yamada, Rie; Nagatani, Tetsuo; Nakajima, Hiroshi [Yokohama City Univ. (Japan). School of Medicine; Sugiyama, Asami

    1997-12-31

    We report two cases with Squamous Cell Carcinoma (SCC) in situ caused by irradiation to hand eczemas, resistant to any topical therapies. Both of our cases clinically show palmer sclerosis and flexor restriction of the fingers, compatible to chronic radiation dermatitis. Although SCC arising in chronic radiation dermatitis is usually developed ten to twenty years after irradiation, in our cases SCC were found more than forty years after irradiation. (author)

  14. In situ models, physico-chemical aspects.

    Science.gov (United States)

    ten Cate, J M

    1994-07-01

    In situ (intra-oral) caries models are used for two purposes. First, they provide information about oral physiological processes. Such information helps to detail our knowledge of the oral ecosystem and to verify conclusions from in vitro experiments. Second, in situ models are utilized to test preventive agents in the phase between laboratory testing and clinical trials. Most investigations involving enamel inserts have been aimed at testing new dentifrices. The experimental designs of such studies usually do not allow one to draw conclusions on physico-chemical processes, e.g., because of single point measurements. Studies of model parameters (lesion type, lesion severity, and de/remineralization in time) constitute only a minority of the research reports. The most striking observation obtained with in situ models has been the significant differences in de/remineralization observed among individuals and, more importantly, within one individual during different time periods and between different sites in the same mouth (for review, see ten Cate et al., 1992). Regardless of this, some general findings can be inferred: During in situ demineralization, up to 62 vol% microns/day may be removed from enamel. For dentin specimens, this value may be as high as 89 vol% microns/day. For remineralization, during fluoride dentifrice treatment, a median deposition rate of 0.7%/day (for lesions with integrated mineral loss values between 2000 and 4000 vol% microns) is found. The rate of deposition seems to be correlated with the extent of the pre-formed lesion. This suggests that the number of sites (crystallite surface) available for calcium phosphate precipitation is an important parameter.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. In situ hybridization-theory and practice.

    Science.gov (United States)

    Kadkol, S S; Gage, W R; Pasternack, G R

    1999-09-01

    In situ hybridization is a technique to determine and localize target nucleic acids in morphologically preserved tissue sections. Recent advances in methods have greatly increased the sensitivity of the technique, and it is currently possible to detect extremely few copies of any given target sequence with nonisotopic methods. In this teaching review, we integrate theoretical background, technical considerations, and guidelines for usage for this important component of molecular diagnosis.

  16. In situ Raman mapping of art objects

    Science.gov (United States)

    Lauwers, D.; Brondeel, Ph.; Moens, L.; Vandenabeele, P.

    2016-12-01

    Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  17. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  18. MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-01-05

    The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

  19. In situ synthesis studies of silicon clathrates

    Science.gov (United States)

    Hutchins, Peter Thomas

    Solid state clathrates have shown considerable potential as a new class of materials over the past 30 years. Experimental and theoretical studies have shown that precise tuning and synthetic control of these materials, may lead to desirable properties. Very little is known about the mechanism of formation of the clathrates and so the desire to have accurate synthetic control was, until now, unrealistic. This thesis address the problem using in situ synchrotron x-ray techniques. In this study, experiments were designed to utilise time-resolved in situ diffraction techniques and high temperature 23Na NMR, in efforts to understand the mechanism of formation for this class of expanded framework materials. A complex high vacuum capillary synthesis cell was designed for loading under inert conditions and operation under high vacuum at station 6.2 of the SRS Daresbury. The cell was designed to operate in conjunction with a custom made furnace capable of temperatures in excess of 1000 C, as well as a vacuum system capable of 10"5 bar. The clathrate system was studied in situ, using rapid data collection to elucidate the mechanism of formation. The data were analysed using Rietveld methods and showed a structural link between the monoclinic, C2/c, Zintl precursors and the cubic, Pm3n, clathrate I phase. The phases were found to be linked by relation of the sodium planes in the silicide and the sodium atoms resident at cages centres in the clathrate system. This evidence suggests the guest species is instrumental in formation of the clathrate structure by templating the formation of the cages in the structure. Solid state 23Na NMR was utilised to complete specially design experiments, similar to those complete in situ using synchrotron x-ray techniques. The experiments showed increased spherical symmetry of the alkali metal sites and suggested increased mobility of the guest atoms during heating. In addition, cyclic heating experiments using in situ diffraction showed

  20. Analysis of the Possibility of Required Resources Estimation for Nuclear Power Plant Decommissioning Applying BIM

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu [Korea Institute of construction Technology, Goyang (Korea, Republic of); Kim, Woojung [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Estimation of decommissioning cost, decommissioning strategy, and decommissioning quantity at the time when entering into any decommissioning plans are some elements whose inputs are mandatory for nuclear power plant decommissioning. Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. This study aims at analyzing whether required resources for decommissioning nuclear power plants can be estimated, applying BIM. To achieve this goal, this study analyzed the status quo of BIM such as definition, characteristics, and areas applied, and made use of them when drawing out study results by examining types and features of the tools realizing BIM. In order to review how BIM could be used for decommissioning nuclear power plants, the definition, characteristics and applied areas of BIM were discussed. BIM designs objects of the structures (walls, slabs, pillars, stairs, windows and doors, etc.) by 3D technology and endows attribute (function, structure and usage) information for each object, thereby providing visualized information of structures for participants in construction projects. Major characteristics of BIM attribute information are as follows: - Geometry: The information of objects is represented by measurable geometric information - Extensible object attributes: Objects include pre-defined attributes, and allow extension of other attributes. Any model that includes these attributes forms relationships with other various attributes in order to perform analysis and simulation. - All information including the attributes are integrated to ensure continuity, accuracy and accessibility, and all information used during the life cycle of structures are supported. This means that when information of required resources is added as another attributes other than geometric

  1. Ringhals Site Study 2013 - An assessment of the decommissioning cost for the Ringhals site

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Tommy [Ringhals AB, Ringhals (Sweden); Norberg, Thomas [Solvina AB, Goeteborg (Sweden); Knutsson, Andreas; Fors, Patrik; Sandebert, Camilla [Vattenfall AB, Stockholm (Sweden)

    2013-03-15

    This report presents the decommissioning cost for the Ringhals site as of 2013. The objective has been to make a best estimate of the costs within the uncertainties of a budgetary estimate. To achieve this, the decommissioning costs have been assessed with support from TLG Services Inc., utilizing their knowledge and experience from U.S. decommissioning projects incorporated in their cost estimation platform DECCER. The 2013 estimate has included the development of a Ringhals-specific cost estimation method that allows for successive improvement in the future. In-house experiences have been included and the method is based on the present decommissioning strategy according to Ringhals decommissioning plan. Two basic approaches have been used in the cost assessment; a bottom up approach to develop unit cost factors (UCF) for recurrent work; and a specific analogy approach for cost estimating special items. The basic, activity-dependent, costs have been complemented by period-dependent costs, derived, among other things, from SKB's newly developed reference planning and organizational model for a Swedish decommissioning project. Furthermore, collateral costs based on the experiences of Barsebaeck have been included. As a final point, all costs have been adjusted for industrial standard contingencies, as suggested by TLG, to achieve a best estimate. In order to make the cost intelligible a comprehensive description of the assumptions, boundary conditions and general basis of the estimate is included in this report. All costs have been reported both according to the International Structure for Decommissioning Costing (ISDC) of Nuclear Installations published by OECD/NEA and according to the SKB developed EEF structure. Furthermore, common costs have been isolated to a theoretical unit 0 to make the cost for respective unit even more comparable on a national and international scale. The calculations show that the total cost for the decommissioning of the Ringhals

  2. Decommissioning of a mixed oxide fuel fabrication plant at Winfrith Technolgy Centre

    Energy Technology Data Exchange (ETDEWEB)

    Pengelly, M.G.A. [AEA Technology, Dorchester (United Kingdom)

    1994-01-01

    The Alpha Materials Laboratory (Building A52) at Winfrith contained a mixed oxide fuel fabrication plant which had a capability of producing 10 te/yr of pelleted/compacted fuel and was in operation from 1962 until 1980, when the requirement for this type of fuel in the UK diminished, and the plant became surplus to requirements. A program to develop decommissioning techniques for plutonium plants was started in 1983, addressing the following aspects of alpha plant decommissioning: (1) Re-usable containment systems, (2) Strippable coating technology, (3) Mobile air filtration plant, (4) Size reduction primarily using cold cutting, (5) techniques, (6) Waste packing, and (7) Alpha plant decommissioning methodology. The technology developed has been used to safely and efficiently decommission radioactive plant and equipment including Pu contaminated glove boxes. (63 glove boxes to date) The technology has been widely adopted in the United Kingdom and elsewhere. This paper outlines the general strategies adopted and techniques used for glove box decommissioning in building A52.

  3. Decommissioning of the nuclear facilities at Risø National Laboratory. Descriptions and cost assessment

    DEFF Research Database (Denmark)

    Lauridsen, K.

    2001-01-01

    The report is the result of a project initiated by Risø National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risø National Laboratory to be decommissioned and gives anassessment of the work to be done and the ......The report is the result of a project initiated by Risø National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risø National Laboratory to be decommissioned and gives anassessment of the work to be done...... and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing forthe longer decay periods; some operations still will need to be performed remotely....... Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to betransferred to a Danish repository. For a revision of the cost estimate for the decommissioning of the research Reactor DR 3 please consult...

  4. Guide for radiological characterization and measurements for decommissioning of US Department of Energy surplus facilities

    Energy Technology Data Exchange (ETDEWEB)

    Denahm, D. H.; Barnes, M. G.; Jaquish, R. E.; Corley, J. P.; Gilbert, R. O.; Hoenes, G. R.; Jamison, J. D.; McMurray, B. J.; Watson, E. C.

    1983-08-01

    This Guide describes the elements of radiological characterization at DOE excess facilities in preparation for, during, and subsequent to decommissioning operations. It is the intent of this Guide and accompanying appendices to provide the reader (user) with sufficient information to carry out that task with a minimum of confusion and to provide a uniform basis for evaluating site conditions and verifying that decommissioning operations are conducted according to a specific plan. Some areas of particular interest in this Guide are: the need to involve appropriate staff from the affected states in the early planning stages of decommissioning; the need for and suggested methods of radiological site characterization to complete a decommissioning project, including: historical surveys, environmental pathway analyses, statistical sampling design, and choosing appropriate instrumentation and measurements; the need for and emphasis on quality assurance, documentation and records retention; the establishment of a Design Objective approach to applying site-specific contamination limits based on the ALARA philosophy; the establishment of a ''de minimis'' or minimum dose level of concern for decommissioning operations based on existing standards, experience and ALARA considerations.

  5. 30 CFR 828.12 - In situ processing: Monitoring.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false In situ processing: Monitoring. 828.12 Section 828.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... PROCESSING § 828.12 In situ processing: Monitoring. (a) Each person who conducts in situ...

  6. 30 CFR 828.11 - In situ processing: Performance standards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false In situ processing: Performance standards. 828.11 Section 828.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT... STANDARDS-IN SITU PROCESSING § 828.11 In situ processing: Performance standards. (a) The person who...

  7. The development of the strategy and plan for the decommissioning and abandonment of 36'' offshore oil export pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Richard J. [PIMS of London Ltd, London, (United Kingdom); Galvez Reyes, Marco Antonio [PEMEX Refinacion, Veracruz, (Mexico)

    2010-07-01

    The decommissioning and abandonment of platforms and pipelines are big challenges for the pipeline industry. This paper presents a review of the decommissioning and abandonment processes based on a study case, the Rabon Grande pipeline system. First, the applicable international codes, standards and regulations associated with the decommissioning of pipelines are discussed. Next, this paper presents a review of the decommissioning and abandonment options and considerations available for the study case. The Rabon Grande pipeline system, which was shut down and isolated in 1990 pending decommissioning, is used as an example of applying decommissioning and abandonment best practice and establishing a realistic scope of work. A decommissioning plan is developed in light of these previous studies, followed by an environmental impact assessment. It is found that contrary to what was done in the case of the Rabon Grande pipeline, when a pipeline is to be shutdown, the best practice methodology is to temporally or fully decommission the system as soon as possible.

  8. Decontamination and decommissioning activities photobriefing book FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-08

    The Chicago Pile 5 (CP-5) Reactor, the first reactor built on the Argonne National Laboratory-East site, followed a rich history that had begun in 1942 with Enrico Fermi's original pile built under the west stands at the Stagg Field Stadium of The University of Chicago. CP-5 was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954--79. The reactor was shut down and defueled in 1979, and placed into a lay-up condition pending funding for decontamination and decommissioning (D and D). In 1990, work was initiated on the D and D of the facility in order to alleviate safety and environmental concerns associated with the site due to the deterioration of the building and its associated support systems. A decision was made in early Fiscal Year (FY) 1999 to direct focus and resources to the completion of the CP-5 Reactor D and D Project. An award of contract was made in December 1998 to Duke Engineering and Services (Marlborough, MA), and a D and D crew was on site in March 1999 to begin work, The project is scheduled to be completed in July 2000. The Laboratory has determined that the building housing the CP-5 facility is surplus to the Laboratory's needs and will be a candidate for demolition. In addition to a photographic chronology of FY 1999 activities at the CP-5 Reactor D and D Project, brief descriptions of other FY 1999 activities and of projects planned for the future are provided in this photobriefing book.

  9. DEVELOPMENT OF PERSONAL PROTECTIVE EQUIPMENT FOR DECONTAMINATION AND DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    The purpose of this one-year investigation is to perform a technology integration/search, thereby ensuring that the safest and most cost-effective options are developed and subsequently used during the deactivation and decommissioning (D&D) of U.S. Department of Energy Environmental Management (DOE-EM) sites. Issues of worker health and safety are the main concern, followed by cost. Two lines of action were explored: innovative Personal Cooling Systems (PCS) and Personal Monitoring Equipment (PME). PME refers to sensors affixed to the worker that warn of an approaching heat stress condition, thereby preventing it. Three types of cooling systems were investigated: Pre-Chilled or Forced-Air System (PCFA), Umbilical Fluid-Chilled System (UFCS), and Passive Vest System (PVS). Of these, the UFCS leads the way. The PVS or Gel pack vest lagged due to a limited cooling duration. And the PCFA or chilled liquid air supply was cumbersome and required an expensive and complex recharge system. The UFCS in the form of the Personal Ice Cooling System (PICS) performed exceptionally. The technology uses a chilled liquid circulating undergarment and a Personal Protective Equipment (PPE) external pump and ice reservoir. The system is moderately expensive, but the recharge is low-tech and inexpensive enough to offset the cost. There are commercially available PME that can be augmented to meet the DOE's heat stress alleviation need. The technology is costly, in excess of $4,000 per unit. Workers easily ignore the alarm. The benefit to health & safety is indirect so can be overlooked. A PCS is a more justifiable expenditure.

  10. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also

  11. Mobile worksystems for decontamination and decommissioning operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  12. Comparative analysis of the Oskarshamn 3 and Barsebaeck site decommissioning studies

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Bertil (Bewon, Loeddekoepinge (Sweden)); Joensson, Lars-Olof (Barsebaeck Kraft AB, Loeddekoepinge (Sweden))

    2009-01-15

    Several projects concerning the decommissioning of different types of nuclear facilities have shown that technical methods and equipment are available today for safe dismantling of nuclear facilities of any type or size. However, comparison of individual cost estimates for specific facilities exhibit relatively large variations, and several studies have tried to identify the reasons for these variations. Analysis has shown that decommissioning cost estimates vary depending on a number of factors, including: the boundary conditions and strategy chosen; the cost items taken into account; the origin of the cost estimate; the methodology applied; the political-administrative framework; and the way contingencies are included. In this study, a comparison has been made between two decommissioning studies in the same country, with more or less same decommissioning schedule and with similar overall ideas on cost estimates. However, the two studies had from the start a different focus and different objectives. One study is intended as a reference study for all BWRs in Sweden, while the other focuses on a full site decommissioning. Furthermore, one of the studies is based on direct dismantling and the other on deferred dismantling. A great deal of work therefore had to be devoted in the present study to giving the studies comparable structures and boundary conditions using the OECD/NEA cost estimate structure. The boundary conditions in each of the studies have been thoroughly evaluated qualitatively and quantitatively, and the differences have been explained. In the end, values have been set in the quantitative analysis to verify that the studies could be compared, within the accuracy of what is defined in the industry as a 'budgetary estimate'. Differences still exist relating to what has been included in the studies and to the decommissioning plans and the resulting inventory from site characterization. Such differences must be accepted as long as it is clear

  13. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    Energy Technology Data Exchange (ETDEWEB)

    Elder, H. K.

    1981-10-01

    Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0

  14. 30 CFR 285.517 - How will MMS determine the amounts of the supplemental and decommissioning financial assurance...

    Science.gov (United States)

    2010-07-01

    ... supplemental and decommissioning financial assurance requirements associated with commercial leases? 285.517... Assurance Requirements Financial Assurance Requirements for Commercial Leases § 285.517 How will MMS... decommissioning financial assurance requirements on estimates of the cost to meet all accrued lease...

  15. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 1. Main report

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K J

    1979-01-01

    Detailed technology, safety and cost information are presented for the conceptual decommissioning of a reference small mixed oxide fuel fabrication plant. Alternate methods of decommissioning are described including immediate dismantlement, safe storage for a period of time followed by dismantlement and entombment. Safety analyses, both occupational and public, and cost evaluations were conducted for each mode.

  16. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Science.gov (United States)

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from...

  17. Detection of denitrification genes by in situ rolling circle amplification - fluorescence in situ hybridization (in situ RCA-FISH) to link metabolic potential with identity inside bacterial cells

    DEFF Research Database (Denmark)

    Hoshino, Tatsuhiko; Schramm, Andreas

    2010-01-01

    A target-primed in situ rolling circle amplification (in situ RCA) protocol was developed for detection of single-copy genes inside bacterial cells and optimized with Pseudomonas stutzeri, targeting nitrite and nitrous oxide reductase genes (nirS and nosZ). Two padlock probes were designed per gene...... as Candidatus Accumulibacter phosphatis by combining in situ RCA-FISH with 16S rRNA-targeted FISH. While not suitable for quantification because of its low detection frequency, in situ RCA-FISH will allow to link metabolic potential with 16S rRNA (gene)-based identification of single microbial cells....

  18. Decommissioning of the nuclear facilities at Risoe National Laboratory. Descriptions and cost assessment[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt [ed.

    2001-02-01

    The report is the result of a project initiated by Risoe National Laboratory in June 2000 on request from the Minister of Research and Information Technology. It describes the nuclear facilities at Risoe National Laboratory to be decommissioned and gives an assessment of the work to be done and the costs incurred. Three decommissioning scenarios were considered with decay times of 10, 25 and 40 years for the DR 3 reactor. The assessments conclude, however, that there will not be much to gain by allowing for the longer decay periods; some operations still will need to be performed remotely. Furthermore, the report describes some of the legal and licensing framework for the decommissioning and gives an assessment of the amounts of radioactive waste to be transferred to a Danish repository. (au)

  19. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  20. In-situ thermal testing program strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In the past year the Yucca Mountain Site Characterization Project has implemented a new Program Approach to the licensing process. The Program Approach suggests a step-wise approach to licensing in which the early phases will require less site information than previously planned and necessitate a lesser degree of confidence in the longer-term performance of the repository. Under the Program Approach, the thermal test program is divided into two principal phases: (1) short-term in situ tests (in the 1996 to 2000 time period) and laboratory thermal tests to obtain preclosure information, parameters, and data along with bounding information for postclosure performance; and (2) longer-term in situ tests to obtain additional data regarding postclosure performance. This effort necessitates a rethinking of the testing program because the amount of information needed for the initial licensing phase is less than previously planned. This document proposes a revised and consolidated in situ thermal test program (including supporting laboratory tests) that is structured to meet the needs of the Program Approach. A customer-supplier model is used to define the Project data needs. These data needs, along with other requirements, were then used to define a set of conceptual experiments that will provide the required data within the constraints of the Program Approach schedule. The conceptual thermal tests presented in this document represent a consolidation and update of previously defined tests that should result in a more efficient use of Project resources. This document focuses on defining the requirements and tests needed to satisfy the goal of a successful license application in 2001, should the site be found suitable.

  1. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses...... on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but we propose an approach...

  2. Ekstrauterin graviditet med gestagenspiral in situ

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Schou; Bor, Isil Pinar; Højgaard, Astrid Ditte

    2010-01-01

    The levonorgestrel-releasing intrauterine device (IUD) (Mirena) is a frequently used and effective method of contraception, with a Pearl index of 0.1. The ectopic pregnancy rate is 0.02 per 100 woman-years. Special attention is needed in situations where pregnancy is detected with a levonorgestrel......-releasing IUD in situ, because almost two thirds of these pregnancies are ectopic. We describe one of these rare cases of ectopic pregnancy in a woman aged 37 years, who was admitted to hospital with abdominal pain and vaginal bleeding....

  3. Computer Aided in situ Cognitive Behavioral Therapy

    DEFF Research Database (Denmark)

    Chongtay, Rocio A.; Hansen, John Paulin; Decker, Lone

    2006-01-01

    . One of the most common and successfully used treatments for phobic conditions has been Cognitive Behavioral Therapy (CBT), which helps people learn to detect thinking patterns that trigger the irrational fear and to replace them with more realistic ideas. The health and financial impacts in society...... presented here is being designed in a modular and scalable fashion. The web-based module can be accessed anywhere any time from a PC connected to the internet and can be used alone or as supplement for a location-based module for in situ gradual exposure therapy....

  4. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  5. In situ viscometry by optical trapping interferometry

    Science.gov (United States)

    Guzmán, Camilo; Flyvbjerg, Henrik; Köszali, Roland; Ecoffet, Carole; Forró, László; Jeney, Sylvia

    2008-11-01

    We demonstrate quantitative in situ viscosity measurements by tracking the thermal fluctuations of an optically trapped microsphere subjected to a small oscillatory flow. The measured power spectral density of the sphere's positions displays a characteristic peak at the driving frequency of the flow, which is simply proportional to the viscosity, when measured in units of the thermal power spectral density at the same frequency. Measurements are validated on different water-glycerol mixtures, as well as in a glycerol gradient, where no a priori knowledge of the solution is used to determine the glycerol concentration.

  6. In Situ Preservation of Historic Spacecraft

    Science.gov (United States)

    Barclay, R.; Brooks, R.

    The loss of the Mir space station is shown to symbolize a new consciousness of the value of space artefacts. The reasons why such artefacts as Mir become historic objects worthy of preservation are examined. Preservation of space vehicles in situ is discussed, with particular reference to safety, monitoring and long term costs. An argument is made for a wider definition for World Heritage designations to include material beyond the surface of the Earth, and for international bodies to assess, monitor and oversee these projects. Such heritage sites are seen as an economic driver for the development of space tourism in the 21st century.

  7. Polypropylene/graphite nanocomposites by in situ polymerization; Nanocompositos polipropileno/grafite via polimerizacao in situ

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Marceo A.; Galland, Giselda B., E-mail: griselda@iq.ufrgs.br [Instituto de Quimica, UFRGS, Porto Alegre, RS (Brazil); Quijada, Raul [Universidade de Chile, Santiago (Chile). Centro de Ciencias de los Materiales; Basso, Nara R.S. [Fac. de Quimica, PUCRS, Porto Alegre, RS (Brazil)

    2011-07-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind){sub 2}ZrCl{sub 2} or rac-Me{sub 2}Si(Ind){sub 2}ZrCl{sub 2} produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  8. Assessment of radium-226 bioavailability and bioaccumulation downstream of decommissioned uranium operations, using the caged oligochaete (Lumbriculus variegatus).

    Science.gov (United States)

    Wiramanaden, Cheryl I E; Orr, Patricia L; Russel, Cynthia K

    2015-03-01

    The present study investigated the integrated effects of several geochemical processes that control radium-226 ((226) Ra) mobility in the aquatic environment and bioaccumulation in in situ caged benthic invertebrates. Radium-226 bioaccumulation from sediment and water was evaluated using caged oligochaetes (Lumbriculus variegatus) deployed for 10 d in 6 areas downstream of decommissioned uranium operations in Ontario and Saskatchewan, Canada. Measured (226) Ra radioactivity levels in the retrieved oligochaetes did not relate directly to water and sediment exposure levels. Other environmental factors that may influence (226) Ra bioavailability in sediment and water were investigated. The strongest mitigating influence on (226) Ra bioaccumulation factors was sediment barium concentration, with elevated barium (Ba) levels being related to use of barium chloride in effluent treatment for removing (226) Ra through barite formation. Observations from the present study also indicated that (226) Ra bioavailability was influenced by dissolved organic carbon in water, and by gypsum, carbonate minerals, and iron oxyhydroxides in sediment, suggestive of sorption processes. Environmental factors that appeared to increase (226) Ra bioaccumulation were the presence of other group (II) ions in water (likely competing for binding sites on organic carbon molecules), and the presence of K-feldspars in sediment, which likely act as a dynamic repository for (226) Ra where weak ion exchange can occur. In addition to influencing bioavailability to sediment biota, secondary minerals such as gypsum, carbonate minerals, and iron oxyhydroxides likely help mitigate (226) Ra release into overlying water after the dissolution of sedimentary barite. Environ Toxicol Chem 2015;34:507-517. © 2014 SETAC.

  9. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  10. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  11. AMNT 2014. Key Topic: Fuel, decommissioning and disposal - report. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Seipolt, Thomas [NUKEM Technologies Engineering Services GmbH, Alzenau (Germany); Weber, Stefan [GNS Gesellschaft fuer Nuklear-Service mbH, Essen (Germany); Kock, Ingo [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) GmbH, Koeln (Germany)

    2015-02-15

    Summary report on the following Topical Sessions of the Key Topic 'Fuel, Decommissioning and Disposal' of the Annual Conference on Nuclear Technology held in Frankfurt, 6 to 8 May 2014: - From Pilot Project to an Industrial Service (Thomas Seipolt); - Radioactive Waste Management - Experiences with Interim and Final Storage (Stefan Weber and Ingo Kock). The other Sessions of the Key Topics 'Reactor Operation, Safety', 'Competence, Innovation, Regulation' and 'Fuel, Decommissioning and Disposal' have been covered in atw 10 and 12 (2014), 1 (2015) and will be covered in further issues of atw.

  12. Determination of the activation level in the decommissioning inventory of the NPP Krsko

    Energy Technology Data Exchange (ETDEWEB)

    Jaag, S.; Graebner, G.; Keck, B. [NIS Ingenieurgesellschaft mbH, Alzenau (Germany); Glaser, B. [Nuklearna Elektrarna Krsko (Slovenia)

    2010-05-15

    In support of a plant specific preliminary decommissioning plan the MCNP 5 code system /1/ was used to model the Krsko-reactor core and its external components relevant for activation analysis and decommissioning in 3D-geometry. By MCNP neutron transport calculations transfer functions for the space-dependent total neutron flux and the space-dependent rates (1-group cross sections) of the most relevant nuclear reactions were generated. These transfer functions were combined with the reactor operational data, and ORIGEN-2.1 /2/ irradiation calculations were performed to provide the activation levels of the individual reactor components. The results are presented and the uncertainties are discussed. (orig.)

  13. In Situ Flash Pyrolysis of Straw

    DEFF Research Database (Denmark)

    Bech, Niels

    aske og reducere logistikomkostningerne ville gøre denne alternative energikilde betydelig mere attraktiv. Disse mål kan nås med in situ flash pyrolyse, hvor halm bliver omdannet til bio-olie i marken og koks efterlades på jorden for at forbedre jordstrukturen og tilføre mineraler. Hovedformålene med...... dette Innovations Ph.d. projekt var at understøtte udviklingen af en reaktor til in situ flash pyrolyse, konstruere et mindre stationært pilotanlæg, karakterisere og teste halm bio-olie som flydende brændstof samt udvikle en forretningsplan for kommercialisering af de opnåede resultater. Yderligere var...... det ønsket at undersøge flash pyrolyse af halm generelt og udvikle et værktøj, der kunne modellere den udviklede reaktors opførsel. De eksperimentelle resultater udgør den første rapporterede systematiske undersøgelse af halm flash pyrolyse i en ablativ (solid convective) reaktor. Modellering af...

  14. Molecular cytogenetics using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.; Pinkel, D.; Weier, H-U.; Yu, Loh-Chung.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences to which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.

  15. In situ SU-8 silver nanocomposites

    Directory of Open Access Journals (Sweden)

    Søren V. Fischer

    2015-07-01

    Full Text Available Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  16. Inherently safe in situ uranium recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  17. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  18. In situ combustion field experiences in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, M.; Estrada, M.; Bolivar, J. [INTEVEP, Caracas (Venezuela)

    1995-02-01

    A literature review of four in situ combustion projects: in Miga, Tia Juana, Melones and Morichal fields in Venezuela was made, and a summary of these projects is presented. Reservoir description and project performance data were analyzed. The behavior of the four in situ combustion field tests can be summarized as follows: The problems most often encountered were corrosion and high temperature producing wells. The direction in which the burning front moved was guided essentially by reservoir characteristics. The produced oil was upgraded by about 4{degrees} API, and viscosity was substantially reduced. For Mirochal and Miga fields, the analyses of available information from the combustion projects indicated that the process has been successful in the affected region. Conclusions from this review indicate that the two most frequent problems encountered were operational problems in producing wells and the direction of the burning front. The heterogeneous nature of the sands probably resulted in the burning front moving in a preferential direction, hence reducing areal sweep efficiency.

  19. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  20. Upper Arctic Ocean velocity structure from in-situ observations

    Science.gov (United States)

    Recinos, Beatriz; Rabe, Benjamin; Schauer, Ursula

    2016-04-01

    The gross circulation of the upper and intermediate layers of the Arctic Ocean has been inferred from water mass properties: the mixed layer, containing fresh water from the shelf seas, travels from Siberia towards the Atlantic sector, and the saline and warm layer of Atlantic origin below, follows cyclonic pathways along topographic features. Direct observations of the flow below the sea ice are, however, sparse and difficult to obtain. This research presents the analysis of a unique time series/section of in situ velocity measurements obtained by a drifting ice-tethered platform in the Transpolar Drift near the North Pole. Two instruments were used to obtain in situ measurements of velocity, temperature, salinity and pressure: an Ice-tethered Acoustic Current profiler (ITAC) and an Ice-tethered Profiler (ITP). Both systems were deployed in the Amundsen basin, during the Arctic Ocean expedition ARK XXII/2 of the German Research Vessel Polarstern in September 2007. The systems transmitted profile data from the 14th of September to the 29th of November 2007 and covered a maximum depth range of 23 to 400 m. The results are compared to observations by a shipboard Acoustic Doppler Current Profiler (ADCP) from the 2011 Polarstern expedition ARK-XXVI/3, and wind and ice concentration from satellite reanalysis products. The data set allows an overview of the upper and intermediate circulation along the Lomonosov Ridge. Near-surface velocity and ice drift obtained by the ITAC unit are consistent with the Transpolar Drift Current. Ekman transports calculated from the observed ice drift and assumed ice-ocean drag behaviour suggest that Ekman dynamics influenced velocities at depths greater than the Ekman layer. Direct velocity observations in combination with water mass analyses from the temperature and salinity data, suggest the existence of a current along the Eurasian side of the Lomonosov Ridge within the warm Atlantic layer below the cold halocline. At those depths

  1. Alternatieve in situ bodemsaneringstechnieken; literatuuronderzoek bij het project "In Situ Biorestauratie" Asten

    NARCIS (Netherlands)

    Scheuter AJ; LBG

    1997-01-01

    In developing in situ remediation most of the focus used to be on techniques using infiltration water to supply oxygen to the location. Later, techniques were developed in which soil was flushed with air to enhance the oxygen availability to microorganisms. The aim of the study reported here was to

  2. Decommissioning in the oil and gas industry and the inclusion of decommissioning permit in the Brazilian system of environmental permitting - first thoughts; O descomissionamento na industria de petroleo e gas e a inclusao da licenca de desinstalacao no procedimento de licenciamento ambiental brasileiro - primeiras reflexoes

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Luiz Gustavo Escorcio [Stroeter e Royster Advogados, Sao Paulo, SP (Brazil)]|[Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Faculdade de Direito. Programa de Estudos e Pesquisa em Direito do Petroleo (ANP - PRH33)

    2005-07-01

    This paper aims to promote discussions regarding the decommissioning issue, its role in the protection of the environment and the feasibility of the inclusion of a Decommissioning Permit in the Brazilian System of Environmental Permitting. (author)

  3. DUCTAL CARCINOMA IN SITU OF THE BREAST

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the clinical characteristics, treatment and prognosis of ductal carcinoma in situ (DCIS) of the breast. Methods: Clinicopathological and follow-up data were collected in 52 patients with DCIS. Results: The clinic data showed that 50 patients had signs of breast lumps or/and nipple discharges, 2 patients presented abnormal mammography; 2 patients had lymph node involved; and 14 patients were accompanied with intraductal papillomatosis. All patients were Received surgical therapy. The follow-up data showed 1 patient locally recurred after lumpectomy, and was underwent mastectomy again, then cured. There were no patients died of DCIS. Conclusion: Mastectomy should be a standard surgical mode, and the prognosis of DCIS was favorable, but mammography for screening of asymptomatic women should be strengthened to find DCIS.

  4. IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Anna Knox, A; Chad L Leverette,C; Yianne Kritzas, Y

    2006-11-29

    Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  5. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  6. In-situ SEM electrochemistry and radiolysis

    DEFF Research Database (Denmark)

    Møller-Nilsen, Rolf Erling Robberstad; Norby, Poul

    Electron microscopy is a ubiquitous technique to see effects which are too small to see with traditional optical microscopes. Recently it has become possible to also image liquid samples by encapsulating them from the vacuum of the microscope and a natural evolution from that has been to include...... microelectrodes on the windows to enable studies of electrohcemical processes. In this way it is possible to perform in-situ electrochemical experiments such as electroplating and charge and discharge analysis of battery electrodes. In a typical liquid cell, electrons are accelerated to sufficiently high energies...... to traverse a thin window made by a silicon nitride membrane, and interact with the sample immersed in liquid. In transmission electron microscopy (TEM) the majority of the electrons continue through the sample to form an image. In scanning electron microscopy (SEM) a fraction of the electrons...

  7. Overview of In - Situ Biodegradation and Enhancement

    Institute of Scientific and Technical Information of China (English)

    DONG Jun; Anthony ADZOMANI; ZHAO Yongsheng

    2002-01-01

    Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.

  8. Support Routines for In Situ Image Processing

    Science.gov (United States)

    Deen, Robert G.; Pariser, Oleg; Yeates, Matthew C.; Lee, Hyun H.; Lorre, Jean

    2013-01-01

    This software consists of a set of application programs that support ground-based image processing for in situ missions. These programs represent a collection of utility routines that perform miscellaneous functions in the context of the ground data system. Each one fulfills some specific need as determined via operational experience. The most unique aspect to these programs is that they are integrated into the large, in situ image processing system via the PIG (Planetary Image Geometry) library. They work directly with space in situ data, understanding the appropriate image meta-data fields and updating them properly. The programs themselves are completely multimission; all mission dependencies are handled by PIG. This suite of programs consists of: (1)marscahv: Generates a linearized, epi-polar aligned image given a stereo pair of images. These images are optimized for 1-D stereo correlations, (2) marscheckcm: Compares the camera model in an image label with one derived via kinematics modeling on the ground, (3) marschkovl: Checks the overlaps between a list of images in order to determine which might be stereo pairs. This is useful for non-traditional stereo images like long-baseline or those from an articulating arm camera, (4) marscoordtrans: Translates mosaic coordinates from one form into another, (5) marsdispcompare: Checks a Left Right stereo disparity image against a Right Left disparity image to ensure they are consistent with each other, (6) marsdispwarp: Takes one image of a stereo pair and warps it through a disparity map to create a synthetic opposite- eye image. For example, a right eye image could be transformed to look like it was taken from the left eye via this program, (7) marsfidfinder: Finds fiducial markers in an image by projecting their approximate location and then using correlation to locate the markers to subpixel accuracy. These fiducial markets are small targets attached to the spacecraft surface. This helps verify, or improve, the

  9. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...-Chemistry Laboratories, Inc. (the Licensee) pursuant to 10 CFR part 30. By application dated October...

  10. Nuclear power plant decommissioning. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The bibliography contains citations concerning phase-out and decommissioning of nuclear power plants worldwide. Included are case histories of the dismantling process, hazardous waste management, site monitoring, and economic aspects of the phase-out. Examples include European, Chinese, Eastern European, and United States facilities. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Nuclear power plant decommissioning. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The bibliography contains citations concerning phase-out and decommissioning of nuclear power plants worldwide. Included are case histories of the dismantling process, hazardous waste management, site monitoring, and economic aspects of the phase-out. Examples include European, Chinese, Eastern European, and United States facilities. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. 75 FR 13568 - MMS Information Collection Activity: 1010-0142, Decommissioning Activities, Extension of a...

    Science.gov (United States)

    2010-03-22

    ..., Decommissioning Activities. OMB Control Number: 1010-0142. Abstract: The Outer Continental Shelf (OCS) Lands Act... prevent or minimize the likelihood of blowouts, loss of well control, fires, spillages, physical... cleared of obstructions; remove casing stub or mud line suspension equipment and subsea...

  13. 78 FR 38739 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Science.gov (United States)

    2013-06-27

    ..., DG-1272, in the Federal Register on December 19, 2012 (77 FR 75198), for a 60-day public comment... COMMISSION Standard Format and Content for Post-Shutdown Decommissioning Activities Report AGENCY: Nuclear... (NRC) is issuing Revision 1 of Regulatory Guide (RG) 1.185, ``Standard Format and Content for...

  14. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

  15. Evaluation of Dam Decommissioning in an Ice-Affected River: Case Study

    Science.gov (United States)

    2007-09-01

    Abdul-Mohsen 2005 and Kuby et al. 2005). Conyngham et al. (2006) provide an overview of the ecological and engi- neering aspects of dam decommissioning...2007) CRREL Ice Jam Database (http://www.crrel.usace.army.mil/ierd/ijdb/), accessed March 2007. Kuby , M.J., W.F. Fagan, C.S. ReVelle, W.L. Graf (2005

  16. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    Energy Technology Data Exchange (ETDEWEB)

    Devgun, Jas S. [Nuclear Power Technologies, Sargent and Lundy LLC, Chicago, IL (United States); Laraia, Michele [private consultant, formerly from IAEA, Kolonitzgasse 10/2, 1030, Vienna (Austria); Pescatore, Claudio [OECD, Nuclear Energy Agency, Issy-les-Moulineaux, Paris (France); Dinner, Paul [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria)

    2012-07-01

    Accidents at the Fukushima Dai-ichi reactors as a result of the devastating earthquake and tsunami of March 11, 2011 have not only dampened the nuclear renaissance but have also initiated a re-examination of the design and safety features for the existing and planned nuclear reactors. Even though failures of some of the key site features at Fukushima can be attributed to events that in the past would have been considered as beyond the design basis, the industry as well as the regulatory authorities are analyzing what features, especially passive features, should be designed into the new reactor designs to minimize the potential for catastrophic failures. It is also recognized that since the design of the Fukushima BWR reactors which were commissioned in 1971, many advanced safety features are now a part of the newer reactor designs. As the recovery efforts at the Fukushima site are still underway, decisions with respect to the dismantlement and decommissioning of the damaged reactors and structures have not yet been finalized. As it was with Three Mile Island, it could take several decades for dismantlement, decommissioning and clean up, and the project poses especially tough challenges. Near-term assessments have been issued by several organizations, including the IAEA, the USNRC and others. Results of such investigations will lead to additional improvements in system and site design measures including strengthening of the anti-tsunami defenses, more defense-in-depth features in reactor design, and better response planning and preparation involving reactor sites. The question also arises what would the effect be on the decommissioning scene worldwide, and what would the effect be on the new reactors when they are eventually retired and dismantled. This paper provides an overview of the US and international activities related to recovery and decommissioning including the decommissioning features in the reactor design process and examines these from a new

  17. Fungal biodegradation of phthalate plasticizer in situ.

    Science.gov (United States)

    Pradeep, S; Faseela, P; Josh, M K Sarath; Balachandran, S; Devi, R Sudha; Benjamin, Sailas

    2013-04-01

    This unique study describes how Aspergillus japonicus, Penicillium brocae and Purpureocillium lilacinum, three novel isolates of our laboratory from heavily plastics-contaminated soil completely utilized the plasticizer di(2-ethylhexyl)phthalate (DEHP) bound to PVC blood storage bags (BB) in simple basal salt medium (BSM) by static submerged growth (28 °C). Initial quantification as well as percentage utilization of DEHP blended to BB were estimated periodically by extracting it into n-hexane. A two-stage cultivation strategy was employed for the complete mycoremediation of DEHP from BB in situ. During the first growth stage, about two-third parts of total (33.5% w/w) DEHP bound to BB were utilized in two weeks, accompanied by increased fungal biomass (~0.15-0.32 g per g BB) and sharp declining (to ~3) of initial pH (7.2). At this stagnant growth state (low pH), spent medium was replaced by fresh BSM (pH, 7.2), and thus in the second stage the remaining DEHP (one-third) in BB was utilized completely. The ditches and furrows seen from the topology of the BB as seen by the 3D AFM image further confirmed the bioremediation of DEHP physically bound to BB in situ. Of the three mycelial fungi employed, P. lilacinum independently showed highest efficiency for the complete utilization of DEHP bound to BB, whose activity was comparable to that of the consortium comprising all the three fungi described herein. To sum up, the two-stage cultivation strategy demonstrated in this study shows that a batch process would efficiently remediate the phthalic acid esters blended in plastics on a large scale, and thus it offers potentials for the management of plastics wastes.

  18. In Situ Field Testing of Processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  19. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FORTHE DECOMMISSIONING OF THE FUEL CHANNELS IN THECANDU NUCLEAR REACTOR

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2013-05-01

    Full Text Available As many nuclear power plants are reaching their end of lifecycle, the decommissioning of theseinstallations has become one of the 21stcentury’s great challenges. Each project may be managed differently,depending on the country, development policies, financial considerations, and the availability of qualifiedengineers or specialized companies to handle such projects. The principle objective of decommissioning is toplace a facility into such a condition that there is no unacceptable risk from the decommissioned facility topublic health and safety of the environment. In order to ensure that at the end of its life the risk from a facility iswithin acceptable bounds, action is normally required. The overall decommissioning strategy is todeliver a timely, cost-effective program while maintaining high standards of safety, security and environmentalprotection. If facilities were not decommissioned, they could degrade and potentially present an environmentalradiological hazard in the future. Simply abandoning or leaving a facility after ceasing operations is notconsidered to be an acceptable alternative to decommissioning. The final aim of decommissioning is torecover the geographic site to its original condition.

  20. In-situ gelling polymers for biomedical applications

    CERN Document Server

    2015-01-01

    This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.

  1. Sixteen Years of International Co-operation. The OECD/NEA Co-operative Programme on Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Menon, S.; Valencia, L.

    2002-02-25

    The Co-operative Programme on Decommissioning under the administration of the Radioactive Waste Management Committee of the OECD Nuclear Energy Agency (NEA) has recently completed sixteen years of operation. The Programme, which is essentially an information exchange programme between decommissioning projects, came into being in 1985. It has grown from an initial 10 decommissioning projects from 7 countries to 39 projects from 14 countries today. From purely information exchange to start with, the Programme has, in later years, been functioning as a voice for the collective expression of views of the implementers of nuclear decommissioning. During the first sixteen years of the operation of the Co-operative Programme, nuclear decommissioning has grown from local specialist activities within projects to a competitive commercial industry. By the dismantling and release from regulatory control of over a dozen diverse nuclear facilities, the Programme has been able to demonstrate in practice, that nuclear decommissioning can be performed safely both for the workers and the public, and that this can be done at reasonable costs in an environmentally friendly fashion. During the recent years, discussions and work within the Co-operative Programme, specially within some of the Task Groups, have had/are having effects and repercussions not just in the field of nuclear decommissioning, but can possibly affect activities and regulations in other industries. This paper describes how the Programme and its activities and procedures have evolved over the years and indicate the directions of developments in the organization and execution of decommissioning projects. Finally, it gives a brief overview of the achievements of the Cooperative Programme and visualizes future developments in the field of nuclear decommissioning.

  2. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Lainetti, Paulo E.O. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: rcamilo@ipen.br, e-mail: lainetti@ipen.br

    2009-07-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  3. Regulation evolution in Sweden with emphasis on financial aspects of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, St. [the Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Sjoblomb, R. [Tekedo AB, Nykoping (Sweden)

    2008-07-01

    It is generally agreed that it should be the polluters that pay. A corollary to this principle is that it is those who benefit from e g nuclear electricity generation that should pay all the future costs for decommissioning and waste management. In order for such a corollary to be implemented in practice it is necessary that costs can be estimated, that appropriate funds can be accumulated, and that money can be made available at the time when it is needed. This is the principle underlying the recent (2006) recommendation of the European Union Commission on financial resources for decommissioning. The Commission states that a segregated fund with appropriate controls on use is the preferred option for all nuclear installations, and a clear recommendation to this effect is made for new installations. Furthermore, as regards the estimation of decommissioning costs, the Commission recommends a prudent calculation of costs based on appropriate risk management criteria and external supervision. The commission finds that experience shows that exchange of information between national experts concerning the various approaches to and financial arrangements for decommissioning and waste management is an excellent way of facilitating a common response to safety challenges. However, stringent requirements on assessing and securing assets for liabilities have been in force since many years through the various national implementations of the International Financial Reporting Standards (IFRS) and the International Accounting Standards (IAS). Thus, precise calculations are to be presented each year (except for ongoing court cases), and in case estimation is difficult, various scenarios should be considered and a weighed average presented. In Sweden, the Law of Finance (SFS 2006:647) regulates how the costs for decommissioning and waste management are to be calculated and paid. A fee is levied on the use of nuclear electricity and accumulated in the waste fund. In addition, the

  4. A review of in-situ EBSD experiments

    Institute of Scientific and Technical Information of China (English)

    Stuart I. WRIGHT; Matthew M. NOWELL

    2005-01-01

    Automated EBSD or Orientation Imaging Microscopy (OIM) systems are being used in combination with other equipment within the scanning electron microscope (SEM) to perform in-situ measurements. This paper briefly reviews OIM studies of in-situ experiments performed using tensile and heating stages as well as in-situ serial sectioning. In particular, in-situ OIM scan results on an aluminum alloy sample deformed in tension; phase transformations in a cobalt sample, recrystallization and grain growth in a copper sample and serial sectioning of a nickel super-alloy sample are reviewed.

  5. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  6. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  7. KIT competence center for decommissioning. Innovation and promotion of trainees; Kompetenzzentrum Rueckbau am KIT. Nachwuchsfoerderung und Innovationen fuer den Rueckbau

    Energy Technology Data Exchange (ETDEWEB)

    Gentes, Sascha [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technologie und Management im Baubetrieb

    2016-03-15

    The safe decommissioning of nuclear installations is technically feasible, but is also still a challenge for science, technology and industry. The expertise and know how for decommissioning must be ensured because it will be needed for further decades. Already in 2008 the Karlsruhe Institute of Technology (KIT) had identified this challenge that later emerged through the closure of nuclear power plants in Germany. The KIT opened the professorship Technology and Management of the Decommissioning of Nuclear Installations. In 2014, this section was extended through the dismantling of conventional installations.

  8. Melanoma "in situ" tratado con Imiquimod Melanoma in situ treated with Imiquimod

    Directory of Open Access Journals (Sweden)

    RE Achenbach

    Full Text Available Comunicamos un caso con dos melanomas "in situ", en un varón de 86 años, localizados en ambos lados de la cara con alto riesgo quirúrgico, quien fuera tratado con imiquimod al 5% una vez al día durante dos meses; los resultados hasta el momento, clínicos e histológicos han sido satisfactorios.A 86 years-old man with two melanomas "in situ" at both sides of his face, treated with imiquimod 5% are presented. The patient has a cardiovascular high risk due to isquemic heart disease, for that reason we start the treatment with imiquimod once a day for two months. The clinical and histological response was good and a follow up will be as long as we can.

  9. Photometric Studies of Rapidly Spinning Decommissioned GEO Satellites

    Science.gov (United States)

    Ryan, W.; Ryan, E.

    A satellites general characteristics can be substantially influenced by changes in the space environment. Rapidly spinning decommissioned satellites provide an excellent opportunity to study the rotation-dependent physical processes that affect a resident space objects (RSO) spin kinematics over time. Specifically, inactive satellites at or near geosynchronous Earth-orbit (GEO) provide easy targets for which high quality data can be collected and analyzed such that small differences can be detected under single-year or less time frames. Previous workers have shown that the rotational periods of defunct GEOs have been changing over time [1]. Further, the Yarkovsky-OKeefe-Radzievskii-Paddak (YORP) effect, a phenomenon which has been well-studied in the context of the changing the spin states of asteroids, has recently been suggested to be the cause of secular alterations in the rotational period of inactive satellites [2]. Researchers at the Magdalena Ridge Observatory 2.4-meter telescope (operated by the New Mexico Institute of Mining and Technology) have been investigating the spins states of retired GEOs and other high altitude space debris since 2007 [3]. In this current work, the 2.4-meter telescope was used to track and observe the objects typically over a one- to two-hour period, repeated several times over the course of weeks. When feasible, this is then repeated on a yearly basis. Data is taken with a 1 second cadence, nominally in groups of three 600 second image sets. With the current equipment, the cadence of the image sequences is very precise while the start time is accurate only to the nearest second. Therefore, periods are determined individually using each image sequence. Repeatability of the period determination for each of these sequences is typically on the order of 0.01 second or better for objects where a single period is identified. Spin rate periods determined from the GEO light curves collected thus far have been found to range from ~3 sec to

  10. Chromogenic in situ hybridization: a multicenter study comparing silver in situ hybridization with FISH.

    Science.gov (United States)

    Bartlett, J M S; Campbell, Fiona M; Ibrahim, Merdol; Wencyk, Peter; Ellis, Ian; Kay, Elaine; Connolly, Yvonne; O'Grady, Anthony; Di Palma, Silvana; Starczynski, Jane; Morgan, John M; Jasani, Bharat; Miller, Keith

    2009-10-01

    Our purposes were to perform a robust assessment of a new HER2 chromogenic in situ hybridization test and report on concordance of silver in situ hybridization (SISH) data with fluorescence in situ hybridization (FISH) data and on intraobserver and interlaboratory scoring consistency. HER2 results were scored from 45 breast cancers in 7 laboratories using the Ventana (Tucson, AZ) INFORM HER-2 SISH assay and in 1 central laboratory using a standard FISH assay. Overall, 94.8% of cases were successfully analyzed by SISH across the 6 participating laboratories that reported data. Concordance for diagnosis of HER2 amplification by SISH compared with FISH was high (96.0% overall). Intraobserver variability (8.0%) and intersite variability (12.66%) of absolute HER2/chromosome 17 ratios appear to be tightly controlled across all 6 participating laboratories. The Ventana INFORM HER-2 SISH assay is robust and reproducible, shows good concordance with a standard FISH assay, and complies with requirements in national guidelines for performance of diagnostic tests.

  11. Experimental Measurement of In Situ Stress

    Science.gov (United States)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  12. In situ silica-EPDM nanocomposites obtained via reactive processing

    NARCIS (Netherlands)

    Miloskovska, Elena; Hristova-Bogaerds, Denka; van Duin, Martin; de With, Gijsbertus

    2015-01-01

    In situ rubber nanocomposites prepared via reactive batch mixing and via reactive extrusion were studied. Materials produced via reactive batch mixing showed a significantly higher silica content for a similar reaction time as compared to previously prepared in situ nanocomposites using a diffusion

  13. In-situ tensile testing of propellant samples within SEM

    NARCIS (Netherlands)

    Benedetto, G.L. di; Ramshorst, M.C.J. van; Duvalois, W.; Hooijmeijer, P.A.; Heijden, A.E.D.M. van der; Klerk, W.P.C. de

    2015-01-01

    A tensile module system placed within a FEI NovaNanoSEM 650 Scanning Electron Microscope (SEM) was utilized in this work to conduct in-situ tensile testing of propellant material samples. This tensile module system allows for real-time in-situ SEM analysis of the samples to determine the failure mec

  14. CGS and In Situ Measurements in Gävle 1999

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C; Bargholz, Kim

    1999-01-01

    Calibration of CGS-equipment.In situ measuremts with HPGe-detector (and dose rate meter)in Gävle Sweden as part of the Nordic exercise RESUME99.......Calibration of CGS-equipment.In situ measuremts with HPGe-detector (and dose rate meter)in Gävle Sweden as part of the Nordic exercise RESUME99....

  15. In Situ Immobilization of Selenium in Sediment

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stewart, Thomas Austin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is very little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.

  16. Visualizing T cell migration in-situ

    Directory of Open Access Journals (Sweden)

    Alexandre P Benechet

    2014-07-01

    Full Text Available Mounting a protective immune response is critically dependent on the orchestrated movement of cells within lymphoid tissues. The structure of secondary lymphoid organs regulates immune responses by promoting optimal cell-cell and cell-extracellular matrix interactions. Naïve T cells are initially activated by antigen presenting cells in secondary lymphoid organs. Following priming, effector T cells migrate to the site of infection to exert their functions. Majority of the effector cells die while a small population of antigen specific T cells persist as memory cells in distinct anatomical locations. The persistence and location of memory cells in lymphoid and non-lymphoid tissues is critical to protect the host from re-infection. The localization of memory T cells is carefully regulated by several factors including the highly organized secondary lymphoid structure, the cellular expression of chemokine receptors and compartmentalized secretion of their cognate ligands. This balance between the anatomy and the ordered expression of cell surface and soluble proteins regulates the subtle choreography of T cell migration. In recent years, our understanding of cellular dynamics of T cells has been advanced by the development of new imaging techniques allowing in-situ visualization of T cell responses. Here we review the past and more recent studies that have utilized sophisticated imaging technologies to investigate the migration dynamics of naive, effector and memory T cells.

  17. Cubesat in-situ degradation detector (CIDD)

    Science.gov (United States)

    Rievers, Benny; Milke, Alexander; Salden, Daniel

    2015-07-01

    The design of the thermal control and management system (TCS) is a central task in satellite design. In order to evaluate and dimensionize the properties of the TCS, material parameters specifying the conductive and radiative properties of the different TCS components have to be known including their respective variations within the mission lifetime. In particular the thermo-optical properties of the outer surfaces including critical TCS components such as radiators and thermal insulation are subject to degradation caused by interaction with the space environment. The evaluation of these material parameters by means of ground testing is a time-consuming and expensive endeavor. Long-term in-situ measurements on board the ISS or large satellites not only realize a better implementation of the influence of the space environment but also imply high costs. Motivated by this we propose the utilization of low-cost nano-satellite systems to realize material tests within space at a considerably reduced cost. We present a nanosat-scale degradation sensor concept which realizes low power consumption and data rates compatible with nanosat boundaries at UHF radio. By means of a predefined measurement and messaging cycle temperature curves are measured and evaluated on ground to extract the change of absorptivity and emissivity over mission lifetime.

  18. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Science.gov (United States)

    2012-09-21

    ... Burial Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Draft NUREG; request for comment... document entitled: NUREG-1307 Revision 15, ``Report on Waste Burial Charges: Changes in Decommissioning... a document is referenced. The NUREG-1307, Revision 15 is available electronically under...

  19. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  20. Technology, safety and costs of decommissioning a reference small mixed oxide fuel fabrication plant. Volume 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C. E.; Murphy, E. S.; Schneider, K. J.

    1979-01-01

    Volume 2 contains appendixes on small MOX fuel fabrication facility description, site description, residual radionuclide inventory estimates, decommissioning, financing, radiation dose methodology, general considerations, packaging and shipping of radioactive materials, cost assessment, and safety (JRD)

  1. 75 FR 43158 - Amended Record of Decision for the Decommissioning of Eight Surplus Production Reactors at the...

    Science.gov (United States)

    2010-07-23

    ... resources, ecological resources, and cumulative impacts. Preliminary calculations (based on near-term... ecological resources impacts were identified in the Supplement Analysis relevant to decommissioning... were issued. New engineering controls (such as development and deployment of robotics in an array...

  2. In situ containment and stabilization of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  3. Screening evaluation of radionuclide groundwater concentrations for the end state basement fill model Zion Nuclear Power Station decommissioning project

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled with clean material. The final selection of fill material has not been made.

  4. in situ Calcite Precipitation for Contaminant Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    in situ Calcite Precipitation for Contaminant Immobilization Yoshiko Fujita (Yoshiko.fujita@inl.gov) (Idaho National Laboratory, Idaho Falls, Idaho, USA) Robert W. Smith (University of Idaho-Idaho Falls, Idaho Falls, Idaho, USA) Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent trace ions, such as the short-lived radionuclide strontium-90, is co-precipitation in calcite. Calcite, a common mineral in the arid western U.S., can form solid solutions with trace metals. The rate of trace metal incorporation is susceptible to manipulation using either abiotic or biotic means. We have previously demonstrated that increasing the calcite precipitation rate by stimulating the activity of urea hydrolyzing microorganisms can result in significantly enhanced Sr uptake. Urea hydrolysis causes the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity, and also by liberating the reactive cations from the aquifer matrix via exchange reactions involving the ammonium ion derived from urea: H2NCONH2 + 3H2O ? 2NH4+ + HCO3- + OH- urea hydrolysis >X:2Ca + 2NH4+ ? 2>X:NH4 + Ca2+ ion exchange Ca2+ + HCO3- + OH- ? CaCO3(s) + H2O calcite precipitation where >X: is a cation exchange site on the aquifer matrix. This contaminant immobilization approach has several attractive features. Urea hydrolysis is catalyzed by the urease enzyme, which is produced by many indigenous subsurface microorganisms. Addition of foreign microbes is unnecessary. In turn the involvement of the native microbes and the consequent in situ generation of reactive components in the aqueous phase (e.g., carbonate and Ca or Sr) can allow dissemination of the reaction over a larger volume and/or farther away from an amendment injection point, as compared to direct addition of the reactants at

  5. MENDING THE IN SITU MANIPULATION BARRIER

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN, S.W.

    2006-02-06

    In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations

  6. In-situ bioassays using caged bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    It is important to make the distinction between chemical measurements to assess bioaccumulation potential versus biological measurements to assess potential bioeffects because bioaccumulation is not a bioeffect. Caging provides a unique opportunity to make synoptic measurements of each and facilitates making these measurements over space and time. Measuring bioaccumulation in resident and transplanted bivalves has probably been the most frequently used form of an in-situ bioassay because bivalves concentrate chemicals in their tissues. They are also easy to collect, cage, and measure. The authors have refined bivalve bioassay methods by minimizing the size range of test animals, making repetitive measurements of the same individuals, and standardizing test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Growth measurements can serve two purposes in this assessment strategy: (1) An integrated biological response endpoint that is easily quantifiable and with significance to the population, and (2) A means of calibrating bioaccumulation by assessing the relative health and physiological state of tissues that have accumulated the chemicals. In general, the authors have found the highest bioconcentration factors associated with the highest growth rates, the highest concentrations ({micro}g/g) of chemicals in juvenile mussels, and the highest chemical content ({micro}g/animal) in adult mussels. Without accounting for possible dilution of chemical concentrations by tissue growth or magnification through degrowth, contaminant concentrations can be misleading. Examples are provided for the Sudbury River in Massachusetts (Elliptio complanata), San Diego Bay (Mytilus galloprovincialis), and the Harbor Island Superfund Site in Puget Sound (Mytilus trossulus).

  7. Ductal carcinoma in situ: a challenging disease

    Directory of Open Access Journals (Sweden)

    Sevilay Altintas

    2011-12-01

    Full Text Available Ductal carcinoma in situ (DCIS represents a heterogenous group of lesions with variable malignant potential. Although it is clearly pre-invasive, not all lesions progress to an invasive malignant disease. The significant increase in the frequency of diagnosis is the result of both widespread use of screening mammography and better recognition among pathologists. Treatment is controversial, but for several decades total mastectomy has been considered as the appropriate treatment. The tendency to be less aggressive in terms of surgery has followed the pattern of events observed in the treatment of invasive breast carcinomas. More recently, it has become clear that breastconserving procedures could be applied and selected on the basis of diagnostics and risk factors. When all patients with DCIS are considered, the overall mortality is extremely low, only about 1–2%. On the other hand, breast-conserving surgery is only curative in 75–85%; 50% of the local recurrences have proven to be invasive with a mortality rate of 12–15%. There is no place for axillary node dissection, adjuvant hormonal treatment or chemotherapy in the treatment. Important factors in predicting local recurrence are age, family history, nuclear grade, comedo-type necrosis, tumor size and margin width. With the addition of radiation therapy to excisional surgery, there is a 50% reduction in the overall local recurrence rate. The Van Nuys Prognostic Index (VNPI, recently updated, is a tool that quantifies measurable prognostic factors that can be used in the decision-making process of treatment. Recent data from large cohort studies and randomized trials have emerged to guide treatment. DCIS is now understood to have diverse malignant potential and it is unlikely that there will be a single treatment for this wide range of lesions. Advances in molecular biology and gene expression profiling of human breast tumors have been providing important insights into the relationship

  8. Retinal detachment after laser In Situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Saba Al-Rashaed

    2011-01-01

    Full Text Available Purpose : To report characteristics and outcome of rhegmatogenous retinal detachment (RRD after laser in situ keratomileusis (LASIK for myopia. Materials and Methods : A retrospective chart review of patients who presented with RRD after myopic LASIK over a 10-year period. Results : Fourteen eyes were identified with RRD. Of these, two of 6112 LASIK procedures were from our center. The mean age of patients with RRD was 35.43 years. The mean interval of RRD after LASIK was 37.71 months (range, 4 months to 10 years. The macula was involved in eight eyes and spared in six eyes. Retinal breaks included a macular hole in two eyes, and giant tear in two eyes. Multiple breaks (>2 breaks occurred in 6 cases. Pars plana vitrectomy (PPV was performed in 3 (21.4% eyes, a scleral buckle (SB was performed in 4 (28.5% eyes and 7 (50% eyes underwent combined PPV and SB. Mean follow-up was 15.18 months (range, 1 month to 7 years. The retina was successfully attached in all cases. The final visual acuity was 20/40 or better in 7 (50% eyes, 20/40 to 20/60 in 4 (28.5% eyes, and 20/200 or less in 3 (21.4% eyes. Poor visual outcome was secondary to proliferative vitreoretinopathy, epiretinal membrane, macular scar and amblyopia. Conclusion : The prevalence of RRD after LASIK was low at our institute. Anatomical and visual outcomes were acceptable in eyes that were managed promptly. Although there is no cause-effect relationship between LASIK and RRD, a dilated fundus examination is highly recommended before and after LASIK for myopia.

  9. Evaluation of activated nuclides for Fugen Nuclear Power Station's decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Shiratori, Yoshitake; Kawagoe, Shinji; Matsui, Yuji; Higashiura, Norikazu [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan); Iwasaki, Seiji [Nuclear Energy System Inc., Tokyo (Japan)

    2002-09-01

    The density and amount of radioactive nuclides in equipment or concrete including the reactor core need to be evaluated for the decommissioning of the Fugen Nuclear Power Station. To prepare for decommissioning, measurement and evaluation of the neutron flux density have been executed mainly during the reactor operation, because neutron flux density is measured under that condition. Activation evaluation is mainly executed by the calculation method, and the results are checked by the sampling measurements. All of the equipments is divided into three parts, inner core part, shielding part, outer shielding part. The neutron flux distribution of two former parts can be evaluated by calculation, but the last part cannot; it is evaluated by measuring the activation foil for many points. These evaluation methods are checked by a small number of sampling measurements. (author)

  10. Evaluation of decommissioning alternatives for the Pilot Plant Complex, Aberdeen Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report presents an evaluation of four decommissioning alternatives for the Pilot Plant Complex (PPC), an inactive chemical weapons research, development, and production facility consisting of nine buildings located in the Edgewood Area of the Aberdeen Proving Ground in Maryland. Decommissioning the PPC involves six steps: (1) assessing existing conditions; (2) dismantling the aboveground portions of the buildings (including the floor slabs, paved roads, and sidewalks within the PPC); (3) reducing the size of the demolition debris and sealing the debris in containers for later testing and evaluation; (4) testing and evaluating the debris; (5) conducting site operation and maintenance activities; and (6) recycling or disposing of the debris with or without prior treatment, as appropriate.

  11. Summary of some Recent Work on Financial Planning for Decommissioning of Nuclear Research Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, Staffan (Swedish Nuclear Power Inspectorate, Stockholm (Sweden)); Sjoeblom, Rolf (Tekedo AB, Nykoeping (Sweden))

    2008-06-15

    The new European Union Environmental Liability Directive (ELD) together with the new standard and the increased awareness of the implications of the statements on Environmental liabilities in the IFRS/IA high-light the need for appropriate planning for decommissioning including cost estimations and waste fund management. These new regulations and standards are in some respects more stringent than the strictly nuclear rules. Consequently, The Swedish Nuclear Power Inspectorate has sought communication with non-nuclear actors in the area, including the participation in the recent meeting Environmental Economics and Investment Assessment 11, 27-30 May, 2008, Cadiz, Spain. The present compilation of publications on decommissioning and associated cost calculations in Sweden was prompted by these contacts. The compilation comprises 14 reports published during the last four years

  12. Engineering studies for the Surplus Production Reactor Decommissioning Project at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.; Powers, E.W. [Westinghouse Hanford Co., Richland, WA (United States); Usher, J.M. [Ebasco Services, Inc., Augusta, GA (United States); Yannitell, D.M. [Ebasco Services, Inc., Oak Ridge, TN (United States)

    1993-10-01

    In 1942, the Hanford Site (near Richland, WA) was commissioned as a facility for the production of plutonium. On location there are nine water cooled, graphite-moderated plutonium production reactors, which are now retired from service. Because the reactors contain irradiated reactor components, and because the buildings that house the reactors are contaminated with low levels of reactivity, the DOE has determined that there is a need for action and that some form of decommissioning or continued surveillance and maintenance is necessary. This report discusses assessments of the alternatives which have determined that while continued surveillance and maintenance adequately isolates remaining radioactive materials from the environment and properly protects human health and safety; decontamination and decommissioning (D&D) will ultimately be necessary. The project is technically complex and will likely be designated as a Department of Energy (DOE) Major System Acquisition or Major Project.

  13. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Lydia Ilaiza, E-mail: lydiailaiza@gmail.com; Ryong, Kim Tae [KEPCO International Nuclear Graduate School (KINGS) 658-91 Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan 689-882 (Korea, Republic of)

    2015-04-29

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of this paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.

  14. Study on the financing mechanism and management for decommissioning of nuclear installations in Malaysia

    Science.gov (United States)

    Saleh, Lydia Ilaiza; Ryong, Kim Tae

    2015-04-01

    The whole cycle of the decommissioning process development of repository requires the relevant bodies to have a financial system to ensure that it has sufficient funds for its whole life cycle (over periods of many decades). Therefore, the financing mechanism and management system shall respect the following status: the national position, institutional and legislative environment, technical capabilities, the waste origin, ownership, characteristics and inventories. The main objective of the studies is to focus on the cost considerations, alternative funding managements and mechanisms, technical and non-technical factors that may affect the repository life-cycle costs. As a conclusion, the outcomes of this paper is to make a good recommendation and could be applied to the national planners, regulatory body, engineers, or the managers, to form a financial management plan for the decommissioning of the Nuclear Installation.

  15. Investigation of the responsibility for decommissioning of the Ranstad plant; Utredning av ansvaret foer Ranstadsverkets avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Haakan; Grundfelt, Bertil [Kemakta Konsult AB, Stockholm (Sweden); Froeberg, Magnus [Froeberg och Lundholm Advokatbyraa AB, Stockholm (Sweden)

    2010-11-15

    The issue of decommissioning, including demolition, of the nuclear facility at the Ranstad plant was raised gradually during 2006-2008. It was then found that it was unclear which company or companies that could be responsible for this decommissioning, economically as well as for the implementation. During this time and until the end of 2009, the concerned authorities, notably Swedish Nuclear Power Inspectorate and SSM, collected a large amount of facts as a basis for assessing liability. This material now needed to be systematized and compiled in order to effectively be utilized in such an assessment. SSM also thought that it would be helpful if an independent party with experience in similar issues could contribute to the interpretation of the legal situation. These were the given conditions of the mission which Kemakta Konsult AB, with the assistance of lawyer Magnus Froeberg, were given by SSM in the autumn of 2009. The results are presented in this final report.

  16. An overview of plutonium-238 decontamination and decommissioning (D and D) projects at Mound

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.H.; Davis, W.P.; Draper, D.G.; Geichman, J.R.; Harris, J.C.; Jaeger, R.R.; Sohn, R.L.

    1987-01-01

    Mound is currently decontaminating for restricted reuse and/or decommissioning for conditional release four major plutonium-238 contaminated facilities that contained 1700 linear feet of gloveboxes and associated equipment and services. Several thousand linear feet of external underground piping, associated tanks, and contaminated soil are being removed. Two of the facilities contain ongoing operations and will be reused for both radioactive and nonradioactive programs. Two others will be completely demolished and the land area will become available for future DOE building sites. An overview of the successful techniques and equipment used in the decontamination and decommissioning of individual pieces of equipment, gloveboxes, services, laboratories, sections of buildings, entire buildings, and external underground piping, tanks, and soil in a highly populated residential area is described and pictorially presented.

  17. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

  18. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-07-01

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain on the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.

  19. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    Energy Technology Data Exchange (ETDEWEB)

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  20. Cost calculations for decommissioning and dismantling of nuclear research facilities, Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Inga [StudsvikNuclear AB (Sweden); Backe, S. [Institute for Energy Technology (Norway); Iversen, Klaus [Danish Decommissioning (Denmark); Lindskog, S [Swedish Nuclear Power Inspectorate (Sweden); Salmenhaara, S. [VTT Technical Research Centre of Finland (Finland); Sjoeblom, R. [Tekedo AB (Sweden)

    2006-11-15

    Today, it is recommended that planning of decommission should form an integral part of the activities over the life cycle of a nuclear facility. However, no actual international guideline on cost calculations exists at present. Intuitively, it might be tempting to regard costs for decommissioning of a nuclear facility as similar to those of any other plant. However, the presence of radionuclide contamination may imply that the cost is one or more orders of magnitude higher as compared to a corresponding inactive situation, the actual ratio being highly dependent on the level of contamination as well as design features and use of the facility in question. Moreover, the variations in such prerequisites are much larger than for nuclear power plants. This implies that cost calculations cannot be performed with any accuracy or credibility without a relatively detailed consideration of the radiological and other prerequisites. Application of inadequate methodologies especially at early stages has often lead to large underestimations. The goals of the project and the achievements described in the report are as follows: 1) Advice on good practice with regard to: 1a) Strategy and planning; 1b) Methodology selection; 1c) Radiological surveying; 1d) Uncertainty analysis; 2) Techniques for assessment of costs: 2a) Cost structuring; 2b) Cost estimation methodologies; 3) Compilation of data for plants, state of planning, organisations, etc.; 3a) General descriptions of relevant features of the nuclear research facilities; 3b) General plant specific data; 3c) Example of the decommissioning of the R1 research reactor in Sweden; 3d) Example of the decommissioning of the DR1 research reactor in Denmark. In addition, but not described in the present report, is the establishment of a Nordic network in the area including an internet based expert system. It should be noted that the project is planned to exist for at least three years and that the present report is an interim one

  1. Decommissioning of the BR3 PWR[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Massaut, V.

    1998-07-01

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific program, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1997 are summarized.

  2. Introduction to Decommissioning of Plutonium Production Reactors%钚生产堆退役简介

    Institute of Scientific and Technical Information of China (English)

    王永仙; 安凯媛; 刘东

    2013-01-01

      简要阐述几个国家钚生产堆的退役情况,以期对我国今后生产堆的退役提供借鉴。%  The paper provides briefly the information on the decommissiong of plutonium production reactors in several countries across the world and some suggestions for possible future decommissioning of production reac -tors in our country .

  3. Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  4. Renewables-to-reefs? - Decommissioning options for the offshore wind power industry.

    Science.gov (United States)

    Smyth, Katie; Christie, Nikki; Burdon, Daryl; Atkins, Jonathan P; Barnes, Richard; Elliott, Michael

    2015-01-15

    The offshore wind power industry is relatively new but increasing globally, hence it is important that the whole life-cycle is managed. The construction-operation-decommissioning cycle is likely to take 20-30 years and whilst decommissioning may not be undertaken for many years, its management needs to be addressed in both current and future marine management regimes. This can be defined within a Drivers-Activities-Pressures-State Changes-Impacts (on human Welfare)-Responses framework. This paper considers the main decommissioning options - partial or complete removal of all components. A SWOT analysis shows environmental and economic benefits in partial as opposed to complete removal, especially if habitat created on the structures has conservation or commercial value. Benefits (and repercussions) are defined in terms of losses and gains of ecosystem services and societal benefits. The legal precedents and repercussions of both options are considered in terms of the 10-tenets of sustainable marine management. Finally a 'renewables-to-reefs' programme is proposed.

  5. Development of a Multi-Arm Mobile Robot for Nuclear Decommissioning Tasks

    Directory of Open Access Journals (Sweden)

    Mohamed J. Bakari

    2008-11-01

    Full Text Available This paper concerns the design of a two-arm mobile delivery platform for application within nuclear decommissioning tasks. The adoption of the human arm as a model of manoeuvrability, scale and dexterity is the starting point for operation of two seven-function arms within the context of nuclear decommissioning tasks, the selection of hardware and its integration, and the development of suitable control methods. The forward and inverse kinematics for the manipulators are derived and the proposed software architecture identified to control the movements of the arm joints and the performance of selected decommissioning tasks. We discuss the adoption of a BROKK demolition machine as a mobile platform and the integration with its hydraulic system to operate the two seven-function manipulators separately. The paper examines the modelling and development of a real-time control method using Proportional-Integral-Derivative (PID and Proportional-Integral-Plus (PIP control algorithms in the host computer with National Instruments functions and tools to control the manipulators and obtain feedback through wireless communication. Finally we consider the application of a third party device, such as a personal mobile phone, and its interface with LabVIEW software in order to operate the robot arms remotely.

  6. Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

  7. The final status of the decommissioning of research reactors in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Hong, S. B.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-10-15

    A decommissioning project for the Korean Research Reactors (KRR-1 and 2) was started in 1997 and had been carried out with the goal of completion being by the end of 2008. All the facilities were dismantled and the building surfaces decontaminated. The radioactive waste was packed into 200 liter drums and 4 m{sup 3} containers and temporarily stored on site until their final disposal at the national repository facility. Some of the releasable waste was freely released and utilized for the non-nuclear industries. The assessment of the residual radioactivity was carried out according to Multi Agency Radiation Site Survey and Investigation Manual guidance, and accordingly, the safety of the site release was verified. The site and the buildings will be cleared for a reuse for non nuclear purposes after a review of the assessment. In this paper, the final status of the decommissioning of research reactors in Korea including dismantlement processes, waste management and a final assessment for unrestricted use of the site and buildings for the final goal of the decommissioning project that will be described. (Author)

  8. Technology, safety, and costs of decommissioning a reference pressurized water reactor power station

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Konzek, G.J.; Kennedy, W.E. Jr.

    1978-05-01

    Safety and cost information was developed for the conceptual decommissioning of a large (1175 MW(e)) pressurized water reactor (PWR) power station. Two approaches to decommissioning, Immediate Dismantlement and Safe Storage with Deferred Dismantlement, were studied to obtain comparisons between costs, occupational radiation doses, potential radiation dose to the public, and other safety impacts. Immediate Dismantlement was estimated to require about six years to complete, including two years of planning and preparation prior to final reactor shutdown, at a cost of $42 million, and accumulated occupational radiation dose, excluding transport operations, of about 1200 man-rem. Preparations for Safe Storage were estimated to require about three years to complete, including 1/sup 1///sub 2/ years for planning and preparation prior to final reactor shutdown, at a cost of $13 million and an accumulated occupational radiation dose of about 420 man-rem. The cost of continuing care during the Safe Storage period was estimated to be about $80 thousand annually. Accumulated occupational radiation dose during the Safe Storage period was estimated to range from about 10 man-rem for the first 10 years to about 14 man-rem after 30 years or more. The cost of decommissioning by Safe Storage with Deferred Dismantlement was estimated to be slightly higher than Immediate Dismantlement. Cost reductions resulting from reduced volumes of radioactive material for disposal, due to the decay of the radioactive containments during the deferment period, are offset by the accumulated costs of surveillance and maintenance during the Safe Storage period.

  9. Lessons Learned Following the Successful Decommissioning of a Reaction Vessel Containing Lime Sludge and Technetium-99

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P. M.; Watson, D. D.; Hylko, J. M.

    2002-02-25

    This paper documents how WESKEM, LLC utilized available source term information, integrated safety management, and associated project controls to safely decommission a reaction vessel and repackage sludge containing various Resource Conservation and Recovery Act constituents and technetium-99 (Tc-99). The decommissioning activities were segmented into five separate stages, allowing the project team to control work related decisions based on their knowledge, experience, expertise, and field observations. The information and experience gained from each previous stage and rehearsals contributed to modifying subsequent entries, further emphasizing the importance of developing hold points and incorporating lessons learned. The hold points and lessons learned, such as performing detailed personal protective equipment (PPE) inspections during sizing and repackaging operations, and using foam-type piping insulation to prevent workers from cutting or puncturing their PPE on sharp edge s or small shards generated during sizing operations, minimized direct contact with the Tc-99. To prevent the spread of contamination, the decommissioning activities were performed inside a containment enclosure connected to negative air machines. After performing over 235 individual entries totaling over 285 project hours, only one first aid was recorded during this five-stage project.

  10. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  11. Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

    2009-11-09

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  12. ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-09-30

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    Energy Technology Data Exchange (ETDEWEB)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  16. A State-of-the-Art Report on Technologies of a Safety Assessment and a Radioactivity Exposure Assessment for the Decommissioning Process of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Kang, Young Ae; Lee, Dong Gyu; Lee, Kune Woo; Jung, Chong Hun

    2007-09-15

    This report is to provide the reference contents of research and development for technologies of radioactivity exposure and safety assessment for development of the decommissioning technology for nuclear facilities. This report consists of as follows: - Analyzing and discussing on state-of-the-art technologies of a radioactivity exposure assessment of a decommissioning for nuclear facilities - Analyzing and discussing on state-of-the-art technologies of a safety assessment of a decommissioning for nuclear facilities.

  17. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  18. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  19. In Situ Probe Science at Saturn

    Science.gov (United States)

    Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; Mahaffy, P.; Mousis, O.; Orton, G. S.; Reh, K.; Spilker, L. J.; Spilker, T. R.; Webster, C.

    2014-01-01

    A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud

  20. satellite and in-situ measurements

    Directory of Open Access Journals (Sweden)

    José de Jesús Salas Pérez

    2005-01-01

    Full Text Available La distribución espacial y temporal de la circulación superficial de la Bahía de Banderas se obtuvo con el empleo de series temporales de rapidez de viento, temperatura superficial del mar (AVHR radiómetro y un termógrafo, nivel del mar y trazas ascendentes y descendentes del radar altimétrico ERS-2. El período que abarca dichos datos es de cuatro años, ya que comenzó en el verano de 1997 y finalizó en el invierno de 2002. La marea en la Bahía es mixta (F=0.25 con predominio del armónico M2. La bahía no muestra características de resonancia con la marea del mar abierto. Amplitudes promedio de 30 cms., resultan en corrientes de marea de pocos cms./s. Las bajas frecuencias (periodos mayores a tres días parecen ser los principales generadores de la circulación marina en esta área, en la que predomina el periodo estacional sobre los otros periodos. FEOs fueron aplicadas a las componentes de velocidad, calculadas con observaciones de altimetría medidas en la boca de la Bahía, las cuales mostraron dos principales distribuciones espaciales. El primer periodo de distribución, que se extendió desde febrero hasta julio, muestra un flujo de entrada por la porción norte/sur de la bahía, con un flujo de salida por su boca (distribución anticiclónica. El segundo periodo se extiende desde agosto hasta diciembre y es opuesto al primero (distribución ciclónica. Las características de la circulación aquí presentadas son hipotéticas y observaciones de velocidad medidas in-situ deben confirmarlas

  1. Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

  2. Joint U.S./Russian Study on the Development of a Preliminary Cost Estimate of the SAFSTOR Decommissioning Alternative for the Leningrad Nuclear Power Plant Unit #1

    Energy Technology Data Exchange (ETDEWEB)

    SM Garrett

    1998-09-28

    The objectives of the two joint Russian/U.S. Leningrad Nuclear Power Plant (NPP) Unit #1 studies were the development of a safe, technically feasible, economically acceptable decom missioning strategy, and the preliminary cost evaluation of the developed strategy. The first study, resulting in the decommissioning strategy, was performed in 1996 and 1997. The preliminary cost estimation study, described in this report, was performed in 1997 and 1998. The decommissioning strategy study included the analyses of three basic RBM.K decommission- ing alternatives, refined for the Leningrad NPP Unit #1. The analyses included analysis of the requirements for the planning and preparation as well as the decommissioning phases.

  3. Direction for the Estimation of Required Resources for Nuclear Power Plant Decommissioning based on BIM via Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Insu [Korea Institute of Construction Technology, Goyang (Korea, Republic of); Kim, Woojung [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ways to estimate decommissioning of required resources in the past have imposed great uncertainty since they analyze required resources at the construction stage, analyzing and consulting decommissioning required resources of overseas nuclear power plants. As demands on efficient management and use of complicated construction information increased these days, demands on the introduction of Building Information Modeling (herein after referred to as BIM) technology has increased. In the area of quotation, considerable effects are expected as to the accuracy and reliability predicting construction costs through the characteristics that can automatically estimate quantities by using attribute information of BIM model. BIM-based estimation and quotation of required resources is more accurate than the existing 2D-based quotations and have many advantages such as reviews over constructability and interference. It can be desirable to estimate decommissioning required resources in nuclear power plants using BIM as well as using tools that are compatible with usual international/industrial standards. As we looked into the cases where required resources were estimated, using BIM in Korea and abroad, they dealt with estimation of required resources, estimation of construction cost and process management at large. In each area, methodologies, classification systems, BIM, and realization tests have been used variably. Nonetheless, several problems have been reported, and among them, it is noticeable that although BIM standard classification system exists, no case was found that has used standard classification system. This means that no interlink among OBS (Object Breakdown Structure), WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) was possible. Thus, for nuclear power plant decommissioning, decommissioning method and process, etc. shall be defined clearly in the stage of decommissioning strategy establishment, so that classification systems must be set up

  4. In situ quantification of genomic instability in breast cancer progression

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Solorzano, Carlos; Chin, Koei; Gray, Joe W.; Lockett, Stephen J.

    2003-05-15

    Genomic instability is a hallmark of breast and other solid cancers. Presumably caused by critical telomere reduction, GI is responsible for providing the genetic diversity required in the multi-step progression of the disease. We have used multicolor fluorescence in situ hybridization and 3D image analysis to quantify genomic instability cell-by-cell in thick, intact tissue sections of normal breast epithelium, preneoplastic lesions (usual ductal hyperplasia), ductal carcinona is situ or invasive carcinoma of the breast. Our in situ-cell by cell-analysis of genomic instability shows an important increase of genomic instability in the transition from hyperplasia to in situ carcinoma, followed by a reduction of instability in invasive carcinoma. This pattern suggests that the transition from hyperplasia to in situ carcinoma corresponds to telomere crisis and invasive carcinoma is a consequence of telomerase reactivation afertelomere crisis.

  5. In Situ Oxygen Production from Lunar and Martian Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ oxygen production is of immense importance to NASA in the support of the NASA initiative to sustain man's permanent presence in space. The oxygen produced...

  6. In Situ Instrument to Detect Prebiotic Compounds in Planetary Ices

    Science.gov (United States)

    Getty, Stephanie A.; Dworkin, Jason; Glavin, Daniel P.; Southard, Adrian; Balvin, Manuel; Kotecki, Carl; Ferrance, Jerome

    2013-01-01

    The development of an in situ LC-MS instrument for future planetary science missions to icy surfaces that are of high astrobiology and astrochemistry potential will advance our understanding of organics in the solar system.

  7. Novel Instrumentation for In Situ Combustion Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I is to develop, demonstrate and test a novel instrument based on laser absorption diagnostics for fast, in situ measurements of important...

  8. Epoxy nanodielectrics fabricated with in situ and ex situ techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [ORNL; Polyzos, Georgios [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL; More, Karren Leslie [ORNL

    2012-01-01

    In this study, we report fabrication and characterisation of a nanocomposite system composed of a commercial resin and extremely small (several nanometres in diameter) titanium dioxide particles. Nanoparticles were synthesised in situ with particle nucleation occurring inside the resin matrix. In this nanodielectric fabrication method, the nanoparticle precursor was mixed to the resin solution, and the nanoparticles were in situ precipitated. Note that no high shear mixing equipment was needed to improve particle dispersion - nanoparticles were distributed in the polymer matrix uniformly since particle nucleation occurs uniformly throughout the matrix. The properties of in situ nanodielectrics are compared to the unfilled resin and an ex situ nanocomposite. We anticipate that the presented in situ nanocomposite would be employed in high-temperature superconductivity applications. In additions, the improvement shown in the dielectric breakdown indicates that conventional high-voltage components and systems can be reduced in size with novel nanodielectrics.

  9. Novel Instrumentation for In Situ Combustion Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I is to develop, demonstrate and test a novel instrument based on laser absorption diagnostics for fast, in situ measurements of...

  10. Fathead minnow whole-mount in situ hybridization (WISH)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This study demonstrates the potential of whole-mount in situ hybridization (WISH), in conjunction with quantitative real-time polymerase chain reaction (QPCR)...

  11. An Efficient Heat Exchanger for In Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  12. Real-Time In Situ Landing Site Assessment

    Science.gov (United States)

    Adams, D.; Hibbard, K.; McGee, T.

    2017-02-01

    Landing spacecraft on other objects in the solar system provides a unique opportunity to make direct in situ science measurements, but extraterrestrial environments create unique challenges for the design and testing of the system.

  13. In-situ Airborne Sampler for Advanced Guided Dropsonde Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a low-cost, retrievable and reusable, autonomously guided dropsonde capable of in-situ atmospheric measurements. The proposed effort will...

  14. Regeneration of a confined aquifer after redevelopment and decommission of artesian wells, example from Grafendorf aquifer (Styria, Austria)

    Science.gov (United States)

    Mehmedovski, Nudzejma; Winkler, Gerfried

    2016-04-01

    Water is essential for life and it is therefore necessary to protect drinking water sustainably. Compared to shallow groundwater, deeper groundwater is especially important due to its characteristic tendency to remain extensively unaffected by environmental impacts. Thus, the uncontrolled waste of this valuable resource has to be avoided. A lot of artesian wells have been established in Grafendorf bei Hartberg (Styria, Austria). Almost all wells were not state-of-the art. As a result the different aquifer horizons began to intermix. Additionally some of the artesian wells had a permanent free overflow and the water was not even used. Consequently, since 1950, where the mean discharge of 37 wells was 0,334 l/s per well, the discharge has decreased to 0,090 l/s until 2013, which means a decline of about 75 %. As a reaction to these declines a decommissioning campaign was conducted where 69 artesian wells have been closed by injecting a cement-bentonite suspension (ratio 3:1). The Grafendorf aquifer is situated in the Styrian Basin and consists of 5 separated artesian horizons in Neogene sediments. These artesian horizons range from 42 m (1st horizon) to 176 m (5th horizon) and mostly consist of sand, partly of fine/medium/coarse gravel and partially with minor clay content. In order to analyse the reaction of the Grafendorf aquifer to these redevelopments, 5 monitoring wells could be used for the analysis. Some monitoring wells include different aquifer horizons and hydraulically short cut them. Thus, in this work the analysis focus on the general trend of the whole aquifer system neglecting the individual interactions between the different aquifers. In a first investigation step the hydraulic properties of the aquifer system has been determined using pumping tests which were analysed with different analytical solutions with the software AQTESOLV. Overall the pumping test solutions hardly differ in the transmissivity and hydraulic conductivity. On the contrary the

  15. In situ guided tissue regeneration in musculoskeletal diseases and aging

    OpenAIRE

    Jakob, Franz; Ebert, Regina; Rudert, Maximilian; Nöth, Ulrich; Walles, Heike; Docheva, Denitsa; Schieker, Matthias; Meinel, Lorenz; Groll, Jürgen

    2016-01-01

    In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide “minimal invasive” applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and ...

  16. Characterization of VPO ammoxidation catalysts by in situ methods

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Luecke, B.; Brueckner, A.; Steinike, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Brzezinka, K.W. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    In-situ methods are well known as powerful tools in studying catalyst formation processes, their solid state properties under working conditions and the interaction with the feed, intermediates and products to reveal reaction mechanisms. This paper gives a short overview on results of intense studies using in-situ techniques to reveal VPO catalyst generation processes, interaction of educts, intermediates and products with VPO catalyst surfaces and mechanistic insights. Catalytic data of the ammoxidation of toluene on different VPOs complete these findings. The precursor-catalyst transformation processes were preferently investigated by in-situ XRD, in-situ Raman and in-situ ESR spectroscopy. The interaction of aromatic molecules and intermediates, resp., and VPO solid surfaces was followed by in-situ ESR and in-situ FTIR spectroscopy. Mechanistic information was mainly obtained using in-situ FTIR spectroscopy and the temporal-analysis-of-products (TAP) technique. Catalytic studies were carried out in a fixed-bed microreactor on pure (NH{sub 4}){sub 2}(VO){sub 3}(P{sub 2}O{sub 7}){sub 2}, generated [(NH{sub 4}){sub 2}(VO{sub 3})(P{sub 2}O{sub 7}){sub 2}+V{sub x}O{sub y}] catalysts, having different V{sub x}O{sub y} proportions by use of VOHPO{sub 4} x 1/2H{sub 2}O (V/P=1) and recently studied (VO){sub 3}(PO{sub 4}){sub 2} x 7 H{sub 2}O (V/P=1.5) precursors; the well-known (VO){sub 2}P{sub 2}O{sub 7} was used for comparison. (orig.)

  17. Matrix diffusion model. In situ tests using natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Rasilainen, K. [VTT Energy, Espoo (Finland)

    1997-11-01

    Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.

  18. In situ primary production in young Antarctic sea ice

    OpenAIRE

    Mock, Thomas

    2002-01-01

    An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic sea ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice.

  19. Advanced and In Situ Analytical Methods for Solar Fuel Materials.

    Science.gov (United States)

    Chan, Candace K; Tüysüz, Harun; Braun, Artur; Ranjan, Chinmoy; La Mantia, Fabio; Miller, Benjamin K; Zhang, Liuxian; Crozier, Peter A; Haber, Joel A; Gregoire, John M; Park, Hyun S; Batchellor, Adam S; Trotochaud, Lena; Boettcher, Shannon W

    2016-01-01

    In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

  20. IN SITU FIELD TESTING OF PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what

  1. Characterizing In Situ Uranium and Groundwater Flux

    Science.gov (United States)

    Cho, J.; Newman, M. A.; Stucker, V.; Peacock, A.; Ranville, J.; Cabaniss, S.; Hatfield, K.; Annable, M. D.; Klammler, H.; Perminova, I. V.

    2010-12-01

    The goal of this project is to develop a new sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of uranium and groundwater fluxes. The sensor uses two sorbents and resident tracers to measure uranium flux and specific discharge directly; but, sensor principles and design should also apply to fluxes of other radionuclides. Flux measurements will assist with obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) and further advance conceptual and computational models for field scale simulations. Project efforts will expand our current understanding of how field-scale spatial variations in uranium fluxes and those for salient electron donor/acceptors, and groundwater are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The new sensor uses an anion exchange resin to measure uranium fluxes and activated carbon with resident tracers to measure water fluxes. Several anion-exchange resins including Dowex 21K and 21K XLT, Purolite A500, and Lewatit S6328 were tested as sorbents for capturing uranium on the sensor and Lewatit S6328 was determined to be the most effective over the widest pH range. Four branched alcohols proved useful as resident tracers for measuring groundwater flows using activated carbon for both laboratory and field conditions. The flux sensor was redesigned to prevent the discharge of tracers to the environment, and the new design was tested in laboratory box aquifers and the field. Geochemical modeling of equilibrium speciation using Visual Minteq and an up-to-date thermodynamic data base suggested Ca-tricarbonato-uranyl complexes predominate under field conditions, while calculated uranyl ion activities were sensitive to changes in pH, dissolved inorganic carbon (DIC) and alkaline earth

  2. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    Science.gov (United States)

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals.

  3. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aida M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  4. Real-time remote sensing driven river basin modeling using radar altimetry

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Riegels, Niels; Bauer-Gottwein, Peter

    2011-01-01

    Many river basins have a weak in-situ hydrometeorological monitoring infrastructure. However, water resources practitioners depend on reliable hydrological models for management purposes. Remote sensing (RS) data have been recognized as an alternative to in-situ hydrometeorological data in remote...... approach based entirely on RS and reanalysis data: precipitation was obtained from the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), temperature from the European Centre for Medium-Range Weather Forecast's (ECMWF) Operational Surface Analysis dataset and reference...

  5. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico

    Science.gov (United States)

    Brown, Erik Thorson; Stallard, Robert F.; Larsen, Matthew C.; Raisbeck, Grant M.; Yiou, Francoise

    1995-01-01

    We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of ≈ 43 m Ma −1, consistent with mass balance results. 

  6. In situ vitrification: application analysis for stabilization of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

  7. GROUT TEMPERATURE MEASUREMENTS IN 105-R DISASSEMBLY BASIN D AND E CANAL

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, R.; Collins, M.; Guerrero, H.

    2010-06-03

    The 105-R Reactor Disassembly Basin Grout Placement Strategy Report (SRNL-TR-2009-00157) identifies various portions of the facility that will undergo an in-situ decommissioning process. The estimated residual radioactive contamination in the 105-R facility is shown in Figure 1. Cementitious grout formulations developed by SRNL are being used to immobilize and isolate the radioactive contamination in existing below grade portions of the 105-R building as shown by the gray-hatched area in Figure 2. A Zero Bleed flowable fill was formulated for both dry placement and for underwater placement. The first major area in the 105-R Disassembly Basin to undergo the grouting process was the D&E Canal and an underlying void space known as the Chase. Grout temperature data was needed to ensure that the grout mix design was on the correct grout curing trajectory to meet the material compressive strength requirement of 50 pounds per square inch. Initial grout temperature measurements were needed to confirm and optimize grout mix design fresh property characteristics; i.e. material strength, and set time. Grout curing temperature is an integrating fresh property characteristic that is used to estimate cementitious material strength in accordance with the Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM C 1074. The Maturity Method is used in the construction industry to estimate in-place strength of concrete to allow the start of critical construction activities; e.g. formwork removal, removal of cold weather protection, opening of roadways to traffic, etc. Applying this methodology provides an expeditious means to estimate in-place grout strength based on compressive strength laboratory results. The Maturity Method results define the relationship between strength-time and age-time that may be utilized in the field for estimating strength after a given time of placement. Maturation curves were developed under the 105-R Reactor Disassembly Basin

  8. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure, Volume 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N. [Pacific Northwest Lab., Richland, WA (United States)

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1988), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the {prime}978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  9. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  10. 30 CFR 285.529 - Can I use a lease- or grant-specific decommissioning account to meet the financial assurance...

    Science.gov (United States)

    2010-07-01

    ... Assurance Requirements Requirements for Financial Assurance Instruments § 285.529 Can I use a lease- or... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Can I use a lease- or grant-specific decommissioning account to meet the financial assurance requirements related to decommissioning? 285.529...

  11. Restoration of contaminated sites in the project PIMIC decommissioning. The case of the lentil; Restauracion de terrenos contaminados en el proyecto PIMIC desmantelamiento. El caso de la lenteja

    Energy Technology Data Exchange (ETDEWEB)

    Medina Tellez, G.

    2010-07-01

    During execution PIMIC Decommissioning Project at CIEMAT has detected the existence of contaminated sites in some parts of the area affected by the project. The inclusion within the scope of this project, decontamination, involves dealing with special challenges, as to what are the decommissioning of contaminated systems and equipment in buildings.

  12. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  13. Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, W.E. Jr.; Napier, B.A.

    1983-07-01

    This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm/sup 2/), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste.

  14. Characterization of the Hanford 300 area burial grounds. Final report: decontamination and decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.J.; Ames, L.L.; Fitzner, R.E.; Gee, G.W.; Sandness, G.A.; Simmons, C.S.

    1980-01-01

    Pacific Northwest Laboratory conducted a series of investigations at the Hanford Site to develop technologies for characterizing and monitoring radioactive waste burial facilities that could be used in determining appropriate decommissioning alternatives. Specific objectives were to develop unique functional geophysics, geochemical, soil physics, numerical modeling, and biological methodologies needed to better characterize and monitor buried radioactive waste disposal sites. To meet these objectives the project was divided into four tasks: Task I, Geophysical Evaluation - Geophysical surveys were taken to locate and define the gross composition of waste materials. Task II, Geochemical Analysis - The interaction of disposed radionuclides with geologic media was analyzed through an integrated radiochemical procedure. Task III, Fluid Transport and Modeling - Computer modeling of water migration in partially saturated groundwater systems was verified with actual data collected at a field test facility used to monitor micrometeorological and geohydrological energy and mass transfer factors. Task IV, Biological Transport - Several biological organisms were evaluated for potential radionuclide uptake and transport. Along with the four tasks, the project included a review of pertinent literature and regulatory issues that might affect the alternatives selected. Surveys were taken of the surrounding area and specific sites and operations. The overall results indicated that the 300 Area Burial Grounds have been adequate in containing radioactive waste. Based on the results of the project, the alternatives identified for decommissioning these sites are exhumation and translocation, entombment, perpetual care, and abandonment. Perpetual care (currently used) appears to be the best decommissioning alternative for these burial grounds at this time. However, another alternative may be selected depending on future waste management policies, plans, or activities.

  15. Nanoparticles laden in situ gelling system for ocular drug targeting

    Directory of Open Access Journals (Sweden)

    Divya Kumar

    2013-01-01

    Full Text Available Designing an ophthalmic drug delivery system is one of the most difficult challenges for the researchers. The anatomy and physiology of eye create barriers like blinking which leads to the poor retention time and penetration of drug moiety. Some conventional ocular drug delivery systems show shortcomings such as enhanced pre-corneal elimination, high variability in efficiency, and blurred vision. To overcome these problems, several novel drug delivery systems such as liposomes, nanoparticles, hydrogels, and in situ gels have been developed. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form viscoelastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion-induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. Thus, a combination of two drug delivery systems, i.e., nanoparticles and in situ gel, has been developed which is known as nanoparticle laden in situ gel. This review describes every aspects of this novel formulation, which present the readers an exhaustive detail and might contribute to research and development.

  16. In situ Measurements of Phytoplankton Fluorescence Using Low Cost Electronics

    Directory of Open Access Journals (Sweden)

    Dana L. Wright

    2013-06-01

    Full Text Available Chlorophyll a fluorometry has long been used as a method to study phytoplankton in the ocean. In situ fluorometry is used frequently in oceanography to provide depth-resolved estimates of phytoplankton biomass. However, the high price of commercially manufactured in situ fluorometers has made them unavailable to some individuals and institutions. Presented here is an investigation into building an in situ fluorometer using low cost electronics. The goal was to construct an easily reproducible in situ fluorometer from simple and widely available electronic components. The simplicity and modest cost of the sensor makes it valuable to students and professionals alike. Open source sharing of architecture and software will allow students to reconstruct and customize the sensor on a small budget. Research applications that require numerous in situ fluorometers or expendable fluorometers can also benefit from this study. The sensor costs US$150.00 and can be constructed with little to no previous experience. The sensor uses a blue LED to excite chlorophyll a and measures fluorescence using a silicon photodiode. The sensor is controlled by an Arduino microcontroller that also serves as a data logger.

  17. Nanoparticles laden in situ gel for sustained ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Himanshu Gupta

    2013-01-01

    Full Text Available Proper availability of drug on to corneal surface is a challenging task. However, due to ocular physiological barriers, conventional eye drops display poor ocular bioavailability of drugs (< 1%. To improve precorneal residence time and ocular penetration, earlier our group developed and evaluated in situ gel and nanoparticles for ocular delivery. In interest to evaluate the combined effect of in situ gel and nanoparticles on ocular retention, we combined them. We are the first to term this combination as "nanoparticle laden in situ gel", that is, poly lactic co glycolic acid nanoparticle incorporated in chitosan in situ gel for sparfloxacin ophthalmic delivery. The formulation was tested for various physicochemical properties. It showed gelation pH near pH 7.2. The observation of acquired gamma camera images showed good retention over the entire precorneal area for sparfloxacin nanoparticle laden in situ gel (SNG as compared to marketed formulation. SNG formulation cleared at a very slow rate and remained at corneal surface for longer duration as no radioactivity was observed in systemic circulation. The developed formulation was found to be better in combination and can go up to the clinical evaluation and application.

  18. Management of Adenocarcinoma In Situ of Cervix in Pregnancy

    Directory of Open Access Journals (Sweden)

    Alireza Abidi

    2008-03-01

    Full Text Available Adenocarcinoma in situ is one of the premalignant lesions of the cervix and its incidence is believed to be increasing while the pathogenesis of the disease is not clearly understood. Management of Adenocarcinoma in situ (AIS unlike carcinoma in situ (CIS has not been clearly described in the current literature. Here we describe conservative management and serial colposcopy of two pregnant women with adenocarcinoma in situ of the cervix. Both of the cases were diagnosed initially with abnormal Pap smears and were confirmed by colposcopic directed biopsy. None of the patients agreed with any invasive procedure during pregnancy and both of them were followed with serial colposcopy. None of the lesions showed any evidence of progression. All cases underwent cold knife cone biopsies in their postpartum period. Hysterectomy as the final treatment has been done in both cases with no evidence of progression of the disease during pregnancy. We concluded that adenocarcinoma in situ of the cervix during pregnancy could be managed conservatively with definite treatment postponed till after delivery.

  19. Rapid in situ detection of chromosome 21 by PRINS technique

    Energy Technology Data Exchange (ETDEWEB)

    Pellestor, F.; Girardet, A.; Andreo, B. [CNRS UPR 9008, Montpellier (France)] [and others

    1995-05-08

    The {open_quotes}PRimed IN Situ labeling{close_quotes} (PRINS) method is an interesting alternative to in situ hybridization for chromosomal detection. In this procedure, chromosome labeling is performed by in situ annealing of specific oligonucleotide primers, followed by primer elongation by a Taq polymerase in the presence of labeled nucleotides. Using this process, we have developed a simple and semi-automatic method for rapid in situ detection of human chromosome 21. The reaction was performed on a programmable temperature cycler, with a chromosome 21 specific oligonucleotide primer. Different samples of normal and trisomic lymphocytes and amniotic fluid cells were used for testing the method. Specific labeling of chromosome 21 was obtained in both metaphases and interphase nuclei in a 1 hour reaction. The use of oligonucleotide primer for in situ labeling overcomes the need for complex preparations of specific DNA probes. The present results demonstrate that PRINS may be a simple and reliable technique for rapidly detecting aneuploidies. 18 refs., 1 fig.

  20. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    CERN Document Server

    Lumia, M E

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  1. Decommissioning of the ASTRA research reactor: Planning, executing and summarizing the project

    Directory of Open Access Journals (Sweden)

    Meyer Franz

    2010-01-01

    Full Text Available The decommissioning of the ASTRA research reactor at the Austrian Research Centres Seibersdorf was described within three technical papers already released in Nuclear Technology & Radiation Protection throughout the years 2003, 2006, and 2008. Following a suggestion from IAEA the project was investigated well after the files were closed regarding rather administrative than technical matters starting with the project mission, explaining the project structure and identifying the key factors and the key performance indicators. The continuous documentary and reporting system as implemented to fulfil the informational needs of stake-holders, management, and project staff alike is described. Finally the project is summarized in relationship to the performance indicators.

  2. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

  3. Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Main Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. S.; Holter, G. M.

    1980-06-01

    Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 1 (Main Report) contains background information and study results in summary form.

  4. Cutting Technology for Decommissioning of the Reactor Pressure Vessels in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwan Seong; Kim, Geun Ho; Moon, Jei Kwon; Choi, Byung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Lots of nuclear power plants have been decommissioned during the last 2 decades. An essential part of this work is the dismantling of the Reactor Pressure Vessel and its Internals. For this purpose a wide variety of different cutting technologies have been developed, adapted and applied. A detailed introduction to Plasma Arc cutting, Contact Arc Metal cutting and Abrasive Water Suspension Jet cutting is given, as it turned out that these cutting technologies are particularly suitable for these type of segmentation work. A comparison of these technologies including gaseous emissions, cutting power, manipulator requirements as well as selected design approaches are given. Process limits as well as actual limits of application are presented

  5. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  6. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  7. Decontamination and decommissioning project of the TRIGA mark - 2 and 3 research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Baik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Kim, J. K.; Lee, D. G.; Kim, H. R.; Lee, B. J.; Yang, S. H.

    2001-01-15

    The decommissioning license for KRR (Korea Research Reactor) 1 and 2 was issued Nov. 23, 2000. The atmospheric stability on the KRR site was evaluated using the meteorological data measured at the site. From the results of this evaluation, the population dose was evaluated for the public who lives at the periphery of the site. The Radiation Safety Management Guideline was developed and it will be used as a base line making Radiation Safety Management Procedure. The container was specially designed and manufactured for the storing of low level radioactive solid waste arising from the D and D activities. Firstly, the 50 containers were completely manufactured.

  8. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  9. Decommissioning of nuclear facilities at the Nuclear Research Institute Rez plc

    Directory of Open Access Journals (Sweden)

    Podlaha Josef

    2010-01-01

    Full Text Available The Nuclear Research Institute Rez has been a leading institution in all areas of nuclear R&D in the Czech Republic since it was established in 1955. After more than 50 years of activities in the field, there are some environmental liabilities that need to be remedied. The remediation of old environmental liabilities concerning the Nuclear Research Institute is the only ongoing decommissioning project in the Czech Republic. The nature of these environmental liabilities is very specific and requires special remediation procedures. The process begun in 2003 and is expected to be finished by 2014.

  10. Intrusion of coastal waters into the pelagic Eastern Mediterranean: in situ and satellite-based characterization

    Directory of Open Access Journals (Sweden)

    S. Efrati

    2012-12-01

    Full Text Available A combined dataset of near real time multi-satellite observations and in situ measurements from a high-resolution survey, is used for characterizing physical-biogeochemical properties of a patch stretching from the coast to the open sea in the Levantine basin of the Eastern Mediterranean. Spatial analysis of the combined dataset indicates that the patch is a semi-enclosed system, bounded within the mixed layer and separated from ambient waters by transport barriers induced by horizontal stirring. As such, the patch is characterized by physical-biogeochemical properties that significantly differ from those of the waters surrounding it, with lower salinity, higher temperatures, higher concentrations of silicic acid and chlorophyll a, and higher abundance of Synechococcus and Picoeukaryotes cells. Based on estimates of patch dimensions (~ 40 km width and ~ 25 m depth and propagation speed (~ 0.09 m s−1, the volume flux associated with the patch is found to be in the order of 0.1 Sv. Our observations suggest that horizontal stirring by surface currents is likely to have an important impact on the ultra-oligotrophic Levantine basin ecosystem, through (1 transport of nutrients and coastal derived material, and (2 formation of local, dynamically isolated, niches. In addition, this work provides a satellite-based framework for planning and executing high resolution sampling strategies in the interface between coast and the open sea.

  11. Intrusion of coastal waters into the pelagic eastern Mediterranean: in situ and satellite-based characterization

    Directory of Open Access Journals (Sweden)

    S. Efrati

    2013-05-01

    Full Text Available A combined dataset of near-real-time multi-satellite observations and in situ measurements from a high-resolution survey is used for characterizing physical-biogeochemical properties of a patch stretching from the coast to the open sea in the Levantine Basin (LB of the eastern Mediterranean (EM. Spatial analysis of the combined dataset indicates that the patch is a semi-enclosed system, bounded within the mixed layer and separated from ambient waters by transport barriers induced by horizontal stirring. As such, the patch is characterized by physical-biogeochemical properties that significantly differ from those of the waters surrounding it, with lower salinity and higher temperatures, concentrations of silicic acid and chlorophyll a, and abundance of Synechococcus and picoeukaryote cells. Based on estimates of patch dimensions (∼40 km width and ∼25 m depth and propagation speed (∼0.09 m s−1, the volume flux associated with the patch is found to be on the order of 0.1 Sv. Our observations suggest that horizontal stirring by surface currents is likely to have an important impact on the ultra-oligotrophic Levantine Basin ecosystem, through (1 transport of nutrients and coastally derived material, and (2 formation of local, dynamically isolated niches. In addition, this work provides a satellite-based framework for planning and executing high-resolution sampling strategies in the interface between the coast and the open sea.

  12. Third party liability of nuclear installation decommissioning with Russian nuclear submarines as an example: insurance versus technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.D. [PREKSAT Ltd., Moscow (Russian Federation); Derevyankin, A.A. [Reseaarch and Development Institute of Nuclear Power Engineering, Moscow (Russian Federation); Khamyanov, L.P. [All-Russian Research Institute on NPP Operation, Moscow (Russian Federation); Kovalenko, V.N. [Ministry for Nuclear Energy Of Russian, Moscow (Russian Federation); Kovalivich, O.M. [Research and Technological Center for Nuclear and Radiation Safety of Supervisory, Nuclear Energy State Commitee of Russia, Moscow (Russian Federation); Smirnov, P.L. [Nuclear Safety Institute of Russian Academy of Sciences, Moscow (Russian Federation)

    2001-07-01

    Third party and environment of civil liability damage caused by incidents at military nuclear installations, for instance at decommissioned NPS (nuclear powered submarines), may be divided into three main trends: -) Liability of NPS without high-enriched irradiated nuclear fuel (SNF) for its self-submersion (radiation incident); -) Liability of NPS with SNF aboard for its self-submersion (radiation incident); and -) Liability of floating NPS for its SNF discharge (nuclear accident). Without step-by-step transition from the Russian Federation guaranties to insurance and making allowance for liability limits according to the Vienna Convention approach, the sizes of the financial guarantee for the civil liability of the NPS owner (Russian state), in US dollars of 2000, are approximately assessed as the following: -) storing decommissioned NPS or a floating module without SNF - from 12 to 25 thousand dollars per year (per one submarine or module); -) storing decommissioned NPS with SNF inside reactors cores - from 25 to 40 thousand dollars per year; -) assembly-by-assembly removing SNF from reactors' core of decommissioned NPS - up to 1.5 million dollars for undamaged reactor per the discharging period; -) SNF removing within reactor using the filled in-space reactor's core by liquid-phased hardened or dispersed solid-phase materials from decommissioned NPS - from 30 to 50 thousand dollars for undamaged reactor per the discharging period. Both rates and sums for NPS with damaged reactors are to be estimated for the each damaged reactor and NPS at all. It is necessary to perform the measures reducing the risk of nuclear accidents of NPS with undamaged SNF and NPS with damaged reactors in possibly short time. It will allow not only to cut risks by ten times and more, but also to accumulate necessary insurance reserves faster. These measures can be partially or completely executed using the preventing measures reserves assigned to all decommissioned Russian NPS

  13. Creating artificial reefs from decommissioned platforms in the North Sea: review of knowledge and proposed programme of research

    Energy Technology Data Exchange (ETDEWEB)

    Aabel, J.P.; Cripps, S.J.; Jensen, A.C.; Picken, G.

    1997-12-31

    This report relates to the case for research and development work on North Sea artificial reefs. There are potentially many benefits that can be derived from platform reefs, for example as an aid to increased fishing yield for commercial fishermen, a means of enhancing fish stocks and protecting habitat for physical damage. In addition there may be a reduction in decommissioning costs for the oil industry and in negative environmental impacts inherent with land-based decommissioning techniques. Negative impacts could be loss of fishing area and changes in the ecosystem. The report will be focused towards practically applicable results that will aid the decision making process. 129 refs., 13 figs., 18 tabs.

  14. Legal aspects of shut-down and decommissioning of nuclear power plants; Rechtsfragen der Stilllegung und des Rueckbaus von Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Leidinger, Tobias [Luther Rechtsanwaltsgesellschaft, Duesseldorf (Germany)

    2016-10-15

    The legally phase-out the peaceful use of nuclear energy in Germany has put into focus the topics decommissioning and dismantling of nuclear power plants. Technically and legally issues have to be managed, which are often closely connected. From a legal perspective it is important, that the initial situation of operation and operation phases of the nuclear power plant are settled. Some of the most relevant legal issues are more accurate presented and discussed. They are related to the period after shut-down and before granting the decommissioning license.

  15. An analytical approach to γ-ray self-shielding effects for radioactive bodies encountered nuclear decommissioning scenarios.

    Science.gov (United States)

    Gamage, K A A; Joyce, M J

    2011-10-01

    A novel analytical approach is described that accounts for self-shielding of γ radiation in decommissioning scenarios. The approach is developed with plutonium-239, cobalt-60 and caesium-137 as examples; stainless steel and concrete have been chosen as the media for cobalt-60 and caesium-137, respectively. The analytical methods have been compared MCNPX 2.6.0 simulations. A simple, linear correction factor relates the analytical results and the simulated estimates. This has the potential to greatly simplify the estimation of self-shielding effects in decommissioning activities.

  16. Influence of topography and human activity on apparent in situ 10Be-derived erosion rates in Yunnan, SW China

    Science.gov (United States)

    Schmidt, Amanda H.; Neilson, Thomas B.; Bierman, Paul R.; Rood, Dylan H.; Ouimet, William B.; Sosa Gonzalez, Veronica

    2016-11-01

    In order to understand better if and where erosion rates calculated using in situ 10Be are affected by contemporary changes in land use and attendant deep regolith erosion, we calculated erosion rates using measurements of in situ 10Be in quartz from 52 samples of river sediment collected from three tributaries of the Mekong River (median basin area = 46.5 km2). Erosion rates range from 12 to 209 mm kyr-1 with an area-weighted mean of 117 ± 49 mm kyr-1 (1 standard deviation) and median of 74 mm kyr-1. We observed a decrease in the relative influence of human activity from our steepest and least altered watershed in the north to the most heavily altered landscapes in the south. In the areas of the landscape least disturbed by humans, erosion rates correlate best with measures of topographic steepness. In the most heavily altered landscapes, measures of modern land use correlate with 10Be-estimated erosion rates but topographic steepness parameters cease to correlate with erosion rates. We conclude that, in some small watersheds with high rates and intensity of agricultural land use that we sampled, tillage and resultant erosion has excavated deeply enough into the regolith to deliver subsurface sediment to streams and thus raise apparent in situ 10Be-derived erosion rates by as much as 2.5 times over background rates had the watersheds not been disturbed.

  17. Unsteady late Pleistocene incision of streams bounding the Colorado Front Range from measurements of meteoric and in situ 10Be

    Science.gov (United States)

    Dühnforth, Miriam; Anderson, Robert S.; Ward, Dylan J.; Blum, Alex

    2012-03-01

    Dating of gravel-capped strath terraces in basins adjacent to western U.S. Laramide Ranges is one approach to document the history of late Cenozoic fluvial exhumation. We use in situ 10Be measurements to date the broad surfaces adjacent to the eastern edge of the Rocky Mountains in Colorado, and compare these calculated ages with results from meteoric 10Be measurements. We analyze three sites near Boulder, Colorado (Gunbarrel Hill, Table Mountain, and Pioneer) that have been mapped as the oldest terrace surfaces with suggested ages ranging from 640 ka to the Plio-Pleistocene transition. Our in situ 10Be results reveal abandonment ages of 95 ± 129 ka at Table Mountain, 175 ± 27 ka at Pioneer, and ages of 251 ± 10 ka and 307 ± 15 ka at Gunbarrel Hill. All are far younger than previously thought. Inventories of meteoric 10Be support this interpretation, yielding ages that are comparable to Table Mountain and ˜20% lower than Pioneer in situ ages. We argue that lateral beveling by rivers dominated during protracted times of even moderate glacial climate, and that vertical incision rates of several mm/yr likely occurred during times of very low sediment supply during the few interglacials that were characterized by particularly warm climate conditions. In contrast to the traditional age chronology in the area, our ages suggest that the deep exhumation of the western edge the High Plains occurred relatively recently and at an unsteady pace.

  18. Microstructure analysis of laboratory and in-situ compacted silts

    Directory of Open Access Journals (Sweden)

    Russo Giacomo

    2016-01-01

    Full Text Available The paper presents and discusses some results of an experimental research aimed at analysing the influence of compaction variables (w and energy and method on the resulting microstructure of a compacted silty soil. In particular, the experimental data here discussed allow to compare the microstructure induced by different dynamic compaction techniques, comparing that characterising specimens obtained by two laboratory methods (Proctor standard and Harvard and that of samples compacted in-situ during the construction of an embankment built for river regimentation purposes. Both undisturbed and disturbed samples have been retrieved from the embankment, the latter one with the purpose of collecting the soil subsequently used for laboratory compaction. Microstructural analyses (SEM, MIP performed on laboratory and in-situ compacted samples evidenced a substantial similarity of the texture induced by the various compaction techniques, highlighting that laboratory compaction is suitable to provide soil samples representative of earth in-situ compacted soil.

  19. Characteristics of in situ stress field at Qingshui coal mine

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaojie; Pang Jiewen; Lou Haopeng; Fan Lipeng

    2015-01-01

    In this study, the characteristics of geological structure at Qingshui coal mine were analyzed. And the hollow inclusion strain cell overcoring method was used to obtain the in situ stress. The effect of in situ stress on the stability of soft rock roadway was analyzed. The results show that the maximum principal stress is in the horizontal direction with a northeast orientation and has a value of about 1.2–1.9 times larger than gravity; the right side of roadway roof and floor is easily subject to serious deformation and failure, and the in situ stress is found to be a major factor. This paper presents important information for developing countermeasures against the large deformation of the soft rock roadway at Qingshui coal mine.

  20. Detector calibration for in-situ gamma ray spectrometry

    CERN Document Server

    Balea, G

    2002-01-01

    The power in the technique of in-situ spectrometry lies in the fact that a detector placed on ground measures gamma radiation from sources situated over an area of several hundred square meters. The 'field of view' for the detector would be larger for high energy radiation sources and for sources closer to the soil surface. In contrast, a soil sample would represent an area of a few tens of hundreds of square centimeters. In practice, an effective characterization of a site would involve in-situ gamma ray spectrometry in conjunction with soil sampling. As part of an overall program, in-situ gamma ray spectrometry provides a means to assess the degree of contamination in areas during the course of operations in the field, thus guiding the investigator on where to collect samples. It can also substantially reduce the number of samples need to be collected and subsequently analyzed. (author)

  1. Review on Fabrication Methods of in situ Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper deals with a series of novel processing techniques based on the in situ production of metal matrix composites (MMCs). In situ techniques involve a chemical reaction resulting in the formation of a very fine and thermodynamically stable reinforcing ceramic phase within a metal matrix. As a result, this provides thermodynamic compatibility at the matrix-reinforcement interface. The reinforcement surfaces are also likely to be free of contamination and, therefore, a stronger matrix-dispersion bond can be achieved. Some of these technologies including DIMOXTM, XD, PRIMEXTM, reactive gas infiltration, high-temperature self-propagating synthesis (SHS), and liquid-solid, or solid-gas-liquid reactions as well as plasma in situ MMCs are expressed in this paper.

  2. Development of portable HPGe spectrometer for in situ measurements

    Directory of Open Access Journals (Sweden)

    Kail Artjoms

    2015-01-01

    Full Text Available In situ applications require a very high level of portability of high-resolution spectrometric equipment. Usage of HPGe detectors for radioactivity measurements in the environment or for nuclear safeguard applications, to combat illicit trafficking of nuclear materials or uranium and plutonium monitoring in nuclear wastes, has become a norm in the recent years. Portable HPGe-based radionuclide spectrometer with electrical cooling has lately appeared on the market for in situ applications. At the same time deterioration of energy resolution associated with vibrations produced by cryocooler or high weight of the instrument, short time of autonomous operation and high price of these spectrometers are limiting their usage in many cases. In this paper we present development results of ultra compact hand held all-in-one spectrometer for in situ measurements based on HPGe detector cooled by liquid nitrogen without listing the above disadvantages.

  3. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-01-30

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  4. Remote sensing and in situ measurements of methane and ammonia emissions from a megacity dairy complex: Chino, CA.

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Tratt, David M; Buckland, Kerry N; Clarisse, Lieven; Coheur, Pierre; Frash, Jason; Gupta, Manish; Johnson, Patrick D; Leen, J Brian; Van Damme, Martin; Whitburn, Simon; Yurganov, Leonid

    2017-02-01

    Methane (CH4) and ammonia (NH3) directly and indirectly affect the atmospheric radiative balance with the latter leading to aerosol generation. Both have important spectral features in the Thermal InfraRed (TIR) that can be studied by remote sensing, with NH3 allowing discrimination of husbandry from other CH4 sources. Airborne hyperspectral imagery was collected for the Chino Dairy Complex in the Los Angeles Basin as well as in situ CH4, carbon dioxide (CO2) and NH3 data. TIR data showed good spatial agreement with in situ measurements and showed significant emissions heterogeneity between dairies. Airborne remote sensing mapped plume transport for ∼20 km downwind, documenting topographic effects on plume advection. Repeated multiple gas in situ measurements showed that emissions were persistent on half-year timescales. Inversion of one dairy plume found annual emissions of 4.1 × 10(5) kg CH4, 2.2 × 10(5) kg NH3, and 2.3 × 10(7) kg CO2, suggesting 2300, 4000, and 2100 head of cattle, respectively, and Chino Dairy Complex emissions of 42 Gg CH4 and 8.4 Gg NH3 implying ∼200k cows, ∼30% more than Peischl et al. (2013) estimated for June 2010. Far-field data showed chemical conversion and/or deposition of Chino NH3 occurs within the confines of the Los Angeles Basin on a four to six h timescale, faster than most published rates, and likely from higher Los Angeles oxidant loads. Satellite observations from 2011 to 2014 confirmed that observed in situ transport patterns were representative and suggests much of the Chino Dairy Complex emissions are driven towards eastern Orange County, with a lesser amount transported to Palm Springs, CA. Given interest in mitigating husbandry health impacts from air pollution emissions, this study highlights how satellite observations can be leveraged to understand exposure and how multiple gas in situ emissions studies can inform on best practices given that emissions reduction of one gas could increase those of

  5. Extreme Spectroscopy: In situ nuclear materials behavior from optical data

    Energy Technology Data Exchange (ETDEWEB)

    Guimbretiere, G.; Canizares, A.; Raimboux, N.; Omnee, R.; Duval, F.; Ammar, M.R.; Simon, P. [CNRS - UPR3079 CEMHTI, Universite d' Orleans, 45071Orleans cedex 2 (France); Desgranges, L.; Mohun, R. [CEA, DEN, DEC, F-13108 Saint-Paul-Lez-Durance (France); Jegou, C.; Magnin, M. [CEA/DTCD/SECM/LMPA, Marcoule 30207 Bagnols Sur Ceze (France); Clavier, N.; Dacheux, N. [ICSM-UMR5257 CEA/CNRS/UM2/ENSCM, Marcoule, BP17171, 30207 Bagnols sur Ceze (France)

    2015-07-01

    In the nuclear industry, materials are regularly exposed to high temperature or/and irradiation and a better knowledge and understanding of their behavior under such extreme conditions is a key-point for improvements and further developments. Nowadays, Raman spectroscopy begins to be well known as a promising technique in the post mortem and remote characterization of nuclear materials exposed to extreme conditions. On this topic, at ANIMMA 2013 conference, we have presented some results about its implementation in the study of model or real nuclear fuel. However, the strength of Raman spectroscopy as in situ characterization tool is mainly its ability to be implemented remotely through optical fibers. Aware of this, implementation of other optical techniques can be considered in order to gain information not only on the structural dynamics of materials but also on the electronic charge carrier populations. In this paper, we propose to present our last advances in Raman characterization of nuclear materials and enlarge to the in situ use of complementary optical spectroscopies. Emphasis will be made on the information that can be gained to the behavior of the model fuel depleted UO{sub 2} under extreme conditions of high temperature and ionic irradiation: - In Situ Raman identification of the radiolysis alteration products of UO{sub 2} in contact with water under ionic irradiation. - In Situ Raman recording of the damaged dynamic of UO{sub 2} under inert atmosphere. - In Situ Raman and photo-luminescence study of virgin and damaged UO2 at high temperature. - In Situ study of electronic charge carriers' behavior in U{sub x}Th{sub 1-x}O{sub 2} solid solutions by mean of Iono- and Thermo- luminescence under and post- ionic irradiation. (authors)

  6. Effect of in-situ moisture conservation measures and application of organic manures on soil properties in Simarouba glauca plantation

    Directory of Open Access Journals (Sweden)

    Manikhantha M. Vaidya

    2016-09-01

    Full Text Available Soil and water conservation measures are one of the most important factors for the improvement of degraded lands. Water conservation technique like in-situ soil moisture conservation measures and application of organic manures is to achieve the maximum cultivated soil for the survival and growth of seedlings. In the present study the effect of in-situ moisture conservation measures and organic manures application on growth of Simarouba glauca in varada watershed area showed significant difference in chemical properties of soil such as available Nitrogen, Phosphorus and Potassium at 12 months after the treatment imposed and the moisture content at the depth of 0 to 30 and 30 to 60. In main plot significantly maximum plant height (1.25 m, collar diameter (2.63 cm crown diameter (93.98 cm and number of leaves (45.25 was recorded in ring basin (M2, whereas, in sub plot maximum plant height (1.71 m, collar diameter (3.49 cm crown diameter (126.89 cm and number of leaves (60.66 was recorded in vermicompost (S2. Among the interaction significantly maximum plant height (1.94 m, collar diameter (3.97 cm, crown diameter (133.83 cm and number of leaves (63.07 was recorded in ring basin with vermicompost (2.5 t/ha at 12 months after treatment.

  7. Open Source AV solution supporting In Situ Simulation

    DEFF Research Database (Denmark)

    Krogh, Kristian; Pociunas, Gintas; Dahl, Mads Ronald

    the software to meet our expectations for a portable AV system for VAD. The system would make use of “off the shelf” hardware components which are widely available and easily replaced or expanded. The developed AV software and coding is contracted to be available as Copyleft Open Source to ensure low cost...... a stable AV software that has be developed and implemented for an in situ simulation initiative. This version (1.3) is the first on released as Open Source (Copyleft) software (see QR tag). We have found that it is possible to deliver multi-camera video assisted debriefing in a mobile, in situ simulation...

  8. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    Catalytic nanomaterials play a major role in chemical conversions and energy transformations. Understanding how materials control and regulate surface reactions is a major objective for fundamental research on heterogeneous catalysts. In situ environmental transmission electron microscopy (ETEM......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...

  9. In-situ ALD growth of hafnium oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, Konstantin; Tallarida, Massimo; Schmeisser, Dieter [Brandenburgische Technische Universitaet Cottbus (Germany). Angewandte Physik - Sensorik; Zschech, Ehrenfried [AMD Saxony LLC and Co. KG, Center for Complex Analysis, Dresden (Germany)

    2008-07-01

    We report on a novel system for in-situ atomic layer growth (ALD) of high-k dielectric films. First results were obtained for Hf-oxide samples by using Hf-tetrachloride as precursor and water as oxidizer. We compare the photoelectron spectra of Si 2p, O 1s and Hf 4f of our in-situ prepared films with samples (ex-situ) prepared by industrial ALD reactors and discuss similarities and differences observed in the core level spectra of the various samples by considering the different growth conditions.

  10. DEBIE - first standard in-situ debris monitoring instrument

    Science.gov (United States)

    Kuitunen, J.; Drolshagen, G.; McDonnell, J. A. M.; Svedhem, H.; Leese, M.; Mannermaa, H.; Kaipiainen, M.; Sipinen, V.

    2001-10-01

    Objects larger than a few centimetres can be tracked with radar or with optical telescopes. The population of smaller particles can only be investigated by the analysis of retrieved spacecraft and passive detectors or by in-situ monitors in orbit. Patria Finavitec together with UniSpace Kent have developed the DEBIE (DEBris In-orbit Evaluator) instrument to determine the parameters of sub-millimetre sized space debris and micrometeoroids in-situ by their impact with a detecting surface. The main goal has been to develop an economical and low-resource instrument, easy to integrate into any spacecraft, while providing reliable real-time data for space debris modelling.

  11. In-Situ Investigation of Advanced Structural Coatings and Composites

    Science.gov (United States)

    Ustundag, Ersan

    2003-01-01

    The premise of this project is a comprehensive study that involves the in-situ characterization of advanced coatings and composites by employing both neutron and x-ray diffraction techniques in a complementary manner. The diffraction data would then be interpreted and used in developing or validating advanced micromechanics models with life prediction capability. In the period covered by this report, basic work was conducted to establish the experimental conditions for various specimens and techniques. In addition, equipment was developed that will allow the in-situ studies under a range of conditions (stress, temperature, atmosphere, etc.).

  12. Continued Development of in Situ Geochronology for Planetary Missions

    Science.gov (United States)

    Devismes, D.; Cohen, B. A.

    2015-01-01

    The instrument 'Potassium (K) Argon Laser Experiment' (KArLE) is developed and designed for in situ absolute dating of rocks on planetary surfaces. It is based on the K-Ar dating method and uses the Laser Induced Breakdown Spectroscopy - Laser Ablation - Quadrupole Mass Spectrometry (LIBSLA- QMS) technique. We use a dedicated interface to combine two instruments similar to SAM of Mars Science Laboratory (for the QMS) and ChemCam (for the LA and LIBS). The prototype has demonstrated that KArLE is a suitable and promising instrument for in situ absolute dating.

  13. In Situ burning of Arctic marine oil spills

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne

    Oil spills in ice filled and Arctic waters pose other challenges for oil spill response compared to open and temperate waters. In situ burning has been proven to be an effective oil spill response method for oil spills in ice filled waters. This thesis presents results from laboratory and field...... experiments where the ignitability of oil spill as a function of oil type and weathering conditions (time/ice) was tested. The results show that the composition of the oil and the ice cover is important for the in situ burning time-window. The results were used to develop an algorithm that was implemented...

  14. Jezero Crater, Mars, as a Compelling Site for Future In Situ Exploration

    Science.gov (United States)

    Goudge, T. A.; Ehlmann, B. L.; Fassett, C. I.; Head, J. W.; Mustard, J. F.; Mangold, N.; Gupta, S.; Milliken, R. E.; Brown, A. J.

    2017-01-01

    Jezero is a approximately 45 km diameter impact crater located in the Nili Fossae region of Mars. Jezero is an outstanding site to address key questions of ancient Mars climate, habitability, and volcanic history because: (a) It hosted an open-basin lake during the era of valley network formation [1,2], which ceased at approximately the Noachian-Hesperian boundary [3]. (b) It contains two delta deposits [1,4] with Fe/Mg-smectite and Mg-carbonate sediment [4-7] (the only exposure of lacus-trine shoreline carbonates seen so far on Mars). (c) The depositional environment and mineral assemblage of the delta are promising for the concentration and preservation of organic matter [5,8]. (d) The diverse geologic units in Jezero are in clear stratigraphic context [7]. The Jezero paleolake system has been thoroughly investigated at a variety of scales, including work on: the mineralogy of the delta deposits [4-6] and watershed [7], as well as the morphology and sedimentology of the basin [9] and delta deposits [1,4]. The geologic context of Jezero is also well-studied given the broad suite of alteration minerals exposed in the ancient stratigraphies of the Nili Fossae region [e.g., 6,10-13]. Here we present an overview of the units accessible for exploration in the Jezero basin, including questions and hypotheses that can be tested through analysis in situ and of returned samples. This is particularly timely given the upcoming Mars 2020 mission, for which Jezero is one of the final eight landing sites [14]. Primary science objectives for Mars 2020 are to: (1) characterize the geologic history of a site with "evidence of an astrobiologically-relevant ancient environment and geologic diversity"; (2) assess the habitability and "potential evidence of past life" in units with "high biosignature preservation potential"; and (3) cache scientifically compelling samples for potential return to Earth [15].

  15. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  16. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  17. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  18. Summary of comments received from workshops on radiological criteria for decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Caplin, J.; Page, G.; Smith, D.; Wiblin, C. [Advanced Systems Technology, Inc., Atlanta, GA (United States)

    1994-01-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for site cleanup and decommissioning of NRC-licensed facilities. Open public meetings were held during 1993 in Chicago, IL, San Francisco, CA, Boston, MA, Dallas, TX, Philadelphia, PA, Atlanta, GA, and Washington, DC. Interested parties were invited to provide input on the rulemaking issues before the NRC staff develops a draft proposed rule. This report summarizes 3,635 comments categorized from transcripts of the seven workshops and 1,677 comments from 100 NRC docketed letters from individuals and organizations. No analysis or response to the comments is included. The comments reflect a broad spectrum of viewpoints on the issues related to radiological criteria for site cleanup and decommissioning. The NRC also held public meetings on the scope of the Generic Environmental Impact Statement (GEIS) during July 1993. The GEIS meetings were held in Washington, DC., San Francisco, CA, Oklahoma City, OK, and Cleveland, OH. Related comments from these meetings were reviewed and comments which differed substantially from those from the workshops are also summarized in the body of the report. A summary of the comments from the GEIS scoping meetings is included as an Appendix.

  19. The Optimization of Radioactive Waste Management in the Nuclear Installation Decommissioning Process

    Energy Technology Data Exchange (ETDEWEB)

    Zachar, Matej; Necas, Vladimir [Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Department of Nuclear Physics and Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2008-07-01

    The paper presents a basic characterization of nuclear installation decommissioning process especially in the term of radioactive materials management. A large amount of solid materials and secondary waste created after implementation of decommissioning activities have to be managed considering their physical, chemical, toxic and radiological characteristics. Radioactive materials should be, after fulfilling all the conditions defined by the authorities, released to the environment for the further use. Non-releasable materials are considered to be a radioactive waste. Their management includes various procedures starting with pre-treatment activities, continuing with storage, treatment and conditioning procedures. Finally, they are disposed in the near surface or deep geological repositories. Considering the advantages and disadvantages of all possible ways of releasing the material from nuclear installation area, optimization of the material management process should be done. Emphasis is placed on the radiological parameters of materials, availability of waste management technologies, waste repositories and on the radiological limits and conditions for materials release or waste disposal. Appropriate optimization of material flow should lead to the significant savings of money, disposal capacities or raw material resources. Using a suitable calculation code e.g. OMEGA, the evaluation of the various material management scenarios and selection of the best one, based on the multi-criterion analysis, should be done. (authors)

  20. Comments received on proposed rule on radiological criteria for decommissioning and related documents

    Energy Technology Data Exchange (ETDEWEB)

    Page, G.; Caplin, J.; Smith, D. [and others

    1996-03-01

    The Nuclear Regulatory Commission (NRC) is conducting an enhanced participatory rulemaking to establish radiological criteria for the decommissioning of NRC-licensed facilities. As a part of this action, the Commission published in the Federal Register (59 FR 43200), on August 22, 1994, a proposed rule on radiological criteria for decommissioning, soliciting comments both on the rule as proposed and on certain specific items as identified in its supplementary statement of considerations. A draft Generic Environmental Impact Statement (GEIS) in support of the rule, also published in August 1994 as NUREG-1496, along with its Appendix A (NUREG-1501), were also made available for comment. A staff working draft on regulatory guidance (NUREG-1500)was also made available. This report summarizes the 1,309 comments on the proposed rule and supplementary items and the 311 comments on the GEIS as excerpted from 101 docketed letters received associated in the Federal/Register notice. Comments from two NRC/Agreement-States meetings are also summarized.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  2. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  3. Study on Evaluation of Project Management Data for Decommissioning of Uranium Refining and Conversion Plant - 12234

    Energy Technology Data Exchange (ETDEWEB)

    Usui, Hideo; Izumo, Sari; Tachibana, Mitsuo [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Shibahara, Yuji [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); University of Fukui, Fukui-shi, Fukui, 910-8507 (Japan); Morimoto, Yasuyuki; Tokuyasu, Takashi; Takahashi, Nobuo; Tanaka, Yoshio; Sugitsue, Noritake [Japan Atomic Energy Agency, Kagamino-cho, Tomata-gun, Okayama, 708-0698 (Japan)

    2012-07-01

    Some of nuclear facilities that would no longer be required have been decommissioned in JAEA (Japan Atomic Energy Agency). A lot of nuclear facilities have to be decommissioned in JAEA in near future. To implement decommissioning of nuclear facilities, it was important to make a rational decommissioning plan. Therefore, project management data evaluation system for dismantling activities (PRODIA code) has been developed, and will be useful for making a detailed decommissioning plan for an object facility. Dismantling of dry conversion facility in the uranium refining and conversion plant (URCP) at Ningyo-toge began in 2008. During dismantling activities, project management data such as manpower and amount of waste generation have been collected. Such collected project management data has been evaluated and used to establish a calculation formula to calculate manpower for dismantling equipment of chemical process and calculate manpower for using a green house (GH) which was a temporary structure for preventing the spread of contaminants during dismantling. In the calculation formula to calculate project management data related to dismantling of equipment, the relation of dismantling manpower to each piece of equipment was evaluated. Furthermore, the relation of dismantling manpower to each chemical process was evaluated. The results showed promise for evaluating dismantling manpower with respect to each chemical process. In the calculation formula to calculate project management data related to use of the GH, relations of GH installation manpower and removal manpower to GH footprint were evaluated. Furthermore, the calculation formula for secondary waste generation was established. In this study, project management data related to dismantling of equipment and use of the GH were evaluated and analyzed. The project management data, manpower for dismantling of equipment, manpower for installation and removal of GH, and secondary waste generation from GH were considered

  4. Diagnosis of In Situ Metabolic State and Rates of Microbial Metabolism During In Situ Uranium Bioremediation with Molecular Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [University of Massachusetts, Amherst

    2012-11-28

    The goal of these projects was to develop molecule tools to tract the metabolic activity and physiological status of microorganisms during in situ uranium bioremediation. Such information is important in able to design improved bioremediation strategies. As summarized below, the research was highly successful with new strategies developed for estimating in situ rates of metabolism and diagnosing the physiological status of the predominant subsurface microorganisms. This is a first not only for groundwater bioremediation studies, but also for subsurface microbiology in general. The tools and approaches developed in these studies should be applicable to the study of microbial communities in a diversity of soils and sediments.

  5. In situ XAS of the solvothermal decomposition of dithiocarbamate complexes

    NARCIS (Netherlands)

    Islam, H.-U.; Roffey, A.; Hollingsworth, N.; Catlow, R.; Wolthers, M.; de Leeuw, N.H.; Bras, W.; Sankar, G.; Hogarth, G.

    2012-01-01

    An in situ XAS study of the solvothermal decomposition of iron and nickel dithiocarbamate complexes was performed in order to gain understanding of the decomposition mechanisms. This work has given insight into the steps involved in the decomposition, showing variation in reaction pathways between t

  6. Electromechanical instabilities of thermoplastics: Theory and in situ observation

    OpenAIRE

    Wang, Qiming; Niu, Xiaofan; Pei, Qibing; Michael D. Dickey; Zhao, Xuanhe

    2012-01-01

    Thermoplastics under voltages are used in diverse applications ranging from insulating cables to organic capacitors. Electromechanical instabilities have been proposed as a mechanism that causes electrical breakdown of thermoplastics. However, existing experiments cannot provide direct observations of the instability process, and existing theories for the instabilities generally assume thermoplastics are mechanically unconstrained. Here, we report in situ observations of electromechanical ins...

  7. In-situ remediation system for groundwater and soils

    Science.gov (United States)

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  8. Ultrasensitive in situ visualization of active glucocerebrosidase molecules

    NARCIS (Netherlands)

    Witte, Martin D.; Kallemeijn, Wouter W.; Aten, Jan; Li, Kah-Yee; Strijland, Anneke; Donker-Koopman, Wilma E.; Nieuwendijk, Adrianus M.C.H. van den; Bleijlevens, Boris; Kramer, Gertjan; Florea, Bogdan I.; Hooibrink, Berend; Hollak, Carla E.M.; Ottenhoff, Roelof; Boot, Rolf G.; Marel, Gijsbert A. van der; Overkleeft, Herman S.; Aerts, Johannes M.F.G.

    2010-01-01

    Deficiency of glucocerebrosidase (GBA) underlies Gaucher disease, a common lysosomal storage disorder. Carriership for Gaucher disease has recently been identified as major risk for parkinsonism. Presently, no method exists to visualize active GBA molecules in situ. We here report the design, synthe

  9. Mixing and In situ product removal in micro-bioreactors

    NARCIS (Netherlands)

    Li, X.

    2009-01-01

    Summary Of the thesis :’ Mixing and In-situ product removal in micro bioreactors’ by Xiaonan Li The work presented in this thesis is a part of a large cluster project, which was formed between DSM, Organon, Applikon and two university groups (TU Delft and University of Twente), under the ACTS and

  10. Repurposing CRISPR/Cas9 for in situ functional assays

    NARCIS (Netherlands)

    Malina, Abba; Mills, John R; Cencic, Regina; Yan, Yifei; Fraser, James; Schippers, Laura M; Paquet, Marilène; Dostie, Josée; Pelletier, Jerry

    2013-01-01

    RNAi combined with next-generation sequencing has proven to be a powerful and cost-effective genetic screening platform in mammalian cells. Still, this technology has its limitations and is incompatible with in situ mutagenesis screens on a genome-wide scale. Using p53 as a proof-of-principle target

  11. ENGINEERING ISSUE: IN SITU BIOREMEDIATION OF CONTAMINATED UNSATURATED SUBSURFACE SOILS

    Science.gov (United States)

    An emerging technology for the remediation of unsaturated subsurface soils involves the use of microorganisms to degrade contaminants which are present in such soils. Understanding the processes which drive in situ bioremediation, as well as the effectiveness and efficiency of th...

  12. Ortho lithiation-in situ borylation of substituted morpholine benzamides

    DEFF Research Database (Denmark)

    Cederbalk, Anna; Lysén, Morten; Kehler, Jan

    2016-01-01

    Morpholine amides are cheap and safe alternative to Weinreb amides as acylating agents of organometallic species. Herein, the in-situ lithiation/borylation of 18 ortho- meta- and para-substituted morpholine benzamides has been investigated. 10 of the 18 substrates provided the desired boronic...

  13. Crystal Transformation of Nylon 11 Using in situ WAXD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    a Form Nylon 11 films were found to exist a non-linear transformation at 70oC during the heating process using in situ WAXD. The a Form disappeared but d form appeared when the temperature was higher 70℃.

  14. Simulating realistic imaging conditions for in situ liquid microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Welch, David A., E-mail: dawelch@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA (United States); Faller, Roland [Department of Chemical Engineering and Materials Science, University of California, Davis, CA (United States); Evans, James E. [Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA (United States); Browning, Nigel D. [Pacific Northwest National Laboratory, Fundamental Computational Sciences Directorate, Richland, WA (United States)

    2013-12-15

    In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality. - Highlights: • Image simulation has been performed to understand in situ electron microscopy experiments. • Experimentally observed resolution of in situ grown PbS nanoparticles has been virtually reproduced. • General relationships between image resolution and in situ holder design, defocus, and particle size have been determined. • The presented image simulation technique can predict the obtainable resolution of future experiments.

  15. Supernumerary ring chromosome 17 identified by fluorescent in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, K. [Hunter Area Pathology Service, New South Wales (Australia); Edwards, M. [Western Suburbs Hospital, New South Wales (Australia)

    1997-04-14

    We present a patient with multiple anomalies and severe developmental delay. A small supernumerary ring chromosome was found in 40% of her lymphocyte cells at birth. The origin of the marker chromosome could not be determined by GTG banding, but fluorescent in situ hybridization (FISH) later identified the marker as deriving from chromosome 17. 20 refs., 2 figs., 1 tab.

  16. In situ study on the formation of FeTe

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Wulff, Anders Christian; Yue, Zhao;

    2011-01-01

    The formation of the FeTe compound from a mixture of Fe and Te powders was studied in situ by means of high-energy synchrotron X-ray diffraction. FeTe does not form directly from the starting elements; instead, FeTe2 forms as an intermediate product. During a 2 °C/min heating ramp, Te first reacts...

  17. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and te

  18. NASAL IN SITU GEL: A NOVEL DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Dhrupesh panchal

    2012-06-01

    Full Text Available Over the past few decades, advances in the in situ gel technologies have spurred development in manymedical and biomedical applications including controlled drug delivery. Many novel in situ gel baseddelivery matrices have been designed and fabricated to fulfill the ever increasing needs of thepharmaceutical and medical fields. In situ gelling systems are liquid at room temperature but undergogelation when in contact with body fluids or change in pH. In situ gel forming drug delivery is a type ofmucoadhesive drug delivery system. The formation of gel depends on factors like temperaturemodulation, pH change, presence of ions and ultraviolet irradiation from which the drug gets released ina sustained and controlled manner. Nasal delivery is a promising drug delivery option where commondrug administrations such as intravenous, intramuscular or oral are inapplicable. Recently, it has beenshown that many drugs have better bioavailability by nasal route than the oral route. This has beenattributed to rich vasculature and a highly permeable structure of the nasal mucosa coupled withavoidance of hepatic first-pass elimination, gut wall metabolism and/or destruction in thegastrointestinal tract. The physiology of the nose presents obstacles but offers a promising route for noninvasivesystemic delivery of numerous therapies and debatably drug delivery route to the brain. Thusthis review focuses on nasal drug delivery, various aspects of nasal anatomy and physiology, nasal drugabsorption mechanisms, various nasal drug delivery systems and their applications in drug delivery.

  19. Testicular carcinoma in situ in subfertile Danish men

    DEFF Research Database (Denmark)

    Olesen, Inge A; Hoei-Hansen, Christina E; Skakkebaek, Niels E

    2007-01-01

    Carcinoma in situ (CIS) testis is the precursor stage for the majority of testicular germ cell tumours (TGCT). Infertility is one of the conditions known to predispose to TGCT, but based on scarce existing data, the prevalence of CIS in this risk group was estimated at only approximately 1...

  20. Adaptation of in-situ microscopy for crystallization processes

    Science.gov (United States)

    Bluma, A.; Höpfner, T.; Rudolph, G.; Lindner, P.; Beutel, S.; Hitzmann, B.; Scheper, T.

    2009-08-01

    In biotechnological and pharmaceutical engineering, the study of crystallization processes gains importance. An efficient analytical inline sensor could help to improve the knowledge about these processes in order to increase efficiency and yields. The in-situ microscope (ISM) is an optical sensor developed for the monitoring of bioprocesses. A new application for this sensor is the monitoring in downstream processes, e.g. the crystallization of proteins and other organic compounds. This contribution shows new aspects of using in-situ microscopy to monitor crystallization processes. Crystals of different chemical compounds were precipitated from supersaturated solutions and the crystal growth was monitored. Exemplified morphological properties and different forms of crystals could be distinguished on the basis of offline experiments. For inline monitoring of crystallization processes, a special 0.5 L stirred tank reactor was developed and equipped with the in-situ microscope. This reactor was utilized to carry out batch experiments for crystallizations of O-acetylsalicyclic acid (ASS) and hen egg white lysozyme (HEWL). During the whole crystallization process, the in-situ microscope system acquired images directly from the crystallization broth. For the data evaluation, an image analysis algorithm was developed and implemented in the microscope analysis software.

  1. AFM cantilever with in situ renewable mercury microelectrode

    NARCIS (Netherlands)

    Schön, Peter; Geerlings, Joël; Tas, Niels; Sarajlic, Edin

    2013-01-01

    We report here first results obtained on a novel, in situ renewable mercury microelectrode integrated into an atomic force microscopy (AFM) cantilever. Our approach is based on a fountain pen probe with appropriate dimensions enabling reversible filling with(nonwetting) mercury under changing the ap

  2. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  3. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  4. Acral Lentiginous Melanoma in Situ: A Diagnostic and Management Challenge

    Directory of Open Access Journals (Sweden)

    Hyun Sun Park

    2010-04-01

    Full Text Available Early stage recognition of acral lentiginous melanoma (ALM is important for a better prognosis, but in-depth understanding and proper management of ALM in situ is complicated, because there are only a few reports, probably due to its rarity and diagnostic difficulty. We have reviewed our experience with seven patients who were diagnosed as having ALM in situ and discuss how to accurately diagnose and properly manage these rare lesions. Clinically the lesions showed black to brown discoloration of the nail with Hutchinson’s sign and hyperpigmented macules on the heel with color variegation. All the lesions showed a diffuse lentiginous pattern of melanocytic proliferation with variable level of atypism along the dermoepidermal junction. Dermoscopic findings were available in three and revealed parallel ridge patterns. Confrontation of clinical and histopathologic findings was observed in three, and the lesions were not recognized or diagnosed as ALM in situ in the first place. Excision of the primary lesion with variable operative margin was done as an initial treatment. Recurrence was observed in three patients and one developed invasive ALM and lymph node metastasis. Integration of all available information concerning the clinical presentation, histopathology, and dermoscopic findings is very important and can lead to the best classification for correct diagnosis. Lack of knowledge upon clinical course and optimal margin to control ALM in situ provokes the need for further studies with longer follow up and larger number of cases.

  5. DEMONSTRATION BULLETIN: IN-SITU VACUUM EXRACTION: TERRA VAC, INC.

    Science.gov (United States)

    This in-situ vacuum extraction technology is a process for the removal and venting of volatile organic compounds (VOCs) from the vadose or unsaturated zone of soils. Often, these compounds can be removed from the vadose zone before they have a chance to contaminate groundwater. ...

  6. Terra Vac In Situ Vacuum Extraction System: Applications Analysis Report

    Science.gov (United States)

    This document is an evaluation of the Terra Vac in situ vacuum extraction system and its applicability as a treatment method for waste site cleanup. This report analyzes the results from the Superfund Innovative Technology Evaluation (SITE) Program’s 56-day demonstration at t...

  7. Supernumerary ring chromosome 20 characterized by fluorescence in situ hybridization

    NARCIS (Netherlands)

    Van Langen, Irene M.; Otter, Mariëlle A.; Aronson, Daniël C.; Overweg-Plandsoen, W.C.G.; Hennekam, Raoul C.M.; Leschot, Nico J.; Hoovers, Jan M.N.

    1996-01-01

    We report on a boy with mild dysmorphic features and developmental delay, in whom karyotyping showed an additional minute ring chromosome in 60% of metaphases. Fluorescence in situ hybridization (FISH) with a centromere specific probe demonstrated that the ring chromosome contained the centromeric r

  8. In situ quantification of membrane foulant accumulation by reflectometry

    NARCIS (Netherlands)

    Schroen, C. G. P. H.; Roosjen, A.; Norde, W.; Boom, R. M.; Tang, K.

    2010-01-01

    In this paper, we present laser light reflectometry [1] (not to be mistaken with ultrasound reflectometry [2] that uses ultrasound waves) as a tool for quantitative investigation of (the initial stages of) fouling on membrane-like surfaces. Reflectometry allows in situ investigation of adsorption an

  9. In situ polarization of polymer films in microsensors

    Science.gov (United States)

    Kranz, M.; Allen, M. G.; Hudson, T.

    2012-04-01

    Electret and polymer piezoelectric films have been previously integrated into Micro Electro Mechanical System (MEMS) acoustic sensors and energy harvesters. Common techniques employed in MEMS polymer integration include corona discharge [1] and backlighted thyratron [2], followed by macro-scale assembly of the polymer into the micro device. In contrast, this paper reports a method for post-fabrication in-situ polarization of polymer films embedded within the MEMS device itself. The method utilizes microplasma discharges with self-aligned charging grids integrated within the device to charge fluoropolymer films in a fashion similar to the common corona discharge technique. This in-situ approach enables the integration of uncharged polymer films into MEMS and subsequent post-fabrication and post-packaging polarization, simultaneously enabling the formation of buried or encapsulated electrets as well as eliminating the need to restrict fabrication and packaging processes that might otherwise discharge pre-charged materials. Using the in situ approach, a microscale charging grid structure is fabricated and suspended a short distance above the polymer film. After fabrication of the charging grid, standard microfabrication steps are performed to build MEMS sensors. After completing the entire fabrication and packaging flow, the polarization process is performed. When energized by a high voltage, the sharp metal edges of the charging grid lead to high dielectric fields that ionize the air in the gap and force electric charge onto the polymer surface. This paper presents modeling and results for this in situ polarization process.

  10. Genetic predisposition to ductal carcinoma in situ of the breast

    NARCIS (Netherlands)

    C. Petridis (Christos); R.H. Brook; V. Shah (Vandna); K. Kohut (Kelly); P. Gorman (Patricia); M. Caneppele (Michele); D. Levi (Dina); E. Papouli (Efterpi); N. Orr (Nick); A. Cox (Angela); S.S. Cross (Simon); I. dos Santos Silva (Isabel); J. Peto (Julian); A.J. Swerdlow (Anthony ); M. Schoemaker (Minouk); M.K. Bolla (Manjeet); Q. Wang (Qing); J. Dennis (Joe); K. Michailidou (Kyriaki); J. Benítez (Javier); A. González-Neira (Anna); D.C. Tessier (Daniel C.); D. Vincent (Daniel); J. Li (Jingmei); J.D. Figueroa (Jonine); V. Kristensen (Vessela); A.-L. Borresen-Dale (Anne-Lise); P. Soucy (Penny); J. Simard (Jacques); R.L. Milne (Roger); G.G. Giles (Graham); S. Margolin (Sara); A. Lindblom (Annika); T. Brüning (Thomas); H. Brauch (Hiltrud); M.C. Southey (Melissa); J.L. Hopper (John); T. Dörk (Thilo); N.V. Bogdanova (Natalia); M. Kabisch (Maria); U. Hamann (Ute); R.K. Schmutzler (Rita); A. Meindl (Alfons); H. Brenner (Hermann); V. Arndt (Volker); R. Winqvist (Robert); K. Pykäs (Katri); P.A. Fasching (Peter); M.W. Beckmann (Matthias); J. Lubinski (Jan); A. Jakubowska (Anna); A.M. Mulligan (Anna Marie); I.L. Andrulis (Irene); R.A.E.M. Tollenaar (Rob); P. Devilee (Peter); L. Le Marchand (Loic); C.A. Haiman (Christopher); A. Mannermaa (Arto); V-M. Kosma (Veli-Matti); P. Radice (Paolo); P. Peterlongo (Paolo); F. Marme (Federick); B. Burwinkel (Barbara); C.H.M. van Deurzen (Carolien); A. Hollestelle (Antoinette); N. Miller (Nicola); M. Kerin (Michael); D. Lambrechts (Diether); O.A.M. Floris; J. Wesseling (Jelle); H. Flyger (Henrik); S.E. Bojesen (Stig); S. Yao (Song); C.B. Ambrosone (Christine); G. Chenevix-Trench (Georgia); T. Truong (Thérèse); P. Guénel (Pascal); A. Rudolph (Anja); J. Chang-Claude (Jenny); H. Nevanlinna (Heli); C. Blomqvist (Carl); K. Czene (Kamila); J.S. Brand (Judith S.); J.E. Olson (Janet); F.J. Couch (Fergus); A.M. Dunning (Alison); P. Hall (Per); D.F. Easton (Douglas); P.D.P. Pharoah (Paul); S. Pinder (Sarah); M.K. Schmidt (Marjanka); I.P. Tomlinson (Ian); R. Roylance (Rebecca); M. García-Closas (Montserrat); E.J. Sawyer (Elinor)

    2016-01-01

    textabstractBackground: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibilit

  11. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater.

    Science.gov (United States)

    Liu, Xuewu; Byrne, Robert H; Adornato, Lori; Yates, Kimberly K; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-10-01

    Autonomous in situ sensors are needed to document the effects of today's rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator's molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg(-1) and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  12. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  13. In situ nanoindentation in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Andrew M. [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    This dissertation presents the development of the novel mechanical testing technique of in situ nanoindentation in a transmission electron microscope (TEM). This technique makes it possible to simultaneously observe and quantify the mechanical behavior of nano-scale volumes of solids.

  14. In situ construction of a coordination zirconocene tetrahedron.

    Science.gov (United States)

    Liu, Guoliang; Ju, Zhanfeng; Yuan, Daqiang; Hong, Maochun

    2013-12-16

    The current study describes the first in situ synthesis and characterization of a new family of cationic coordination tetrahedra of both the V4F4 and V4E6 type, which are constructed by a new building block based on a trinuclear zirconocene moiety and the dicarboxylate or tricarboxylate anions.

  15. Current approaches for detection of carcinoma in situ testis

    DEFF Research Database (Denmark)

    Hoei-Hansen, Christina E; Olesen, Inge A; Jørgensen, Niels

    2007-01-01

    of carcinoma in situ (CIS). This review describes current possible approaches for the detection of CIS. At present, an open testicular biopsy is the only definitive way of establishing the presence of CIS. The tissue section should be of an adequate size, be properly fixed, and evaluation be supported...

  16. A rat model with an isolated bladder in situ

    DEFF Research Database (Denmark)

    Thulesen, J; Olsen, P S; Grevstad, J U

    1997-01-01

    This paper describes our method for producing a rat model with an isolated bladder in situ in which the bladder makes no contact with urine. First, the right kidney was removed, then an external catheter was placed in the right ureter for bladder infusions, and next the left ureter was anatomosed...

  17. Heat exchanger life extension via in-situ reconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan

    2016-06-28

    A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.

  18. Extraction of in situ cosmogenic 14C from olivine

    Science.gov (United States)

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  19. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  20. Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities.

  1. 30 CFR 250.1006 - How must I decommission and take out of service a DOI pipeline?

    Science.gov (United States)

    2010-07-01

    ... a DOI pipeline? 250.1006 Section 250.1006 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Pipelines and Pipeline Rights-of-Way § 250.1006 How must I decommission and take out of service a DOI...

  2. Additive manufacturing for in situ repair of osteochondral defects

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Daniel L; Lipton, Jeffrey I; Bonassar, Lawrence J; Lipson, Hod, E-mail: dlc44@cornell.ed, E-mail: jil26@cornell.ed, E-mail: lb244@cornell.ed, E-mail: hod.lipson@cornell.ed [Cornell University, Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    2010-09-15

    Tissue engineering holds great promise for injury repair and replacement of defective body parts. While a number of techniques exist for creating living biological constructs in vitro, none have been demonstrated for in situ repair. Using novel geometric feedback-based approaches and through development of appropriate printing-material combinations, we demonstrate the in situ repair of both chondral and osteochondral defects that mimic naturally occurring pathologies. A calf femur was mounted in a custom jig and held within a robocasting-based additive manufacturing (AM) system. Two defects were induced: one a cartilage-only representation of a grade IV chondral lesion and the other a two-material bone and cartilage fracture of the femoral condyle. Alginate hydrogel was used for the repair of cartilage; a novel formulation of demineralized bone matrix was used for bone repair. Repair prints for both defects had mean surface errors less than 0.1 mm. For the chondral defect, 42.8 {+-} 2.6% of the surface points had errors that were within a clinically acceptable error range; however, with 1 mm path planning shift, an estimated {approx}75% of surface points could likely fall within the benchmark envelope. For the osteochondral defect, 83.6 {+-} 2.7% of surface points had errors that were within clinically acceptable limits. In addition to implications for minimally invasive AM-based clinical treatments, these proof-of-concept prints are some of the only in situ demonstrations to-date, wherein the substrate geometry was unknown a priori. The work presented herein demonstrates in situ AM, suggests potential biomedical applications and also explores in situ-specific issues, including geometric feedback, material selection and novel path planning techniques.

  3. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR PART 4 - FUEL CHANNEL ASSEMBLY

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2014-05-01

    Full Text Available As many nuclear power plants are reaching their end of lifecycle, the decommissioning of these installations has become one of the 21st century’s great challenges. Each project may be managed differently, depending on the country, development policies, financial considerations, and the availability of qualified engineers or specialized companies to handle such projects. The principle objective of decommissioning is to place a facility into such a condition that there is no unacceptable risk from the decommissioned facility to public health and safety of the environment. In order to ensure that at the end of its life the risk from a facility is within acceptable bounds, action is normally required. The overall decommissioning strategy is to deliver a timely, costeffective program while maintaining high standards of safety, security and environmental protection. If facilities were not decommissioned, they could degrade and potentially present an environmental radiological hazard in the future. Simply abandoning or leaving a facility after ceasing operations is not considered to be an acceptable alternative to decommissioning. The final aim of decommissioning is to recover the geographic site to its original condition.

  4. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR PART 3 - FUEL CHANNEL REFERENCES

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2014-05-01

    Full Text Available As many nuclear power plants are reaching their end of lifecycle, the decommissioning of these installations has become one of the 21st century’s great challenges. Each project may be managed differently, depending on the country, development policies, financial considerations, and the availability of qualified engineers or specialized companies to handle such projects. The principle objective of decommissioning is to place a facility into such a condition that there is no unacceptable risk from the decommissioned facility to public health and safety of the environment. In order to ensure that at the end of its life the risk from a facility is within acceptable bounds, action is normally required. The overall decommissioning strategy is to deliver a timely, cost-effective program while maintaining high standards of safety, security and environmental protection. If facilities were not decommissioned, they could degrade and potentially present an environmental radiological hazard in the future. Simply abandoning or leaving a facility after ceasing operations is not considered to be an acceptable alternative to decommissioning. The final aim of decommissioning is to recover the geographic site to its original condition.

  5. CONSIDERATIONS FOR THE DEVELOPMENT OF A DEVICE FOR THE DECOMMISSIONING OF THE HORIZONTAL FUEL CHANNELS IN THE CANDU 6 NUCLEAR REACTOR PART 2 - FUEL CHANNEL PRESENTATION

    Directory of Open Access Journals (Sweden)

    Gabi ROSCA FARTAT

    2014-05-01

    Full Text Available As many nuclear power plants are reaching their end of lifecycle, the decommissioning of these installations has become one of the 21st century’s great challenges. Each project may be managed differently, depending on the country, development policies, financial considerations, and the availability of qualified engineers or specialized companies to handle such projects. The principle objective of decommissioning is to place a facility into such a condition that there is no unacceptable risk from the decommissioned facility to public health and safety of the environment. In order to ensure that at the end of its life the risk from a facility is within acceptable bounds, action is normally required. The overall decommissioning strategy is to deliver a timely, costeffective program while maintaining high standards of safety, security and environmental protection. If facilities were not decommissioned, they could degrade and potentially present an environmental radiological hazard in the future. Simply abandoning or leaving a facility after ceasing operations is not considered to be an acceptable alternative to decommissioning.The final aim of decommissioning is to recover the geographic site to its original condition.

  6. Gravity anomalies and lithospheric flexure around the Longmen Shan deduced from combinations of in situ observations and EGM2008 data

    Science.gov (United States)

    She, Yawen; Fu, Guangyu; Wang, Zhuohua; Liu, Tai; Xu, Changyi; Jin, Honglin

    2016-10-01

    The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. These new FGAs show pairs of positive and negative anomalies along the eastern edges of the Tibetan Plateau. The FGAs are used to calculate effective elastic thickness ( T e) and load ratios ( F) of the lithosphere. Admittance analysis indicates the T e of Longmen Shan (LMS) to be 6 km, and profile analysis indicates that the T e of the Sichuan Basin excesses 30 km. The load ratio ( F 1 = 1) confirms that the lithospheric flexure of the LMS area can be attributed solely to the surface load of the crust. [Figure not available: see fulltext. Caption: The current work describes the combined data of three field campaigns, spanning 2009-2013. Their joint gravity and GPS observations thoroughly cover the sites of lithospheric flexure between the Sichuan Basin and the Eastern Tibetan Plateau. The study area's free-air gravity anomalies (FGAs) are updated by using a remove-and-restore algorithm which merges EGM2008 data with in situ observations. With the new FGAs data, the lithospheric strength of the study area is studied by the authors, and they also give a combined model to illustrate the uplift mechanism of this area.

  7. In-situ immobilization of arsenic in the underground; In-situ Immobilisierung von Arsen im Untergrund

    Energy Technology Data Exchange (ETDEWEB)

    Boochs, Peter W.; Billib, Max [Leibniz Universitaet Hannover (Germany). Inst. fuer Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau; Krueger, Timo [Leibniz Universitaet Hannover (Germany). Inst. fuer Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau; Heidt und Peters GmbH, Celle (Germany)

    2012-07-01

    Arsenic can be immobilized in the underground by means of iron chloride and oxygen. A test plant was established on the site of an arsenic-contaminated armament disposal in order to immobilize arsenic in-situ. The concentration of arsenic in the feed water was reduced explicitly.

  8. Geochemical and Microbiological Characteristics during in Situ Chemical Oxidation and in Situ Bioremediation at a Diesel Contaminated Site

    NARCIS (Netherlands)

    Sutton, N.B.; Kalisz, M.; Krupanek, J.; Marek, J.; Grotenhuis, J.T.C.; Smidt, H.; Weert, de J.; Rijnaarts, H.H.M.; Gaans, van P.; Keijzer, T.

    2014-01-01

    While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the co

  9. Can Decommissioned Oil Pads in Boreal Alberta BE Reclaimed to Carbon Accumulating Peatlands?

    Science.gov (United States)

    Wieder, R.; Vitt, D. H.; Mowbray, S.

    2010-12-01

    In northern Alberta where peatland ecosystems are a dominant landscape feature, construction of oil drilling pads and access roads is a major disturbance. Reclamation of decommissioned oil pads has been hampered by the lack of research. At two decommissioned oil pads at Shell Oil’s Peace River Complex (northeastern Alberta), initially constructed in a bog/fen complex, we established a field experiment to assess reclamation approaches that could lead to a system reflecting undisturbed peatland structure (vegetation composition) and function (net carbon accumulation). In the fall of 2007, mineral soil was removed from two decommissioned pads in areas approximately 100-m x 30-m creating a mineral surface at or near the surrounding bog water table level. We established the following treatments: pad (fertilized vs. unfertilized); water table position (at and 5-cm above the surrounding bog water level); texture (tilling soil amendments into the mineral soil or not); amendment (controls; commercial peat, peat that had been stockpiled in a farmer’s field; landscape fabric; slough hay (native species hay from harvested from local farms), aspen wood chips); planting (in 1-m x 1-m subplots within 2-m x 2-m amendment plots: no planting, 9 Carex aquatilis plants, 5 C. aquatilis and 4 Salix lutea plants; 3 C. aquatilis, 3 S. lutea and 3 Larix laricina seedlings). Treatments were nested (planting within amendment, within texture, within water table level, within pad), with 6 replicate 2-m x 2-m plots of each amendment within each pad x texture x water level combination. Net CO2 exchange was quantified under a range of PAR conditions from full sunlight to complete darkness in each 1-m x 1-m planting subplot repeatedly during the summers of 2008, 2009 and 2010 using closed chambers and infrared gas analyzers. Both dark respiration and maximum net ecosystem production (NEPSAT; net CO2 sequestration when PAR>1000 μmol m-2 s-1) exhibited year x planting interactions (p<0.0001 and

  10. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 2. Appendices. Technical report, September 1977-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE. This volume contains the appendices.

  11. In situ amplification of DNA fragments specific for human Y chromosome in cellular nuclei by PCR

    Institute of Scientific and Technical Information of China (English)

    张锡元; 姜海波; 李立家; 马琦; 杨建琪; 刘汀

    1996-01-01

    Using single primer pairs Y3 and Y4, in siru polymerase chain reaction (in situ PCR) was successfully performed on the specimen slides of peripheral leukocytes. By both of the direct digpxiginin-11-dUTP incorporation into PCR products with in situ PCR (direct in situ PCR) and in situ PCR followed by detection of in situ hybridization (indirect in siru PCR), DNA fragments specific for human Y chromosome were obviously amplified in cellular nuclei of specimens on the slides. The results were verified by Southern analysis. The methodology of in situ PCR and its application were discussed.

  12. Airborne in situ characterization of dry urban aerosol optical properties around complex topography

    Science.gov (United States)

    Targino, Admir Créso; Noone, Kevin J.

    2006-02-01

    In situ data from the 1997 Southern California Ozone Study—NARSTO were used to describe the aerosol optical properties in an urban area whose aerosol distribution is modified as the aerosols are advected over the surrounding topography. The data consist of measurements made with a nephelometer and absorption photometer onboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Pelican aircraft. The cases investigated in this study include vertical profiles flown over coastal sites as well as sites located along some important mountain ranges in southern California. The vertical distribution of the aerosol in the Los Angeles Basin showed a complex configuration, directly related with the local meteorological circulations and the surrounding topography. High spatial and temporal variability in air pollutant concentrations within a relatively small area was found, as indicated by the aerosol scattering and absorption coefficient data. The results suggest that in areas with such complex terrain, a high spatial resolution is required in order to adequately describe the aerosol optical quantities. Principal components analysis (PCA) has been applied to aerosol chemical samples in order to identify the major aerosol types in the Los Angeles Basin. The technique yielded four components that accounted for 78% of the variance in the data set. These were indicative of marine aerosols, urban aerosols, trace elements and secondary aerosol components of traffic emissions and agricultural activities. A Monte Carlo radiation transfer model has been employed to simulate the effects that different aerosol vertical profiles have on the attenuation of solar energy. The cases examined were selected using the results of the PCA and in situ data were used to describe the atmospheric optical properties in the model. These investigations comprise a number of sensitivity tests to evaluate the effects on the results of the location of the aerosol layers as well as

  13. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico

    DEFF Research Database (Denmark)

    Weber, A.; Jørgensen, BB

    2002-01-01

    Depth distribution and temperature dependence of bacterial sulfate reduction were studied in hydrothermal surface sediments of the southern trough of the Guaymas Basin at 2000 m water depth. In situ temperatures ranged from 2.8 degreesC at the sediment surface to > 130degreesC at 30 cm depth in t...

  14. Proceedings of the twenty-third annual British Columbia mine reclamation symposium: mine decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The symposium covered a spectrum of reclamation issues relevant to mining in British Columbia. The proceedings contain the twenty-one technical papers presented and a report by the awards subcommittee concerning citations awarded. Papers are included on native species in reclamation, bat conservation, biological removal of selenium, wetland cells for removing heavy metals leachates, end land use plan for a copper mine, environmental projects at Fording Coal, reclamation at a nickel plate tailings facility, forestry for end use, contaminated site legislation, compliance, environmental management considerations, acid rock drainage prediction, granular cover system for tailings management, long-term management of tailings and tailings dams at decommissioned mining properties, mine subsidence risk management, reclaiming subsidence in abandoned mining areas, and reclamation of mine openings. Two papers are abstracted separately.

  15. Investigation of induced radioactivity in the CERN Large Electron Positron collider for its decommissioning

    CERN Document Server

    Silari, Marco

    2004-01-01

    The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...

  16. Assessment of the radiological impact of a decommissioning nuclear power plant in Italy

    CERN Document Server

    Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

    2012-01-01

    The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

  17. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  18. A DECONTAMINATION PROCESS FOR METAL SCRAPS FROM THE DECOMMISSIONING OF TRR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.Y.; Gan, J.S.; Lin, K.M.; Chung, Z.J.

    2003-02-27

    A decontamination facility including surface condition categorizing, blasting, chemical/electrochemical cleaning, very low radioactivity measuring, and melting, is being established at INER. The facility will go into operation by the end of 2004. The main purpose is to clean the dismantled metal wastes from the decommissioning of Taiwan Research Reactor (TRR). The pilot test shows that over 70% of low level metal waste can be decontaminated to very low activity and can be categorized as BRC (below regulatory concern) waste. All the chemical decontamination technologies applied are developed by INER. In order to reduce the secondary wastes, chemical reagents will be regenerated several times with a selective precipitation method. The exhausted chemical reagent will be solidified with INER's patented process. The total secondary waste is estimated about 0.1-0.3 wt.% of the original waste. This decontamination process is accessed to be economic and feasible.

  19. Review Of Decommissioning Experience In Spent Fuel Reprocessing Facilities at Marcoule

    Energy Technology Data Exchange (ETDEWEB)

    Guiberteau, Ph.; Vendroux, M. [CODEM GIE, BP 21004, 30201 Bagnols sur Ceze cedex (France); Berlan, C. [COGEMA Reprocessing Business Unit, 2, rue Paul Dautier - BP.4, 78141 Velizy Cedex (France)

    2003-07-01

    Final shutdown and decontamination, dismantling, and legacy waste retrieval programs are currently in progress at the Marcoule nuclear fuel reprocessing plant in southern France. They began in 1998 and will continue until about 2040. CODEM is the funding, decision-making and inspection organization for these decommissioning operations, COGEMA is the nuclear operator and the industrial contractor. After an overview of the facilities, the project and the participants, most significant operations are discussed in greater detail. High activity levels and the presence of large quantities of {alpha}-emitters complicate operating and waste treatment conditions. The major issues impacting cost-effectiveness-scenario, waste removal and project organization will be highlighted in the conclusion.

  20. Decontamination and decommissioning plan for processing contaminated NaK at the INEL

    Energy Technology Data Exchange (ETDEWEB)

    LaRue, D.M.; Dolenc, M.R.

    1986-09-01

    This decontamination and decommissioning (D&D) plan describes the work elements and project management plan for processing four containers of contaminated sodium/potassium (NaK) and returning the Army Reentry Vehicle Facility Site (ARVFS) to a reusable condition. The document reflects the management plan for this project before finalizing the conceptual design and preliminary prototype tests of the reaction kinetics. As a result, the safety, environmental, and accident analyses are addressed as preliminary assessments before completion at a later date. ARVFS contains an earth-covered bunker, a cylindrical test pit and metal shed, and a cable trench connecting the two items. The bunker currently stores the four containers of NaK from the meltdown of the EBR-1 Mark II core. The D&D project addressed in this plan involves processing the contaminated NaK and returning the ARVFS to potential reuse after cleanup.