WorldWideScience

Sample records for basin in-situ decommissioning

  1. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  2. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  3. In situ decommissioning - the radical approach for nuclear power stations

    International Nuclear Information System (INIS)

    In situ decommissioning (ISD) is a radical approach to the disposal of nuclear reactors by burying them on-site beneath a mound of suitable material. The engineering and construction of the mound is dealt with and the selection of suitable material. The radiological impact of leaving radioactive materials on-site is studied and it is concluded that ISD could be a solution for some sites. (Author)

  4. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m3) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international

  5. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and

  6. Technology Requirements For In Situ Decommissioning Workshop Report

    International Nuclear Information System (INIS)

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private

  7. Sensor Network Demonstration for In Situ Decommissioning - 13332

    International Nuclear Information System (INIS)

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the

  8. Use of in-situ gamma spectroscopy during nuclear power plant decommissioning - 59340

    International Nuclear Information System (INIS)

    Document available in abstract form only. Full text of publication follows: The Electric Power Research Institute (EPRI) is a non-profit research organization that supports the energy industry. The Nuclear Power Plant Decommissioning Technology Program conducts research and develops technology for the safe and efficient decommissioning of nuclear power plants. One of the key objectives of the EPRI Decommissioning Technology Program is to capture the good practices and lessons learned from plants currently undergoing decommissioning. Several major plant decommissioning programs have been successfully completed, so EPRI is documenting relevant experiences to aid future decommissioning activities, both in the United States and internationally. In-situ Gamma Spectroscopy is powerful technology with the potential for widespread application in nuclear power plant radiological surveys. Due to leakage and other events that may occur during nuclear power plant operations, soil, concrete and bedrock have the potential to become contaminated, and therefore must be characterized to demonstrate that they meet strict regulatory site release limits. The radiological surveys conducted during power plant decommissioning have historically been very labor intensive, time consuming and often extend decommissioning duration. The use of hand-held survey meters was typical during early decommissioning. As engineers gained experience, they often replaced the hand-held meters with advanced technologies such as the In-situ Gamma Spectroscopy instruments

  9. Remediation of SRS Basins by In Situ Stabilization/Solidification

    International Nuclear Information System (INIS)

    In the late summer of 1998, the Savannah River Site began remediation of two radiologically contaminated basins using in situ stabilization. These two high-risk, unlined basins contain radiological contaminants, which potentially pose significant risks to human health and the environment. The selected remedy involves in situ stabilization/solidification of the contaminated wastes (basin and pipeline soils, pipelines, vegetation, and other debris) followed by installation of a low permeability soil cover

  10. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes

  11. Use of Cementitious Materials for SRS Reactor Facility In-Situ Decommissioning

    International Nuclear Information System (INIS)

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose of producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD project requires approximately 250000 cubic yards of cementitious materials to fill the below-grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Funding is being provided under the American Recovery and Reinvestment Act (ARRA). Cementitious materials were designed for the following applications: (A) Below-grade massive voids / rooms: Portland cement-based structural flowable fills for: (A.1) Bulk filling; (A.2) Restricted placement and (A.3) Underwater placement. (B) Special below-grade applications for reduced load bearing capacity needs: (B.1) Cellular portland cement lightweight fill. (C) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels (C.1) Blended calcium aluminate - calcium sulfate based flowable fill; (C.2) Magnesium potassium phosphate flowable fill. (D) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: (D.1) Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured

  12. In Situ Site Characterization Technologies Demonstrated at the INEEL in Decommissioning Projects

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Kelly Clyde; Meservey, Richard Harlan; Whitmill, Larry Joseph

    1999-04-01

    The United States Department of Energy (DOE)continually seeks safer, more cost-effective, and better performing technologies for decontamination and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE Federal Energy Technology Center (FETC) sponsors Large Scale Demonstration and Deployment Projects (LSDDPs) which are conducted at various DOE sites. The Idaho National Engineering and Environmental Laboratory (INEEL) is one of the DOE sites for demonstration of these newa and improved technologies. The INEEL needs statement defines specific needs or problems for their D&D program. One of the needs identified at the INEEL was for new or improved site characterization technologies. A variety of in-situ site characterization technologies have been demonstrated through the INEEL LSDDP. These technologies provide a safer means of characterization, improved documentation, real-time information, improved D&D schedules, and reduction in costs and radiation exposures to workers. These technologies have provided vast improvements to the D&D site characterizations. Some of these technologies include: • The Global Positioning Radiometric Scanner System for large-area, surface gamma radiation surveys • Remote underwater characterization system• Identifying heavy metals in painted surfaces and determining the alloy composition in metallic material • In-Situ Object Counting System for free release • Real-time radiological data acquisition with the Surveillance and Measurement’s sodium iodide detector • Electromagnetic radiography to locate contaminated soils. Historically, site characterization has been a slow, costly, and tedious process. However, through these demonstrations, new technologies have provided more accurate data, real-time information, and enhanced site characterization documentation. In addition, a safer work environment has been established as a result of decreasing the worker’s time

  13. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M. G.

    2013-09-27

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  14. In Situ Decommissioning Sensor Network, Meso-Scale Test Bed - Phase 3 Fluid Injection Test Summary Report

    International Nuclear Information System (INIS)

    The DOE Office of Environmental management (DOE EM) faces the challenge of decommissioning thousands of excess nuclear facilities, many of which are highly contaminated. A number of these excess facilities are massive and robust concrete structures that are suitable for isolating the contained contamination for hundreds of years, and a permanent decommissioning end state option for these facilities is in situ decommissioning (ISD). The ISD option is feasible for a limited, but meaningfull number of DOE contaminated facilities for which there is substantial incremental environmental, safety, and cost benefits versus alternate actions to demolish and excavate the entire facility and transport the rubble to a radioactive waste landfill. A general description of an ISD project encompasses an entombed facility; in some cases limited to the blow-grade portion of a facility. However, monitoring of the ISD structures is needed to demonstrate that the building retains its structural integrity and the contaminants remain entombed within the grout stabilization matrix. The DOE EM Office of Deactivation and Decommissioning and Facility Engineering (EM-13) Program Goal is to develop a monitoring system to demonstrate long-term performance of closed nuclear facilities using the ISD approach. The Savannah River National Laboratory (SRNL) has designed and implemented the In Situ Decommissioning Sensor Network, Meso-Scale Test Bed (ISDSN-MSTB) to address the feasibility of deploying a long-term monitoring system into an ISD closed nuclear facility. The ISDSN-MSTB goal is to demonstrate the feasibility of installing and operating a remote sensor network to assess cementitious material durability, moisture-fluid flow through the cementitious material, and resulting transport potential for contaminate mobility in a decommissioned closed nuclear facility. The original ISDSN-MSTB installation and remote sensor network operation was demonstrated in FY 2011-12 at the ISDSN-MSTB test cube

  15. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    International Nuclear Information System (INIS)

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  16. Study on a new calibration methods of in-situ HPGe γ spectrometers used for non-destructive analyzing radioactivity in nuclear facilities decommissioning

    International Nuclear Information System (INIS)

    A new calibration technique, which is the Monte Carlo modeling technique, of in-situ HPGe γ spectrometers used for non-destructive analyzing radioactivity in nuclear facilities decommissioning, is presented. A series of assay for some stainless steel pipes and tanks in some nuclear facilities/laboratories of CIAE are taken on site with the in-situ HPGe γ spectrometer. At the same time, some examples are taken and analyzed in laboratories. The relative bias/variation between the values of activity measured by in-situ HPGe γ spectrometers on site and that analyzed in laboratory is less than ±45.0%. (authors)

  17. Study on tertiary in-situ leachable uranium mineralization conditions in South Songliao basin

    International Nuclear Information System (INIS)

    Tertiary in-situ leachable mineralization in Songliao Basin was analyzed in theory in the past. Since 1998, regional investigation at 1:200000 scale has been done with about 120 holes drilled. Based on drill holes recording, section compiling and sample analysis, the authors investigate into the Tertiary in-situ leachable conditions including rock character, sedimentary facies, rock chemistry, organic substances, uranium content, sandstone porosity, sandstone bodies, interlayer oxidation, and hydro-dynamic value. The study would play important role in prospecting for in-situ leachable uranium in South Songliao basin

  18. In situ characterization of Hanford K Basins fuel

    International Nuclear Information System (INIS)

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel

  19. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  20. Envisioning Communications with Future Stakeholders - A Case Study Using the In-Situ Decommissioning of P-Reactor

    International Nuclear Information System (INIS)

    This paper will explore opportunities to expand the CAB's public outreach by the incorporation of technologies typically used in social networks and distance learning. Envisioning opportunities to engage next generation CAB members in public involvement will be delineated by retracing the decision process used with the in-situ decommissioning of P-Reactor at the Savannah River Site (SRS). This paper will discuss existing opportunities to enable another group of stakeholders to take part in the environmental policy decision making process regarding the inclusion of some very long lived radioactive constituents. The aim of the paper will be to locate places in the current process where alternate or parallel informational dissemination pathways could exist. These alternatives will incorporate the next generation's expectation for instantaneous information and universal ownership of hand-held communication devices. The goal of this paper is to use the present framework of CAB communications and add the components of virtual networking and distance learning in hopes of bridging the generational technology gap and extending the dialog to future stakeholders. (authors)

  1. Blended Calcium Aluminate-Calcium Sulfate Cement-Based Grout For P-Reactor Vessel In-Situ Decommissioning

    International Nuclear Information System (INIS)

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH ≤ 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts (Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010). Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere (Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively). Radiolysis calculations are also provided in a separate document (Reyes-Jimenez, 2010).

  2. Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland

    Science.gov (United States)

    Brooke-Barnett, Samuel; Flottmann, Thomas; Paul, Pijush K.; Busetti, Seth; Hennings, Peter; Reid, Ray; Rosenbaum, Gideon

    2015-07-01

    The Jurassic to Cretaceous sedimentary rocks of the Surat Basin in southeast Queensland host a significant volume of coal seam gas resources. Consequently, knowledge of the in situ stress is important for coal permeability enhancement and wellbore stability. Using wireline log data and direct stress measurements, we have calculated stress orientations from 36 wells and stress magnitudes from 7 wells across the Surat Basin. Our results reveal a relationship between high tectonic stress and proximity to structures within the underlying "basement" rocks. The influence of tectonic stresses is diminished with depth in areas with thicker sedimentary cover that are relatively far from the basement structures. We suggest that this relationship is due to the redistribution of in situ stresses around areas where basement is shallower and where basement structures, such as the Leichhardt-Burunga Fault System, are present. This behavior is explained by a lower rigidity in the thickest basin cover, which reduces the ability to maintain higher tectonic stress. Over the entire Surat Basin, a significant amount of variability in in situ stress orientation is observed. The authors attribute this stress variability to complex plate boundary interactions on the northern and eastern margins of the Indo-Australian Plate.

  3. Collimated in-situ gamma spectrometry: a new method for fast clearance measurements of large areas or building structures of nuclear facilities under decommissioning

    International Nuclear Information System (INIS)

    The ideas in the late sixties which led to the use of bare spectrometric radiation detectors like NaI(Tl), Ge(Li) or nowadays high-purity germanium detectors (wage) for field measurements (in-situ gamma spectrometry) were to get easy and rapid information about the radiological state of outdoor grounds after nuclear weapon tests or to estimate dose rates created by natural radioactive nuclides in the soil. In this cases, it was assumed, that there was no disturbance of the source-detector geometry for many hundred square meters around the detector. After the nuclear accident in Chernobyl in 1986 these advantages focussed strong scientific interest at the in-situ technique and in 1993 it was established in the German regulatory for immission surveillance after significant radioactive emissions. For unrestricted release in decommissioning 'in-situ gamma spectrometry may be the only method of achieving validation of the release criteria, particularly for large areas outside the buildings'. In a late phase of the decommissioning of a nuclear power plant all components containing a significant inventor of radioactivity are removed, leaving large surfaces with often poorly knows contamination levels. Taking in account only buildings of restricted areas in the next 50 years in Germany 7E3 Mg activated and 5E6 Mg contaminated concrete must be released from facilities under decommissioning. Before the ground and the building structures of the facility can be conventionally pulled down, the remaining radioactivity must be determined in order to check the radiological relevance of the concerned part of the plant and to decide the possible path of material release. The basis of assessment may be the so-called '10 μSv-concept'. (author)

  4. Removal of NO3--N from polluted groundwater in decommissioned mining area in an in-situ leach uranium mine by denitrifying bacteria bioreactor

    International Nuclear Information System (INIS)

    The pollution of groundwater by NO3- in the decommissioned mining area in an in-situ leach uranium mine is being paid more and more attention. The denitrifying bacteria by domesticating the sludge taken from the decommissioned mining area in an in-situ leach uranium mine in North West of China were obtained. An up-flow fixed-bed denitrifying bacteria bioreactor was designed. The effects of pH, the ratio of carbon to nitrogen and HRT on the removal of NO3--N from the polluted groundwater in the decommissioned mining area in the in-situ leach uranium mine by the denitrifying bacteria bioreactor were investigated. The results show that when pH, the concentration of NO3--N and HRT are set to 6.50, 1000 mg/L and 2.3 h, respectively, the removal of the NO3--N amounts to 97%, the NO3--N degradation rate is 388 mg/(h · L) and the capacity of the bioreactor is 0. 35 m3/(h · m3). When pH , the concentration of NO3--N and HRT are set to 6.50, 550 mg/L and 1.4 h, respectively, the removal of the NO3--N amounts to 96% and the capacity of the bioreactor is 0.62 m3/(h · m3). The bioreactor should work on the operation conditions that pH is 5.00-8.00 and the ratio of carbon to nitrogen is 0.6-0.8. (authors)

  5. An analysis of prominent prospect of in-situ sandstone type uranium deposits in Yanji basins group, Jilin province

    International Nuclear Information System (INIS)

    In Mesozoic-Cenozoic era, many medium-small-sized sedimentary basins had been formed in Yanbian draped-faulted region of Jilin Province. The basement of these basins is constituted of U-riched granite body produced during late Hercynian-early Yanshan period. Uranium-mineralization has been found in coal-bearing formation, oil-bearing formation and in tint layer of red formation. On the bases of analyzing of uranium source, geologic tectonic, paleoclimatology, paleogeography, hydrogeology and reconstruction, it is concluded that there is a prominent prospect to discover large in-situ sandstone-type uranium deposits in Yanji basins. (authors)

  6. In Situ Production of Branched Glycerol Dialkyl Glycerol Tetraethers in a Great Basin Hot Spring (USA

    Directory of Open Access Journals (Sweden)

    ChuanlunZhang

    2013-07-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are predominantly found in soils and peat bogs. In this study, we analyzed core-bGDGTs and polar (P- bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62-86°C in the Great Basin (USA. First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their Core (C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”. These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear.

  7. Waterflood improvement in the Permian Basin: Impact of in-situ-stress evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Nolen-Hoeksema, R.C.; Avasthi, J.M. (Chevron Petroleum Technology Co., Houston, TX (United States)); Pape, W.C. (West Australian Petroleum Pty. Ltd., Perth (Australia)); El Rabaa, A.W. (Mobil E and P Technical Center, Dallas, TX (United States))

    1994-11-01

    The authors evaluated in-situ-stress magnitudes and directions to support waterflood improvement programs in McElroy field and North Westbrook Unit. In-situ-stress and hydraulic-fracture directions coincided with directional floodwater effects. This information contributed to successful waterflood realignment programs.

  8. In situ stress and pore pressure in the Kumano Forearc Basin, offshore SW Honshu from downhole measurements during riser drilling

    Science.gov (United States)

    Saffer, D. M.; Flemings, P. B.; Boutt, D.; Doan, M.-L.; Ito, T.; McNeill, L.; Byrne, T.; Conin, M.; Lin, W.; Kano, Y.; Araki, E.; Eguchi, N.; Toczko, S.

    2013-05-01

    situ stress and pore pressure are key parameters governing rock deformation, yet direct measurements of these quantities are rare. During Integrated Ocean Drilling Program (IODP) Expedition #319, we drilled through a forearc basin at the Nankai subduction zone and into the underlying accretionary prism. We used the Modular Formation Dynamics Tester tool (MDT) for the first time in IODP to measure in situ minimum stress, pore pressure, and permeability at 11 depths between 729.9 and 1533.9 mbsf. Leak-off testing at 708.6 mbsf conducted as part of drilling operations provided a second measurement of minimum stress. The MDT campaign included nine single-probe (SP) tests to measure permeability and in situ pore pressure and two dual-packer (DP) tests to measure minimum principal stress. Permeabilities defined from the SP tests range from 6.53 × 10-17 to 4.23 × 10-14 m2. Pore fluid pressures are near hydrostatic throughout the section despite rapid sedimentation. This is consistent with the measured hydraulic diffusivity of the sediments and suggests that the forearc basin should not trap overpressures within the upper plate of the subduction zone. Minimum principal stresses are consistently lower than the vertical stress. We estimate the maximum horizontal stress from wellbore failures at the leak-off test and shallow MDT DP test depths. The results indicate a normal or strike-slip stress regime, consistent with the observation of abundant active normal faults in the seaward-most part of the basin, and a general decrease in fault activity in the vicinity of Site C0009.

  9. In-situ analysis of solid bitumen in coal: Examples from the Bowen Basin and the Illinois Basin

    Science.gov (United States)

    Mastalerz, Maria; Glikson, M.

    2000-01-01

    Solid bitumen and associated vitrinite from selected coals from the Bowen Basin and the Illinois Basin were studied using electron microprobe and micro-FTIR techniques. The coal studied covers a range of vitrinite reflectance from 0.59% to 1.33%. Carbon content in the bitumen is generally lower than in vitrinite in coals with vitrinite reflectance below 0.67%. In coals with reflectance above 0.67%, carbon content of bitumen is higher than in vitrinite, reflecting higher aromaticity due to hydrocarbon generation. Sulfur and iron content are comparable between vitrinite and bitumen. Functional group distribution suggests the presence of two types of bitumen in the Illinois Basin coals. The more aliphatic variety occurring in veins and cleats is interpreted as pre-gas generation bitumen, and the more aromatic variety filling cells and voids in inertinite as post-gas generation bitumen. (C) 2000 Elsevier Science B.V. All rights reserved.Solid bitumen and associated vitrinite from selected coals from the Bowen Basin and the Illinois Basin were studied using electron microprobe and micro-FTIR techniques. The coal studied covers a range of vitrinite reflectance from 0.59% to 1.33%. Carbon content in the bitumen is generally lower than in vitrinite in coals with vitrinite reflectance below 0.67%. In coals with reflectance above 0.67%, carbon content of bitumen is higher than in vitrinite, reflecting higher aromaticity due to hydrocarbon generation. Sulfur and iron content are comparable between vitrinite and bitumen. Functional group distribution suggests the presence of two types of bitumen in the Illinois Basin coals. The more aliphatic variety occurring in veins and cleats is interpreted as pre-gas generation bitumen, and the more aromatic variety filling cells and voids in inertinite as post-gas generation bitumen.

  10. Past terrestrial water storage (1980–2008 in the Amazon Basin reconstructed from GRACE and in situ river gauging data

    Directory of Open Access Journals (Sweden)

    M. Becker

    2011-02-01

    Full Text Available Terrestrial water storage (TWS composed of surface waters, soil moisture, groundwater and snow where appropriate, is a key element of global and continental water cycle. Since 2002, the Gravity Recovery and Climate Experiment (GRACE space gravimetry mission provides a new tool to measure large-scale TWS variations. However, for the past few decades, direct estimate of TWS variability is accessible from hydrological modeling only. Here we propose a novel approach that combines GRACE-based TWS spatial patterns with multi-decadal-long in situ river level records, to reconstruct past 2-D TWS over a river basin. Results are presented for the Amazon Basin for the period 1980–2008, focusing on the interannual time scale. Results are compared with past TWS estimated by the global hydrological model ISBA-TRIP. Correlations between reconstructed past interannual TWS variability and known climate forcing modes over the region (e.g., El Niño-Southern Oscillation and Pacific Decadal Oscillation are also estimated. This method offers new perspective for improving our knowledge of past interannual TWS in world river basins where natural climate variability (as opposed to direct anthropogenic forcing drives TWS variations.

  11. In situ and Enriched Microbial Community Composition and Function Associated with Coal Bed Methane from Powder River Basin Coals

    Science.gov (United States)

    Barnhart, Elliott; Davis, Katherine; Varonka, Matthew; Orem, William; Fields, Matthew

    2016-04-01

    Coal bed methane (CBM) is a relatively clean source of energy but current CBM production techniques have not sustained long-term production or produced enough methane to remain economically practical with lower natural gas prices. Enhancement of the in situ microbial community that actively generates CBM with the addition of specific nutrients could potentially sustain development. CBM production more than doubled from native microbial populations from Powder River Basin (PRB) coal beds, when yeast extract and several individual components of yeast extract (proteins and amino acids) were added to laboratory microcosms. Microbial populations capable of hydrogenotrophic (hydrogen production/utilization) methanogenesis were detected in situ and under non-stimulated conditions. Stimulation with yeast extract caused a shift in the community to microorganisms capable of acetoclastic (acetate production/utilization) methanogenesis. Previous isotope analysis from CBM production wells indicated a similar microbial community shift as observed in stimulation experiments: hydrogenotrophic methanogenesis was found throughout the PRB, but acetoclastic methanogenesis dominated major recharge areas. In conjunction, a high proportion of cyanobacterial and algal SSU rRNA gene sequences were detected in a CBM well within a major recharge area, suggesting that these phototrophic organisms naturally stimulate methane production. In laboratory studies, adding phototrophic (algal) biomass stimulated CBM production by PRB microorganisms similarly to yeast extract (~40μg methane increase per gram of coal). Analysis of the British thermal unit (BTU) content of coal from long-term incubations indicated >99.5% of BTU content remained after CBM stimulation with either algae or yeast extract. Biomimicry of in situ algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate

  12. Importance of shale anisotropy in estimating in-situ stresses and wellbore stability analysis in Horn River basin

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Safdar; Ansari, Sajjad; Han, Hongxue; Khosravi, Nader [Schlumberger (United States)

    2011-07-01

    The importance of understanding shale formation anisotropic behavior prior to drilling was discussed in this paper. The objective of this work is to show how shale anisotropy is often not taken into consideration in conventional wellbore analysis, and how this practice might lead to serious consequences and instabilities in the wellbore system. Two fields in the Horn River basin area were investigated. The laminated structures of the shale were explained and the mechanical properties including in-situ stresses, directional variations, and horizontal and vertical Young's modulus were calculated. In general the investigated region proved to be highly anisotropic. It was proposed that this phenomenon was the main reason for discrepancies in mechanical properties along the parallel and perpendicular directions of the planes. Moreover, it was shown that not taking anisotropic effects into consideration can cause miscalculations of in-situ stresses and breakdown pressure; hence, causing instabilities in the wellbore system. Therefore, anisotropic analysis was recommended as an important step in designing wells.

  13. Geologic features of Wunite Erlian basin depression and prospecting analysis on in-situ sandstone-type uranium deposit

    International Nuclear Information System (INIS)

    Wunite depression located in the east of Erlian basin is one of the five biggest depressions in Erlian basin, and its sub-sags can be classified into two types: the units in depression zone and the other ones in uplift zone. Fluvial fan sedimentary-braided river system disposed at the former one, including vertical channel deposit model and centripetal channel deposit model: fan delta-lake system disposed at the later one, including fan deltas deposit model and braid river deltas deposit model. The main structure styles of sags are dustpan single-fault, composite single-fault, and composite double-fault. It is necessary to search these faults, in that the bottom slope belt of dustpan single-fault and composite single-fault is favorable for prospecting; the Saihantala sandstone which is at the two sides of the steep hill of composite single-fault and the sags of composite double-fault formed as monoclinal stratum. The sags featured by braid river deltas and vertical channel deposit model whose Saihantala sandstone possess modest thickness, fine stratification and connectivity, are favorable for prospecting in-situ sandstone-type Uranium deposit at Wunite zone. (authors)

  14. Evidence for In-situ Cretaceous Volcanism From La Conception Quarry in the Noumea Basin, New Caledonia

    Science.gov (United States)

    Rickey, C.; Alexander, A.; Grande, R.; Robinson, S.; Nicholson, K.

    2009-05-01

    The Noumea Basin in New Caledonia, forms a narrow band, about 10-30km wide that extends from the city of Noumea north-westward towards La Tontouta for about 60km. The Noumea Basin represents a sequence of late Cretaceous basalts, rhyolites and marginal marine sedimentary typical of continental margin volcanic arcs. Directly north of the Tina Peninsula, in the Bay of La Conception, there is an old basalt quarry known as the La Conception Quarry. This project involved mapping La Conception quarry, which may be an extinct volcano. This is of particular importance as it is one of the only in-situ volcanic centers that exist in the South Pacific during the late Cretaceous. Through petrophraphic analyses of the basalts we determined that they have experienced minimal low-grade metamorphism, and that the temperatures and pressures never increased enough to re-orientate the phenocrysts. The quarry is roughly oval in shape, and is oriented north-south. The area of the exposed rock is roughly 0.5km2 and the quarry lake itself encompasses about of the exposed area. We mapped this site by using orientation of phenocrysts and vesicles to determine the direction of flow. We took measurements on the exposed rock every meter by setting up a square meter grid around the entire quarry. This was achieved by establishing a starting point, with a known GPS position, in the quarry and then having two groups of two people move directly north and south from that point. Compasses were used to orientate the lines of the grid; spray paint was used to mark the grid. According to the data we compiled, there are three different basaltic flows in La Conception quarry. These flows were discernable only on the west side of the quarry lake, and are stacked one on top of the other, forming a steep sided mound. On the east side of the quarry all orientations were random and there were no recognizable flows. Of the three flows we identified, the upper flow has random orientation of phenocrysts, the

  15. Evapotranspiration Estimation over Yangtze River Basin from GRACE satellite measurement and in situ data

    Science.gov (United States)

    Li, Qiong; Luo, Zhicai; Zhong, Bo; Wang, Haihong; Zhou, Zebing

    2016-04-01

    As the critical component of hydrologic cycle, evapotranspiration (ET) plays an important role in global water exchanges and energy flow across the hydrosphere, atmosphere and biosphere. Influenced by the Asian monsoon, the Yangtze River Basin (YRB) suffer from the several severe floods and droughts over the last decades due to the significant difference between temporal and spatial distribution terrestrial water storages. As an indispensable part, it is practically important to assessment ET in the YRB accompany with increased population and rapid economic and agriculture development. Average ET over the YRB is computed as the residual of terrestrial water budget using the Gravity Recovery and Climate Experiment (GRACE) satellite-based measurements and the ground-based observations. The GRACE-based ET were well coincidence with the ET from MODIS, with the correlation coefficient of 0.853, and the correlation coefficient is 0.696 while comparing with the ET ground-based observation. The mean monthly average of ET from these various estimates is 56.9 mm/month over the whole YRB, and peak between June and August. Monthly variations of ET reach a maximum in Wujiang with 69.11 mm/month and a minimum in Jinshajiang with 39.01 mm/month. Based on the correlation between ET and independent estimates of near-surface temperature and soil moisture, it is showed that as the temperature increased, the ET of the seven sub-catchment were rising except for the Poyang Lake and Donting Lake. And we also can infer that the midstream of YRB is significant correlated with ESON especially in the Hanjiang basin. The Surface Humidity Index over the YRB was gradually decreased and its variations in each sub-catchment showed a significant decreasing trend in Jinshajiang and Mingjiang. This research has important potential for use in large-scale water budget assessments and intercomparison studies. Acknowledgements: This research is supported by the National Natural Science Foundation of

  16. Water availability, water demand, and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa

    Science.gov (United States)

    Andersson, J. C. M.; Zehnder, A. J. B.; Jewitt, G. P. W.; Yang, H.

    2009-07-01

    Water productivity in smallholder rain-fed agriculture is of key interest for food and livelihood security. A frequently advocated approach to enhance water productivity is to adopt water harvesting and conservation technologies (WH). This study estimates water availability for in situ WH and supplemental water demands (SWD) in smallholder agriculture in the Thukela River Basin, South Africa. It incorporates process dynamics governing runoff generation and crop water demands, an explicit account of the reliability of in situ WH, and uncertainty considerations. The agro-hydrological model SWAT (Soil and Water Assessment Tool) was calibrated and evaluated with the SUFI-2 algorithm against observed crop yield and discharge in the basin. The water availability was based on the generated surface runoff in smallholder areas. The SWD was derived from a scenario where crop water deficits were met from an unlimited external water source. The reliability was calculated as the percentage of years in which the water availability ≥ the SWD. It reflects the risks of failure induced by the temporal variability in these factors. The results show that the smallholder crop water productivity is low in the basin (spatiotemporal median: 0.08-0.22 kg m-3, 95% prediction uncertainty band (95PPU). Water is available for in situ WH (spatiotemporal median: 0-17 mm year-1, 95PPU) which may aid in enhancing the crop water productivity by meeting some of the SWD (spatiotemporal median: 0-113 mm year-1, 95PPU). However, the reliability of in situ WH is highly location specific and overall rather low. Of the 1850 km2 of smallholder lands, 20-28% display a reliability ≥25%, 13-16% a reliability ≥50%, and 4-5% a reliability ≥75% (95PPU). This suggests that the risk of failure of in situ WH is relatively high in many areas of the basin.

  17. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Science.gov (United States)

    Pedinotti, V.; Boone, A.; Decharme, B.; Crétaux, J. F.; Mognard, N.; Panthou, G.; Papa, F.; Tanimoun, B. A.

    2012-06-01

    During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002-2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA). Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong reduction of the

  18. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    Directory of Open Access Journals (Sweden)

    V. Pedinotti

    2012-06-01

    Full Text Available During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of this study is to evaluate the ability of the ISBA-TRIP continental hydrologic system to represent key processes related to the hydrological cycle of the Niger basin. ISBA-TRIP is currently used within a coupled global climate model, so that the scheme must represent the first order processes which are critical for representing the water cycle while retaining a limited number of parameters and a simple representation of the physics. To this end, the scheme uses first-order approximations to account explicitly for the surface river routing, the floodplain dynamics, and the water storage using a deep aquifer reservoir. In the current study, simulations are done at a 0.5 by 0.5° spatial resolution over the 2002–2007 period (in order to take advantage of the recent satellite record and data from the African Monsoon Multidisciplinary Analyses project, AMMA. Four configurations of the model are compared to evaluate the separate impacts of the flooding scheme and the aquifer on the water cycle. Moreover, the model is forced by two different rainfall datasets to consider the sensitivity of the model to rainfall input uncertainties. The model is evaluated using in situ discharge measurements as well as satellite derived flood extent, total continental water storage changes and river height changes. The basic analysis of in situ discharges confirms the impact of the inner delta area, known as a significant flooded area, on the discharge, characterized by a strong

  19. Comparison of Vertical Distributions of Prokaryotic Assemblages in the Anoxic Cariaco Basin and Black Sea by Use of Fluorescence In Situ Hybridization†

    Science.gov (United States)

    Lin, Xueju; Wakeham, Stuart G.; Putnam, Isabell F.; Astor, Yrene M.; Scranton, Mary I.; Chistoserdov, Andrei Y.; Taylor, Gordon T.

    2006-01-01

    Individual prokaryotic cells from two major anoxic basins, the Cariaco Basin and the Black Sea, were enumerated throughout their water columns using fluorescence in situ hybridization (FISH) with the fluorochrome Cy3 or horseradish peroxidase-modified oligonucleotide probes. For both basins, significant differences in total prokaryotic abundance and phylogenetic composition were observed among oxic, anoxic, and transitional (redoxcline) waters. Epsilon-proteobacteria, Crenarchaeota, and Euryarchaeota were more prevalent in the redoxclines, where previous studies reported high rates of chemoautotrophic production relative to those in waters above and below the redoxclines. Relative abundances of Archaea in both systems varied between 1% and 28% of total prokaryotes, depending on depth. The prokaryotic community composition varied between the two anoxic basins, consistent with distinct geochemical and physical conditions. In the Black Sea, the relative contributions of group I Crenarchaeota (median, 5.5%) to prokaryotic communities were significantly higher (P < 0.001; n = 20) than those of group II Euryarchaeota (median, 2.9%). In contrast, their proportions were nearly equivalent in the Cariaco Basin. Beta-proteobacteria were unexpectedly common throughout the Cariaco Basin's water column, accounting for an average of 47% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells. This group was below the detection limit (<1%) in the Black Sea samples. Compositional differences between basins may reflect temporal variability in microbial populations and/or systematic differences in environmental conditions and the populations for which they select. PMID:16597973

  20. Combination of Radar Altimeter and In-Situ Measurements to deduce Rating-Curves at Some Virtual Stations in the Ungauged Amazon and Orinoco Basins

    Science.gov (United States)

    Leon, J.; Seyler, F.; Calmant, S.; Bonnet, M.

    2008-12-01

    In the last two years, virtual gauged stations have been proposed to increase the density of hydrological network in ungauged or very poorly monitored basins (Leon, 2006). In spatial hydrology a virtual station is considered as any crossing of water body surface (i.e., large rivers) by radar altimeter satellite tracks. The main objective of this study is to review the usefulness of altimetric data presenting rating curves obtained for some virtual stations at the poorly gauged basins of Caqueta (Colombian Amazon basin), Uaupes and Upper Negro (Brazilian Amazon basin) and Upper Orinoco. Rating curve parameters at virtual stations are estimated by fitting with a power law distribution the temporal series of water surface altitude derived from ENVISAT satellite measurements and modeled discharges. The applied methodology (Leon et al. 2006a) allows the ellipsoidal height of effective zero flow to be estimated. This parameter is a good proxy of the mean water depth from which the river bed slope can be computed. These quantities combined with rating-curve parameters are highly valuable for understanding hydrological behaviour, especially at ungauged basins where hydrodynamical studies had always been prevented by the lack of in-situ data. The results obtained allow to propose a new insight into the hydrological behaviour of the region shared by Colombia, Brazil and Venezuela, which is very difficult to access, and then very poorly known.

  1. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    OpenAIRE

    Liu, S; Mo, X.; Zhao, W; Naeimi, V.; Dai, D.; Shu, C; L. Mao

    2009-01-01

    The change pattern and trend of soil moisture (SM) in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH) variables such as precipitation, air tem...

  2. Decommissioning Handbook

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  3. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    Energy Technology Data Exchange (ETDEWEB)

    Blundy, R.F. [Westinghouse Savannah River Company, AIKEN, SC (United States); Zionkowki, P.G.

    1997-12-22

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy`s (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment.

  4. Final Report for the Demonstration of Plasma In-situ Vitrification at the 904-65G K-Reactor Seepage Basin

    International Nuclear Information System (INIS)

    The In-situ Vitrification (ISV) process potentially offers the most stable waste-form for containment of radiologically contaminated soils while minimizing personnel contamination. This is a problem that is extensive, and at the same time unique, to the US Department of Energy's (DOE) Weapons Complex. An earlier ISV process utilized joule heating of the soil to generate the subsurface molten glass product. However previous test work has indicated that the Savannah river Site soils (SRS) may not be entirely suitable for vitrification by joule heating due to their highly refractory nature. The concept of utilizing a plasma torch for soil remediation by in-situ vitrification has recently been developed, and laboratory test work on a 100 kW unit has indicated a potentially successful application with SRS soils. The Environmental Restoration Division (ERD) of Westinghouse Savannah River Company (WSRC) conducted the first field scale demonstration of this process at the (904-65G) K-Reactor Seepage Basin in October 1996 with the intention of determining the applicability and economics of the process for remediation of a SRS radioactive seepage basin. The demonstration was successful in completing three vitrification runs, including two consecutive runs that fused together adjacent columns of glass to form a continuous monolith. This report describes the demonstration, documents the engineering data that was obtained, summarizes the process economics and makes recommendations for future development of the process and equipment

  5. New understanding of ore-formation of in-situ leachable sandstone-type uranium deposit in Erlian basin

    International Nuclear Information System (INIS)

    Starting with the ore-controlling role of tectonic evolution of Erlian basin, i.e. the basement evolution stage, the formation state of ore-hosting formation, and the ore-formation stage of epigenetic reworking, authors come to a conclusion, that Erlian basin was a sedimentary basin composed of tens of little separate depressions with their own tectonic and sedimentary evolutionary features, and multiple and near source area at the stage of the ore-hosting formation. Combining above-mentioned factors with the other ore-controlling factors related to sandstone-type uranium deposits, authors suggest that the size of sandstone-type uranium deposits to be found in Erlian basin might be mostly small or medium in size. Bu it is possible that the smaller medium-sized uranium deposits would occur in groups. The dominant subtype of the sandstone-type uranium deposits may be phreatic-interlayered oxidized zone

  6. Evaluation of the ISBA-TRIP continental hydrologic system over the Niger basin using in situ and satellite derived datasets

    OpenAIRE

    V. Pedinotti; Boone, A.; B. Decharme; J. F. Crétaux; N. Mognard; G. Panthou; Papa, F.; Tanimoun, B. A.

    2012-01-01

    During the 1970s and 1980s, West Africa has faced extreme climate variations with extended drought conditions. Of particular importance is the Niger basin, since it traverses a large part of the Sahel and is thus a critical source of water for an ever-increasing local population in this semi arid region. However, the understanding of the hydrological processes over this basin is currently limited by the lack of spatially distributed surface water and discharge measurements. The purpose of thi...

  7. Analysis of MODIS LST Compared with WRF Model and in situ Data over the Waimakariri River Basin, Canterbury, New Zealand

    OpenAIRE

    Peyman Zawar-Reza; Wolfgang Rack; Mohammad Sohrabinia

    2012-01-01

    In this study we examine the relationship between remotely sensed, in situ and modelled land surface temperature (LST) over a heterogeneous land-cover (LC) enclosed in alpine terrain. This relationship can help to understand to what extent the remotely sensed data can be used to improve model simulations of land surface parameters such as LST in mountainous areas. LST from the MODerate resolution Imaging Spectro-radiometer (MODIS), the modelled surface skin temperature by the Weather Research...

  8. Radioactive environmental geology of ore-bearing artesian basin and in-situ leach mining of uranium deposit

    International Nuclear Information System (INIS)

    The recent hydrogeological environments of interlayer-infiltration type uranium deposits exert different influence in protecting the environment pollution during in-situ leach mining process. According to the hydrogeologic characteristics, especially the hydrodynamic parameters, uranium deposits may be divided into 3 groups: favorable, unfavorable and extremely unfavorable. Favorable uranium deposits are those in which ground water diagonally flows from oxidation zone and unaltered rock zone to the ore zone interacting along the trending of the ore zone. Under such hydrogeologic conditions leaching solution is not able to flow beyond the ore zone, protecting the environment from pollution. Completely unfavorable hydrogeologic condition are those under which ground water perpendicularly passes through the ore zone flowing from the oxidation zone towards the zone of grey rocks. In this case ground water may carry poisonous elements and heavy metals out of the ore zone to neighbouring areas. Uranium deposits of unfavorable hydrogeologic conditions are those in which the above two situations coexist. Practice demonstrates that the pollution caused by in-situ leach mining is lower than that of the natural radioactive pollution when hydrogeologic conditions are favorable for in-situ leach mining

  9. Decommissioning handbook

    International Nuclear Information System (INIS)

    The purpose of this paper is to provide information on the Handbook and its application as a resource in decontamination and decommissioning (D and D) work. The nature of the unique hazards contained in nuclear facilities demand a comprehensive step-by-step program to cover their design, licensing, and commissioning or start-up. Similarly, because of residual radioactivity, a termination of operations (decommissioning) also presents hazards that must be addressed from a technological and programmatic standpoint. To meet the needs raised by these issues, the original Decommissioning Handbook was prepared in 1980 by Nuclear Energy Services under contract to the United States Department of Energy (DOE). Its mission was to provide technical guidance on the D and D of both commercial and government-owned nuclear facilities, including characterization, decontamination, dismantling, and disposition (disposal or salvage) of a facility's equipment and structure. In addition, depending on the regulatory requirements for material disposal and/or the wastes generated by decontamination, the management of waste can also be considered as a decommissioning activity. Chapters are Operational and predecommissioning activities; Decommissioning project; Decommissioning plan; Regulations; Final project configuration; Characterization; Waste treatment; Decontamination; Dismantling, segmenting, and demolition; Remote handling equipment; Environmental protection; Packaging and transportation; and Decommissioning cost estimates. Appendices contain a prediction method for estimation of radiactive inventory and a glossary

  10. Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa

    Directory of Open Access Journals (Sweden)

    J. C. M. Andersson

    2009-12-01

    Full Text Available Water productivity in smallholder rain-fed agriculture is of key interest for improved food and livelihood security. A frequently advocated approach to enhance water productivity is to adopt water harvesting and conservation technologies (WH. This study estimates water availability for potential in situ WH, and supplemental water demand (SWD in smallholder agriculture in South Africa's Thukela River Basin (29 000 km2, mean annual precipitation 550–2000 mm yr−1. The study includes process dynamics governing runoff generation and crop water demands, quantification of prediction uncertainty, and an analysis of the reliability of in situ WH.

    The agro-hydrological model SWAT (Soil and Water Assessment Tool was calibrated and evaluated with the Sequential Uncertainty Fitting algorithm against observed discharge (at ten stations and maize yield (the dominant crop type for the period 1997–2006. The water availability was based on the generated surface runoff in smallholder areas. The SWD was derived from a scenario where crop water deficits were met from an unlimited external water source. The reliability was calculated as the percentage of years in which water availability ≥SWD. This reflects the risks of failure induced by the temporal variability in the water availability and the SWD.

    The calibration reduced the predictive uncertainty and resulted in a satisfactory model performance. For smallholder maize yield, the Root Mean Squared Error was 0.02 t ha−1 during both the calibration and the evaluation periods. The width of the uncertainty band was reduced by 23% due to the calibration. For discharge during the calibration (evaluation period, the ten-station range in the weighted coefficient of determination (Φ was 0.16–0.85 (0.18–0.73, and in the coefficient of determination (R2 0.42–0.83 (0.28–0.72. The calibration reduced the width of the uncertainty band by 25

  11. Image feature and recognition of prospective section of in-situ leachable sandstone-type uranium deposits at southern margin of Yili basin

    International Nuclear Information System (INIS)

    The author describes the secondary development of scientific experimental satellite photograph, the three-dimension stereo simulation display and the elaboration principle, methods and procedures of multi-parameter extraction. At the same time, the image features of prospective areas for in-situ leachable sandstone-type uranium deposits in Yili basin on different type images are comprehensively studied, the geological implication and significance of image features are analysed, and recognition of image features for prospective areas is made. On the basis of above research achievements, three-grade prediction, i.e. the regional metallogenic prediction, the selection of prospective area, and the selection of favorable mineralized site, is performed, and good verification results have been obtained

  12. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    DEFF Research Database (Denmark)

    Opluštil, Stanislav; Pšenicka, Josef; Libertín, Milan;

    2009-01-01

    The precursory mire of the Middle Pennsylvanian (Bolsovian) Lower Radnice Coal was buried in situ by volcanic ash, preserving the taxonomic composition, spatial distribution, vertical strati¿cation, and synecology of this peat-forming ecosystem in extraordinary detail. Plant fossil remains...... represent the pre- eruption vegetation of the swamp, which resulted from accumulation of peat in a high-ash, planar (rheotrophic) mire situated in a narrow palaeovalley containing an active ¿uvial system. A tuff bed (the Belka) at the base of the volcaniclastic Whetstone Horizon was exposed in two...... contiguous excavations over an area of 50 m2 in the Radnice Basin of western Bohemia, Czech Republic. Twenty-seven morphotaxa were identi¿ed, representing 20 whole-plant species with a wide variety of growth forms. The canopy of the peat-forming community was dominated by Cordaites borassifolius trees...

  13. A rapid in situ method for determining the ages of uranium oxide minerals: Evolution of the Cigar Lake deposit, Athabasca Basin

    International Nuclear Information System (INIS)

    The authors present a rapid and accurate technique for making in situ U-Pb isotopic measurements of uranium oxide minerals that utilizes both electron and ion microprobes. U and Pb concentrations are determined using an electron microprobe, whereas the isotopic composition of Pb for the same area is measured using a high-resolution ion microprobe. The advantages of this approach are: mineral separation and chemical digestion are unnecessary; homogeneous uranium oxide standards, which are difficult to obtain, are not required; and precise and accurate U-Pb ages on ∼10 microm spots can be obtained in a matter of hours. The authors have applied their method to study the distribution of U-Pb ages in complexly intergrown uranium oxides from the unconformity-type Cigar Lake uranium deposit, Saskatchewan, Canada. In situ U-Pb results from early formed uraninite define a well-correlated array on concordia with upper and lower intercepts of 1,467 ± 63 Ma and 443 ± 96 Ma (±1σ), respectively. The 1,467 Ma age is interpreted as the minimum age of mineralization and is consistent with the age of clay-mineral alteration (approximately1477 Ma) and magnetization of diagenetic hematite (1,650 to 1,450 Ma) that is associated with these unconformity-type uranium deposits and early diagenesis of the Athabasca Basin sediments. In situ U-Pb isotopic analysis of uraninite and coffinite can document the Pb*/U heterogeneities that can occur on a scale of 15 to 30 microm, thus providing relatively accurate information regarding the timing of fluid interactions associated with the evolution of these deposits

  14. Temporal variation of soil moisture over the Wuding River Basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Directory of Open Access Journals (Sweden)

    S. Liu

    2008-12-01

    Full Text Available For integrative management of soil and water in the Wuding River basin, Loess plateau, China, where severe soil erosion damages are incurred, the ecohydrological behavior of the region is needed to be explored. In this study we focus on the evolution of soil moisture (SM in the basin. Since there are only twelve years in-situ SM measurements available at two stations from 1992 to 2004, an eco-hydrological processes-based model (VIP, Vegetation Interface Processes model is employed to simulate the long-term SM, evapotranspiration (ET, vegetation cover and production variation from 1956 to 2004, for the mechanical analysis of SM change. In-situ SM observations and a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and CV (coefficient of the variation of SM at the daily, monthly and annual scale are well explained by the climatic and ecological factors such as precipitation, temperature, net radiation, evapotranspiration, and Leaf Area Index (LAI, denoted as LAI. The annual and inter-annual variability of SM is the lowest comparing with that for other 11-ecohydrological variables. The trend analysis shows that SM is in decreasing tendency at ∝=0.01 level of significance. Its significance is lower than that of runoff and that of temperature (∝=0.001, whereas higher than that of precipitation (∝=0.1. The products of these long-term SM data aim to help integrative management of soil and water resources.

  15. Characteristic of In Situ Stress and Its Control on the Coalbed Methane Reservoir Permeability in the Eastern Margin of the Ordos Basin, China

    Science.gov (United States)

    Zhao, Junlong; Tang, Dazhen; Xu, Hao; Li, Yong; Li, Song; Tao, Shu; Lin, Wenji; Liu, Zhenxing

    2016-08-01

    Coalbed methane (CBM) development faces many challenges, among which in situ stress and permeability are two of the most important and fundamental factors. Knowledge of the characteristics of these factors is crucial to CBM exploration and development. Based on measured injection/falloff and in situ stress well test data of 55 CBM wells in the eastern margin of the Ordos Basin, correlations between parameters including initial reservoir pressure, in situ stress, lateral stress coefficient, well test permeability, and burial depth were determined. The distribution of in situ stress was analyzed systematically and its influence on permeability was also addressed. The results indicate that the maximum horizontal principal stress ( σ H 10.13-37.84 MPa, average 22.50 MPa), minimum horizontal principal stress ( σ h 6.98-26.88 MPa, average 15.04 MPa) and vertical stress ( σ v 12.30-35.72 MPa, average 22.48 MPa) all have positive correlations with coal burial depth. Stress ratios ( σ H/ σ h, σ H/ σ v, and σ h/ σ v) and lateral stress coefficient slowly attenuated with depth. With increase of horizontal principal stresses, coal reservoir permeability (0.01-3.33 mD, average 0.65 mD) decreases. The permeability variation is basically consistent with change of stress state at a certain burial depth, the essence of which is the deformation and destruction of coal pore structures under the action of stresses. Three types of stress fields exist in the area: in the shallow coal seam at burial depths σ v > σ h), with average permeability 0.89 mD; from 700 to 1000 m depths, there is a stress transition zone ( σ H ≈ σ v > σ h) with average permeability 0.73 mD; in the deep coal seam with burial depths >1000 m, the vertical principal stress is dominant, demonstrating a normal stress regime ( σ v > σ H > σ h) with average permeability 0.11 mD.

  16. Decommissioning handbook

    International Nuclear Information System (INIS)

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained

  17. Decommissioning handbook

    Energy Technology Data Exchange (ETDEWEB)

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  18. Evaluation of Groundwater Storage changes at Konya Closed Basin, Turkey using GRACE-based and in-situ measurements

    Science.gov (United States)

    Kamil Yilmaz, Koray; Saber, Mohamed; Tugrul Yilmaz, Mustafa

    2016-04-01

    The Konya Closed Basin (KCB) located in Central Anatolia, Turkey, is the primary grain producer in Turkey. The lack of sufficient surface water resources and recently changing crop patterns have led to over-exploitation of groundwater resources and resulted in significant drop in groundwater levels. For this reason monitoring of the groundwater storage change in this region is critical to understand the potential of the current water resources and to devise effective water management strategies to avoid further depletion of the groundwater resources. Therefore, the main objective of this study is to examine and assess the utility of the Gravity Recovery and Climate Experiment (GRACE) and the Global Land Data Assimilation System (GLDAS) to monitor and investigate the groundwater storage changes in the Konya Closed Basin. Groundwater storage changes are derived using GRACE and GLDAS data and then are compared with the groundwater changes derived from the observed groundwater levels. The initial results of the comparison indicate an acceptable agreement between declining trends in GRACE-based and observed groundwater storage change during the study time period (2002 to 2015). Additionally, the results indicated that the study region exhibited remarkable drought conditions during 2007-2008 period. This study shows that the GRACE/GLDAS datasets can be used to monitor the equivalent groundwater storage changes which is crucial for long-term effective water management strategies.

  19. Decommissioning standards

    International Nuclear Information System (INIS)

    EPA has agreed to establish a series of environmental standards for the safe disposal of radioactive waste through participation in the Interagency Review Group on Nuclear Waste Management (IRG). One of the standards required under the IRG is the standard for decommissioning of radioactive contaminated sites, facilities, and materials. This standard is to be proposed by December 1980 and promulgated by December 1981. Several considerations are important in establishing these standards. This study includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include: the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions. 4 refs

  20. Nuclear decommissioning

    International Nuclear Information System (INIS)

    Sufficient work has now been done, on a world-wide basis, to justify confidence that full decommissioning of nuclear installations, both plant and reactors, can be carried out safely and efficiently. Projects in several countries should confirm this in the next few years. In the United Kingdom, good progress has been made with the Windscale Advanced Gas-cooled Reactor and supporting development work is finding solutions to resolve uncertainties. Estimates from several sources suggest that decommissioning costs can be kept to an acceptable level. (author)

  1. Blending satellite-based snow depth products with in situ observations for streamflow predictions in the Upper Colorado River Basin

    Science.gov (United States)

    Liu, Yuqiong; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi R.; Mocko, David M.

    2015-02-01

    In snowmelt-driven river systems, it is critical to enable reliable predictions of the spatiotemporal variability in seasonal snowpack to support local and regional water management. Previous studies have shown that assimilating satellite-station blended snow depth data sets can lead to improved snow predictions, which however do not always translate into improved streamflow predictions, especially in complex mountain regions. In this study, we explore how an existing optimal interpolation-based blending strategy can be enhanced to reduce biases in satellite snow depth products for improving streamflow predictions. Two major new considerations are explored, including: (1) incorporating terrain aspect and (2) incorporating areal snow coverage information. The methodology is applied to the bias reduction of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) snow depth estimates, which are then assimilated into the Noah land surface model via the ensemble Kalman Filtering (EnKF) for streamflow predictions in the Upper Colorado River Basin. Our results indicate that using only observations from low-elevation stations such as the Global Historical Climatology Network (GHCN) in the bias correction can lead to underestimation in streamflow, while using observations from high-elevation stations (e.g., the Snow Telemetry (SNOTEL) network) along with terrain aspect is critically important for achieving reliable streamflow predictions. Additionally incorporating areal snow coverage information from the Moderate Resolution Imaging Spectroradiometer (MODIS) can slightly improve the streamflow results further.

  2. Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon River basin

    Science.gov (United States)

    Paiva, R. C.; Collischonn, W.; Bonnet, M.; Goncalves, L.; Getirana, A.; Calmant, S.

    2012-12-01

    Large-scale hydrological models and forecast systems may be important tools to reduce the vulnerability of local population in places such as the Amazon River basin, where extreme hydrological events have occurred in the past few years. Due to the size of the basin and the slow speed of movement of its floods, uncertainty on model initial conditions (ICs) may play an important role for discharge forecasts using large scale hydrological models, even for relatively large lead times (~ 1 to 3 months). Data assimilation (DA) methods may provide an interesting way of merging both in situ and newly remotely sensed observations with models to estimate optimal ICs. We present the development and evaluation of a data assimilation framework for both gauged and radar altimetry based discharge and water levels into a large scale hydrological-hydrodynamic model of the Amazon River basin. We also explore the usefulness of such system to provide streamflow forecasts when forced by past climate and based mostly on model initial conditions. This work is in the context of recent developments of techniques for integrating information from models and remotely sensed data, and also of regional/global hydrological forecast systems including poorly gauged basins. We use the conceptual and physically based MGB-IPH model. The model uses the Penman Monteith for evapotranspiration and the Moore and Clarke model for soil water storage. River dynamics is simulated using full Saint-Venant equations and a simple floodplain storage model. The model was forced using satellite-derived daily rainfall (TRMM 3B42). We implemented a DA scheme based on the Ensemble Kalman Filter (EnKF) capable of assimilating three types of data: (1) discharge observations; (2) water levels provided by the ENVISAT radar altimeter; and (3) discharge estimated from radar altimetry. All state variables of the hydrological model were updated at each analyses time step. Model state variables errors were generated by

  3. 1982 international decommissioning symposium

    International Nuclear Information System (INIS)

    Sixty-four papers were presented at the following sessions: policy, regulations, and standards; management of decommissioning wastes; decommissioning experience; decommissioning tooling and techniques; radiological concerns; and planning and engineering

  4. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Science.gov (United States)

    Liu, S.; Mo, X.; Zhao, W.; Naeimi, V.; Dai, D.; Shu, C.; Mao, L.

    2009-07-01

    The change pattern and trend of soil moisture (SM) in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH) variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET), leaf area index (LAI), and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV) of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1) and increasing tendency of temperature (α=0.01). The decreasing tendency of runoff has higher significance level (α=0.001). Because of SM's decreasing tendency, soil evaporation (ES) is also decreasing (α=0.05). The tendency of net radiation (Rn), evapotranspiration (ET), transpiration (EC), canopy intercept (EI) is not obvious. Net primary productivity (NPP), of which the significance level is lower than α=0.1, and gross primary productivity (GPP) at α=0.01 are in increasing tendency.

  5. Workshop on decommissioning

    International Nuclear Information System (INIS)

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  6. Decommissioning and dismantling. Development and prototypical application of an in-situ X-ray fluorescence-/gamma spectrometer to detect heavy metal contamination (Th, U, Pu) during dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    The clearance of buildings of nuclear facilities, which were dealing with nuclear fuel, is characterized by enhanced operation of in-situ measuring methods for release. In spite of the well known chain of sample collection, sample preparation and laboratory analysis, in-situ- techniques are more representative. In the past, surface contamination monitors and the in-situ-gamma-spectroscopy were used for the characterization of contamination by heavy metals, such as uranium, thorium and plutonium. Both methods are able to produce specific data from different depth of the object (sample) and for different averaging areas after a carefully calibration procedure. These data were the base for the calculation of the area related activity or the specific activity of nuclides (contaminants) with the knowledge of decay data. The created method of in-situ-X-ray-spectrometry is able to measure the concentration of uranium, thorium and plutonium directly, without the use of specific activities. The thickness of concrete which is detected by the method is about 4 cm. The averaging area is comparable with that of contamination monitors. Important results of the investigations are: The high sensitivity of the method compared to the determination of the nuclides 238U and 232Th by gamma spectrometry of their daughter nuclides, the detection limits for uranium and thorium are lower than the clearance levels, the method are able to detect contamination of heavy metals that are penetrated to a certain depth or covered by a layer of paint, metal or concrete. In the case of contamination by plutonium the conditions for the detection are formulated and recommendations are made. The method was applied at concrete structures contaminated by uranium or thorium. (orig.)

  7. Decommissioning of Ukrainian NPPs

    International Nuclear Information System (INIS)

    The decision about the development of 'Decommissioning Concept of Ukrainian NPPs' being on commercial operational stage was approved by NAEK 'Energoatom' Board of Administration by way of the decommissioning activity effective planning. The Concept will be the branch document, containing common approaches formulations on problem decisions according to the units decommissioning with generated resources, and RAW and SNF management strategy during decommissioning

  8. Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing

    Directory of Open Access Journals (Sweden)

    C. Shu

    2009-07-01

    Full Text Available The change pattern and trend of soil moisture (SM in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET, leaf area index (LAI, and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1 and increasing tendency of temperature (α=0.01. The decreasing tendency of runoff has higher significance level (α=0.001. Because of SM's decreasing tendency, soil evaporation (ES is also decreasing (α=0.05. The tendency of net radiation (Rn, evapotranspiration (ET, transpiration (EC, canopy intercept (EI is not obvious. Net primary productivity (NPP, of which the significance level is lower than α=0.1, and gross primary productivity (GPP at α=0.01 are in increasing tendency.

  9. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at SRS

    International Nuclear Information System (INIS)

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins

  10. Decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Present concepts on stages of, designing for and costs of decommissioning, together with criteria for site release, are described. Recent operations and studies and assessments in progress are summarized. Wastes from decommissioning are characterized

  11. Utility planning for decommissioning

    International Nuclear Information System (INIS)

    Though the biggest impact on a utility of nuclear power plant decommissioning may occur many years from now, procrastination of efforts to be prepared for that time is unwarranted. Foresight put into action through planning can significantly affect that impact. Financial planning can assure the recovery of decommissioning costs in a manner equitable to customers. Decision-making planning can minimize adverse affects of current decisions on later decommissioning impacts and prepare a utility to be equipped to make later decommissioning decisions. Technological knowledge base planning can support all other planning aspects for decommissioning and prepare a utility for decommissioning decisions. Informed project planning can ward off potentially significant pitfalls during decommissioning and optimize the effectiveness of the actual decommissioning efforts

  12. Rates of total oxygen uptake of sediments and benthic nutrient fluxes measured using an in situ autonomous benthic chamber in the sediment of the slope off the southwestern part of Ulleung Basin, East Sea

    Science.gov (United States)

    Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon

    2015-09-01

    We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.

  13. Decommissioning of a mixed oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Decommissioning of the coprecipitation plant, which made plutonium/uranium oxide fuel, is a lead project in the BNFL Sellafield decommissioning programme. The overall programme has the objectives of gaining data and experience in a wide range of decommissioning operations and hence in this specific project to pilot the decommissioning of plant heavily contaminated with plutonium and other actinides. Consequently the operations have been used to test improvements in temporary containment, contamination control and decontamination methods and also to develop in situ plutonium assay, plutonium recovery and size-reduction methods. Finally the project is also yielding data on manpower requirements, personnel radiation uptake and waste arisings to help in the planning of future decommissioning projects

  14. A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Opluštil, S.; Pšenička, J.; Libertín, M.; Bashforth, A. R.; Šimůnek, Z.; Drábková, J.; Dašková, Jiřina

    2009-01-01

    Roč. 155, 3-4 (2009), s. 234-274. ISSN 0034-6667 R&D Projects: GA ČR GA205/05/0105 Institutional research plan: CEZ:AV0Z30130516 Keywords : Pennsylvanian * tuff * in situ * plant taphonomy * palaeoecology * peat-forming mires Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.145, year: 2009

  15. Time-variations of equivalent water heights'from Grace Mission and in-situ river stages in the Amazon basin Variações temporais do equivalente à altura d'água obtidas da Missão Grace e da altura d'água in-situ nos rios da bacia Amazônica

    Directory of Open Access Journals (Sweden)

    Flavio Guilherme Vaz de Almeida

    2012-03-01

    Full Text Available Gravity Recovery and Climate Experiment (GRACE mission is dedicated to measuring temporal variations of the Earth's gravity field. In this study, the Stokes coefficients made available by Groupe de Recherche en Géodésie Spatiale (GRGS at a 10-day interval were converted into equivalent water height (EWH for a ~4-year period in the Amazon basin (from July-2002 to May-2006. The seasonal amplitudes of EWH signal are the largest on the surface of Earth and reach ~ 1250mm at that basin's center. Error budget represents ~130 mm of EWH, including formal errors on Stokes coefficient, leakage errors (12 ~ 21 mm and spectrum truncation (10 ~ 15 mm. Comparison between in situ river level time series measured at 233 ground-based hydrometric stations (HS in the Amazon basin and vertically-integrated EWH derived from GRACE is carried out in this paper. Although EWH and HS measure different water bodies, in most of the cases a high correlation (up to ~80% is detected between the HS series and EWH series at the same site. This correlation allows adjusting linear relationships between in situ and GRACE-based series for the major tributaries of the Amazon river. The regression coefficients decrease from up to down stream along the rivers reaching the theoretical value 1 at the Amazon's mouth in the Atlantic Ocean. The variation of the regression coefficients versus the distance from estuary is analysed for the largest rivers in the basin. In a second step, a classification of the proportionality between in situ and GRACE time-series is proposed.A missão espacial Gravity Recovery and Climate Experiment (GRACE é dedicada às medidas das variações temporais no campo gravitacional da Terra. Neste estudo, os coeficientes de Stokes disponibilizados pelo Groupe de Recherche en Géodésie Spatiale (GRGS com intervalos de 10 dias foram convertidos no equivalente à altura d'água (EWH para um período de 4 anos na bacia Amazônica (de julho de 2002 a maio de 2006

  16. Improvement of the free-surface tension model in shallow water basin by using in-situ bottom-friction measurements

    Science.gov (United States)

    Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard

    2016-04-01

    Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the

  17. Financial aspects of decommissioning (key aspects of decommissioning costing)

    International Nuclear Information System (INIS)

    In this presentation the following aspects of NPPs decommissioning are discussed: Requirements and purpose of decommissioning costing; Decommissioning costing methodologies; Standardised decommissioning cost structure; Input data for cost estimate process; Waste management in cost estimate process; Grading aspects in cost estimating; Cost control in decommissioning projects; Summary of the cost estimation process; Conclusions and recommendations.

  18. Fort St. Vrain decommissioning experiences

    International Nuclear Information System (INIS)

    Public Service Company of Colorado (PSCo) is in the process of decommissioning the Fort St Vrain nuclear station, the first large-scale commercial nuclear plant to be decommissioned under the U.S. NRC's decommissioning rule. The experience has included providing for the disposition of spent fuel, choosing a decommissioning alternative, and actively decommissioning the plant from dismantlement and decontamination through final survey

  19. Training for decommissioning

    International Nuclear Information System (INIS)

    Plants entering decommissioning face many challenges One of the most important is the challenge of training for decommissioning This is important because: The facility operators and management have spent many years successfully operating the facility; The facility management arrangements are geared to operation; Decommissioning will include non-nuclear specialists and other stakeholders; Other skills are needed to decommission successfully. UKAEA has decommissioned many facilities at its sites in Dounreay, Windscale, Harwell and Winfrith in the UK. We have faced all of the challenges previously described and have developed many training methods for ensuring the challenges are met safely and effectively. We have developed courses for specialised skills such as safety cases which can be deployed to support any decommissioning. (author)

  20. On decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    As the number of nuclear power plants commissioned is increasing worldwide, both the responsible goverment agencies and the public are more and more concerned about decommissioning nuclear facilities after they have been shut down for good. IAEA organized a symposium on November 13-17, 1978 which dealt with problems of decommissioning, covering national objectives, technical processes, radiological questions, experience in plant decommissioning, decontamination techniques and remote handling procedures. It turned out that sufficient practical experience and highly developed decommissioning concepts and techniques are now available. Experts feel that also in the future no insoluble technical problems or problems must be expected which could only be solved at inordinately high technical expenditure. The article contains a survey of the present staus of problem solutions. Current work is being dedicated to the dose rates accumulated by decommissioning personnel and to the costs of decommissioning. (orig.)

  1. Decommissioning of Nuclear Facilities

    International Nuclear Information System (INIS)

    Atomic Energy Regulatory Board (AERB) is of the view that every organisation should focus attention on the decommissioning of nuclear facilities after completion of their useful life. AERB is aware that, internationally there is a growing interest in plant life extension due to economic considerations. Regulatory bodies stipulate upgradation of safety features based on international experience and current safety standards. However, decommissioning becomes a necessity at some time after the extended life of the plant. Nuclear industry has demonstrated that, with modern technological developments, decommissioning of nuclear facilities can be carried out without undue risk to the occupational workers, members of the public and protection of the environment. In view of limited experience in the field of decommissioning, this document is being issued as a safety manual instead of a safety guide. This manual elaborates the various technical and safety considerations in the decommissioning of nuclear facilities including ultimate disposal of radioactive materials/ wastes generated during decommissioning. Details that are required to be furnished to the regulatory body while applying for authorisation for decommissioning and till its completion are enumerated. This manual is issued to assist Department of Atomic Energy (DAE) units in formulating a decommissioning programme. Since the subject of decommissioning of nuclear facilities is a continuously evolving process, AERB is of the view, that provisions of this manual will apply for a period of five years from the date of issue and will be subsequently revised, if necessary

  2. Fort St. Vrain decommissioning

    International Nuclear Information System (INIS)

    The first commercial reactor to be decommissioned under the NRC's decommissioning rule is Public Service Company of Colorado's Fort St. Vrain Nuclear Station. The dismantlement and decontamination of this 330 MWe High Temperature Gas Cooled Reactor (HTGR) has involved many challenges for PSC, including establishing adequate funding, obtaining required regulatory approvals, selecting a decommissioning alternative, defueling to an Independent Spent Fuel Storage Installation, arranging for sufficient waste disposal, and managing a large fixed-price decommissioning contract. With physical dismantlement activities about one-third complete, the project is approximately on schedule and within the agreed upon costs

  3. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP Krsko. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for a decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill the decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economic aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling of all activities necessary for the decommissioning of the NPP Krsko are presented. (author)

  4. NPP Krsko decommissioning concept

    International Nuclear Information System (INIS)

    At the end of the operational lifetime of a nuclear power plant (NPP) it is necessary to take measures for the decommissioning as stated in different international regulations and also in the national Slovenian law. Based on these requirements Slovenian authorities requested the development of a site specific decommissioning plan for the NPP KRSKO. In September 1995, the Nuklearna Elektrarna Krsko (NEK) developed a site specific scope and content for decommissioning plan including the assumptions for determination of the decommissioning costs. The NEK Decommissioning Plan contains sufficient information to fulfill decommissioning requirements identified by NRC, IAEA and OECD - NEA regulations. In this paper the activities and the results of development of NEK Decommissioning Plan consisting of the development of three decommissioning strategies for the NPP Krsko and selection of the most suitable strategy based on site specific, social, technical, radiological and economical aspects, cost estimates for the strategies including the costs for construction of final disposal facilities for fuel/high level waste (fuel/HLW) and low/intermediate level waste (LLW/ILW) and scheduling all activities necessary for the decommissioning of the NPP KRSKO are presented. (author)

  5. Decommissioning U.K. power stations

    International Nuclear Information System (INIS)

    The strategy for decommissioning U.K. commercial nuclear power stations at the end of their operating lives has hitherto been based on early partial dismantling and clearance to green-field site after about 100 years. This strategy involves a considerable financial liability particularly in the early years following shutdown of the stations. In 1990 Nuclear Electric identified the potential for significantly reducing this liability by reviewing a range of alternative strategies for decommissioning. This review has now been completed by Nuclear Electric and this paper describes the background to it, the review itself and the conclusions. As a result Nuclear Electric are now proposing to adopt a new strategy, referred to as the ''Deferred Safestore strategy'' for all its gas-cooled power stations. This does not involve any significant active dismantling until about 135 years after shutdown, allowing radioactivity levels in the plant to decay to very low levels in-situ. Following defuelling, an initial care and maintenance phase of about 30 years occurs followed by construction of containments (Safestores) around all buildings containing active plant. The purpose of these is to protect the buildings and their contents from deterioration due to weathering for a further 100 years. Complete dismantling is carried out after that time. An alternative option at that time, with further considerable cost savings, could be In-situ decommissioning. (Author)

  6. Odin - lessons learnt. Decommissioning

    International Nuclear Information System (INIS)

    The article relates briefly to the abandoned natural gas field of Odin on the Norwegian continental shelf. The platform could be seen as the benchmark by which all other decommissioning activity in the North Sea takes place, since it is the first significantly large structure to have been decommissioned in deep water. 1 fig

  7. Decommissioning and jobs

    International Nuclear Information System (INIS)

    One aspect of the decommissioning web is its effect on socioeconomics, particularly jobs. What will reactor retirement mean to jobs, especially in rural communities where power plant operations may be the most reliable and dominant source of direct and indirect employment in the area? The problems which any plant closure produces for job security are generally understood, but the decommissioning of nuclear power plants is different because of the residual radioactivity and because of the greater isolation of the power plant sites. For example, what will be the specific employment effects of several possible decommissioning scenarios such as immediate dismantlement and delayed dismantlement? The varying effects of decommissioning on jobs is discussed. It is concluded that the decommissioning of nuclear power plants in some areas such as Wales could bring benefits to the surrounding communities. (author)

  8. Decommissioning activities in FUGEN

    International Nuclear Information System (INIS)

    FUGEN Decommissioning Engineering Center (hereinafter called as 'FUGEN'), JAEA obtained the approval of the decommissioning program for the prototype Advanced Thermal Reactor on February, 2008. FUGEN has been carrying out decommissioning works based on its decommissioning program since then. In the initial stage, the dismantling works were launched in turbine system whose contamination was relatively low level and their various data have been accumulating. And the draining heavy water, tritium decontamination and transferring of heavy water were carried out safely and reasonably. The preparation for introducing the clearance system, and the research and development works for the reactor core dismantling have been progressed steadily as well. Meanwhile, FUGEN has affiliations with local industries and universities for collaboration research, and has exchanged the decommissioning information with domestic and overseas organizations continuously. (author)

  9. International Decommissioning Strategies

    International Nuclear Information System (INIS)

    The IAEA has been developing guidance and technical information relating to the decommissioning and decommissioning strategies of nuclear facilities for over 20 years. During this time, the international concept of decommissioning strategies, and its importance, has changed. Three basic decommissioning strategies are envisaged as possibilities for nuclear installations: immediate dismantling, deferred dismantling and entombment. All have advantages and disadvantages, but the International Conference on Safe Decommissioning for Nuclear Activities demonstrated that immediate dismantling is the generally preferred option. However, there are a number of factors that might lead operators to choose one of the other strategies, and each situation has to be examined individually to identify the optimal strategy for that situation. The basic approach of these three strategies is discussed in the paper. (author)

  10. Nuclear decommissioning: Funding arrangements

    International Nuclear Information System (INIS)

    This statement describes the United Kingdom's approach to funding civil nuclear decommissioning activities and explain proposed changes to the current arrangements. The UK has nuclear operators both in the private and public sectors and the approach to decommissioning funding differs. British Energy (BE), which operates a fleet of AGR power stations and a PWR, is in the private sector. On privatization, a segregated fund was established to cover BE's future decommissioning costs. Money paid into the fund is invested and the accumulated assets used to meet future decommissioning and cleanup costs. The precise amount of money that will be required to cover decommissioning costs is not an exact science. That is why the performance of the segregated fund is reviewed at five yearly intervals, at which stage BE's annual contribution can be adjusted as appropriate. To ensure that the fund is managed effectively and investments are made wisely, the fund is managed by independent trustees jointly appointed by the Government and the company. So far, the fund is performing as expected and it is on target to cover BE's decommissioning costs. Operators in the public sector include British Nuclear Fuels Limited (BNFL) and the United Kingdom Atomic Energy Authority (UKAEA). BNFL operates the fleet of Magnox power stations, a number of which are in various stages of decommissioning. BNFL also operates Sellafield (reprocessing, MOX and other operations) and Springfields (fuel manufacture). UKAEA is responsible for decommissioning the UK's former research reactor sites at Dounreay, Windscale (Cumbria), Harwell and Winfrith (Dorset). Under current arrangements, taxpayers meet the cost of decommissioning and cleanup at UKAEA sites; taxpayers will also meet the costs associated with the decommissioning of Magnox power stations from 2008 onwards

  11. Mobility of heavy metals from polluted sediments of a semi-enclosed basin: in situ benthic chamber experiments in Taranto's Mar Piccolo (Ionian Sea, Southern Italy).

    Science.gov (United States)

    Emili, Andrea; Acquavita, Alessandro; Covelli, Stefano; Spada, Lucia; Di Leo, Antonella; Giandomenico, Santina; Cardellicchio, Nicola

    2016-07-01

    In situ benthic flux experiments were conducted at two stations in the Mar Piccolo of Taranto (Italy), one of the most industrialised and contaminated coastal areas of the Mediterranean. Sediments of the two stations are notably different in their trace metal content, with a station closer to a Navy harbour showing higher mean concentrations of almost all investigated metals (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn). Conversely, both stations are characterised by significant Hg contamination, compared to the local baseline. Results of a sequential extraction scheme on surface sediments suggest a relatively scarce mobility of the examined metals (Zn > Ni > Cr > As > Cu > Pb). A Hg-specific extraction procedure showed that most of the element (93.1 %) occurs in a fraction comprising Hg bound to Fe/Mn oxi-hydroxides. Reduction of these oxides may affect Hg remobilisation and redistribution. Porewater profiles of dissolved trace metals were quite similar in the two sites, although significant differences could be observed for Al, Cu, Fe and Hg. The highest diffusive fluxes were observed for As, Fe and Mn. Mobility rates of several trace elements (Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn) were directly measured at the sediment-water interface. Results from benthic in situ incubation experiments showed increasing dissolved metal concentrations with time, resulting in higher fluxes for Cu, Fe, Hg, V and Zn in the most contaminated site. Conversely, fluxes of Mn, Ni and Pb were comparable between the two stations. The estimated flux of Hg (97 μg m(-2) day(-1)) was the highest observed among similar experiments conducted in other highly contaminated Mediterranean coastal environments. Benthic fluxes could be partially explained by considering rates of organic matter remineralisation, dissolution of Fe/Mn oxy-hydroxides and metal speciation in sediments. Seasonal and spatial variation of biogeochemical parameters can influence metal remobilisation in

  12. International decommissioning strategies

    International Nuclear Information System (INIS)

    Full text: The IAEA Safety Requirements for decommissioning states that the regulatory body shall establish requirements for the decommissioning of nuclear facilities, including conditions on the end points of decommissioning. One of the main important issues is that the operator shall be responsible for all aspects of safety of the facility during its lifetime and of the decommissioning activities until its completion. A mechanism for providing adequate financial resources shall be established to cover the costs of radioactive waste management and, in particular the cost of decommissioning. It shall be put in place before operation and shall be updated, as necessary. A safety assessment of the proposed decommissioning strategy shall be performed and its implementation shall not begin until approval has been received by the regulatory body. A decommissioning plan shall be prepared for each facility, to show that decommissioning can be accomplished safely. The decommissioning plan shall be reviewed regularly and shall be updated as required to reflect, in particular, changes in the facility or regulatory requirements, advances in technology and, finally, the needs of decommissioning operation. If it is intended to defer decommissioning, it shall be demonstrated in the final decommissioning plan that such an option is safe. Decontamination and dismantling techniques shall be chosen which minimizes waste and appropriate means shall be in place for safe managing any waste that might be generated during the decommissioning process. A quality assurance programme shall be established for the decommissioning process. Before a site may be released for unrestricted use, a survey shall be performed to demonstrate that the end point conditions, as established by regulatory body, have been met. If site cannot be released for unrestricted use, appropriate control shall be maintained to ensure protection of human health and environment. The IAEA Safety Guidance mainly addresses

  13. Research reactor decommissioning

    International Nuclear Information System (INIS)

    Full text: Of the ∼ 800 research reactors constructed worldwide to date, ∼50% have been shut down and are at various stages of decommissioning. Many reached the end of their design lives or were shut down due to strategic, economic or regulatory considerations. 27% of those in operation are over 40 years old and will need to be decommissioned soon. Decommissioning normally takes the facility permanently out of service and subjects it to progressive hazard reduction, dismantling and decontamination in a safe, secure economically viable way, using best practicable means to meet the best practicable environmental option, such that the risks and doses to workers and the general public are maintained as low as reasonably practicable. Whilst most decommissioning techniques are well established there are still some challenging and important issues that need resolution. Perhaps the most challenging issue is radioactive waste management and storage. It is vitally important that all local and national waste classification, transportation, storage and end point requirements are known, as the adopted strategy will be heavily influenced by these factors. Other equally important but softer issues include the requirement for early decommissioning plans, adequate funding/cost estimates and the involvement of all relevant stakeholders. A comprehensive decommissioning plan should be produced up front that encompasses an early radiological characterisation survey of the facility/site. An appropriate funding mechanism needs to be assured. Whilst regular revisions of the decommissioning cost study should help to determine required funds, it is important to validate these cost estimates by benchmarking other decommissioning projects and accumulated experience. The use of appropriate 'stakeholder dialogue' methods by the facility operator to inform and communicate with all interested parties, such as government and non-government organisations, regulators, trades unions, anti

  14. Decommissioning: an insurance perspective

    International Nuclear Information System (INIS)

    The nuclear insurance pools, through American Nuclear Insurers (ANI) and the Mutual Atomic Energy Liability Underwriters (MAELU), have been providing third-party nuclear liability insurance to the nuclear industry since 1957. Third-party liability and property damage coverage resulting from the nuclear hazard are provided by separate insurance policies issued by the nuclear insurance pools. A liability insurer's view of decommissioning is addressed by discussing the following: insurer's perspective of potential nuclear liability; insurance claim experience and trends; objectives and accomplishments of ANI/MAELU's involvement with facility decommissioning; and important nuclear liability considerations for facility decommissioning

  15. Decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Nuclear facilities present a number of problems at the end of their working lives. They require dismantling and removal but public and environmental protection remain a priority. The principles and strategies are outlined. Experience of decommissioning in France and the U.K. had touched every major stage of the fuel cycle by the early 1990's. Decommissioning projects attempt to restrict waste production and proliferation as waste treatment and disposal are costly. It is concluded that technical means exist to deal with present civil plant and costs are now predictable. Strategies for decommissioning and future financial provisions are important. (UK)

  16. Safety Assessment for Decommissioning

    International Nuclear Information System (INIS)

    In the past few decades, international guidance has been developed on methods for assessing the safety of predisposal and disposal facilities for radioactive waste. More recently, it has been recognized that there is also a need for specific guidance on safety assessment in the context of decommissioning nuclear facilities. The importance of safety during decommissioning was highlighted at the International Conference on Safe Decommissioning for Nuclear Activities held in Berlin in 2002 and at the First Review Meeting of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management in 2003. At its June 2004 meeting, the Board of Governors of the IAEA approved the International Action Plan on Decommissioning of Nuclear Facilities (GOV/2004/40), which called on the IAEA to: ''establish a forum for the sharing and exchange of national information and experience on the application of safety assessment in the context of decommissioning and provide a means to convey this information to other interested parties, also drawing on the work of other international organizations in this area''. In response, in November 2004, the IAEA launched the international project Evaluation and Demonstration of Safety for Decommissioning of Facilities Using Radioactive Material (DeSa) with the following objectives: -To develop a harmonized approach to safety assessment and to define the elements of safety assessment for decommissioning, including the application of a graded approach; -To investigate the practical applicability of the methodology and performance of safety assessments for the decommissioning of various types of facility through a selected number of test cases; -To investigate approaches for the review of safety assessments for decommissioning activities and the development of a regulatory approach for reviewing safety assessments for decommissioning activities and as a basis for regulatory decision making; -To provide a forum

  17. Initial results of detected methane emissions from landfills in the Los Angeles Basin during the COMEX campaign by the Methane Airborne MAPper (MAMAP) instrument and a greenhouse gas in-situ analyser

    Science.gov (United States)

    Krautwurst, Sven; Gerilowski, Konstantin; Kolyer, Richard; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Vigil, Sam; Buchwitz, Michael; Schüttemeyer, Dirk; Fladeland, Matthew M.; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    the German Research Center for Geoscience (GFZ) in Potsdam. The in-situ measurements were obtained by a greenhouse gas (GHG) in-situ analyser operated by NASA's Ames Research Center (ARC). Both instruments were installed aboard a DHC-6 Twin Otter aircraft operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). Initial results - including estimated fugitive emission rates - will be presented for the landfill Olinda Alpha in Brea, Orange County, Los Angeles Basin, California, which was overflown on four different days during the COMEX field campaign in late summer 2014.

  18. Improving Managed Aquifer Recharge Operation to Reduce Nutrient Load in an Agricultural Basin: Delineation of Processes, Controls, and In-situ Potential

    Science.gov (United States)

    Schmidt, C. M.; Fisher, A.; Wheat, G.; Sharkey, J.; Los Huertos, M.; Lear, J.

    2007-12-01

    Nitrate is the most common nonpoint source pollutant in surface and ground water in the United States, and is a problem particularly in basins developed for agriculture. There is growing municipal and environmental demand for fresh water in basins that have been influenced by decades of agricultural activity. The goal of this research is to assess the potential for a managed aquifer recharge (MAR) system to improve water quality, with an emphasis on reducing the nitrate load to underlying aquifers. The Pajaro Valley Water Management Agency (PVWMA), in central coastal California, currently operates a MAR project that is permitted to divert and recharge up to 2.5 x 106 m3/yr (2000 ac-ft/year) from a slough (wetland) to augment available ground water supplies. As a result of agricultural runoff and infiltration, diverted slough water is often rich in nitrate, as is the water in the underlying aquifer. However, nitrate concentrations in water samples recovered from the aquifer soon after MAR percolation are often relatively low, suggesting that nitrate may be removed as water percolates from the pond into the aquifer. Autonomous Osmosampler systems were deployed in the recharge pond and four nearby monitoring wells, as part of a pilot study, to collect fluid samples during and after pond operation. Samples collected with these instruments recorded the chemical arrival of water in the aquifer soon after percolation began, in some cases showing a 50% reduction in the concentration of nitrate. The chemical response in the aquifer recorded by the Osmosamplers was consistent with pressure data collected simultaneously in the monitoring wells, demonstrating that Osmosamplers should be useful tools for investigating changes in water quality associated with MAR operation. As this research project becomes fully developed during the 2007-08 water year, we will install Osmosampler systems in ground water monitoring wells surrounding the pond, and will collect shallow fluid

  19. Decommissioning Russian Research Facilities

    International Nuclear Information System (INIS)

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety of nuclear research facilities (RR), including research reactors, critical assemblies and sub-critical assemblies. Most of the Russian RR were built and put in operation more than 30 years ago. The problems of ageing equipment and strengthening of safety requirements in time, the lack of further experimental programmes and financial resources, have created a condition when some of the RR were forced to take decisions on their decommissioning. The result of these problems was reflected in reducing the number of RR from 113 in 1998 to 81 in the current year. At present, seven RR are already under decommissioning or pending it. Last year, the Ministry of Atomic Energy took the decision to finally shut down two remaining actual research reactors in the Physics and Power Engineering Institute in Obninsk: AM-1, the first reactor in the world built for peaceful purposes, graphite-type reactor, and the fast liquid metal reactor BR-10, and to start their preparation for decommissioning. It is not enough just to declare the decommissioning of a RR: it is also vital to find financial resources for that purpose. For this reason, due to lack of financing, the MR reactor at the Kurchatov Institute has been pending decommissioning since 1992 and still is. The other example of long-lasting decommissioning is TVR, a heavy water reactor at the Institute of Theoretical Physics in Moscow (ITEF). The reason is also poor financing. Another example discussed in the paper concerns on-site disposal of a RR located above the Arctic Pole Circle, owned by the Norilsk Mining Company. Furthermore, the experience of the plutonium reactor decommissioning at the Joint Institute of Nuclear Research is also discussed. As shown, the Russian Federation has had good experiences in the decommissioning of nuclear research facilities. (author)

  20. Decommissioning and Decontamination

    International Nuclear Information System (INIS)

    The objectives of SCK-CEN's decommissioning and decontamination programme are (1) to develop, test and optimise the technologies and procedures for decommissioning and decontamination of nuclear installations in order to minimise the waste arising and the distributed dose; (2) to optimise the environmental impact; (3) to reduce the cost of the end-of-life of the installation; (4) to make these new techniques available to the industry; (5) to share skills and competences. The programme and achievements in 1999 are summarised

  1. Decommissioning of commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yui, Kohei [Japan Atomic Power Co., Tokyo (Japan)

    1997-02-01

    In the case of nuclear reactors, the diversion is often difficult as they are highly purposive, the disassembling is not easy as they are robust, and attention is required to handle the equipment containing radioactive substances. Decommissioning is defined as all the measures taken from the state that facilities become unused to the state of becoming green field. In Japan, already 40 years have elapsed since the effort for nuclear power was begun, and in this paper, the present state and future subjects of the decommissioning of nuclear power stations are summarized at the opportunity that the stop of commercial operation of Tokai Nuclear Power Station was decided recently. In the Tokai Nuclear Power Station, 166 MWe graphite-moderated, carbon dioxide-cooled reactor called improved Calder Hall type is installed, which started the operation in 1966. The circumstances of the decision to stop its operation are explained. The basic policy of the decommissioning of commercial nuclear power stations has been already published by the Advisory Committee for Energy. The state of the decommissioning in various foreign countries is reported. In Japan, the state of green field was realized in 1996 in the decommissioning of the JPDR in Japan Atomic Energy Research institute, and the decommissioning of the atomic powered ship ``Mutsu`` was completed. (K.I.)

  2. Po-Basin Atmospheric Composition during the Pegasos Field Campaign (summer 2012): Evaluation of ninfa/aodeM Simulation with In-Situ e Remote Sensing Observations

    Science.gov (United States)

    Landi, Tony C.; Bonafe, Giovanni; Stortini, Michele; Minguzzi, Enrico; Cristofanelli, Paolo; Marinoni, Angela; Giulianelli, Lara; Sandrini, Silvia; Gilardoni, Stefania; Rinaldi, Matteo; Ricciardelli, Isabella

    2014-05-01

    Within the EU project PEGASOS one of three field campaigns took place in the Po Valley during the summer of 2012. Photochemistry, particle formation, and particle properties related to diurnal evolution of the PBL were investigated through both in-situ and airborne measurements on board a Zeppelin NT air ship. In addition, 3-D air quality modeling systems were implemented over the Po valley for the summer 2012 to better characterize the atmospheric conditions, in terms of meteorological parameters and chemical composition. In this work, we present a comparison between atmospheric composition simulations carried out by the modeling system NINFA/AODEM with measurements performed during the PEGASOS field campaign for the period 13 June - 12 July 2012. NINFA (Stortini et al., 2007) is based on the chemical transport model CHIMERE (Bessagnet et al., 2008), driven by COSMO-I7, the meteorological Italian Limited Area Model, (Steppeler et al., 2003). Boundary conditions are provided by Prev'air data (www.prevair.org), and emission data input are based on regional, national and European inventory. Besides, a post-processing tool for aerosol optical properties calculation, called AODEM (Landi T. C. 2013) was implemented. Thus, predictions of Aerosol Optical Depth and aerosol extinction coefficient were also used for model comparison to vertical-resolved observations. For this experiment, NINFA/AODEM has been also evaluated by using measurements of size-segregated aerosol samples, number particles concentration and aerosol optical properties collected on hourly basis at the 3 different sampling sites representative of urban background (Bologna), rural background (San Pietro Capofiume) and remote high altitude station (Monte Cimone 2165 ma.s.l.). ). In addition, we focused on new particles formations events and long range transports from Northern Africa observed during the field campaign. References Bessagnet, Bertrand, Laurent Menut, Gabriele Curci, Alma Hodzic, Bruno

  3. Decommissioning of a University Cyclotron

    International Nuclear Information System (INIS)

    In the decommissioning of a university cyclotron, the cost estimate provided by a decommissioning company to carry out the entire project was in excess of Pounds 1million. This level of funding was not available, and a more modest budget of Pounds 125 thousand was provided (about US$ 250 000 or Euro 180 000). This made it essential that as much of the work as possible was carried out by existing staff. Whereas existing staff could be trained to draft all the required documentation, complete the characterization survey and deliver some aspects of the decontamination programme, their greatest contribution to the project was in sorting, segregation, measurement, packaging and consignment for disposal of all of the decommissioning wastes. This necessitated provision of additional training to existing operators. At an early stage it was identified that an experienced decommissioning consultant was needed to oversee the project. The Decommissioning Consultant appointed external contractors to carry out all the heavy dismantling and demolition work associated with the project. This work involved: -Assembly of a caged storage area adjacent to the cyclotron to hold the wastes from dismantling and demolition, pending characterization for segregation and disposal by existing staff at the facility; -Removal of the D's and cutting them up in situ ready for characterization for shipment to the low level waste repository; -Removal of all rotating machinery in the adjacent generator house, then dismantling the concrete block and brick wall between the inner vault and the generator house; -Removal of extra shielding supported by girder matrix to assist removal of the concrete block wall. Collect core samples of bricks and blocks for activity estimation by operators working at the facility; -Moving of the resonator into the generator house for dismantling, monitoring and characterization; -Dismantling of ancillary equipment such as beam lines, remote target handling system, vacuum

  4. The decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    This file includes five parts: the first part is devoted to the strategies of the different operators and includes the following files: the decommissioning of nuclear facilities Asn point of view, decommissioning of secret nuclear facilities, decommissioning at the civil Cea strategy and programs, EDF de-construction strategy, Areva strategy for decommissioning of nuclear facilities; the second one concerns the stakes of dismantling and includes the articles as follow: complete cleanup of buildings structures in nuclear facilities, decommissioning of nuclear facilities and safety assessment, decommissioning wastes management issues, securing the financing of long-term decommissioning and waste management costs, organizational and human factors in decommissioning projects, training for the decommissioning professions: the example of the Grenoble University master degree; the third part is devoted to the management of dismantling work sites and includes the different articles as follow: decommissioning progress at S.I.C.N. plant, example of decommissioning work site in Cea Grenoble: Siloette reactor decommissioning, matters related to decommissioning sites, decommissioning of french nuclear installations: the viewpoint of a specialist company, specificities of inspections during decommissioning: the Asn inspector point of view; the fourth part is in relation with the international approach and includes as follow: IAEA role in establishing a global safety regime on decommissioning, towards harmonization of nuclear safety practices in Europe: W.E.N.R.A. and the decommissioning of nuclear facilities, EPA superfund program policy for decontamination and decommissioning, progress with remediation at Sellafield, progress and experiences from the decommissioning of the Eurochemic reprocessing plant in Belgium, activities of I.R.S.N. and its daughter company Risk-audit I.r.s.n./G.r.s. international in the field of decommissioning of nuclear facilities in eastern countries

  5. Decommissioning of research reactors

    International Nuclear Information System (INIS)

    Research reactors of WWR-S type were built in countries under Soviet influence in '60, last century and consequently reached their service life. Decommissioning implies removal of all radioactive components, processing, conditioning and final disposal in full safety of all sources on site of radiological pollution. The WWR-S reactor at Bucuresti-Magurele was put into function in 1957 and operated until 1997 when it was stopped and put into conservation in view of decommissioning. Presented are three decommissioning variants: 1. Reactor shut-down for a long period (30-50 years) what would entail a substantial decrease of contamination with lower costs in dismantling, mechanical, chemical and physical processing followed by final disposal of the radioactive wastes. The drawback of this solution is the life prolongation of a non-productive nuclear unit requiring funds for personnel, control, maintenance, etc; 2. Decommissioning in a single stage what implies large funds for a immediate investment; 3. Extending the operation on a series of stages rather phased in time to allow a more convenient flow of funds and also to gather technical solutions, better than the present ones. This latter option seems to be optimal for the case of the WWR-S Research at Bucharest-Magurele Reactor. Equipment and technologies should be developed in order to ensure the technical background of the first operations of decommissioning: equipment for scarification, dismantling, dismemberment in a highly radioactive environment; cutting-to-pieces and disassembling technologies; decontamination modern technologies. Concomitantly, nuclear safety and quality assurance regulations and programmes, specific to decommissioning projects should be implemented, as well as a modern, coherent and reliable system of data acquisition, recording and storing. Also the impact of decommissioning must be thoroughly evaluated. The national team of specialists will be assisted by IAEA experts to ensure the

  6. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  7. Decommissioning in western Europe

    International Nuclear Information System (INIS)

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe and waterproof conditions for a longer period of

  8. Financial aspects of decommissioning

    International Nuclear Information System (INIS)

    European Commission adopted recently two proposals of Directives designed to pave the way for a Community approach to the safety of nuclear power plants and the processing of radioactive waste. Nuclear safety cannot be guaranteed without making available adequate financial resources. With regard, in particular, to the decommissioning of nuclear facilities, the Directive defines the Community rules for the establishment, management and use of decommissioning funds allocated to a body with legal personality separate from that of the nuclear operator. In order to comply with the acquis communautaire, Romanian Government issued the Emergency Ordinance no. 11/2003 which set up the National Agency for Radioactive Waste (ANDRAD) and soon will be established the financial mechanism for raising the necessary funds. Societatea Nationala 'Nuclearelectrica' S.A. operates, through one of its branches, Cernavoda NPP Unit 1 and has to prepare its decommissioning strategy and to analyze the options to assure the financing for covering the future costs. The purpose of this paper is to clarify the financial systems' mechanisms to the satisfaction of the nuclear operator obligations, according to the disbursement schedule foreseen by decommissioning projects . The availability of cash to pay for all the decommissioning expenditure must be foreseen by setting up assets and establishing a suitable financing plan. The different practices of assets management shall be presented in this paper on the basis of the international experience. Some calculation samples shall be given as an illustration. (author)

  9. Decommissioning funding: ethics, implementation, uncertainties

    International Nuclear Information System (INIS)

    This status report on Decommissioning Funding: Ethics, Implementation, Uncertainties also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). The report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems. (authors)

  10. Decommissioning Peach Bottom Unit 1

    International Nuclear Information System (INIS)

    Decommissioning activities are described for Peach Bottom Unit No. 1, a 40 mw(e) HTGR demonstration plant owned and operated by the Philadelphia Electric Company. Radiological aspects of decommission are discussed. The application of advance planning and effective health physics techniques used during the Peach Bottom decommission program demonstrated the feasibility of decommissioning a nuclear facility economically at low personnel exposure levels and with a negligible environmental impact

  11. Tunney's Pasture decommissioning project

    International Nuclear Information System (INIS)

    AECL's Tunney's Pasture facility located in Ottawa was used for research, production and worldwide shipping of radioisotopes. After 30 years of operation, it was shut down in 1984, and decommissioned in two phases. During the first phase, which began in 1985 and lasted until 1987, staff moving to the new Kanata facility, now the property of Nordion International, removed the bulk of the equipment. After a three year period of storage under surveillance, AECL in 1990 initiated the second phase of decommissioning, which was completed in August 1993. In January 1994, the AECB unconditionally released the facility for unrestricted use. The paper provides an overview of the second phase of decommissioning, and a summary of a few lessons learned. 4 figs

  12. Site decommissioning management plan

    Energy Technology Data Exchange (ETDEWEB)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  13. Site decommissioning management plan

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff's strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites

  14. Decommissioning licensing procedure

    International Nuclear Information System (INIS)

    Decommissioning or closure of a nuclear power plant, defined as the fact that takes place from the moment that the plant stops producing for the purpose it was built, is causing preocupation. So this specialist meeting on Regulatory Review seems to be the right place for presenting and discusing the need of considering the decommissioning in the safety analysis report. The main goal of this paper related to the licensing procedure is to suggest the need of a new chapter in the Preliminary Safety Analysis Report (P.S.A.R.) dealing with the decommissioning of the nuclear power plant. Therefore, after a brief introduction the problem is exposed from the point of view of nuclear safety and finally a format of the new chapter is proposed. (author)

  15. Preparation for Ignalina NPP decommissioning

    International Nuclear Information System (INIS)

    Latest developments of atomic energy in Lithuania, works done to prepare Ignalina NPP for final shutdown and decommissioning are described. Information on decommissioning program for Ignalina NPP unit 1, decommissioning method, stages and funding is presented. Other topics: radiation protection, radioactive waste management and disposal. Key facts related to nuclear energy in Lithuania are listed

  16. Platform decommissioning costs

    International Nuclear Information System (INIS)

    There are over 6500 platforms worldwide contributing to the offshore oil and gas production industry. In the North Sea there are around 500 platforms in place. There are many factors to be considered in planning for platform decommissioning and the evaluation of options for removal and disposal. The environmental impact, technical feasibility, safety and cost factors all have to be considered. This presentation considers what information is available about the overall decommissioning costs for the North Sea and the costs of different removal and disposal options for individual platforms. 2 figs., 1 tab

  17. Planning of MZFR decommissioning

    International Nuclear Information System (INIS)

    The concept chosen for decommissioning the MZFR reactor of plant components followed by the safe enclosure of the reactor building for about 30 years. It is intended that after lifting of the controlled areas the auxiliary building will be reused within the framework of KfK research projects. A decommissioning will be carried out in steps, the scope of licensing will be broken down into partial licences. It is expected that the last partial licence for safe enclosure will be granted in 1988. (orig.)

  18. Decommissioning of IFEC

    International Nuclear Information System (INIS)

    The IFEC nuclear fuel fabrication plant operated in Italy for more then thirty years and has now been successfully decommissioned. The rules and regulations relating to Quality Assurance established during the fabrication of Cirene reactor fuel have been adhered to during the decommissioning phase. The use of personnel with large experience in the nuclear field has resulted in vast majority of cares of material and apparatus to be reutilized in conventional activities without the need of calling on the assistance of external firms. The whole decontamination process was successfully completed on time and in particular the quantity of contaminated wastes was kept to eminimun

  19. Vinca nuclear decommissioning program

    International Nuclear Information System (INIS)

    In this paper a preliminary program for the nuclear decommissioning in The Vinca Institute of Nuclear Sciences is presented. Proposed Projects and Activities, planned to be done in the next 10 years within the frames of the Program, should improve nuclear and radiation safety and should solve the main problems that have arisen in the previous period. Project of removal of irradiated spent nuclear fuel from the RA reactor, as a first step in all possible decommissioning strategies and the main activity in the first two-three years of the Program realization, is considered in more details. (author)

  20. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  1. Decontamination and decommissioning

    International Nuclear Information System (INIS)

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; and (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. These four phases of work were conducted in accordance with applicable regulations for D and D of research facilities and applicable regulations for packaging, transportation, and burial and storage of radioactive materials. The final result is that the Advanced Fuel Laboratories now meet requirements of ANSI 13.12 and can be released for unrestricted use. The four principal documents utilized in the D and D of the Cheswick Site were: (1) Plan for Fully Decontaminating and Decommissioning, Revision 3; (2) Environmental Assessment for Decontaminating and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pa.; (3) WARD-386, Quality Assurance Program Description for Decontaminating and Decommissioning Activities; and (4) Health Physics, Fire Control, and Site Emergency Manual. These documents are provided as Attachments 1, 2, 3 and 4

  2. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  3. CNEA decommissioning program

    International Nuclear Information System (INIS)

    Full text: According to chapter I, Art. 2.e of the National Law Nr. 24804 ruling nuclear activities in Argentina, CNEA is responsible for determining the procedure for decommissioning Nuclear Power Plants and any other relevant radioactive facilities'. The implementation the Nuclear Law, states that CNEA is responsible for deactivation and decommissioning of all relevant radioactive facilities in the country, at end of life. Consequently CNEA have created the D and D Branch in order to perform this activity. It is important point out that none of the 28 nuclear installations in Argentina is undergoing decommissioning. Nevertheless planning stages prior decommissioning have been started with the criterion of prioritising those that will probably generate the greatest volume of radioactive waste. Decommissioning plan for research reactors and Atucha I Nuclear Power Plant, radiological characterization, decontamination and treatment of miscellaneous equipment and components of the Atucha I Nuclear Power Plant and old installations are being carry out. The main task is to get the technical capability of the steps which must be followed. In order to accomplish this objective the main activities are: a) Coordinates the training of personnel and organizes the experience and technical knowledge already existing in CNEA and members of the Argentinean nuclear sector; b) Coordinates a R and D program on D and D technologies; c) Establishes close links with the operators of nuclear facilities, whose participation both in planning and in actual D and D work is considered extremely important; d)Preliminary planning and radiological characterization of significant nuclear installations. This paper summarizes general aspects of the activities which are currently in progress. (author)

  4. Decommissioning of offshore installations

    Energy Technology Data Exchange (ETDEWEB)

    Oeen, Sigrun; Iversen, Per Erik; Stokke, Reidunn; Nielsen, Frantz; Henriksen, Thor; Natvig, Henning; Dretvik, Oeystein; Martinsen, Finn; Bakke, Gunnstein

    2010-07-01

    New legislation on the handling and storage of radioactive substances came into force 1 January 2011. This version of the report is updated to reflect this new regulation and will therefore in some chapters differ from the Norwegian version (see NEI-NO--1660). The Ministry of the Environment commissioned the Climate and Pollution Agency to examine the environmental impacts associated with the decommissioning of offshore installations (demolition and recycling). This has involved an assessment of the volumes and types of waste material and of decommissioning capacity in Norway now and in the future. This report also presents proposals for measures and instruments to address environmental and other concerns that arise in connection with the decommissioning of offshore installations. At present, Norway has four decommissioning facilities for offshore installations, three of which are currently involved in decommissioning projects. Waste treatment plants of this kind are required to hold permits under the Pollution Control Act. The permit system allows the pollution control authority to tailor the requirements in a specific permit by evaluating conditions and limits for releases of pollutants on a case-to-case basis, and the Act also provides for requirements to be tightened up in line with the development of best available techniques (BAT). The environmental risks posed by decommissioning facilities are much the same as those from process industries and other waste treatment plants that are regulated by means of individual permits. Strict requirements are intended to ensure that environmental and health concerns are taken into account. The review of the four Norwegian decommissioning facilities in connection with this report shows that the degree to which requirements need to be tightened up varies from one facility to another. The permit for the Vats yard is newest and contains the strictest conditions. The Climate and Pollution Agency recommends a number of measures

  5. Decommissioning of facilities for mining and milling or radioactive ores and closeout of residues

    International Nuclear Information System (INIS)

    The purpose of this report is to provide information to Member States in order to assist in planning and implementing the decommissioning/closeout of uranium mine/mill facilities, mines, tailings impoundments, mining debris piles, leach residues and unprocessed ore stockpiles. The report presents an overview of the factors involved in planning and implementing the decommissioning/closeout of uranium mine/mill facilities. The information applies to mines, mills, tailings piles, mining debris piles and leach residues that are present as operational, mothballed or abandoned projects, as well as to future mining and milling projects. The report identifies the major factors that need to be considered in the decommissioning/closeout activities, including regulatory considerations; decommissioning of the mine/mill buildings, structures and facilities; decommissioning/closeout of open pit and underground mines; decommissioning/closeout of tailings impoundments; decommissioning/closeout of mining debris piles, unprocessed ore and other contaminated material such as heap leach piles, in situe leach facilities and contaminated soils; restoration of the site, vicinity properties and groundwater; radiation protection and health and safety considerations; and an assessment of costs and post-decommissioning or post-closeout maintenance and monitoring needs. 55 refs, figs and tabs

  6. Decommissioning and decontamination studies

    International Nuclear Information System (INIS)

    The decommissioning of retired Hanford facilities requires careful consideration of environmentally-related factors. Applicable ecology programs have been designed to: develop the technology associated with burial ground stabilization, thereby minimizing biotic access and transport of radioactive wastes and, characterize present 300 Area burial grounds to ascertain the potential biotic transport of waste materials away from managed facilities. Results are reported from studies on the role of plants, small mammals, and ants as potential transport vectors of radionuclides from radioactive waste burial grounds

  7. Fort St. Vrain decommissioning project

    International Nuclear Information System (INIS)

    Public Service Company of Colorado (PSCo), owner of the Fort St. Vrain nuclear generating station, achieved its final decommissioning goal on August 5, 1997 when the Nuclear Regulatory Commission terminated the Part 50 reactor license. PSCo pioneered and completed the world's first successful decommissioning of a commercial nuclear power plant after many years of operation. In August 1989, PSCo decided to permanently shutdown the reactor and proceed with its decommissioning. The decision to proceed with early dismantlement as the appropriate decommissioning method proved wise for all stake holders - present and future - by mitigating potential environmental impacts and reducing financial risks to company shareholders, customers, employees, neighboring communities and regulators. We believe that PSCo's decommissioning process set an exemplary standard for the world's nuclear industry and provided leadership, innovation, advancement and distinguished contributions to other decommissioning efforts throughout the world. (author)

  8. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  9. Decommissioning of nuclear submarines

    International Nuclear Information System (INIS)

    The intention of this Report is to set out in simple terms the options open to the Ministry of Defence in disposing of nuclear submarines, and the extent of the problem. To this end oral evidence was taken from United Kingdom Nirex Limited (Nirex) and from the Ministry of Defence, and written evidence was taken from MoD, Nirex, the United Kingdom Atomic Energy Authority and Rolls-Royce and Associates Limited. The immediate problem is what to do with the nuclear submarine, DREADNOUGHT. Since decommissioning in 1982, the submarine has been lying at Rosyth Naval Base on the Firth of Forth. Upon decommissioning, the highly radioactive reactor core with the uranium fuel was removed and transported to the Sellafield reprocessing plant. The remaining radioactive part is the reactor compartment and it is the size of this, not its level of radioactivity which makes it hard to deal with. By the year 2000 a further seven nuclear submarines will have been decommissioned. There are three main options for disposing of the reactor compartments; dumping at sea, land burial in a shallow trench and land burial in a deep repository. Dumping at sea is the option favoured by the Ministry of Defence and Government, but shallow land burial remains an option. Deep burial is not an option which is available immediately as there will not be a repository ready until 2005. (author)

  10. Detritiation studies for JET decommissioning

    International Nuclear Information System (INIS)

    JET is the world largest tokamak and has the capacity of operating with a tritium plasma. Three experimental campaigns, the Preliminary Tritium Experiment (0.1g T2) in 1991, the Trace Tritium Experiment (5g T2) in 2005, and the large experiment, the Deuterium-Tritium Experiment (DTE1) (100g T2) in 1997, were carried out at JET with tritium plasmas. In DTE1 about 35 grams of tritium were fed directly into the vacuum vessel, with about 30% of this tritium being retained inside the vessel. In several years time JET will cease experimental operations and enter a decommissioning phase. In preparation for this the United Kingdom Atomic Energy Authority, the JET Operator, has been carrying out studies of various detritiation techniques. The materials which have been the subject of these studies include solid materials, such as various metals (Inconel 600 and 625, stainless steel 316L, beryllium, ''oxygen-free'' copper, aluminium bronze), carbon fibre composite tiles, ''carbon'' flakes and dust present in the vacuum vessel and also soft housekeeping materials. Liquid materials include organic liquids, such as vacuum oils and scintillation cocktails, and water. Detritiation of gas streams was also investigated. The purpose of the studies was to select and experimentally prove primary and auxiliary technologies for in-situ detritiation of in-vessel components and ex-situ detritiation of components removed from the vessel. The targets of ex-vessel detritiation were a reduction of the tritium inventory in and the rate of tritium out-gassing from the materials, and conversion, if possible, of intermediate level waste to low level waste and a reduction in volume of waste for disposal. The results of experimental trials and their potential application are presented. (orig.)

  11. Tokai-1 decommissioning project

    International Nuclear Information System (INIS)

    Tokai-1 (GCR, Gas Cooled Reactor) nuclear power plant of JAPC (the Japan Atomic Power Company) started commercial operation in 1966 as the first commercial nuclear power plant in Japan. The unit had helped introduction and establishment of the construction and operation technologies regarding nuclear power plant at early stage in Japan by its construction and operating experiences. However, The Japan Atomic Power Company (JAPC), the operator and owner of Tokai-1, decided to cease its operation permanently because of a fulfillment of its mission and economical reason. The unit was finally shut down in March 1998 after about 32 year operation. It took about three years for removal of all spent fuels from the site, and then decommissioning started in 2001. JAPC, always on the forefront of the nation's nuclear power generation, is now grappling Japan's first decommissioning of a commercial nuclear power plant, striving to establish effective, advanced decommissioning. The decommissioning for Tokai-1 was scheduled as 20 years project. At the beginning, the reactor was started to be in a static condition ('safe storage period'). While the reactor had been safely stored, the phased decommissioning works started from non-radioactive or low radioactive equipment toward high radioactive equipment. First five years of the project, JAPC concentrated to drain and clean spent fuel cartridge cooling pond and to remove conventional equipments such as turbine, feed water pump and fuel charge machine as planed and budgeted. From 2006, the project came into a new phase. JAPC has been trying to remove four Steam Raising Units (SRUs). The SRUs are huge component (750ton, φ6.3m, H24.7m) of the Gas Cooling Reactor (GCR) and inside of the SRUs are radioactively contaminated. Major concerns are workers safety and minimizing contamination areas during SRU removal. Therefore, JAPC is developing and introducing Jack-down method and remote control multi-functional dismantling system. This

  12. Uranium in situ leaching

    International Nuclear Information System (INIS)

    Despite the depressed situation that has affected the uranium industry during the past years, the second Technical Committee Meeting on Uranium In Situ Leaching, organized by the International Atomic Energy Agency and held in Vienna from 5 to 8 October 1992, has attracted a relatively large number of participants. A notable development since the first meeting was that the majority of the contributions came from the actual operators of in situ leaching uranium production. At the present meeting, presentations on operations in the USA were balanced by those of the eastern European and Asian countries. Contributions from Bulgaria, China, Czechoslovakia, Germany (from the operation in the former German Democratic Republic), the Russian Federation and Uzbekistan represent new information not commonly available. In situ leach mining is defined in one of the paper presented as a ''mining method where the ore mineral is preferentially leached from the host rock in place, or in situ, by the use of leach solutions, and the mineral value is recovered. Refs, figs and tabs

  13. Decommissioning of Radiotherapy Facilities

    International Nuclear Information System (INIS)

    Radiotherapy units containing high activity sealed radioactive sources of 60Co or 137Cs are mainly use for medical, research or calibration applications. After several half-lives of decay, the radionuclide source has to be changed or the unit is decommissioned if no longer required. Before starting a decommissioning project it is very important to look for documents relating to any sources held or installed in equipment. In general this should be no problem because the recommended working life of such sealed radioactive sources is limited to 10 or a maximum of 15 years. These time periods are short in comparison with other facilities like research laboratories or small reactors. These documents (source certificates) will be very helpful to plan the decommissioning because they say everything about the original activity of the source at a reference date, the type of the source and the manufacturer. The next step may be to contact the machine supplier or the source manufacturer, but be aware that neither may still be in existence or may have changed their type of business. In such cases, it is recommended to contact national or international sealed source manufacturers or suppliers for help. Sometimes it is also helpful to contact colleagues in other hospitals or research centres to ask for information about specialists in this topic. In general it is not useful, and even very dangerous, to try to decommission such a unit without expert help It is essential to have specialist tools and shielded containers to recover the source out of the unit. It is strongly recommended to invite the source removal specialist for a site visit to review the situation before starting any decommissioning process. A further problem can occur, if the source must be transported to a national storage centre or even an international storage facility, as the source must be packaged to meet international transport requirements. The end state of such a project should be an empty room where the

  14. ORNL decontamination and decommissioning program

    International Nuclear Information System (INIS)

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed

  15. BNFL decommissioning strategy and techniques

    International Nuclear Information System (INIS)

    This paper provides an overview of the range of reactor decommissioning projects being managed by BNFL, both on its own sites and for other client organizations in the UK and abroad. It also describes the decommissioning strategies and techniques that have been developed by BNFL and adopted in order to carry out this work

  16. Workshop on decommissioning; Seminarium om avveckling

    Energy Technology Data Exchange (ETDEWEB)

    Broden, K. (ed.)

    2005-12-15

    A Nordic workshop on decommissioning of nuclear facilities was held at Risoe in Denmark September 13-15, 2005. The workshop was arranged by NKS in cooperation with the company Danish Decommissioning, DD, responsible for decommissioning of nuclear facilities at Risoe. Oral presentations were made within the following areas: International and national recommendations and requirements concerning decommissioning of nuclear facilities Authority experiences of decommissioning cases Decommissioning of nuclear facilities in Denmark Decommissioning of nuclear facilities in Sweden Plans for decommissioning of nuclear facilities in Norway Plans for decommissioning of nuclear facilities in Finland Decommissioning of nuclear facilities in German and the UK Decommissioning of nuclear facilities in the former Soviet Union Results from research and development A list with proposals for future work within NKS has been prepared based on results from group-work and discussions. The list contains strategic, economical and political issues, technical issues and issues regarding competence and communication. (au)

  17. Decommissioning policy in Sweden

    International Nuclear Information System (INIS)

    In Sweden the nuclear power program is, according to a parliamentary decision, limited to twelve power producing reactors. The last reactor shall be taken out of service no later than the year 2010. As a result of the Chernobyl accident the program for taking the reactors out of service will be accelerated. This report is the first approach by the Swedish authorities to formulate a decommissioning policy. It is not the final policy document but it discusses the principal questions from the special Swedish viewpoint. (orig.)

  18. Managing the Unexpected in Decommissioning

    International Nuclear Information System (INIS)

    This publication explores the implications of decommissioning in the light of unexpected events and the trade-off between activities to reduce them and factors militating against any such extra work. It classifies and sets out some instances where unexpected findings in a decommissioning programme led to a need to either stop, or reconsider the work, re-think the options, or move forward on a different path. It provides practical guidance in planning and management of decommissioning taking into account unexpected events. This guidance includes an evaluation of the experience and lessons learned in tackling decommissioning that is often neglected. Thus it will enable future decommissioning teams to adopt the relevant lessons to reduce additional costs, time delays and radiation exposures

  19. Decommissioning Funding: Ethics, Implementation, Uncertainties

    International Nuclear Information System (INIS)

    This status report on decommissioning funding: ethics, implementation, uncertainties is based on a review of recent literature and materials presented at NEA meetings in 2003 and 2004, and particularly at a topical session organised in November 2004 on funding issues associated with the decommissioning of nuclear power facilities. The report also draws on the experience of the NEA Working Party on Decommissioning and Dismantling (WPDD). This report offers, in a concise form, an overview of relevant considerations on decommissioning funding mechanisms with regard to ethics, implementation and uncertainties. Underlying ethical principles found in international agreements are identified, and factors influencing the accumulation and management of funds for decommissioning nuclear facilities are discussed together with the main sources of uncertainties of funding systems

  20. Financing nuclear power plant decommissioning

    International Nuclear Information System (INIS)

    Much is at stake in developing a financial strategy for decommissioning nuclear power plants. Since decommissioning experience is limited to relatively small reactors, will the costs associated with larger reactors be significantly higher. Certainly the decommissioning issue intersects with other critical issues that will help to determine the future of commercial nuclear power in the US. The author examines briefly the basic concepts and terms related to decommissioning expenses, namely: (1) segregated fund; (2) non-segregated fund; (3) external method; and (4) internal method. He concludes that state regulatory commissions have turned increasingly to the external funding method because of increasing costs and related problems associated with nuclear power, changing conditions and uncertainties concerned with utility restructuring, and recent changes in federal tax laws related to decommissioning. Further, this trend is likely to continue if financial assurance remains a primary concern of regulators to protect this public interest

  1. In situ monitoring

    International Nuclear Information System (INIS)

    Systems for in situ analysis of radionuclides around storage areas and nuclear sites are being developed. The development and initial use of an intrinsic Ge system for the determination of Pu and Am in soils were completed. A method based on gamma-ray analysis of grazing animal thyroids was developed as a possible method for U and Th exploration using their 226Ra and 228Ra daughters

  2. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  3. Decommissioning of VHTRC

    International Nuclear Information System (INIS)

    JAERI modified the Semi-Homogeneous Experimental Critical Assembly (SHE) which had been used for reactor physical experiments of graphite moderated reactor since January 1961 to the Very High Temperature Reactor Critical Assembly (VHTRC) in 1985 in order to carry out nuclear safety evaluation etc. for the High Temperature Engineering Test Reactor (HTTR). Since HTTR, which was constructed in the Oarai Research Establishment, achieved criticality in November 1998, JAERI decided to decommissioning VHTRC in 1999. The decommissioning project is planned to perform in two stages. At the first stage sampling and analysis were carried out for comparison of calculated results. Following these activities, reactor instruments, reactor control system and reactor itself were dismantled. The first stage was completed in FY2000. At the second stage, radiation shielding blocks and reactor building will be dismantled completely to green field conditions. These activities will be carried out after the clearance level is legislated in Japan. The first stage activities, which are the site characterization, radioactive inventory evaluation, surface contamination measurements for releasing the control room and the machine room from radiation controlled area to unrestricted area, neutron activation estimation on the basis of theoretical calculations, sampling and analyses of reactor components, and dismantling of reactor etc., are described in this report. (author)

  4. Criteria for decommissioning

    International Nuclear Information System (INIS)

    In this paper the authors describe three risk acceptability criteria as parts of a strategy to clean up decommissioned facilities, related to both the status quo and to a variety of alternative technical clean-up options. The acceptability of risk is a consideration that must enter into any decision to establish when a site is properly decommissioned. To do so, both the corporate and public aspects of the acceptability issue must be considered. The reasons for discussion the acceptability of risk are to: Legitimize the process for making cleanup decisions; Determine who is at risk, who benefits, and who bears the costs of site cleanup, for each specific cleanup option, including the do nothing option; Establish those factors that, taken as a whole, determine measures of acceptability; Determine chemical-specific aggregate and individual risk levels; and Establish levels for cleanup. The choice of these reasons is pragmatic. The method consistent with these factors is risk-risk-effectiveness: the level of cleanup must be consistent with the foreseeable use of the site and budget constraints. Natural background contamination is the level below which further cleanup is generally inefficient. Case-by-case departures from natural background are to be considered depending on demonstrated risk. For example, a hot spot is obviously a prima facie exception, but should be rebuttable. Rebuttability means that, through consensus, the ''hot spot'' is shown not to be associated with exposure

  5. Funding Decommissioning - UK Experience

    International Nuclear Information System (INIS)

    'Funding' started with CEGB and SSEB (state-owned electric utilities) in 1976 using the internal un-segregated fund route (i.e unfunded). This continued until privatisation of electricity industry (excluding nuclear) in 1990. Assets bought with the internal un-segregated fund were mostly transferred into non-nuclear private utilities. New state-owned Nuclear Electric (England and Wales) was given a 'Fossil Fuel Levy', a consumer charge of 10% on retail bills, amounting to c. BP 1 bn. annually. This allowed Nuclear Electric to trade legally (A reserve of BP 2.5 bn. was available from Government if company ran out of money). By 1996 the newer nuclear stations (AGRS plus PWR) were privatised as British Energy. British Energy started an external segregated fund, the Nuclear Decommissioning Fund, with a starting endowment of c. BP 225 m. - and BE made annual contributions of British Pound 16 m. into the Fund. Assumptions were that BE had 70 to accumulate cash and could get a 3.5% average annual real return. Older stations (Magnox) were left in private sector and went to BNFL in 1997. Magnox inherited the surplus cash in BE - mostly unspent Fossil Fuel Levy receipts - of c. BP 2.6 bn. Government gave an 'Undertaking' to pay BP 3.8 bn. (escalating at 4.5% real annually) for Magnox liabilities, should Magnox Electric run out of cash. BNFL inherited the BP 2.6 bn. and by 2000 had a 'Nuclear Liabilities Investment Portfolio' of c. BP 4 bn. This was a quasi-segregated internal fund for liabilities in general. [Note: overall UK nuclear liabilities in civilian sector were running at c. BP 48 bn. by now]. BE started profitable and paid BP 100 m. annually in dividends to private investors for several years. BE ran into severe financial problems after 2001 and Government organised restructuring aid, now approved by European Commission. Terms include: - BE now to contribute BP 20 m. a year into an expanded Nuclear Liabilities Fund; - A bond issue of BP 275 m. to go to Fund; - 65

  6. FLUOR HANFORD DECOMMISSIONING UPDATE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2008-04-21

    Fluor Hanford is completing D&D of the K East Basin at the U.S. Department of Energy's (DOE's) Hanford Site in southeastern Washington State this spring, with demolition expected to begin in June. Located about 400 yards from the Columbia River, the K East Basin is one of two indoor pools that formerly contained irradiated nuclear fuel, radioactive sludge and tons of contaminated debris. In unique and path-breaking work, workers finished removing the spent fuel from the K Basins in 2004. In May 2007, workers completed vacuuming the sludge into containers in the K East Basin, and transferring it into containers in the K West Basin. In December, they finished vacuuming the remainder of K West Basin sludge into these containers. The K East Basin was emptied of its radioactive inventory first because it was more contaminated than the K West Basin, and had leaked in the past. In October 2007, Fluor Hanford began physical D&D of the 8,400-square foot K East Basin by pouring approximately 14-inches of grout into the bottom of it. Grout is a type of special cement used for encasing waste. Two months later, Fluor Hanford workers completed sluicing contaminated sand from the large filter that had sieved contaminants from the basin water for more than 50 years. Next, they poured grout into the filter housing and the vault that surrounds the filter, as well as into ion exchange columns that also helped filter basin water. For a six-week period in February and March, personnel drained the approximately one million gallons of contaminated water from the K East Basin. The effort required more than 200 tanker truck loads that transported the water to an effluent treatment facility for treatment and then release. A thin fixative was also applied to the basin walls as the water was removed to hold residual contamination in place. As soon as the water was out of the basin, Fluor pumped in approximately 18 feet of 'controlled density fill' material (somewhat

  7. Evaluation of Nuclear Facility Decommissioning Projects program

    International Nuclear Information System (INIS)

    The objective of the Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program is to provide the NRC licensing staff with data which will allow an assessment of radiation exposure during decommissioning and the implementation of ALARA techniques. The data will also provide information to determine the funding level necessary to ensure timely and safe decommissioning operations. Actual decommissioning costs, methods and radiation exposures are compared with those estimated by the Battelle-PNL and ORNL NUREGs on decommissioning. Exposure reduction techniques applied to decommissioning activities to meet ALARA objectives are described. The lessons learned concerning various decommissioning methods are evaluated

  8. Planning for decommissioning of Hifar

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10MW HIFAR research reactor since 1958. In addition to its role in research, the reactor provides radioisotopes for medical and industrial use and is a major supplier of NTD silicon for the semi-conductor industry. It is anticipated that HIFAR will finally shut down operations in December 2006. Although ANSTO has successfully decommissioned MOATA and undertaken other smaller decommissioning projects the proposed HIFAR decommissioning project will be the largest ever undertaken by ANSTO. ANSTO faces a number of challenges in HIFAR's final year of operation. These include: the establishment of a modern decommissioning strategy in the absence of a long-term nuclear waste repository management facility or waste acceptance criteria for the material generated by the decommissioning; the impact of the impeding closure of the facility on staff morale and retention of key staff; and to meet the our customer's needs up to the final closure. These challenges are compounded by competition for skilled resources required to commission the new research reactor (OPAL) and the need to continue to supply radioisotopes. Important 'lessons in progress' that will be discussed in this paper include staffing the decommissioning team, maintenance of a strong safety culture during final stages of operation, working towards regulatory approval for decommissioning and strategies for knowledge retention. (author)

  9. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte;

    2015-01-01

    scenarios for the in situ simulation program. Three scenarios were written and were double-checked by two medical experts. One researcher observed the training to score events and fill out the Team Emergency Assessment Measure (TEAM), a validated team observational tool set for measuring teamwork skills......, this study took reported critical incidents and adverse events to form learning objectives. Second, these critical incidents and adverse events coupled with shortterm observations were used to write contextual scenarios. The preliminary analysis points to the importance of teamwork situation awareness...

  10. Technologies for nuclear plant decommissioning

    International Nuclear Information System (INIS)

    After the commercial operation of a nuclear power plant has been shutdown, the plant enters a decommissioning phase where it is dismantled and removed. The Tokai Power Station was shutdown at the end of March 1998, followed by 'Fugen' and a light water reactor. The number of decommissioned plants in Japan is likely to increase in the future. Based on experience gained from the construction and maintenance of nuclear plants, Fuji Electric has developed techniques essential for decommissioning work. This paper describes recent technologies developed in this field, such as remote dismantling techniques for the reactor core and treatment and disposal techniques for the dismantled waste. (author)

  11. Progress of JPDR decommissioning project

    International Nuclear Information System (INIS)

    The Japan Power Demonstration Reactor (JPDR) decommissioning project is progressively achieving its final goal; the project will be finished by March 1996 to release the JPDR's site into unrestricted use in a green field condition. The new techniques which developed or improved in R and D, the first phase of this program, have been successfully applied to the actual dismantling activities. Some decommissioning wastes have been managed as the first case of onsite shallow land burial based on the new regulatory frame of radioactive waste management. The experiences and the data obtained from the JPDR dismantling activities are expected to contribute to future decommissioning of commercial nuclear power plants. (author)

  12. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Seung-Kook; Park, Hee-Seong; Moon, Jei-kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist.

  13. Calculating Program for Decommissioning Work Productivity based on Decommissioning Activity Experience Data

    International Nuclear Information System (INIS)

    KAERI is performing research to calculate a coefficient for decommissioning work unit productivity to calculate the estimated time decommissioning work and estimated cost based on decommissioning activity experience data for KRR-2. KAERI used to calculate the decommissioning cost and manage decommissioning activity experience data through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). In particular, KAERI used to based data for calculating the decommissioning cost with the form of a code work breakdown structure (WBS) based on decommissioning activity experience data for KRR-2.. Defined WBS code used to each system for calculate decommissioning cost. In this paper, we developed a program that can calculate the decommissioning cost using the decommissioning experience of KRR-2, UCP, and other countries through the mapping of a similar target facility between NPP and KRR-2. This paper is organized as follows. Chapter 2 discusses the decommissioning work productivity calculation method, and the mapping method of the decommissioning target facility will be described in the calculating program for decommissioning work productivity. At KAERI, research on various decommissioning methodologies of domestic NPPs will be conducted in the near future. In particular, It is difficult to determine the cost of decommissioning because such as NPP facility have the number of variables, such as the material of the target facility decommissioning, size, radiographic conditions exist

  14. Power Plant decommissioning

    Directory of Open Access Journals (Sweden)

    Mažeika Jonas

    2014-11-01

    Full Text Available On a first attempt, the determination of 14C and 36Cl activity concentrations in basic operational waste (spent ion-exchange resins and perlite mixture, in decommissioning waste (construction concrete, sand, stainless steel and serpentinite and irradiated graphite from the Ignalina NPP has been performed. The samples for measurement of the specific activity of 14C and 36Cl were obtained from the selected places, where the highest values of the dose rate and the activity concentrations of gamma emitters were found. The performed study of the total 14C and 36Cl activity concentrations was based on estimated chemical forms of 14C (inorganic and organic compounds and 36Cl as Cl- ion. The tested methods used in this study were found to be suitable for estimation of activity concentrations of measured radionuclides.

  15. Decommissioning Cost Assessment

    International Nuclear Information System (INIS)

    The future costs for dismantling, decommissioning and handling of associated radioactive waste of nuclear installations represents substantial liabilities. It is the generations that benefits from the use of nuclear installations that shall carry the financial burden. Nuclear waste programmes have occasionally encountered set-backs related to the trust from society. This has resulted in delayed, redirected or halted activities, which has the common denominator of costs increases. In modern democratic countries, information sharing, knowledge transfer and open communication about costs for the management of radioactive waste are prerequisites for the task to develop modern methods for public participation and thus to develop well-founded and justified confidence for further development of nuclear energy. Nuclear and radiation safety Authorities have a clear role to provide unbiased information on any health, safety, financial and environmental related issues. This task requires a good understanding of the values and opinion of the public, and especially those of the younger generation

  16. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  17. DECOM experience with decommissioning costing

    International Nuclear Information System (INIS)

    The OMEGA code has been used in numerous Slovak and international decommissioning planning and costing projects and in IAEA R and D projects and is continuously updated and upgraded. The next goal for the DECOM costing activities is to develop an universal and user-friendly ISDC costing tool accessible via internet - eOMEGA taking over the advantages of the long-term experience of DECOM and being in line with up-to date trends in decommissioning costing. DECOM members participate in international expert groups for further improvement of costing methodologies, such as the uncertainties, cost practices and cost peer reviews in decommissioning costing. DECOM members participate also in IAEA projects, expert missions and training courses related to decommissioning costing and planning. (authors)

  18. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    International Nuclear Information System (INIS)

    action for the In Situ Decommissioning (ISD) of the 105-C Disassembly Basin. ISD consisted of stabilization/isolation of remaining contaminated water, sediment, activated reactor equipment, and scrap metal by filling the DB with underwater non-structural grout to the appropriate (-4.877 meter) grade-level, thence with dry area non-structural grout to the final -10 centimeter level. The roof over the DB was preserved due to its potential historical significance and to prevent the infiltration of precipitation. Forced evaporation was the form of treatment implemented to remove the approximately 9.1 M liters of contaminated basin water. Using specially formulated grouts, irradiated materials and sediment were treated by solidification/isolation thus reducing their mobility, reducing radiation exposure and creating an engineered barrier thereby preventing access to the contaminants. Grouting provided a low permeability barrier to minimize any potential transport of contaminants to the aquifer. Efforts were made to preserve the historical significance of the Reactor in accordance with the National Historic Preservation Act. ISD provides a cost effective means to isolate and contain residual radioactivity from past nuclear operations allowing natural radioactive decay to reduce hazards to manageable levels. This method limits release of radiological contamination to the environment, minimizes radiation exposure to workers, prevents human/animal access to the hazardous substances, and allows for ongoing monitoring of the decommissioned facility. Field construction was initiated in August 2011; evaporator operations commenced January 2012 and ended July 2012 with over 9 M liters of water treated/removed. Over 8,525 cubic meters of grout were placed, completing in August 2012. The project completed with an excellent safety record, on schedule and under budget. (authors)

  19. Void-free filling of reactor space cavities during uranium-graphite reactors decommissioning

    International Nuclear Information System (INIS)

    Uranium-graphite reactors (UGR) decommissioning is to be assured through reliable isolation of radioactive waste on the reactor site, providing for radiation protection of personnel, the public and the environment throughout the entire time that the waste will remain hazardous. The paper shows stages of additional safety barriers construction during UGR decommissioning using safe in-situ entombment. The technology of selecting material for man-made geo-barriers and the void-free filling technology and its mock-up trials are described

  20. Decommissioning of the Loviisa NPP

    International Nuclear Information System (INIS)

    Imatran Voima Oy has revised the decommissioning plan for the Loviisa Nuclear Power Plant (Loviisa 1 and Loviisa 2) by the end of the year 1998. The thermal power of the power plant has been increased to 2x1500 MWth, and the life time has been designed to be extended to 45 years in the decommissioning plan. The decommissioning of the power plant is designed to begin in 2022 and it will be finished in 2048. The plan is based on immediate dismantlement (i.e. DECON) after the shut down of the power plant. Experienced plant personnel will still be available to lead the decommissioning work. Only the radioactive plant systems, components and structures will be dismantled and disposed of. Decommissioning wastes will be disposed into the underground disposal tunnels situating at the site in the depth of about 110 m. These tunnels are already partly ready for power plant wastes. The big and heavy reactor components, e.g. pressure vessels and steam generators, will be disposed of as such, without cutting them into smaller parts. This saves time and radiation doses. The total volume of decommissioning wastes is 14 800 m3, when packed in boxes. The manpower needed for decommissioning is about 2 800 manyears. The collective radiation dose for personnel is estimated to be about 9.2 manSv. The cost estimate of the decommissioning is about 1 117 million FIM. The spent fuel will be stored at the plant for 20 years after the shut down of the power plant. After that it will be transported from the site to the encapsulation plant for final disposal. (orig.)

  1. An outsider's view of decommissioning

    International Nuclear Information System (INIS)

    The decommissioning of nuclear facilities is not just a technical or even a financial issue. Presenting decommissioning as a technically difficult task overcome by superhuman effort on the part of the industry will not gain much credit amongst sophisticated consumers who now require that any complex technology will work and work safely. Any engineering problems are surmountable given the money to find the solution. Some of the financial aspects of decommissioning are worrying, however, given their open-ended nature. The cost of waste disposal is one of these. Despite a lapse of fifty years since the start-up of its first reactor, the United Kingdom is unlikely to have available a repository for the disposal of intermediate level waste until about 2020. Waste disposal is a large consideration in decommissioning and the industry's forecasts of cost in this area lack credibility in the light of a poor track record in financial prediction. Financial engineering in the form of the segregated fund set up in March 1996 to cover the decommissioning of nuclear power stations in the United Kingdom is likely to provide only short term reassurance in the light of doubts about a credible future for nuclear power. This lack of confidence over the wider problems of nuclear power creates particular problems for decommissioning which go beyond technical difficulties and complicate financial considerations. (UK)

  2. Decommissioning challenges - an industrial reality

    International Nuclear Information System (INIS)

    Sellafield Limited has undergone many transformations in previous years. The Nuclear Decommissioning Authority (NDA) has managed the site from April 2005, and a new Parent Body Organisation (PBO) is soon to be announced. In addition, it is an exciting time for the nuclear industry following the announcement of the UK government support new reactor builds. Should the site be selected for new build, the impact on Sellafield, its decommissioning program and economic impact on the local area can only be speculated at the current time. Every past, present and future decommissioning project at the Sellafield Limited site offers complex challenges, as each facility is unique. Specialist skills and experience must be engaged at pre-planned phases to result in a safe, efficient and successful decommissioning project. This paper provides an overview of a small selection of decommissioning projects, including examples of stakeholder engagement, plant and equipment dismantling using remote handling equipment and the application of innovative techniques and technologies. In addition, the final section provides a summary upon how future technologies required by the decommissioning projects are being assessed and developed. (authors)

  3. Money Related Decommissioning and Funding Decision Making

    International Nuclear Information System (INIS)

    'Money makes the world go round', as the song says. It definitely influences decommissioning decision-making and financial assurance for future decommissioning. This paper will address two money-related decommissioning topics. The first is the evaluation of whether to continue or to halt decommissioning activities at Fermi 1. The second is maintaining adequacy of financial assurance for future decommissioning of operating plants. Decommissioning costs considerable money and costs are often higher than originally estimated. If costs increase significantly and decommissioning is not well funded, decommissioning activities may be deferred. Several decommissioning projects have been deferred when decision-makers determined future spending is preferable than current spending, or when costs have risen significantly. Decommissioning activity timing is being reevaluated for the Fermi 1 project. Assumptions for waste cost-escalation significantly impact the decision being made this year on the Fermi 1 decommissioning project. They also have a major impact on the estimated costs for decommissioning currently operating plants. Adequately funding full decommissioning during plant operation will ensure that the users who receive the benefit pay the full price of the nuclear-generated electricity. Funding throughout operation also will better ensure that money is available following shutdown to allow decommissioning to be conducted without need for additional funds

  4. In situ zymography.

    Science.gov (United States)

    George, Sarah J; Johnson, Jason L

    2010-01-01

    In situ zymography is a unique laboratory technique that enables the localisation of matrix-degrading metalloproteinase (MMP) activity in histological sections. Frozen sections are placed on glass slides coated with fluorescently labelled matrix proteins. After incubation MMP activity can be observed as black holes in the fluorescent background due to proteolysis of the matrix protein. Alternatively frozen sections can be incubated with matrix proteins conjugated to quenched fluorescein. Proteolysis of the substrate by MMPs leads to the release of fluorescence. This technique can be combined with immunohistochemistry to enable co-location of proteins such as cell type markers or other proteins of interest. Additionally, this technique can be adapted for use with cell cultures, permitting precise location of MMP activity within cells, time-lapse analysis of MMP activity and analysis of MMP activity in migrating cells. PMID:20135289

  5. Decommissioning planning and the assessment of alternatives for the Hanford production reactors

    International Nuclear Information System (INIS)

    Several years ago, the US Department of Energy began assessing alternatives and planning the decommissioning of eight shut-down plutonium production reactors located on the DOE Hanford Site in Washington State. The first of these graphite-moderated, water-cooled, reactors was built and started up in 1944 as part of the World War II Manhattan Project. The last of them started up in 1955. The eight reactors each operated for 12 to 24 years, with all eight operating simultaneously for about 10 years. In the 1960's, production needs declined and the reactors were one-by-one permanently shut down, the last of them in 1971. (A ninth Hanford production reactor, N Reactor, was started up in 1963; it is still operating and is not within the scope of the decommissioning planning and alternatives assessment work reported in this paper). This paper provides an overview description of the decommissioning plan for the eight shut-down Hanford production reactors and their associated fuel storage basins. Included are descriptions of the decommissioning alternatives considered for the facilities, along with discussions of National Environmental Policy Act (NEPA) process activities applicable to the Hanford decommissioning work. The criteria used in assessing decommissioning alternatives and the assumptions used in the decommissioning planning are identified. 4 refs., 8 figs., 3 tabs

  6. LIBS probe for in-situ material characterization

    International Nuclear Information System (INIS)

    The needs in terms of chemical characterizations for dismantling operations are first the inventory of materials either for appropriate and safe waste management or for refining neutron calculations and secondly to map the contamination. In both cases, a large number of measurements must be carried out. Given the difficulties of sampling management (storage, handling and transport) or overload of analytical laboratories, in-situ analysis methods without sampling, such as LIBS (Laser Induced Breakdown Spectroscopy), are to be preferred. Moreover the limited access of nuclear facilities being decommissioned renders an adaptable remote LIBS analysis device very suitable for determining the chemical composition of materials. The LIBS device that we have developed includes a portable probe connected both to the laser and to the spectrometer by two optical fibers. This instrument has been already used for some applications. For example, tests were carried out in the a uranium manufacturing facility (CEA Cadarache, ATUE) during decommissioning of the building to determine uranium contamination fixed on the surface of the walls. The LIBS system was also used to characterize on site the nature of alloys constituting various parts of UF6 containers, providing an instant response to the operator. It is planned, in interaction with CEA/DPAD, to realize in-situ steel grade determination of some parts located into the G1 reactor (CEA Marcoule). Thanks to its versatility other possibilities of uses could be envisaged with this device to match the needs of dismantling operators. (authors)

  7. Current international issues in decommissioning

    International Nuclear Information System (INIS)

    In 1999, the Italian Environmental Protection authorities (ANPA at that time) hosted in Rome a Nuclear Energy Agency (NEA) meeting on the Regulatory Aspects of Decommissioning. This 'stock-taking' conference heard views from regulatory authorities, the decommissioning industry, waste management organisations and other relevant industrial sectors (e.g. the scrap metal industry) regarding the issues and aspects of decommissioning that should be further addressed, particularly at an international level. From this conference, six issues of relevance were identified which, since that time, have been addressed within the framework of the NEA. These issues are: - Decommissioning policies and strategies; - Waste management and materials reuse considerations; - Authorised release of sites and facilities; - Securing long-term funding and responsibility; - Framework for safety regulation of decommissioning; - Research and development in decommissioning. The NEA has focused on the international aspects of these issues, and on the roles of national governments in addressing the national and international aspects of these issues. This paper will present an overview of the NEA's findings in these areas. Realizing that these issues are important to the work of other international organisations, the NEA has tried to assess and use as appropriate the work of others in discussing these issues. As such, a brief review of relevant work at other international organisations will be presented. Based on its work, and in order to further advance these issues, the NEA is planning a second workshop on the Regulatory Aspects of Decommissioning, which will again be hosted by the Italian authorities in Rome, and will be held during the second half of 2004. (author)

  8. A Novel Approach To Spent Fuel Pool Decommissioning

    International Nuclear Information System (INIS)

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  9. Financial assurance for decontamination and decommissioning: a Texas perspective

    International Nuclear Information System (INIS)

    The Texas Department of Health (TDH) has the regulatory responsibility to ensure that funds are available for decontamination, decommissioning, and reclamation of uranium recovery facilities in Texas. Uranium recovery licensees are required to post financial security with the Agency for that purpose. Texas uranium facilities include (1) conventional surface mining and milling plants, including tailings ponds, and (2) in situ solution mining plants, each with somewhat different cost elements for decontamination, decommissioning, reclamation, and closure. Cost estimates for decontamination, decommissioning, and reclamation, along with a facility closure plan, are initially submitted to the Agency by the licensees. These are verified and compared with detailed independent cost estimates prepared by Agency staff. Significant differences between the two estimates are examined and resolved by negotiation and/or recalculation to the satisfaction of the state. The Texas philosophy for maintaining financial security permits flexibility in the closure plan without jeopardizing or compromising the ultimate long-term objectives of closure. Review of closure plans incorporates new technological developments In contrast, financial security is established expeditiously by applying the best available cost data to necessarily conservative estimates of the work involved. Financial security cost estimates are subject to annual review and adjustment

  10. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  11. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  12. The Tokai NPP decommissioning technique

    International Nuclear Information System (INIS)

    Tokai power station was closed down in March 1998 and started decommissioning from December 2001 as a pioneer of NPP decommissioning. This article presented current state of Tokai NPP decommissioning technique. As the second stage of decommissioning works, removal works of steam raising unit (four units of heat exchangers) were started from 2006 by jacking down method with decommissioning data accumulated. Each heat exchanger was divided into top head, seven 'tears' of shell and bottom head. Each 'tear' was out and separated into a cylinder, and then divided into two by remote-operated cutting equipment with manipulators for gas cutting and motor disk cutting under monitoring works by fixed and mobile cameras. Divided 'tear' was further cut into center baffle plate, heat transfer tubes and fine pieces of shell. Cutting works would produce radioactive fine particles, which were filtered by temporary ventilation equipment with exhaust fan and filters. Appropriate works using existing technique combined and their rationalization were important at this stage. (T. Tanaka)

  13. In Situ Nuclear Characterization Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  14. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  15. Phenix Decommissioning Project - Overview

    International Nuclear Information System (INIS)

    The first heading of your manuscript must be 'Introduction'. Phenix is the only remaining French fast breeder reactor after the shutdown of Superphenix (1999) and Rapsodie (1983). Phenix is located inside the Marcoule nuclear site along the Rhone river near Bagnols-sur-Ceze in southeastern France. Phenix is one of the facilities belonging the French Atomic Energy Commission (CEA) on the Marcoule site. It is a fast breeder reactor (FBR) developed at the end of the 1960's. that has been in operation since 1973 and was connected to the power grid in 1974. It is a second generation prototype developed while the first generation FBR, Rapsodie, was still in operation. Phenix is a 250 electrical MW power plant. During the first 20 years of operation, its main aim was to demonstrate the viability of sodium-cooled FBRs. Since the 1991 radioactive waste management act, Phenix has become an irradiation tool for the actinide transmutation program. To extend its operating life for 6 additional cycles, it was necessary to refurbish the plant; this involved major work performed from 1999 to 2003 at a total cost of about 250 M??. Today, with a realistic expectation, the final shutdown is planned for the beginning of 2009. The main objective of the Phenix dismantling project is to eliminate all the process equipment and clean all the building to remove all the radioactive zones. To reach this objective, three main hazards must be eliminated: Fuel (criticality hazard), Sodium, Radioactive equipment. The complexity of decommissioning a facility such as Phenix is increased by: - the lack of storage facility for high radioactive material, - the decision to treat all the radioactive sodium and sodium waste inside the plant, - the very high irradiation of the core structures due to the presence of cobalt alloys. On the other hand, Phenix plant is still under operating with a qualified staff and the radioactivity coming from structural activation is well known. After the final shutdown

  16. The Italian decommissioning industry

    International Nuclear Information System (INIS)

    Full text: Italy's step out from nuclear activities in 1987 deeply affected an industry that, in the previous years, had managed to grow up in quality and technology levels to meet the nuclear standards. Only a few companies were able to partially retain their skills through activities abroad. The decommissioning program represents a new challenge for the Italian industry at large and will require a consistent effort to properly qualify the potential suppliers. On the other side, a program with such implications in terms of investments and so depending from social aspects cannot be effectively implemented without a significant involvement of the local industry. Essential conditions for the success are a reliable program, as well as a careful supply management scheme, which must facilitate aggregation of skills spread among different subjects. 'Human Resources: Maintaining a Nuclear Culture in Italy' Bruno Panella Politecnico di Torino, Giuseppe Forasassi, Universita di Pisa, Inter-University Consortium for the Nuclear Technological Research (CIRTEN). After a brief history of the nuclear engineering education in Italy within the international and national nuclear energy scenario, the present situation, with reference to the Italian universities, is shown. In order to maintain a nuclear culture in Italy the solution, exploited with different peculiarities in each University, is to carry out high quality research activities in reciprocal collaboration (mostly within the CIRTEN inter university Consortium) as well as with the Industry and research Organisations and to collaborate actively in establishing a stable network and a synergy of teaching activities in Europe in the field of Nuclear Engineering Education. The aim is to maintain at a high level and as updated as possible the Italian educational offer in nuclear engineering and also to attract the best students for the enrolment. (author)

  17. Decommissioning: a problem or a challenge?

    OpenAIRE

    Mele Irena

    2004-01-01

    With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste manageme...

  18. Publication bias in situ

    Directory of Open Access Journals (Sweden)

    Phillips Carl V

    2004-08-01

    Full Text Available Abstract Background Publication bias, as typically defined, refers to the decreased likelihood of studies' results being published when they are near the null, not statistically significant, or otherwise "less interesting." But choices about how to analyze the data and which results to report create a publication bias within the published results, a bias I label "publication bias in situ" (PBIS. Discussion PBIS may create much greater bias in the literature than traditionally defined publication bias (the failure to publish any result from a study. The causes of PBIS are well known, consisting of various decisions about reporting that are influenced by the data. But its impact is not generally appreciated, and very little attention is devoted to it. What attention there is consists largely of rules for statistical analysis that are impractical and do not actually reduce the bias in reported estimates. PBIS cannot be reduced by statistical tools because it is not fundamentally a problem of statistics, but rather of non-statistical choices and plain language interpretations. PBIS should be recognized as a phenomenon worthy of study – it is extremely common and probably has a huge impact on results reported in the literature – and there should be greater systematic efforts to identify and reduce it. The paper presents examples, including results of a recent HIV vaccine trial, that show how easily PBIS can have a large impact on reported results, as well as how there can be no simple answer to it. Summary PBIS is a major problem, worthy of substantially more attention than it receives. There are ways to reduce the bias, but they are very seldom employed because they are largely unrecognized.

  19. Remote methods for decontamination and decommissioning operations

    International Nuclear Information System (INIS)

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs

  20. 77 FR 41107 - Decommissioning Planning During Operations

    Science.gov (United States)

    2012-07-12

    ... Decommissioning Planning Rule (DPR) (June 17, 2011, 76 FR 33512). The DPR applies to the operational phase of a..., ``Decommissioning Planning During Operations'' (December 13, 2011, 76 FR 77431). The NRC received more than 100..., Decommissioning and Uranium Recovery Licensing Directorate, Division of Waste Management and...

  1. Platform decommissioning. Environmental challenges and practical solutions

    International Nuclear Information System (INIS)

    The publication gives a short introduction of platform decommissioning, followed by an overview of what to be decommissioned and removed. This will be followed by some of the vital technologies and methods within decommissioning, abandonment of wells, removal and handling of remains that is reuse and scrapping. A final presentation with a view of current research and developments is given. 3 figs

  2. Development of decommissioning system engineering technology

    International Nuclear Information System (INIS)

    In the decommissioning planning stage, it is important to select the optimized decommissioning process considering the cost and safety. Especially the selection of the optimized decommissioning process is necessary because it affects to improve worker's safety and decommissioning work efficiency. The decommissioning process evaluation technology can provide the optimized decommissioning process as constructing various decommissioning scenarios and it can help to prevent the potential accidents as delivering the exact work procedures to workers and to help workers to perform decommissioning work skillfully. It's necessary to measure the radioactive contamination in the highly contaminated facilities such as hot-cells or glove-boxes to be decommissioned for decommissioning planning. These facilities are very high radiation level, so it is difficult to approach. In this case the detector system is preferable to separate the sensor and electronics, which have to locate in the facility outside to avoid the electric noise and worker's radiation exposure. In this project, we developed the remote detection system for radiation measurement and signal transmission in the high radiation area. In order to minimize worker's exposure when decommissioning highly activated nuclear facilities, it is necessary to develop the remote handling tool to perform the dismantling work remotely. Especially, since cutting, measuring, and decontamination works should be performed remotely in the highly activated area, the remote handling tool for conducting these works should be developed. Therefore, the multi-purpose dismantling machine that can measuring dose, facility cutting, and remote handling for maintenance and decommissioning of highly activated facility should be needed

  3. Fort St. Vrain decommissioning experience

    International Nuclear Information System (INIS)

    Nuclear plant decommissioning represents a significant expenditure of time and resources for nuclear utilities. Public Service Company of Colorado (PSC) is in the process of completing the decommissioning of the Fort St. Vrain (FSV) Nuclear Station, the first large-scale commercial nuclear plant to be decommissioned under the U.S. Nuclear Regulatory Commission's (NRC's) 1988 decommissioning rule. PSC's experience has included dispositioning spent fuel, choosing a decommissioning alternative, and actively decommissioning the plant from dismantlement and decontamination through final survey. When the plant was prematurely shut down in August 1989, PSC's initial task was to find a storage location for FSV's spent fuel. PSC had a contract with the U.S. Department of Energy (DOE) to ship FSV spent fuel to the Idaho National Engineering Laboratory (INEL), and all previously removed spent fuel had been shipped there. However, Idaho legally blocked further FSV spent-fuel shipments to INEL, and PSC decided to license and build an on-site, passively cooled independent spent-fuel storage installation (ISFSI). By June 1992, all FSV spent fuel was transferred from the reactor building to the ISFSI. PSC has been able to use low-level radioactive waste (LLWR) disposal facilities in the Northwest Compact, and disposal costs are within estimates. Industrial and radiological safety have been emphasized throughout the project, and performance in these areas has been outstanding. PSC has obtained NRC Aprilproval of a final survey plan that allows for many of the plant's components and systems to remain in place, and final survey activities are nearing completion. PSC is in the process of repowering the facility with natural gas-fired combustion turbines and heat recovery boilers. The first combustion turbine was placed in service Ap 30, 1996

  4. Decommissioning Experience: Chalk River, Canada

    International Nuclear Information System (INIS)

    Full text: Atomic Energy of Canada Limited has reported that work has continued on the decommissioning of old structures on the Chalk River laboratory site. An environmental assessment was approved in 2006 for the decommissioning of the NRX reactor fuel bays (A and B). The regulator approved two work packages for the removal of water and the wooden structure over the bays. The A bays were cleaned as far as possible and were emptied in 2007. Decontamination work will continue. Sections of the B bays were filled with sand and other parts filled with water. NRX is currently in storage (i.e. a dormant state) with surveillance. (author)

  5. Decommissioning of uranium conversion plant

    International Nuclear Information System (INIS)

    Since about 20 years have passed after the construction of the uranium conversion plant, most equipments installed have worn out. Liquid wastes stored in lagoons which were generated during the operation of this plant are needed to be treated safely. Therefore, the decommissioning project on the uranium conversion plant was started from 2001. This study is a preliminary step for the decommissioning of the uranium conversion plant. It was reviewed on the plant status overall, especially facility descriptions and operational histories for the installations located inside and outside of the plant and methods of decontamination and of dismantling to the contamination conditions. And some proper options on each main object was proposed

  6. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Ha, Jea-Hyun; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost.

  7. Basic Research about Calculation of the Decommissioning Unit Cost based on The KRR-2 Decommissioning Project

    International Nuclear Information System (INIS)

    The KAERI be used to calculate the decommissioning cost and manage the data of decommissioning activity experience through systems such as the decommissioning information management system (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), decommissioning work-unit productivity calculation system (DEWOCS). Some country such as Japan and The United States have the information for decommissioning experience of the NPP and publish reports on decommissioning cost analysis. These reports as valuable data be used to compare with the decommissioning unit cost. In particular, need a method to estimate the decommissioning cost of the NPP because there is no decommissioning experience of NPP in case of Korea. makes possible to predict the more precise prediction about the decommissioning unit cost. But still, there are many differences on calculation for the decommissioning unit cost in domestic and foreign country. Typically, it is difficult to compare with data because published not detailed reports. Therefore, field of estimation for decommissioning cost have to use a unified framework in order to the decommissioning cost be provided to exact of the decommissioning cost

  8. In-situ uranium leaching

    International Nuclear Information System (INIS)

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  9. Methods of power reactor decommissioning cost recovery

    International Nuclear Information System (INIS)

    This paper analyzes rate-regulatory tax, accounting and cost recovery factors, and these analyses lead to the following overall conclusions in connection with decommissioning cost recovery. 1) The internal use of accumulated decommissioning funds is strongly recommended because it results in the lowest net ratepayer cost of decommissioning, and 2) The most equitable decommissioning cost recovery method is based on current costs and on the prompt and continuous maintenance of the purchasing power of accumulated funds. Finally, it is noted that the cost recovery approach recommended for decommissioning would have similar advantage if applied to spent fuel cost recovery as well

  10. Decommissioning study of Forsmark NPP

    Energy Technology Data Exchange (ETDEWEB)

    Anunti, Aake; Larsson, Helena; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  11. Decommissioning Study of Oskarshamn NPP

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Helena; Anunti, Aake; Edelborg, Mathias [Westinghouse Electric Sweden AB, Vaesteraas (Sweden)

    2013-06-15

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding.

  12. 76 FR 35511 - Decommissioning Planning

    Science.gov (United States)

    2011-06-17

    ... the January 27, 1988 (53 FR 24018), rule on planning for decommissioning require licensees to provide... regulations in 1997 as Subpart E of 10 CFR part 20 (62 FR 39058; July 21, 1997). This set of requirements is... contamination and the amount of funds set aside and expended on cleanup. (62 FR 39082; July 21, 1997)....

  13. Reactor decommissioning experience and perspectives

    International Nuclear Information System (INIS)

    This paper first describes the existing market context and available techniques, then reviews the contribution of past and present operations and research before discussing the future orientations necessary to develop the means (cutting tools, decontamination processes, telemanipulation and waste conditioning) required to improve the cost effectiveness of decommissioning nuclear power plants. (author)

  14. Decommissioning study of Forsmark NPP

    International Nuclear Information System (INIS)

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  15. Decommissioning Study of Oskarshamn NPP

    International Nuclear Information System (INIS)

    By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kaernbraenslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for Oskarshamn NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste management is described and the resulting waste quantities are estimated. Finally a schedule for the decommissioning phase is given and the costs associated are estimated as a basis for funding

  16. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  17. Decommissioning of nuclear reactor systems

    International Nuclear Information System (INIS)

    The decision-making process involving the decommissioning of the British graphite-moderated, gas-cooled Magnox power stations is complex. There are timing, engineering, waste disposal, cost and lost generation capacity factors and the ultimate uptake of radiation dose to consider and, bearing on all of these, the overall decision of when and how to proceed with decommissioning may be heavily weighed by political and public tolerance dimensions. These factors and dimensions are briefly reviewed with reference to the ageing Magnox nuclear power stations, of which Berkeley and Hunterston A are now closed down and undergoing the first stages of decommissioning and Trawsfynydd, although still considered as available capacity, has had both reactors closed down since February 1991 and is awaiting substantiation and acceptance of a revised reactor pressure vessel safety case. Although the other first-generation Magnox power station at Hinkley Point, Bradwell, Dungeness and Sizewell are operational, it is most doubtful that these stations will be able to eke out a generating function for much longer. It is concluded that the British nuclear industry has adopted a policy of deferred decommissioning, that is delaying the process of complete dismantlement of the radioactive components and assemblies for at least one hundred years following close-down of the plant. (Author)

  18. A Decommissioning Information Management System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Hong, S. B.; Chung, U. S.; Park, J. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    In 1996, it was determined that research reactors, the KRR-1 and the KRR-2, would be shut down and dismantled. A project for the decommissioning of these reactors was launched in January 1997 with the goal of a completion by 2008. The total budget of the project was 19.4 million US dollars, including the cost for the waste disposal and for the technology development. The work scopes during the decommissioning project were the dismantling of all the facilities and the removal of all the radioactive materials from the reactor site. After the removal of the entire radioactivity, the site and buildings will be released for an unconditional use. A separate project for the decommissioning of the uranium conversion plant was initiated in 2001. The plant was constructed for the development of the fuel manufacturing technologies and the localization of nuclear fuels in Korea. It was shut downed in 1993 and finally it was concluded in 2000 that the plant would be decommissioned. The project will be completed by 2008 and the total budget was 9.2 million US dollars. During this project, all vessels and equipment will be dismantled and the building surface will be decontaminated to be utilized as general laboratories.

  19. In situ leaching of uranium

    International Nuclear Information System (INIS)

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  20. In Situ Aerosol Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  1. Decommissioning: a problem or a challenge?

    Directory of Open Access Journals (Sweden)

    Mele Irena

    2004-01-01

    Full Text Available With the ageing of nuclear facilities or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. To avoid such problems, future liailities should be thoroughly estimated in drawing up the decommissioning and waste management programme for each nuclear facility in time, and financial provisions for implementing such programme should be provided. In this paper a presentation of current decommissioning experience in Slovenia is given. The main problems and difficulties in decommissioning of the Žirovski Vrh Uranium Mine are exposed and the lesson learned from this case is presented. The preparation of the decommissioning programme for the Nuclear Power Plant Krško is also described, and the situation at the TRIGA research reactor is briefly discussed.

  2. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    International Nuclear Information System (INIS)

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs

  3. Gamma in-situ measurements along Romanian Danube bank

    International Nuclear Information System (INIS)

    The paper contains the results of the gamma in-situ measurements performed in the second phase of the radioactivity monitoring program along Romanian Danube bank. The work was carried out in the frame of the government sponsored research project 'Research network for integrated monitoring of the radioactivity and environment related isotopes throughout the Romanian Danube basin'. The results are presented together with interpretations of the comparative analyses obtained from the gamma in-situ measurements and the results obtained by laboratory gamma spectrometry measurements of the soil samples taken from the same locations. A good agreement between these results was observed and important conclusions were given, among which those concerning the accuracy of the calibration hypothesis for the in-situ method. (authors)

  4. Nuclear decommissioning in Italy

    International Nuclear Information System (INIS)

    in the oil market, both in terms of barrel cost and in terms of security of supplies, and the severe black-outs that have plagued also Italy (the major one in September 2003 lasting in some areas for about 24 hours), have started a widespread discussion about energy alternatives and strategic energy plans. In this frame an increasing number of politicians and scientists are calling for a reconsideration of nuclear energy as a viable option also for Italy in a new energy mix. It is clear that public acceptance of nuclear energy is strictly connected not only to the demonstration of high safety standards of future plants, but also to the solution of radioactive waste disposal and of plant decommissioning. This is the link that could make the SOGIN mission even more strategic for the country

  5. Decontamination of dismantled parts from phosphate rock fertilizer plant decommissioning

    International Nuclear Information System (INIS)

    Decommissioning of the Uranium Recovery Section at the Phosphate Rock Fertilizer Plant in Gresik, East Java, Indonesia requires decontamination activity be applied to dismantled parts. The decontamination study has categorized the dismantled parts into three types, type A, type B and type C parts. Type A parts were the equipment having very low surface activity or below the clearance level. Type B parts were the equipment having surface activity beyond the clearance level, containing radioactive scale, which is easily removed by in situ decontamination to become parts that are useable unrestrictedly. Type C parts were the equipment having surface activity beyond the clearance level whose nature is very difficult to remove. In situ decontamination of the type B parts have been studied. Mechanical surface cleaning methods and strippable coating methods can be applied for in situ decontamination. The application of strippable coating methods with a composition of 10.0% phosphoric acid, 1.0% HEDPA, 3.0% tartaric acid, 12.0% polyvinyl alcohol and 4.3% absorbent clynoptilolyte was considered to be very effective. (author)

  6. Considerations about the European Decommissioning Academy (EDA)

    International Nuclear Information System (INIS)

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year.Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning (16:74:10), as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the overbridging this gap.For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe.A graduate of the European Decommissioning Academy (EDA) should have at least bachelor level from technical or natural science Universities or Colleges and at least one year working experiences in the area of NPP decommissioning or nuclear power engineering. This study creates prerequisites for acquiring and completion of professional and specialized knowledge in the subjects which are described. (authors)

  7. Status of the NRC Decommissioning Program

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D. A.; Camper, L.; Buckley, J.; Pogue, E.; Banovac, K.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.

  8. Basic Research on Selecting ISDC Activity for Decommissioning Costing in KRR-2 Decommissioning Project Experience Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chan-Ho; Park, Hee-Seong; Jin, Hyung-Gon; Park, Seung-Kook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI is performing research for calculation of expected time of a decommissioning work and evaluation of decommissioning cost and this research calculate a decommissioning work unit productivity based on the experience data of decommissioning activity for KRR-2. The KAERI be used to calculate the decommissioning cost and manage the experience data from the decommissioning activity through the Decommissioning Information Management System (DECOMMIS), Decommissioning Facility Characterization DB System (DEFACS), and Decommissioning Work-unit Productivity Calculation System (DEWOCS). In this paper, the methodology was presented how select the ISDC activities in dismantling work procedures of a 'removal of radioactive concrete'. The reason to select the 'removal of radioactive concrete' is main key activity and generates the amount of radioactive waste. This data will take advantage of the cost estimation after the code for the selected items derived ISDC. There are various efforts for decommissioning costing in each country. In particular, OECD/NEA recommends decommissioning cost estimation using the ISDC and IAEA provides for Cost Estimation for Research Reactors in Excel (CERREX) program that anyone is easy to use the cost evaluation from a limited decommissioning experience in domestic. In the future, for the decommissioning cost evaluation, the ISDC will be used more widely in a strong position. This paper has described a method for selecting the ISDC item from the actual dismantling work procedures.

  9. Decommissioning of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    The Salaspils Research Reactor (SRR) is out of operation since July 1998 and the decommissioning of SRR was started in 1999 according to the decision of the Government of Latvia. The main decommissioning activities up to 2006 were connected with collecting and conditioning of historical radioactive wastes from different storages outside and inside of reactor hall. The total amount of dismantled materials was about 700 tons, more than 77 tons were conditioned in concrete containers for disposal in repository. The radioactive wastes management technology is discussed in the paper. It was found, that additional efforts must be spent for immobilization of radionuclides in cemented matrix to be comply with the wastes acceptance criteria. The investigations of mechanical stability of water-cement matrix are described and discussed in the paper

  10. Integrated decommissioning management tools (IDMT)

    International Nuclear Information System (INIS)

    Full text: Nuclear Power Plant decommissioning requires a number of demolition activities related to civil works and systems as well as the construction of temporary facilities used for treatment and conditioning of the dismantled parts. The presence of a radiological, potentially hazardous, environment due to the specific configuration and history of the plant require a professional, expert and qualified approach approved by the national safety authority. Dismantling activities must be designed, planned and analysed in detail during an evaluation phase taking into account different scenarios generated by possible dismantling sequences and specific waste treatments to be implemented. The optimisation process of the activities becomes very challenging taking into account the requirement of the minimisation of the radiological impact on exposed workers and people during normal and accident conditions. While remote operated equipment, waste treatment and conditioning facilities may be designed taking into account this primary goal also a centralised management system and corresponding software tools have to be designed and operated in order to guarantee the fulfilment of the imposed limits as well as the traceability of wastes. Ansaldo Nuclear Division has been strongly involved in the development of a qualified and certified software environment to manage the most critical activities of a decommissioning project. The IDMT system (Integrated Decommissioning Management Tools) provide a set of stand alone user friendly applications able to work in an integrated configuration to guarantee waste identification, traceability during treatment and conditioning process as well as location and identification at the Final Repository site. Additionally, the system can be used to identify, analyse and compare different specific operating scenarios to be optimised in term of both economical and radiological considerations. The paper provides an overview of the different phases of

  11. IDMT, Integrated Decommissioning Management Tools

    International Nuclear Information System (INIS)

    Nuclear Power Plant decommissioning requires a number of demolition activities related to civil works and systems as well as the construction of temporary facilities used for treatment and conditioning of the dismantled parts. The presence of a radiological, potentially hazardous, environment due to the specific configuration and history of the plant require a professional, expert and qualified approach approved by the national safety authority. Dismantling activities must be designed, planned and analysed in detail during an evaluation phase taking into account different scenarios generated by possible dismantling sequences and specific waste treatments to be implemented. The optimisation process of the activities becomes very challenging taking into account the requirement of the minimisation of the radiological impact on exposed workers and people during normal and accident conditions. While remote operated equipment, waste treatment and conditioning facilities may be designed taking into account this primary goal also a centralised management system and corresponding software tools have to be designed and operated in order to guarantee the fulfilment of the imposed limits as well as the traceability of wastes. Ansaldo Nuclear Division has been strongly involved in the development of a qualified and certified software environment to manage the most critical activities of a decommissioning project. The IDMT system (Integrated Decommissioning Management Tools) provide a set of stand alone user friendly applications able to work in an integrated configuration to guarantee waste identification, traceability during treatment and conditioning process as well as location and identification at the Final Repository site. Additionally, the system can be used to identify, analyse and compare different specific operating scenarios to be optimised in term of both economical and radiological considerations. The paper provides an overview of the different phases of

  12. The decommissioning of Berkeley II

    International Nuclear Information System (INIS)

    This paper describes the decommissioning progress at the Magnox site at Berkeley in Gloucestershire.Throughout the work at Berkeley the emphasis has been on conducting decommissioning safely. This has been reflected in the progress of decommissioning starting with removal of the fuel from site and thus much greater than 99% of the radioactive inventory. The major radioactive hazard is the Intermediate Level Waste in the form of fuel element debris (graphite struts and extraneous magnox components removed to increase the packing density of fuel elements in flasks going to Sellafield), miscellaneous activated components, sludges and resins. Approximately 1500 m3 of such material exists and is stored in underground waste vaults on site. Work is underway to recover and encapsulate the waste in cement so rendering it 'passively safe'. All work on site is covered by a nuclear safety case which has a key objective of minimising the radiological exposures that could accrue to workers. Reflecting this an early decision has been taken to leave work on the Reactor Pressure Vessels themselves for several decades. Also important in protection of the workforce has been control of asbestos.Much material has been removed with redundant plant and equipment, but a programme of remediation in line with government legislation has been required to ensure personnel safety throughout the decommissioning period and into Care and Maintenance.In addition to health and safety matters the site approach to environmental issues has been consistent. Formally such standards as ISO 14001 have been adhered to and the appropriate certification maintained. At a working level the principles of reduce, reuse and recycle have been inculcated

  13. Residual activity criteria for decommissioning

    International Nuclear Information System (INIS)

    The U.S. Nuclear Regulatory Commission development of criteria for release of facilities and sites for unrestricted use following decommissioning is described. Residual activity limits for both materials and soil are covered. The objectives are: small risk of exposure, consistency with relevant existing standards, and feasibility of demonstration of compliance by measurement. Specific aspects discussed related to establishment of limits are: appropriate risk and dose limits, identification of radionuclides to be considered, dose assessment methodology, and confirmatory measurements

  14. Decommissioning - The keys to success

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority (UKAEA) owns and operates five sites across the United Kingdom. The Winfrith site in Dorset was established in the late 1950's as a centre for development of prototype reactors. During its history, nine research reactors have operated on the site together with: a fuel fabrication facility; a post irradiation examination facility; radiochemistry laboratories, etc. The largest reactor, a 100MWe Steam Generating Heavy Water Reactor, was closed down in 1990 and the last research reactor was closed in 1995. Since the early 1990's the site has been undergoing a programme of progressive decommissioning with a view to releasing the site for alternative use unrestricted by the site's nuclear history. Key drivers for the design of the programme were safety, minimising adverse environmental effects, minimising costs and ensuring stakeholder support. One requirement of the stakeholders was to ensure that the site continued to provide high quality employment. This was successfully achieved by developing a Science and Technology Park on the nuclear site. Over 40 companies are now located on the Park providing over 1000 jobs. This paper will focus on the lessons learnt from over a decade of experience of decommissioning at Winfrith and will attempt to identify the 'keys to successful decommissioning'. These 'keys' will include: defining the site end-point; planning the programme; defining the commercial strategy; cost estimation; evaluation and management of risks; safety and environmental management; and stakeholder engagement. In particular, the paper will explore the very close relationship between: funding profiles; cost estimation; risk management and commercial strategy. It will show that these aspects of the programme cannot be considered separately. The paper will attempt to show that, with careful planning; decommissioning can be achieved safety and give good value for money to the funding authority. (author)

  15. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Harris, S.H.; Smith, R.L.

    2009-01-01

    Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.

  16. Decommissioning plans and activities in Slovenia

    International Nuclear Information System (INIS)

    With the ageing of nuclear facilities, or the reduced interest in their further operation, a new set of problems, related to the decommissioning of these facilities, has come into forefront. In many cases it turns out that the preparations for decommissioning have come too late, and that financial resources for covering decommissioning activities have not been provided. In this paper a presentation is given of current decommissioning experience in Slovenia. The main problems and difficulties in decommissioning of the Zirovski vrh Uranium Mine are exposed, and the lesson learned from this case is presented. The preparation of the decommissioning programme for the nuclear power plant Krsko is also described, and the situation at the TRIGA research reactor is briefly discussed. (author)

  17. Fort St. Vrain defueling ampersand decommissioning considerations

    International Nuclear Information System (INIS)

    Fort St. Vrain Nuclear Generating Station (FSV) is one of the first commercial reactors to be decommissioned under NRC's decommissioning rule. The defueling and decommissioning of this 330 MWe High Temperature Gas Cooled Reactor (HTGR) has involved many challenges for Public Service Company of Colorado (PSC) including defueling to an Independent Spent Fuel Storage Installation (ISFSI), establishing decommissioning funding, obtaining regulatory approvals, arranging for waste disposal, and managing a large fixed price decommissioning contract. In 1990, a team comprised of the Westinghouse Corporation and Morrison Knudsen Corporation, with the Scientific Ecology Group as a major subcontractor, was contracted by PSC to perform the decommissioning under a fixed price contract. Physical work activities began in August 1992. Currently, physical dismantlement activities are about 45% complete, the project is on schedule, and is within budget

  18. Nuclear decommissioning planning, execution and international experience

    CERN Document Server

    2012-01-01

    A title that critically reviews the decommissioning and decontamination processes and technologies available for rehabilitating sites used for nuclear power generation and civilian nuclear facilities, from fundamental issues and best practices, to procedures and technology, and onto decommissioning and decontamination case studies.$bOnce a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any ...

  19. Safety yields decommissioning successes. Panel Discussion

    International Nuclear Information System (INIS)

    Full text of publication follows: Panelists will speak to the most recent decommissioning projects successfully conducted. The projects represent facilities over the full range of commercial decommissioning, fuel storage, and weapons facilities. Lessons learned will be stressed to guide interested parties through future decommissioning activities. Human Factors Assessment of D and D Technologies and How This Relates to Improvement of Safety in Decommissioning Projects (Bruce Lippy (OENHP)); PPPL's Safety Practices, Safety Records, and Corrective Actions to Address Safety Issues (Keith Rule (PPPL)); INEEL's Safety Practices in Decommissioning Projects and Safety-Enhancing D and D Technologies (Richard Meservey (BWXT)); Big Rock Point Restoration Project Decommissioning Successes from a Safety Culture Perspective (William Trubilowicz (Consumers PWR, Big Rock Point))

  20. Decommissioning: a United Kingdom perspective

    International Nuclear Information System (INIS)

    The paper considers the United Kingdom legislative framework relevant to decommissioning of facilities on nuclear licensed sites. It describes the various legislative bodies involved in regulating this activity and the inspectorate concerned. The licensing regime is described in some detail highlighting the UK arrangements whereby a license is granted for the site upon which nuclear facilities are planned or exist. The license remains in place throughout the life of the plant on the site: from initial planning through to the end of decommissioning. A site (of part of) is not de-licensed until it can be stated that there has ceased to be any danger from ionising radiations from anything on the site (or appropriate part of the site). The final part of the paper considers the changes arising from the commercialization of the nuclear power industry in UK and the restatement of the Nuclear Installation Inspectorate's policy on decommissioning which has arisen as a result of a review made in response to these changes. (author)

  1. Decommissioning of naval nuclear ships

    International Nuclear Information System (INIS)

    During the next decade the two major nuclear powers will each have to decommission more than 100 naval nuclear vessels, in particular submarines. The problems connected with this task is considered in this report. Firstly the size of the task is considered, i.e. the number of nuclear vessels that has to be decommissioned. Secondly the reactors of these vessels, their fuel elements, their power level, the number of reactors per vessel and the amount of radioactivity to be handled are discussed. Thirdly the decommissioning procedures, i.e. The removal of fuel from the vessels, the temporary storage of the reactor fuel near the base, and the cleaning and disposal of the reactor and the primary circuit components are reviewed. Finally alternative uses of the newer submarines are briefly considered. It should be emphasizes that much of the detailed information on which this report is based, may be of dubious nature, and that may to some extent affect the validity of the conclusions of the report. (au)

  2. Decommissioning: a United Kingdom perspective

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, A.; Reed, D.L.; Bleeze, A. [Health and Safety Executive, London (United Kingdom)

    1995-12-31

    The paper considers the United Kingdom legislative framework relevant to decommissioning of facilities on nuclear licensed sites. It describes the various legislative bodies involved in regulating this activity and the inspectorate concerned. The licensing regime is described in some detail highlighting the UK arrangements whereby a license is granted for the site upon which nuclear facilities are planned or exist. The license remains in place throughout the life of the plant on the site: from initial planning through to the end of decommissioning. A site (of part of) is not de-licensed until it can be stated that there has ceased to be any danger from ionising radiations from anything on the site (or appropriate part of the site). The final part of the paper considers the changes arising from the commercialization of the nuclear power industry in UK and the restatement of the Nuclear Installation Inspectorate`s policy on decommissioning which has arisen as a result of a review made in response to these changes. (author).

  3. Shippingport Station Decommissioning Project: overview and justification

    International Nuclear Information System (INIS)

    The purpose of this booklet is to brief the reader on the Shippingport Station Decommissioning Project and to summarize the benefits of funding the project in FY 1984. Background information on the station and the decommissioning project is provided in this section of the booklet; the need for a reactor decommissining demonstration is discussed in the next section; and a summary of how the Shippingport Station Decommissioning Project (SSDP) provides the needed demonstration is provided in the final section

  4. IAEA Perspectives on Preparation for Decommissioning

    International Nuclear Information System (INIS)

    There are about 160 power reactors in decommissioning phase worldwide. In addition, more than 400 other nuclear facilities, such as research reactors or nuclear fuel cycle facilities, have been shutdown for decommissioning, have been undergoing active decommissioning or have already been fully dismantled. Planned and systematic preparation for decommissioning is very important for further effective implementation of dismantling activities. While some preparatory activities for decommissioning start early in the facility life-cycle, the main preparatory activities are implemented towards the end of the operational period and during the transition period from operation to decommissioning. These may include a wide range of technical actions, such as physical and radiological characterization, pre-decommissioning decontamination, management of spent fuel and operational waste, establishment of new waste management facilities and modification of safety systems needed to support decommissioning. In parallel, some non-technical tasks are to be completed, e.g. preparation of the final decommissioning plan and its supporting documents, licensing activities, organizational changes, training of personnel for decommissioning, etc. Preparatory activities may be organized in various ways depending on considered decommissioning strategies and physical and radiological status of the nuclear facility after its routine operation is over. The IAEA published numerous safety and technical reports providing guidance, recommendations, experiences, good practices and lessons learned, fully or to some extent covering the preparatory phase for decommissioning. Many training courses, workshops, seminars etc. were organized to support sharing of good practices among specialists and organizations involved. This paper provides an overview of relevant activities and perspectives of the IAEA in this area. The paper also draws some general conclusions and identifies lessons learned on the basis of

  5. Decommissioning Experience: Hanford Site Reactors, United States of America

    International Nuclear Information System (INIS)

    F basins: In 1965, the F reactor at Hanford was shut down. In 1970, the 6 m deep fuel storage basin was drained down to just 1 m of water to cover the empty fuel baskets, reactor hardware and other debris]. The basin was then filled with sand to cocoon the basin for nearly 30 years. In 1998, work started to cocoon the reactor itself, which meant removing the surrounding structures, including the fuel basin. In November 2002, the 5 m cover of upper sand was removed, monitoring equipment of various types was used to protect workers, and a remotely operated excavator was used to remove the sand. Eleven fuel elements were found in the lower 1 m depth, but more were expected. The elements were remotely handled into water filled containers. The remotely operated device was lowered into the basin and had four cameras to guide operation. There are nine similar reactors on the site, some of which have been cocooned. K basins: Hanford’s K east and K west reactors were built side by side in the early 1950s and operated until 1970–1971. Each of these reactors included a spent fuel storage basin (K east and K west), and are located approximately 400 m from the Columbia River. The basins, each with three bays, are covered by a superstructure, but were not environmentally controlled areas (i.e. doors opened directly to the outdoors). Each K basin is an open pool, approximately 22 m × 40 m × 7 m and filled with around 4500 m3 of water to a depth of approximately 5 m. Prior to receiving fuel from the N reactor, the K west basin was drained, an 8 cm layer of sludge removed, and its floor and walls coated with epoxy paint. The K east basin was neither drained nor epoxy coated. In the 1970s, an appendage discharge chute leaked millions of litres of water into the ground. Leaks were sealed with grout. The east basin also suffered structural leaks, and was a priority for decommissioning. In the 1990s, it was determined that K east basin had started to leak contaminated water into

  6. U.S. decommissioning requirements and recommendations on international principles and rules on decommissioning

    International Nuclear Information System (INIS)

    U.S. requirements for decommissioning nuclear power plants have been under development for the past seven years. During the year 1985, policies and requirements for the following areas will be developed: methods of decommissioning, timing, planning, and financial security. Due to the common nature of the problems with decommissioning, international exchange of information is highly desirable. (CW)

  7. Decommissioning Technology Development for Nuclear Research Facilities

    International Nuclear Information System (INIS)

    It is predicted that the decommissioning of a nuclear power plant would happen in Korea since 2020 but the need of partial decommissioning and decontamination for periodic inspection and life extension still has been on an increasing trend and its domestic market has gradually been extended. Therefore, in this project we developed following several essential technologies as a decommissioning R and D. The measurement technology for in-pipe radioactive contamination was developed for measuring alpha/beta/gamma emitting nuclides simultaneously inside a in-pipe and it was tested into the liquid waste transfer pipe in KRR-2. And the digital mock-up system for KRR-1 and 2 was developed for choosing the best scenarios among several scenarios on the basis of various decommissioning information(schedule, waste volume, cost, etc.) that are from the DMU and the methodology of decommissioning cost estimation was also developed for estimating a research reactor's decommissioning cost and the DMU and the decommissioning cost estimation system were incorporated into the decommissioning information integrated management system. Finally the treatment and management technology of the irradiated graphites that happened after decommissioning KRR-2 was developed in order to treat and manage the irradiated graphites safely

  8. Status of the Fort St. Vrain decommissioning

    International Nuclear Information System (INIS)

    Fort St. Vrain is a high temperature gas cooled reactor. It has been shut down as a result of financial and technical difficulties. Fort St. Vrain has been planning for defueling and decommissioning for at least three years. The preliminary decommissioning plan, in accordance with the NRC's final rule, has been submitted and is being reviewed by the NRC. The basis of the preliminary decommissioning plan has been SAFSTOR. Public Service Company, who is the owner and operator of FSV, is scheduled to submit a proposed decommissioning plan to the NRC in the fourth quarter of 1990. PSC has gone out for bid on the decontamination and dismantlement of FSV. This paper includes the defueling schedule, the independent spent fuel storage installation status, the probability of shipping fuel to DOE, the status of the preliminary decommissioning plan submittal, the issuance of a possession only license and what are the results of obtaining this license amendment, preliminary decommissioning activities allowed prior to the approval of a proposed decommissioning plan, the preparation of a proposed decommissioning plan and the status of our decision to proceed with SAFSTOR or DECON as identified in the NRC's final decommissioning rule

  9. European Decommissioning Academy (EDA). Ready to start

    Energy Technology Data Exchange (ETDEWEB)

    Slugen, Vladimir [Slovak University of Technology, Bratislava (Slovakia). Inst. of Nuclear and Physical Engineering

    2015-02-15

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  10. European Decommissioning Academy (EDA). Ready to start

    International Nuclear Information System (INIS)

    According to analyses presented at EC meeting focused on decommissioning organized at 11 September 2012 in Brussels, it was stated that at least 2,000 new international experts for decommissioning will be needed in Europe up to 2025, which means about 150 each year. The article describes the European Decommissioning Academy (EDA) which is prepared for the first term in June 2015 in Slovakia. The main goal is a creation of new nuclear experts generation for decommissioning via the Academy, which will include lessons, practical exercises in laboratories as well as 2 days on-site training at NPP V-1 in Jaslovske Bohunice (Slovakia). Four days technical tour via most interesting European decommissioning facilities in Switzerland and Italy are planned as well. After the final exam, there is the option to continue in knowledge collection via participation at the 2nd Eastern and Central European Decommissioning (ECED) conference in Trnava (Slovakia). We would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future.

  11. Experiences in teaching decommissioning - 16179

    International Nuclear Information System (INIS)

    The paper describes the experience gained by the author in teaching decommissioning in the Highlands of Scotland. Initially when asked to teach the subject of decommissioning to students sitting for a BSc degree in 'Electrical or Mechanical Engineering with Decommissioning Studies', the author was taken aback, not having previously taught degree students and there was no precedent since there was no previous material or examples to build on. It was just as difficult for the students since whilst some had progressed from completing HND studies, the majority were employed at the Dounreay site and were mature students with families who were availing themselves of the opportunity for career advancement (CPD). Some of the students were from the UKAEA and its contractors whilst others were from Rolls-Royce working at Vulcan, the Royal Navy's establishment for testing nuclear reactors for submarines. A number of the students had not been in a formal learning environment for many years. The College which had originally been funded by the UKAEA and the nuclear industry in the 1950's was anxious to break into the new field of Decommissioning and were keen to promote these courses in order to support the work progressing on site. Many families in Thurso, and in Caithness, have a long tradition of working in the nuclear industry and it was thought at the time that expertise in nuclear decommissioning could be developed and indeed exported elsewhere. In addition the courses being promoted by the College would attract students from other parts so that a centre of excellence could be established. In parallel with formal teaching, online courses were also developed to extend the reach of the College. The material was developed as a mixture of power point presentations and formal notes and was obtained from existing literature, web searches and interactive discussions with people in the industry as well as case studies obtained from actual situations. Assignments were set and

  12. Gamma dose rate mapping of APSARA structural components for decommissioning

    International Nuclear Information System (INIS)

    APSARA was a swimming pool type research reactor operated using Highly Enriched Uranium fuel. The reactor pool water was used as coolant, moderator, reflector and radiological shielding. Graphite and beryllium oxide encased in aluminum boxes were used as in-core reflector. The reactor had a maximum power level of 1 MW and was mostly operated up to 400 KW. APSARA was shut down for major refurbishment in 2009. Defuelling and partial decommissioning of reactor was carried out. The core structure and other reactor components were dismantled and shifted to Waste Management site. 'Second stage decommissioning' planned further consists of dismantling and disposal of various components like thermal column, shielding racks, graphite blocks, stainless steel liner of pool and the pool block itself. Detailed gamma dose rate mapping study served in localizing and identifying hotspots of activation product activity in structural components of the APSARA reactor in order to plan the strategy for dismantling of the pool structure. In-situ gamma spectrometry of the structural components was carried out for qualitative and semi quantitative characterization of the bulk structural materials in pool walls, SS and aluminum liners, shield racks, graphite blocks etc., to plan the dismantling and demolition of large structures. This study has also served in comparing the performance of different radiation measuring instruments used for such large area insitu dose rate measurements and mapping

  13. In situ solution mining technique

    International Nuclear Information System (INIS)

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  14. Evaluation of the I. Stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1

    International Nuclear Information System (INIS)

    In this paper author deals with following aspects: 1. Introduction of company Nuclear and Decommissioning Company, plc; 2. Evaluation of the I. stage of decommissioning and implementation of the II. Stage of decommissioning of NPP V1; (author)

  15. Research in decommissioning techniques for nuclear fuel cycle facilities in JNC. 7. JWTF decommissioning techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-02-01

    Decommissioning techniques such as radiation measuring and monitoring, decontamination, dismantling and remote handling in the world were surveyed to upgrading technical know-how database for decommissioning of Joyo Waste Treatment Facility (JWTF). As the result, five literatures for measuring and monitoring techniques, 14 for decontamination and 22 for dismantling feasible for JWTF decommissioning were obtained and were summarized in tables. On the basis of the research, practical applicability of those techniques to decommissioning of JWTF was evaluated. This report contains brief surveyed summaries related to JWTF decommissioning. (H. Itami)

  16. The development of a tailings decommissioning concept: A case history, Rabbit Lake, Canada

    International Nuclear Information System (INIS)

    The Rabbit Lake orebody was discovered in 1968. From 1975 to 1985, approximately 6.5 million tonnes of tailings were deposited in a valley confined by bedrock ridges and two earth-filled dams. Planning for the decommissioning of the Rabbit Lake tailings management facility started in 1983 when the relocation of the tailings into the mined out Rabbit Lake open pit and alternatively, the in-situ decommissioning were examined. The latter was preferred since it offered a sufficiently low individual dose rate and an insignificant environmental impact. To pursue the in-situ decommissioning, three options were considered: (1) A concave surface with natural cover, surface water management and dam stabilization, (2) a convex surface with natural cover, surface water management and dam stabilization and (3) a minimum reclamation option incorporating surface water management only. By 1988, an electromagnetic conductivity survey, a pathway analysis, a stream flow reconnaissance and continued environmental monitoring in the vicinity of the tailings area were completed. On the basis of the results, the cover design was optimized taking into account areas of higher consolidation defined by the presence of distal slimes and frozen layers. In addition, pre-loading of the slime area was considered to alleviate post-construction settlements. (Abstract only)

  17. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells

    Science.gov (United States)

    Worrall, Fred; boothroyd, Ian; Almond, Sam; Davies, Richard

    2015-04-01

    The aim of this study was to consider the potential legacy of increased onshore, unconventional gas production by examining the integrity of decommissioned, onshore, oil and gas wells in the UK. In the absence of a history of unconventional hydrocarbon exploitation in the UK, conventional onshore sites were considered and an examination of pollution incidents records had suggested that only a small fraction of onshore wells could show integrity failures. In this study the fugitive emissions of methane from former oil and gas production wells onshore in the UK were considered as a measure of well integrity. The survey considered 49 decommissioned (abandoned) wells from 4 different basins that were between 8 and 78 years old; all but one of these wells would be considered as having been decommissioned properly, i.e. wells cut, sealed and buried by soil cover to the extent that the well sites were being used for agriculture. For each well site the soil gas methane was analysed multiple times and assessed relative to a nearby control site of similar land-use and soil type. The results will be expressed in terms of the proportion and extent of well integrity failure, or success, over time since decommissioning and relative to local control sites. The probability of failure and the emissions factor for decommissioned wells will be presented.

  18. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  19. Uranium determination in samples from decommissioning of nuclear facilities related to the first stage of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Large amounts of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. Determination of those activity concentration levels becomes more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrixes are involved. In addition, an adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. According to the kind and sample size, together with the minimum detectable activity (MDA) that must be reached in each case, measurements were carried out by laboratory and 'in situ' gamma spectrometry, as well as by alpha spectrometry. A comparison among the different techniques was also performed by analysing the results obtained in some practical applications

  20. Uranium determination in samples from decommissioning of nuclear facilities related to the first stage of the nuclear fuel cycle

    Science.gov (United States)

    Alvarez; Correa; Navarro; Sancho

    2000-07-01

    Large amounts of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. Determination of those activity concentration levels becomes more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrixes are involved. In addition, an adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. According to the kind and sample size, together with the minimum detectable activity (MDA) that must be reached in each case, measurements were carried out by laboratory and 'in situ' gamma spectrometry, as well as by alpha spectrometry. A comparison among the different techniques was also performed by analysing the results obtained in some practical applications. PMID:10879885

  1. Decommissioning of Russian research facilities

    International Nuclear Information System (INIS)

    When the most of our research facilities were built and put in operation more than 30 years ago there had been neither requirements no regulations concerning their future decommissioning (D and D). And due to that fact nobody thought of that in the initial designs of these facilities. The situation changed when in 1994 a top-level safety standard 'Safety Provision for Safety of Research Reactors' was issued by Gosatomnadzor of Russia with a special chapter 7, devoted to D and D issues. Unfortunately, it was just one page of requirements pertaining RR D and D in general terms and was not specific. Only in 2001 Gosatomnadzor of Russia developed and issued a more specific standard 'Rules for Safety Decommissioning of Nuclear Research Facilities'. From the total number of 85 Nuclear Research Facilities, including 34 research reactors, 36 critical assemblies and 15 subcritical assemblies, we have now 7 facilities under decommissioning. The situation is inevitably changing over the time. In the end of 2003 the decision was made to permanently shutdown two RR: AM, graphite type with channels, 15 MBt; BR-10, LMFR type, 10 MBt, and to start preparatory work for their future decommissioning, starting from 2005. It needs to be mentioned that from this list we have 6 reactors with which we face many difficulties in developing decommissioning technologies, namely: for TVR reactor: handling of heavy water and high radiation field in the core; for MR reactor: very complex reactor with many former radioactive spills, which is required a careful and expensive D and D work; AM: graphite utilization problem; BR-10: a problem of coolant poisoned with other heavy metals (like lead, bismuth); IBR-30: the fuel cannot be removed from the core prior the D and D project starts; RG-1M: location is above Arctic Circle, problem of transfer of irradiated parts of the reactor. The decision was made to bury then on the site thus creating a shallow-land radwaste storage facility. The established D

  2. Interim status of closure/post-closure plan for 183-H solar evaporation basins

    International Nuclear Information System (INIS)

    This report describes a plan for decommissioning several solar evaporation basins on the Hanford reservation. The document describes procedures for sampling during decommissioning and a plan for certification of the resulting completed landfill. Additional plans deal with the training, security of the site, and post-closure monitoring

  3. AREVA decommissioning strategy and programme

    International Nuclear Information System (INIS)

    As with any industrial installation, a nuclear facility has an operating life that requires accounting for its shutdown. In compliance with its sustainable development commitments, AREVA accounts this via its own decommissioning resources to value and make sites fit for further use. These capabilities guarantee the reversibility of the nuclear industry. Thus, the nuclear site value development constitutes an important activity for AREVA, which contributes to the acceptance of nuclear in line with the AREVA continuous policy of sustainable development which is to be fully responsible from the creation, during the operation, to the dismantling of its facilities in all respects with safety, local acceptance and environment. AREVA has already performed a large variety of operation during the life-time of its installations such as heavy maintenance, equipment replacement, upgrading operation. Nowadays, a completely different dimension is emerging with industrial decommissioning operations of nuclear fuel cycle installations: enrichment gaseous diffusion plant, fuel assembly plants, recycling and reprocessing facilities. These activities constitute a major know-how for AREVA. For this reason, the group decided, beginning of 2008, to gather 4 projects in one business unit called Nuclear Site Value Development - a reprocessing plant UP2 400 on AREVA La Hague site, a reprocessing plant UP1 on AREVA Marcoule site, a MOX fuel plant on Cadarache and 2 sites (SICN Veurey and Annecy) that handled GCR fuel fabrication). The main objectives are to enhance the feed back, to contribute to performance improvements, to value professionals and to put innovation forward. The following article will describe in a first part the main decommissioning programmes managed by AREVA NC Nuclear Site Value Development Business Unit. The second part will deal with strategic approaches. A more efficient organization with integration of the supply chain and innovation will be part of the main drivers

  4. STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING

    International Nuclear Information System (INIS)

    Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions

  5. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  6. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  7. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Science.gov (United States)

    2011-01-21

    ... 23, 2010 (75 FR 80697) relating to deductions for contributions to trusts maintained for decommissioning nuclear power plants. DATES: This correction is effective on January 21, 2011, and is applicable... Internal Revenue Service 26 CFR Part 1 RIN 1545-BF08 Nuclear Decommissioning Funds; Correction...

  8. Survey of decontamination and decommissioning techniques

    International Nuclear Information System (INIS)

    Reports and articles on decommissioning have been reviewed to determine the current technology status and also attempt to identify potential decommissioning problem areas. It is concluded that technological road blocks, which limited decommissioning facilities in the past have been removed. In general, techniques developed by maintenance in maintaining the facility have been used to decommission facilities. Some of the more promising development underway which will further simplify decommissioning activities are: electrolytic decontamination which simplifies some decontaminating operations; arc saw and vacuum furnace which reduce the volume of metallic contaminated material by a factor of 10; remotely operated plasma torch which reduces personnel exposure; and shaped charges, water cannon and rock splitters which simplify concrete removal. Areas in which published data are limited are detailed costs identifying various components included in the total cost and also the quantity of waste generated during the decommissioning activities. With the increased awareness of decommissioning requirements as specified by licensing requirements, design criteria for new facilities are taking into consideration final decommissioning of buildings. Specific building design features will evolve as designs are evaluated and implemented

  9. Meeting the challenge of BNFL's decommissioning programme

    International Nuclear Information System (INIS)

    The paper reviews the co-ordinated and integrated programme, adopted by BNFL, in the decommissioning of its radioactive plants. It examines BNFL's approach to the challenges posed by the eventual decommissioning of its 120 plants, its overall strategies, the constraints and the progress achieved to date, drawing on real experience from the 22 completed projects and the 24 projects currently underway. (author)

  10. Training of experts on NPP decommissioning

    International Nuclear Information System (INIS)

    The paper presents difficulties and problems in training of NPP decommissioning experts in Ukraine. The scientific and technical cluster is offered to be constructed as a territorial association of enterprises and organizations related to NPP decommissioning issues and spent nuclear fuel and radioactive waste management. The center is to be based on scientific and educational center in Slavutych, satellite city of Chornobyl NPP.

  11. 76 FR 77431 - Decommissioning Planning During Operations

    Science.gov (United States)

    2011-12-13

    ... that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning... that the NRC staff considers acceptable for use in complying with the NRC's Decommissioning Planning Rule (DPR), which will become effective on December 17, 2012 (76 FR 35511; June 17, 2011). That...

  12. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  13. Role of the statistician in the decommissioning of the New Brunswick Laboratory and other nuclear facilities

    International Nuclear Information System (INIS)

    This report examines what the statistician can contribute to decommissioning operations, with particular emphasis on the New Brunswick Laboratory (NBL) currently scheduled for decommissioning beginning in FY81. In the opinion of the author, a professional statistician should be a full member of the planning team directing decommissioning operations at the New Brunswick Laboratory. This opinion is based in part on the familiarity with the valuable contributions made by statisticians toward the cleanup of transuranics in soil on the Enewetak Atoll. More generally, however, the professional statistician can help plan the decommissioning effort to help ensure that representative data are obtained, analyzed and, interpreted in appropriate ways so that RA decisions can be made with the required confidence. The statistician's contributions at the NBL could include providing guidance on the number and location of samples and in-situ measurements, analyzing and interpreting these data, designing a data management and documentation system, interfacing with the certification contractor's statistician, and assisting in writing documentation and final reports. In all cases, the statistician should work closely with the professional health physicist and others on the planning team in a closely coordinated effort of planning and data analysis

  14. Decommission of nuclear ship `MUTSU`

    Energy Technology Data Exchange (ETDEWEB)

    Tateyama, Takeshi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1996-11-01

    The nuclear-powered ship `MUTSU` was decommissioned by removing the reactor room in June 1995, which was hoisted and transported by a floating crane to a shore storage room at Sekinehama, Aomori Prefecture. This work was carried out in three stages: extraction of the spent fuel assemblies and neutron sources, dismantling of the machinery in the reactor auxiliary room, and separation and transportation of the reactor together with the secondary shielding structure and surrounding hull. IHI mainly conducted the third stage work. The separation work of the reactor room structure using a semisubmersible barge is outlined. Stress analysis and design of the reactor room for lifting work is also described. (author)

  15. The IAEA Safety Regime for Decommissioning

    International Nuclear Information System (INIS)

    Full text of publication follows: The International Atomic Energy Agency is developing an international framework for decommissioning of nuclear facilities that consists of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, and a hierarchy of Safety Standards applicable to decommissioning. The Joint Convention entered into force on 18 June 2001 and as of December 2001 had been ratified by 27 IAEA Member States. The Joint Convention contains a number of articles dealing with planning for, financing, staffing and record keeping for decommissioning. The Joint Convention requires Contracting Parties to apply the same operational radiation protection criteria, discharge limits and criteria for controlling unplanned releases during decommissioning that are applied during operations. The IAEA has issued Safety Requirements document and three Safety Guides applicable to decommissioning of facilities. The Safety Requirements document, WS-R-2, Pre-disposal Management of Radioactive Waste, including Decommissioning, contains requirements applicable to regulatory control, planning and funding, management of radioactive waste, quality assurance, and environmental and safety assessment of the decommissioning process. The three Safety Guides are WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, WS-G-2.2, Decommissioning of Medical, Industrial and Research Facilities, an WS-G-2.4, Decommissioning of Nuclear Fuel Cycle Facilities. They contain guidance on how to meet the requirements of WS-R-2 applicable to decommissioning of specific types of facilities. These Standards contain only general requirements and guidance relative to safety assessment and do not contain details regarding the content of the safety case. More detailed guidance will be published in future Safety Reports currently in preparation within the Waste Safety Section of the IAEA. Because much material arising during the decommissioning

  16. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    The objectives of this coordinated research programme (CRP) were to promote the exchange of information on the practical experience by Member States in decontamination and decommissioning. The scope of the programme included several areas of decontamination and decommissioning rather than focusing on a single aspect of it, in line with recommendation of the experts who participated in Phase 1 of the CRP. Experts felt that this format would generate better awareness of decontamination and decommissioning and would be more effective vehicle for the exchange of information by stimulating broader discussion on all aspects of decontamination and decommissioning. Special emphasis was given to the development of principles and methodologies to facilitate decommissioning and to the new methods and techniques for optimization of decontamination and disassembly of equipment. Refs, figs, tabs

  17. Decommissioning of nuclear research facilities at KAERI

    International Nuclear Information System (INIS)

    At the Korea Atomic Energy Research Institute (KAERI), two research reactors (KRR-1 and KRR-2) and one uranium conversion plant (UCP) are being decommissioned. The main reason of the decommissioning was the diminishing utilities; the start of a new research reactor, HANARO, and the higher conversion cost than that of international market for the UCP. Another reason of the decommissioning was prevention from spreading radioactive materials due to the deterioration of the facilities. Two separate projects have already been started and are carried out as planned. The KAERI selected several strategies, considering the small scale of the projects, the internal standards in KAERI, and the future prospects of the decommissioning projects in Korea. In this paper, the current status of the decommissioning including the waste management and the technology development will be explained

  18. Decommissioning plan for TRIGA Mark-2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Lee, B.J.

    1999-04-01

    Korea Research Reactor 1(KRR 1; TRIGA Mark-2) is the first reactor in Korea, but its decommissioning is underway due to its life. In this paper, presenting the reason and object of decommissioning KRR 1, then describing reactor structure and survey result of the facility, activation and contamination status around reactor and nearby equipment and vicinity. Estimating dose rate was evaluated for every work stage. Those of survey, evaluation and radiological status were considered to determine the safe and reasonable decommissioning methods. The order of decommissioning works are divided by section to minimize possible hazard. Proposed decommissioning plan is based on hazard and operability study to protect workers and residents from radiation expose. (author). 12 refs., 5 tabs., 6 figs.

  19. Conceptual data modeling on the decommissioning database

    International Nuclear Information System (INIS)

    ISP (Information Strategy Planning), which is the first step of the whole database development, has been studied to manage effectively information and data related to the decommissioning activities of the Korea Research Reactor 1 and 2 (KRR 1 and 2). A record management system (RMS) of large nuclear facilities of national experience such as in the U. S. A., Japan, Belgium, and Russian were reviewed. In order to establish the scope of the decommissioning DB, user requirement and the importance of the information were analyzed and set up the conceptual design of the decommissioning DB. The results have been reviewed an national experience were recognized to acquire the technology of the decommissioning DB for the whole decommissioning process. It has been extracted the principle information such as working information, facilities information, radioactive waste treatment, and radiological surveying and analysis during the interviewing with an experts. These information and data will be used as the basic data to design the prototyping

  20. Decommissioning progress at Fort St Vrain

    International Nuclear Information System (INIS)

    The Fort St. Vrain Nuclear Generating Station in Colorado in the United States is well along in Decommissioning for release of the site from its Nuclear Regulatory Commission license. This decommissioning is being performed under a fixed price contract between the owner, Public Service Company of Colorado and a team of Westinghouse and Morrison-Knudsen. This paper will discuss the innovative decommissioning technique of filling the gas cooled reactor with water for shielding and contamination control and the other practical and readily available technologies used. This Decommissioning is demonstrating that a full size commercial nuclear reactor can be successfully decommissioned with a reasonable schedule, cost, and radiation dose to the work force. (Author)

  1. Asbestos removal in Shippingport Decommissioning Project

    International Nuclear Information System (INIS)

    The Shippingport Station Decommissioning Project (SSDP) is being performed under contract to the DOE by the General Electric Company and its integrated subcontractor, MK-Ferguson Company, as the Decommissioning Operations Contractor (DOC). During the planning of this project, it was found that asbestos was the primary insulating material which was used on the nuclear steam supply system and the plant heating system. The original decommissioning plan required that each subcontractor remove the asbestos from the particular component(s) they had to remove. However, since removal of the radioactivity-contaminated asbestos would require special procedures and worker training, the original decommissioning plan was modified so that a single subcontractor removed all of the asbestos prior to other decommissioning tasks. IT Corporation was selected as the asbestos removal subcontractor. Their approach to the project is described

  2. Decommissioning plan for TRIGA Mark-2

    International Nuclear Information System (INIS)

    Korea Research Reactor 1(KRR 1; TRIGA Mark-2) is the first reactor in Korea, but its decommissioning is underway due to its life. In this paper, presenting the reason and object of decommissioning KRR 1, then describing reactor structure and survey result of the facility, activation and contamination status around reactor and nearby equipment and vicinity. Estimating dose rate was evaluated for every work stage. Those of survey, evaluation and radiological status were considered to determine the safe and reasonable decommissioning methods. The order of decommissioning works are divided by section to minimize possible hazard. Proposed decommissioning plan is based on hazard and operability study to protect workers and residents from radiation expose. (author). 12 refs., 5 tabs., 6 figs

  3. Measuring and reporting on decommissioning progress

    International Nuclear Information System (INIS)

    One of the challenges facing AECL, as well as other organizations charged with the responsibility of decommissioning nuclear facilities, is the means by which to measure and report on decommissioning progress to various audiences which, in some cases, may only have a peripheral knowledge or understanding of the complexities associated with the decommissioning process. The reporting and measurement of decommissioning progress is important for a number of reasons, i.e., It provides a vehicle by which to effectively communicate the nature of the decommissioning process; It ensures that stakeholders and shareholders are provided with a transparent and understandable means for assessing value for money; It provides a means by which to integrate the planning, measurement, and operational aspects of decommissioning One underlying reason behind the challenge of reporting decommissioning progress lies in the fact that decommissioning programs are generally executed over periods of time that far exceed those generally associated with typical design and build projects. For example, a decommissioning program could take decades to complete in which case progress on the order of a few percent in any one year might be typical. However, such progress may appear low compared to that seen with more typical projects that can be completed in a matter of years. As a consequence, AECL undertook to develop a system by which to measure decommissioning progress in a straightforward, meaningful, and understandable fashion. The system is not rigorously objective, and there are subjective aspects that are necessitated by the need to keep the system readily understandable. It is also important to note that while the system is simple in concept, there is, nonetheless, significant effort involved in generating and updating the parameters used as input, and in the actual calculations. (author)

  4. Holographic in situ stress measurements

    OpenAIRE

    Bass, Jay D.; Schmitt, Douglas; Ahrens, Thomas J.

    1986-01-01

    A new instrument for measuring the in situ level of stress in boreholes has been developed. The instrument operates on the principle of locally relieving the stresses acting on a rock mass by drilling a small hole into the borehole surface and recording the resultant displacement field by holographic interferometry. Because the recording technique is optical, the entire displacement field due to stress relief is obtained. A description of the stressmeter, theory of the interferometric techniq...

  5. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  6. Portable instrumentation for quantitatively measuring radioactive contamination levels and for monitoring the effectiveness of decontamination and decommissioning activities

    International Nuclear Information System (INIS)

    Two completely portable high-resolution germanium diode spectrometer systems are described. These detectors are capable of measuring transuranics, activation products, and fission products, including 90Sr, at sensitivities below the uncontrolled release criteria. The detectors measure x-rays, gamma-rays, or bremsstrahlung radiation as required and have been calibrated for a variety of decontamination and decommissioning scenarios. A description of a new technology for the in-situ determination of 90Sr is given

  7. The decommissioning NPP A-1

    International Nuclear Information System (INIS)

    Project of decommissioning NPP A-1 is split into 4 main groups of tasks. Tasks in group 1 are focused on the solution of selected problems that have immediate impact on the environment. It is mainly the solution of problems in the building of cleaning station of wastage water and in the building with underground storage tanks for wastage water and solid radwaste, including the prevention of wash-out and penetration of contaminated soil from these buildings into surface and underground waters. A part of addressing these tasks is a controlled of generated radwaste-predominatly sludge with various physical and chemical properties. Tasks in group 2- following the removal of spent fuel-are focused on the management of all radwaste in the long-term storage facility, in the short-term storage facility, equipment of transport and technology part, equipment in hot cells. Tasks in group 3 are focused on development of technology procedures for treatment and conditioning of sludge, contaminated soils and concrete crush, saturated ionexes and ash from incineration facility of the Bohunice radwaste treatment and conditioning complex. Tasks in group 4 are focused on the methodology. And technical support for particular activities applicable during decommissioning NPP

  8. Decommissioning of Salaspils nuclear reactor

    International Nuclear Information System (INIS)

    In May 1995, the Latvian Government decided to shut down the Research Reactor Salaspils (SRR) and to dispense with nuclear energy in future. The reactor has been out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH from 1998-1999. he Latvian Government decided on 26 October 1999 to start the direct dismantling to 'green field' in 2001. The results of decommissioning and dismantling performed in 1999-2001 are presented and discussed. The main efforts were devoted to collecting and conditioning 'historical' radioactive waste from different storages outside and inside the reactor hall. All radioactive material more than 20 tons were conditioned in concrete containers for disposal in the radioactive waste depository 'Radons' in the Baldone site. Personal protective and radiation measurement equipment was upgraded significantly. All non-radioactive equipment and material outside the reactor buildings were free-released and dismantled for reuse or conventional disposal. Weakly contaminated material from the reactor hall was collected and removed for free-release measurements. The technology of dismantling of the reactor's systems, i.e. second cooling circuit, zero power reactors and equipment, is discussed in the paper. (author)

  9. Uranium hexafluoride production plant decommissioning

    International Nuclear Information System (INIS)

    The Institute of Energetic and Nuclear Research - IPEN is a research and development institution, located in a densely populated area, in the city of Sao Paulo. The nuclear fuel cycle was developed from the Yellow Cake to the enrichment and reconversion at IPEN. After this phase, all the technology was transferred to private enterprises and to the Brazilian Navy (CTM/SP). Some plants of the fuel cycle were at semi-industrial level, with a production over 20 kg/h. As a research institute, IPEN accomplished its function of the fuel cycle, developing and transferring technology. With the necessity of space for the implementation of new projects, the uranium hexafluoride (UF6) production plant was chosen, since it had been idle for many years and presented potential leaking risks, which could cause environmental aggression and serious accidents. This plant decommission required accurate planning, as this work had not been carried out in Brazil before, for this type of facility, and there were major risks involving gaseous hydrogen fluoride aqueous solution of hydrofluoric acid (HF) both highly corrosive. Evaluations were performed and special equipment was developed, aiming to prevent leaking and avoid accidents. During the decommissioning work, the CNEN safety standards were obeyed for the whole operation. The environmental impact was calculated, showing to be not relevant.The radiation doses, after the work, were within the limits for the public and the area was released for new projects. (author)

  10. Dismantling and decommissioning of an Uranium processing plant at Andujar (Spain)

    International Nuclear Information System (INIS)

    The dismantling and decommissioning of the Uranium Processing Plant at Andujar is the first experience of such a kind in Spain. The factory houses almost 1 million cubic meters of uranium esterile ores concentrated in two different landfills covering 94,000 square meters, as a results of mining activities between 1959 and 1981. The project will stabilize both landfill containers ''in situ'' by using the products obtained after dismantling factory buildings and installation of processing. Decommissioning will take place at the end of 1993. Before dismantling works started, a number of geological, geotechnical, sysmologic, environmental, migration parameters of radionuclides from the landfill and socio-economical studies were conducted. The different phases of wastes conditioning and the updated situation of work plan are described

  11. Planning of the BN-350 reactor decommissioning

    International Nuclear Information System (INIS)

    The experimental and commercial BN-350 NPP equipped with a fast neutron sodium cooled reactor is located in Kazakhstan near the Aktau city on the Caspian Sea coast. It was commissioned in 1973 and intended for weapon-grade plutonium production and as stream supply to a water desalination facility and the turbines of the Mangyshlak Atomic Energy Complex. Taking into account technical, financial and political issues, the Government of Kazakhstan enacted the Decree no. 456 'On Decommissioning of the Reactor BN-350 in the Aktau City of the Mangystau Region'. Because the decision on reactor decommissioning was adopted before the end of scheduled operation (2003), the plan to decommission the BN-350 reactor has not yet been developed. To determine the activities required for ensuring reactor safety and in preparation for decommission in the period prior, the development and ensuring approval by the Republic of Kazakhstan Government of the decommissioning plan, a 'Plan of Priority Actions for BN-350 Reactor Decommissioning' was developed and approved. Actions provided for in the plan include the following: Development of BN-350 Reactor Decommissioning Plan; Accident prevention during the period of transition; Unloading nuclear fuel from reactor and draining the coolant from the heat exchange circuits. Decommission is defined as a complex of administrative and technical actions taken to allow the removal of some or all of regulatory controls over a nuclear facility. These actions involve decontamination, dismantling and removal of radioactive materials, waste, components and structures. They are carried out to achieve a progressive and systematic reduction in radiological hazards and are undertaken on the basis of planning and assessment in order to ensure safety decommissioning operations. In accordance with the decision of Kazakhstan Government, three basic stages for BN-350 reactor decommissioning are envisaged: First stage - Placement of BN-350 into long-term storage

  12. Government Assigns New Supervisory Task. Safe Decommissioning

    International Nuclear Information System (INIS)

    When the Government decided to shutdown one of the two Barsebaeck reactors in February of 1998, it presented SKI with a task that came much earlier than expected; the supervision of the decommissioning of a reactor. As a result of proposals presented in Parliament, SKI began the formulation of a long-term strategy in 1997 for the inspection of a nuclear plant during the decommissioning process. As a preliminary task, SKI started a research programme dealing with the potential risks associated with the transition from normal operations through shutdown to final deconstruction of the power plant. Emphasis was laid on safety culture issues and on questions of organization, as opposed to an earlier stress on the purely technical aspects of decommissioning. After a long period of uncertainty, following much discussion, in July 1998 a Government decision was finally reached to shutdown the first reactor at Barsebaeck. This was carried out in November 1999. It is still uncertain as to when the other reactor will be decommissioned; a decision is expected at the earliest in 2004. This uncertainty, resulting from the prolonged decision making process, could be detrimental to the safety culture on the site; motivation could diminish, and key personnel could be lost. Decommissioning is a new phase in the life cycle of a plant, giving rise to new inspection issues of supervision. During the period of uncertainty, while awaiting SKI has identified ten key areas, dealing with the safety culture of the organization, in connection with the decommissioning of Barsebaeck 1. 1. Obtaining and retaining staff competence during decommissioning; 2. Sustaining organizational memory; 3. Identifying key organizational functions and management skills that are critical during the transition from operations to decommissioning. 4. Sustaining organizational viability and accountability for decommissioning; 5. Sustaining motivation and trust in management of dismantlement; 6. Overseeing

  13. The decommissioning plan of the Nuclear Ship MUTSU

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, M.; Matsuo, R.; Fujikawa, S.; Nomura, T. [Japan Atomic Energy Research Inst., Mutsu, Aomori (Japan). Mutsu Establishment

    1995-07-01

    This paper describes the review about the decommissioning plan and present state of the Nuclear Ship Mutsu. The decommissioning of the Mutsu is carried out by Removal and Isolation method. The procedure of the decommissioning works is presented in this paper. The decommissioning works started in April, 1992 and it takes about four years after her last experimental voyage. (author).

  14. The decommissioning plan of the Nuclear Ship MUTSU

    International Nuclear Information System (INIS)

    This paper describes the review about the decommissioning plan and present state of the Nuclear Ship Mutsu. The decommissioning of the Mutsu is carried out by Removal and Isolation method. The procedure of the decommissioning works is presented in this paper. The decommissioning works started in April, 1992 and it takes about four years after her last experimental voyage. (author)

  15. International radiation safety recommendations on decommissioning

    International Nuclear Information System (INIS)

    Full text: The IAEA Safety Requirements for decommissioning states that the regulatory body shall establish requirements for the decommissioning of nuclear facilities, including conditions on the end points of decommissioning. One of the main important issues is that the operator shall be responsible for all aspects of safety of the facility during its lifetime and of the decommissioning activities until its completion. A mechanism for providing adequate financial resources shall be established to cover the costs of radioactive waste management and, in particular the cost of decommissioning. It shall be put in place before operation and shall be updated, as necessary. A safety assessment of the proposed decommissioning strategy shall be performed and its implementation shall not begin until approval has been received by the regulatory body. A decommissioning plan shall be prepared for each facility, to show that decommissioning can be accomplished safely. The decommissioning plan shall be reviewed regularly and shall be updated as required to reflect, in particular, changes in the facility or regulatory requirements, advances in technology and, finally, the needs of decommissioning operation. If it is intended to defer decommissioning, it shall be demonstrated in the final decommissioning plan that such an option is safe. Decontamination and dismantling techniques shall be chosen which minimizes waste and appropriate means shall be in place for safe managing any waste that might be generated during the decommissioning process. A quality assurance programme shall be established for the decommissioning process. Before a site may be released for unrestricted use, a survey shall be performed to demonstrate that the end point conditions, as established by regulatory body, have been met. If site cannot be released for unrestricted use, appropriate control shall be maintained to ensure protection of human health and environment. The IAEA Safety Guidance mainly addresses

  16. Waste management in decommissioning projects at KAERI

    International Nuclear Information System (INIS)

    Two decommissioning projects are being carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with relation to the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of the waste. All the liquid waste generated from the KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with the lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed of an industrial disposal site, and the releasable waste will be stored for a future disposal at the KAERI. The radioactive waste is packed into containers, and it will be stored at the decommissioning sites till it is sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by a repeated decontamination. By the achievement of a minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for the manpower, and for a direct handling of the materials as well as for the administration was increased

  17. Methodology and technology of decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    The decommissioning and decontamination of nuclear facilities is a topic of great interest to many Member States of the International Atomic Energy Agency (IAEA) because of the large number of older nuclear facilities which are or soon will be retired from service. In response to increased international interest in decommissioning and to the needs of Member States, the IAEA's activities in this area have increased during the past few years and will be enhanced considerably in the future. A long range programme using an integrated systems approach covering all the technical, regulatory and safety steps associated with the decommissioning of nuclear facilities is being developed. The database resulting from this work is required so that Member States can decommission their nuclear facilities in a safe time and cost effective manner and the IAEA can effectively respond to requests for assistance. The report is a review of the current state of the art of the methodology and technology of decommissioning nuclear facilities including remote systems technology. This is the first report in the IAEA's expanded programme and was of benefit in outlining future activities. Certain aspects of the work reviewed in this report, such as the recycling of radioactive materials from decommissioning, will be examined in depth in future reports. The information presented should be useful to those responsible for or interested in planning or implementing the decommissioning of nuclear facilities

  18. Decommissioning standards: the radioactive waste impact

    International Nuclear Information System (INIS)

    Several considerations are important in establishing standards for decommissioning nuclear facilities, sites and materials. The review includes discussions of some of these considerations and attempts to evaluate their relative importance. Items covered include the form of the standards, timing for decommissioning, occupational radiation protection, costs and financial provisions, and low-level radioactive waste. Decommissioning appears more closely related to radiation protection than to waste management, although it is often carried under waste management programs or activities. Basically, decommissioning is the removal of radioactive contamination from facilities, sites and materials so that they can be returned to unrestricted use or other actions designed to minimize radiation exposure of the public. It is the removed material that is the waste and, as such, it must be managed and disposed of in an environmentally safe manner. It is important to make this distinction even though, for programmatic purposes, decommissioning may be carried under waste management activities. It was concluded that the waste disposal problem from decommissioning activities is significant in that it may produce volumes comparable to volumes produced during the total operating life of a reactor. However, this volume does not appear to place an inordinate demand on shallow land burial capacity. It appears that the greater problems will be associated with occupational exposures and costs, both of which are sensitive to the timing of decommissioning actions

  19. Republic of Korea: Technology development on the decontamination and decommissioning of the nuclear research facilities in Korea

    International Nuclear Information System (INIS)

    This paper covers some of the above R and D results performed from 2004 to 2007 at KAERI in the field of dry decontamination, decommissioning and decommissioning waste treatment. The scope of the R and Dis divided into three parts. For dry decontamination technology development applicable to a dry hot cell maintenance such as DUPIC (Direct Use of PWR spent fuel in CANDU reactor) demonstration hot cells, three dry decontamination technologies such as a CO2 blasting, PFC (PerFluoroCarbon) soaking and plasma decontaminations were selected depending upon the contamination characteristics such as the internal or external contamination and the fixed or non-fixed contamination levels. The second part of the R and Dis the decommissioning technology development applicable to KAERI's on-going decommissioning project. The R and D results about the in-situ radioactivity measuring equipment applicable to contaminated pipe internals, a digital mock-up system for the dismantlement of nuclear facilities, and the technology for the treatment and management of neutron irradiated graphite are presented. For the decommissioning waste, the melting decontamination technology has been studied to recycle the radioactive metallic wastes generated from dismantling KAERI's two research reactors (KRR-1 and 2) and a uranium conversion plant (UCP). (author)

  20. Decommissioning activities for Salaspils research reactor - 59055

    International Nuclear Information System (INIS)

    In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor (SRR). The reactor is out of operation since July 1998. A conceptual study for the decommissioning of SRR has been carried out by Noell-KRC-Energie- und Umwelttechnik GmbH at 1998-1999. The Latvian government decided to start the direct dismantling to 'green field' in October 26, 1999. The upgrade of decommissioning and dismantling plan was performed in 2003-2004 years, which change the main goal of decommissioning to the 'brown field'. The paper deals with the SRR decommissioning experience during 1999-2010. The main decommissioning stages are discussed including spent fuel and radioactive wastes management. The legal aspects and procedures for decommissioning of SRR are described in the paper. It was found, that the involvement of stakeholders at the early stages significantly promotes the decommissioning of nuclear facility. Radioactive waste management's main efforts were devoted to collecting and conditioning of 'historical' radioactive wastes from different storages outside and inside of reactor hall. All radioactive materials (more than 96 tons) were conditioned in concrete containers for disposal in the radioactive wastes repository 'Radons' at Baldone site. The dismantling of contaminated and activated components of SRR systems is discussed in paper. The cementation of dismantled radioactive wastes in concrete containers is discussed. Infrastructure of SRR, including personal protective and radiation measurement equipment, for decommissioning purposes was upgraded significantly. Additional attention was devoted to the free release measurement's technique. The certified laboratory was installed for supporting of all decommissioning activities. All non-radioactive equipments and materials outside of reactor buildings were released for clearance and dismantled for reusing or conventional disposing. Weakly contaminated materials from reactor hall were collected

  1. Decommissioning of underground structures, systems and components

    International Nuclear Information System (INIS)

    A large number of operational and shut down nuclear installations have underground systems, structures and components such as pipes, tanks or vaults. This practice of incorporating such features into the design of nuclear facilities has been in use for an extended period of time during which decommissioning was not perceived as a serious issue and was rarely considered in plant design and construction. Underground features can present formidable decontamination and/or dismantling issues, and these are addressed in this report. Decommissioning issues include, among others, difficulty of access, the possible need for remotely operated technologies, leakage of the contents and the resulting contamination of foundations and soil, as well as issues such as problematic radiological characterization. Although to date there have been more than 40 IAEA publications on decommissioning, none of them has ever addressed this subject. Although cases of decommissioning of such facilities have been described in the technical literature, no systematic treatment of relevant decommissioning strategies and technologies is currently available. It was perhaps assumed that generic decontamination and dismantling approaches would also be adequate for these 'difficult' facilities. This may be only partly true due to a number of unique physical, layout and radiological characteristics. With growing experience in the decommissioning field, it is timely to address this subject in a systematic and comprehensive fashion. Practical guidance is given in this report on relevant decommissioning strategies and technologies for underground features of facilities. Also described are alternative design and construction approaches that could facilitate a smoother path forward through the decommissioning process. The objective of this report is to highlight important points in the decommissioning of underground systems, structures or components for policy makers, operators, waste managers and other

  2. Improvement of radioactivity characterization by CZT detectors at NPP A1 decommissioning

    International Nuclear Information System (INIS)

    Radiation situation at NPP A1, 37 years after accidental shutdown of the reactor, features by relatively high content of Sr-90 and transuranic elements (TRU) and dominant occurrence of Cs-137. The contamination is mostly distributed unevenly. High radioactivity in local spots of contaminations can be important source of uncertainty at their declaration by drum monitors used during the decommissioning. It was recommended within the frame of IAEA expert mission in subjected field at VUJE and JAVYS in 2012 to more intensively utilise selective in-situ measurements with help of small transportable CZT (Zinc activated cadmium tellurium) semiconductor detectors for direct measurements of Am-241 and Cs-137. In connection with the subject of decommissioning, stage II., it mainly concerns to spots of contaminations on concrete structures, active transitions in underground tanks but also mostly contaminated decommissioning material, e.g. wet liquid RW, sludge suspensions, sediments or soil. Advantage of CZT detectors is their small size and high detection sensitivity to detect low energy photons (e.g 60 keV of Am-241) even in the presence of the dominant Cs-137, it means on the high Compton radiation background of this RN (662 keV). The other TRU, but mainly the isotopes of Pu, can be consequently determined by recalculation on the basis of relatively constant ratios to the measured Am-241. For operative measurement of Sr-90, method of direct gamma spectrometry evaluation of beta and gamma spectra measured by 3 mm thin plastic scintillator detector was adopted according to procedure developed at Kurchatov Institute, Moscow. The orderly higher active contamination spots are necessary, within the frame of decommissioning, to identify (e.g by monitoring of dose rates) then in-situ measure (CZT and beta spectrometry) and sequentially to declare their radioactivity. The matter is that the direct in situ measurement is much more accurate in opposite to RW standard drum monitor

  3. Planning and execution of decontamination prior to decommissioning 30 years experience with cord family and AMDA for decontamination in operating plants and prior to decommissioning

    International Nuclear Information System (INIS)

    This paper presents AREVA NP's 30 year experience in the field of decontamination. This paper is focused on decontamination prior to decommissioning and the highlights of the performed projects and results will be outlined. Advantages of the FSD short after final shutdown will be described. Since 1986 AREVA NP has been working regularly on the decontaminations prior to decommissioning and our decommissioning experience in this cover all main NPP designs. 1 application in a heavy water PWR of Siemens Design. 1 application in PWR of VVER design. 3 applications in PWR of Siemens design. 3 applications in PWR of Westinghouse design. 5 applications in BWR of GE design. It will be demonstrated that decontaminations can be performed with CORD Family and AMDA even after 20 years of safe enclosure (see FSD Lingen and MZFR). Decontaminations can be performed either by using NPP systems/components or completely by using external decon equipment AMDA. In this context, CORD (Chemical Oxidation Reduction Decontamination) represents the chemical decontamination process while AMDA stands for Automated Mobile Decontamination Appliance. HP is used for permanganic acid as an oxidizing agent and UV for the in-situ decomposition of the decontamination chemicals with ultraviolet light. (author)

  4. Modelling of nuclear power plant decommissioning financing

    International Nuclear Information System (INIS)

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. (authors)

  5. UK policy for nuclear decommissioning: viewpoint

    International Nuclear Information System (INIS)

    The importance of the United Kingdom Government formulating a policy for the decommissioning of nuclear installations is stressed in this article because of the UK's aging nuclear reactors, especially the Magnox type reactors, the decommissioning of which is likely to cause particular difficulties. Funds have not, so far, been properly set aside, as estimated costs continue to rise, nor have actual management strategies been developed. The author raises ethical, environmental, technical and economic objections to current plans to postpone decommissioning until 100 years after reactors are closed. (UK)

  6. Decommissioning and reclamation of ANHUA uranium mine

    International Nuclear Information System (INIS)

    Since the late 1980s a number of uranium production facilities in China were closed and are in various stages of decommissioning. To date 5 mines have been decommissioned. ANHUA mine is situated in west part of Hunan province in South China. The production of uranium ore began in 1974 and stopped in 1986. Decommissioning and reclamation programme started in July 1992 and completed in May 1997. This paper describes the experience in sealing of drift entrances, covering of waste rock piles and rehabilitation of cadmium contaminated farmland with replantation. (author)

  7. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes

  8. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    International Nuclear Information System (INIS)

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  9. Development of a Decommissioning Certificate Program

    International Nuclear Information System (INIS)

    A Decommissioning Certificate Program has been developed at Washington State University Tri-Cities (WSU TC) in conjunction with Bechtel Hanford, Inc. (BHI), and the U.S. Department of Energy (DOE)to address the increasing need for qualified professionals to direct and manage decommissioning projects. The cooperative effort between academia, industry, and government in the development and delivery of this Program of education and training is described, as well as the Program's design to prepare students to contribute sooner, and at a higher level, to decommissioning projects

  10. Social effects of decommissioning Trawsfynydd Power Station

    International Nuclear Information System (INIS)

    The decision to close Trawsfynydd in 1993 had significant implications for the staff and local community. The site is situated within a National Park and local employment opportunities are limited. The staff and local communities were consulted regarding the issues arising from closure and decommissioning. This consultation influenced the decommissioning strategy for the site, with emphasis placed on the mitigation of the effects of closure. Subsequent studies have shown that the adopted strategies have served to limit the social and economic effects. The experience at Trawsfynydd has proved to be generally applicable at other decommissioning sites. (author)

  11. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  12. Considerations about the European Decommissioning Academy (EDA)

    International Nuclear Information System (INIS)

    The concept of the European Decommissioning Academy, to be launched in Slovakia in June 2015, is described. The main goal is to educate a new generation of experts in the decommissioning of nuclear facilities, with focus on VVER type reactors. This year the Academy activities will include lessons, practical exercises in laboratories, and 2 days on-site training at the Jaslovske Bohunice V-1 nuclear power plant. A 4-days' visit to major European decommissioning facilities in Switzerland and Italy is also planned. (orig.)

  13. Bankruptcy potential threatens decommissioning funds, says NRC

    International Nuclear Information System (INIS)

    Electric utilities and the Nuclear Regulatory Commission (NRC) disagreed at an America Nuclear Society seminar on how reactor decommissioning should be financed. Industry and state regulators claim it should be handled by standard depreciation methods without involving the NRC, which argues that it must guard against safety risks from industry bankruptices and premature decommissioning. Both sides agreed that funds must be collected, but disagreed on the best method. Their options include the deposit method, external sinking fund, internal reserve, and insurance or surety bond. The NRC feels that too many utilities face possible bankruptcy unrelated to decommissioning or accidents, and that this possibility should outweigh other considerations. 1 table

  14. Studies on the decommissioning cost of nuclear power plants

    International Nuclear Information System (INIS)

    This study analyzes the existing literature on decommissioning costs abroad systematically, giving special attention to the OECD member states. Then, the feasible range of decommissioning costs obtained by the analysis is compared to the decommissioning fund being raised by the country's only electric utility, KEPCO. This study concludes that the decommissioning fund is being raised enough to cover future expenses for the decommissioning of nuclear power plants. 1 fig., 13 tabs., 8 refs. (Author)

  15. In situ dehydration of yugawaralite

    DEFF Research Database (Denmark)

    Artioli, G.; Ståhl, Kenny; Cruciani, G.;

    2001-01-01

    The structural response of the natural zeolite yugawaralite (CaAl2Si6O16. 4H(2)O) upon thermally induced dehydration has been studied by Rietveld analysis of temperature-resolved powder diffraction data collected in situ in the temperature range 315-791 K using synchrotron radiation. The room...... progressively disappearing as the dehydration proceeds. The yugawaralite structure reacts to the release of water molecules with small changes in the Ca-O bond distances and minor distortions of the tetrahedral framework up to about 695 K. Above this temperature the Ca coordination falls below 7 (four framework...

  16. The NEA Co-operative Programme on Decommissioning. A Decade of Progress

    International Nuclear Information System (INIS)

    -operative Programme on Decommissioning, and in particular through the information exchange and review within the TAG, it has become evident that: decommissioning can and has been done in a safe, cost-effective and environmentally friendly manner; current technologies have demonstrated their effectiveness and robust performance in numerous decommissioning activities; and feedback of experience on design, construction and operation is a considerable help for reliable planning, cost evaluation and successful realisation of a decommissioning project. Regarding technical challenges, specific trends have been observed over the last decade. Large contaminated components, for example heat exchangers, steam generators, large tanks etc., that have been segmented in situ into smaller pieces, are increasingly removed 'in one piece' and transported outside the contained area into separated facilities for further processing. Regarding the use of robotics, the CPD observed that industrial robots may have a limited applicability in decommissioning, in contrary to earlier expectations that robotic methods would be extensively used in the dismantling of radioactive components, especially in the high radiation areas in fuel facilities. Experience collected within the CPD also pointed to challenges in the release of alpha contaminated areas, where seepage of contamination into cracks and reappearance of activity in walls previously declared as 'clean' posed specific problems. On the side of organisational trends a movement towards sequential licensing has been observed. This is seen as being advantageous for the management of projects, but also increases the efforts needed for documentation. Other challenges for management raise from company reorganisation, privatisation and budgetary difficulties. The lessons learnt by the participants in the CPD have been helpful for individual projects in making project decisions and in many cases have influenced general project directions. Key examples concern

  17. Research and development of treatment techniques for LLW from decommissioning: Decontamination and volume reduction techniques

    International Nuclear Information System (INIS)

    For the purpose of reducing the amount and/or volume of low-level radioactive waste (LLW) arising from decommissioning of nuclear reactor, the Japan Atomic Energy Research Institute (JAERI) has been developing four decontamination techniques. They are: (a) Gas-carrying abrasive method, (b) In-situ remote electropolishing method for pipe system before dismantling, (c) Bead reaction - thermal shock method, and (d) Laser induced chemical method for components after dismantling. JAERI in developing techniques are also carrying out melting tests of metal and non-metal. Melting was confirmed to be effective in reducing the volume, homogenizing, and furthermore stabilizing non-metallic wastes. (author)

  18. Decommissioning cost estimates based on the international structure for decommissioning costing

    International Nuclear Information System (INIS)

    Decommissioning cost estimates is essential part of decommissioning planning in all stages of nuclear installation lifetime. It has been recognized that there is a variety of formats, content and practice in decommissioning costing, due to the specific national requirement or to different assumptions. These differences make the process of decommissioning costing less transparent and more complicated to review. To solve these issues the document: 'A Proposed Standardised List of Items for Costing Purposes in the Decommissioning of Nuclear Installation' (known as 'Yellow Book') was jointly published by IAEA, OECD/NEA and EC in 1999. After a decade, the document was revised and issued by same organizations under the title: 'International Structure for Decommissioning Costing (ISDC) of Nuclear Installation. ISDC as the list of typical decommissioning activities (could be used also a check-list) provides s general cost structure suitable for use for all types of nuclear installations i.e. power plants, research reactors, fuel cycle facilities or laboratories. The purpose of the ISDC, is to facilitate the communication and to promote uniformity and to provide a common platform in presenting the decommissioning costs. Clear definition of ISDC items supports the common understanding of cost items, i.e. what is behind the cost. ISDC decommissioning activities are organised in a hierarchical structure, with the 1st and 2nd levels being aggregations of basic activities identified at the 3rd level. At (author)

  19. Decommissioning information management in decommissioning planning and operations at AECL (Ref 5054)

    International Nuclear Information System (INIS)

    As the AECL Decommissioning program has grown over the past few years, particularly with regard to long-term planning, so has its need to manage the records and information required to support the program. The program encompasses a diverse variety of facilities, including prototype and research reactors, fuel processing facilities, research laboratories, waste processing facilities, buildings, structures, lands and waste storage areas, many of which have changed over time. The decommissioning program involves planning, assessing, monitoring and executing projects to decommission the facilities. The efficient and effective decommissioning planning, assessment, monitoring and execution for the facilities and projects are dependent on a sound information base, upon which decisions can be made. A vital part of this Information Base is the ongoing management of historical facility records, including decommissioning records, throughout the full life cycle of the facilities. This paper describes AECL's and particularly DP and O's approach to: 1) Establishing a decommissioning records and information framework, which identifies what records and information are relevant to decommissioning, prioritizing the decommissioning facilities, identifying sources of relevant information and providing a user-friendly, electronic, search and retrieval tool for facility information accessible to staff. 2) Systematically, gathering, assessing, archiving and identifying important information and making that information available to staff to support their ongoing decommissioning work. 3) Continually managing and enhancing the records and information base and its support infrastructure to ensure its long-term availability. 4) Executing special information enhancement projects, which transform historic records into information for analysis. (author)

  20. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m3, the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m3/(m2·d)

  1. ECED 2013: Eastern and Central Europe Decommissioning. International Conference on Decommissioning of Nuclear Facilities. Conference Guide and Book of Abstracts

    International Nuclear Information System (INIS)

    The Conference included the following sessions: (I) Opening session (2 contributions); (II) Managerial and Funding Aspects of Decommissioning (5 contributions); (III) Technical Aspects of Decommissioning I (6 contributions); (IV) Experience with Present Decommissioning Projects (4 contributions); (V) Poster Session (14 contributions); (VI) Eastern and Central Europe Decommissioning - Panel Discussion; (VII) Release of Materials, Waste Management and Spent Fuel Management (6 contributions); (VIII) Technical Aspects of Decommissioning II (5 contributions).

  2. Decommissioning of DR 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lauridsen, Kurt

    2006-01-15

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  3. Nuclear submarine decommissioning and related environmental problems

    International Nuclear Information System (INIS)

    The issue of nuclear powered submarines occupies a particular place among the problems related to nuclear wastes. Nuclear submarines that were withdrawn from military service as well as those intended fro utilization represent a potential source of both nuclear and radiation hazard. By the beginning of 1966 more than one hundred and fifty nuclear powered vessels were decommissioned in Russia both for the reason of expiration of their service life and due to treaties on reduction of strategic offensive weapons. By 200 this number is expected to increase to one hundred and seventy-eighty units. According to published data the number of nuclear submarines decommissioned in USA to date exceeds twenty units. Major problems associated with utilization of nuclear submarines are related to safety and special security measures are to undertaken for decommissioned nuclear submarines. One of the most significant problems is related with management and/or storage of spent fuel from decommissioned nuclear submarines

  4. Safety issues in decommissioning, strategies and regulation

    International Nuclear Information System (INIS)

    Many plants throughout the world are undergoing decommissioning. There are some differences in the safety issues associated with decommissioning as compared with operations. These pose challenges to operators, regulators and those responsible for developing policies and strategies.The paper aims to set the scene for future discussion by identifying these issues. This includes regulatory systems, regulating the changing situation and factors that need to be taken into account in developing decommissioning strategies. In particular, the situation in the absence of a disposal route for waste and issues associated with care and maintenance periods are discussed.A key point that is identified is that well considered and justified strategies need to be developed to act as the basis for detailed decommissioning plans. (author)

  5. Health physics considerations in decontamination and decommissioning

    International Nuclear Information System (INIS)

    These proceedings contain papers on legal considerations, environmental aspects, decommissioning equipment and methods, instrumentation, applied health physics, waste classification and disposal, and project experience. Separate abstracts have been prepared for individual papers

  6. Decommissioning of DR 1, Final report

    International Nuclear Information System (INIS)

    The report describes the decommissioning activities carried out at the 2kW homogeneous reactor DR 1 at Risoe National Laboratory. The decommissioning work took place from summer 2004 until late autumn 2005. The components with the highest activity, the core vessel the recombiner and the piping and valves connected to these, were dismantled first by Danish Decommissioning's own technicians. Demolition of the control rod house and the biological shield as well as the removal of the floor in the reactor hall was carried out by an external demolition contractor. The building was emptied and left for other use. Clearance measurements of the building showed that radionuclide concentrations were everywhere below the clearance limit set by the Danish nuclear regulatory authorities. Furthermore, measurements on the surrounding area showed that there was no contamination that could be attributed to the operation and decommissioning of DR 1. (au)

  7. The cost of decommissioning uranium mill tailings

    International Nuclear Information System (INIS)

    This report identifies several key operations that are commonly carried out during decommissioning of tailings areas in the Canadian environment. These operations are unit costed for a generic site to provide a base reference case. The unit costs have also been scaled to the quantities required for the decommissioning of four Canadian sites and these scaled quantities compared with site-specific engineering cost estimates and actual costs incurred in carrying out the decommissioning activities. Variances in costing are discussed. The report also recommends a generic monitoring regime upon which both short- and longer-term environmental monitoring costs are calculated. Although every site must be addressed as a site-specific case, and monitoring programs must be tailored to fit a specific site, it would appear that for the conventional decommissioning and monitoring practices that have been employed to date, costs can be reasonably estimated when site-specific conditions are taken into account

  8. Decommissioning and disposal costs in Switzerland

    International Nuclear Information System (INIS)

    Introduction Goal: Secure sufficient financial resources. Question: How much money is needed? Mean: Concrete plans for decommissioning and waste disposal. - It is the task of the operators to elaborate these plans and to evaluate the corresponding costs - Plans and costs are to be reviewed by the authorities Decommissioning Plans and Costs - Comprise decommissioning, dismantling and management (including disposal) of the waste. - New studies 2001 for each Swiss nuclear power plant (KKB 2 x 380 MWe, KKM 370 MWe, KKG 1020 MWe, KKL 1180 MWe). - Studies performed by NIS (D). - Last developments taken into account (Niederaichbach, Gundremmingen, Kahl). Decommissioning: Results and Review Results: Total cost estimates decreasing (billion CHF) 1994 1998 2001 13.7 13.1 11.8 Lower costs for spent fuel conditioning and BE/HAA/LMA repository (Opalinus Clay) Split in 2025: 5.6 bil. CHF paid by NPP 6.2 billion CHF in Fund Review: Concentrates on disposal, ongoing

  9. Sellafield Decommissioning Programme - Update and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  10. Decommissioning: from COMECON to CIS and RUSSIA

    International Nuclear Information System (INIS)

    NPP decommissioning experience in the USSR and the Commonwealth Independent States (CIS) members was actively accumulated over ten years since 1982, by Russian experts in particular. Nevertheless, it is not well renowned throughout the scientists and engineers from both Russia and other near' (the CIS) and 'distant' foreign countries. A general review on NPP decommissioning in the CIS has been published just now. An unshown before NPP decommissioning issues are presented in the report. The first program on NPP decommissioning was developed under the aegis of COMECOM with the leadership of Russian experts. The most considerable results are the feasibility studies of Armenia NPP, the Novovoronezh NPP first construction stage (two units) and Bohunice V - 1 unit. (J.P.N.)

  11. CPP-603 Chloride Removal System Decontamination and Decommissioning

    International Nuclear Information System (INIS)

    The CPP-603 (annex) Chloride Removal System (CRS) Decontamination and Decommissioning (D ampersand D) Project is described in this report. The CRS was used for removing Chloride ions and other contaminants that were suspended in the waters of the underwater fuel storage basins in the CPP-603 Fuel Receiving and Storage Facility (FRSF) from 1975 to 1981. The Environmental Checklist and related documents, facility characterization, decision analysis', and D ampersand D plans' were prepared in 1991. Physical D ampersand D activities were begun in mid summer of 1992 and were completed by the end of November 1992. All process equipment and electrical equipment were removed from the annex following accepted asbestos and radiological contamination removal practices. The D ampersand D activities were performed in a manner such that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) occurred

  12. Kapradiny hornoslezské pánve a jejich spory in situ

    Czech Academy of Sciences Publication Activity Database

    Pšenička, J.; Bek, Jiří

    2009-01-01

    Roč. 2008, - (2009), s. 105-108. ISSN 0514-8057 R&D Projects: GA AV ČR(CZ) IAA300130503 Institutional research plan: CEZ:AV0Z30130516 Keywords : Upper Silesian Basin * Upper Carboniferous * ferns * in situ spores * spores Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2008/2008-30.pdf

  13. Decommissioning of a 5 MW research reactor

    International Nuclear Information System (INIS)

    The complete decommissioning of a research reactor is described. Planning and execution of all activities, including schedules, budgets, waste management, health physics and subcontracted operations are presented. Flexibility in operations was obtained by using the operating staff as the decommissioning progressed. Totals for waste shipments and costs are given. Final site conditions are presented along with a description of the subsequent use of the facility. (author)

  14. Russian nuclear-powered submarine decommissioning

    International Nuclear Information System (INIS)

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems

  15. Decommissioning Project Manager's Implementing Instructions (PMII)

    International Nuclear Information System (INIS)

    Decommissioning Project personnel are responsible for complying with these PMII. If at any time in the performance of their duties a conflict between these instructions and other written or verbal direction is recognized or perceived, the supervisor or worker shall place his/her work place in a safe condition, stop work, and seek resolution of the conflict from the Decommissioning Project Manager or his designee

  16. Risk Management of Large Component in Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Nah, Kyung Ku; Kim, Tae Ryong [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down.

  17. Decommissioning of the BR3 PWR

    International Nuclear Information System (INIS)

    The objectives, programme and main achievements of SCK-CEN's decommissioning programme in 1997 are summarised. Particular emphasis is on the BR3 decommissioning project. In 1997, auxiliary equipment and loops were dismantled; concrete antimissile slabs were decontaminated; the radiology of the primary loop was modelled; the quality assurance procedure for dismantling loops and equipment were implemented; a method for the dismantling of the reactor pressure vessel was selected; and contaminated thermal insulation of the primary loop containing asbestos was removed

  18. Risk Management of Large Component in Decommissioning

    International Nuclear Information System (INIS)

    The need for energy, especially electric energy, has been dramatically increasing in Korea. Therefore, a rapid growth in nuclear power development has been achieved to have about 30% of electric power production. However, such a large nuclear power generation has been producing a significant amount of radioactive waste and other matters such as safety issue. In addition, owing to the severe accidents at the Fukushima in Japan, public concerns regarding NPP and radiation hazard have greatly increased. In Korea, the operation of KORI 1 has been scheduled to be faced with end of lifetime in several years and Wolsong 1 has been being under review for extending its life. This is the reason why the preparation of nuclear power plant decommissioning is significant in this time. Decommissioning is the final phase in the life-cycle of a nuclear facility and during decommissioning operation, one of the most important management in decommissioning is how to deal with the disused large component. Therefore, in this study, the risk in large component in decommissioning is to be identified and the key risk factor is to be analyzed from where can be prepared to handle decommissioning process safely and efficiently. Developing dedicated acceptance criteria for large components at disposal site was analyzed as a key factor. Acceptance criteria applied to deal with large components like what size of those should be and how to be taken care of during disposal process strongly affect other major works. For example, if the size of large component was not set up at disposal site, any dismantle work in decommissioning is not able to be conducted. Therefore, considering insufficient time left for decommissioning of some NPP, it is absolutely imperative that those criteria should be laid down

  19. Applicability of EPRI Decommissioning Pre-Planning Manual to International Decommissioning Projects

    International Nuclear Information System (INIS)

    Industry models for planning the efficient decommissioning of a nuclear power plant continue to evolve. Effective planning is a key to cost control, a critical aspect of decommissioning. In 2001, the Electric Power Research Institute (EPRI) published the 'Decommissioning Pre-Planning Manual', referred to as the 'Manual'. The goal of the Manual was to develop a framework for use in pre-planning the decommissioning of a nuclear power plant. The original research was based on information collected during the active decommissioning of power reactors in New England, and the ongoing decommissioning planning of another reactor still in operation. The research team identified thirty-two (32) major Decommissioning Tasks that support the strategic and tactical planning that can be conducted in advance of plant shutdown. The Decommissioning Tasks were organized in a logical sequence of execution, and sorted in common discipline groupings. Owners of U.S. nuclear plants that have shut down prematurely during the past 5 years have found the EPRI Decommissioning Pre-Planning Manual useful in developing their transition plans from an operating to shutdown facility. Concurrently, during the past 15 years, the IAEA has published numerous technical and safety reports on nuclear reactor decommissioning planning and execution. IAEA's goal is to provide its global members with useful and timely guidance for the planning and execution of nuclear decommissioning projects. This information has been used extensively by international nuclear plant operators. One of the key objectives will be to develop a road-map linking the 32 EPRI Decommissioning Tasks with the comparable (or equivalent) topics covered in the IAEA library of decommissioning knowledge. The logical and convenient structure of the Manual will be cross-referenced to the IAEA topics to aid in organizing the development of decommissioning plans. The road-map will serve to provide a basis for improved

  20. Safety in decommissioning of research reactors

    International Nuclear Information System (INIS)

    This Guide covers the technical and administrative considerations relevant to the nuclear aspects of safety in the decommissioning of reactors, as they apply to the reactor and the reactor site. While the treatment, transport and disposal of radioactive wastes arising from decommissioning are important considerations, these aspects are not specifically covered in this Guide. Likewise, other possible issues in decommissioning (e.g. land use and other environmental issues, industrial safety, financial assurance) which are not directly related to radiological safety are also not considered. Generally, decommissioning will be undertaken after planned final shutdown of the reactor. In some cases a reactor may have to be decommissioned following an unplanned or unexpected event of a series or damaging nature occurring during operation. In these cases special procedures for decommissioning may need to be developed, peculiar to the particular circumstances. This Guide could be used as a basis for the development of these procedures although specific consideration of the circumstances which create the need for them is beyond its scope

  1. The Importance of Experience Based Decommissioning Planning

    International Nuclear Information System (INIS)

    Decommissioning of a nuclear facility is an extensive and multidisciplinary task, which involves the management and technical actions associated with ceasing operation and thereafter the step-by-step transfer of the facility from an operating plant to an object under decommissioning. The decommissioning phase includes dismantling of systems and components, decontamination and clearance, demolition of buildings, remediation of any contaminated ground and finally a survey of the site. Several of these activities generate radioactive or potentially radioactive waste, which has to be managed properly prior to clearance or disposal. What makes decommissioning of nuclear installations unique is to large extent the radioactive waste management. No other industries have that complex regulatory framework for the waste management. If decommissioning project in the nuclear industry does not consider the waste aspects to the extent required, there is a large risk of failure causing a reduced trust by the regulators and other stakeholders as well as cost and schedule overruns. This paper will give an overview of important aspects and findings gathered during decades of planning and conducting decommissioning and nuclear facility modernization projects. (authors)

  2. Investigation on decommissioning of smelting conversion facilities

    International Nuclear Information System (INIS)

    To carry out decommissioning of smelting and conversion plant (containing apparatuses) in future, it is required to develop planned businesses. As JNC constructed a general WBS on the decommissioning on last fiscal years, further detailed investigations on WBS is necessary for promotion of its operations. Therefore, aiming at construction of detailed WBS with less than the fourth level, intention of updating on subdivision and radioactive decommission, and addition of data on determining methods on polluting condition of uranium series wastes, here were reported results on four items, such as reviewing of WBS on the decommissioning, construction of detailed WBS with less than the fourth level, updating of databases on subdivision and decommission, and data addition on determining methods on polluting conditions of uranium series wastes to the subdivision and the decommission databases. On this fiscal year, it was carried out investigation on contents of WBS on the 'Construction of investigating items on subdivision and removal engineerings (sixteen sheets of construction figure)' to consult WBS with less than the fourth level for eight sheets of figure in details on the second item, to carry out literature retrieval on reuse since 1998, to input sixty extracted data to database on the third item, and to carry out literature retrieval on the determining method since 1990, to input eight extracted data to database by preparing a new term in 'testing'. (G.K.)

  3. Decommissioning cost estimating and contingency application

    International Nuclear Information System (INIS)

    The funding of nuclear power plant decommissioning has matured into an integral part of utility planning. State public utility commission regulators and the US Nuclear Regulatory Commission have recognized the need to assure the availability of funds to safely decommission these facilities at the end of their useful lives. The cost estimates for decommissioning need to reflect the changes in labor and material costs due to inflation, changes in waste disposal costs for packaging, transporting and burying radioactive materials, and the site-specific factors for each unit that account for differences in plant design and construction. Decommissioning activities involve remote tooling to segment the reactor vessel and internals, decontamination of contaminated systems to reduce occupational exposure, controlled blasting to demolish concrete structures, and removal and disposal of radioactive wastes by controlled burial. The unforeseeable problems encountered in performing these activities result in additional costs that are accounted for through contingency. The recent progress in nuclear power plant decommissioning cost estimation and contingency application are discussed. The important factor to be included in planning for the establishment of a decommissioning fund are identified, and typical results of recent estimates are provided. The nuclear industry is probably one of the first industries to plan for the eventual retirement of its facilities, and the public needs to be aware of these efforts

  4. Decommissioning Licensing Process of Nuclear Installations in Spain

    International Nuclear Information System (INIS)

    The Enresa experience related to the decommissioning of nuclear facilities includes the decommissioning of the Vandellos I and Jose Cabrera NPPs. The Vandellos I gas-graphite reactor was decommissioned in about five years (from 1998 to 2003) to what is known as level 2. In February 2010, the decommissioning of Jose Cabrera power plant has been initiated and it is scheduled to be finished by 2018. The decommissioning of a nuclear power plant is a complex administrative process, the procedure for changing from operation to decommissioning is established in the Spanish law. This paper summarizes the legal framework defining the strategies, the main activities and the basic roles of the various agents involved in the decommissioning of nuclear facilities in Spain. It also describes briefly the Licensing documents required to obtain the decommissioning authorization and the Enresa point of view, as licensee, on the licensing decommissioning process. (author)

  5. Decommissioning of nuclear power plants in the Slovak Republic

    International Nuclear Information System (INIS)

    The article deals with the current situation in nuclear power plant decommissioning in the Slovak Republic. Slovak NPPs which are being operated or decommissioned are listed, and the major aspects influencing the selection of the most convenient decommissioning option are outlined. Some of these aspects, such as the responsibility for the decommissioning, financing, the object of decommissioning, radioactive waste management, and decommissioning legislation are discussed in more detail. The current state of decommissioning of NPPs in the Slovak Republic is highlighted. It is concluded that the Slovenske Elektrarne company, which is the utility responsible for NPP decommissioning in the Slovak Republic, guarantees feasibility of decommissioning within the required time-scale while observing the relevant safety principles and minimizing all adverse impacts on the personnel, on the public living in the surroundings, and on the environment. (author)

  6. In situ treatability test plan

    International Nuclear Information System (INIS)

    This document describes the plans for the in situ treatment zone (ISTZ) treatability test for groundwater contaminated with strontium-90. The treatability test is to be conducted at the Hanford Site in Richland, Washington, in a portion of the 100-N Area adjacent to the Columbia River referred to as N-Springs. The purpose of the treatability test is to evaluate the effectiveness of an innovative technology to prevent the discharge of strontium-90 contaminated groundwater into the Columbia River. The ISTZ is a passive technology that consists of placing a treatment agent in the path of the groundwater. The treatment agent must restrict target radioactive contaminants and provide time for the contaminant to decay to acceptable levels. The permeability of the treatment zone must be greater than or equal to that of the surrounding sediments to ensure that the contaminated groundwater flows through the treatment zone agent and not around the agent

  7. In situ trace element microanalysis

    Science.gov (United States)

    Burnett, D. S.; Woolum, D. S.

    1983-01-01

    The use of particle-track-radiography and X-ray- fluorescence techniques in the in situ measurement of trace (less than 1000 ppm) elements in single mineral phases of polished sections is surveyed, and examples of their application to ordinary, carbonaceous and enstatite chondrites are provided. Radiographic methods surveyed include fission-track radiography (for U, Th, and Pu-244), alpha radiography using nuclear reactions (for Li and B), alpha autoradiography (for Bi and Pb), and beta autoradiography (for several elements in synthetic or biological samples). Two X-ray-fluorescence methods are compared: (1) photon-induced X-ray emission (PIXE), and (2) the potential use of synchrotron radiation. The latter is shown to allow much greater sensitivity than current PIXE technology and a much broader range of elements than particle-track radiography: the ppm analysis of 10-micron grains for all elements heavier than Na. These advantages are seen as balancing the high cost of accelerator use.

  8. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...... = 0.005). Critical limb-ischaemia was more often present in diabetic than non-diabetic patients (DM:57%, NDM:36%, p = 0.0002). Diabetic patients had a significantly lower distal anastomosis than non-diabetic patients (p = 0.00001). There were no differences among diabetic and non-diabetic patients...... regarding three years primary and secondary patency (58% and 64% respectively), and regarding major amputations. However, the rate of minor amputations was higher in insulin-dependent compared with non-insulin-dependent diabetics, who in turn had a higher rate than non-diabetics (p

  9. Decommissioning costs and financial assurances for uranium mines and mills in Canada

    International Nuclear Information System (INIS)

    'Full text:' The Athabasca Basin region of northern Saskatchewan is now the location of all uranium production in Canada. About one-third of world primary production originates from the region with seven projects, as follows, currently licensed by the Canadian Nuclear Safety Commission (CNSC) and by Saskatchewan Environment (SE): Rabbit Lake - underground and (formerly) open pit mining, mill, tailings management facilities - operating. Cluff Lake - underground and open pit mining, mill, tailings management facility - decommissioning (operations ceased in 2002). Key Lake - (formerly) open pit mining, mill, tailings management facilities - operating (ore from McArthur River). McClean Lake - open pit mining, mill, tailings management facility - operating. McArthur River - underground mine (ore to Key Lake) - operating. Cigar lake - underground mine - construction - Midwest - future mine development - site preparation licence. Preliminary decommissioning plans, and financial guarantees for future decommissioning, are a requirement of each licence. The Elliot Lake area of Canada has also had extensive uranium mining and milling activities, with the last operating mine closing in 1996. Decommissioning has been completed by the licensees, however monitoring, care and maintenance of the sites is ongoing. This leads to a reduced, but ongoing, requirement for financial guarantees. Decommissioning objectives for a uranium mine and mill site must consider that the waste rock and tailings resulting from the operation, as well as the majority of the waste materials resulting from removing the physical facilities, will be managed on site for the long term. This is a fundamental difference from many other types of nuclear facilities, where all of the physical facilities, and the wastes which have been produced during operations, are removed and disposed elsewhere. Other factors which differ from many other nuclear facilities are the remote location, and the need for an extended

  10. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  11. Problems in decommissioning uranium exploration facility and monitoring parameters after decommission

    International Nuclear Information System (INIS)

    This paper discussed the problems in the decommission of uranium exploration facilities. Tailings with the uranium over cut-off grade was suggested to fill back to the pit, while those under cut-off grade can be buried in shallow depth. The parameters to monitor the facility after decommission was also discussed in the paper. (author)

  12. International Atomic Energy Agency activities in decommissioning

    International Nuclear Information System (INIS)

    Full text: The International Atomic Energy Agency (IAEA) has been addressing the safety and technical issues of decommissioning for over 20 years, but their focus has been primarily on planning. Up to know, the activities have been on an ad hoc basis and sometimes, important issues have been missed. A new Action Plan on the Decommissioning of Nuclear Facilities has recently been approved by the Agency's board of Governors which will focus the Agency's efforts and ensure that our Member States' concerns are addressed. The new initiatives associated with this Action Plan will help ensure that decommissioning activities in the future are performed in a safe and coherent manner. The International Atomic Energy Agency (IAEA) has been preparing safety and technical documents concerning decommissioning since the mid-1980's. There have been over 30 documents prepared that provide safety requirements, guidance and supporting technical information. Many of these documents are over 10 years old and need updating. The main focus in the past has been on planning for decommissioning. During the past five years, a set of Safety Standards have been prepared and issued to provide safety requirements and guidance to Member States. However, decommissioning was never a real priority with the Agency, but was something that had to be addressed. To illustrate this point, the first requirements documents on decommissioning were issued as part of a Safety Requirements [1] on pre-disposal management of radioactive waste. It was felt that decommissioning did not deserve its own document because it was just part of the normal waste management process. The focus was mostly on waste management. The Agency has assisted Member States with the planning process for decommissioning. Most of these activities have been focused on nuclear power plants and research reactors. Now, support for the decommissioning of other types of facilities is being requested. The Agency is currently providing technical

  13. In situ measurements of neutron multiplying systems

    International Nuclear Information System (INIS)

    Historical and recent examples of the application of in situ measurements to provide knowledge for specific operations and general criticality safety guidance are reviewed. The importance of the American National Standard, Safety in Conducting Subcritical Neutron-Multiplication Measurements In Situ, ANSI/ANS-8.6, 1988 is discussed. Examples of possible future applications of in-situ measurements are provided. 4 refs., 4 figs

  14. Training for teamwork through in situ simulations

    OpenAIRE

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response ...

  15. Decommissioning of nuclear facilities: Germany’s experience

    International Nuclear Information System (INIS)

    Germany has gained considerable experience in the decommissioning of nuclear facilities since the 1970s. Currently 16 nuclear power plants, both power and prototype reactors, are at different stages of decommissioning. Three decommissioning projects have been completed. Future tasks in Germany are the completion of the current decommissioning projects and the decommissioning of the nuclear facilities that are still operating once they have reached the end of their operating life. The number of parallel decommissioning projects of large scale facilities required by the phase-out of nuclear power could pose challenges in terms of the availability and maintenance of competences at all levels (operators, regulatory body, technical support organizations, and suppliers)

  16. Evaluation of nuclear facility decommissioning projects. Status report. Humboldt Bay Power Plant Unit 3, SAFSTOR decommissioning

    International Nuclear Information System (INIS)

    This document explains the purpose of the US Nuclear Regulatory Commission's (NRC) Evaluation of Nuclear Facility Decommissioning Projects (ENFDP) program and summarizes information concerning the decommissioning of the Humboldt Bay Power Plant (HBPP) Unit 3 facility. Preparations to put this facility into a custodial safe storage (SAFSTOR) mode are currently scheduled for completion by June 30, 1986. This report gives the status of activities as of June 1985. A final summary report will be issued after completion of this SAFSTOR decommissioning activity. Information included in this status report has been collected from the facility decommissioning plan, environmental report, and other sources made available by the licensee. This data has been placed in a computerized data base system which permits data manipulation and summarization. A description of the computer reports that can be generated by the decommissioning data system (DDS) for Humboldt Bay and samples of those reports are included in this document

  17. Securing decommissioning funds. Why organization matters?

    International Nuclear Information System (INIS)

    Full text: Securing decommissioning funds requires that the financial resources set aside for the purpose of decommissioning be managed prudently. Decommissioning of nuclear power plant is prescribed by National Atomic Laws or by other nuclear legislation. It is a mandatory operation. The operators of nuclear power plants set money aside for that purpose. This is known as 'Decommissioning reserve fund'. Decommissioning implies costs very distant in time. Thus, it is obvious, from an economic point of view, that the funds set aside should be managed. As decommissioning is mandatory, the funds accumulated should be secured. In others words, they should be available when needed. Availability of funds is influenced by endogenous and exogenous factors. Endogenous factors are a matter of design of the reserve funds. They include the management of the funds, its monitoring and control... Availability of funds is influenced by these factors, depending on the rules to which the behaviour of the manager of the funds is subjected. In contrast, exogenous factors deal with the energy context. These factors are mainly the electricity sector organisation and/or the overall economic situation. They are decisive factors of the economic performance of the reserve fund for a given design. Therefore, the requirement of availability of funds, when needed, is a matter of compatibility between the design of the decommissioning funds and the electricity context. Put differently, reserve fund's design need to be consistent with the electricity context's features in respect of the availability of funds. Current reserve funds were designed in a context of monopoly regime. In this context, availability of decommissioning funds was not questionable. At least, as far as the design of the reserve funds is concerned. This is because nuclear generator didn't confront any competition pressure. Electricity prices were set trough rate base mechanism, and all the business risks were borne by the

  18. Decontamination and decommissioning costing efforts

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE), Office of Environmental Management (EM) is responsible for decontamination and decommissioning (D and D) of a wide variety of facilities ranging from reactors to fuel cycle processing buildings throughout the country. The D and D effort represents a large financial investment and a considerable challenge for the DOE and contractor program and project managers. Specifically, the collection and sharing of useful cost data and development of cost estimates are difficult in an environment in which the availability of these data is limited and the technologies and project methods are evolving. Sound cost data are essential for developing project cost estimates; baselines; and project management, benchmarking, and continuous improvement purposes. This paper will focus on some initiatives that in coordination with other federal agencies and international organizations, the DOE Environmental Management Applied Cost Engineering (ACE) Team is taking to standardize cost definitions; to collect, analyze, and report D and D cost data; and to develop fast, accurate, and easy-to-use cost-estimating models for D and D work

  19. Decommissioning of fast reactors after sodium draining

    International Nuclear Information System (INIS)

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  20. Decommissioning Challenges, strategy and programme development

    International Nuclear Information System (INIS)

    This document gathers 4 short articles. The first one presents the IAEA decommissioning activities. These activities include: -) the development and implementation of the international action on decommissioning, -) the provision of experts and equipment to assist member states, -) networking activities such as training or exchange of knowledge and experience. The second article presents the work program of the Nea (nuclear energy agency) in the field of decommissioning and reports on the lessons that have been learnt. Among these lessons we can quote: -) selecting a strategy for decommissioning and funding it adequately, -) regulating the decommissioning of nuclear activities, -) thinking of the future in terms of reusing materials, buildings and sites, -) involving local and regional actors in the decommissioning process from decision-making to dismantling work itself, and -) increasing transparency in decision-making in order to build trust. The third article presents the management of radioactive wastes in France. This management is based on the categorization of wastes in 6 categories according to both the activity level and the radioactive half-life T: 1) very low activity, 2) low activity and T 31 years, 4) intermediate activity and T 31 years, and 6) high activity. For categories 1, 2, 3 and 5, the waste treatment process and the disposal places have been operating for a long time while for categories 4 and 6, the disposal places are still being studied: low-depth repository and deep geological repository respectively. The last article presents the action of the US Department of energy in decommissioning activities and environmental remediation, the example of the work done at the ancient nuclear site of Rocky Flats gives an idea of the magnitude and complexity of the operations made. (A.C.)

  1. The collection of information, data and materials samples from concrete structures on nuclear facilities under decommissioning for ageing and degradation evaluation

    International Nuclear Information System (INIS)

    The collection of information from nuclear facilities under decommissioning can usefully inform operators of existing plant and designers of new facilities. The evaluation of the performance of concrete structures long after their construction is a relevant safety issue for nuclear installations. Many nuclear facilities are approaching the end of their design life and programmes to extend operating licences have been undertaken to ensure adequate safety levels for extended operational periods and the complete decommissioning phase lasting from a few years up to some decades before dismantling. Ageing management programmes should encompass the full life cycle from conceptual design through to final decommissioning. During decommissioning, dismantling and demolition it is possible to obtain samples from systems, structures and components that have experienced ageing mechanisms in situ and are therefore superior to artificially aged laboratory specimens in informing ageing management programmes and designers of new plant. Such programmes are of value not just to NPPs but also fuel cycle and waste facilities. In order that full benefit may be obtained from the collection of information, data and materials samples from concrete structures on nuclear facilities under decommissioning for ageing and degradation evaluation, these activities must be included in decommissioning plans. In cases where systems, structures and components have been selected for removal, sampling or testing for such purposes, these should be clearly identified and described. This allows specific hazards during these operations to be identified and prevents unintentional loss or destruction of the relevant systems, structures and components during decommissioning. This paper describes the information that may be collected during decommissioning in order to inform plant life management and ageing programmes and new plant designs and the activities required to collect this. Suggestions are also given

  2. Economical aspect of the decommissioning for NPP

    International Nuclear Information System (INIS)

    The estimated, analysed and founding of the economical aspect at decommissioning of Nuclear Power Plant (NPP) have been studied. The data that have been obtained from literature, then the calculation and analysing have been done base to the future condition. The cost for NPP decommissioning depend on the internal factor such as type, capacity and safe storage time, and the external factor such as policy, manpower and the technology preparation. The successfulness of funding, depend on the rate of inflation, discount rate of interest and the currency fluctuation. For the internal factor, the influence of the type of the reactor (BWR or PWR) to the decommissioning cost is negligible, the big reactor capacity (±1100 MW), and the safe storage between 30 to 100 years are recommended, and for the external factor, specially Indonesia, to meet the future need the ratio of decommissioning cost and capital cost will be lower than in develop countries at the present (10%). The ratio between decommissioning fund and electricity generation cost relatively very low, are more less than 1.79 % for 30 years safe storage, and discount rate of interest 3%, or more less than 0.30 % for safe storage 30 years, and discount rate of interest 6%. (author)

  3. Panel Discussion - Eastern and Central Europe decommissioning

    International Nuclear Information System (INIS)

    In conjunction with technical session 'Experience with Present Decommissioning Projects' the Panel Discussion is organized in the frame of ECED 2013 Conference. The main purposes of the panel was to analyse more in details the information given in the previous session and mainly to answer the questions from the audience. The panel was focused on the on-going decommissioning projects and on the projects in the final phase of preparation in the region of Eastern and Central Europe as follows: - Ignalina Nuclear Power Plant in Lithuania - RBMK-1500 reactors; - Chernobyl Nuclear Power Plant in Ukraine - RBMK-1000 reactors; - Kozloduy Nuclear Power Plant in Bulgaria - VVER-440 reactors; - Metsamor Armenian Nuclear Power Plant - VVER-440 reactors; - Greifswald Nuclear Power Plant in Germany (former East Germany) - VVER-440 reactors; - V1 Nuclear Power Plant in Slovakia - VVER-440 reactors; - A1 Nuclear Power Plant in Slovakia - Heavy Water Gas Cooled Reactor; shutdown after accident. The panel speakers listed the skilled and experienced representatives from all above mentioned countries and from Russian Federation where many decommissioning projects are ongoing or under preparation. The region of Eastern and Central Europe has actually become very important in the field of decommissioning and the lessons learned from the performed projects could make a significant base for decommissioning projects worldwide.

  4. Legislative conditions for decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    Decommissioning nuclear facilities, like building and operating them, is associated with legal conditions spelt out in the German Atomic Energy Act and other applicable legal regulations. Under the Atomic Energy Act, the basis is the required permit for decommissioning with the main requirement that all necessary precautions against damage have been taken in the light of the state of the art. Applicability needs to be examined in each individual case, and every decommissioning step must reduce the risk potential by further removing radioactive plant components. Considerable expense is entailed by the Environmental Impact Assessment (EIA) required under the directives of the European Union. The directive in existence so far required an EIA only for the construction and operation of nuclear power plants, and was executed in Germany with the EIA Act of 1990. This EU directive is being extended so as to include also decommissioning activities; the integration of this extension into national law in Germany is still in the stage of a ministerial draft bill. In the licensing procedure under the Atomic Energy Act, the basic question arises with respect to the demolition of plants whether the 'entire range planned' of decommissioning measures requires a step-by-step procedure with a so-called positive overall decision. This question arises out of the comparison between the construction phase and the demolition phase. Basically, in very few special cases, an analogy can be drawn to the requirement of a preliminary positive overall decision. (orig.)

  5. Management of Sellafield site decommissioning - recent experiences

    International Nuclear Information System (INIS)

    History of the British Nuclear Site Sellafield - located in Western Cambria goes back to 1940, when it served for military and energy independence tasks in the Great Britain. Since then Sellafield served as the major British nuclear site providing wide range of services to the British nuclear industry, including fuel and waste storage/management, nuclear fuel reprocessing, electricity production and decommissioning. Currently the Sellafield site is one of the largest site under decommissioning facing serious challenges associated with the process and cost management. In November 2008 the Nuclear Management Partners, the consortium consisting URS Washington Group, AMEC and AREVA NC, were awarded the contract as the new Parent Body Organization of Sellafield Ltd. that provides management expertise and governance to the client (Nuclear Decommissioning Authority). Since 2008 AMEC has gained extensive experiences from management of complex decommissioning projects that are applicable across different geographies and projects of similar nature. Presentation describes the development of the process system of the project management from the side of PBO as well as complex scheme of the Sellafield site decommissioning project. (author)

  6. Decommissioning database of V1 NPP

    International Nuclear Information System (INIS)

    Since 2001, the preparation of V1 NPP practical decommissioning has been supported and partly financed by the Bohunice International Decommissioning Support Fund (BIDSF), under the administration of the European Bank for Reconstruction and Development. AMEC Nuclear Slovakia, together with partners STM Power and EWN GmbH, have been carrying out BIDSF B6.4 project - Decommissioning database development (June 2008 until July 2010). The main purpose of the B6.4 project is to develop a comprehensive physical and radiological inventory database to support RAW management development of the decommissioning studies and decommissioning project of Bohunice V1 NPP. AMEC Nuclear Slovakia was responsible mainly for DDB design, planning documents and physical and radiological characterization including sampling and analyses of the plant controlled area. After finalization of all activities DDB includes over 75.000 records related to individual equipment and civil structures described by almost 3.000.000 parameters. On the basis of successful completion of the original contract the amendment was signed between JAVYS and Consultant's Consortium related to experimental characterization of NPP activated components. The works within this amendment have been still running. (authors)

  7. Verification for radiological decommissioning - Lessons learned

    International Nuclear Information System (INIS)

    During the past 10 years, the Environmental Survey and Site Assessment Program (ESSAP) at Oak ridge Associated Universities has performed radiological surveys to confirm the adequacy of cleanup and/or decommissioning actions at sites and facilities where radioactive materials have been handled. These surveys are part of the independent oversight programs of the US Department of Energy (DOE) and the US Nuclear Regulatory Commission (NRC). Results of verification activities have been discouraging. Numerous independent surveys have identified residual contamination requiring further remediation; in some cases, initial decontamination and postremedial action monitoring were totally inadequate. While participating in decommission projects, ESSAP learned valuable lessons and has given this information to regulating agencies and decommissioning sites. The goal of this presentation is to highlight the difficulties encountered by ESSAP in its involvement with NRC and DOE decommissioning projects. Decommissioning projects require teamwork, and success depends to a large degree on the communication, cooperation, and coordination of efforts among the individual organizations involved. This information could be used by organizations involved in future decontamination projects to avoid some of the pitfalls associated with this process

  8. Closing responsibilities: decommissioning and the law

    International Nuclear Information System (INIS)

    Laws change over time, with the times. Interpretations of old laws shift and the need for new laws emerges. There are endless reasons for these necessary changes, but the basic impetus is the changing nature of societal circumstance. Fifty years ago there were no laws directly governing nuclear power in any way. Today we know that nuclear power touches people from their wallets to their descendants. Currently, many laws related to nuclear power are in place, laws which protect all sectors of society from electricity generating bodies to a newborn child, and the Chernobyl accident has broadened the legal ramifications of nuclear power even more. This expanding body of nuclear law reflects our expanding understanding of nuclear power from its technical beginnings to its societal consequences and implications. The law is now beginning to reflect the growing significance of decommissioning. What are the relationships between decommissioning and the existing laws, government agencies, and policies? Ironically, although the UK will lead the world in addressing decommissioning responsibilities, there are no explicit laws in place to govern the process. In the absence of specific legislation governing decommissioning, the primary responsibilities fall to the operators of the power plants, a circumstance not lost on those involved in privatization. In this chapter, the wide and varied legal ramifications of decommissioning are examined. (author)

  9. Current trends in decommissioning and environmental remediation of nuclear facilities

    International Nuclear Information System (INIS)

    The decommissioning and environmental remediation of civil nuclear facilities represents a considerable challenge for the countries involved in this activity around the world. It includes aspects and problems associated with management, technology, safety and the environment. Over the past few decades, operators worldwide have acquired important experience in the decommissioning and environmental remediation of nuclear sites. A large number of nuclear facilities have ceased operations, and it is envisaged that this number will increase considerably over the coming years. Seventeen power reactors have already been decommissioned, out of more than 150 power reactors shut down or undergoing decommissioning, while more than 180 research reactors have been shut down or are being decommissioned with more than 300 already fully decommissioned. A total of 170 other nuclear cycle facilities have been shut down or are being decommissioned and a further 125 have been completely decommissioned. Spain is one of the countries with experience and activity under way in this field

  10. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  11. BCG for carcinoma in situ.

    Science.gov (United States)

    Jakse, G

    1992-01-01

    Bacillus Calmette-Guérin (BCG) is the most effective intravesical therapy of carcinoma in situ of the urinary bladder. Six, weekly instillations of BCG result in a complete remission in about 70-80% of patients. The optimal dose however has still to be defined, and the value of maintenance therapy is also a matter of debate. Recurrent tumours after complete remission occur mainly in the distal ureter and prostatic urethra. In these patients, cystectomy may be required. In about 60-80% of patients, local (e.g. cystitis) and/or systemic (e.g. fever, malaise) side effects are observed. The occurrence of cystitis is associated with the number of instillations, BCG dose and a positive skin test. Systemic side effects are connected with pre-existing dysuria or bacterial cystitis and with traumatic catheterization. Severe toxicity occurs in about 5% of the patients. Prognostic parameters indicating complete remission have yet to be determined, but there is evidence that cytokines detected in the urine and immune-cell infiltration into the bladder wall revealed by immunohistochemistry, can be of value in this respect. PMID:1396945

  12. In situ vitrification: A review

    International Nuclear Information System (INIS)

    The in situ vitrification process (ISV) converts contaminated soils and sludges to a glass and crystalline product. The process appears to be ideally suited for on site treatment of both wet and dry wastes. Basically, the system requires four molybdenum electrodes, an electrical power system for vitrifying the soil, a hood to trap gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. Mounted in three transportable trailers, the ISV process can be moved from site to site. The process has the potential for treating contaminated soils at most 13 m deep. The ISV project has won a number of outstanding achievement awards. The process has also been patented with exclusive worldwide rights being granted to Battelle Memorial Institute for nonradioactive applications. While federal applications still belong to the Department of Energy, Battelle transferred the rights of ISV for non-federal government, chemical hazardous wastes to a separate corporation in 1989 called Geosafe. This report gives a review of the process including current operational behavior and applications

  13. Chemically enhanced in situ recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sale, T. [CH2M Hill, Denver, CO (United States); Pitts, M.; Wyatt, K. [Surtek, Inc., Golden, CO (United States)] [and others

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  14. Decommissioning of research nuclear reactor WWR-S Bucharest. Analysis, justification and selection of decommissioning strategy

    International Nuclear Information System (INIS)

    The decommissioning of Research Nuclear Reactor WWR-S Bucharest involves the removal of the radioactive and hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. The National Institute of Physics and Nuclear Engineering has overall responsibilities in decommissioning including actions of contractors, submit a decommissioning plan to the regulatory body for approval and no decommissioning activities shall begin without the appropriate approval of the regulatory body. A very important aspect of decommissioning is analysis, justification and selection of decommissioning strategy. There are three strategies: Immediate Dismantling, Safe Enclosure, and Entombment. These strategies have been analyzed taking into account: - Future use of site and facilities; - Infrastructure of the specific site and facilities; - Waste storage and disposal options; - Financial aspects; - Geographical Location; - National, Local and International Legislation; - Facility characterization; Identification of decommissioning objectives; - Description of alternatives: scope, features, specific end points, release criteria, risks and safety issues, effectiveness, feasibility, nature and amount of waste of generated and disposal plans, material recycling/reusing opportunities, cost, schedule, comparative analysis; - Rationale for selecting the preferred alternative. (authors)

  15. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are...... prewritten scenarios from the simulation lab and transferring them to in situ simulation. (4) Action research – insider or participant action research to obtain in-depth understanding of team processes to guide scenario design. We evaluate the approach relying on Marks’ et al. taxonomy that posits the...... following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  16. Development Of Decommissioning Information Management System for 101 HWRR

    Institute of Scientific and Technical Information of China (English)

    Yi Song

    2016-01-01

    Decommissioning of 101 Heavy Water Research Reactor (HWRR) is radioactive and high-risk project which has to consider the effects of radiation and nuclear waste disposal, so the information system covering 101 HWRR decommissioning project must be established to ensure safety of the project. In this study, by col ecting the decommissioning activity data to establish the decommissioning database, and based on the database to develop information management system.

  17. Decommissioning in the United Kingdom Atomic Energy Authority

    International Nuclear Information System (INIS)

    The United Kingdom Atomic Energy Authority's policy on decommissioning is described. Several fission reactors have already been taken out of service and the state of decommissioning is given. Estimates of the volume of decommissioning wastes are made. The wastes will be either intermediate-level or low-level wastes. Research and development programmes have been undertaken to allow decommissioning to be safe and cost-effective. Some of the contaminated facilities have been decontaminated and re-used. (U.K.)

  18.  Heavy Lift Methods in Decommissioning of Installations

    OpenAIRE

    Breidablikk, Line Småge

    2010-01-01

     In this report decommissioning of offshore petroleum platforms have been investigated. It treats decommissioning in general, the process of a typical project. A variety of suitable lifting vessels have been presented, and some concepts of removal have been evaluated.Decommissioning is important to go through with because of the environment and the use of the area after the petroleum activities ceases. Other ocean users benefit from the decommissioning because the area can be utilized when it...

  19. Eastern and Central Europe Decommissioning, ECED 2015 - Book of Abstracts

    International Nuclear Information System (INIS)

    Scientific conference deals with problems of reactor decommissioning and radioactive waste management in the Central Europe. The Conference included the following sessions: (1): Characterisation and Radioactive Waste Management; (2) Managerial Aspects of Decommissioning; (3) JAVYS Experience with Back-End of Nuclear Power Engineering - Progress in Last 2 Years; (4) Decommissioning Planning and Costing and Education; (5) Technical Aspects of Decommissioning; (6) Radioactive Waste Management; (4) Poster Session. The Book of Abstracts contains two invitation speeches and 30 abstracts.

  20. Decommissioning in western Europe; Kaernkraftsavveckling i Vaesteuropa

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, K. [Castor arbetslivskonsulter AB, Stockholm (Sweden)

    1999-12-01

    This report gives an overview of the situation in Western Europe. The original aim was to focus on organisational and human issues with regard to nuclear reactor decommissioning, but very few articles were found. This is in sharp contrast to the substantial literature on technical issues. While most of the reports on decommissioning have a technical focus, several provide information on regulatory issues, strategies and 'state of the art'. The importance of the human and organizational perspective is however discovered, when reading between the lines of the technical publications, and especially when project managers summarize lessons learned. The results are to a large extent based on studies of articles and reports, mainly collected from the INIS database. Decommissioning of nuclear facilities started already in the sixties, but then mainly research and experimental facilities were concerned. Until now about 70 reactors have been shutdown world-wide. Over the years there have been plenty of conferences for exchanging experiences mostly about technical matters. Waste Management is a big issue. In the 2000s there will be a wave of decommissioning when an increasing amount of reactors will reach the end of their calculated lifetime (40 years, a figure now being challenged by both life-extension and pre-shutdown projects). Several reactors have been shut-down for economical reasons. Shutdown and decommissioning is however not identical. A long period of time can sometimes pass before an owner decides to decommission and dismantle a facility. The conditions will also differ depending on the strategy, 'immediate dismantling' or 'safe enclosure'. If immediate dismantling is chosen the site can reach 'green-field status' in less than ten years. 'Safe enclosure', however, seems to be the most common strategy. There are several pathways, but in general a safe store is constructed, enabling the active parts to remain in safe

  1. Decommissioning of denison and Stanrock tailings management areas

    International Nuclear Information System (INIS)

    The Denison Mines Limited uranium mining and milling facility in Elliot Lake ceased operations in April of 1992. Since that time major site decommissioning projects were completed. These projects involved demolition of site facilities and acid mine drainage (AMD) mitigation in the three tailings management areas known as TMA-1, TMA-2 at Denison and TMA-3 at Stanrock. The work on TMA-1 and TMA-2 was generally completed in late 1996 and the work at TMA-3 was essentially completed in late 1998. The use of water covers was chosen as the best technology for long term tailings stabilization for TMA-1 and -2. In the gently sloped and partially flooded basin of TMA-1, 1.83 million cubic metres of tailings were dredged and relocated to deeper areas of the basin to establish 0.9 metre water cover (also termed 'dredge the wedge'). Perimeter dams were regraded to add additional factors of safety and an upstream seepage reduction berm and a downstream toe stabilization berm were constructed at, the western most dam, Dam 10. (author)

  2. Mound's decommissioning experience, tooling, and techniques

    International Nuclear Information System (INIS)

    Monsanto Research Corporation (MRC), which operates Mound for the Department of Energy (DOE), has been decommissioning radioactively contaminated facilities since 1949. We are currently decommissioning three plutonium-238 contaminated facilities (approximately 50,000 ft2) that contained 1100 linear ft of gloveboxes; 900 linear ft of conveyor housing; 2650 linear ft of dual underground liquid waste lines; and associated contaminated piping, services, equipment, structures, and soil. As of June 1982, over 29,000 Ci of plutonium-238 have been removed in waste and scrap residues. As a result of the current and previous decommissioning projects, valuable experience has been gained in tooling and techniques. Special techniques have been developed in planning, exposure control, contamination control, equipment removal, structural decontamination, and waste packaging

  3. The Ministry of Dilemmas [decommissioning nuclear submarines

    International Nuclear Information System (INIS)

    A consultant for Greenpeace, the anti-nuclear campaigners, looks at the United Kingdom Government's problems with decommissioning of its nuclear submarine fleet as the vessels become obsolete, and at the transport and storage of spent fuels from the submarine's propulsion reactors. It is argued that no proper plans exist to decommission the vessels safely. The Ministry of Defence sites such as Rosyth and Devonport are immune from inspection by regulatory bodies, so there is no public knowledge of any potential radioactive hazards from the stored out-of-service carcasses, floating in dock, awaiting more active strategies. The author questions the wisdom of building new nuclear submarines, when no proper program exists to decommission existing vessels and their operational waste. (U.K.)

  4. The economics and financing of decommissioning

    International Nuclear Information System (INIS)

    Economics and financing have the most immediate interest to the public. Largely this interest stems from the effect of decommissioning on current utility rates, but there are other related issues as well. These include the question of whether adequate funds will be available when needed, how they will be collected and invested, and what constitute reasonable contingency factors and discount rates. Preliminary examination of the economics of decommissioning raises more questions than it answers. Each country or area of a country (as in the USA) will be faced with establishing its own policies. Whichever methods and logic are finally applied to the economics of decommissioning in the United Kingdom, the public will eventually pay. For this reason, a clear working knowledge of the principal elements of this consideration is important. (author)

  5. Decommissioning trust funds ordered by PSC

    International Nuclear Information System (INIS)

    The Wisconsin public service commission ordered four electric utilities to set up external trust funds for decommissioning expenses instead of collecting the money from its ratepayers to offset current borrowing needs. The change is to assure that funds will be available when they are needed for the Point Beach 1 and 2 and the Kewaunee plants, which are due for relicensing and possible decommissioning in 2007 and 2008. The external fund will be available at a time when ratepayers will likely be paying for replacement power plants. Critics claim the order will cost utility customers $800 million over the next 23 years, and note that Wisconsin Electric Power Co. has a reputation for financial health. One area of concern is the treatment of funds already collected for decommissioning

  6. Reactor decommissioning in a deregulated market

    International Nuclear Information System (INIS)

    This paper seeks to summarise BNFL's experience with regard to recent developments in reactor decommissioning and demonstrate how commercial projects in crucial areas of strategy development, project implementation and site restoration are beginning to reduce the risks and uncertainties associated with this important aspect of the nuclear power generation industry. Although the reactor decommissioning market cannot yet be regarded as mature, the key elements of strategy development, waste treatment, dismantling and delicensing have been separately demonstrated as achievable. Together with the implementation of the right organisation, and the developing technology, the risks are being reduced. As more decommissioning projects are delivered, the risks will be reduced further and the confidence of the regulator in the process will improve. This paper sets out to demonstrate this viewpoint. (author)

  7. Site Decommissioning Management Plan. Supplement 1

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) staff has identified 51 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety, they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC stairs strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 51 sites and describes the status of decommissioning activities at the sites. This is supplement number one to NUREG-1444, which was published in October 1993

  8. Decommissioning and environmental remediation: An overview

    International Nuclear Information System (INIS)

    The objective in both decommissioning and environmental remediation is to lower levels of residual radioactivity enough that the sites may be used for any purpose, without restriction. In some cases, however, this may not be practical and restrictions may be placed on future land use. Following decommissioning, for example, some sites may be reused for non-nuclear industrial activities, but not for habitation. Some former uranium mining sites may be released for reuse as nature reserves or for other leisure activities. Both decommissioning and environmental remediation are major industrial projects in which the safety of the workforce, the local public and the environment must be ensured from both radiological and conventional hazards. Hence, an appropriate legal and regulatory framework, as well as proper training for personnel both in implementation and in regulatory oversight are among the necessary preconditions to ensure safety

  9. Decommissioning of the Neuherberg Research Reactor (FRN)

    International Nuclear Information System (INIS)

    The Neuherberg Research Reactor is of type TRIGA MARK III with 1 MW steady state power and pulsable up to 2000 MW. During more than ten years of operation 12000 MWh and 6000 reactor pulses had been performed. In spite of its good technical condition and of permanent safe operation without any failures, the decommissioning of the Neuherberg research reactor was decided by the GSF board of directors to save costs for maintaining and personnel. As the mode of decommissioning the safe enclosure was chosen which means that the fuel elements will be transferred back to the USA. All other radioactive reactor components will be enclosed in the reactor block. Procedures for licensing of the decommissioning, dismantling procedures and time tables are presented

  10. Decommissioning of reactor facilities (2). Required technology

    International Nuclear Information System (INIS)

    Decommissioning of reactor facilities was planned to perform progressive dismantling, decontamination and radioactive waste disposal with combination of required technology in a safe and economic way. This article outlined required technology for decommissioning as follows: (1) evaluation of kinds and amounts of residual radioactivity of reactor facilities with calculation and measurement, (2) decontamination technology of metal components and concrete structures so as to reduce worker's exposure and production of radioactive wastes during dismantling, (3) dismantling technology of metal components and concrete structures such as plasma arc cutting, band saw cutting and controlled demolition with mostly remote control operation, (3) radioactive waste disposal for volume reduction and reuse, and (4) project management of decommissioning for safe and rational work to secure reduction of worker's exposure and prevent the spreading of contamination. (T. Tanaka)

  11. Decommissioning of DR 2. Final report

    International Nuclear Information System (INIS)

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  12. Initiative for decommissioning of Chernobyl Nuclear Plant

    International Nuclear Information System (INIS)

    Construction of the New Safety Confinement (NSC) for the Chernobyl unit 4 started 2010, after about 25 years of Chernobyl accident and will complete summer of 2015. This project is being conducted by assistance of EU, USA and other countries including Japan. NSC can cover the whole facility of unit 4, and is installed various components or tools including big bridge crane for decommissioning unit 4 and has durability over 100 years. In addition to construction of NSC, various activities for preparing the decommissioning including developing the technology of monitoring the inside of destructive building and remote access technologies. The spent fuel storage facility and waste proposal facilities are also constructed.. These activities include many valuable information about how to smoothly conduct the decommissioning and it would be important to learn the above activities in conducting the post-processing activities on the Fukushima-Daiichi accident successfully. (author)

  13. Decommissioning of the Loviisa power plant

    International Nuclear Information System (INIS)

    In accordance with the provisions laid in the decision of the Ministry for Trade and Industry Imatran Voima Oy has revised the decommissioning plan for the Loviisa power plant, and submitted it to the authorities for review in December 1993. The plan outlines the technical measures needed to dismantle the radioactive parts of the Loviisa power plant, explains how the resulting waste will be packed and disposed of, and estimates how many people will be needed for the decommissioning waste will be. A general timetable and a cost estimate have also been drawn up on the basis of a detailed working plan. In this report the plan has been revised for cost estimate, activity inventory of the decommissioning waste and radiation dose caused by dismantling work. (orig.). (11 refs., 10 figs., 8 tabs.)

  14. Narbalek uranium mine: from EIS to decommissioning

    International Nuclear Information System (INIS)

    The Nabarlek uranium mine operated in Northern Australia from 1979 until 1989 and was the first of the 'new generation' of uranium mines to go through the cycle of EIS, operation and decommissioning. The paper describes the environmental and operational approval processes, the regulatory regime and the decommissioning procedures at the mine. The mine was located on land owned by indigenous Aboriginal people and so there were serious cultural considerations to be taken into account throughout the mine's life. Site work for decommissioning and rehabilitation was completed in 1995 but revegetation assessment has continued until the present time (1999). The paper concludes with the latest assessment and monitoring data and discusses the lessons learned by all parties from the completion of the cycle of mine life 'from cradle to grave'. (author)

  15. Platform decommissioning: Socio-economic impacts

    International Nuclear Information System (INIS)

    The object of this presentation is to evaluate the socio-economic effects of the decommissioning of steel jacket platforms in the North Sea and in the North East Atlantic in the period up to 2020 in their entirety. It is focused on two different decommissioning options, namely total and partial removal of installations. Partial removal applies only to installations in water deeper than 75 meters. All other installations, i.e those in waters shallower than 75 meters, have to be totally removed and brought onshore for disposal. Areas being analyzed cover costs of different decommissioning options, effects of the different options on employment, fiscal aspects of the different options, and aspects of recycling onshore. 6 figs., 13 tabs

  16. Nuclear data requirements for fission reactor decommissioning

    International Nuclear Information System (INIS)

    The meeting was attended by 13 participants from 8 Member States and 2 International Organizations who reviewed the status of the nuclear data libraries and computer codes used to calculate the radioactive inventory in the reactor unit components for the decommissioning purposes. Nuclides and nuclear reactions important for determination of the radiation fields during decommissioning and for the final disposal of radioactive waste from the decommissioned units were identified. Accuracy requirements for the relevant nuclear data were considered. The present publication contains the text of the reports by the participants and their recommendations to the Nuclear Data Section of the IAEA. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  17. Decommissioning of DR 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N.

    2009-02-15

    This report describes the work of dismantling and demolishing reactor DR 2, the waste volumes generated, the health physical conditions and the clearance procedures used for removed elements and waste. Since the ultimate goal for the decommissioning project was not clearance of the building, but downgrading the radiological classification of the building with a view to converting it to further nuclear use, this report documents how the lower classification was achieved and the known occurrence of remaining activity. The report emphasises some of the deliberations made and describes the lessons learned through this decommissioning project. The report also intends to contribute towards the technical basis and experience basis for further decommissioning of the nuclear facilities in Denmark. (au)

  18. Environmental restoration and waste management program decontamination and decommissioning project

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL), Robotics and Process Systems Division (RPSD), Telerobotic Systems Section (TSS) is responsible for performing a Technology Demonstration for the Decontamination and Decommissioning (D and D) Project in the Environmental Restoration and Waste Management (ER and WM) Program of the US Department of Energy (DOE). This technology demonstration is scheduled for early October of 1992 at the ORNL RPSD. The demonstration will use robotic and telerobotic technology applied to D and D tasks in hot cell environments. The goals of D and D robotics and remote systems technology development are to provide technologies which improve the quality, safety, and cost effectiveness of future D and D projects. This is accomplished by removing humans from hazardous conditions, increasing the speed, reliability, and performance associated with typical D and D tasks; and minimizing the waste stream. Four operations are basic to the D and D needs surveying, decontamination, dismantling, and material disposition. The technology demonstration at ORNL TSS will demonstrate that a pipe section can be surveyed and dismantled in an in situ environment with the use of robotic and telerobotic technology at ORNL facilities

  19. General principles underlying the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Previous statements on the use of the term 'decommissioning' by the International Atomic Energy Agency, the Atomic Energy Control Board, and the Advisory Committee on Nuclear Safety are reviewed, culminating in a particular definition for its use in this paper. Three decommissioning phases are identified and discussed, leading to eight general principles governing decommissioning including one related to financing

  20. Feedback Experience from Decommissioning of Uranium Conversion Plant

    International Nuclear Information System (INIS)

    KAERI has been conducting decommissioning activities of Uranium Conversion Plant (UCP) for the last decade. As a result of all this work KAERI has accumulated significant experience in the field of decommissioning of nuclear facilities. On the basis of the experience gained from decommissioning activities, this paper describes several lessons learned

  1. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years...

  2. An analysis on the annual decommissioning deposit in NPP

    International Nuclear Information System (INIS)

    This study re-evaluated the methods for estimating and distributing decommissioning cost of nuclear power plant over lifetime. It was resulted out that the annual decommissioning deposit and consequently, the annual decommissioning cost could vary significantly depending on estimating and distributing methods, for instances, the accounting method being used presently by KEPCO and the lifetime levelized method being commonly applied in economic analysis

  3. Waste from decommissioning of nuclear power plants

    International Nuclear Information System (INIS)

    This report is based on the assumption that all twelve nuclear power plants will be shut down no later than A.D. 2010, as was decided by the parliament after the referendum on the future of nuclear power in Sweden. The recent 'Party agreement on the energy policy' of January 15, 1991 does, indeed, leave the door open for an extension of the operational period for the nuclear reactors. This will, however, not change the recommendations and conclusions drawn in this report. The report consists of two parts. Part 1 discusses classification of waste from decommissioning and makes comparisons with the waste arising from reactor operation. Part 2 discusses the documentation required for decommissioning waste. Also this part of the report draws parallels with the documentation required by the authorities for the radioactive waste arising from operation of the nuclear power plants. To some extent these subjects depend on the future use of the nuclear power plant sites after decommissioning of the plants. The options for future site use are briefly discussed in an appendix to the report. There are many similarities between the waste from reactor operations and the waste arising from dismantling and removal of decommissioned nuclear power plants. Hence it seems natural to apply the same criteria and recommendations to decommissioning waste as those presently applicable to reactor waste. This is certainly true also with respect to documentation, and it is strongly recommended that the documentation requirements on decommissioning waste are made identical, or at least similar, to the documentation requirements for reactor waste in force today. (au)

  4. Maintaining Quality in a Decommissioning Environment

    International Nuclear Information System (INIS)

    The decommissioning of AECL's Whiteshell Laboratories is Canada's largest nuclear decommissioning project to date. This research laboratory has operated for forty years since it was set up in 1963 in eastern Manitoba as the Whiteshell Nuclear Research Establishment, complete with 60 MW(Th) test reactor, hot cells, particle accelerators, and multiple large-scale research programs. Returning the site to almost complete green state will require several decades of steady work in combination with periods of storage-with-surveillance. In this paper our approach to maintaining quality during the long decommissioning period is explained. In this context, 'quality' includes both regulatory aspects (compliance with required standards) and business aspects (meeting the customers' needs and exceeding their expectations). Both aspects are discussed, including examples and lessons learned. The five years of development and implementation of a quality assurance program for decommissioning the WL site have led to a number of lessons learned. Many of these are also relevant to other decommissioning projects, in Canada and elsewhere: - Early discussions with the regulator can save time and effort later in the process; - An iterative process in developing documentation allows for steady improvements and input throughout the process; - Consistent 2-way communication with staff regarding the benefits of a quality program assists greatly in adoption of the philosophy and procedures; - Top-level management must lead in promoting quality; - Field trials of procedures ('beta testing') ensures they are easy to use as well as useful. Success in decommissioning the Whiteshell Laboratories depends on the successful implementation of a rigorous quality program. This will help to ensure both safety and efficiency of all activities on site, from planning through execution and reporting. The many aspects of maintaining this program will continue to occupy quality practitioners in AECL, reaping

  5. Decision framework for platform decommissioning in California.

    Science.gov (United States)

    Bernstein, Brock B

    2015-10-01

    This article describes the overall decision framework for eventual decisions about decommissioning the 27 operating oil and gas platforms offshore southern California. These platforms will eventually reach the end of their useful lifetimes (estimated between 2015 and 2030, although specific dates have not been determined). Current law and regulations allow for alternative uses in lieu of the complete removal required in existing leases. To prepare for eventual decommissioning, the California Natural Resources Agency initiated an in-depth process to identify and investigate issues surrounding possible decommissioning alternatives. The detailed evaluation of alternatives focused on 2-complete removal and artificial reefing that included partial removal to 85 feet below the waterline. These were selected after a comparison of the technical and economic feasibility of several potential alternatives, availability of a legal framework for implementation, degree of interest from proponents, and relative acceptance by state and federal decision makers. Despite California's history of offshore oil and gas production, only 7 decommissioning projects have been completed and these were all relatively small and close to shore. In contrast, nearly 30% of the California platforms are in water depths (as much as 1200 feet) that exceed any decommissioning project anywhere in the world. Most earlier projects considered an artificial reefing alternative but none were implemented and all platforms were completely removed. Future decisions about decommissioning must grapple with a more complex decision context involving greater technological and logistical challenges and cost, a wider range of viable options, tradeoffs among environmental impacts and benefits, and an intricate maze of laws, regulations, and authorities. The specific engineering differences between complete and partial removal provide an explicit basis for a thorough evaluation of their respective impacts. PMID:26259879

  6. Lead Paint Analyzer. Deactivation and Decommissioning Focus Area. OST Reference #2317

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    The U.S. Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in decontamination and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology (OST) sponsors Large-Scale Demonstration and Deployment Projects (LSDDP). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects, and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of statements defining specific needs or problems where improved technology could be incorporated into ongoing D&D tasks. One of the stated needs was for a Lead Paint Analyzer that would reduce costs and shorten schedules in DOE’s Decommissioning Project. The Niton 700 Series Multi-element Analyzer is a hand-held, battery-operated unit that uses x-ray fluorescence spectroscopy (XRF) to analyze 25 elements, including the presence of lead in paint. The baseline technologies consist of collecting field samples and sending the samples to a laboratory for analysis. This demonstration investigated the associated costs and the required time to take an analysis with the multi-element analyzer with respect to the baseline technology. The Niton 700 Series Multi-element Analyzer performs in situ real-time analyses to identify and quantify lead, chromium, cadmium, and other metals in lead-based paint. Benefits expected from using the multi-element spectrum analyzer include: Reduced cost; Easier use; Reduced schedules in DOE’s decommissioning projects.

  7. Planning for decommissioning power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Junji (Research Association for Nuclear Facility Decommissioning, Tokaimura, Ibaraki (Japan))

    1993-02-01

    The first decommissioning of a commercial nuclear power plant in Japan is not expected before the early 2000s, but the technology and regulations needed are being developed now. Valuable technical experience is being gained from three current projects. These are the decommissioning of the Japan Reprocessing Test Facility, the Japan Power Demonstration Reactor and the nuclear ship Mutsu. Improving and commercialising the technology are seen as essential for the future to reduce occupational radiation exposure, the amount of waste and costs. International cooperation and information exchange are of increasing importance for developing technology and regulations. (U.K.).

  8. Knowledge management during decommissioning of Chornobyl NPP

    International Nuclear Information System (INIS)

    The article deals with issues on knowledge management during decommissioning by the example of the Chornobyl NPP. This includes how the duration of decommissioning stage, change in organization goal and final state of the site influence on human resources and knowledge management system. The main attention is focused on human assets and intellectual strength of Chornobyl NPP. Mathematical dependencies are proposed to substantiate numerical values. An analysis is given for the current situation, and forecast estimates for values dynamics is performed. The conclusion gives solutions on providing experienced staff in the future.

  9. Cost Estimation for Research Reactor Decommissioning

    International Nuclear Information System (INIS)

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of this publication is to develop a costing methodology and a software tool in order to support cost estimation for research reactor decommissioning. The costing methodology is intended for the preliminary cost estimation stages for research reactor decommissioning with limited inventory data and other input data available. Existing experience in decommissioning costing is considered. As the basis for the cost calculation structure, the costing model uses the International Structure for Decommissioning Costing (ISDC) that is recommended by the IAEA, the Organisation for

  10. No small fry: Decommissioning research reactors

    International Nuclear Information System (INIS)

    To get a permit to build a research reactor, would-be operators need to submit an initial decommissioning plan for the eventual shutdown of their new facility. This, however, was not a requirement back in the 1950s, 60s and 70s when most research reactors that are now nearing the end of their working lives were built. The result: many unused reactors sit idle in the middle of university campuses, research parks and hospital compounds, because their operators lack the proper plans to decommission them

  11. Optimization in the decommissioning of uranium tailings

    International Nuclear Information System (INIS)

    This report examines in detail the problem of choosing the optimal decommissioning approach for uranium and mill tailings sites. Various decision methods are discussed and evaluated, and their application in similar decision problems are summarized. This report includes, by means of a demonstration, a step by step guide of how a number of selected techniques can be applied to a decommissioning problem. The strengths and weaknesses of various methods are highlighted. A decision system approach is recommended for its flexibility and incorporation of many of the strengths found in other decision methods

  12. Shippingport station decommissioning project technology transfer program

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) Shippingport Station Decommissioning Project (SSDP) decontaminated and dismantled the world's first nuclear-fueled, commercial-size electric power plant. The SSDP programmatic goal direction for technology transfer is documentation of project management and operations experience. The objective is to provide future nuclear facility decommissioning projects with pertinent SSDP performance data for project assessment, planning, and operational implementation. This paper sets out access and availability directions for SSDP technology acquisition. Discusses are technology transfer definition; technology transfer products including topical and other project reports, professional-technical society presentations, other project liaison and media relations, visual documentation, and technology transfer data base; and retrieving SSDP information

  13. MCNP calculations in decommissioning of VVER-440

    International Nuclear Information System (INIS)

    The paper briefly describes the issue of neutron fluence and radionuclide inventory determination in components of decommissioned nuclear power plants with emphasis on VVER-440 reactor type. According to induced activity calculation, it will be possible to optimize the time frame and choose the appropriate dismantling procedure during the disposal of reactor internal and external components in the decommissioning of a nuclear power plant. Prerequisite for this calculation is the collection of reactor operation data. In this paper, abilities of MCNP5 and MCNPX codes in this field are presented. (authors)

  14. Ignalina NPP pre-decommissioning projects

    International Nuclear Information System (INIS)

    Description of the main projects for the preparation to the decommissioning of unit 1 of Ignalina NPP is presented. These projects are to be financed by international donors as one of the conditions to shutdown unit before the year 2005. These projects were presented during Donors conference held in 21-22 June 2000 in Vilnius. The conference was organized jointly by Lithuanian Government and European Commission. Projects are devoted to the construction of radioactive waste management facilities and improvement of existing waste management practices at Ignalina NPP as well for the general management of decommissioning process preparation of necessary documentation

  15. Decommissioning of a tritium-contaminated laboratory

    International Nuclear Information System (INIS)

    A tritium laboratory facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned in 1979. The project involved dismantling the laboratory equipment and disposing of the equipment and debris at an on-site waste disposal/storage area. The laboratory was constructed in 1953 and was in service for tritium research and fabrication of lithium tritide components until 1974. The major features of the laboratory included some 25 meters of gloveboxes and hoods, associated vacuum lines, utility lines, exhaust ducts, electrodryers, blowers, and laboratory benches. This report presents details on the decommissioning, health physics, waste management, environmental surveillance, and costs for the operation

  16. Nuclear power plants. Safe and efficient decommissioning

    International Nuclear Information System (INIS)

    The process of dismantling a nuclear power plant consists of several phases that involve significant challenges along the way for authorities, operators, and suppliers. It is necessary to ensure safety at all times and to achieve certainty in respect of key project parameters, especially time and cost. Therefore, careful planning as well as detailed knowledge of local standards and regulations, best available techniques and practical implementation strategies are crucial. Independent expertise and knowledge service can be utilised for demanding projects worldwide. This guarantees safety for people and the environment in every phase of decommissioning. The article gives an overview on different decommissioning options and their challenges.

  17. Nuclear power plants. Safe and efficient decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Huger, Helmut [TUEV SUED Energietechnik GmbH, Filderstadt (Germany). Div. of Radiation Protection, Waste Management and Decommissioning; Woodcock, Richard [TUEV SUED Nuclear Technologies, Warrington, Cheshire (United Kingdom). Environment and Radioactive Waste Management

    2016-02-15

    The process of dismantling a nuclear power plant consists of several phases that involve significant challenges along the way for authorities, operators, and suppliers. It is necessary to ensure safety at all times and to achieve certainty in respect of key project parameters, especially time and cost. Therefore, careful planning as well as detailed knowledge of local standards and regulations, best available techniques and practical implementation strategies are crucial. Independent expertise and knowledge service can be utilised for demanding projects worldwide. This guarantees safety for people and the environment in every phase of decommissioning. The article gives an overview on different decommissioning options and their challenges.

  18. Decommissioning technology development for research reactors; establishment on the classification scheme of the decommissioning information and data

    Energy Technology Data Exchange (ETDEWEB)

    Ser, J. S.; Jang, Se Kyu; Kim, Young Do [Chungchong Institute of Regional Information System, Taejeon (Korea)

    2002-04-01

    The establishment of the decommissioning DB is the first thing in KOREA. It has never been decided the standardization in relation to the decommissioning DB all over the world and many countries has been constructed their decommissioning DB which serve their purpose. Owing to get the classification of the decommissioning information and data, it is used a prototyping design that is needed the DB construction as a basic data and applied to a nuclear facilities in the future. 10 refs. (Author)

  19. Good practices in decommissioning planning and pre-decommissioning activities for the Magurele VVR-S nuclear research reactor

    International Nuclear Information System (INIS)

    The VVR-S Nuclear Research Reactor at the 'Horia Hulubei' National Institute of Physics and Nuclear Engineering in Magurele, Bucharest, will be decommissioned applying the immediate dismantling strategy. The implementation of the decommissioning project started in 2010 and is planned for completion within 11 years. Good practices in decommissioning planning, organization, funding, and logistics are described in this paper. (author)

  20. The decommissioning and redevelopment of NECSA site

    International Nuclear Information System (INIS)

    Full text: The South African nuclear programme started in 1948 and was focussed on research and development in the nuclear field. In the early 70s a uranium conversion plant and a uranium enrichment plant were constructed on the NECSA site. The enriched uranium was used for military purposes, as fuel for the research reactor SAFARI-1 at Necsa. A semi-commercial uranium enrichment plant and a fuel manufacturing plant were commissioned in the 80's to supply fuel for the nuclear power plant at Koeberg near Cape Town. Currently the research reactor is utilized for the generation of radioactive isotopes for industrial and medical applications. Various other research projects were initiated and buildings constructed on the Necsa site to accommodate the different projects. The uranium conversion and enrichment projects were terminated in the early 90's, and many buildings on the Necsa site became redundant. An initial decommissioning strategy was to return the Necsa site to green fields. This endpoint of decommissioning has changed dramatically with the nuclear renaissance to include redevelopment and reuse options. In the case of a multi-facility nuclear site, such as the Necsa site, it is vital to develop a total site redevelopment plan rather than to decommission and allocate individual facilities for isolated reuse demands. A holistic approach should be assured by considering current and projected future redevelopment demands in the development of a redevelopment and reuse plan. It is important not to allow the redevelopment and reuse of a single facility on a multi-facility site based on short- term financial gain. With the recent increase in demand for nuclear facilities the redevelopment and reuse of nuclear facilities for non-nuclear applications should generally not be considered due to the inherent advantages associated with an existing licensed site. The initial decommissioning plan did not consider the Necsa site as a whole. Decommissioning costs, and the

  1. The institutional framework of decommissioning in Italy

    International Nuclear Information System (INIS)

    Full text: Decommissioning of the NPP is generally viewed in a negative framework. On the contrary, it is an activity which aims is said to obtain the final removal of the risk factors from the environment. It is the last step of the production cycle, whose importance is underlined by the Regulation recently issued for the correct management of resources in the territory. Decommissioning NPP involves the final arrangements of the radioactive wastes, produced either during the past operation period or resulting from the dismantling operation. All the radioactive wastes must be conditioned and maintained in safe conditions. Radioactive waste management is no longer a problem for those countries that decided to face it, that is the majority of the industrialised countries. Correct technological solutions exist, due exist, respectful of the environment, of the people, of the ethical principles. The centrality of the problem is also decreed by the fact that sometimes now, the European Commission has been working on the issue of the directive on waste management, an effort which Italy has strongly supported, also during the Presidency period. Decommissioning on NPP is moreover an activity that implies advanced technological solutions, multilateral overlapping programs, working of style situations. Not many countries have completed yet (the) decommissioning of their plants: such activity should therefore be seen as an opportunity for the growth and the assertion of the Italian industry, also in view of the potential new market and the alliance with European industries. Of the 530 nuclear reactors present in world today, approximately 100 are undergoing decommissioning. In the next 2 years another 100 will reach the end of their operative life. Probably after the necessary system improvement many of them will continue to work, but it is clear that the international market of the decommissioning will continue to grow in the next years. Italy can play an important role in

  2. Needs for European decommissioning academy (EDA)

    International Nuclear Information System (INIS)

    According to analyses presented at EC meeting focused on decommissioning organized at 11.9.2012 in Brussels, it was stated that at least 500 new international experts for decommissioning will be needed in Europe up to 2025, which means about 35 per year. Having in mind the actual EHRO-N report from 2013 focused on operation of nuclear facilities and an assumption that the ratio between nuclear experts, nuclearized and nuclear aware people is comparable also for decommissioning, as well as the fact that the special study branch for decommissioning in the European countries almost does not exist, this European Decommissioning Academy (EDA) could be helpful in the over-bridging this gap. The main goal is - from about 74% of nuclearized experts (graduated at different technical Universities and increased their nuclear knowledge and skills mostly via on-job training and often in the area of NPP operation) to create nuclear experts for decommissioning via our post-gradual coursed organized in two semester study at our Academy, which will include the lessons, practical exercises in our laboratories, on-site training at NPP V-1 in Jaslovske Bohunice, Slovakia as well as 3 days technical tour to JAVYS (Slovakia), UJV Rez (Czech Rep.) and PURAM (Hungary), respectively. Beside the exams in selected topics (courses), the final thesis written under supervision of recognized experts will be the precondition for graduation and certification of the participants. For the first run of the EDA scheduled on 2014 we would like to focus on VVER decommissioning issues because this reactor type is the most distributed design in the world and many of these units are actually in decommissioning process or will be decommissioned in the near future in Europe. The growing decommissioning market creates a potential for new activities, with highly skilled jobs in an innovative field, involving high-level technologies. A clear global positioning of the EU will stimulate the export of know-how to

  3. Validation of Decommissioning Engineering System Application against KRR-2

    International Nuclear Information System (INIS)

    KAERI is the only expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR (Korea Research Reactor)-1 and 2 and UCP (Uranium Conversion Plant) decommission. This paper contains validation results of the KAERI DES by using KRR-2 decommissioning data. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DES application program. One of decommissioning experience data, KRR-2 was used for KAERI DES validation and it successfully is reflected in KAERI DES

  4. Status of industry standards for decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    This paper discusses how several professional societies are preparing industry standards on nuclear facility decommissioning: ASTM (American Society for Testing and Materials), Nuclear Technology Committee, Decommissioning Subcommittee, E10.03; ASME (American Society of Mechanical Engineers), Nuclear Quality Assurance (NQA) Committee's Working Group on Decommissioning and the Reactor Services Committee's Subcommittee on Decommissioning; and Health Physics Society Standards Committee (HPSSC) working under the auspices of the American National Standards Institute (ANSI). According to the author, the standards of these diverse groups mesh to form a cohesive body of guidance for planning a nuclear facility decommissioning

  5. The Preliminary Decommissioning Plan of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Recently, after 25 years of operation, a preliminary decommissioning plan for the Dalat Nuclear Research Reactor (DNRR) has been produced but as yet it has not been implemented due to the continued operations of the reactor. However, from the early phases of facility design and construction and during operation, the aspects that facilitate decommissioning process have been considered. This paper outlines the DNRR general description, the organization that manages the facility, the decommissioning strategy and associated project management, and the expected decommissioning activities. The paper also considers associated cost and funding, safety and environmental issues and waste management aspects amongst other considerations associated with decommissioning a nuclear research reactor. (author)

  6. Validation of Decommissioning Engineering System Application against KRR-2

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung Gon; Park, Seungkook; Park, Heeseong; Song, Chanho; Ha, Jaehyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    KAERI is the only expert group which has decommissioning experiences and KAERI is trying to develop computer code to converge all the data which has been accumulated during KRR (Korea Research Reactor)-1 and 2 and UCP (Uranium Conversion Plant) decommission. This paper contains validation results of the KAERI DES by using KRR-2 decommissioning data. As a responsible leading group of Korean decommissioning research field, KAERI has been developing DES application program. One of decommissioning experience data, KRR-2 was used for KAERI DES validation and it successfully is reflected in KAERI DES.

  7. A study of the decommissioning cost estimation for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Jeong, Kwan Seong; Lee, Keun Woo; Oh, Won Zin [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    This paper is to study on the decommissioning cost estimation for nuclear facilities of advanced nuclear organizations and countries for deriving the cost factors to be taken considerations into accomplishing decommissioning projects. Of cost categories producing the factors of decommissioning costs, dismantling and waste processing and disposals activities are examined to increase the its costs. Of labor, materials and other costs categories, labor costs are summarized to have overall majorities in the decommissioning cost factors. The main parameters of all factors affecting the decommissioning costs are analyzed as work difficulty, regional labor costs, peripheral cost, disposal cost and final burial costs.

  8. A study of the decommissioning cost estimation for nuclear facilities

    International Nuclear Information System (INIS)

    This paper is to study on the decommissioning cost estimation for nuclear facilities of advanced nuclear organizations and countries for deriving the cost factors to be taken considerations into accomplishing decommissioning projects. Of cost categories producing the factors of decommissioning costs, dismantling and waste processing and disposals activities are examined to increase the its costs. Of labor, materials and other costs categories, labor costs are summarized to have overall majorities in the decommissioning cost factors. The main parameters of all factors affecting the decommissioning costs are analyzed as work difficulty, regional labor costs, peripheral cost, disposal cost and final burial costs

  9. Decontamination and decommissioning of Shippingport commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Dept. of Energy, Pittsburgh, PA (United States)

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  10. Consideration of ISDC for Decommissioning Cost Estimation

    International Nuclear Information System (INIS)

    In 2009, they decided to update the Yellow Book, and began to update it by analyzing user experiences. They found that several countries have adopted the proposed standardized cost structure for the production of cost estimates directly or for mapping national estimates onto a common structure. They also made conclusions that more detailed advice should be given on the use of the standardized structure and on the definition of cost items to avoid ambiguity. The revised cost structure, to be known as the International Structure for Decommissioning Costing (ISDC), was published in 2012. The standardized cost structure developed in the report may be used for estimating the costs of decommissioning of any type of nuclear facility. We analyzed this standardized cost structure (ISDC) and applied it to DECOMMIS which was developed by KAERI. The appropriate estimation system for domestic application was examined by comparing the estimation results. KAERI made WBS code in DECOMMIS and data obtained during decommissioning work of KRR2 and UCP. Recently the IAEA updated the decommissioning cost items and its structure by ISDC. The cost estimation items of the DECOMMIS were applied to ISDC structure. For applying, the ISDC code compared with WBS code of DECOMMIS as on text of the activity name from daily report basis. The mapping result of the ISDC items to WBS code of the DECOMMIS is much different. AS results of this study that it need the corresponding cost category which classified in accordance with the national standard price estimates

  11. CECP, Decommissioning Costs for PWR and BWR

    International Nuclear Information System (INIS)

    1 - Description of program or function: The Cost Estimating Computer Program CECP, designed for use on an IBM personal computer or equivalent, was developed for estimating the cost of decommissioning boiling water reactor (BWR) and light-water reactor (PWR) power stations to the point of license termination. 2 - Method of solution: Cost estimates include component, piping, and equipment removal costs; packaging costs; decontamination costs; transportation costs; burial volume and costs; and manpower staffing costs. Using equipment and consumables costs and inventory data supplied by the user, CECP calculates unit cost factors and then combines these factors with transportation and burial cost algorithms to produce a complete report of decommissioning costs. In addition to costs, CECP also calculates person-hours, crew-hours, and exposure person-hours associated with decommissioning. 3 - Restrictions on the complexity of the problem: The program is designed for a specific waste charge structure. The waste cost data structure cannot handle intermediate waste handlers or changes in the charge rate structures. The decommissioning of a reactor can be divided into 5 periods. 200 different items for special equipment costs are possible. The maximum amount for each special equipment item is 99,999,999$. You can support data for 10 buildings, 100 components each; ESTS1071/01: There are 65 components for 28 systems available to specify the contaminated systems costs (BWR). ESTS1071/02: There are 75 components for 25 systems available to specify the contaminated systems costs (PWR)

  12. Decontamination and decommissioning focus area. Technology summary

    International Nuclear Information System (INIS)

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities

  13. Spent fuel disposal impact on plant decommissioning

    International Nuclear Information System (INIS)

    Regardless of the decommissioning option selected (DECON, SAFSTOR, or ENTOMB), a 10 CFR 50 license cannot be terminated until the spent fuel is either removed from the site or stored in a separately 10 CFR 72 licensed Independent Spent Fuel Storage Installation (ISFSI). Humboldt Bay is an example of a plant which has selected the SAFSTOR option. Its spent fuel is currently in wet storage in the plant's spent fuel pool. When it completes its dormant period and proceeds with dismantlement, it will have to dispose of its fuel or license an ISFSI. Shoreham is an example of a plant which has selected the DECON option. Fuel disposal is currently critical path for license termination. In the event an ISFSI is proposed to resolve the spent fuel removal issue, whether wet or dry, utilities need to properly determine the installation, maintenance, and decommissioning costs for such a facility. In considering alternatives for spent fuel removal, it is important for a utility to properly account for ISFSI decommissioning costs. A brief discussion is presented on one method for estimating ISFSI decommissioning costs

  14. Virtual reality technology and nuclear decommissioning

    International Nuclear Information System (INIS)

    During past years, an important activity at the Halden VR Centre (HVRC), Institute for Energy Technology (IFE) in Halden has been the development of virtual reality (VR) software for use in the decommissioning of nuclear facilities. It is hoped that use of VR technology in the planning process may prove beneficial both with regard to minimizing workers' radiation exposure, as well as in helping to achieve the efficient use of human resources. VR can also be a valuable tool in the dismantling phase. In addition to this, VR provides the decommissioning project team with an effective medium in presentations to the public, as well as for communicating with relevant engineers and licensing authorities. The most extensive IFE VR decommissioning project is at present the VRdose project, conducted in co-operation with the Japan Nuclear Cycle Development Institute (JNC). VRdose will be used in the decommissioning of one of JNC's reactors, the Fugen Nuclear Power Station.The paper describes the present and planned versions of the VRdose system, but also briefly describes other related activities at HVRC. (author)

  15. The decommissioning of the water boiler reactor

    International Nuclear Information System (INIS)

    Following completion of service, the Water Boiler Reactor (WBR) has been decommissioned by the Institute of Nuclear Energy Research (INER) under the Atomic Energy Council's (AEC) regulation. The WBR is a light water moderated and graphite reflected research reactor with peak thermal power of 100 kW. The unique feature of the WBR is that it is fueled with uranyl sulfate (UO2SO4) which is in liquid form. Since there is another research reactor owned by I7NER of megawatt scale in the planning stages for decommissioning, the WBR project was conducted with great care to accumulate experience. Extensive planning by INER and step-by-step regulative activities by AEC were followed regardless of the structural simplicity of the WBR. Valuable information was gathered in the task and will be useful for preparing future decommissioning needs. The major work in the WBR decommissioning project was finished within six months and the accumulated dose received during the work was 1 9.63mSv. (author)

  16. Decommissioning progress at Fort St. Vrain

    International Nuclear Information System (INIS)

    Decommissioning of commercial nuclear power plants in the US has initiated with the current dismantling of the Fort St. Vrain Nuclear Generation Station in Colorado. Owned and operated by Public Service Company of Colorado (PSC), the unit was permanently shutdown in 1989. After a thorough evaluation by the utility of the DECON versus SAFSTOR options, the decision was made to proceed with decommissioning the power station for unrestricted release. In 1990 a team comprised of Westinghouse Electric Corporation and Morrison Knudsen Corporation was selected by PSC to perform the decommissioning on a fixed price, turnkey basis. The Westinghouse Team (WT) concept was based on an innovative approach for dismantling the Prestressed Concrete Reactor Vessel (PCRV) by flooding it and performing most operations using underwater tooling. This approach provided the maximum shielding and contamination control along with an optimum balance of schedule, cost and ALARA with minimum risks. An overview of the decommissioning progress to date plus overall perspectives of the factors facing utilities in this area will be reviewed

  17. Decommissioning technology development for research reactors

    International Nuclear Information System (INIS)

    Although it is expected that the decommissioning of a nuclear power plant will happen since 2020, the need of partial decommissioning and decontamination for periodic inspection and life extension has been on an increasing trend and domestic market has gradually been extended. Therefore, in this project the decommissioning DB system on the KRR-1 and 2 was developed as establishing the information classification system of the research reactor dismantling and the structural design and optimization of the decommissioning DB system. Also in order to secure the reliability and safety about the dismantling process, the main dismantling simulation technology that can verify the dismantling process before their real dismantling work was developed. And also the underwater cutting equipment was developed to remove these stainless steel parts highly activated from the RSR. First, the its key technologies were developed and then the design, making, and capability analysis were performed. Finally the actual proof was achieved for applying the dismantling site. an automatic surface contamination measuring equipment was developed in order to get the sample automatically and measure the radiation/radioactivity

  18. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  19. Estimation of decommissioning costs: History and status

    International Nuclear Information System (INIS)

    In the mid-1970s. the subject of the cost of decommissioning nuclear power stations became a topic of considerable interest to the industry. A number of early demonstration plants in the US had been retired and most had been entombed. Only one plant, the Elk River Reactor (a small boiling water facility) had been totally dismantled and removed from the site (Welsh 1974). Thus, there was a very limited data base from which to develop estimates for decommissioning the much larger stations then under construction and coming into service. The nuclear industry sponsored another study for estimating decommissioning costs using an approach known as the Unit Cost Factor (UCF) method. This methodology is documented in AIF/NESP-0036 (LaGuardia 1986). and forms the basis for many of the estimates prepared by (or for) utilities for usein making submissions to their utility rate commissions to recover future decommissioning costs through current rates. This and other estimating approaches mentioned above are discussed in more detail in this paper

  20. BNFL nuclear decommissioning liabilities management program

    International Nuclear Information System (INIS)

    The objective of this paper is to describe BNFL's policy and strategy for decommissioning and also to summarize the overall scope of nuclear liabilities in the wider field of waste retrieval and storage, as well as the dismantling and demolition aspects of decommissioning. BNFL's recently established organisational arrangements for discharging all types of these liabilities are explained, together with a review of practical progress in dealing with them. Organisational changes in recent years have amalgamated decommissioning work with operations covering waste storage and retrieval operations. A strategy of minimising residual activity in shutdown plants is pursued, followed by dismantling and demolition on appropriate time scales to minimise risk and cost. Since April 1995, a new BNFL subsidiary, Nuclear Liabilities Management Company Limited has taken responsibility for discharge of BNFL's Waste Retrieval and Decommissioning liabilities on all BNFL sites. NLM has the objectives of optimal and lowest cost management of liabilities and much clearer segregation of physical operations from project specification and planning. The Ministry of Defense (MoD) policy, strategy, work programmes and progress for the Atomic Weapons Establishment (AWE) are also outlined. MoD/AEA has established an equivalent strategy for dealing with its liabilities. (J.S.). 5 refs., 2 figs., 4 appends

  1. Decontamination and decommissioning focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  2. Y-12 Plant Decontamination and Decommissioning Program

    International Nuclear Information System (INIS)

    The Decontamination and Decommissioning (D and D) Program at the Oak Ridge Y-12 Plant is part of the Environmental Restoration (ER) and Waste Management (WM) Programs (ERWM). The objective of the ER Program is to provide Y-12 the capability to meet applicable environmental regulations through facility development activities and site remedial actions. The WM Program supports the ER program. The D and D Program provides collective management of sites within the Plant which are in need of decontamination and decommissioning efforts, prioritizes those areas in terms of health, safety, and environmental concerns, and implements the appropriate level of remedial action. The D and D Program provides support to identifiable facilities which formerly served one or more of the many Plant functions. Program activities include (1) surveillance and maintenance of facilities awaiting decommissioning; (2) planning safe and orderly facility decommissioning; and (3) implementing a program to accomplish facility disposition in a safe, cost effective, and timely manner. In order to achieve the first objective, a formal plan which documents the surveillance and maintenance needs for each facility has been prepared. This report provides this documentation for the Y-12 facilities currently included in the D and D Program, as well as those planned for future inclusion in the Program, and includes projected resource requirements for the planning period of FY 1993 through FY 2000

  3. Sodium Reactor Experiment decommissioning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  4. Offshore decommissioning issues: Deductibility and transferability

    International Nuclear Information System (INIS)

    Dealing with the decommissioning of petroleum installations is a relatively new challenge to most producer countries. It is natural to expect that industry's experience in building platforms is much greater than the one of dismantling them. Even if manifold and varied efforts are underway towards establishing international 'best practices' standards in this sector, countries still enjoy rather extensive discretionary power as they practice a particular national style in the regulation of decommissioning activities in their state's jurisdiction. The present paper offers a broad panorama of this discussion, concentrating mainly on two controversial aspects. The first one analyses the ex-ante deductibility of decommissioning costs as they constitute an ex-post expense. The second discussion refers to the assignment of decommissioning responsibility in the case of transfer of exploration and production rights to new lessees during the project's life. Finally the paper applies concepts commonly used in project financing as well as structures generally used in organising pension funds to develop insights into these discussions

  5. MODELLING OF NUCLEAR POWER PLANT DECOMMISSIONING FINANCING

    Czech Academy of Sciences Publication Activity Database

    Bemš, J.; Knápek, J.; Králík, T.; Hejhal, M.; Kubančák, Ján; Vašíček, J.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 519-522. ISSN 0144-8420 Institutional support: RVO:61389005 Keywords : nuclear power plant * methodology * future decommissioning costs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.913, year: 2014

  6. Modelling of nuclear power plant decommissioning financing

    Czech Academy of Sciences Publication Activity Database

    Bemš, J.; Knápek, J.; Králík, T.; Hejhal, M.; Kubančák, Ján; Vašíček, J.

    Vol. 2015. Oxford: Oxford Journals, 2015, s. 1-4. ISSN 1742-3406. [8th International Conference on High Levels of Natural Radiation and Radon Areas (ICHLNRRA 2014). Prague (CZ), 01.09.2014-05.09.2014] Institutional support: RVO:61389005 Keywords : nuclear power plant * methodology * future decommissioning costs Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  7. Radiological characterization of nuclear plants under decommissioning

    International Nuclear Information System (INIS)

    In the present work a description of major problems encountered in qualitative and quantitative radiological characterization of nuclear plants for decommissioning and decontamination purpose is presented. Referring to several nuclear plant classes activation and contamination processes, direct and indirect radiological analysis and some italian significant experience are descripted

  8. Development of computer program for estimating decommissioning cost - 59037

    International Nuclear Information System (INIS)

    The programs for estimating the decommissioning cost have been developed for many different purposes and applications. The estimation of decommissioning cost is required a large amount of data such as unit cost factors, plant area and its inventory, waste treatment, etc. These make it difficult to use manual calculation or typical spreadsheet software such as Microsoft Excel. The cost estimation for eventual decommissioning of nuclear power plants is a prerequisite for safe, timely and cost-effective decommissioning. To estimate the decommissioning cost more accurately and systematically, KHNP, Korea Hydro and Nuclear Power Co. Ltd, developed a decommissioning cost estimating computer program called 'DeCAT-Pro', which is Decommission-ing Cost Assessment Tool - Professional. (Hereinafter called 'DeCAT') This program allows users to easily assess the decommissioning cost with various decommissioning options. Also, this program provides detailed reporting for decommissioning funding requirements as well as providing detail project schedules, cash-flow, staffing plan and levels, and waste volumes by waste classifications and types. KHNP is planning to implement functions for estimating the plant inventory using 3-D technology and for classifying the conditions of radwaste disposal and transportation automatically. (authors)

  9. Decommissioning of nuclear facilities. Feasibility, needs and costs

    International Nuclear Information System (INIS)

    Reactor decommissioning activities generally are considered to begin after operations have ceased and the fuel has been removed from the reactor, although in some countries the activities may be started while the fuel is still at the reactor site. The three principal alternatives for decommissioning are described. The factors to be considered in selecting the decommissioning strategy, i.e. a stage or a combination of stages that comprise the total decommissioning programme, are reviewed. One presents a discussion of the feasibility of decommissioning techniques available for use on the larger reactors and fuel cycle facilities. The numbers and types of facilities to be decommissioned and the resultant waste volumes generated for disposal will then be projected. Finally, the costs of decommissioning these facilities, the effect of these costs on electricity generating costs, and alternative methods of financing decommissioning are discussed. The discussion of decommissioning draws on various countries' studies and experience in this area. Specific details about current activities and policies in NEA Member Countries are given in the short country specific Annexes. The nuclear facilities that are addressed in this study include reactors, fuel fabrication facilities, reprocessing facilities, associated radioactive waste storage facilities, enrichment facilities and other directly related fuel cycle support facilities. The present study focuses on the technical feasibility, needs, and costs of decommissioning the larger commercial facilities in the OECD member countries that are coming into service up to the year 2000. It is intended to inform the public and to assist in planning for the decommissioning of these facilities

  10. STATUS OF THE NRC'S DECOMMISSIONING PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D. A.; Camper, L. W.; Buckley, J.

    2002-02-25

    On July 21, 1997, the U.S. Nuclear Regulatory Commission published the final rule on Radiological Criteria for License Termination (the License Termination Rule) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submit Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program. It discusses the status of permanently shut-down commercial power reactors, complex decommissioning sites, and sites listed in the Site Decommissioning Management Plan. The paper provides the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including a Standard Review Plan for evaluating plans and information submitted by licensees to support the decommissioning of nuclear facilities and the D and D Screen software for determining the potential doses from residual radioactivity. Finally, it discusses the status of the staff's current efforts to streamline the decommissioning process.

  11. Decommissioning of Facilities. General Safety Requirements. Pt. 6

    International Nuclear Information System (INIS)

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  12. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Arabic Edition)

    International Nuclear Information System (INIS)

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  13. Decommissioning of Facilities. General Safety Requirements. Pt. 6 (Chinese Edition)

    International Nuclear Information System (INIS)

    Decommissioning is the last step in the lifetime management of a facility. It must also be considered during the design, construction, commissioning and operation of facilities. This publication establishes requirements for the safe decommissioning of a broad range of facilities: nuclear power plants, research reactors, nuclear fuel cycle facilities, facilities for processing naturally occurring radioactive material, former military sites, and relevant medical, industrial and research facilities. It addresses all the aspects of decommissioning that are required to ensure safety, aspects such as roles and responsibilities, strategy and planning for decommissioning, conduct of decommissioning actions and termination of the authorization for decommissioning. It is intended for use by those involved in policy development, regulatory control and implementation of decommissioning

  14. Roadmap for implementation of light water reactor decommissioning

    International Nuclear Information System (INIS)

    While decommissioning of Tokai-mura reactor and JATR reactor has already started in Japan, Tsuruga reactor is announced shutdown in 2010 as the first decommissioning of commercial light water reactor (LWR). In 2030s or may be more earlier due to economic reasons, decommissioning of LWRs will take place in succession. Since rational decommissioning needs operating data of individual plants, ample time should be allowed for planning the reactor decommissioning. Committee of Nuclear Power Engineering Cooperation (NUPEC) had identified relevant issues to implement LWR decommissioning and established roadmaps showing fundamental approaches to solve seventeen items categorized in seven areas as action items. Harmonization of policy, regulations and technology development as a whole and reflection of accumulated lessons learned from overseas decommissioning experiences needed further study. (T. Tanaka)

  15. Development of the Decommissioning Project Management System, DECOMMIS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, U. S.; Park, J. H.; Lee, K. W.; Hwang, D. S.; Park, S. K.; Hwang, S. T.; Paik, S. T.; Choi, Y. D.; Chung, K. H.; Lee, K. I.; Hong, S. B

    2007-03-15

    At the Korea Atomic Energy Research Institute(KAERI), two projects for decommissioning of the research reactors and uranium conversion plant are carried out. The management of the projects can be defined as 'the decision of the changes of the decommissioning methodologies for the more efficient achievement of the project at an adequate time and to an improved method'. The correct decision comes from the experiences on the decommissioning project and the systematic experiences can be obtained from the good management of the decommissioning information. For this, a project management tool, DECOMMIS, was developed in the D and D Technology Division, which has the charge of the decommissioning projects at the KAERI, and its purpose was extended to following fields; generation of reports on the dismantling waste for WACID, record keeping for the next decommissioning projects of nuclear facilities, provision of fundamental data for the R and D of the decommissioning technologies.

  16. Study on decommissioning (Annual safety research report, JFY 2010)

    International Nuclear Information System (INIS)

    This project consists of researches for 1. review plan for decommissioning plan, 2. specific method to confirm completion of decommissioning and 3. dismantling waste management method. Dismantling experiences and knowledge of domestic and international trends of decommissioning were examined and the confirmation items for authorization of decommissioning plan were extracted. The estimation of site contamination during dismantling period was performed by use of radioactive material release data of the Tokai NPP. Domestic and some foreign countries knowledge of experience of decommissioning completion confirmation was examined. This knowledge was reflected in NISA's Committee Report 'Basic concept to confirm completion of decommissioning (Interim report) - Main issues and direction of future investigation-'. Three concrete cores were sampled in biological shield of the Tokai NPP to establish method of waste package verification based on radiation level evaluation in decommissioning and dismantling waste management method. (author)

  17. Decommissioning of TRIGA Mark II type reactor

    International Nuclear Information System (INIS)

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  18. Decommissioning of TRIGA Mark II type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Jeong, Gyeonghwan; Moon, Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The first research reactor in Korea, KRR 1, is a TRIGA Mark II type with open pool and fixed core. Its power was 100 kWth at its construction and it was upgraded to 250 kWth. Its construction was started in 1957. The first criticality was reached in 1962 and it had been operated for 36,000 hours. The second reactor, KRR 2, is a TRIGA Mark III type with open pool and movable core. These reactors were shut down in 1995, and the decision was made to decommission both reactors. The aim of the decommissioning activities is to decommission the KRR 2 reactor and decontaminate the residual building structures and site, and to release them as unrestricted areas. The KRR 1 reactor was decided to be preserve as a historical monument. A project was launched for the decommissioning of these reactors in 1997, and approved by the regulatory body in 2000. A total budget for the project was 20.0 million US dollars. It was anticipated that this project would be completed and the site turned over to KEPCO by 2010. However, it was discovered that the pool water of the KRR 1 reactor was leaked into the environment in 2009. As a result, preservation of the KRR 1 reactor as a monument had to be reviewed, and it was decided to fully decommission the KRR 1 reactor. Dismantling of the KRR 1 reactor takes place from 2011 to 2014 with a budget of 3.25 million US dollars. The scope of the work includes licensing of the decommissioning plan change, removal of pool internals including the reactor core, removal of the thermal and thermalizing columns, removal of beam port tubes and the aluminum liner in the reactor tank, removal of the radioactive concrete (the entire concrete structure will not be demolished), sorting the radioactive waste (concrete and soil) and conditioning the radioactive waste for final disposal, and final statuses of the survey and free release of the site and building, and turning over the site to KEPCO. In this paper, the current status of the TRIGA Mark-II type reactor

  19. Scientific rationale of Saturn's in situ exploration

    CERN Document Server

    Mousis, O; Lebreton, J -P; Wurz, P; Cavalié, T; Coustenis, A; Courtin, R; Gautier, D; Helled, R; Irwin, P G J; Morse, A D; Nettelmann, N; Marty, B; Rousselot, P; Venot, O; Atkinson, D H; Waite, J H; Reh, K R; Simon-Miller, A; Atreya, S; André, N; Blanc, M; Daglis, I A; Fischer, G; Geppert, W D; Guillot, T; Hedman, M M; Hueso, R; Lellouch, E; Lunine, J I; Murray, C D; O'Donoghue, J; Rengel, M; Sanchez-Lavega, A; Schmider, F -X; Spiga, A; Spilker, T; Petit, J -M; Tiscareno, M S; Ali-Dib, M; Altwegg, K; Bouquet, A; Briois, C; Fouchet, T; Guerlet, S; Kostiuk, T; Lebleu, D; Moreno, R; Orton, G S; Poncy, J

    2014-01-01

    Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk element...

  20. European Nuclear Decommissioning Training Facility II

    International Nuclear Information System (INIS)

    SCK-CEN co-ordinates a project called European Nuclear Decommissioning Training Facility II (EUNDETRAF II) in the Sixth Framework Programme on Community activities in the field of research, technological development and demonstration for the period 2002 to 2006. This was a continuation of the FP5 project EUNDETRAF. EUNDETRAF II is a consortium of main European decommissioners, such as SCK-CEN, EWN (Energie Werke Nord, Greifswald Germany), Belgatom (Belgium), SOGIN Societa Gestione Impiantio Nucleari, Italy), Universitaet Hannover (Germany), RWE NUKEM (United Kingdom), DECOM Slovakia Slovakia), CEA Centre d'Energie Atomique, France), UKAEA (United Kingdom's Atomic Energy Agency, United Kingdom) and NRG (Nuclear Research and consultancy Group, Netherlands). The primary objective of this project is to bring together this vast skill base and experience; to consolidate it for easy assimilation and to transfer to future generations by organising a comprehensive training programme.Each training course has a one-week theoretical and a one-week practical component. The theoretical part is for a broader audience and consists of lectures covering all the main aspects of a decommissioning. The practical part of the course includes site visits and desk top solutions of anticipated decommissioning problems. Due to operational constraints and safety considerations, the number of participants to this part of the course is strictly limited. The partners intend to organise altogether two two-week EUNDETRAF II training courses over a period of three years. Another goal is to disseminate the existing theory as well as the practical know-how to personnel of the third countries. Finally it is important to bring together the principal decommissioning organisations undertaking various decommissioning activities. The project creates a forum for regular contacts to exchange information and experiences for mutual benefit of these organisations as well as to enhance skill base in Europe to

  1. The BR-3 decommissioning project, Belgium

    International Nuclear Information System (INIS)

    BR-3 was a small 10 MW(e) PWR which was shut down in 1987 after 25 years of operation. It was selected as an EU pilot project for the research and development programme on decommissioning of nuclear installations. The decommissioning project started in 1989. The optimization of the management of waste material generated by decommissioning activities has always been an intensive task and the minimization of the radioactive waste a priority. Over the past 16 years, the factors influencing the management of waste have been constantly evolving in Belgium, steered mainly by the following changes in technologies, regulations and economic conditions: - The publication of the Royal Decree of 20 July 2001, establishing a legal frame on decommissioning and including a set of clearance levels; - The improvement of the instrumentation used for characterization; - The increase in the performance of decontamination techniques; - The cost increase of the waste disposal paths; - The implementation of international recommendations in areas such as environmental impact, waste categorization, human aspects, ethics, etc.; -The strengthening of the legislation related to industrial safety and environmental release; - The diminution of the background radiation level at the decommissioning site itself. The first part of this annex gives a description of relevant influencing factors in order to define the context in which the dismantling activities took place. The second part puts in perspective the strategy chosen for the management of the waste, recognizing the influencing factors. As mentioned in the scope of this report, the focus is LLW. High and intermediate level wastes for which disposal in dedicated repositories is assumed are outside the scope of this report. They are therefore not examined in detail here

  2. In-situ tests in the JMTR

    International Nuclear Information System (INIS)

    The JMTR project has been developing various kind of irradiation rigs and instrumentation techniques for irradiation tests according to needs of users of JMTR. Currently, the needs for in-situ irradiation tests in research reactors are increasing in such fields as mechanical tests of reactor construction materials, measurement of physical/chemical/thermal property changes during irradiation, and examination of performance of fuels and materials. This paper describes some in-situ tests in the JMTR. (author)

  3. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  4. Nuclear in situ recovery of oil from oil shale

    International Nuclear Information System (INIS)

    A plan is presented for production of oil by retorting oil shale in situ after breaking it with underground nuclear explosives. Reserves of oil shale of thickness and grade suitable (greater than 20 gal/ton) for this process occur in the Piceance Creek Basin of Colorado, and are estimated to contain 640 x 109 barrels of oil in place. Cost projections indicate that this oil could be produced at a price ranging from $2.00 to $3.30 at the well head with a 20% rate of return on investment (discounted cash flow). The price and production rate vary with oil shale thickness. At a rate of 32 nuclear chimneys per year in oil shale ranging in thickness from 1000 to 2000 ft, production varies from 28 x 106 bbl/a($3.30/bbl) to 121 x 106bbl/a ($2.00/bbl). Capital requirements for this in situ process are estimated to be 20 times less than those required by a surface retorting process. Environmental problems such as the need to dispose of large volumes of waste rock associated with conventional mining and surface retorting of oil shale would be largely avoided. De-watering problems would be similar to those associated with other methods of development. Problems of seismic ground motion and possible contamination of the oil and groundwater appear manageable. Because of its potential economic and environmental advantages, it is believed that this method should be considered for development of this vast resource. (author)

  5. A survey of strippable and tie-down coatings for use in the decommissioning of alpha-active facilities

    International Nuclear Information System (INIS)

    The paper concerns temporary coatings for use in decommissioning operations of alpha-active facilities. The various temporary coating options are described with respect to: decontamination by removal of a previously applied protective coating, and the in-situ application of a coating for tie-down or decontamination duties. The specifications for coating systems to be used in active areas are defined in general terms. A survey of currently available temporary coating material is given, as well as the suitability of commercially available coating systems. (U.K.)

  6. The effect of wind, ice and waves on the in-situ burning of emulsions and aged oils

    International Nuclear Information System (INIS)

    A series of small- and meso-scale in-situ burning tests was conducted on Spitsbergen to define the limitations and burn effectiveness of in-situ burning of water-in-oil emulsions in terms of water content, degree of evaporation, and film thickness; and to study how the presence of ice, waves, and wind affect in-situ burning. The tests were conducted in basins cut into the ice on a fjord. The size of the basins ranged from 4 to 300 m2. The largest basin was fitted with a wavemaker. Evaporated water-free oil was found to be easily ignited and to burn with high efficiency. The burn efficiency was not affected by waves. Highly evaporated oil with 25% water was hard to ignite with gelled gasoline. In the presence of waves, it was not possible to ignite a 12.5% stable water-in-oil emulsion. The presence of waves reduced the burn efficiency for emulsion with a low water content. The main problem with in-situ burning of emulsions is flame spreading; emulsions require a large initial burn area for the burn to be self-sustaining. Small ice floes and slush did not influence burn efficiency in a negative way. In-situ burning could not be accomplished in wind speeds above 10 m/s. 2 refs., 5 figs., 5 tabs

  7. Fugitive emissions of methane from abandoned, decommissioned oil and gas wells.

    Science.gov (United States)

    Boothroyd, I M; Almond, S; Qassim, S M; Worrall, F; Davies, R J

    2016-03-15

    This study considered the fugitive emissions of methane (CH4) from former oil and gas exploration and production wells drilled to exploit conventional hydrocarbon reservoirs onshore in the UK. This study selected from the 66% of all onshore wells in the UK which appeared to be properly decommissioned (abandoned) that came from 4 different basins and were between 8 and 79years old. The soil gas above each well was analysed and assessed relative to a nearby control site of similar land use and soil type. The results showed that of the 102 wells considered 30% had soil gas CH4 at the soil surface that was significantly greater than their respective control. Conversely, 39% of well sites had significant lower surface soil gas CH4 concentrations than their respective control. We interpret elevated soil gas CH4 concentrations to be the result of well integrity failure, but do not know the source of the gas nor the route to the surface. Where elevated CH4 was detected it appears to have occurred within a decade of it being drilled. The flux of CH4 from wells was 364±677kg CO2eq/well/year with a 27% chance that the well would have a negative flux to the atmosphere independent of well age. This flux is low relative to the activity commonly used on decommissioned well sites (e.g. sheep grazing), however, fluxes from wells that have not been appropriately decommissioned would be expected to be higher. PMID:26822472

  8. SOGIN Decommissioning strategy and funding (Italy)

    International Nuclear Information System (INIS)

    Statement: In Italy, as it is well known, there are no more operational NPPs. The four existing nuclear plants are definitely shutdown and ready for decommissioning. Considerations on decommissioning funding system have to take into account this particular situation. Strategy for decommissioning: New inputs given to SOGIN by the Italian Government are: conditioning all radioactive waste existing on the NPPs within the year 2010, release all nuclear sites - free of radiological constraints - by 2020. The last task is conditioned by availability of the national waste repository by the year 2009. Strategy for decommissioning: Key issue is prompt dismantling considering No more nuclear activities in Italy and Progressive loss of competencies. Previously Existing funds: Before plant shutdown, ENEL has cumulated provisions for decommissioning, even in absence of a clear regulatory framework. These provisions were not sufficient for decommissioning, considering the early closure of the plants. An additional fund was granted to ENEL by the government, in the form of a 'credit' to be paid by the 'electric system' (CCSE). This fund (provisions + credit) was considered sufficient by ENEL for a decommissioning with Safe Store strategy (fund = discounted foreseen costs). The total fund (provisions + credit) was assigned to Sogin at the incorporation date. The amount, money 1999, was about 800 M euros. Considering the new context: new strategy (Prompt Dismantling with site release by 2020), Sogin constitution (societal costs), new economic conditions. The fund was not considered sufficient for all Sogin tasks. This conclusion was agreed upon also by the independent 'Authority for electric energy and gas'. A new regulatory framework was therefore defined. Regulatory aspects: The Legislative Decree 79/99 has stated that costs for the decommissioning of NPP, fuel cycle back end and related activities should be considered as stranded costs for the general electric system. The same

  9. NMSS handbook for decommissioning fuel cycle and materials licensees

    International Nuclear Information System (INIS)

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ''Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.'' The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC's SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook

  10. NMSS handbook for decommissioning fuel cycle and materials licensees

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M. [and others

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  11. Nuclear submarine decommissioning. Radiation risk assessments

    International Nuclear Information System (INIS)

    Decommissioning of the ships and vessels with nuclear power installations is a problem of primary and worldwide importance. It is essential for both the naval fleet and the military industrial complex as a whole. Nuclear submarines decommissioning is accompanied by a number of questions concerning the development and performance of the safe technologies for managing radioactive equipment and nuclear waste from the vessels with the nuclear power facilities. Decommissioning of nuclear submarines including unloading of the spent fuel should take place at the operating ship yards and repairing plants that are usually situated close to the densely populated areas and living blocks. Decommissioning includes a series of the potentially dangerous operations with radioactive materials, e.g. fuel unloading, disposal of coolant, dismantling of the contaminated equipment, cutting out the reactor compartment, etc. As a result a great amount of highly radioactive liquid and solid wastes are formed including the cut-out reactor compartment and spent fuel that produce additional radioactive load on the local environment and population. Estimation of the radiation risk for the environment and population due to decommissioning becomes an actual and necessary question. Apart from this the process of decommissioning may cause accidents followed by complicated radiation situation with high dose rates and contamination of the environment. Analysis of the most probable scenarios of the accident development and estimation of the expected radiation consequences should help to assess the risk rate for radiation impact on the environment and population as well as to develop an adequate environmental monitoring and to undertake measures for the accident localisation and liquidation of its consequences. A separate problem is management of the reactor compartment containing radioactive equipment of the steam producing installation and biological protection. Since there are no specialised

  12. On Decommissioning Costs of the Ranstad Site

    International Nuclear Information System (INIS)

    The main objective of this study has been to extend the review of the future cost to decommission and dismantling the industrial area at the site of the old uranium mine at Ranstad in Sweden. The feedback of experience and actual costs from a decommissioning project in the United Kingdom (A26 in Springfields) has been used to help in the assessment of the reasonableness of the estimated costs for decommissioning of the old uranium mine in Ranstad. A quantitative (albeit subjective) statement about the accuracy of the Ranstad cost estimate has been developed. Also, the factors relevant to the allocation of costs between the Swedish state and the current owners of the old uranium mine site have been evaluated and presented. The study has developed the following main conclusions: - The importance of thorough characterization/radiological mapping to the selection of the optimum decommissioning approach (technique) has been reinforced very strongly. - Thorough characterization has the related consequence of being able to better define the costs of decommissioning, in terms of equipment needed, labour hours required and, importantly, the volumes of different categories of waste requiring different routes (and associated different unit costs) for ultimate disposition. - Uncertainties in the Ranstad decommissioning cost estimate nevertheless remain, in particular relating to the viability of the proposed approach to dismantling and decontaminating the acid proof bricks that line the pools in the Large Leaching Hall; a method that is acknowledged to be not proven. The outcome could have an impact on actual dismantling and decontamination costs, as well as on the costs of ultimate waste disposition. The KB2010 cost estimate report does not offer an alternative in the event that the base plan proves to be unfeasible. - On balance it would appear that the continued presence of RMA at the Ranstad site ultimately will provide a net cost benefit to the program. The extra costs

  13. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Science.gov (United States)

    2010-07-01

    ... Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit a written report to... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After I decommission a pipeline,...

  14. A miniaturized sensor system for in situ robotic characterization of hazardous waste

    International Nuclear Information System (INIS)

    This paper describes current research and development on miniaturized sensing systems for use during in situ characterization of nuclear waste storage tanks, buried waste sites, and decommissioned production facilities. Each miniaturized sensor system will consist of a suite of chemical, radiological, and physical properties sensors integrated into a compact package which will be mounted on the end of a robotic arm and/or vehicle. While the specific size of this remote sensor head and the types of sensors included will depend on site needs, the supporting generic computing system may be used for other waste characterization applications. This computing system will contain all necessary hardware and software to acquire, combine, interpret, display, and archive a wide range of sensor data. This paper describes the present status of the project, the lessons learned from the first prototype, and planned future designs of the next generation system. 7 refs

  15. In-situ gamma-PHA measurements to support unconditional release of 235-F chiller units

    International Nuclear Information System (INIS)

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facility Decommission Division (FDD) to conduct in-situ gamma-ray pulse height analysis measurements to support the unconditional release of 235-F chiller units. The chiller units were used to cool process water in the 235-F facility. The measurements' main goal is to confirm that there is no process-related contaminants present on the chillers. For each of the two F-area clean water chillers, the authors have acquired ten gamma-ray pulse height analysis spectra. This report will discuss the purpose of the measurements, the experimental setup, data acquisition, calculations and results, and a conclusion of the study

  16. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  17. Efficacy monitoring of in situ fuel bioremediation

    International Nuclear Information System (INIS)

    The wide-scale, multiple-purpose use of fossil fuels throughout the industrialized world has resulted in the inadvertent contamination of myriad environments. Given the scope and magnitude of these environmental contamination problems, bioremediation often represents the only practical and economically feasible solution. This is especially true when depth of contamination, magnitude of the problem, and nature of contaminated material preclude other remedial actions, short of the no-response alternative. From the perspective, the effective, safe and scientifically valid use of in situ bioremediation technologies requires cost-efficient and effective implementation strategies in combination with unequivocal approaches for monitoring efficacy of performance. Accordingly, with support from the SERDP program, the authors are field-testing advanced in situ bioremediation strategies and new approaches in efficacy monitoring that employ techniques instable carbon and nitrogen isotope biogeochemistry. One field demonstration has been initiated at the NEX site in Port Hueneme, CA (US Navy's National Test Site). The objectives are: (1) to use stable isotopes as a biogeochemical monitoring tool for in situ bioremediation of refined petroleum (i.e., BTEX), and (2) to use vertical groundwater circulation technology to effect in situ chemical containment and enhanced in situ bioremediation

  18. Decommissioning policy and programme progress BNFL

    International Nuclear Information System (INIS)

    British Nuclear Fuels Ltd (BNFL) reviewed decommissioning liabilities in 1988 and established a revised policy covering the technical and financial provisioning requirements for the next 100 years. At the Sellafield site the work programme has been steadily expanded over the past ten years and now includes all shutdown facilities. Of 26 projects identified, four have been completed and substantial progress made on the remainder. Approximately 35M pounds has been spent to date and a further 54M pounds financially sanctioned against the 390M pounds estimated for the programme. Project needs are leading a supporting development programme targeted at cost reduction and towards improving the quality of long-term estimates. The policy, programme and some of the projects are briefly described and an outline is given of some of the enhanced capabilities which have matured the capability for safe and cost effective decommissioning of fuel cycle facilities. (author) 8 refs.; 2 tabs

  19. Decommissioning of an uranium hexafluoride pilot plant

    International Nuclear Information System (INIS)

    The Institute of Nuclear and Energetic Researches has completed fifty years of operation, belongs to the National Commission for Nuclear Energy, it is situated inside the city of Sao Paulo. The IPEN-CNEN/SP is a Brazilian reference in the nuclear fuel cycle, researches in this field began in 1970, having dominance in the cycle steps from Yellow Cake to Uranium Hexafluoride technology. The plant of Uranium Hexafluoride produced 35 metric tonnes of this gas by year, had been closed in 1992, due to domain and total transference of know-how for industrial scale, demand of new facilities for the improvement of recent researches projects. The Institute initiates decommissioning in 2002. Then, the Uranium Hexafluoride pilot plant, no doubt the most important unit of the fuel cycle installed at IPEN-CNEN/SP, beginning decommissioning and dismantlement (D and D) in 2005. Such D and D strategies, planning, assessment and execution are described, presented and evaluated in this paper. (author)

  20. Perspective of decommissioning in East European countries

    International Nuclear Information System (INIS)

    A regional co-operation was organized in 1986 between East European countries on problems connected with the last stage of the NPP unit life cycle. Closure of a nuclear power plant (NPP) unit is considered as a problem with influence upon the safety of the nuclear energetics. Bulgaria, the USSR and Czechoslovakia have united their efforts establishing the Joint Venture for Decommissioning NPP 'Decom' thus giving a possibility for a safe and effective NPP unit decommissioning. At present a preparatory work is being conducted at the Joint Venture on all aspects of the problem - ecological, social, technical and economic. A certain practical experience has been accumulated. Research performed previously has delivered certain scientific and technical results. (author) 1 tab

  1. Decommissioning Experience: Apsara Research Reactor, India

    International Nuclear Information System (INIS)

    Full text: In India, at the Bhabha Atomic Research Centre, a 1 MW(th) pool type research reactor called Apsara was built in 1956 and shut down in 2009. The reactor fuel and internals were removed, leaving the pool available for draining and decontamination. The pool was drained progressively while monitoring for hot spots. Additional material and debris at the bottom were removed. The lining was cleaned by water jetting using detergents. In summary, the defuelling and partial decommissioning were successfully completed in around six months, with a total dose consumption of 23.5 man mSv (approximately 10% of budget). The generation of waste amounted to a solid waste volume of around 20 m3 (low level) and a liquid waste volume of 280 m3 (low level). A detailed description of achievements and plans for the Apsara decommissioning is given. (author)

  2. Decommissioning plan for the TRIGA mark-3

    International Nuclear Information System (INIS)

    TRIGA Mark-III (KRR-2) is the second research reactor in Korea. Construction of KRR-2 was started in 1969 and first criticality was achieved in 1972. After 24 years operation, KRR-2 has stopped its operation at the end of 1995 due to normal operation of HANARO. KRR-2 was then decided to decommission in 1996 by government. Decontamination and decommissioning (D and D) will be conducted in accordance with domestic laws and international regulations. Selected method of D and D will be devoted to protect workers and environment and to minimize radioactive wastes produced. The major D and D work will be conducted safely by using conventional industrial equipment because of relatively low radioactivity and contamination in the facility. When removing activated concrete from reactor pool, it will be installed a temporary containment and ventilation system. In this paper, structure of KRR-2 and method of D and D in each step are presented and discussed

  3. Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  4. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  5. Decommissioning plan for Andujar uranium mill facilities

    International Nuclear Information System (INIS)

    The milling of radioactive ores results in contaminated buildings and facilities which must be decommissioned, and large quantities of tailings which must be managed safely so that residual environmental and health risks do not exceed acceptable levels. In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill facility is under decommissioning. Mill equipment, buildings and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the pile. The tailing mass is being reshaped by flattening the sideslopes and a cover system will be placed over the pile. This paper describes the safety aspects and technical approaches which are being used for the remediation and closure of the Andujar mill site. (author). 7 figs

  6. Technology, safety and costs of decommissioning a reference pressurized water reactor power station: Technical support for decommissioning matters related to preparation of the final decommissioning rule

    International Nuclear Information System (INIS)

    Preparation of the final Decommissioning Rule by the Nuclear Regulatory Commission (NRC) staff has been assisted by Pacific Northwest Laboratory (PNL) staff familiar with decommissioning matters. These efforts have included updating previous cost estimates developed during the series of studies on conceptually decommissioning reference licensed nuclear facilities for inclusion in the Final Generic Environmental Impact Statement (FGEIS) on decommissioning; documenting the cost updates; evaluating the cost and dose impacts of post-TMI-2 backfits on decommissioning; developing a revised scaling formula for estimating decommissioning costs for reactor plants different in size from the reference pressurized water reactor (PWR) described in the earlier study; defining a formula for adjusting current cost estimates to reflect future escalation in labor, materials, and waste disposal costs; and completing a study of recent PWR steam generator replacements to determine realistic estimates for time, costs and doses associated with steam generator removal during decommissioning. This report presents the results of recent PNL studies to provide supporting information in four areas concerning decommissioning of the reference PWR: updating the previous cost estimates to January 1986 dollars; assessing the cost and dose impacts of post-TMI-2 backfits; assessing the cost and dose impacts of recent steam generator replacements; and developing a scaling formula for plants different in size than the reference plant and an escalation formula for adjusting current cost estimates for future escalation

  7. Experimental feedback on sodium loop decommissioning

    International Nuclear Information System (INIS)

    The aim of this paper is to present experimental feedback on sodium loop dismantling techniques at the CEA (The French Atomic Energy Commission) and to offer recommendations for the decommissioning of Fast Reactor secondary sodium loops. This study is based on acquired CEA decommissioning experience which primarily concerns the following: the decommissioning of RAPSODIE (France's first Fast Reactor), the Phenix reactor secondary loop replacement, the sodium loop decommissioning carried out by the Laboratory of Sodium Technologies and Treatment, and several technical documents. This paper deals with the main results of this survey. First, a comparison of 8 pipe-cutting techniques is made, taking into account speed in cutting, reliability, dissemination, fire risk due to the presence of sodium, cutting depth, and different types of waste (empty pipes, sodium-filled pipes, tanks). This comparison has led us to recommend the use of an alternative saw or a chain saw rather than the use of the plasma torch or grinder. Different techniques are recommended depending on if they are on-site, initial cuttings or if they are to be carried out in a specially-designed facility referred to hereafter as 'the cutting building'. After the cutting stage, the sodium waste must be processed with water to become an ultimate stable waste. Four treatment processes are compared with different standards: speed, cost, low activity adaptability and 'large sodium quantity' adaptability. Recommendations are also made for reliable storage, and for the general dismantling system organization. Last, calculations are presented concerning a complete dismantling facility prototype capable of treating large amounts and volume of sodium wastes. (author)

  8. CEA experimental feedback on sodium loop decommissioning

    International Nuclear Information System (INIS)

    The aim of this paper is to present experimental feedback on sodium loop dismantling techniques at the CEA (The French Atomic Energy Commission) and to offer recommendations for the decommissioning of Fast Reactor secondary sodium loops. This study is based on acquired CEA decommissioning experience which primarily concerns the following: the decommissioning of RAPSODIE (France's first Fast Reactor), the PHENIX reactor secondary loop replacement, the sodium loop decommissioning carried out by the Laboratory of Sodium Technologies and Treatment, and several technical documents. This paper deals with the main results of this survey. First, a comparison of 8 pipe-cutting techniques is made, taking into account speed in cutting, reliability, dissemination, fire risk due to the presence of sodium, cutting depth, and different types of waste (empty pipes, sodium-filled pipes, tanks...). This comparison has led us to recommend the use of an alternative saw or a chain saw rather than the use of the plasma torch or grinder. Different techniques are recommended depending on if they are on-site, initial cuttings or if they are to be carried out in a specially-designed facility referred to hereafter as 'the cutting building'. After the cutting stage, the sodium waste must be processed with water to become an ultimate stable waste. Four treatment processes are compared with different standards : speed, cost, low activity adaptability and 'large sodium quantity' adaptability. Recommendations are also made for reliable storage, and for the general dismantling system organization. Last, calculations are presented concerning a complete dismantling facility prototype capable of treating large amounts and volume of sodium wastes. (author)

  9. Decommissioning a tritium glove-box facility

    Energy Technology Data Exchange (ETDEWEB)

    Folkers, C.L.; Homann, S.G.; Nicolosi, A.S.; Hanel, S.L.; King, W.C.

    1979-08-08

    A large glove-box facility for handling reactive metal tritides was decommissioned. Major sections of the glove box were decontaminated and disassembled for reuse at another tritium facility. To achieve the desired results, decontamnation required repeated washing, first with organic liquids, then with water and detergents. Worker protection was provided by simple ventilation combined with careful monitoring of the work areas and employees. Several innovative techniques are described.

  10. Decontamination and decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Since 1973, when the IAEA first introduced the subject of decontamination and decommissioning into its programme, twelve Agency reports reflecting the needs of the Member States on these topics have been published. These reports summarize the work done by various Technical Committees, Advisory Groups, and International Symposia. While the basic technology to accomplish decontamination and decommissioning (D and D) is fairly well developed, the Agency feels that a more rapid exchange of information and co-ordination of work are required to foster technology, reduce duplication of effort, and provide useful results for Member States planning D and D activities. Although the Agency's limited financial resources do not make possible direct support of every research work in this field, the IAEA Co-ordinated Research Programme (CRP) creates a forum for outstanding workers from different Member States brought into closer contact with one another to provide for more effective interaction and, perhaps subsequently, closer collaboration. The first IAEA Co-ordinated Research Programme (CRP) on decontamination and decommissioning was initiated in 1984. Nineteen experts from 11 Member States and two international organizations (CEC, OECD/NEA) took part in the three Research Co-ordination Meetings (RCM) during 1984-87. The final RCM took place in Pittsburgh, USA, in conjunction with the 1987 International Decommissioning Symposium (sponsored by the US DOE and organized in co-operation with the IAEA and OECD/NEA). The present document summarizes the salient features and achievements of the co-ordinated research work performed during the 1984-87 programme period. The document consists of two parts: Part 1, Summary of the three research co-ordination meetings and Part 2, Final submissions by participants on the research work performed during 1984-1987. A separate abstract was prepared for each of the 7 reports presented. Refs, figs and tabs

  11. Decommissioning a tritium glove-box facility

    International Nuclear Information System (INIS)

    A large glove-box facility for handling reactive metal tritides was decommissioned. Major sections of the glove box were decontaminated and disassembled for reuse at another tritium facility. To achieve the desired results, decontamnation required repeated washing, first with organic liquids, then with water and detergents. Worker protection was provided by simple ventilation combined with careful monitoring of the work areas and employees. Several innovative techniques are described

  12. Decommissioning of the BR3 PWR

    International Nuclear Information System (INIS)

    The dismantling and the decommissioning of nuclear installations at the end of their life-cycle is a new challenge to the nuclear industry. Different techniques and procedures for the dismantling of a nuclear power plant on an existing installation, the BR-3 pressurized-water reactor, are described. The scientific program, objectives, achievements in this research area at the Belgian Nuclear Research Centre SCK-CEN for 1997 are summarized

  13. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  14. Evaluation of decommissioning programs: Material, waste and cost analysis

    International Nuclear Information System (INIS)

    The estimation of decommissioning materials, waste and costs constitutes one of the major activities in decommissioning programs. These estimates are required for new installations or installations still in operation in order to plan future waste management programs and to define the financial provisions necessary to ensure satisfactory execution of future programs. The estimates are also required for installations currently being decommissioned in order to plan detailed programs and to verify and update previous evaluations. The Belgian legislator entrusted the National Agency with several assignments regarding decommissioning of nuclear installations. To perform these assignments, the Agency set up an integrated data processing system able to record the inventory of a plant and to evaluate the nature and the quantities of decommissioning materials and waste as well as the decommissioning costs

  15. Research reactor back-end options - decommissioning: a necessary consideration

    International Nuclear Information System (INIS)

    Decommissioning is a challenge, which all radioactive site licensees eventually need to face and research reactors are no exception. BNFL has completed numerous major decommissioning projects at its own operational sites and has undertaken similar works at customers' sites including the decommissioning of the Universities Research Reactor (URR), Risley and the ICI TRIGA 1-Mk I Reactor at Billingham. Based on the execution of such projects BNFL has gained an understanding of the variety of customer requirements and the effectiveness of specific decommissioning techniques for research reactors. This paper addresses factors to be considered when reviewing the way forward following shut down and how these affect the final decisions for fuel management and the extent of decommissioning. Case studies are described from BNFL's recent experience decommissioning both the URR and ICI TRIGA reactors. (author)

  16. The U.S. Nuclear Regulatory Commission's decommissioning process

    International Nuclear Information System (INIS)

    The term 'Decommission' is defined in the U.S.. Nuclear Regulatory Commission's (USNRC's) regulations at 10 CFR 20.1003 as to remove a facility or site safely from service and reduce residual radioactivity to a level that permits 1) release of the property for unrestricted use and termination of the license; or, 2) release of the property under restricted conditions and the termination of the license. USNRC's decommissioning program encompasses the decommissioning of all NRC licensed facilities, ranging from routine license terminations for sealed source users, to the oversight of complex sites and those on the Site Decommissioning Management Plan (SDMP), as well as power and non-power reactors. This paper describes the USNRC's decommissioning process for materials and reactor facilities and presents an overview of USNRC's decommissioning program activities. (author)

  17. The regulatory challenges of decommissioning nuclear reactors

    International Nuclear Information System (INIS)

    Each nuclear power plant, fuel cycle facility and nuclear research and test facility that is operating today will eventually reach the end of its useful life and cease operation. During the period of its decommissioning, it is important to properly manage the health and environmental hazards and physical protection measures of the shutdown facility in order to protect the health and safety of the public and workers and to safeguard any nuclear materials. In this regard, the nuclear safety regulatory body is responsible for independently assuring that decommissioning activities are conducted safely, that radioactive materials and spent nuclear fuel are disposed of properly and that the site is in an acceptable end state. The purpose of this report is to describe the broad range of safety, environmental, organisational, human factors and public policy issues that may arise during the decommissioning of nuclear reactors and that the regulatory body should be prepared to deal with in the framework of its national regulatory system. The intended audience is primarily nuclear regulators, although the information and ideas may also be of interest to government authorities, environmental regulators, nuclear operating organisations, technical expert organisations and the general public. (author)

  18. Decommissioning strategies for facilities using radioactive material

    International Nuclear Information System (INIS)

    The planning for the decommissioning of facilities that have used radioactive material is similar in many respects to other typical engineering projects. However, decommissioning differs because it involves equipment and materials that are radioactive and therefore have to be handled and controlled appropriately. The project management principles are the same. As with all engineering projects, the desired end state of the project must be known before the work begins and there are a number of strategies that can be used to reach this end state. The selection of the appropriate strategy to be used to decommission a facility can vary depending on a number of factors. No two facilities are exactly the same and their locations and conditions can result in different strategies being considered acceptable. The factors that are considered cover a wide range of topics from purely technical issues to social and economic issues. Each factor alone may not have a substantial impact on which strategy to select, but their combination could lead to the selection of the preferred or best strategy for a particular facility. This Safety Report identifies the factors that are normally considered when deciding on the most appropriate strategy to select for a particular facility. It describes the impact that each factor can have on the strategy selection and also how the factors in combination can be used to select an optimum strategy

  19. The use of managing agencies in decommissioning

    International Nuclear Information System (INIS)

    On 1 April 1994 UKAEA Government Division was formed and one of its main responsibilities is the safe and cost effective management of the facilities which have already closed and the fuel reprocessing and radioactive waste management plant required to assist in the current programme of decommissioning. UKAEA Government Division, working on behalf of DTI, is intended to be a lean and efficient programme management and procurement organisation. Rather than build up its own project management capability it intends to use external resources for this function, obtained in future by competitive tendering. For each major facility undergoing decommissioning a Managing Agency has been, or will be, appointed to act on behalf of UKAEA Government Division. The responsibilities of each Managing Agency will be to assist in the definition of tasks, the commissioning of option studies and safety studies, the specification of individual contracts, management of the tendering processes and the subsequent management of the Implementation Contractors carrying out the decommissioning work, including the associated safety and training responsibilities. Teams involved in Managing Agency work require skills in project management, relevant technical issues, contract and safety management. (author)

  20. Lessons learned on stakeholder issues in decommissioning

    International Nuclear Information System (INIS)

    Issues of public concern during decommissioning and dismantling (D and D) are partly the same and partly different from those of the preceding phases (planning, construction and operation). While in the course of construction and operation the main challenges include meeting expectations of a higher quality of life, accommodating a growing population, mitigating construction nuisances, and assuring the safe operation of the facility, the main concerns in the D and D phase are decreasing employment rate, the eventual reduction of revenues for the municipality, the future use of the affected land and negative social impacts (e.g., out-migration). The decommissioning phase is characterised by heterogeneity of stakeholder interests and values, difficulties of reaching consensus or compromise, and difficulties in connection with the harmonization of energy production, environmental protection and sustainable socio-economic development considerations. Typically, there might also be tensions between local and regional decisions. As in other phases, the building of trust between stakeholder is crucial from the point of view of conflict management, and social lessons learnt from the siting and developments of nuclear facilities are widely applicable in the field of D and D as well. A review is presented of major lessons to be learnt from NEA activities in the field of decommissioning and stakeholder involvement. (author)

  1. Lessons learned on stakeholder issues in decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, P.; Pescatore, C. [OECD Nuclear Energy Agency, 92 - Issy les Moulineaux (France)

    2008-07-01

    Issues of public concern during decommissioning and dismantling (D and D) are partly the same and partly different from those of the preceding phases (planning, construction and operation). While in the course of construction and operation the main challenges include meeting expectations of a higher quality of life, accommodating a growing population, mitigating construction nuisances, and assuring the safe operation of the facility, the main concerns in the D and D phase are decreasing employment rate, the eventual reduction of revenues for the municipality, the future use of the affected land and negative social impacts (e.g., out-migration). The decommissioning phase is characterised by heterogeneity of stakeholder interests and values, difficulties of reaching consensus or compromise, and difficulties in connection with the harmonization of energy production, environmental protection and sustainable socio-economic development considerations. Typically, there might also be tensions between local and regional decisions. As in other phases, the building of trust between stakeholder is crucial from the point of view of conflict management, and social lessons learnt from the siting and developments of nuclear facilities are widely applicable in the field of D and D as well. A review is presented of major lessons to be learnt from NEA activities in the field of decommissioning and stakeholder involvement. (author)

  2. Investment management for nuclear decommissioning trusts

    International Nuclear Information System (INIS)

    According to Nuclear Regulatory Commission estimates, and assuming a 4 percent annual inflation rate, minimum decommissioning requirements for a single reactor could total almost $350 million after 30 years. Consequently, reducing customer contributions to decommissioning funds is a potentially rewarding activity. In fact, improving the after-tax return earned on an NDT fund by as little as one percentage point can reduce customer contributions to the fund by 15% over its life. Unfortunately, many electric utilities are headed in the wrong direction and are unlikely to achieve satisfactory results. The main problem is the prevalence of the conventional wisdom, most of which has been appropriated from the area of pension fund management. This is an area which is familiar to most utility managements, but which has only superficial similarity to the issue of NDT investing. The differences are pronounced: NDTs, unlike pensions, are fully taxable at corporate income tax rates. In addition, NDT managers should be concerned with protecting the inflation-adjusted or real value of fund investments at a single, future decommissioning date. Pension managers, on the other hand, may be concerned with satisfying nominal contractual obligations spread over an extended future time horizon. In view of the large stakes involved in the management of NDTs, the authors summarize five key tenets of the conventional wisdom in this area and demonstrate where they feel they are in error

  3. Large transport packages for decommissioning waste

    International Nuclear Information System (INIS)

    The main tasks performed during the period related to the influence of manufacture, transport and disposal on the design of such packages. It is deduced that decommissioning wastes will be transported under the IAEA Transport Regulations under either the Type B or Low Specific Activity (LSA) categories. If the LSA packages are self-shielded, reinforced concrete is the preferred material of construction. But the high cost of disposal implies that there is a strong reason to investigate the use of returnable shields for LSA packages and in such cases they are likely to be made of ferrous metal. Economic considerations favour the use of spheroidal graphite cast iron for this purpose. Transport operating hazards have been investigated using a mixture of desk studies, routes surveys and operations data from the railway organisations. Reference routes were chosen in the Federal Republic of Germany, France and the United Kingdom. This work has led to a description of ten accident scenarios and an evaluation of the associated accident probabilities. The effect of disposal on design of packages has been assessed in terms of the radiological impact of decommissioning wastes, an in addition corrosion and gas evolution have been examined. The inventory of radionuclides in a decommissioning waste package has low environmental impact. If metal clad reinforced concrete packages are to be used, the amount of gas evolution is such that a vent would need to be included in the design. Similar unclad packages would be sufficiently permeable to gases to prevent a pressure build-up. (author)

  4. Decommissioning of the Salaspils Research Reactor

    Directory of Open Access Journals (Sweden)

    Abramenkovs Andris

    2011-01-01

    Full Text Available In May 1995, the Latvian government decided to shut down the Salaspils Research Reactor and to dispense with nuclear energy in the future. The reactor has been out of operation since July 1998. A conceptual study on the decommissioning of the Salaspils Research Reactor was drawn up by Noell-KRC-Energie- und Umwelttechnik GmbH in 1998-1999. On October 26th, 1999, the Latvian government decided to start the direct dismantling to “green-field” in 2001. The upgrading of the decommissioning and dismantling plan was carried out from 2003-2004, resulting in a change of the primary goal of decommissioning. Collecting and conditioning of “historical” radioactive wastes from different storages outside and inside the reactor hall became the primary goal. All radioactive materials (more than 96 tons were conditioned for disposal in concrete containers at the radioactive wastes depository “Radons” at the Baldone site. Protective and radiation measurement equipment of the personnel was upgraded significantly. All non-radioactive equipment and materials outside the reactor buildings were released for clearance and dismantled for reuse or conventional disposal. Contaminated materials from the reactor hall were collected and removed for clearance measurements on a weekly basis.

  5. Governments' role in decommissioning nuclear power facilities

    International Nuclear Information System (INIS)

    Many nuclear power plants will reach the end of their operating lives over the next 20 years; some may be life-extended, others may not. This development will precipitate enhanced industrial and regulatory activities in the area of decommissioning. We are also witnessing in many countries a significant shift in the role of government itself: new pressures on governments, such as enhanced attention on environmental impact/mitigation and strategies to implement market-oriented approaches in a variety of sectors, including the energy sector are driving the public policy agenda. The paper will examine the range of policy issues, drawing from recent NEA studies on decommissioning policies and the recent NEA study on Government and Nuclear Energy and, strategies and costs, and other current trends and developments in the nuclear industry and in the nuclear policy fields. The paper will reflect on issues to be addressed during the conference and draw conclusions on the appropriate role of government in this area. Decommissioning policy is very specific and focused: it is not a high level policy/political issue in most instances and rarely gets the same attention as the issue surrounding the future of nuclear energy itself and public concerns regarding safety, waste and economics. One reason why decommissioning does not get the same attention as for example disposal of spent nuclear fuel might be the fact that technology is available for decommissioning, while technology for disposal of spent nuclear fuel is under development. High profile or not, it will remain an important issue for governments and industry alike particularly because of the cost and long lead times involved. In some instances, governments are the owners of the facilities to be decommissioned. In addition, decommissioning factors into issues surrounding the economics of nuclear energy and the sustainability of the nuclear option. Based on results of the Tarragona Seminar (Spain, September 2-4, 2003) and

  6. New technologies in decommissioning and remediation

    International Nuclear Information System (INIS)

    New and emerging technologies are making decommissioning and remediation more cost effective, faster and safer. From planning to execution and control, the use of new technologies is on the rise. Before starting decommissioning or environmental remediation, experts need to plan each step of the process, and to do that, they first need a clear idea of the characteristics of the structure and the level of radiation that they can expect to encounter. While characterization for planning purposes can be done using manual approaches, such as drawing up blueprints and taking measurements and photos, laser scanning technologies are now allowing decommissioning teams to more quickly and accurately map out the physical characteristics of a facility’s structures, systems and components. This is complemented by highly sensitive measurements taken with high-tech devices, such as remotely operated gamma cameras that can precisely and efficiently measure the radiological characteristics of the facility, including the amount and type of radiation. Similar measurements are needed once the contamination has been removed, to verify that any residual radiation levels are indeed insignificant

  7. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but we propose an approach...... that calls for the designer to conceptualise and perform ideas in-situ, that is on the site, where the game is supposed to be played. The problem was to design a creativity method that incorporated in-situ design work and which generated game concepts for pervasive games. The proposed design method, called...... sitestorming, is based on a game using Situationistic individual exploration of the site and different types of game cards, followed by a joint evaluation of the generated ideas. A series of evaluations showed that the designers found the method enjoyable to use, that the method motivated idea generation...

  8. Oil companies push in-situ recovery

    International Nuclear Information System (INIS)

    Possibly, a third Athabaska tar-sand plant using surface mining will be built in the 1980's, but future development beyond that point will probably depend on in-situ recovery. The discussion of in-situ recovery focusses on the effect it will have on the Canadian chemical industry, for example, the market for sodium hydroxide. To obtain the highest yields of oil from bitumen, an external source of hydrogen is necessary; for example Syncrude imports natural gas to make hydrogen for desulphurization. Gasification of coal is a possible source of hydrogen. Research on hydrocracking is progressing. Use of a prototype CANDU OCR reactor to raise the hot steam necessary for in-situ recovery has been suggested. Venezuela is interested in Canadian upgrading technology. (N.D.H.)

  9. Identification and sorting of materials with portable LIBS before decommissioning

    International Nuclear Information System (INIS)

    Laser Induced Breakdown Spectroscopy (LIBS) is a technique of elemental analysis. A laser beam is focused on the surface of the sample to be analyzed. A small quantity of matter is ablated and a plasma formed by the atomized compounds is created. The spectral lines of the light emitted by the plasma are detected by an optical spectrometer. LIBS is a fully optical, multi-elementary and fast analytical technique, requiring no or little sample preparation. These features make the LIBS technique particularly suited for in situ measurements, and portable instruments are currently developed. LIBS analysis can be applied to the identification of materials using chemometric statistical methods (multivariate analysis) connecting the spectrum to the nature of the sample. Such methods have been successfully applied in our laboratory to the determination of the geographical origin of yellow cakes and to the identification of alloys. We present here the work performed with a portable LIBS instrument to meet the needs of waste sorting in industrial domain and in nuclear domain (inventory before decommissioning). A data base of LIBS spectra was built with a commercial instrument (IVEA SAS Easylibs) with samples of four categories of interest for industrial waste sorting: alloys, plastics, concrete and glasses. Different correct identification rates are requested by categories. The alloy spectra contain characteristic spectral lines and sub-categories can be easily discriminated (for example, different steel classes can be identified). The components of the plastics (mainly C, H, O and N) give rise to less characteristic lines and the plastics identification requires a separate study. Supervised statistical models are built with the data base spectra and predictions are instantly calculated for the spectra of unknown materials to identify in order to direct them to the correct waste stream. (authors)

  10. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  11. Administrative requirements of financial securities to cover decommissioning operations

    International Nuclear Information System (INIS)

    This paper points out that the lack of experience in decommissioning of nuclear power plants is reflected by the absence of specific legislation regarding the economic, fiscal and accounting aspects of the process. The author suggests that a fund be created for decommissioning costs through contributions deriving from plant operation. The paper analyses the procedures to be followed and draws attention to the need for clear legislation on decommissioning. (NEA)

  12. Unrestricted re-use of decommissioned nuclear laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, R.; Noynaert, L.; Harnie, S.; Marien, J.

    1996-09-18

    A decommissioning strategy was developed by the Belgian Nuclear Research Centre SCK/CEN. In this strategy decommissioning works are limited to the radioactive parts of the nuclear installation. After obtaining an attestation for unrestricted reuse of the building after removal of all radioactivity, the building can be used for new industrial purposes outside the nuclear field. The decommissioning activities according to this strategy have been applied in four buildings. The results are described.

  13. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137Cs and 60Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137Cs and 60Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  14. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    ), which has proved to be a powerful method for visualizing the physical processes involved in the growth of nanowires by the vapour liquid solid (VLS) mechanism, was used to study VLS SiNW contact formation process. Electrical characteristics and effects of surface modification on electrical behavior of...... ends, base and tip and its electrical properties were probed in situ TEM. Such SiNW bridges clamped between two cantilevers in situ TEM was an interesting platform for studying the effect of surface modification on SiNWs electrical properties. The effect of surface oxidation was studied and it is...

  15. In-situ observation of ettringite crystals

    Science.gov (United States)

    Komatsu, Ryuichi; Mizukoshi, Norihiro; Makida, Koji; Tsukamoto, Katsuo

    2009-01-01

    In-situ observation of growing ettringite crystals in solution has been carried out and the morphology change of ettringite has been investigated under various conditions. In particular, the acceleration behavior of ettringite growth in the presence of calcite, the cause of which is not yet understood, is examined. Spherulite with calcite in its core is formed first followed by the generation of acicular crystals. Compared with the in-situ observation result of crystal growth in a solution with no calcite, the effect of added calcite can be explained as a decrease in the activation energy of nucleation for ettringite around calcite.

  16. In situ monitoring of gas emissions

    International Nuclear Information System (INIS)

    Classical extraction apparatuses for gaseous effluents analysis require important maintenance costs. A new in situ system for flue gas monitoring has been developed by the Californian Air Instruments and Measurements Inc. society and installed at the Red Wing refuse-fueled power plant in Minnesota. This system allows the in situ quantitative analysis of carbon monoxide and dioxide effluents using a self calibrating infrared spectrometer. This paper describes the numerous advantages and the maintenance costs reduction provided by this system. (J.S.). 2 photos

  17. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  18. Use of data processing tools in decommissioning nuclear facilities

    International Nuclear Information System (INIS)

    With the present level of electronic data processing technology, no project of the scale of nuclear reactor decommissioning could be carried out without the use of data processing systems. On the contrary, a reactor decommissioning project requires essential support not only for the technical but also the economic side through the use of proper data processing programs, and not only general applications in the area of personal computers such as MS-EXCEL or MS Project, but also special data processing systems designed for the reactor decommissioning tasks. Various data processing supports are required depending upon the progress of a reactor decommissioning project. (orig./DG)

  19. Computer System Analysis for Decommissioning Management of Nuclear Reactor

    International Nuclear Information System (INIS)

    Nuclear reactor decommissioning is a complex activity that should be planed and implemented carefully. A system based on computer need to be developed to support nuclear reactor decommissioning. Some computer systems have been studied for management of nuclear power reactor. Software system COSMARD and DEXUS that have been developed in Japan and IDMT in Italy used as models for analysis and discussion. Its can be concluded that a computer system for nuclear reactor decommissioning management is quite complex that involved some computer code for radioactive inventory database calculation, calculation module on the stages of decommissioning phase, and spatial data system development for virtual reality. (author)

  20. The decommissioning program of JAERI's Reprocessing Test Facility

    International Nuclear Information System (INIS)

    Decommissioning program of JAERI's Reprocessing Test Facility (JRTF) has been carried out to establish decommissioning techniques for nuclear fuel facilities. The project consists of 2 phases ; phase 1 is preparatory stage of decommissioning project, and phase 2 is execution stage of the JRTF decommissioning. The project started in 1990 under a contract with the Science and Technology Agency, and will be finished in 2001. Up to now, treatment of some radioactive liquid waste and physical inventory estimation were carried out. In addition to the technical development for dismantling, the design for treatment of the unpurified uranium solution and high level liquid waste are in progress steadily. (author)