WorldWideScience

Sample records for basin deactivation waste

  1. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    International Nuclear Information System (INIS)

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM

  2. Deactivation of waste waters in the Czechoslovak Uranium Industry

    International Nuclear Information System (INIS)

    Deactivation techniques are described used for the treatment of waste waters from uranium mines and uranium chemical treatment plants. With treatment plant waters this is done either by precipitation of radium with barium sulfate or using multistage evaporating units. Mine waste waters are deactivated by sorption on ion exchangers; strongly basic anion exchangers, mostly Wofatit SBW, Varion AP or Ostion AU are used for uranium, while the strongly acidic Ostion KS is used for radium. (Z.M.)

  3. 340 waste handling complex: Deactivation project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  4. 340 waste handling complex: Deactivation project management plan

    International Nuclear Information System (INIS)

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford's 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case

  5. Characterization and regeneration of Pt-catalysts deactivated in municipal waste flue gas

    International Nuclear Information System (INIS)

    Severe deactivation was observed for industrially aged catalysts used in waste incineration plants and tested in lab-scale. Possible compounds that cause deactivation of these Pt-based CO oxidation catalysts have been studied. Kinetic observations of industrial and model catalysts showed that siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H2/N2 gas to the off-gas can completely restore the activity of the deactivated catalysts. (author)

  6. Safe Shutdown and Deactivation of the 105-K Disassembly Basin at the Savannah River Site

    International Nuclear Information System (INIS)

    Nuclear production reactors at the Savannah River Site (SRS) were operated for several years in support of the United States nuclear weapons program. When this overall mission ended, the 105-K and 105-L reactors continued to perform vital missions, including the safe storage of spent nuclear fuel. A spent fuel consolidation effort is underway at SRS, and part of this effort was the safe shutdown and deactivation of the 105-K Disassembly Basin. 105-K ceased reactor operations in the early 1990s and was converted to a nuclear materials management facility. Although not originally designed for long-term storage, the 105-K Basin performed well as an interim, underwater location for reactor fuel and other radiation sources. Following the de-inventory of spent fuel in September 2002, the need to operate the 105-K Basin was eliminated.During production, the Disassembly Basins were used to temporarily store irradiated components removed from the reactor vessel. They are large concrete pools containing approximately 3.4 million gallons of water to provide cooling and shielding for the stored components. In support of this mission, the Basins were furnished with equipment for maintaining water parameters, monitoring radiation, and handling and reconfiguring the fuel components. Some of this equipment is located within the Basin structures themselves, and other pieces are located elsewhere in the local reactor areas. 105-K Basin deactivation activities included the lay-up, removal, or abandoning of this equipment. Eventual decommissioning activities will likely follow the Site-established plan to evaporate much of the Basin water and use the remaining water to grout-in-place residual contamination and scrap materials. Traditional deactivation projects include a substantial reduction in overall facility surveillance and maintenance activities and a relocation of all non-essential personnel to alternate work locations. In this case, however, the Disassembly Basin is not an

  7. Conceptual plan for 100-N Emergency Dump Basin (EDB) deactivation

    International Nuclear Information System (INIS)

    This document provides the conceptual plan for the 100-N Emergency Dump Basin (EDB) located at the Hanford Site in Richland, Washington. The EDB is an outdoor concrete retention pond with a carbon-steel liner underlain with fiberglass. The EDB was originally designed as a quenching pool for reactor blowdown in event of a primary coolant leak. However, the EDB only received routine steam-generator blowdowns from 1963 to 1987. The steam-generator blowdown and leaking isolation valves allowed radioactively contaminated water (from primary and secondary reactor coolant leaks) to enter the EDB. Over the years, wind-blown sand and dust have settled in the EDB, resulting in the present layer of sediments. As of February 1996, the EDB contained an estimated 260,000 gal of water and approximately 2,300 ft3 of sediment. The average sediment thickness is estimated at 2.5 ft and is covered with approximately 12 ft to 14 ft of water. Vegetation (mostly reeds and cattails) grows in the basin corners where the sediment is exposed. To minimize animal and bird intrusion, a kneeling net has been installed over the EDB

  8. N Reactor Deactivation Program Plan

    International Nuclear Information System (INIS)

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities · in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually

  9. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes

    International Nuclear Information System (INIS)

    Highlights: → Pyrolysis transforms plastic wastes in valuable liquids and gases useful as fuels or source of chemicals. → The use of ZSM-5 zeolite in pyrolysis favours the production of gases and of lighter and more aromatic liquids. → ZSM-5 zeolite is almost completely deactivated after one plastics pyrolysis experiment. → ZSM-5 zeolite used in plastic wastes pyrolysis can be regenerated by burning the deposited coke in an air stream. → Regenerated ZSM-5 recovers its activity and produces liquids and gases equivalent to those obtained with fresh catalyst. - Abstract: In this work, a study of the regeneration and reuse of ZSM-5 zeolite in the pyrolysis of a plastic mixture has been carried out in a semi-batch reactor at 440 deg. C. The results have been compared with those obtained with fresh-catalyst and in non-catalytic experiments with the same conditions. The use of fresh catalyst produces a significant change in both the pyrolysis yields and the properties of the liquids and gases obtained. Gases more rich in C3-C4 and H2 are produced, as well as lower quantities of aromatic liquids if compared with those obtained in thermal decomposition. The authors have proved that after one pyrolysis experiment the zeolite loses quite a lot of its activity, which is reflected in both the yields and the products quality; however, this deactivation was found to be reversible since after regeneration heating at 550 deg. C in oxygen atmosphere, this catalyst recovered its initial activity, generating similar products and in equivalent proportions as those obtained with fresh catalyst.

  10. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    International Nuclear Information System (INIS)

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D and D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D and D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D and D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  11. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  12. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs137 to stable Ba138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ* ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs137 solution and optimal microbiological association

  13. N Basin deactivation high exposure rate hardware container offgassing final report

    International Nuclear Information System (INIS)

    The N Reactor's 105-N Basin (N Basin) and the methods of packaging high-exposure rate hardware (HERH) were inspected, and gas bubbles were observed rising from the top surface of the third monolith prepared, Monolith No. 3. The HERH packaging was discontinued until the gas and the source could be explained and the safety of continued operation was verified. This report documents the investigation and the conclusions that support decisions regarding N Basin water removal, future storage, shipping, and Monolith No. 3 burial. Samples indicate that the gas emitted from Monolith No. 3 is almost exclusively hydrogen, containing some air and trace quantities of stable xenon. Gamma-energy analysis indicated trace amounts of 85Kr in the samples. The literature review and the laboratory test results support the conclusion that aluminum is the only potentially grouted metal capable of corroding rapidly enough to generate the quantities of hydrogen gas that are observed. Based on aluminum components known to be found in the N Basin, the likely source of the aluminum is a used aluminum rupture can. All gas pockets in Monolith No. 3 caused by offgassing should be vented to the surface of the monolith. The peak offgas pressure within Monolith No. 3 (after it is removed from the N Basin water) should be approximately 0.62 psi above atmospheric pressure. Sufficient testing and analysis has been completed to remove Monolith No. 3 from the N Basin water and place the monolith in temporary storage until arrangements have been made for its shipment and disposition

  14. Characterization and Regeneration of Pt-Catalysts Deactivated in Municipal Waste Flue Gas

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Kustov, Arkadii; Due-Hansen, Johannes; Siret, Bernard; Tabaries, Frank; Fehrmann, Rasmus

    siloxanes were the most severe catalyst poisons, although acidic sulfur compounds also caused deactivation. Furthermore, a method for on-site regeneration without shutdown of the catalytic flue gas cleaning system has been developed, i.e. an addition of H-2/N-2 gas to the off-gas can completely restore the...

  15. Accelerating deactivation

    International Nuclear Information System (INIS)

    In recent years, the focus of the U.S. Department of Energy (DOE) complex has shifted from defense production to facility stabilization, decommissioning, and environmental restoration. This shift from production to cleanup requires a parallel shift from operations-focused management to project-focused management for an efficient facility deactivation. In the operation-focused management organization, activities are planned and executed based on production goals and are typically repetitive and cyclic. In the project-focused management environment, activities are based on a defined scope/end objective, start date, and completion date. Since the workforce used to perform production operations is also usually relied onto perform facility deactivation, it is important to shift from an operations management approach to a project management approach. It is best if the transition is accomplished quickly so the project can move forward and workers don't spend a lot of energy anticipating change. Therefore, it is essential that managers, planners, and other workers understand the key elements associated with planning a deactivation project. This paper describes a planning approach that has been used successfully to plan deactivation projects consistent with the requirements provided in DOE Order 430.1A Life Cycle Asset Management and the companion Deactivation Implementation Guide, G430. 1A-3, while exceeding schedule expectations and reducing costs. Although the planning of a deactivation project closely mirrors the classic project planning for construction projects, there are unique variations associated with facility deactivation. The key elements of planning a deactivation project are discussed relative to scope, schedule, and cost. Management tools such as project metrics and histograms are discussed as desired outputs from the planning process. In addition, lessons learned from planning deactivation projects across the DOE complex are discussed relative to making the

  16. Waste storage potential of Triassic basins in southeast United States

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1976-07-01

    Triassic basins, elongated deep basins filled with sediments, extend from Nova Scotia to Florida. The geology of the basins is discussed for each state. Their potential for liquid waste storage is assessed. Seismic risk is among the factors evaluated. It is recommended that the shallow Triassic Florence basin in northeast South Carolina be studied. 10 fig. (DLC)

  17. Method of deactivation by filtering of radioactive liquid wastes containing organic solvent

    International Nuclear Information System (INIS)

    Liquid radioactive wastes at each stage of processing are filtered with at least one filter layer containing at least one of the following sorbents: silica gel, glass or kieselguhr. The said sorbents have higher decontamination efficiency than ion exchangers and hydrophobic sorbents. The present decontamination method may also be used after the distillation of liquid wastes. (J.P.)

  18. Deactivation of Building 7602

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has sponsored research and development programs in Building 7602 at Oak Ridge National Laboratory (ORNL) since 1984. This work focused on development of advanced technology for processing nuclear fuels. Building 7602 was used for engineering-scale tests using depleted and natural uranium to simulate the nuclear fuel. In April 1994 the DOE Office of Nuclear Energy (NE) sent supplemental FY 1994 guidance to ORNL stating that in FY 1995 and beyond, Building 7602 is considered surplus to NE programs and missions and shall be shut down (deactivated) and maintained in a radiologically and industrially safe condition with minimal surveillance and maintenance (S ampersand M). DOE-NE subsequently provided FY 1995 funding to support the deactivation activities. Deactivation of Building 7602 was initiated on October 1, 1994. The principal activity during the first quarter of FY 1995 was removal of process materials (chemicals and uranium) from the systems. The process systems were operated to achieve chemical solution concentrations needed for reuse or disposal of the solutions prior to removal of the materials from the systems. During this phase of deactivation the process materials processed and removed were: (1) Uranyl nitrate solution 30,178 L containing 4490 kg of uranium; (2) Nitric acid (neutralized) 9850 L containing less than 0.013 kg of uranium; (3) Organic solution 3346 L containing 265 kg of uranium; (4) Uranium oxide powder 95 kg; and (5) Miscellaneous chemicals. At the end of December 1994, the process systems and control systems were shut down and deactivated. Disposition of the process materials removed from the process systems in Building 7602 proved to be the most difficult part of the deactivation. An operational stand down and funding reductions at Y-12 prevented planned conversion of the uranyl nitrate solution to depleted uranium oxide powder. This led to disposal of the uranyl nitrate solution as waste

  19. Savannah River Laboratory Seepage Basins: Waste site assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Looney, B.B.; Nichols, R.L.

    1989-09-05

    This Waste Site Assessment for the SRL Seepage Basins is the second in a series of documents being prepared to support development of an appropriate closure plan for these basins. The closure of these basins will be designed to provide protection to human health and the environment and to meet the provisions of the Consent Decree. A Technical Data Summary for these basins has already been submitted as part of the Consent Decree. This Site Assessment Report includes a waste site characterization, and a discussion of closure options for the basins. A closure option is recommended in this report, but details of the recommended closure are not provided in this report since they will be provided in a subsequent closure plan. The closure plan is the third document required under the Consent Decree. 18 refs., 16 figs., 10 tabs.

  20. Hazardous waste research and development in the Pacific Basin

    International Nuclear Information System (INIS)

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste

  1. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  2. Magnetic survey of D-Area oil basin waste unit

    International Nuclear Information System (INIS)

    The D-Area Oil Basin RCRA Waste Unit is located north of D-Area on Savannah River Site. This Waste Unit was known, based on aerial photography and other historical data, to be the location for one or more trenches used for disposal of oil in steel drums and other refuse. In order to define the location of possible trenches on the site and to assess the possibility of the presence of additional buried objects a magnetic survey was conducted by the Environmental Monitoring Section/Groundwater Group during July, 1993, at the request of the Environmental Restoration Department. Prior to the conduct of the magnetic survey a Ground Penetrating Radar survey of the site consisting of several lines identified several areas of disturbed soil. Based on these data and other historical information the general orientation of the trenches could be inferred. The magnetic survey consists of a rectangular grid over the waste unit designed to maximize resolution of the trench edges. This report describes the magnetic survey of the D-Area Oil Basin Waste Unit

  3. Characterization plan for the waste holding basin (3513 impoundment)

    International Nuclear Information System (INIS)

    US Department of Energy (DOE) facilities are required to comply fully with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established the remedial action program, to provide comprehensive management of areas where past research, development, and waste management activities have been conducted and have resulted in residual contamination of facilities or the environment. One of the objectives of this program is to define the extent of contamination at these sites. The intent is to document the known environmental characteristics of the sites and identify the additional actions, such as sampling, analytical measurements, and modeling, necessary to confirm contamination and the possible migration of contaminants from the sites. One of these sites is the waste holding basin (3513 impoundment). The 3513 impoundment is an unlined waste settling basin constructed in 1944 for collection of ORNL wastewater before its discharge into White Oak Creek. Operation of the facility ceased in 1976 when a new process waste treatment plant came into operation. Considerable site-specific environmental information has been developed over the years relative to the type and quantities of radionuclides and hazardous substances contained in the pond water and sediment. The concentrations and patterns of distribution for many of the radionuclides in the aquatic biota as well as for the terrestrial plants growing on the berm of the impoundment have been determined by DOE ecological studies. Recently, some data were collected that evaluate the extent of contaminant movement to the groundwater. Results from these studies are summarized in this report. Also included in this report is an outline of additional tasks needed to obtain the necessary information to model the transport and dose pathways of hazardous substances from the site

  4. Underground flux studies in waste basin of CIPC using natural and artificial tracers (volume I)

    International Nuclear Information System (INIS)

    This report presents studies to be done in wastes basin of CIPC in order to verify the contamination possibility of Rio das Antas basin, by infiltration in subsoil, of liquid wastes proceeding from mineral and industrial complex of Pocos de Caldas to be done up to February/82. (author)

  5. Mission analysis report - deactivation facilities at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Lund, D.P.

    1996-09-27

    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  6. Underground flux studies in waste basin of CIPC using natural and artificial tracers - v.1

    International Nuclear Information System (INIS)

    Underground flux studies in waste basin of CIPC is presented, with the description of the regions and the wells, the techniques with artificial tracers and the results and conclusion, based in field campaign realized till february/82. (author)

  7. Complex mass wasting response of drainage basins to forest management in coastal British Columbia

    Science.gov (United States)

    Brardinoni, Francesco; Hassan, Marwan A.; Slaymaker, H. Olav

    2003-01-01

    The impacts of logging activities on mass wasting were examined in five watersheds in the coastal mountains of British Columbia. Historical aerial photos were used to document mass wasting events, and their occurrence was related to logging activities in the study basins. Logged and forested areas were compared in terms of mass wasting magnitude and frequency, with reference to site characteristics. The recovery time of the landscape after logging was assessed. Bedrock type and basin physiography had no identifiable effect on mass wasting frequency and magnitude. Mass wasting failure was primarily controlled by slope gradient. Basin vulnerability increased, following clearcutting relative to forested areas, in that mass wasting was initiated on gentler slopes. The volume of sediment produced from logged slopes is of the same order as that from forested areas, which are steeper by as much as 10°. In both logged and forested areas, the size distribution of mass wasting events follows an exponential distribution. However, the variability in mass wasting size in forested areas is much higher than that obtained for logged areas. The recovery time after forest harvesting is over 20 years, which confirms published estimates based on vegetation reestablishment. Continuous disturbance of the basin, however, may extend the recovery time for the whole basin well beyond 20 years.

  8. PFP deactivation project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, D.M.

    1997-07-28

    This document identifies the overall approach for deactivation of the Plutonium Finishing Plant (PFP) Complex, excluding the vaults, and includes a draft set of End Point Criteria for all buildings being deactivated.

  9. PFP deactivation project management plan

    International Nuclear Information System (INIS)

    This document identifies the overall approach for deactivation of the Plutonium Finishing Plant (PFP) Complex, excluding the vaults, and includes a draft set of End Point Criteria for all buildings being deactivated

  10. Technical basis for high-level waste repository land control requirements for Palo Duro Basin, Paradox Basin, and Richton Dome

    International Nuclear Information System (INIS)

    Three sites, the Palo Duro Basin in Texas, the Paradox Basin in Utah, and the Richton Dome in Mississippi, are being investigated by the US Department of Energy for high-level radioactive-waste disposal in mined, deep geologic repositories in salt. This report delineates the use of regulatory, engineering, and performance assessment information to establish the technical basis for controlled area requirements. Based on the size of the controlled area determined, plus that of the geologic repository operations area, recommendations of possible land control or ownership area requirements for each locale are provided. On a technical basis, the following minimum land control or ownership requirements are recommended, assuming repository operations area of 2240 ac (907 ha), or 3.5 mi2 (9.1 km2): Palo Duro Basin - 4060 ac (1643 ha), or 6.3 mi2 (16.4 km2); Paradox Basin - 4060 ac (1643 ha), or 6.3 mi2 (16.4 km2); and Richton Dome - 5000 ac (2024 ha), or 7.8 mi2 (20.2 km2). Of the factors used to determine the technically based recommendations, one was found to dominate each locale. For the Palo Duro and Paradox Basins, the dominant factor was the need to limit potential radionuclide release by ground-water flow to the accessible environment. For the Richton Dome, the dominant factor was the need to limit the potential effects of solution mining on dome and repository integrity

  11. Deactivations during the numerical processing

    Institute of Scientific and Technical Information of China (English)

    FENG HongBo; ZHANG Ye; TANG YiYuan; JIN Jing; DONG Feng; FENG ShiGang; ZHANG WuTian

    2007-01-01

    Deactivation has been encountered frequently in functional brain imaging researches. However,the deactivations during the numerical processing have not been reported yet. In this study,the functional magnetic resonance imaging (fMRI) was employed to investigate the pattern of the deactivation in the brain of 15 healthy subjects during the numerical addition task. Analyses revealed significant deactivations in several brain regions,including the posterior cingulate,precuneus,anterior cingulate and prefrontal cortex. Especially,we found notable deactivation in bilateral insula. Accounting for the cognitive functions of these regions participating in a combinated way,we discuss their contributions in sustaining the brain activity during conscious resting state,and indicate that the insula is an important area of gathering auditory information from the external world.

  12. The strategy and practice of radioactive waste management in the Pacific Basin

    International Nuclear Information System (INIS)

    Radioactive waste management is an integral part of the planning process for the nuclear industry in Pacific Basin countries. This paper reviews areas of common interest and cooperation, sources of waste and current inventories, production rates, and future plans. Each level of radioactive waste requires different methods for handling, storage, and disposal. Definitions may vary In detail from country to country, but generally high level wastes are defined as those deriving from spent fuel and from reprocessing of fuel. These wastes contain transuranic elements and fission products that are highly radioactive, heat-generating and long-lived. Intermediate level and low level wastes may include, respectively, material from fuel fabrication and power generation other than spent fuel, and those wastes produced by research institutions, hospitals, and in other non-power producing Industrial uses of radioisotopes. The energy requirements of most countries are likely to continue to grow, and the use of radioactive isotopes in medicine and other non-energy industrial sectors is also expanding. The Pacific Nuclear Council member states participating in the Waste Management Working Group, are predicting, therefore, that the volume of radioactive waste for disposal will continue to grow

  13. The kinetics of activation and deactivation in the process of water ozonising used for advanced oxidation of the dust waste from moulding sands

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2009-01-01

    Full Text Available Adding coal dust and organic carriers of the lustrous carbon to bentonite-bonded moulding sands in amounts justified by thetechnological regime and the use of cores and protective coatings based on organic compounds create serious threats to the environment.During thermal destruction of the individual components of moulding and core sands, some toxic organic compounds are emitted. They formthe majority of the Hazardous Air Pollutants (HAPs, and include mainly compounds like benzene, toluene, xylene, naphtalene, hexane,acetaldehyde, acrolein, aniline, cresol and cumene, their polycyclic derivatives, phenol, formaldehyde, and other similar matters. In thusformed dust waste, the amount of which constitutes about 20% of all the waste from foundries using traditional moulding and core sands, there are still full-value materials which can undergo total recycling, providing the HAPs are partially or totally removed from them. The article discusses some problems of the advanced oxidation of selected toxic chemical compounds present in bentonite-bonded moulding sands due to the effect of high temperature. The results of the investigations of the kinetics of the process of maximum water saturation with ozone (acting as an oxidiser and of the kinetics of the natural process of ozone decomposition to diatomic oxygen were presented. It has been stated that the maximum time of water saturation with ozone using an OZOMATIC OSC-MODULAR 4HC ozone generator and a 1m3 capacity tank with water is 60 minutes. After 30 minute break in the ozonising process, the ozone concentration in water decreases by 40 to 50%. To obtain maximum ozone concentration in water during the next ozonising cycle, it is necessary to have the ozone-generating device running for the next 30 minutes. The stabilisation of ozone concentration in water takes place only after the third ozonising cycle, when it reaches nearly 80%of the maximum value obtained after the first process cycle

  14. RCRA closure experience with radioactive mixed waste in the 183-H Solar Evaporation Basins at the Hanford Site

    International Nuclear Information System (INIS)

    This paper provides an overview of the Resource Conservation and Recovery Act (RCRA) of 1976 closure work of the 183-H Solar Evaporation Basins, at the Hanford Site for the US Department of Energy Field Office, Richland, Washington. A description of how the hazardous wastes and radioactive wastes (mixed wastes) were treated and removed is provided, as well as presenting an overview of the sampling program used to demonstrate and document closure

  15. Geohydrology surrounding a potential high level nuclear waste repository in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    The Palo Duro Basin of the Texas Panhandle is being investigated as a potential high level nuclear waste repository site. As groundwater is the most likely mechanism for radionuclide movement, it is desirable to locate a repository in a hydrologic regime which is favorable for waste isolation and containment. The Palo Duro Basin consists of deep brine aquifers of low regional permeability underlying a thick Permian age evaporite section. The overlying Permian age evaporites are the Dockum and Ogallala fresh water aquifiers. Observed potentiometric data in the principal aquifers indicate a potential for downward flow from the surficial aquifiers to the deep brine aquifers. Groundwater movement in these deep aquifers is very slow. Modeling efforts indicate flow times of hundreds of thousands to over a million years for groundwater to reach the basin margins. Investigative methods have included drill-stem testing similar to oil field methodology, modified drill-stem testing with tools developed for low-permeability formations and long term production tests similar to conventional water well pumping tests. Testing has generally indicated permeability of .1-10 millidarcies in the water transmitting units

  16. Implementing RCRA during facility deactivation

    International Nuclear Information System (INIS)

    RCRA regulations require closure of permitted treatment, storage and disposal (TSD) facilities within 180 days after cessation of operations, and this may essentially necessitate decommissioning to complete closure. A more cost effective way to handle the facility would be to significantly reduce the risk to human health and the environment by taking it from its operational status to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to decommissioning. This paper presents an innovative approach to the cost effective deactivation of a large, complex chemical processing facility permitted under RCRA. The approach takes into account risks to the environment posed by this facility in comparison to risks posed by neighboring facilities at the site. The paper addresses the manner in which: 1) stakeholders and regulators were involved; 2) identifies a process by which the project proceeds and regulators and stakeholders were involved; 3) end points were developed so completion of deactivation was clearly identified at the beginning of the project, and 4) innovative practices were used to deactivate more quickly and cost effectively

  17. Heterogeneous Catalyst Deactivation and Regeneration: A Review

    OpenAIRE

    Morris D. Argyle; Calvin H. Bartholomew

    2015-01-01

    Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical) and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing). The key features and considerations for each of these deactivation types is reviewed in detail with referen...

  18. Improvement of the safety regulations in the management of radioactive waste accumulated in the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), the Siberian Chemical Plant (Seversk) and the Mining-Chemical Plant (Zheleznogorsk)

    International Nuclear Information System (INIS)

    One of the most important problems of radiation safety in Russia is the decommissioning of the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), Siberian Chemical Plant (Seversk) and Mining-Chemical Plant (Zheleznogorsk). The liquid radioactive waste water basins were constructed in 1950-1960 for the collection and storage of liquid waste from the radiochemical plants. The potential hazards of the liquid in the radioactive waste water basins are: migration of radionuclides into the soil of the liquid radioactive waste water basin floors; wind-induced carry-over of radionuclides from the liquid radioactive waste water basins; hazards (radiation included) to the environment and population arising in case physical barriers and hydraulic structures are damaged; and criticality hazards. The classification of the liquid radioactive waste water basins were developed based on the collection and analyzes of the information on liquid radioactive waste water basin characteristics and the method of multicriterion expert assessment of potential hazards. Three main directions for the improvement of safety regulation in the management of radioactive waste accumulated in the liquid radioactive waste water basins were defined: 1. Common directions for the improvement of safety regulation in the area of rehabilitation of the territories contaminated with radioactive substances. 2. Common directions for the improvement of safety regulation in the area of rehabilitation of the territories, such as the liquid radioactive waste water basins. 3. Special directions for the regulatory activities in the area of operation and decommissioning of the liquid radioactive waste water basins of the PO 'Majak' (Ozersk), Siberian Chemical Plant (Seversk) and Mining-Chemical Plant (Zheleznogorsk). As a result, concrete recommendations on safety regulation for the management of radioactive waste accumulated in the water basins were developed. (author)

  19. Remote System Technologies for Deactivating Hanford Hot Cells

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  20. Problems of Chernobyl radioactive wastes management

    International Nuclear Information System (INIS)

    The aim of this work was analyze deactivation works for radio protection of population. Territories of objects subjected to deactivation had contamination level from 50 to 150 mk R/h. Burial place of deactivation wastes realized on territories of similar radio contamination level of soil with contamination level soil of wastes

  1. F-Canyon Suspension and Deactivation Safety Analysis Reports

    International Nuclear Information System (INIS)

    This paper describes Savannah River Site's compliance with the Department of Energy (DOE) direction to suspend current operations, transition to accommodate revised facility missions, and initiate operations to deactivate F-Canyon using a suspension and deactivation safety basis. This paper integrates multiple Workshop theme topics - Lessons Learned from the Safety Analysis Process, Improvements in Documenting Hazard and Accident Analysis, and Closure Issues - Decontamination and Decommissioning. The paper describes the process used to develop safety documentation to support suspension and deactivation activities for F-Canyon. Embodied are descriptive efforts that include development of intermediate and final ''end states'' (e.g., transitional operations), preparation of safety bases documents to support transition, performance of suspension and deactivation activities (e.g. solvent washing, tank/sump flushing, and laboratory waste processing), and downgrade of Safety Class and Safety Significant equipment. The reduction and/or removal of hazards in the facility result in significant risk (frequency times consequence) reduction to the public, site workers, and the environment. Risk reduction then allows the downgrade of safety class and safety significant systems (e.g., ventilation system) and elimination of associated surveillances. The downgrade of safety systems results in significant cost savings

  2. Quantity and quality of seepage from two earthen basins used to store livestock waste in southern Minnesota during the first year of operation, 1997-98

    Science.gov (United States)

    Ruhl, James F.

    1999-01-01

    Numerous earthen basins have been constructed in Minnesota for storage of livestock waste. Typically, these basins are excavated pits with partially above-grade, earth-walled embankments and compacted clay liners. Some have drain tile installed around them to prevent shallow ground and soil water to discharge into the basins. Environmental concerns associated with the waste include contamination of ground water by nitrogen compounds and pathogens.

  3. West Siberian basin hydrogeology - regional framework for contaminant migration from injected wastes

    International Nuclear Information System (INIS)

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in massive contamination of the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. Our long-term goal at Pacific Northwest Laboratory is to help determine future environmental and human impacts given the releases that have occurred to date and the current waste management practices. In FY 1993, our objectives were to (1) refine and implement the hydrogeologic conceptual models of the regional hydrogeology of western Siberia developed in FY 1992 and develop the detailed, spatially registered digital geologic and hydrologic databases to test them, (2) calibrate the computer implementation of the conceptual models developed in FY 1992, and (3) develop general geologic and hydrologic information and preliminary hydrogeologic conceptual models relevant to the more detailed models of contaminated site hydrogeology. Calibration studies of the regional hydrogeologic computer model suggest that most precipitation entering the ground-water system moves in the near-surface part of the system and discharges to surface waters relatively near its point of infiltration. This means that wastes discharged to the surface and near-surface may not be isolated as well as previously thought, since the wastes may be carried to the surface by gradually rising ground waters

  4. Heterogeneous Catalyst Deactivation and Regeneration: A Review

    Directory of Open Access Journals (Sweden)

    Morris D. Argyle

    2015-02-01

    Full Text Available Deactivation of heterogeneous catalysts is a ubiquitous problem that causes loss of catalytic rate with time. This review on deactivation and regeneration of heterogeneous catalysts classifies deactivation by type (chemical, thermal, and mechanical and by mechanism (poisoning, fouling, thermal degradation, vapor formation, vapor-solid and solid-solid reactions, and attrition/crushing. The key features and considerations for each of these deactivation types is reviewed in detail with reference to the latest literature reports in these areas. Two case studies on the deactivation mechanisms of catalysts used for cobalt Fischer-Tropsch and selective catalytic reduction are considered to provide additional depth in the topics of sintering, coking, poisoning, and fouling. Regeneration considerations and options are also briefly discussed for each deactivation mechanism.

  5. Catalyst Deactivation: Control Relevance of Model Assumptions

    OpenAIRE

    Bernt Lie; David M. Himmelblau

    2000-01-01

    Two principles for describing catalyst deactivation are discussed, one based on the deactivation mechanism, the other based on the activity and catalyst age distribution. When the model is based upon activity decay, it is common to use a mean activity developed from the steady-state residence time distribution. We compare control-relevant properties of such an approach with those of a model based upon the deactivation mechanism. Using a continuous stirred tank reactor as an example, we show t...

  6. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    International Nuclear Information System (INIS)

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin

  7. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    Energy Technology Data Exchange (ETDEWEB)

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

  8. Biological fate, transport, and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin

    International Nuclear Information System (INIS)

    The objective of the cluster investigators is to develop a dynamic model for the evaluation of the biological fate, transport, and ecotoxicity from multiple chemical contamination of the Mississippi River Basin. To develop this environmental model, FY 93-94 most of cluster investigators focused on Devil's Swamp Site (DSS), a cypress swamp which lies just Northwest of Baton Rouge, Louisiana, adjacent to the Mississippi River. The DSS which includes a man-made lake has contaminated sediment, water and biota. The DSS receives flood water from the Mississippi River during high flow periods and the Baton Rouge Bayou drains through the DSS. The DSS receives toxic substances and hazardous waste from a wide variety of surrounding industrial operations including an abandoned hazardous waste disposal facility. In addition, some investigators studied Bayou Trepangnier. This research cluster will continue studying Devil Swamp. The large number of investigators in this cluster resulted from incorporating related research proposals based on reviewer recommendations. The specific aims of the cluster for the first year were to conduct a physical, chemical, ecological survey and baseline toxicological characterization of the DSS from existing databases maintained by State and federal agencies, field studies (assessment) of sediment, air, water and biota, and laboratory screening studios. This assessment will provide critical information and focus for the next two years in-depth studies of critical transport and fate processes, ecotoxicity, biomarkers of effect, and uptake, metabolism and distribution of toxicants. The primary significant outcome of the cluster researchers will be the development of an ecological risk assessment model combining biotic and physical/chemical variables for DSS with a projection of model reliability and accuracy for use at other typical Mississippi River Basin sites

  9. Geophysical investigation of the 116-H-1 liquid waste disposal trench, 100-HR-1 operable unit

    International Nuclear Information System (INIS)

    A geophysical investigation and data integration were conducted for the 116-H-1 Liquid Waste Disposal Trench, which is located in the 100-HR-1 Operable Unit. The 116-H-1 Liquid Waste Disposal Trench is also known as the 107-H Liquid Waste Disposal Trench, the 107-H Rupture Effluent Trench, and the 107-H Trench (Deford and Einan 1995). The trench was primarily used to hold effluent from the 107-H Retention Basin that had become radioactive from contact with ruptured fuel elements. The effluent may include debris from the ruptured fuel elements (Koop 1964). The 116-H-1 Liquid Waste Disposal Trench was also used to hold water and sludge from the 107-H Retention Basin during the basin's deactivation in 1965

  10. Data quality objectives for PUREX deactivation flushing

    International Nuclear Information System (INIS)

    This Data Quality Objection (DQO) defines the sampling and analysis requirements necessary to support the deactivation of the Plutonium-Uranium Extraction (PUREX) facility vessels that are regulated by WAC 173-303. Specifically, sampling and analysis requirements are identified for the flushing operations that are a major element of PUREX deactivation

  11. Invasion of radioactive waste burial sites by the Great Basin Pocket Mouse (Perognathus parvus)

    International Nuclear Information System (INIS)

    The invasion of burial sites by animals is a common problem documented at several nuclear facilities including Idaho National Engineering Laboratories (INEL), Savannah River, Oak Ridge, and Los Alamos. In order to establish effective deterrents for control of this problem, baseline information has been collected about specific parameters related to the potential for transport of radionuclides by animals. This study identifies parameters associated with burrowing activities of the Great Basin Pocket Mouse (Perognathus parvus) at the Hanford Site in Eastern Washington. The objectives of the study were: 1) document and compare burrow depths and soil volumes on a control site and a decommissioned radioactive waste site and 2) develop a system to estimate the depth and soil volume of burrows without requiring excavation. Animals were found to burrow deeper in the backfilled burial site (x = .77 m) than they did in the control site (x = .43 m). Burrows were probably deeper in the disturbed waste site due to limited compaction; and as a result, pocket mice have to dig deeper to maintain the integrity of the burrow system. Significant positive correlations (p<.01) were calculated from both study sites between burrow depth and soil volume and between mound diameter and soil volume. Based on these correlations, it should be possible to estimate burrow depths and soil volumes without excavation. Confidence levels and standard deviations are provided with these estimates. This method will allow estimates to be made of how much soil has been brought to the surface by pocket mice over a given period of time and may be useful in determining which waste sites could experience potential problems related to radionuclide transport. Recommendations based on these data can be used in the design of future burial facilities to prevent or mitigate the impact of encroachment by burrowing animals

  12. Data quality objectives summary report for 105-N Basin sediment disposition

    International Nuclear Information System (INIS)

    During stabilization of the 105-N Basin, sediments that have accumulated on 105-N Basin surfaces will be vacuumed, collected in the North Cask Pit of the basin complex, and eventually removed. The Environmental Assessment for the Deactivation of the N Reactor Facilities describes two potential disposition paths for the 105-N Basin sediment: transfer in slurry form to a double-shell tank if determined to be a transuranic waste, or disposal in solid form as a low-level waste. Interim storage of the sediments may be required if a transfer to the Tank Waste Remediation System cannot meet schedule milestones. Selection of a particular alternative depends on the final characterization of the accumulated sediment, regulatory requirements, cost/benefit analyses, and 105-N Stabilization Project schedule requirements. Revision 0 of this Data Quality Objectives (DQO) report was issued to describe a formal DQO process that was performed according to BHI-EE-01, Environmental Investigations Procedures, EIP 1.2, Data Quality Objectives, Revision 1. Since publication of Revision 0 of this report, important changes to the disposition strategy for 100-N Deactivation sediment material have been proposed, evaluated, discussed with the US Department of Energy and State of Washington Department of Ecology, and implemented. Revision 1 of this report documents these changes

  13. PUREX Plant deactivation mission analysis report

    International Nuclear Information System (INIS)

    The purpose of the PUREX Deactivation Project mission analysis is to define the problem to be addressed by the PUREX mission, and to lay the ground work for further system definition. The mission analysis is an important first step in the System Engineering (SE) process. This report presents the results of the PUREX Deactivation Project mission analysis. The purpose of the PUREX Deactivation Project is to prepare PUREX for Decontamination and Decommissioning within a five year time frame. This will be accomplished by establishing a passively safe and environmentally secure configuration of the PUREX Plant, that can be preserved for a 10-year horizon. During deactivation, appropriate portions of the safety envelop will be maintained to ensure deactivation takes place in a safe and regulatory compliant manner

  14. PUREX Deactivation Health and Safety documentation

    International Nuclear Information System (INIS)

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D ampersand D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety

  15. PUREX Deactivation Health and Safety documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  16. Investigation of the concentration, distribution, and inventory of radionuclides in the sediment of Process Waste System Basin 3524

    International Nuclear Information System (INIS)

    Process Waste System Basin 3524 is used as a collection basin for process liquid waste from facilities at the Oak Ridge National Laboratory. This investigation was conducted to determine the radionuclide concentrations, distributions, and inventory of the sediments in this basin in preparation for future decontamination and decommissioning activities. Twenty-four sediment cores were extracted from the basin and 80 aliquots were analyzed for their radionuclide concentrations. The sediment is estimated to contain a total of 5.5 x 1012 Bq (150 Ci) of activity, 87% of which is contributed by two radionuclides, 137Cs (68%) and 90Sr (19%). The radionuclide content is estimated as follows: 137Cs, 3.77 x 1012 Bq (102 Ci); 90Sr, 1.07 x 1012 Bq (29 Ci); gross alpha, 4.06 x 1011 Bq (11 Ci); 241Am, 1.70 x 1011 Bq (4.6 Ci); 60Co, 8.32 x 1010 Bq (2.2 Ci); and 154Eu, 3.35 x 1010 Bq (0.9 Ci). 9 references, 8 figures, 7 tables

  17. Kinetic Analysis of Char Thermal Deactivation

    DEFF Research Database (Denmark)

    Zolin, Alfredo; Jensen, Anker; Dam-Johansen, Kim

    2001-01-01

    and demineralized Dietz from USA, and two alternative fuels, Danish leached straw and petroleum coke, were used in the experiments. The coal chars from demineralized Dietz, Illinois no. 6, and Cerrejon deactivate readily, whereas petroleum coke and Blair Athol show a relative high resistance to...... deactivation. Leached straw deactivates significantly, but maintains at any heat-treatment temperature a higher reactivity than the other chars. The inertinite-rich coal Blair Athol is more resistant to deactivation than two vitrinite-rich coals of the same ASTM rank, Cerrejon and Illinois no. 6. Cerrejon and...... Illinois no. 6 chars prepared in the TGA at 1673 K show a much lower reactivity than carbon extracts from boilers operated with these coals, possibly owing to enhanced annealing conditions in the TGA, such as low heating rates, relatively high temperatures, and long holding times. Based on the char...

  18. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Deactivation of Medicare billing privileges. 424... Establishing and Maintaining Medicare Billing Privileges § 424.540 Deactivation of Medicare billing privileges. (a) Reasons for deactivation. CMS may deactivate a provider or supplier's Medicare billing...

  19. N Area Post-Deactivation ALARA Report

    International Nuclear Information System (INIS)

    This report provides information about a wide range of radiological work activities at the N Area Deactivation Project. The report is divided into sections that are based on specific N Area scopes of work. Each section contains specific information that was of significant radiological importance in completing N Area Deactivation work. The information presented in this report may be applicable and beneficial to similar projects throughout the U.S. Department of Energy (DOE) complex, and in commercial industry

  20. Kinetic Analysis of Char Thermal Deactivation

    DEFF Research Database (Denmark)

    Zolin, Alfredo; Jensen, Anker; Dam-Johansen, Kim

    2001-01-01

    . Leached straw deactivates significantly, but maintains at any heat-treatment temperature a higher reactivity than the other chars. The inertinite-rich coal Blair Athol is more resistant to deactivation than two vitrinite-rich coals of the same ASTM rank, Cerrejon and Illinois no. 6. Cerrejon and Illinois...... that TGA experiments can be used to capture the reactivity differences of chars observed in combustion facilities....

  1. UO3 deactivation end point criteria

    International Nuclear Information System (INIS)

    The UO3 Deactivation End Point Criteria are necessary to facilitate the transfer of the UO3 Facility from the Office of Facility Transition and Management (EM-60) to the office of Environmental Restoration (EM-40). The criteria were derived from a logical process for determining end points for the systems and spaces at the UO3, Facility based on the objectives, tasks, and expected future uses pertinent to that system or space. Furthermore, the established criteria meets the intent and supports the draft guidance for acceptance criteria prepared by EM-40, open-quotes U.S. Department of Energy office of Environmental Restoration (EM-40) Decontamination and Decommissioning Guidance Document (Draft).close quotes For the UO3 Facility, the overall objective of deactivation is to achieve a safe, stable and environmentally sound condition, suitable for an extended period, as quickly and economically as possible. Once deactivated, the facility is kept in its stable condition by means of a methodical surveillance and maintenance (S ampersand M) program, pending ultimate decontamination and decommissioning (D ampersand D). Deactivation work involves a range of tasks, such as removal of hazardous material, elimination or shielding of radiation fields, partial decontamination to permit access for inspection, installation of monitors and alarms, etc. it is important that the end point of each of these tasks be established clearly and in advance, for the following reasons: (1) End points must be such that the central element of the deactivation objective - to achieve stability - is unquestionably achieved. (2) Much of the deactivation work involves worker exposure to radiation or dangerous materials. This can be minimized by avoiding unnecessary work. (3) Each task is, in effect, competing for resources with other deactivation tasks and other facilities. By assuring that each task is appropriately bounded, DOE's overall resources can be used most fully and effectively

  2. Sampling and analysis plan for the 116-C-5 retention basins characteristic dangerous waste determination

    International Nuclear Information System (INIS)

    Cooling water flow from the rear face of the 100-B and 100-C reactors was diverted to large retention basins prior to discharge to the Columbia River. These retention basins delayed the release of the reactor coolant for decay of the short-lived activation products and for thermal cooling. Some of the activation products were deposited in sludge that settled in the basins and discharge lines. In addition, some contamination was deposited in soil around the basins and associated piping. The sampling objective of this project is to determine if regulated levels of leachable lead are present in the abrasive materials used to decontaminate the retention basin tank walls, in the material between the tank base plate and the concrete foundation, and in the soils immediately surrounding the perimeter of the retention basins. Sampling details, including sampling locations, frequencies, and analytical requirements, are discussed. Also described is the quality assurance plan for this project

  3. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  4. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  5. Westinghouse Hanford Company recommended strategy for K Basin sludge disposition

    International Nuclear Information System (INIS)

    The objective of this document is to present the recommended strategy for removal of sludges from the K Basins. This document ties sludge removal activities to the plan for the K Basin spent nuclear fuel (SNF) described in WHC-EP-0830, Hanford Spent Nuclear Fuel Project Recommended Path Forward and is consistent with follow-on direction provided in February 1995. Solutions and processes for resolving sludge removal technical and management issues to meet accelerated K Basin deactivation objectives are described. The following outlines the major elements of the recommendation: (1) manage all sludges as SNF while in the K Basins; (2) once loose sludges are collected and removed from the facilities, manage them as radioactive or mixed waste consistent with the upcoming characterization results, the preferred sludge path forward alternative sends sludges to the Tank Waste Remediation System (TWRS) and/or the Hanford Solid Waste Disposal as appropriate; (3) continue to manage sludge within the fuel canisters at the time they are loaded into the multi-canister overpacks as SNF

  6. Deactivating a major nuclear fuels reprocessing facility

    International Nuclear Information System (INIS)

    This paper describes three key processes used in deactivating the Plutonium Uranium Extraction (PUREX) Facility, a large, complex nuclear reprocessing facility, 15 months ahead of schedule and $77 million under budget. The organization was reengineered to refine its business processes and more effectively organize around the deactivation work scope. Multi-disciplined work teams were formed to be self-sufficient and empowered to make decisions and perform work. A number of benefits were realized by reengineering. A comprehensive process to develop end points which clearly identified specific results and the post-project facility configuration was developed so all areas of a facility were addressed. Clear and specific end points allowed teams to focus on completing deactivation activities and helped ensure there were no unfulfilled end-of-project expectations. The RCRA regulations require closure of permitted facilities within 180 days after cessation of operations which may essentially necessitate decommissioning. A more cost effective approach was adopted which significantly reduced risk to human health and the environment by taking the facility to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to disposition. PUREX thus became the first large reprocessing facility with active TSD [treatment, storage, and disposal] units to be deactivated under the RCRA regulations

  7. Regulatory Project Manager for Salina and Permian Basins for the NWTS [National Waste Terminal Storage] Program: Final techical report

    International Nuclear Information System (INIS)

    The identification of candidate sites for nuclear waste repositories involves geological and environmental studies to characterize potential sites. These investigations include the collection and analysis of detailed geological and environmental data and comparison of the data against predetermined site performance criteria, i.e., geologic characteristics, environmental protection, and socioeconomic impacts. The work summarized in this final technical report encompasses mainly ''environmental characterization'' studies in the Permian Basin in the Texas Panhandle during the period of 1977-86; in the earlier phase of the contract, regional environmental work was also done in the Salina Basin (1977-79) and certain licensing support activities and safety analyses were conducted (1977-82). Considerable regulatory support work was also performed during 1986. 9 figs., 2 tabs

  8. Data quality objectives summary report for 105-N Basin sediment disposition

    International Nuclear Information System (INIS)

    During stabilization of the 105-N Basin, sediments that have accumulated on basin surfaces will be vacuumed, collected in the North Cask Pit of the basin complex, and eventually removed. The environmental assessment for the deactivation of the N Reactor Facilities describes two potential disposition paths for the 105-N Basin sediment: transfer in slurry form to a double-shell tank if determined to be a transuranic waste, or disposal in solid form as a low-level waste. Interim storage of the sediments may be required if a transfer to the Tank Waste Remediation System cannot meet scheduled milestones. Selection of a particular alternative depends on the final characterization of the accumulated sediment, regulatory requirements, cost/benefit analyses, and 105-N Stabilization Project schedule requirements. The 105-N Basin Sediment Process is being conducted in two phases. The scope of the first phase includes identification of the sampling requirements, and the specific analyses required to support evaluation of the sediment disposition options. The objectives of the first phase of the 105-N Basin Sediment DQO Process include the following: identify the relevant acceptance criteria for each of the disposition options; and develop a sampling and analysis plan (SAP) sufficiently through to allow evaluation of sediment analysis results against each set of acceptance criteria

  9. Catalyst Deactivation: Control Relevance of Model Assumptions

    Directory of Open Access Journals (Sweden)

    Bernt Lie

    2000-10-01

    Full Text Available Two principles for describing catalyst deactivation are discussed, one based on the deactivation mechanism, the other based on the activity and catalyst age distribution. When the model is based upon activity decay, it is common to use a mean activity developed from the steady-state residence time distribution. We compare control-relevant properties of such an approach with those of a model based upon the deactivation mechanism. Using a continuous stirred tank reactor as an example, we show that the mechanistic approach and the population balance approach lead to identical models. However, common additional assumptions used for activity-based models lead to model properties that may deviate considerably from the correct one.

  10. On the CCN [de]activation nonlinearities

    CERN Document Server

    Arabas, Sylwester

    2016-01-01

    We take into consideration the evolution of particle size in a monodisperse aerosol population during activation and deactivation of cloud condensation nuclei (CCN). The phase portrait of the system derived through a weakly-nonlinear analysis reveals a saddle-node bifurcation and a cusp catastrophe. An analytical estimate of the activation timescale is derived through estimation of the time spent in the saddle-node bifurcation bottleneck. Numerical integration of the system portrays two types of activation/deactivation hystereses: one associated with the kinetic limitations on droplet growth when the system is far from equilibrium, and one occurring close to equilibrium and associated with the cusp catastrophe. The hysteretic behaviour close to equilibrium imposes stringent time-resolution constraints on numerical integration, particularly during deactivation.

  11. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  12. Advances in Catalyst Deactivation and Regeneration

    OpenAIRE

    Calvin H. Bartholomew; Morris D. Argyle

    2015-01-01

    Catalyst deactivation, the loss over time of catalytic activity and/or selectivity, is a problem of great and continuing concern in the practice of industrial catalytic processes. Costs to industry for catalyst replacement and process shutdown total tens of billions of dollars per year. [...

  13. Advances in Catalyst Deactivation and Regeneration

    Directory of Open Access Journals (Sweden)

    Calvin H. Bartholomew

    2015-06-01

    Full Text Available Catalyst deactivation, the loss over time of catalytic activity and/or selectivity, is a problem of great and continuing concern in the practice of industrial catalytic processes. Costs to industry for catalyst replacement and process shutdown total tens of billions of dollars per year. [...

  14. Deactivation efficiency of stabilized bactericidal emulsions.

    Science.gov (United States)

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2011-09-20

    Biocide emulsions stabilized with various stabilizing agents were prepared and characterized, and their efficiency in bacteria deactivation was evaluated. A number of stabilizing agents were tested for their stabilizing effect on emulsions of thiocyanomethylthiobenzothiazole (TCMTB) biocide. Two agents, the most successful in stabilizing the biocide, were chosen for further studies: high molecular weight polyethyleneimine (PEI) and an amphiphilic block copolymer of poly(caprolactone)-b-poly(acrylic acid) (PCL(33)-b-PAA(33)). The emulsion droplet sizes varied between 325 and 500 nm. Deactivation of bacteria was studied by exposing E. coli ATCC 11229 bacteria dispersions to emulsions stabilized by positively charged PEI or negatively charged PCL-b-PAA micelles and by measuring their absorbance; E. coli do not grow with time in the presence of biocide emulsions. PEI molecules alone act as biocide and deactivate the bacteria. PCL-b-PAA micelles as stabilizing agent do not affect the growth of the E. coli ; bacteria are deactivated by TCMTB released from the emulsion droplets. The kinetics of emulsion dissolution studies revealed for both stabilizing agents a decrease in droplet size with time while the emulsions were subjected to dialysis. The biocide was released from the emulsions within ∼250 min; the droplet shells consist mostly of PEI or PCL-b-PAA insoluble complexes with the biocide, which do not dissolve during dialysis. SEM images confirm the presence of residual crumbled shells with holes after 24 h of dialysis. PMID:21823610

  15. 309 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  16. Deactivation completed at historic Hanford Fuels Laboratory

    International Nuclear Information System (INIS)

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site's boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO2) and enriched uranium oxide (UO2) residues and powders in the facility's equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America's primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world's supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D ampersand D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process

  17. PUREX/UO3 Facilities deactivation lessons learned history

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1996-09-19

    objectives of the project in mind can guide decisions that reduce risks with minimal manipulation of physical materials, minimal waste generation, streamline regulations and safety requirements where possible, and separate the facility from ongoing entanglements with operating systems. Thus, the ``parked car`` state is achieved quickly and directly. The PUREX Deactivation Lessons Learned History was first issued in January 1995. Since then, several key changes have occurred in the project, making it advisable to revise and update the document. This document is organized with the significant lessons learned captured at the end of each section, and then recounted in Section 11.0, ``Lessons Consolidated.`` It is hoped and believed that the lessons learned on the PUREX Deactivation Project will have value to other facilities both inside and outside the DOE complex.

  18. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    International Nuclear Information System (INIS)

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building

  19. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, V.J.; Pao, J.H.; Demmer, R.L.; Tripp, J.L.

    2002-01-17

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.

  20. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Virgil James; Pao, Jenn Hai; Demmer, Ricky Lynn; Tripp, Julia Lynn

    2002-02-01

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to reduce the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.

  1. 1997 N-Basin Administrative Control Level Dose Extension

    International Nuclear Information System (INIS)

    This document provides justification for extending the Administrative Control Level of 500 mrem per year to 1,000 mrem per year Total Effective Dose Equivalent for workers involved with N-Reactor Basin Deactivation in accordance with established procedures

  2. Deactivation liquid for nuclear power plant operating facilities, especially steam generator

    International Nuclear Information System (INIS)

    The patented liquid based on trichloroethylene contains butanol to 9 wt.% and deactivating agents such as nitric acid, etc., and a small amount of water. Butanol allows the mixing of these components. The advantage of butanol is that it has a higher boiling point than trichloroethylene and therefore during the regeneration of this liquid by distilling the first to be released are the non-combustible vapours of trichloroethylene while a small residue of butanol remains as waste. (Ha)

  3. The task dependent interaction of the deactivation regions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ye; FENG ShiGang; FENG HongBo; DONG Feng; TANG YiYuan

    2008-01-01

    Although deactivation has been found frequently in former functional brain imaging researches, only recently has it become a focus of systematic study because of its not well understood physiological mechanism. However, most of the researches concentrated on the brain areas that would present de-activation, and, to our knowledge, the deactivation connectivity between these brain areas during the cognitive tasks has rarely been reported in literature. In this work, using the functional connectivity method WlCA (within-condition interregional covariance analysis), we analyzed the deactivations in two different cognitive tasks-symbol orientation and number comparison. The results revealed de-activations in the posterior cingulate, precuneus, anterior cingulate and prefrontal cortex in both tasks. However, the interaction between the deactivated regions shows many differences. Our result further indicates that the potential implication of special deactivation connectivity may be related to the dif-ferent task or attention resource. Further research is needed to clarify the exact reason.

  4. A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids

    OpenAIRE

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to cons...

  5. Disposal of sediments from the 1300-N Emergency Dump Basin

    International Nuclear Information System (INIS)

    This report describes the characterization of the 1300-N Emergency Dump Basin (EDB) sediments, summarizes the data obtained, the resultant waste categorization, and the preferred disposal method. The EDB is an outdoor, concrete storage pond with a 3/16-in. carbon steel liner. The basin (completed in 1963) originally served as a quenching pool for reactor blowdown in the event of a primary coolant leak. Later, the basin received blowdown from the N Reactor steam generators. The steam generator blowdowns and leading isolation valves allowed radioactively contaminated water (from primary and secondary reactor coolant leaks) to enter the basin. Windblown dust and sand have settled in the basin over the years (because of its outdoor location), causing the present layer of sediments. To minimize potential airborne contamination, the water level was kept constant by adding water. However, the addition of water was stopped to minimize the amount of contaminated water needing disposal. To ensure that the surfaces exposed as a result of evaporation pose no immediate airborne contaminant problem, the contamination levels are monitored by Radiation Control Technicians. As part of the deactivation of N Reactor facilities, the EDB will be stabilized for long-term surveillance and maintenance prior to final decontamination and demolition

  6. Assessment of tectonic hazards to waste storage in interior-basin salt domes

    International Nuclear Information System (INIS)

    Salt domes in the northern Gulf of Mexico may make ideal sites for storage of radioactive waste because the area is tectonically quiet. The stability of such salt domes and the tectonic activity are discussed

  7. Data quality objectives summary report for the 107-N Basin recirculation building liquid/sediment

    International Nuclear Information System (INIS)

    The scope of the 107-N Basin Recirculation Facility Liquid/Sediment Data Quality Objectives (DQO) exclusively involves the determination of sampling and analytical requirements during the deactivation period. The sampling requirements are primarily directed at sample characterization for comparison to decontamination and decommissioning (D and D) endpoint acceptance criteria in preparation for turnover of the facilities (listed below) to D and D organization. If determined to be waste, the sample characterization is also used for comparison with the waste acceptance criteria (WAC) of the receiving facilities for selection of the appropriate disposition. Additionally, the data generated from the characterization will be used to support the selection of available disposition options. The primary media within the scope of this DQO includes the following: Accumulated liquids and sediment contained in tanks, vessels, pump wells, sumps, associated piping, and valve pit floors; and Limited solid debris (anticipated to be discovered). Although the title of this report refers only to the 107-N Basin Recirculation Building, this DQO encompasses the following four 100-N Buildings/areas: 1310-N valve pit area inside the Radioactive Chemical Waste Treatment Pump House (silo); 1314-N Waste Pump (Overflow) Tank at the Liquid Waste Disposal Station; 105-N Lift Station pump well and valve pit areas inside the 105-N Reactor Building; and 107-N Basin Recirculation Building

  8. The effects of irrigation waste-water disposal in a former discharge zone of the Murray Basin, Australia

    Science.gov (United States)

    Chambers, L. A.; Williams, B. G.; Barnes, C. J.; Wasson, R. J.

    1992-08-01

    In the Murray Basin in southeastern Australia, saline waste irrigation waters are often discharged to natural depressions and saline lakes as a salinity and land management strategy. At the Noora disposal basin in South Australia the waste irrigation water ( EC = 17-19 dS m-1) has formed a lens in the top of the highly saline (50-80 dS m -1) regional groundwater (Parilla Sands) aquifer. Using salinity and environmental isotopes of water (deuterium and oxygen-18) the lens has been shown to extend about 500 m in a northwesterly direction from the disposal pond. The major effects of this lens have been: (1) to cause upwards displacement of the regional ground water over an area of about 285 km 2, implying increased evaporation from areas surrounding the lens; (2) to reduce evaporation of regional ground water from the central low-lying area. Electromagnetic induction techniques for detecting preferred flowpaths away from the basin were rendered ineffective in this environment because of lithologic variations within the dune system. However, examination of bore-logs and groundwater gradients indicated that there was little evidence of stratigraphic control of mound development. Salinity in the Parilla Sands aquifer was closely related to the depth of the water table from the soil surface. Shallow (2-4 m) water tables were affected by recharge and evaporation to a much greater extent than ground water located below the higher dunes. There was, however, an almost instantaneous pressure response throughout the whole groundwater system to changes induced in the low-lying areas. Analyses of piezometric data showed that there was a seasonal variation imposed on the groundwater mound development. Corrected mean annual water-table increments and estimates of the mound volume and area were derived from a Theis response curve of the water table rise associated with the mound alone. Calculations using fitted parameters from the Theis analyses also suggested high transmissivity

  9. Radiometric dating of Ochoan (Permian) evaporites, WIPP [Waste Isolation Pilot Plant] site, Delaware Basin, New Mexico, USA

    International Nuclear Information System (INIS)

    We have attempted radiometric dating of halide-sulfate salts and clay minerals from the Delaware Basin, New Mexico, USA, as part of geochemical study of the stability of the evaporite sequence at the WIPP (Waste Isolation Pilot Plant - a US DOE facilty) site. We undertook this dating to determine: (1) primary age of evaporite genesis or time(s) of recrystallization; (2) if previously undated evaporite minerals (leonite, polyhalite, kieserite) give useful data; and (3) if the detrital clay minerals have been radiometrically reset at any time following their incorporation into the evaporite medium. We have shown earlier that polyhalites can indeed be successfully dated by the K-Ar method, and once corrections are applied for admixed halide minerals, dates of 210-230 Ma for the Delaware Basin are obtained. Rb-Sr isochrons from early stage sylvites-polyhalites- anhydrites yield 220 +- 10 Ma, even when some sylvites yield lower K-Ar dates due to loss of *40-Ar. K-Ar dates on leonites and kieserities are also low due to *40-Ar loss, but their Rb-Sr dates are higher. Detrital clay minerals from the Delaware Basin collectively yield a highly scattered isochron (390 +- 77 Ma), but samples from a local area, such as the WIPP Site, give a much better age of 428 +- 7 Ma. These dates show that the interaction between the clay minerals and the evaporitic brines was insufficient to reset the clay minerals Rb-Sr systematics. In a related study, we note that a dike emplaced into the evaporite at 34 Ma had only very limited effect on the intruded rocks; contact phenomena were all within 2 m of the dike. All of our geochemical (radio-metric and trace element) studies of the WIPP site argue for preservation of the isotopic and chemical integrity of the major minerals for the past 200 Ma

  10. Radioactive waste isolation in salt: peer review of the Office of Nuclear Waste Isolation's reports on preferred repository sites within the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Documents are being submitted to the Salt Repository Project Office (SRPO) of the US Department of Energy (DOE) by Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) to satisfy milestones of the Salt Repository Project of the Civilian Radioactive Waste Management Program. Some of these documents are being reviewed by multidisciplinary groups of peers to ensure DOE of their adequacy and credibility. Adequacy of documents refers to their ability to meet the standards of the US Nuclear Regulatory Commission, as enunciated in 10 CFR 60, and the requirements of the National Environmental Policy Act and the Nuclear Waste Policy Act of 1982. Credibility of documents refers to the validity of the assumptions, methods, and conclusions, as well as to the completeness of coverage. This report summarizes Argonne's review of ONWI's two-volume draft report entitled Identification of Preferred Sites within the Palo Duro Basin: Vol. 1 - Palo Duro Location A, and Vol. 2 - Palo Duro Location B, dated January 1984. Argonne was requested by DOE to review these documents on January 17 and 24, 1984 (see App. A). The review procedure involved obtaining written comments on the reports from three members of Argonne's core peer review staff and three extramural experts in related research areas. The peer review panel met at Argonne on February 6, 1984, and reviewer comments were integrated into this report by the review session chairman, with the assistance of Argonne's core peer review staff. All of the peer review panelists concurred in the way in which their comments were represented in this report (see App. B). A letter report and a draft of this report were sent to SRPO on February 10, 1984, and April 17, 1984, respectively. 5 references

  11. Disposal alternatives and recommendations for waste salt management for repository excavation in the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    This report documents an evaluation of five alternatives for the disposal of waste salt that would be generated by the construction of a repository for radioactive waste in underground salt deposits at either of two sites in the Palo Duro Basin, Texas. The alternatives include commercial disposal, offsite deep-well injection, disposal in abandoned mines, ocean disposal, and land surface disposal on or off the site. For each alternative a reference case was rated - positive, neutral, or negative - in terms of environmental and dependability factors developed specifically for Texas sites. The factors constituting the environmental checklist relate to water quality impact, water- and land-use conflicts, ecological compatibility, conformity with air quality standards, and aesthetic impact. Factors on the dependability check-list relate to public acceptance, the adequacy of site characterization, permit and licensing requirements, technological requirements, and operational availability. A comparison of the ratings yielded the following viable alternatives, in order of preference: (1) land surface disposal, specifically disposal on tailings piles associated with abandoned potash mines; (2) disposal in abandoned mines, specifically potash mines; and (3) commercial disposal. Approaches to the further study of these three salt management techniques are recommended

  12. Production of biochar out of organic urban waste to amend salt affected soils in the basin of Mexico

    Science.gov (United States)

    Chavez Garcia, Elizabeth; Siebe, Christina

    2016-04-01

    Biochar is widely recognized as an efficient tool for carbon sequestration and soil fertility. The understanding of its chemical and physical properties, strongly related to the biomass and production conditions, is central to identify the most suitable application of biochar. On the other hand, salt affected soils reduce the value and productivity of extensive areas worldwide. One feasible option to recover them is to add organic amendments, which improve water holding capacity and increase sorption sites for cations as sodium. The former lake Texcoco in the basin of Mexico has been a key area for the control of surface run-off and air quality of Mexico City. However, the high concentrations of soluble salts in their soils do not allow the development of a vegetation cover that protects the soil from wind erosion, being the latter the main cause of poor air quality in the metropolitan area during the dry season. On the other hand, the population of the city produces daily 2000 t of organic urban wastes, which are currently composted. Thus, we tested if either compost or biochar made out of urban organic waste can improve the salt affected soils of former lake Texcoco to grow grass and avoid wind erosion. We examined the physico-chemical properties of biochar produced from urban organic waste under pyrolysis conditions. We also set up a field experiment to evaluate the addition of these amendments into the saline soils of Texcoco. Our preliminary analyses show biochar yield was ca. 40%, it was mainly alkaline (pH: 8-10), with a moderate salt content (electrical conductivity: 0.5-3 mS/cm). We show also results of the initial phase of the field experiment in which we monitor the electrical conductivity, pH, water content, water tension and soil GHG fluxes on small plots amended with either biochar or compost in three different doses.

  13. Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: from waste to drinking water.

    Science.gov (United States)

    Carmona, Eric; Andreu, Vicente; Picó, Yolanda

    2014-06-15

    The occurrence of 21 acidic pharmaceuticals, including illicit drugs, and personal care products (PPCPs) in waste, surface and drinking water and in sediments of the Turia River Basin (Valencia, Spain) was studied. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the determination of these PPCPs with electrospray (ESI) in negative ionization (NI) mode. Ammonium fluoride in the mobile phase improved ionization efficiency by an average increase in peak area of 5 compared to ammonium formate or formic acid. All studied compounds were detected and their concentration was waste water>surface water>drinking water. PPCPs were in waste water treatment plants (WWTPs) influents up to 7.26μgL(-1), dominated by ibuprofen, naproxen and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCOOH). WWTPs were highly effective in removing most of them, with an average removal rate of >90%. PPCPs were still detected in effluents in the 6.72-940ngL(-1) range, with the THCOOH, triclocarban, gemfibrozil and diclofenac as most prevalent. Similarly, diclofenac, gemfibrozil, ibuprofen, naproxen and propylparaben were detected quite frequently from the low ngL(-1) range to 7μgL(-1) in the surface waters of Turia River. Ibuprofen, methylparaben, salicylic acid and tetrahydrocannabinol (THC) were at concentrations up to 0.85ngg(-1) d.w. in sediments. The discharge of WWTP as well as of non-treated waters to this river is a likely explanation for the significant amount of PPCPs detected in surface waters and sediments. Mineral and tap waters also presented significant amounts (approx. 100ngL(-1)) of ibuprofen, naproxen, propylparaben and butylparaben. The occurrence at trace levels of several PPCPs in drinking water raises concerns about possible implications for human health. PMID:24686145

  14. A study of paint sludge deactivation by pyrolysis reactions

    Directory of Open Access Journals (Sweden)

    L.A.R. Muniz

    2003-03-01

    Full Text Available The production of large quantities of paint sludge is a serious environmental problem. This work evaluates the use of pyrolysis reaction as a process for deactivating paint sludge that generates a combustible gas phase, a solvent liquid phase and an inert solid phase. These wastes were classified into three types: water-based solvent (latex resin and solvents based on their resins (alkyd and polyurethane. An electrically heated stainless steel batch reactor with a capacity of 579 mL and a maximum pressure of 30 atm was used. Following the reactor, a flash separator, which was operated at atmospheric pressure, partially condensed and separated liquid and gas products. Pressure and temperature were monitored on-line by a control and data acquisition system, which adjusted the heating power supplied to the pyrolysis reactor. Reactions followed an experimental design with two factors (reaction time and temperature and three levels (10, 50 and 90 minutes; 450, 550 and 650°C. The response variables were liquid and solid masses and net heat of combustion. The optimal operational range for the pyrolysis process was obtained for each response variable. A significant reduction in total mass of solid waste was obtained.

  15. Planning for closure and deactivation of the EBR-II complex

    International Nuclear Information System (INIS)

    In January 1994, DOE terminated the Integral Fast Reactor (IFR) Program. Argonne National Laboratory-West (ANL-W) prepared a detailed plan to put Experimental Breeder Reactor-II (EBR-II) in a safe condition, including removal of irradiated fueled subassemblies from the plant, transfer of subassemblies, and removal and stabilization of primary and secondary sodium liquid heat transfer metal. The goal of deactivation is to stabilize the EBR-II complex until decontamination and decommissioning (D ampersand D) is implemented, thereby minimizing maintenance and surveillance. Deactivation of a sodium cooled reactor presents unique concerns. Residual sodium in the primary and secondary systems must be either reacted or inerted to preclude concerns with explosive sodium-air reactions. Also, residual sodium on components will effectively solder these items in place, making removal unfeasible. Several special cases reside in the primary system, including primary cold traps, a cesium trap, a cover gas condenser, and systems containing sodium-potassium alloy. The sodium or sodium-potassium alloy in these components must be reacted in place or the components removed. The Sodium Components Maintenance Shop at ANL-W provides the capability for washing primary components, removing residual quantities of sodium while providing some decontamination capacity. Considerations need to be given to component removal necessary for providing access to primary tank internals for D ampersand D activities, removal of hazardous materials, and removal of stored energy sources. ANL-W's plan for the deactivation of EBR-II addresses these issues, providing for an industrially and radiologically safe complex, requiring minimal surveillance during the interim period between deactivation and D ampersand D. Throughout the deactivation and closure of the EBR-II complex, federal environmental concerns will be addressed, including obtaining the proper permits for facility condition and waste processing

  16. Geophysical investigation of the 116-B-11 retention basin, 116-B-1 liquid waste disposal trench, and 116-B-13 sludge trench, 100-BC-1 Operable Unit

    International Nuclear Information System (INIS)

    This report summarizes the results of geophysical investigations and data integration conducted for the 116-B-1 liquid waste disposal trench, the 116-B-11 retention basin, and the 116-B-13 sludge trench, which are all located at the 100-BC-1 Operable Unit (Figure 1). The objectives of this investigation include the following: Map the extent of 116-B-1 trench and any anomalous debris/material that may have been buried in it; Locate and accurately map the walls and pipelines associated with the 116-B-11 retention basin; and Locate and map the 116-B-13 sludge trench

  17. Optimization of sorption technology processing of liquid radioactive waste of low and middle activity level

    International Nuclear Information System (INIS)

    A substantial amount of liquid radioactive wastes (LRW) is formed during the regeneration of irradiated nuclear fuel (INF). Liquid wastes of low activity level (LAL) include: wash water and leakages; water for hydrotransport; water in storage basins; water from special laundries and disinfestation posts; and waste deactivation solutions. The radioactivity of these LRWs is equal to 1 x 10-7 1 x 10-5 Ci/l. Depending on the sources of the water supply for processing of INF, as well as technology and time (seasons) of processing, productivity and other factors, variations exist in the chemical and radiochemical compositions of LAL. This article discusses various processing treatments for low and intermediate level radioactive wastes

  18. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinyuan [ORNL; Sen, Sujat [Brown University; Liu, Jingyu [Brown University; Kulaots, Indrek [Brown University; Geohegan, David B [ORNL; Kane, Agnes [Brown University; Puretzky, Alexander A [ORNL; Rouleau, Christopher M [ORNL; More, Karren Leslie [ORNL; Palmore, G. Tayhas R. [Brown University; Hurt, Robert H. [Brown University

    2011-01-01

    This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.

  19. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    International Nuclear Information System (INIS)

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study

  20. Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

    1983-01-01

    The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

  1. PUREX/UO{sub 3} deactivation project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  2. PUREX/UO3 deactivation project management plan

    International Nuclear Information System (INIS)

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO3) Plant, which converted the PUREX liquid uranium nitrate product to solid UO3 powder. Final UO3 Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO3 Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO3 Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings

  3. Bases for PUREX deactivation safety equipment list

    International Nuclear Information System (INIS)

    This document provides the basis and justification for changes in classification of equipment listed in WHC-SD-SEL-001 Rev 1, open-quotes PUREX Plant Safety Equipment List.close quotes The reference document will be re-issued as Rev 2 based on the DEACTIVATION mode as evaluated in this document. Systems, components, and structures are evaluated based on consequences of failure on the health and safety of the general public for Safety Class 1, the health and safety of the on-site worker for Safety Class 2, and the health and safety of the facility worker for Safety Class 3. The consequences of a failure on the environment are also addressed in this ranking based on the level of insult. The criteria for the three levels of Safety class equipment are given in Appendix I for ease of reference

  4. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also

  5. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    International Nuclear Information System (INIS)

    As part of the ongoing task of making Deactivation and Decommissioning (D and D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D and D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been

  6. The Removal Action Work Plan for CPP-603A Basin Facility

    Energy Technology Data Exchange (ETDEWEB)

    B. T. Richards

    2006-06-05

    This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center.

  7. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Sonoran region, California

    International Nuclear Information System (INIS)

    The Sonoran region of California lies west of the Colorado River and adjoins the Mojave Desert on the west, Death Valley on the northwest, and the Salton trough on the south. The region is arid with annual precipitation ranging from less than 80 millimeters to as great as 250 millimeters in one mountain range; annual free-surface evaporation is as great as 2,500 millimeters. The characteristic basin and range topography of the region was caused by a mid-Tertiary period of intense crustal extension, accompanied by volcanic eruptions, clastic sedimentation, faulting, and tilting. Potential host media for isolation of high-level radioactive waste include granite and other coarsegrained plutonic rocks, ash-flow tuff, and basalt and basaltic andesite lava flows. Thick sections of the unsaturated zone in basin fill, intrusive, and volcanic rocks appear to have potential as host media. The region is bordered on the west by areas of relatively greater Quaternary faulting, vertical crustal uplift, and seismicity. The region has a few areas of Quaternary volcanic activity. Geothermal heat flows of 2.5 heat-flow units or greater and one earthquake of magnitude 6-7 have been recorded. The region includes topographically closed basins as well as basins that drain to the Colorado River. Dry lakes and playas occupy the closed basins. Ground-water recharge and surface runoff are small because of the small amount of precipitation and great potential evaporation. Natural ground-water discharge is by evaporation in the basin playas and by underflow to the Colorado River. Dissolved-solids concentration of ground water generally is less than 500 milligrams per liter, and much of it is of the sodium bicarbonate type. Ground water is saline in many of the playas, and chloride or sulfate is the predominant anion. Small tonnages of ore have been produced from numerous precious and fewer base-metal deposits. (author)

  8. Fitness-driven deactivation in network evolution

    International Nuclear Information System (INIS)

    Individual nodes in evolving real-world networks typically experience growth and decay—that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive ageing mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with a possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, C(k) ∼ k−1 and C ∼ n−1, where k and n refer to the node degree and the number of active individuals, respectively. These results offer a new simple description of the growth and ageing of networks where intrinsic features of individual nodes drive their popularity, and hence degree

  9. Fitness-driven deactivation in network evolution

    CERN Document Server

    Xu, Xin-Jian; Small, Michael; Fu, Xin-Chu

    2010-01-01

    Individual nodes in evolving real-world networks typically experience growth and decay --- that is, the popularity and influence of individuals peaks and then fades. In this paper, we study this phenomenon via an intrinsic nodal fitness function and an intuitive aging mechanism. Each node of the network is endowed with a fitness which represents its activity. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the deactivation of old active nodes with possibility inversely proportional to their fitnesses. We obtain a structured exponential network when the fitness distribution of the individuals is homogeneous and a structured scale-free network with heterogeneous fitness distributions. Furthermore, we recover two universal scaling laws of the clustering coefficient for both cases, $C(k) \\sim k^{-1}$ and $C \\sim n^{-1}$, where $k$ and $n$ refer to the node degree and the number of act...

  10. 1997 project of the year, PUREX deactivation project

    International Nuclear Information System (INIS)

    At the end of 1992, the PUREX and UO3 plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO3 plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO3 plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million

  11. Biomonitoring a human population inhabiting nearby a deactivated uranium mine

    International Nuclear Information System (INIS)

    Highlights: ► Human population environmentally exposed to uranium mining wastes. ► Significantly higher levels of manganese and uranium in peripheral blood samples. ► Significant DNA damages detected by the comet assay. ► Significant decrease of NK and T lymphocytes counts in exposed individuals. ► Concerns on the risks of human populations living nearby uranium mining areas. - Abstract: Environmental exposure to uranium and its daughter radionuclides, has been linked to several negative effects such as those related with important physiological processes, like hematopoiesis, and may also be associated with genotoxicity effects. Herein, genotoxic effects, immunotoxicity, trace elements and C reactive protein (CRP) analyses, were performed in peripheral blood samples collected from individuals of a population living near a deactivated uranium mine. C reactive protein analysis was performed to exclude candidates with active inflammatory processes from further evaluations. DNA damage and immunotoxicity (immunophenotyping and immune cell counts) were evaluated by comet assay and flow cytometry, respectively. Significant DNA damage was observed in the peripheral blood samples from volunteers living in the Cunha Baixa village. A significant decrease of NK and T lymphocytes counts were observed in the individuals from the Cunha Baixa village, when compared with individuals from the reference site. Uranium and manganese levels were significantly higher in the Cunha Baixa village inhabitants. On the other hand, zinc levels were significantly lower in those individuals when compared with the volunteers from the control village. Results suggest that inhabitants from Cunha Baixa have a higher risk of suffering from serious diseases such as cancer, since high DNA damages were observed in peripheral blood leukocytes and also decreased levels of NK and T cells, which play an essential role in the defense against tumor growth

  12. Co-pyrolsis of polyethylene waste with the Campos basin heavy oil; Co-pirolise de residuos de polietileno com gasoleo pesado da Bacia de Campos

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Debora da S.; Marques, Monica R. da C. [Laboratorio de Tecnologia Ambiental, UERJ, Rio de Janeiro, RJ (Brazil)], e-mail: monica@pesquisador.cnpq.br

    2011-07-01

    In this study, four mixtures of LDPE post consumer with heavy gas from the Campos Basin, in different proportions, were subjected to pyrolysis in an inert atmosphere at 550 deg C. The pyrolytic liquids were characterized by gas chromatography coupled to mass spectrometry (GC/MS). Pyrolysis of pure diesel supplied large amounts of waste oil and only 4% in the range of diesel. On the other hand, the pyrolysis of LDPE mixture of diesel (at the ratio 1/0,5 m/m) provided 20% of light hydrocarbons with high production of pyrolytic oil (96%). The formation of high levels of paraffins and olefins in the range of diesel oil during the co-pyrolysis suggests a promising technology for recycling of plastic waste. (author)

  13. Decommissioning and deactivation of nuclear facilities

    International Nuclear Information System (INIS)

    The National Atomic Energy Commission (CNEA) is responsible for the decommissioning and deactivation of all relevant nuclear facilities in Argentina. A D and D Subprogram was created in 2000, within Technology Branch of the CNEA, in order to fulfill this responsibility. The D and D Subprogram has organized its activities in four fields: Planning; Technology development; Human resources development and training; International cooperation. The paper describes the work already done in those 4 areas, as well as the nuclear facilities existing in the country. Planning is being developed for the decommissioning of research reactors, beginning with RA-1, as well as for the Atucha I nuclear power station. An integral Management System has been developed, compatibilizing requirements from ISO 9001, ISO 14001, the national norm for Safety and Occupational Health (equivalent to BS 8800), and IAEA 50-SG Q series. Technology development is for the time being concentrated on mechanical decontamination and concrete demolition. A review has been made of technologies already developed both by CNEA and Nucleoelectrica Argentina S.A. (the nuclear power utility) in areas of chemical and electrochemical decontamination, cutting techniques and robotics. Human resources development has been based on training abroad in the areas of decontamination, cutting techniques, quality assurance and planning, as well as on specific courses, seminars and workshops. An IAEA regional training course on D and D has been given on April 2002 at CNEA's Constituyentes Atomic Center, with the assistance of 22 university graduates from 13 countries in the Latin American and Caribbean Region, and 11 from Argentina. CNEA has also given fellowships for PhD and Master thesis on the subject. International cooperation has been intense, and based on: - IAEA Technical Cooperation Project and experts missions; - Cooperation agreement with the US Department of Energy; - Cooperation agreement with Germany

  14. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam

    OpenAIRE

    McArthur, J. M.; Sikdar, P. K.; Hoque, M. A.; Ghosal, U.

    2012-01-01

    Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO3-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO4 (SO4 c...

  15. Prognostic value of posteromedial cortex deactivation in mild cognitive impairment.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Petrella

    Full Text Available BACKGROUND: Normal subjects deactivate specific brain regions, notably the posteromedial cortex (PMC, during many tasks. Recent cross-sectional functional magnetic resonance imaging (fMRI data suggests that deactivation during memory tasks is impaired in Alzheimer's disease (AD. The goal of this study was to prospectively determine the prognostic significance of PMC deactivation in mild cognitive impairment (MCI. METHODOLOGY/PRINCIPAL FINDINGS: 75 subjects (34 MCI, 13 AD subjects and 28 controls underwent baseline fMRI scanning during encoding of novel and familiar face-name pairs. MCI subjects were followed longitudinally to determine conversion to AD. Regression and analysis of covariance models were used to assess the effect of PMC activation/deactivation on conversion to dementia as well as in the longitudinal change in dementia measures. At longitudinal follow up of up to 3.5 years (mean 2.5+/-0.79 years, 11 MCI subjects converted to AD. The proportion of deactivators was significantly different across all groups: controls (79%, MCI-Nonconverters (73%, MCI-converters (45%, and AD (23% (p<0.05. Mean PMC activation magnitude parameter estimates, at baseline, were negative in the control (-0.57+/-0.12 and MCI-Nonconverter (-0.33+/-0.14 groups, and positive in the MCI-Converter (0.37+/-0.40 and AD (0.92+/-0.30 groups. The effect of diagnosis on PMC deactivation remained significant after adjusting for age, education and baseline Mini-Mental State Exam (p<0.05. Baseline PMC activation magnitude was correlated with change in dementia ratings from baseline. CONCLUSION: Loss of physiological functional deactivation in the PMC may have prognostic value in preclinical AD, and could aid in profiling subgroups of MCI subjects at greatest risk for progressive cognitive decline.

  16. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C H

    1991-02-14

    Progress is reported for a four-year fundamental investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which were to (1) determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation and (2) model the global rates of deactivation at the surface of the catalyst for the same catalysts. A computer-automated reactor system to be used in the kinetic and deactivation studies was designed, constructed and tested. Kinetic data for CO hydrogenation on unsupported, unpromoted iron, 99% Fe/1% Al{sub 2}O{sub 3}, and K-promoted 99% Fe/1% Al{sub 2}O{sub 3} catalysts were obtained as functions of temperature, reactant particle pressures and time. The activity/selectivity and kinetic data are consistent with those previously reported for supported, unpromoted and promoted iron. Two kinds of deactivation were observed during FT synthesis on these samples: (1) loss of surface area after reduction of unsupported, unpromoted iron at 400{degree}C and (2) loss of activity with time due to carbon deposition, especially in the case of K-promoted 99% Fe/1% A1{sub 2}O{sub 3}. Deactivation rate data were obtained for CO hydrogenation on promoted Fe as a function of time, temperature, and H{sub 2}/CO ratio. 50 refs., 24 figs., 5 tabs.

  17. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  18. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal

  19. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1990-10-29

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the fourteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made towards testing of the system hardware and software. 47 refs.

  20. Kinetics with deactivation of methylcyclohexane dehydrogenation for hydrogen energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Maria, G.; Marin, A.; Wyss, C.; Mueller, S.; Newson, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The methylcyclohexane dehydrogenation step to recycle toluene and release hydrogen is being studied as part of a hydrogen energy storage project. The reaction is performed catalytically in a fixed bed reactor, and the efficiency of this step significantly determines overall system economics. The fresh catalyst kinetics and the deactivation of the catalyst by coke play an important role in the process analysis. The main reaction kinetics were determined from isothermal experiments using a parameter sensitivity analysis for model discrimination. An activation energy for the main reaction of 220{+-}11 kJ/mol was obtained from a two-parameter model. From non-isothermal deactivation in PC-controlled integral reactors, an activation energy for deactivation of 160 kJ/mol was estimated. A model for catalyst coke content of 3-17 weight% was compared with experimental data. (author) 3 figs., 6 refs.

  1. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO3) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility's life cycle that occurs between operations and final decontamination and decommissioning (D ampersand D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994)

  2. Characterization of deactivated bio-oil hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huamin; Wang, Yong

    2016-01-18

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase of the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.

  3. Robot Work Platform for Large Hot Cell Deactivation

    Energy Technology Data Exchange (ETDEWEB)

    BITTEN, E.J.

    2000-05-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area.

  4. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  5. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  6. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status

  7. Geology and geohydrology of the East Texas Basin. A report on the progress of nuclear waste isolation feasibility studies (1980)

    International Nuclear Information System (INIS)

    The third year of research was highlighted by the integration of regional basinal studies with growth histories for specific domes, studies of cap-rock diagenesis and salt deformation, preliminary studies of ground-water flow and geochemistry around Oakwood Dome, and preliminary studies of microseismicity in the Mount Enterprise fault zone. 119 figures, 15 tables

  8. Isotopic detection of waste water disposal in deep pre-tertiary aquifers in the Weisselster basin, Central Germany

    International Nuclear Information System (INIS)

    In the Central German lignite mining area pumping of ground water along with mining activities have caused severe hydraulic disturbances in the aquifer system. Moreover in the period from 1940's to mid 1970's coal processing companies injected phenolic waste water into abandoned mining pits and deep Upper Permian Zechstein aquifers. A spatial analysis of the data from 350 drillings allowed to characterise the subsurface geology; phenolic waste water traces were found in Zechstein aquifer

  9. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Bedinger, M.S.; Sargent, K.A.; Reed, J.E.

    1984-12-31

    The US Geological Survey`s program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab.

  10. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste. Part I. Introduction and guidelines

    International Nuclear Information System (INIS)

    The US Geological Survey's program for geologic and hydrologic evaluation of physiographic provinces to identify areas potentially suitable for locating repository sites for disposal of high-level nuclear wastes was announced to the Governors of the eight states in the Basin and Range Province on May 5, 1981. Representatives of Arizona, California, Idaho, New Mexico, Nevada, Oregon, Texas, and Utah, were invited to cooperate with the federal government in the evaluation process. Each governor was requested to nominate an earth scientist to represent the state in a province working group composed of state and US Geological Survey representatives. This report, Part I of a three-part report, provides the background, introduction and scope of the study. This part also includes a discussion of geologic and hydrologic guidelines that will be used in the evaluation process and illustrates geohydrologic environments and the effect of individual factors in providing multiple natural barriers to radionuclide migration. 27 refs., 6 figs., 1 tab

  11. 300 Area fuel supply facilities deactivation mission analysis report

    International Nuclear Information System (INIS)

    This report presents the results of the 300 Area fuel supply facilities (formerly call ''N reactor fuel fabrication facilities'') Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process

  12. Combustion kinetics of the coke on deactivated dehydrogenation catalysts

    NARCIS (Netherlands)

    Luo, Sha; He, Songbo; Li, XianRu; Li, Jingqiu; Bi, Wenjun; Sun, Chenglin

    2015-01-01

    The coke combustion kinetics on the deactivated catalysts for long chain paraffin dehydrogenation was studied by the thermogravimetry and differential thermogravimetry (TG–DTG) technique. The amount and H/C mole ratio of the coke were determined by the TG and elemental analysis. And the comprehensiv

  13. Bacteria deactivation and removal from Wastewater and polluted Air

    Czech Academy of Sciences Publication Activity Database

    Kimmer, D.; Vincent, I.; Dudák, J.; Bergerová, E.; Petras, D.; Lev, J.; Holba, Marek; Kalhotka, L.; Mikula, Přemysl; Kořínková, R.; Kubáč, L.

    Ostrava : Tanger, Ltd, 2013, s. 402-409. ISBN 978-80-87294-35-2. [NANOCON 2012, 4th International Conference. Brno (CZ), 23.10.2012-25.10.2012] R&D Projects: GA TA ČR TA01010356 Institutional support: RVO:67985939 Keywords : bacteria * deactivation and removal * wastewater and polluted air Subject RIV: EF - Botanics

  14. Compassionate deactivation of ventricular assist devices in pediatric patients.

    Science.gov (United States)

    Hollander, Seth A; Axelrod, David M; Bernstein, Daniel; Cohen, Harvey J; Sourkes, Barbara; Reddy, Sushma; Magnus, David; Rosenthal, David N; Kaufman, Beth D

    2016-05-01

    Despite greatly improved survival in pediatric patients with end-stage heart failure through the use of ventricular assist devices (VADs), heart failure ultimately remains a life-threatening disease with a significant symptom burden. With increased demand for donor organs, liberalizing the boundaries of case complexity, and the introduction of destination therapy in children, more children can be expected to die while on mechanical support. Despite this trend, guidelines on the ethical and pragmatic issues of compassionate deactivation of VAD support in children are strikingly absent. As VAD support for pediatric patients increases in frequency, the pediatric heart failure and palliative care communities must work toward establishing guidelines to clarify the complex issues surrounding compassionate deactivation. Patient, family and clinician attitudes must be ascertained and education regarding the psychological, legal and ethical issues should be provided. Furthermore, pediatric-specific planning documents for use before VAD implantation as well as deactivation checklists should be developed to assist with decision-making at critical points during the illness trajectory. Herein we review the relevant literature regarding compassionate deactivation with a specific focus on issues related to children. PMID:27197773

  15. Aromatization of light naphtha fractions on zeolites: 2. Model of catalyst deactivation

    OpenAIRE

    Ostrovski Nikolaj M.; Rovenskaja Svetlana A.; Echevski Genadij V.

    2004-01-01

    A model of catalyst deactivation in the "Zeoforming" process was developed. The deactivation rate constants and activation energies were estimated. The role of adsorbed oligomers in the reaction and the deactivation kinetics were examined. The model is intended for further modeling and optimization of the process.

  16. Efficient Methanol Synthesis Catalysts: Long-Term Stability and Deactivation Phenomena

    OpenAIRE

    Fichtl, Matthias

    2014-01-01

    In this thesis the deactivation mechanism on different coprecipitated Cu/ZnO/Al2O3 methanol synthesis catalysts is evaluated. Transmission electron microcopy, X-ray diffraction, chemisorption methods and modeling techniques are applied to correlate the deactivation behavior with structural changes in the active catalyst. Updated models for the catalyst microstructure and deactivation behavior are presented.

  17. Aromatization of light naphtha fractions on zeolites: 2. Model of catalyst deactivation

    Directory of Open Access Journals (Sweden)

    Ostrovski Nikolaj M.

    2004-01-01

    Full Text Available A model of catalyst deactivation in the "Zeoforming" process was developed. The deactivation rate constants and activation energies were estimated. The role of adsorbed oligomers in the reaction and the deactivation kinetics were examined. The model is intended for further modeling and optimization of the process.

  18. Sampling and analysis plan for the 107-N Basin recirculation building liquid/sediment

    International Nuclear Information System (INIS)

    This sampling and analysis plan (SAP) defines the strategy and the field and laboratory methods that will be used to characterize the liquids and sediment within the following four 100-N buildings/areas: 1310-N valve pit area inside the Radioactive Chemical Waste Treatment Pump House (silo); 1314-N Waste Pump (Overflow) Tank at the Liquid Waste Disposal Station; 105-N Lift Station pump well and valve pit areas inside the 105-N Reactor Building; and 107-N Basin Recirculation Building. This characterization activity is being performed in support of the work scope identified in the N Reactor Deactivation Program Plan and the sampling strategy in the DQO. The characterization data will be used for comparison to decontamination and decommissioning (D and D) endpoint acceptance criteria in preparation for turnover of the above-listed facilities to the D and D project. The data will also be used for waste acceptance criteria evaluation in the selection of the appropriate disposition option for liquid and sediment currently contained in the facilities

  19. Model dependences of the deactivation of phytoplankton pigment excitation energy on environmental conditions in the sea

    Directory of Open Access Journals (Sweden)

    Mirosława Ostrowska

    2012-11-01

    Full Text Available A semi-empirical, physical models have been derived of the quantum yield ofthe deactivation processes (fluorescence, photosynthesis and heat productionof excited states in phytoplankton pigment molecules. Besides some alreadyknown models (photosynthesis and fluorescence, this novel approachincorporates the dependence of the dissipation yield of the excitation energyin phytoplankton pigment molecules on heat. The quantitative dependences ofthe quantum yields of these three processes on three fundamental parameters ofthe marine environment are defined: the chlorophyll concentration in the surface water layer Ca(0 (the basin trophicity,the irradiance PAR(z and the temperature temp(z at the study site.The model is complemented with two other relevant models describing thequantum yield of photosynthesis and of natural Sun-Induced Chlorophyll a Fluorescence (SICF in the sea, derived earlier by the author or with herparticipation on the basis of statistical analyses of a vast amount ofempirical material. The model described in the present paper enables theestimation of the quantum yields of phytoplankton pigment heat production forany region and season, in waters of any trophicity at different depths fromthe surface to depths of ca 60 m. The model can therefore be used to estimatethe yields of these deactivation processes in more than half the thickness ofthe euphotic zone in oligotrophic waters and in the whole thickness (anddeeper of this zone in mesotrophic and eutrophic waters. In particular theserelationships may be useful for a component analysis of the budget of lightenergy absorbed by phytoplankton pigments, namely, its utilization influorescence, photochemical quenching and nonphotochemical radiationlessdissipation - i.e. direct heat production.

  20. Novel C-Ring-Hydroxy-Substituted Controlled Deactivation Cannabinergic Analogues.

    Science.gov (United States)

    Kulkarni, Shashank; Nikas, Spyros P; Sharma, Rishi; Jiang, Shan; Paronis, Carol A; Leonard, Michael Z; Zhang, Bin; Honrao, Chandrashekhar; Mallipeddi, Srikrishnan; Raghav, Jimit Girish; Benchama, Othman; Järbe, Torbjörn U C; Bergman, Jack; Makriyannis, Alexandros

    2016-07-28

    In pursuit of safer controlled-deactivation cannabinoids with high potency and short duration of action, we report the design, synthesis, and pharmacological evaluation of novel C9- and C11-hydroxy-substituted hexahydrocannabinol (HHC) and tetrahydrocannabinol (THC) analogues in which a seven atom long side chain, with or without 1'-substituents, carries a metabolically labile 2',3'-ester group. Importantly, in vivo studies validated our controlled deactivation approach in rodents and non-human primates. The lead molecule identified here, namely, butyl-2-[(6aR,9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-3-yl]-2-methylpropanoate (AM7499), was found to exhibit remarkably high in vitro and in vivo potency with shorter duration of action than the currently existing classical cannabinoid agonists. PMID:27367336

  1. Deactivation of SCR catalysts in biomass fired power plants

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard

    in such biomass fuels, however, causes enhanced strain on the different equipment in these power plants. One of the affected units is the catalyst for selective catalytic reduction (SCR) of nitrogen oxides, which undergoes accelerated deactivation due to deposition of potassium rich particles and subsequent...... poisoning. The potassium poisoning of commercial vanadia based SCR catalysts have been studied for more than two decades, and a broad understanding have been obtained. However, more detailed information on the overall mechanism of deposition, reaction and transport of potassium, and its function of catalyst...... composition and operating conditions, is not available. The main objective of the work presented in this thesis has been to conduct an in depth investigation of the deactivation mechanism of vanadia based SCR catalysts, when subjected to potassium rich aerosols. It has furthermore been a goal to suggest...

  2. Nucleation threshold and deactivation mechanisms of nanoscopic cavitation nuclei

    CERN Document Server

    Borkent, Bram M; Prosperetti, Andrea; Lohse, Detlef

    2009-01-01

    The acoustic nucleation threshold for bubbles trapped in cavities has theoretically been predicted within the crevice theory by Atchley & Prosperetti [J. Acoust. Soc. Am. 86, 1065-1084 (1989)]. Here, we determine this threshold experimentally, by applying a single pressure pulse to bubbles trapped in cylindrical nanoscopic pits ("artificial crevices") with radii down to 50 nm. By decreasing the minimum pressure stepwise, we observe the threshold for which the bubbles start to nucleate. The experimental results are quantitatively in excellent agreement with the theoretical predictions of Atchley & Prosperetti. In addition, we provide the mechanism which explains the deactivation of cavitation nuclei: gas diffusion together with an aspherical bubble collapse. Finally, we present superhydrophobic nuclei which cannot be deactivated, unless with a high-speed liquid jet directed into the pit.

  3. Criticality safety for deactivation of the Rover dry headend process

    International Nuclear Information System (INIS)

    The Rover dry headend process combusted Rover graphite fuels in preparation for dissolution and solvent extraction for the recovery of 235U. At the end of the Rover processing campaign, significant quantities of 235U were left in the dry system. The Rover Dry Headend Process Deactivation Project goal is to remove the remaining uranium bearing material (UBM) from the dry system and then decontaminate the cells. Criticality safety issues associated with the Rover Deactivation Project have been influenced by project design refinement and schedule acceleration initiatives. The uranium ash composition used for calculations must envelope a wide range of material compositions, and yet result in cost effective final packaging and storage. Innovative thinking must be used to provide a timely safety authorization basis while the project design continues to be refined

  4. SOURCE TERM REMEDIATION and DEMOLITION STRATEGY FOR THE HANFORD K-AREA SPENT FUEL BASINS

    International Nuclear Information System (INIS)

    This paper discusses the technologies applied at Hanford's K-Basins to mitigate risk and reduce the source term in preparing the basins for deactivation and demolition. These project technologies/strategies (in various stages of implementation) are sequential in nature and are the basis for preparing to dispose of the K Basins--two highly contaminated concrete basins at the Hanford Site in southeastern Washington State. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities are underway to prepare the basin structures for de-inventory, decontamination, and disposal

  5. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    Directory of Open Access Journals (Sweden)

    Jaeger Karl E

    2011-02-01

    Full Text Available Abstract Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the

  6. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization

    OpenAIRE

    Ali Ghadban; Luca Albertin

    2013-01-01

    This review summarizes the state of the art in the synthesis of well-defined glycopolymers by Reversible-Deactivation Radical Polymerization (RDRP) from its inception in 1998 until August 2012. Glycopolymers architectures have been successfully synthesized with four major RDRP techniques: Nitroxide-mediated radical polymerization (NMP), cyanoxyl-mediated radical polymerization (CMRP), atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polym...

  7. Threshold Particle Diameters in Miniemulsion Reversible-Deactivation Radical Polymerization

    OpenAIRE

    Hidetaka Tobita

    2011-01-01

    Various types of controlled/living radical polymerizations, or using the IUPAC recommended term, reversible-deactivation radical polymerization (RDRP), conducted inside nano-sized reaction loci are considered in a unified manner, based on the polymerization rate expression, Rp = kp[M]K[Interm]/[Trap]. Unique miniemulsion polymerization kinetics of RDRP are elucidated on the basis of the following two factors: (1) A high single molecule concentration in a nano-sized particle; and (2) a signifi...

  8. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Krich, Jacob J. [University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada); Recht, Daniel; Aziz, Michael J. [Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138 (United States)

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  9. Deactivation by carbon of iron catalysts for indirect liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, C.H.

    1990-10-11

    This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for Fischer-Tropsch (FT) synthesis, the objectives of which are: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; model the rates of deactivation of the same catalysts in fixed-bed reactors. During the thirteenth quarter design of software for a computer-automated reactor system to be used in the kinetic and deactivation studies was continued. Further progress was made toward the completion of the control language, control routines, and software for operating this system. Progress was also made on the testing of the system hardware and software. H{sub 2} chemisorption capacities and activity selectivity data were also measured for three iron catalysts promoted with 1% alumina. 47 refs., 8 figs., 1 tab.

  10. Thermal stability and deactivation energy of free and immobilized invertase

    Directory of Open Access Journals (Sweden)

    F.J. Bassetti

    2000-12-01

    Full Text Available The thermal stability and the energy of deactivation of free invertase and the immobilized enzyme (IE was measured at temperatures in the range of 35 to 65°C for the hydrolysis of a 5% w/v sucrose solution. The free enzyme at pH 5.0 is stable up to 50°C for a period of 4 h. Invertase immobilized in controlled pore silica by the silane-glutaraldehyde covalent method is stable up to 55ºC, in pH 4.5 for the same period. For higher temperatures the enzyme deactivation follows the exponential decay model and half-lives are 0.53, 1.80, and 13.9 h for free invertase, at 65, 60, and 55ºC, respectively. For the IE half-lives are 0.48, 1.83, and 20.9 h, at 65, 60, and 55ºC, respectively. The IE is more stable than the free invertase; the energy of deactivation being 83.1 kcal/mol for the IE and 72.0 kcal/mol for the free enzyme.

  11. Gamification of learning deactivates the Default Mode Network

    Directory of Open Access Journals (Sweden)

    Paul Alexander Howard-Jones

    2016-01-01

    Full Text Available We hypothesised that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN and deactivation of Default Mode Network (DMN regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer, Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards. DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  12. Gamification of Learning Deactivates the Default Mode Network.

    Science.gov (United States)

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  13. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    Science.gov (United States)

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. PMID:26453468

  14. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    Science.gov (United States)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  15. Microstructure of red clay from the central Pacific deep-sea basin: Significance to subseabed nuclear waste disposal

    International Nuclear Information System (INIS)

    The microstructure of deep-sea illitic red clay from the central Pacific Basin was investigated using transmission and scanning electron microscopy techniques. Gravity core samples (''undisturbed'') and sediments from dredge hauls (''disturbed'') were used in the investigations and analysis. Dredged samples were remolded and reconsolidated to equivalent in situ porosities by geotechnical engineers. To a first approximation, no significant difference in the fabric was observed between the undisturbed and remolded illitic sediment. Samples adjacent to the heater probe were subjected to temperatures slightly below 3000C. Slight preferential clay particle alignment probably resulting from shearing stresses developed in the sediment during probe insertion. Heating of the sediment did not appear to have a significant effect on the fabric, with the exception of localized ''quasi-expansion'' and flow features observed in the microfabric in the near field. 34 refs., 28 figs

  16. [US Geological Survey research in radioactive waste disposal, fiscal year 1982:] Tectonics, seismicity, and volcanism of the southern Great Basin

    International Nuclear Information System (INIS)

    The objective is to assess the potential for faulting, damaging earthquakes, recurrence of volcanism, and local acceleration of erosion in parts of the southern Great Basin. Work is focusing on the region surrounding the southern part of the Nevada Test Site by (1) investigating the rate, intensity, and distribution of faulting, particularly during the last 10 m.y.; (2) monitoring and interpreting seismicity; (3) studying the history of volcanism and deriving estimates of the risk of recurrence of volcanism in certain areas; and (4) developing a better understanding of regional and local tectonics and structure in relation to hydrology and to rates of erosion and deposition. Progress is reported. 9 refs., 8 figs., 2 tabs

  17. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    International Nuclear Information System (INIS)

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  18. Inhibition and deactivation effects in catalytic wet oxidation of high-strength alcohol-distillery liquors

    Energy Technology Data Exchange (ETDEWEB)

    Belkacemi, K.; Larachi, F.; Hamoudi, S.; Turcotte, G.; Sayari, A. [Laval Univ., Sainte-Foy, Quebec (Canada)

    1999-06-01

    The removal efficiency of total organic carbon (TOC) from raw high-strength alcohol-distillery waste liquors was evaluated using three different treatments: thermolysis (T), noncatalytic wet oxidation (WO), and solid-catalyzed wet oxidation (CWO). The distillery liquors (TOC = 22,500 mg/l, sugars = 18,000 mg/l, and proteins = 13,500 mg/l) were produced by alcoholic fermentation of enzymatic hydrolyzates from steam-exploded timothy grass. TOC-abatement studies were conducted batchwise in a stirred autoclave to evaluate the influence of the catalyst (7:3, MnO{sub 2}/CeO{sub 2} mixed oxide), oxygen partial pressure (0.5--2.5 MPa), and temperature (453--523 K) on T, WO, and CWO processes. Although CWO outperformed T and WO, TOC conversions did not exceed {approximately}60% at the highest temperature used. Experiments provided prima facie evidence for a gradual fouling of the catalyst and a developing inhibition in the liquors which impaired deep TOC removals. Occurrence of catalyst deactivation by carbonaceous deposits was proven experimentally through quantitative and qualitative experiments such as elemental analysis and X-ray photoelectron spectroscopy. Inhibition toward further degradation of the liquors was ascribed to the occurrence of highly stable antioxidant intermediates via the Maillard reactions between dissolved sugars and proteins. A lumping kinetic model involving both reaction inhibition by dissolved intermediates and catalyst deactivation by carbonaceous deposits was proposed to account for the distribution of carbon in the liquid, solid, and the vapor phases.

  19. The use of genetic bioassays to evaluate the environmental quality in a region under the influence of urban waste in Guaíba lake basin (Brazil

    Directory of Open Access Journals (Sweden)

    Izabel Vianna Villela

    2013-06-01

    Full Text Available The mussel species Limnoperna fortunei was chosen as biomonitoring organism in Guaíba Lake Basin, based on population data, distribution, and sensitivity. Previous in vitro and in vivo studies studies with Single Cell Gel Assay (SCGA and Micronuclei test (MN on this freshwater mussel showed that it is successful in biomonitoring studies, especially in urban pollution monitoring. This study evaluated two sampling sites in the Guaíba Lake (Guaíba PC e Guaíba BR, near urban waste discharges, and a control site (Itapuã insight a preserved area, using L. fortunei individuals. Comparing to the control site, the Guaíba BR sample induced DNA damage in haemocytes of mussels sampled both in situ and exposed to laboratory conditions, whereas MN only in in situ collected mussels. This sample also presented the only surface water mutagenic result by Salmonella/microsome assay with TA98 in the presence of metabolic activation. Guaíba PC samples increased MN frequency in situ and in laboratory conditions comparing to the Itapuã results. Metal influence seems to be less important than organic influence in genotoxic induction. These results confirm the strong urban influence in this region, showing that biomonitoring is a powerful tool to detect this kind of contamination in water bodies.

  20. Geologic report of the Maquoketa Shale, New Albany Shale, and Borden Group rocks in the Illinois Basin as potential solid waste repository sites

    International Nuclear Information System (INIS)

    We have evaluated the Illinois Basin in order to select a ''target site'' for a possible solid nuclear waste repository. In the process we have been mindful of geology (particularly stratigraphy and lithology and structure), terrane, population density, land use, land ownership and accessibility. After taking these restrictions into account, we have singled out a strip of land in south central Indiana in which we have selected four potential sites worthy of further exploration. In three of the sites the geology, lithology, and depth below the surface are more than adequate for crypt purposes in two separate formations--the Maquoketa Shale of the Ordovician System and the New Albany Shale-Borden Group of the Upper Devonian-Mississippian Systems. The interval between the two is several hundred feet. The geology and associated features in the fourth site are undoubtedly similar to those in the first three. In all four selections a sizeable proportion of the land is in public ownership and the population density in the nonpublicly owned land is low. The geology, lithology, and position of the target formations have been projected into the sites in question from data provided by drill core records of the Indiana Geological Survey. Precise details would, of course, require exploratory drilling on the selected site

  1. Geologic report of the Maquoketa Shale, New Albany Shale, and Borden Group rocks in the Illinois Basin as potential solid waste repository sites

    Energy Technology Data Exchange (ETDEWEB)

    Droste, J.B.; Vitaliano, C.J.

    1976-06-01

    We have evaluated the Illinois Basin in order to select a ''target site'' for a possible solid nuclear waste repository. In the process we have been mindful of geology (particularly stratigraphy and lithology and structure), terrane, population density, land use, land ownership and accessibility. After taking these restrictions into account, we have singled out a strip of land in south central Indiana in which we have selected four potential sites worthy of further exploration. In three of the sites the geology, lithology, and depth below the surface are more than adequate for crypt purposes in two separate formations--the Maquoketa Shale of the Ordovician System and the New Albany Shale-Borden Group of the Upper Devonian-Mississippian Systems. The interval between the two is several hundred feet. The geology and associated features in the fourth site are undoubtedly similar to those in the first three. In all four selections a sizeable proportion of the land is in public ownership and the population density in the nonpublicly owned land is low. The geology, lithology, and position of the target formations have been projected into the sites in question from data provided by drill core records of the Indiana Geological Survey. Precise details would, of course, require exploratory drilling on the selected site.

  2. Kinetics and Deactivation in the Methanol Synthesis Reaction

    OpenAIRE

    Alam, Mahmud

    2011-01-01

    This study is highlighting the synthesis of methanol by using Cu-based ( ) catalyst and synthesis gas, which consists a mixture of CO, CO2, H2, N2 and CH4. The catalyst was prepared as per the procedure described by the ICI and characterised by performing X-ray diffraction and Nitrogen adsorption/desorption. Experiments were carried out for the methanol synthesis at 80 bar pressure as well as at 255ºC temperatures and found very good reproducibility. The deactivation of the prepared catalyst ...

  3. Epidemic Spread in Networks Induced by Deactivation Mechanism

    Institute of Scientific and Technical Information of China (English)

    YU Xiao-Ling; WU Xiao; ZHANG Duan-Ming; LI Zhi-Hao; LIANG Fang; WANG Xiao-Yu

    2008-01-01

    We have studied the topology and epidemic spreading behaviors on the networks in which deactivation mechanism and long-rang connection are coexisted. By means of numerical simulation, we find that the clustering coefficient C and the Pearson correlation coefficient r decrease with increasing long-range connection μ and the topological state of the network changes into that of BA model at the end (when μ = 1). For the Susceptible-Infect-Susceptible model of epidemics, the epidemic threshold can reach maximum value at μ = 0.4 and presents two different variable states around μ = 0.4.

  4. Properties of Deactivation Gating Currents in Shaker Channels

    OpenAIRE

    Lacroix, Jérôme J.; Labro, Alain J.; Bezanilla, Francisco

    2011-01-01

    The charge versus voltage relation of voltage-sensor domains shifts in the voltage axis depending on the initial voltage. Here we show that in nonconducting W434F Shaker K+ channels, a large portion of this charge-voltage shift is apparent due to a dramatic slowing of the deactivation gating currents, IgD (with τ up to 80 ms), which develops with a time course of ∼1.8 s. This slowing in IgD adds up to the slowing due to pore opening and is absent in the presence of 4-aminopyridine, a compound...

  5. Rupture loop annex ion exchange RLAIX vault deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  6. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    International Nuclear Information System (INIS)

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  7. Seismic studies at a potential deep nuclear waste repository site within the Columbia River basalt group, Pasco, Basin

    International Nuclear Information System (INIS)

    A dense seismic network, including surface and borehole instruments, is being installed to characterize the seismicity of a proposed mined repository in Columbia River basalt on the Hanford Site. There are 11 seismic stations currently being operated by the Basalt Waste Isolation Project (BWIP), including four 1-Hz vertical surface stations, six 2-Hz 3-component surface stations, and one 4.5-Hz 3-component borehole instrument operated at a depth of 1100 m. The signal from these stations is frequency modulation telemetered to a central location, and is recorded at 200 samples/sec on an event-triggered digital recording system. Eight to 10 additional shallow (200 to 300 m) borehole seismometers may be added, pending a review of the repository network requirements prior to construction, and nine additional surface instruments are operated in support of other nuclear projects. The repository network presently has a station spacing of 5 to 10 km, compared to 25 km provided by the University of Washington (UW) regional network. Regional monitoring has observed the occurrence of shallow earthquake swarm activity in the basalts. The objective of the site-specific monitoring is to investigate the location of low-level (magnitude greater than or equal to 0) events, to search for zones of stress release, to measure the seismic moments and stress drops of the sources, and to evaluate the impacts of such microearthquakes on repository performance

  8. Experimental observation and investigation of reactor Cs-137 isotope deactivation in biological cells

    International Nuclear Information System (INIS)

    Complete text of publication follows. The problem of natural accelerated deactivation of radioactive waste (including deactivation in environmental) is studied. In the work the process of direct controlled deactivation of water mixture of selected different longlived radioactive isotopes in growing microbiological cultures has been studied. The process was connected with transmutation of long-lived active nuclei to non-radioactive isotopes during growth and metabolism of special microbiological MCT ('microbial catalyst-transmutator'). The MCT is the special granules that include: concentrated biomass of metabolically active microorganisms, sources of carbon and energy, phosphorus, nitrogen, etc., and gluing substances that keep all components in the form of granules stable in water solutions for a long period of time at any external conditions. The base of the MCT is microbe syntrophin associations of thousands different microorganism kinds that are in the state of complete symbiosis. These microorganisms appertain to different physiological groups that represent practically the whole variety of the microbe metabolism and relevantly all kinds of microbe accumulation mechanisms. The state of complete symbiosis of the syntrophin associations results on the possibility of maximal adaptation of the microorganisms' association to any external conditions change. The mechanism of nuclear transmutation in growing biological system is described in details in the book. The research has been carried out on the basis of the same distilled water that contained different long-lived reactor isotopes (e.g., Eu154, Eu155, Cs137, Am241). In our experiments 8 identical closed glass flasks with 10 ml of the same active water in each were used. The 'microbial catalyst-transmutator' was placed in 7 glass flasks. In six different flasks different pure K, Ca, Mg, Na, Fe and P salts as single admixture were added to the active water. These chemical elements are vitally necessary for any

  9. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    Directory of Open Access Journals (Sweden)

    Anders H. Andersen

    2015-01-01

    Full Text Available Parkinson’s disease (PD is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD patients. Participants included 18 ndPD patients (11 men, 7 women and 10 dPD patients (7 men, 3 women. Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN. DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients.

  10. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression.

    Science.gov (United States)

    Andersen, Anders H; Smith, Charles D; Slevin, John T; Kryscio, Richard J; Martin, Catherine A; Schmitt, Frederick A; Blonder, Lee X

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  11. Activation-deactivation of self-healing in supramolecular rubbers

    Science.gov (United States)

    Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team

    2011-03-01

    Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.

  12. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Trans-Pecos region, Texas

    International Nuclear Information System (INIS)

    The Trans-Pecos region of Texas, in the southeasternmost part of the Basin and Range province, is semiarid; precipitation ranges from less than 250 to 450 millimeters and potential evapotranspiration is as great as 2.5 meters annually. Structurally, the region is transitional with the Great Plains to the east; only the northern and western parts of the region have well-developed, northwest-trending basins and ranges. The area has experienced repeated deformation since the Precambrian with igneous activity and basin-and-range extension, and to a lesser extent Laramide structures, dominating the topography. Potential host media for isolation of high-level radioactive waste in the region include: (1) Intrusive rocks occurring as stocks, sills, and laccoliths of several rock types; (2) tuffaceous rocks, which include densely welded ash-flow tuff; (3) basaltic lava flows; and (4) argillaceous rocks. Quaternary tectonism of the region is characterized by: (1) Many small earthquakes and only one damaging earthquake; (2) heat flow that is transitional between that of the craton to the east and the greater heat flow of the Basin and Range; and (3) Quaternary fault scarps, which are more common in the western part of the region. Longterm (late Cenozoic to modern) vertical crustal movement is estimated to be 1 to 2 meters per 10,000 years. Surface and ground-water drainage in the region is to the Rio Grande and to topographically closed basins. Ground-water recharge in the upland areas and in channels of ephemeral streams probably averages about 10 millimeters or less annually. Relatively long travel paths and traveltimes exist from ground-water divides to natural discharge areas. Ground water generally contains less than 1,000 milligrams per liter of dissolved solids except in the Salt Basin where concentrations exceed 3,000 milligrams per liter. Mineral production from the Trans-Pecos region has been dominated by silver, fluorspar, and mercury. (author)

  13. Diagnosis of deactivation sources for vanadium catalysts used in SO2 oxidation reaction and optimization of vanadium extraction from deactivated catalysts

    International Nuclear Information System (INIS)

    Physico-chemical analysis (X-ray, FTIR) and/or methanol oxidation reaction test were performed on fresh and deactivated vanadium catalysts used in H2SO4 manufacturing. It allowed the diagnosis of catalyst deactivation sources, as well as the processes of regenerating and recycling the worn out catalyst in converter. One of these processes is hydrometallurgical method. It consists in treating the deactivated catalyst with alkaline or acidic reagents and forming vanadate solution. A simple and non-costly operation of chemical attack permits the extraction of vanadium from silica in deactivated catalyst. The extracted vanadium can be used for the confection of regenerated catalysts or metallic tools. After optimization, this method can be used for industrial application

  14. Kinetic model of deactivation of a nickel catalyst in the reaction of hydrogenation of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Masagutov, R.M.; Spivak, S.I.; Kovaleva, L.V.; Morozov, B.V.; Yaropolova, E.A.

    1988-12-01

    The kinetics of hydrogenation of benzene on a nickel catalyst in conditions of poisoning with thiophene were investigated. A mechanism of deactivation of the catalyst was proposed. A kinetic model of the process was constructed. The numerical values of the constants of the deactivation stages which satisfactorily describe the experimental data were found.

  15. Coke deactivation of catalysts for hydroprocessing of heavy petroleum feedstocks

    International Nuclear Information System (INIS)

    Harwell's principal contribution to the study of the role of coke in the deactivation of catalysts for hydroprocessing of heavy petroleum feedstocks has been the development and application of nuclear microprobe methods to measure the distributions of hydrogen, carbon, nitrogen and other elements in coked catalyst pellets. Nuclear microprobe methods have been developed that allow the measurement of the distribution of carbon, hydrogen, nitrogen and heavier elements in coked catalyst pellets. At present analysis by both deuteron and helium-4 ion beams is necessary to cover the complete range of elements. The potential of using helium-3 irradiation alone to measure all elements is as yet unrealised. Applications have included studies of the variability of profiles in batches of used pellets, investigation of interrelationships between coke components and limited kinetic studies. Many of these applications have proved to be successful and nuclear microprobe methods should continue to be exploited studies of catalyst coking. (au)

  16. Commercial experience with facility deactivation to safe storage

    Energy Technology Data Exchange (ETDEWEB)

    Sype, T.T. [Sandia National Labs., Albuquerque, NM (United States); Fischer, S.R. [Los Alamos National Lab., NM (United States); Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J. [Sandia National Labs., Albuquerque, NM (United States)

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  17. Commercial experience with facility deactivation to safe storage

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex

  18. Investigation and deactivation of B Plant HEPA filters

    International Nuclear Information System (INIS)

    This paper describes the integrated approach used to manage environmental, safety, and health considerations related to the B Plant canyon exhaust air filters at the US Department of Energy (DOE) Hanford Site. The narrative illustrates the development and implementation of integrated safety management as applied to a facility and its systems undergoing deactivation. During their lifetime, the high efficiency particulate air (HEPA) filters prevented the release of significant quantities of radioactive materials into the air. As the material in B Plant AVESF accumulated on the filters, it created an unusual situation. Over long periods of time, the radiation dose from the filter loading, combined with aging and chemical exposure actually degrade those filters which were intended to protect against any release to the environment

  19. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter.

    Science.gov (United States)

    Germer, Jörn; Boh, Michael Yongha; Schoeffler, Marie; Amoah, Philip

    2010-02-01

    Small scale co-composting of faecal matter from dry toilet systems with shredded plant material and food waste was investigated in respect to heat development and deactivation of faecal indicators under tropical semiarid conditions. Open (uncovered) co-composting of faecal matter with shredded plant material alone did not generate temperatures high enough (concrete bricks and wooden boards, improved the composting process significantly. Under these conditions peak temperatures of up to 70 degrees C were achieved and temperatures above 55 degrees C were maintained over 2 weeks. This temperature and time is sufficient to comply with international composting regulations. The reduction of Escherichia coli, Enterococcus faecalis and Salmonella senftenberg in test containment systems placed in the core of the compost piles was very efficient, exceeding 5log10-units in all cases, but recolonisation from the cooler outer layers appeared to interfere with the sanitisation efficiency of the substrate itself. The addition of a stabilisation period by extending the composting process to over 4 months ensured that the load of E. coli was reduced to less than 10(3)cfu(-g) and salmonella were undetectable. PMID:19889525

  20. Deactivation of Escherichia coli by the plasma needle

    Energy Technology Data Exchange (ETDEWEB)

    Sladek, R E J; Stoffels, E [Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2005-06-07

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 10{sup 4}-10{sup 5} colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  1. Deactivation of Escherichia coli by the plasma needle

    International Nuclear Information System (INIS)

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 104-105 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40 deg. C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60 deg. C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively

  2. β-Arrestin-dependent deactivation of mouse melanopsin.

    Directory of Open Access Journals (Sweden)

    Evan G Cameron

    Full Text Available In mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs, whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indicative of an adaptational response. The molecular mechanisms underlying deactivation and adaptation in ipRGCs however, have yet to be fully elucidated. The role of melanopsin phosphorylation and β-arrestin binding in this adaptive process is suggested by the phosphorylation-dependent reduction of melanopsin signaling in vitro and the ubiquitous expression of β-arrestin in the retina. These observations, along with the conspicuous absence of visual arrestin in ipRGCs, suggest that a β-arrestin terminates melanopsin signaling. Here, we describe a light- and phosphorylation- dependent reduction in melanopsin signaling mediated by both β-arrestin 1 and β-arrestin 2. Using an in vitro calcium imaging assay, we demonstrate that increasing the cellular concentration of β-arrestin 1 and β-arrestin 2 significantly increases the rate of deactivation of light-activated melanopsin in HEK293 cells. Furthermore, we show that this response is dependent on melanopsin carboxyl-tail phosphorylation. Crosslinking and co-immunoprecipitation experiments confirm β-arrestin 1 and β-arrestin 2 bind to melanopsin in a light- and phosphorylation- dependent manner. These data are further supported by proximity ligation assays (PLA, which demonstrate a melanopsin/β-arrestin interaction in HEK293 cells and ipRGCs. Together, these results suggest that melanopsin signaling is terminated in a light- and phosphorylation-dependent manner through the binding of a β-arrestin within the retina.

  3. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1978

    International Nuclear Information System (INIS)

    Early in 1977 the Bureau of Economic Geology was invited to assemble and evaluate geologic data on several salt-bearing basins within the State of Texas as a contribution to the national nuclear repository program. In response to this request, the Bureau, acting as a technical research unit of the University of Texas at Austin and the State of Texas, initiated a long-term program to assemble and interpret all geologic and hydrologic information necessary for delineation, description, and evaluation of salt-bearing strata in the Panhandle area. The technical program can be subdivided into three broad research tasks, which are addressed by a basin analysis group, a surface studies group, and a basin geohydrology group. The basin analysis group has assembled the regional stratigraphic and structural framework of the total basin fill, initiated evaluation of natural resources, and selected stratigraphic core sites for sampling the salt and associated beds. Two drilling sites have provided nearly 8000 feet (2400 m) of core material for analysis and testing of the various lithologies overlying and interbedded with salt units. Concurrently, the surface studies group has collected ground and remotely-sensed data to describe surficial processes, including carbonate and evaporate solution, geomorphic evolution, and fracture system development. The newly formed basin geohydrology group will evaluate both shallow and deep circulation of fluids within the basins. This paper, a summary report of progress, reviews principal conclusions and illustrates the methodologies used and the types of data and displays generated

  4. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S. P.; Finley, R. J.; Galloway, W. E.; Gustavson, T. C.; Handford, C. R.; Presley, M. W.

    1979-01-01

    Early in 1977 the Bureau of Economic Geology was invited to assemble and evaluate geologic data on several salt-bearing basins within the State of Texas as a contribution to the national nuclear repository program. In response to this request, the Bureau, acting as a technical research unit of the University of Texas at Austin and the State of Texas, initiated a long-term program to assemble and interpret all geologic and hydrologic information necessary for delineation, description, and evaluation of salt-bearing strata in the Panhandle area. The technical program can be subdivided into three broad research tasks, which are addressed by a basin analysis group, a surface studies group, and a basin geohydrology group. The basin analysis group has assembled the regional stratigraphic and structural framework of the total basin fill, initiated evaluation of natural resources, and selected stratigraphic core sites for sampling the salt and associated beds. Two drilling sites have provided nearly 8000 feet (2400 m) of core material for analysis and testing of the various lithologies overlying and interbedded with salt units. Concurrently, the surface studies group has collected ground and remotely-sensed data to describe surficial processes, including carbonate and evaporate solution, geomorphic evolution, and fracture system development. The newly formed basin geohydrology group will evaluate both shallow and deep circulation of fluids within the basins. This paper, a summary report of progress, reviews principal conclusions and illustrates the methodologies used and the types of data and displays generated.

  5. Safe and Effective Deactivation of Metallic Sodium Filled Scrap and Cold Traps From Sodium-cooled Nuclear Reactor D and D - 12176

    International Nuclear Information System (INIS)

    As part of the Plateau Remediation Project at US Department of Energy's Hanford, Washington site, CH2M Hill Plateau Remediation Company (CHPRC) contracted with IMPACT Services, LLC to receive and deactivate approximately 28 cubic meters of sodium metal contaminated debris from two sodium-cooled research reactors (Enrico Fermi Unit 1 and the Fast Flux Test Facility) which had been stored at Hanford for over 25 years. CHPRC found an off-site team composed of IMPACT Services and Commodore Advanced Sciences, Inc., with the facilities and technological capabilities to safely and effectively perform deactivation of this sodium metal contaminated debris. IMPACT Services provided the licensed fixed facility and the logistical support required to receive, store, and manage the waste materials before treatment, and the characterization, manifesting, and return shipping of the cleaned material after treatment. They also provided a recycle outlet for the liquid sodium hydroxide byproduct resulting from removal of the sodium from reactor parts. Commodore Advanced Sciences, Inc. mobilized their patented AMANDA unit to the IMPACT Services site and operated the unit to perform the sodium removal process. Approximately 816 Kg of metallic sodium were removed and converted to sodium hydroxide, and the project was accomplished in 107 days, from receipt of the first shipment at the IMPACT Services facility to the last outgoing shipment of deactivated scrap metal. There were no safety incidents of any kind during the performance of this project. The AMANDA process has been demonstrated in this project to be both safe and effective for deactivation of sodium and NaK. It has also been used in other venues to treat other highly reactive alkali metals, such as lithium (Li), potassium (K), NaK and Cesium (Cs). (authors)

  6. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Erling Rytter

    2015-03-01

    Full Text Available Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlate the deactivation mechanism with the actual process and catalyst design. It is well known that long term catalyst deactivation is sensitive to the conditions the actual catalyst experiences in the reactor. Therefore, great care should be taken during start-up, shutdown and upsets to monitor and control process variables such as reactant concentrations, pressure and temperature which greatly affect deactivation mechanism and rate. Nevertheless, evidence so far shows that carbon deposition is the main long-term deactivation mechanism for most LTFT operations. It is intriguing that some reports indicate a low deactivation rate for multi-channel micro-reactors. In situ rejuvenation and regeneration of Co catalysts are economically necessary for extending their life to several years. The review covers information from open sources, but with a particular focus on patent literature.

  7. Development of new deactivation method for simulation of fluid catalytic cracking equilibrium catalyst

    Indian Academy of Sciences (India)

    T Chiranjeevi; D T Gokak; V Ravikumar; P S Viswanathan

    2014-03-01

    Selection of a good catalyst is the easiest way to increase profitability of a fluid catalytic cracking (FCC) unit. During operation, these catalysts get deactivated due to operation at high temperatures, steam and deposition of metals on the catalyst. Developing a proper catalyst deactivation method is crucial for optimization of a good catalyst for FCC. Conventional laboratory deactivation procedures include direct metal impregnation method, cyclic deactivation method (CDM) and cyclic propylene steaming (CPS). Direct metal impregnation method gives higher coke and gas yields. CDM and CPS methods implementation is very difficult and time-consuming and there is a deviation in coke and gas yield. New rapid deactivation method has been developed to simulate plant equilibrium catalyst (E-Cat) by modifying metal impregnation, steaming and oxidation/reduction procedures. The E-Cat generated through a new deactivation method was characterized for physico-chemical properties using X ray diffraction (XRD), temperature-programmed reduction (TPR), and SEM-EDX and activity studies. XRD studies show that metals are dispersed well on catalyst samples. SEMEDX studies reveal that the morphology of simulated E-Cat and plant E-Cat catalyst particles appear to be same. E-Cat obtained by new deactivationmethod gives better coke and gas yields. Two E-Cats were also generated through CDM and direct metal impregnation method for comparing with the one generated through new method. New deactivation method also significantly reduces the evaluation time.

  8. Characterization of deactivated catalytic cracking catalyst and evaluation as absorbent material; Caracterizacao de catalisador de craqueamento catalitico desativado e avaliacao como material adsorvente

    Energy Technology Data Exchange (ETDEWEB)

    Valt, R.B.G.; Kaminari, N.M.S.; Cordeiro, B.; Ponte, M.J.J.S.; Ponte, H.A. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2010-07-01

    One of the main uses of catalysts in the petroleum industry is in step catalytic cracking, which after use and regeneration cycles generates large quantities of waste material. In this research the deactivated FCC catalyst was characterized before and after the electrokinetic remediation process, in order to assess the change of its structure and possible adsorptive capacity. Analyses of X-Ray Fluorescence Spectroscopy, Scanning Electron Microscopy and BET surface area measurement were performed. The analysis showed no structural change due to the process employed and that electrokinetic remediation has recovered 42% of adsorption capacity of the material, by removing about 89% of heavy metals adhered initially in the catalyst surface. (author)

  9. Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde

    OpenAIRE

    Liu, Dongxia; Zemlyanov, Dmitry; Win, Tianpin; Lobo-Lapidus, Rodrigo J.; Dumesic, James A.; Miller, Jeffrey T.; Marshall, Christopher L.

    2013-01-01

    Deactivation mechanisms of copper chromite (CuCr2O4 center dot CuO) catalyst for vapor-phase selective hydrogenation for furfuryl alcohol have been investigated using ex situ and in situ X-ray absorption fine structure (XAFS), X-ray photon spectroscopy (XPS), and Auger Electron Spectroscopy (AES). At 200 degrees C, the catalyst steadily deactivated. One of the dominant origins of catalyst deactivation is poisoning due to strong adsorption of polymeric species formed from the reactant and/or p...

  10. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    Science.gov (United States)

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  11. Soot oxidation over NOx storage catalysts. Activity and deactivation

    International Nuclear Information System (INIS)

    Soot oxidation activity and deactivation of NOx storage and reduction (NSR) catalysts containing Pt, K, and Ba supported on Al2O3, are studied under a variety of reaction conditions. K-containing catalysts decrease soot oxidation temperature with O2 alone and the presence of Pt further enhance the activity due to synergetic effect. The active species responsible for synergism on Pt/K-Al2O3 are unstable and cannot be regenerated. Soot oxidation temperature decreases by about 150oC with NO+O2 exhaust feed gas and under lean conditions NSR system acts as catalysed soot filter (CSF). The reactions that are mainly responsible for decreasing soot oxidation temperature are: (1) soot oxidation with NO2 followed by NO recycles to NO2, and (2) soot oxidation with O2 assisted by NO2. Only a part of the stored NOx that is decomposed at high temperatures under lean conditions is found to be useful for soot oxidation. NOx storage capacity of NSR catalysts decreases upon ageing under soot oxidising conditions. This will lead to a decreased soot oxidation activity on stored nitrate decomposition. Pt/K-Al2O3 catalyst is more active, but least stable compared with Pt/Ba-Al2O3. (author)

  12. Studies on Catalyst Deactivation Rate and Byproducts Yield during Conversion of Methanol to Olefins

    Institute of Scientific and Technical Information of China (English)

    Yan Dengchao; Munib Shahda; Weng Huixin

    2006-01-01

    The conversion of methanol to olefins (MTO) over the SAPO-34 catalyst in fixed-bed microreactor was studied. The effect of reaction temperatures for methanol conversion to olefins and byproducts was investigated. A temperature of 425 ℃ appeared to be the optimum one suitable for conversion of methanol to olefins. Since the presence of water could increase the olefins selectivity, the methanol conversion reactions with mixed water/methanol feed were also studied. The effect of weight hourly space velocity on conversion of methanol was also studied. The results indicated that the olefins selectivity was significantly increased as WHSV increased till approximately 7.69 h-1 then it began to level off. Different factors affecting the catalyst deactivation rate was studied, showing that the catalyst deactivation time was dependent on reaction conditions, and temperatures higher and lower than the optimal one made the catalyst deactivation faster.Adding water to methanol could slow down the catalyst deactivation rate.

  13. Influence of mass transport towards deactivation in tert-butyl-source driven isobutane/2-butene alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Aschauer, S.J.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2011-07-01

    The deactivation of i-butane/trans-2-butene alkylation using tert-butyl-halide promoted ionic liquid catalysts is studied.Here, the mass transport was modified by varying the feed rate and the type of promoter addition. The experimental data show that the deactivation increases with increasing feed rate. Moreover, a biliquid foam is formed when feed rates above 1 g/min are adjusted. As the results indicate a strong influence of the biliquid foam and its formation on deactivation, both aspects are also discussed.When the promoter is added to the feed mixture an increase of conversion with time on stream is observed. A deactivation in continuous promoter addition mode could not be noted in the investigated time-on-stream range. (orig.)

  14. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, T.C.; Presley, M.W.; Handford, C.R.; Finley, R.J.; Dutton, S.P.; Baumgardner, R.W. Jr.; McGillis, K.A.; Simpkins, W.W.

    1980-01-01

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated.

  15. Geology and geohydrology of the Palo Duro Basin, Texas Panhandle. Report on the progress of nuclear waste isolation feasibility studies, 1979

    International Nuclear Information System (INIS)

    Since early 1977, the Bureau of Economic Geology has been evaluating several salt-bearing basins within the State of Texas as part of the national nuclear repository program. The Bureau, a research unit of The University of Texas at Austin and the State of Texas, is carrying out a long-term program to gather and interpret all geologic and hydrologic information necessary for description, delineation, and evaluation of salt-bearing strata in the Palo Duro and Dalhart Basins of the Texas Panhandle. The program in FY 79 has been subdivided into four broad research tasks, which are addressed by a basin analysis group, a surface studies group, a geohydrology group, and a host-rock analysis group. The basin analysis group has delineated the structural and stratigraphic framework of the basins, initiated natural resource assessment, and integrated data from 8000 ft (2400 m) of core material into salt-stratigraphy models. Salt depth and thickness have been delineated for seven salt-bearing stratigraphic units. Concurrently, the surface studies group has collected ground and remotely sensed data to describe surficial processes, including salt solution, slope retreat/erosion mechanisms, geomorphic evolution, and fracture system development. The basin geohydrology group has begun evaluating both shallow and deep fluid circulation within the basins. The newly formed host-rock analysis group has initiated study of cores from two drilling sites for analysis of salt and the various lithologies overlying and interbedded with salt units. This paper, a summary report of progress in FY 79, presents principal conclusions and reviews methods used and types of data and maps generated

  16. Selective Functionalization of Independently Addressed Microelectrodes by Electrochemical Activation and Deactivation of a Coupling Catalyst

    OpenAIRE

    Devaraj, Neal. K.; Dinolfo, Peter H.; Chidsey, Christopher E. D.; Collman, James P.

    2006-01-01

    We demonstrate selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. 1,2,3-Triazole formation between terminal acetylenes and organic azides is efficiently catalyzed by copper(I) complexes (a Sharpless “click” reaction) while the oxidized copper (II) complexes are inactive. By electrochemically activating or deactivating the catalyst by switching its redox state, we demonstrate control over triazole format...

  17. Deactivation and Regeneration of Commercial Type Fischer-Tropsch Co-Catalysts—A Mini-Review

    OpenAIRE

    Erling Rytter; Anders Holmen

    2015-01-01

    Deactivation of commercially relevant cobalt catalysts for Low Temperature Fischer-Tropsch (LTFT) synthesis is discussed with a focus on the two main long-term deactivation mechanisms proposed: Carbon deposits covering the catalytic surface and re-oxidation of the cobalt metal. There is a great variety in commercial, demonstration or pilot LTFT operations in terms of reactor systems employed, catalyst formulations and process conditions. Lack of sufficient data makes it difficult to correlat...

  18. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    OpenAIRE

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial application of the process. Despite many years of research, we still lack the fundamental insights into the mechanism of catalyst deactivation necessary to develop the next generation of FTS catalysts...

  19. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    OpenAIRE

    Kevin Lafaye; Cyril Bosset; Lionel Nicolas; Amandine Guérinot; Janine Cossy

    2015-01-01

    Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief ov...

  20. Deactivation of a Co-Precipitated Co/Al2O3 Catalyst

    OpenAIRE

    YILDIZ, Meltem; AKIN, Ayşe Nilgün

    2007-01-01

    The effects of reaction temperature, feed ratio, space time, and CO percentage in feed on the deactivation conditions of a co-precipitated 36 wt% Co/Al2O3 catalyst in CO hydrogenation were investigated. Environmental-SEM-EDX and temperature-programmed reduction (TPR) studies were performed on used catalysts to investigate the effect of reaction conditions on catalyst deactivation. Intensive coke deposition on the catalyst was observed at a reaction temperature of about 573 K. Increas...

  1. Catalyst Deactivation During n-Alkane Isomerization Studied by In Situ UV–vis–NIR Spectroscopy

    OpenAIRE

    Tzolova-Müller, G.; Chan Thaw, C.; Garin, F.; Jentoft, F.; Schlögl, R.

    2006-01-01

    In many industrial processes catalyst deactivation is caused by formation of carbonaceous deposits (“coke”) on the catalyst surface. Development of catalysts that are less prone to deactivation requires understanding the nature of the carbonaceous species and the formation routes. In situ spectroscopic methods could be very informative in this respect, as they give information about the state of the surface including adsorbates and allow correlations with catalytic performance. Sulfated zi...

  2. Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation

    OpenAIRE

    Fraile, José M.; García Bordejé, E.; Roldán, Laura

    2012-01-01

    Sulfonated hydrothermal carbons present high activity for esterification of palmitic acid with alcohols. However, the catalyst is significantly deactivated upon recovery. Leaching of sulfonated species does not account for this deactivation, which is observed even by pretreatment only with the alcohol under reflux. Solid state NMR shows the presence of chemically bound alkyl groups coming from the alcohol, clearly different from strongly physisorbed species obtained by pretreatment at room te...

  3. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    OpenAIRE

    Dardo Tomasi; Volkow, Nora D.; Ruiliang Wang; Frank Telang; Gene-Jack Wang; Linda Chang; Thomas Ernst; Fowler, Joanna S.

    2009-01-01

    BACKGROUND: Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation i...

  4. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  5. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention.

    Directory of Open Access Journals (Sweden)

    Dardo Tomasi

    Full Text Available BACKGROUND: Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN. Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [(11C]cocaine used as DAT radiotracer and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7 and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32. With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. CONCLUSIONS/SIGNIFICANCE: These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness and cingulate gyrus (region deactivated in proportion to emotional interference. These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  6. Dopamine Transporters in Striatum Correlate with Deactivation in the Default Mode Network during Visuospatial Attention

    International Nuclear Information System (INIS)

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [11C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  7. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution

    OpenAIRE

    Wang, B.

    2008-01-01

    The catalytic conversion of hydrocarbons over zeolites has been applied in large scale petroleum-refining processes. However, there is always formation and retention of heavy by-products, called coke, which causes catalyst deactivation. This deactivation is due to the poisoning of the acid sites and/or pore blockage. The formation of coke on hydrocarbon processing catalysts is of considerable technological and economic importance and a great deal of work has been carried out to this study. Th...

  8. Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity

    OpenAIRE

    Murdaugh, Donna L.; Shinkareva, Svetlana V.; Deshpande, Hrishikesh R.; Jing Wang; Pennick, Mark R; Kana, Rajesh K.

    2012-01-01

    The default mode network (DMN) is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD) and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM) task). Each study had separate blocks ...

  9. Sampling and Analysis Plan for the 105-N Basin Water

    Energy Technology Data Exchange (ETDEWEB)

    R.O. Mahood

    1997-12-31

    This sampling and analysis plan defines the strategy, and field and laboratory methods that will be used to characterize 105-N Basin water. The water will be shipped to the 200 Area Effluent Treatment Facility for treatment and disposal as part of N Reactor deactivation. These analyses are necessary to ensure that the water will meet the acceptance criteria of the ETF, as established in the Memorandum of Understanding for storage and treatment of water from N-Basin (Appendix A), and the characterization requirements for 100-N Area water provided in a letter from ETF personnel (Appendix B)

  10. Conversion of Biomass-Derived Small Oxygenates over HZSM-5 and its Deactivation Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Flake, Matthew D.; Zhang, He; Wang, Yong

    2014-02-28

    HZSM-5 catalyst deactivation was studied using aqueous feed mixtures containing ethanol, ethanol+ acetic acid, ethanol+ethyl acetate, or ethanol+acetaldehyde in a fixed bed reactor at 360°C and 300psig. Compared to ethanol alone experiment, addition of other oxygenates reduced catalyst life in the order of: ethyl acetatedeactivate the catalyst through a pore-blocking mechanism. Acetic acid deactivates the catalyst through an active site poisoning mechanism or strong adsorption of acetate intermediates on the active sites (hydroxyl groups). Ethanol deactivates the catalyst primarily through its pore-blocking mechanism, but the rate of ethanol deactivation is orders of magnitude slower than that of acetaldehyde. Ethyl acetate hydrolyzes to form acetic acid and ethanol which deactivate the catalyst through its respective mechanisms. In addition, each functional group of oxygenates requires different active sites/catalysts and different operating conditions due to competitive adsorptions on active sites for their conversion to the desired products. Therefore, it is necessary to pre-treat the mixture of oxygenates to produce a feed stream containing the same or similar functional group compounds before converting the feed stream to hydrocarbon compounds over HZSM-5 catalyst.

  11. 1995 solid waste 30-year characteristics volume summary

    International Nuclear Information System (INIS)

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D ampersand D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford's SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TWunderscoreTRUM)

  12. FACILITY DEACTIVATION AND DECOMMISSIONING AT THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter if the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion--which integrated operations, deactivation and decommissioning (D and D), and soils and groundwater cleanup into a time-phased approach to completing all the work necessary to address the Cold War legacy. D and D addresses the ''footprint'' of the building or structure, while the soils and groundwater project addresses any environmental remediation that may be required in the underlying and surrounding soils and groundwater. Since then, ∼250 facilities have been decommissioned at the SRS, ranging from guard stations to nuclear fuel production facilities

  13. Deactivation of Ni2P/SiO2 catalyst in hydrodechlorination of chlorobenzene

    International Nuclear Information System (INIS)

    Highlights: • Ni2P/SiO2 has higher performance than Ni/SiO2 for hydrodechlorination. • Ni2P has higher resistance to HCl poison and to sintering than Ni. • Ni2P/SiO2 deactivation is mainly attributed to carbonaceous deposit. • Ni/SiO2 deactivation is mostly due to HCl poison and Ni sintering. - Abstract: The deactivation of the Ni2P/SiO2 catalyst in the hydrodechlorination of chlorobenzene was studied. To better illuminate the reasons for the deactivation, the effect of HCl on the structure and activity of Ni2P/SiO2 was investigated. For comparison, the deactivation of the Ni/SiO2 catalyst was also involved. It was found that the Ni2P particles possessed good resistance to HCl poison and to sintering, which is ascribed to the electron-deficiency of Niδ+(0 < δ < 1) site in Ni2P. Acted as the Lewis and Brönsted acid site, the Niδ+ site and the P-OH group on Ni2P/SiO2 catalyzed the formation of the carbonaceous deposit that was difficultly eliminated by hydrogenation. The carbonaceous deposit covered the active sites and might also induce a decrease in the Ni2P crystallinity, subsequently leading to the Ni2P/SiO2 deactivation. Different from Ni2P/SiO2, Ni/SiO2 was mainly deactivated by the chlorine poison and the sintering of nickel crystallites

  14. Differential deactivation during mentalizing and classification of autism based on default mode network connectivity.

    Directory of Open Access Journals (Sweden)

    Donna L Murdaugh

    Full Text Available The default mode network (DMN is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM task. Each study had separate blocks of fixation/resting baseline. The data from the task blocks and fixation blocks were collated to examine deactivation and functional connectivity. Deficits in the deactivation of the DMN in individuals with ASD were specific only to the ToM task, with no group differences in deactivation during the language tasks or a combined language and self-other discrimination task. During rest blocks following the ToM task, the ASD group showed less deactivation than the control group in a number of DMN regions, including medial prefrontal cortex (MPFC, anterior cingulate cortex, and posterior cingulate gyrus/precuneus. In addition, we found weaker functional connectivity of the MPFC in individuals with ASD compared to controls. Furthermore, we were able to reliably classify participants into ASD or typically developing control groups based on both the whole-brain and seed-based connectivity patterns with accuracy up to 96.3%. These findings indicate that deactivation and connectivity of the DMN were altered in individuals with ASD. In addition, these findings suggest that the deficits in DMN connectivity could be a neural signature that can be used for classifying an individual as belonging to the ASD group.

  15. Resting-State Glutamate and GABA Concentrations Predict Task-Induced Deactivation in the Default Mode Network

    OpenAIRE

    Hu, Yuzheng; Chen, Xi; Gu, Hong; Yang, Yihong

    2013-01-01

    Deactivation of the human brain's default mode network (DMN) is regarded as suppression of endogenous activity to support exogenous task-related processes. This phenomenon has important functional relevance and insufficient DMN deactivation has been implicated in several neuropsychiatric disorders. However, the neurochemical mechanism of the DMN′s deactivation remains largely unknown. In the present study, we test the hypothesis that the major excitatory and inhibitory neurotransmitters, glut...

  16. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the... receptor complex. Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Pharmacol The...ivation and deactivation bylipopolysaccharide: roles of the receptor complex. Pub...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the... receptor complex. Authors Fujihara M, Muroi M, Tanamoto K, Suzuki T, Azuma H, Ikeda H. Publication Pharmacol The

  17. Facility Deactivation and Decommissioning at the Savannah River Site

    International Nuclear Information System (INIS)

    In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that are on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter of the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion - which integrated operations, deactivation and decommissioning (D and D), and soils and groundwater cleanup into a time-phased approach to completing all the work necessary to address the Cold War legacy. D and D addresses the 'footprint' of the building or structure, while the soils and groundwater project addresses any environmental remediation that may be required in the underlying and surrounding soils and groundwater. Since then, ∼250 facilities have been decommissioned at the SRS, ranging from guard stations to nuclear fuel production facilities. The efforts made up front to develop the MOA and maintain open and active involvement with the EPA and SCDHEC was instrumental to the success of the SRS D and D Project. Accelerated D and D requires innovative regulatory

  18. Influence of catalyst deactivation on N2O emissions from automobiles

    International Nuclear Information System (INIS)

    Though estimates of the total N2O emitted by automobiles differ widely, automobiles are believed to be a significant source of non-agricultural anthropogenic N2O emissions. At the Third Conference of the Parties (COP-3) UN Framework Convention on Climate Change, held in Kyoto in 1997, N2O was designated as a greenhouse gas whose release into the atmosphere must be reduced. This action increased the need for more accurate estimates of automotive N2O emissions. The wide variation in estimates may be attributed to differences in emission test modes, types of catalysts, and levels of catalyst deactivation involved in the tests. In this study, we examined the influence of automotive catalyst deactivation on N2O emissions from the perspective of catalyst temperature frequency distribution. Using a model gas and deactivated three-way catalysts (TWCs), we applied the exhaust emission test modes of various countries. The results indicate that the factor behind the increase of N2O emissions following catalyst deactivation is not growth in N2O generation, but a decline in the N2O decomposition capability of the catalyst. It was also found that the effect of catalyst deactivation differs according to the catalyst composition and the emission test mode.(author)

  19. Remaining Sites Verification Package for the 100-D-50:5 Process Sewers (183-DR Sedimentation Basin Drains), Waste Site Reclassification Form 2006-025

    Energy Technology Data Exchange (ETDEWEB)

    L. M. Dittmer

    2007-11-06

    The 100-D-50:5 subsite encompasses the southern process sewers formerly servicing the 183-DR coagulation and sedimentation basins and proximate surface runoff collection drains. The results of confirmatory sampling of pipeline sediments and underlying soils at the 100-D-50:5 subsite demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  20. Remaining Sites Verification Package for the 100-D-50:5 Process Sewers (183-DR Sedimentation Basin Drains). Attachment to Waste Site Reclassification Form 2006-025

    International Nuclear Information System (INIS)

    The 100-D-50:5 subsite encompasses the southern process sewers formerly servicing the 183-DR coagulation and sedimentation basins and proximate surface runoff collection drains. The results of confirmatory sampling of pipeline sediments and underlying soils at the 100-D-50:5 subsite demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River

  1. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Rio Grande Region, New Mexico, and Texas

    International Nuclear Information System (INIS)

    The Rio Grande region, New Mexico and Texas, includes most of the area east of the Rio Grande to the Sacramento Mountains. The region encompasses two large basins, the Jornada del Muerto and Tularosa basins, and the intervening San Andres Mountains. The valley surfaces generally have altitudes from 600 to 1,500 meters, and the mountain ranges generally have altitudes from 1,500 to 2,400 meters. About one-half the area is underlain by basin fill. Sedimentary rocks that crop out in the Rio Grande region range in age from Precambrian to Holocene. The oldest Precambrian rocks are metamorphosed and intruded by plutons. Paleozoic rocks are primarily carbonates, with argillaceous beds in the older Paleozoic units. Clastic and gypsum are in greater abundance in younger Paleozoic units of Pennsylvanian and Permian age. The Mesozoic rocks primarily are clastic rocks with some limestone. Cenozoic rocks consist of sequences of conglomerate, sandstone, mudstone, and siltstone, derived from adjacent mountain masses, interbedded with basalt and andesite flows and silicic tuffs. Early to middle Tertiary volcanic and tectonic processes resulted in the implacement of plutonic bodies; volcanic activity continued into the Quaternary. Media considered to have potential for isolation of high-level radioactive waste include intrusive rocks, ash-flow tuff, and basaltic lava flows. Laharic and mudflow breccia and argillaceous beds also may be potential host rocks. These and other rocks may be potential media in areas where the unsaturated zone is thick. Quaternary faults are more common in the southern one-half of the region than in the northern one-half. Range-bounding faults with evidence of Quaternary movement extend northward into the central part of the region. Volcanic activity in the northern part of the region includes basalt flows of Quaternary age. Historical crustal uplift and seismicity have occurred in the vicinity of Socorro, New Mexico. The region is bordered on the west by

  2. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S ampersand M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S ampersand M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  3. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection.

    Science.gov (United States)

    Johnston, Kevin; Lomber, Stephen G; Everling, Stefan

    2016-03-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  4. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year

  5. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  6. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    Science.gov (United States)

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  7. Kinetics and deactivation of the NO reduction by CO on Pt-supported catalysts

    OpenAIRE

    Frank, Brigitta; Renken, Albert

    1999-01-01

    Reaction kinetics and catalyst deactivation during the redn. of NO with CO on a 0.5%Pt-3.4%MoO3/a-Al2O3 catalyst were investigated. The reaction shows an ignition/quenching behavior. After ignition, the reaction kinetics (formation of N2 and N2O) obey the bimol. Langmuir-Hinshelwood equations, in accordance with a dissociative mechanism. A slow catalyst deactivation is obsd. under reductive conditions (pCO >> pNO). The proposed mechanism comprises the formation of electron-withdrawing isocyan...

  8. Deactivation and Coke Accumulation during CO2/CH4 Reforming over Pt Catalysts

    OpenAIRE

    Bitter, J.H.; Seshan, K.; Lercher, J.A.

    2001-01-01

    The Deactivation of Pt catalysts used in the generation of synthesis gas via CO2/CH4 reforming depends strongly on the support and the metalparticle size. Methods of Physicochemical characterization such as X-ray absorption spectroscopy and hydrogen chemisorption suggest that carbon formation (most likely from methane) rather than sintering is the main cause of catalyst deactivation. The rate of carbon formation decreased in the order Pt/y-Al2O3 >> Pt/TiO2 > Pt/ZrO2. Carbon was formed on the ...

  9. Growth of Aligned Carbon Nanotubes on Large Scale by Methane Decomposition with Deactivation Inhibitor

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Zhili Li; Cheng Zhang; Feng Peng; Hongjuan Wang

    2007-01-01

    The effects of additives containing iron or nickel during chemical vapor deposition (CVD) on the growth of carbon nanotubes (CNTs) by methane decomposition on Mo/MgO catalyst were investigated. Ferrocene and nickel nitrate were introduced as deactivation inhibitors by in-situ evaporation during CVD. The precisely controlled in-situ introduction of these inhibitors increased the surface renewal of catalyst, and therefore prevented the catalyst from deactivation. Using this method, aligned multi-walled CNTs with parallel mesopores can be produced on a large scale.

  10. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    Directory of Open Access Journals (Sweden)

    Kevin Lafaye

    2015-11-01

    Full Text Available Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions.

  11. K Basins isolation barriers summary report

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on

  12. Radionuclide migration in river basins with discharged waste waters from uranium industry at increased water levels, using Ploucnice river as an example

    International Nuclear Information System (INIS)

    Field experiments gave evidence that in the non-steady-state regime, radioactive substances and (in this case) barium, or undissolved barium sulfate, brought to the flood area with the through-flow wave and subsequently forming a sediment there are potential sources of secondary contamination of the river basin. The radioactive substance flow balance for the investigated segment of the Ploucnice river showed that the Ra-226 retention was 81% and 74% in 1990 and 1991, respectively, that of the undissolved uranium species was 78% in 1990, and that of the undissolved barium was 87% and 72% in the two years, respectively. (Z.S.) 1 tab., 2 figs., 4 refs

  13. Geochemistry of neo-formed minerals at Oklo (Gabon), geologic history of the Oklo basin: a contribution for the studies of geologic disposals of radioactive wastes

    International Nuclear Information System (INIS)

    Oklo uranium ore deposit (Francevillian basin, Gabon) is the unique place in the world where 2000 Ma old fossil nuclear reactors were described. The geological and thermal history of this basin, since 2000 Ma was retraced. Tholeiitic intrusion was 755 ± 83 Ma with Sm-Nd isochron on whole rock and plagioclase and 746 ± 16 Ma old with U-Pb dating on zircons. This event was linked to a pre-Pan-African rifting stage. A green schist facies metamorphism was detected on the granitic rocks of the substratum and seemed to affect the tholeiitic intrusion. Apatite fission tracks dating performed on granitic basement revealed a thermal event between Permian and middle-Jurassic time, linked to the Atlantic ocean opening. Fission track ages distribution suggest a brittle tectonics (T < 60 deg. C) occurred after middle Jurassic times. Geochemical and isotopic studies on apatites and zircons which crystallized on natural nuclear reactors let compare the confinement of these two crystalline structures. These minerals were affected by self-irradiation due to actinide incorporation. U, Pu and fission products (REE, Rb, Sr) were trapped by apatites. Zircons contain fissiogenic REE and radiogenic Ba. Apatites crystallized during the nuclear reactions, zircons at the end of this phenomenon. Isotopic study of tholeiitic intrusion minerals point out fissiogenic Nd and Sm incorporation in clinopyroxenes. This result implies a fissiogenic products remobilization during the tholeiitic intrusion event. (author)

  14. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed

  15. Subproject plan for demonstration of 3M technology for treatment of N Basin water

    International Nuclear Information System (INIS)

    A dissolved radionuclides removal demonstration is being conducted at the 105-N Basin as part of the 100-N Area Projects' policy of aggressively integrating innovative technologies to achieve more cost effective, faster, and/or safer deactivation operations. This subproject plan demonstrates new technology (marketed by the 3M trademark Company) that absorbs specific ions from water. The demonstration will take place at the spent fuel basin at the N Reactor facility. The 105-N Basin contains 1 million gal of water consisting of approximately 32 Ci of dissolved 90Sr at a concentration of 8.4 uCi/L and 7.3 Ci of dissolved 137Cs at a concentration of 1.92 uCi/L. The Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [Ecology et al. 1990]) Milestone M-16-01E-T2 requires the initiation of pretreatment and removal of all N Reactor fuel storage basin waters by September 30, 1996, pursuant to the N Reactor Deactivation Program Plan (WHC 1993). 105-N Basin dewatering is on the critical path for overall deactivation of N Reactor by March 1997. The 105-N Basin Deactivation Program Plan (BHI 1995) includes removing debris, hardware, algae and sediment from the basin, followed by pretreatment (filtration) and removal of the 1005-N Basin water. Final water removal is currently scheduled for September 30, 1996. The recommended method of the 105-N Basin water is the treatment of the water at the Effluent Treatment Facility (ETF) in the 200 East Area. The demonstration of the 3M technology could be a feasible treatment alternative to the ETF if the ETF is not available to meet the project schedule or if additional pretreatment is needed to reduce the inventory of radioactive species to be handled at the ETF. Demonstration of this technology could be of value for other fuel basins at the Hanford Site and possibly other US Department of Energy (DOE) sites and non- DOE nuclear power plants

  16. DEACTIVATION OF H2S OF CR2O2 EMISSION CONTROL CATALYST FORCHLORINATED VOC DESTRUCTION

    Science.gov (United States)

    The paper discusses one aspect of catalyst stability (i.e.,deactivation by poisoning) and the concomitant effects on catalystactivity and selectivity in the destruction of chlorinatedhydrocarbons. he study was initiated because nothing isdocumented of the effect of H2S or the oth...

  17. Deactivation of Hydroprocessing Catalysts: New insights in catalyst structure, activity and stability

    NARCIS (Netherlands)

    Vogelaar, B.M.

    2005-01-01

    In dit proefschrift is de deactivering van hydroprocessing katalysatoren onderzocht. Katalysatoren zijn hulpstoffen die gebruikt worden om chemische reacties te bewerkstelligen, zonder daarbij zelf verbruikt te worden. Een bekend voorbeeld is de uitlaatkatalysator in de auto, die o.a. onverbrande br

  18. A One Year Study of Mode Deactivation Therapy: Adolescent Residential Patients with Conduct and Personality Disorders

    Science.gov (United States)

    Murphy, Christopher J.; Siv, Alexander M.

    2011-01-01

    This case study is to evaluate the effectiveness of Mode Deactivation Therapy (MDT) implementation in a child and adolescent residential treatment unit and provide preliminary effectiveness data on MDT versus treatment as usual (TAU). This case study compared the efficacy of two treatment methodologies for adolescent males in residential treatment…

  19. A Treatment Study of Mode Deactivation Therapy in an Out Patient Community Setting

    Science.gov (United States)

    Apsche, Jack A.; Bass, Christopher K.; Siv, Alexander

    2006-01-01

    This paper is a review of the outpatient data and recidivism for an 18 month post treatment follow-up of Mode Deactivation Therapy (MDT). The follow up data suggests that effects of MDT generalized for over one-year post treatment in these adolescent conduct disordered males in an inpatient therapeutic setting. This research compared the…

  20. Innovative Work Practices and Lessons Learned at the N Area Deactivation Project

    International Nuclear Information System (INIS)

    This report identifies many of the lessons learned, innovations,and effective work practices that derived from activities supporting the N Area Deactivation Project at the U.S. Department of Energy's (DOE) Hanford Site. The work practices discussed in this report may be applicable and beneficial to similar projects throughout the DOE complex

  1. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids

    DEFF Research Database (Denmark)

    Castellino, Francesco; Rasmussen, Søren Birk; Jensen, Anker Degn;

    2008-01-01

    Commercial vanadia-based SCR monoliths have been exposed to flue gases in a pilot-scale Setup into which phosphoric acid has been added and the deactivation has been followed during the exposure time. Separate measurements by SMPS showed that the phosphoric acid formed polyphosphoric acid aerosols...

  2. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H. E.; Paalanen, P.; Arstad, B.; Weckhuysen, B. M.; Beale, A. M.

    2014-01-01

    The chemical deactivation of Cu-SSZ-13 Ammonia Selective Catalytic Reduction (NH3-SCR) catalysts by Pt, Zn, Ca and P has been systematically investigated using a range of analytical techniques in order to study the influence on both the zeolitic framework and the active Cu2+ ions. The results obtain

  3. Patients' perspective on deactivation of the implantable cardioverter-defibrillator near the end of life

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; Chaitsing, Rismy; Szili-Torok, Tamas;

    2013-01-01

    Recent guidelines have emphasized the importance of discussing the issue of deactivation near the end of life with patients with an implantable cardioverter-defibrillator (ICD). Few studies have examined the patient perspective and patients' wishes. We examined patients' knowledge and wishes for ...

  4. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  5. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn; Yang, Deren [State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Lu, Yunhao, E-mail: luyh@zju.edu.cn, E-mail: mxyoung@zju.edu.cn [International Center for New-Structured Materials and Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2014-01-20

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  6. Deactivation Correlations of Pd/Rh Three-way Catalysts Designed for Euro IV Emission Limits:effect of Ageing Atmosphere, Temperature and Time

    OpenAIRE

    Lassi, U. (Ulla)

    2003-01-01

    Abstract The aim of this thesis is the knowledge of the most relevant deactivation mechanisms of Pd/Rh three-way catalysts under different ageing conditions, the deactivation correlation of laboratory scale ageing and engine bench/vehicle ageings, and the evaluation of the deactivation correlation. In the literature review, the phenomena involved in the three-way catalyst operation and its deactivation are considered. In the experimental section, ageing-induced phenomena in the catalyst ar...

  7. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception: Current Focusing and Channel Deactivation.

    Science.gov (United States)

    Bierer, Julie A; Litvak, Leonid

    2016-01-01

    Speech perception among cochlear implant (CI) listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a) focused stimulation will improve phoneme recognition and (b) speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects' threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a) 14-channel partial tripolar (pTP) and (b) 14-channel monopolar (MP), and four variable-channel programs, derived from these two base programs, (c) pTP with high- and (d) low-threshold channels deactivated, and (e) MP with high- and (f) low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring correct on vowel identification) tended to perform better with the all-channel pTP than with the MP program (1 > 2). These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6). Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners. PMID:27317668

  8. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.

    Science.gov (United States)

    Komura, Taku; Prokopow, Przemyslaw; Nagano, Akinori

    2004-04-01

    When any muscle in the human musculoskeletal system is damaged, other muscles and ligaments tend to compensate for the role of the damaged muscle by exerting extra effort. It is beneficial to clarify how the roles of the damaged muscles are compensated by other parts of the musculoskeletal system from the following points of view: From a clinical point of view, it will be possible to know how the abnormal muscle and joint forces caused by the acute compensations lead to further physical damage to the musculoskeletal system. From the viewpoint of rehabilitation, it will be possible to know how the role of the damaged muscle can be compensated by extra training of the other muscles. A method to evaluate the influence of muscle deactivation on other muscles and joints is proposed in this report. Methodology based on inverse dynamics and static optimization, which is applicable to arbitrary motion was used in this study. The evaluation method was applied to gait motion to obtain matrices representing (1) the dependence of muscle force compensation and (2) the change to bone-on-bone contact forces. These matrices make it possible to evaluate the effects of deactivation of one of the muscles of the musculoskeletal system on the forces exerted by other muscles as well as the change to the bone-on-bone forces when the musculoskeletal system is performing the same motion. Through observation of this matrix, it was found that deactivation of a muscle often results in increment/decrement of force developed by muscles with completely different primary functions and bone-on-bone contact force in different parts of the body. For example, deactivation of the iliopsoas leads to a large reduction in force by the soleus. The results suggest that acute deactivation of a muscle can result in damage to another part of the body. The results also suggest that the whole musculoskeletal system must go through extra retraining in the case of damage to certain muscles. PMID:14996554

  9. Regeneration of commercial selective catalyst reduction catalysts deactivated by Pb and other inorganic elements.

    Science.gov (United States)

    Yu, Yanke; Wang, Jinxiu; Chen, Jinsheng; He, Xinjiang; Wang, Yujing; Song, Kai; Xie, Zongli

    2016-09-01

    The regeneration of commercial SCR (Selective Catalyst Reduction) catalysts deactivated by Pb and other elements was studied. The deactivated catalyst samples were prepared by chemical impregnation with mixed solution containing K2SO4, Na2SO4, CaSO4, Pb(NO3)2 and NH4H2PO4. A novel method combining Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and H2SO4 solution (viz. catalysts treated by dilute EDTA-2Na and H2SO4 solution in sequence) was used to recover the activity of deactivated samples, and the effect was compared with single H2SO4, oxalic acid, acetic acid, EDTA or HNO3 solutions. The surface structure, acidity and reducibility of samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), H2-temperature programmed section (H2-TPR), NH3-temperature programmed desorption (NH3-TPD) and in situ DRIFTS. Impurities caused a decrease of specific surface area and surface reducibility, as well as Brønsted acid sites, and therefore led to severe deactivation of the SCR catalyst. The use of an acid solution alone possibly eliminated the impurities on the deactivated catalyst to some extent, and also increased the specific surface area and Brønsted acid sites and promoted the surface reducibility, thus recovered the activity partially. The combination of EDTA-2Na and H2SO4 could remove most of the impurities and improve the activity significantly. The removal of Pb should be an important factor for regeneration. Due to a high removal rate for Pb and other impurities, the combination of EDTA-2Na and H2SO4 solutions provided the best efficiency. PMID:27593277

  10. Radioprotection planned operation to deactivate an old fabrication plant of UO2 pellets in IPEN - CNEN/SP to perform decommissioning

    International Nuclear Information System (INIS)

    In this work, the steps adopted in the operation planned for the deactivation and decommissioning of the previous plant (building 24), to manufacture the tablets of dioxide of Uranium of the Nuclear and Energy Research Institute, IPEN - CNEN/SP are shown, with decommissioning aims. This operation involved the planning, training the operators of the installation, radiometric analysis of the workstations and surveys for monitoring external radiation, contaminated surfaces and air contamination. The training involved the procedures for the manipulation of radioactive materials, decontamination of surfaces, segregation of materials and practical procedures for monitoring the individual surface body contamination, footwear and clothes. Procedures for the transport of radioactive materials had also been established, relative to the internal rules of the installation; provisory confinement of wastes; effluent, riddance of materials and finding areas free of contamination. (author)

  11. Radioprotection planned operation to deactivate an old fabrication plant of UO2 pellets in IPEN - CNEN/SP to perform decommissioning

    International Nuclear Information System (INIS)

    In this work, the steps adopted in the operation planned for the deactivation and decommissioning of the previous plant (building 24), to manufacture the tablets of dioxide of Uranium of the Nuclear and Energy Research Institute, IPEN - CNEN/SP are shown, with decomissioning aims. This operation involved the planning, training the operators of the installation, radiometric analysis of the workstations and surveys for monitoring external radiation, contaminated surfaces and air contamination. The training involved the procedures for the manipulation of radioactive materials, decontamination of surfaces, segregation of materials and practical procedures for monitoring the individual surface body contamination, footwear and clothes. Procedures for the transport of radioactive materials had also been established, relative to the internal rules of the installation; provisory confinement of wastes; effluent, riddance of materials and finding areas free of contamination. (author)

  12. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site's original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site's new mission of environmental restoration and deactivation, decontamination and decommissioning (D ampersand D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-level waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed

  13. Radioactive waste isolation in salt: peer review of the D'Appolonia report on Schematic Designs for Penetration Seals for a Repository in the Permian Basin, Texas

    International Nuclear Information System (INIS)

    Argonne made the following recommedations for improving the reviewed reports. The authors of the report should: state the major assumptions of the study in Sec. 1.1 rather than later in the report; consider using salt for the shaft seals in salt horizons; reconsider whether keys are needed for the bulkheads; provide for interface grouting because use of expansive cement will not guarantee that interfaces will be impermeable; discuss the sealing schedule and, where appropriate, consider what needs to be done to ensure that emplaced radioactive waste could be retrieved if necessary; describe in more detail the sealing of the Dockum and Ogallala aquifers; consider an as low as reasonably achievable approach to performance requirements for the initial design phase; address the concerns in the 1983 US Nuclear Regulatory Commission document entitled Draft Technical Position: Borehole and Shaft Sealing of High-Level Nuclear Waste Repositories; cite the requirements for release of radioactivity by referring to specific clauses in the regulations of the US Environmental Protection Agency; and provide further explanation in the outline of future activities about materials development and verification testing. More emphasis on development of accelerated testing programs is also required

  14. Equipment for radioactive waste treatment

    International Nuclear Information System (INIS)

    The equipment is used for the concentration, calcination, possibly denitration of high, medium and low level radioactive wastes. It is provided with a heated body and driving mechanism. In the heated body there is a horizontal or oblique shaft with a system of vanes, possibly with a screw. On one side of the heated body there is an opening for drop and vapour extraction. A lead screen may be placed in this area, opposite to it a shielding and between them a deactivation slot. The advantage of the discovery is in that the shaft including the bearings are placed outside of the working part of the equipment. (M.D.)

  15. Study of rock-water-nuclear waste interactions in the Pasco Basin, Washington: Part II. Preliminary equilibrium-step simulations of basalt diagenesis

    International Nuclear Information System (INIS)

    Interactions between a large number of complex chemical and physical processes have resulted in significant changes in the Pasco Basin hydrochemical system since emplacement of the first basalt flow. In order to perform preliminary simulations of the chemical evolution of this system, certain simplifying assumptions and procedures were adopted and a computer model which operates on the principal of local equilibrium was used for the mass transfer calculations. Significant uncertainties exist in both the thermodynamic and reaction rate data which were input to the computer model. In addition, the compositional characteristics of the evolving hydrochemical system remain largely unknown, especially as a function of distance along the flow path. Given these uncertainties, it remains difficult to assess the applicability of the equilibrium-step approach even though reasonable matches between observed and simulated hydrochemical data were obtained. Given the uncertainties mentioned, the predictive abilities of EQ6 are difficult, if not impossible to evaluate; our simulations produced, at best, only qualitative agreement with observed product mineral assemblages and sequences, and fluid compositions

  16. ASSESSMENT OF STRIPPABLE COATINGS FOR DEACTIVATION AND DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    Strippable coatings are polymer mixtures, such as water-based organic polymers, that are applied to a surface by paintbrush, roller, or spray applicator. As the polymer reacts, it attracts, absorbs, and chemically binds the contaminants; then, during the curing process, it mechanically locks the contaminants into the polymer matrix. Incorporating fiber reinforcement (such as a cotton scrim) into the coating may enhance the strength of these coatings. Once the coating dries, it can be stripped manually from the surface, In the case of auto-release coatings, the mixture cracks, flakes, and is collected by vacuuming. The surface properties of these coatings may be modified by applying a thin top coat (e.g., polyvinyl alcohol), which may provide a smoother, less permeable surface that would become less severely contaminated. In such a duplex, the thicker basis layer provides the required mechanical properties (e.g., strength and abrasion resistance), while the top layer provides protection from contamination. Once the strippable coating is removed, the loose surface contamination is removed with the coating, producing a dry, hard, non-airborne waste product. The use of strippable coatings during D&D operations has proved a viable option. These coatings can be used in the following three functions: As a protective coating, when applied to an uncontaminated surface in an area where contamination is present, so that on its removal the surface remains uncontaminated; As a decontamination agent, when applied to a contaminated surface, so that on its removal a significant decontamination of loose particulate activity is achieved; and As a fixative or tie-down coating, when applied to a contaminated surface, so that any loose contamination is tied down, thus preventing the spread of contamination during subsequent handling.

  17. ASSESSMENT OF STRIPPABLE COATINGS FOR DEACTIVATION AND DECOMMISSIONING

    International Nuclear Information System (INIS)

    Strippable coatings are polymer mixtures, such as water-based organic polymers, that are applied to a surface by paintbrush, roller, or spray applicator. As the polymer reacts, it attracts, absorbs, and chemically binds the contaminants; then, during the curing process, it mechanically locks the contaminants into the polymer matrix. Incorporating fiber reinforcement (such as a cotton scrim) into the coating may enhance the strength of these coatings. Once the coating dries, it can be stripped manually from the surface, In the case of auto-release coatings, the mixture cracks, flakes, and is collected by vacuuming. The surface properties of these coatings may be modified by applying a thin top coat (e.g., polyvinyl alcohol), which may provide a smoother, less permeable surface that would become less severely contaminated. In such a duplex, the thicker basis layer provides the required mechanical properties (e.g., strength and abrasion resistance), while the top layer provides protection from contamination. Once the strippable coating is removed, the loose surface contamination is removed with the coating, producing a dry, hard, non-airborne waste product. The use of strippable coatings during D and D operations has proved a viable option. These coatings can be used in the following three functions: As a protective coating, when applied to an uncontaminated surface in an area where contamination is present, so that on its removal the surface remains uncontaminated; As a decontamination agent, when applied to a contaminated surface, so that on its removal a significant decontamination of loose particulate activity is achieved; and As a fixative or tie-down coating, when applied to a contaminated surface, so that any loose contamination is tied down, thus preventing the spread of contamination during subsequent handling

  18. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salem, H. [Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia)]. E-mail: bensalem.hichem@iresa.agrinet.tn; Saghrouni, L. [Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia); Ecole Superieure d' Agriculture de Mateur, Mateur (Tunisia); Nefzaoui, A. [Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia)

    2005-08-19

    Chopping, water sprinkling, storage under aerobic and anaerobic conditions, urea, wood ash, activated charcoal and polyethylene glycol 4000 (PEG) treatments were evaluated for their efficiency in deactivating tannins in shrub foliage. In a first trial, fresh leaves of Acacia cyanophylla Lindl. (acacia) were stored after chopping or without chopping and spraying or without spraying with water under aerobic or anaerobic conditions. The plant material was stored for 1, 7 and 14 days and analysed thereafter for extractable total phenols (TP), extractable total tannins (TT) and extractable condensed tannins (CT) contents. Chopping and water spraying substantially decreased the levels of TP, TT and CT of acacia. The rate of tannin deactivation increased in acacia stored under anaerobic conditions. Acacia stored for 7 days exhibited lower TP, TT and CT contents than that stored for only 1 day. Compared to the 7-day storage period, there was a further non-significant decrease in the level of these phenolic compounds when the storage duration was extended to 14 days. The highest level of rumen degradation of crude protein (CP) in sheep rumen was obtained with chopped, water sprinkled acacia leaves stored under anaerobic conditions. The second trial investigated the effect of increasing levels of urea (0, 20, 40, 60 and 80 g/kg) and treatment duration (7, 14, 21 and 28 days) on CP, TP, TT and CT in acacia leaves. The 20 g/kg urea level was sufficient to totally deactivate tannins in acacia even with the shortest storage period, i.e. 7 days. However, urea treatment increased ash-free neutral detergent fibre content and did not improve in sacco acacia degradation. In the third trial air-dried 1 mm ground samples of acacia and kermes oak (Quercus coccifera L.) leaves were added to water (control), acacia wood ash, activated charcoal or PEG solutions (100 g/kg) at 1:10 (w/v) and shaken for 20 min. All these four treatments decreased TP, TT and CT contents and could be classified

  19. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments

    International Nuclear Information System (INIS)

    Chopping, water sprinkling, storage under aerobic and anaerobic conditions, urea, wood ash, activated charcoal and polyethylene glycol 4000 (PEG) treatments were evaluated for their efficiency in deactivating tannins in shrub foliage. In a first trial, fresh leaves of Acacia cyanophylla Lindl. (acacia) were stored after chopping or without chopping and spraying or without spraying with water under aerobic or anaerobic conditions. The plant material was stored for 1, 7 and 14 days and analysed thereafter for extractable total phenols (TP), extractable total tannins (TT) and extractable condensed tannins (CT) contents. Chopping and water spraying substantially decreased the levels of TP, TT and CT of acacia. The rate of tannin deactivation increased in acacia stored under anaerobic conditions. Acacia stored for 7 days exhibited lower TP, TT and CT contents than that stored for only 1 day. Compared to the 7-day storage period, there was a further non-significant decrease in the level of these phenolic compounds when the storage duration was extended to 14 days. The highest level of rumen degradation of crude protein (CP) in sheep rumen was obtained with chopped, water sprinkled acacia leaves stored under anaerobic conditions. The second trial investigated the effect of increasing levels of urea (0, 20, 40, 60 and 80 g/kg) and treatment duration (7, 14, 21 and 28 days) on CP, TP, TT and CT in acacia leaves. The 20 g/kg urea level was sufficient to totally deactivate tannins in acacia even with the shortest storage period, i.e. 7 days. However, urea treatment increased ash-free neutral detergent fibre content and did not improve in sacco acacia degradation. In the third trial air-dried 1 mm ground samples of acacia and kermes oak (Quercus coccifera L.) leaves were added to water (control), acacia wood ash, activated charcoal or PEG solutions (100 g/kg) at 1:10 (w/v) and shaken for 20 min. All these four treatments decreased TP, TT and CT contents and could be classified

  20. Vinna Basin

    Czech Academy of Sciences Publication Activity Database

    Honěk, J.; Franců, J.; Mikuláš, Radek; Pešek, J.; Sýkorová, Ivana; Tomanová-Petrová, P.

    Prague: Czech Geological Survey, 2014, s. 223-241 ISBN 978-80-7075-862-5 R&D Projects: GA ČR GA105/06/0653 Institutional support: RVO:67985891 ; RVO:67985831 Keywords : Tertiary basins * Czech Republic * Cenomanian and Tertiary lignite * geology * stratigraphy Subject RIV: DB - Geology ; Mineralogy

  1. Deactivation of hydrophobic Pt/SDBC-catalyst for H2/HTO-exchange reaction destined for tritium removal in reprocessing plant

    International Nuclear Information System (INIS)

    Deactivation of a hydrophobic Pt/SDBC catalyst for the H2/HTO isotopic exchange reaction used to remove tritium from the waste water generated in a nuclear-fuel reprocessing plant has been studied experimentally. The catalyst was poisoned reversibly by a small amount of HNO3 and could be regenerated by washing with water followed by drying in an inert gas. As a countermeasure against this poisoning, the neutralization of the waste water was found to be effective. The presence of I2 in the waste water caused a sharp decrease in the activity of the catalyst, due to the irreversible adsorption of I2 onto the catalyst surface. The I2 poisoning could be prevented by the conversion of I2 into I- or IO3- by neutralization or redox reaction. TBP and the neutral nitrate salts of fission products such as Sr(NO3)2 showed negligible poisoning effects on the catalyst. 10 refs., 8 figs., 1 tab

  2. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at SRS

    International Nuclear Information System (INIS)

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins

  3. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    Science.gov (United States)

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-01-01

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity. PMID:27089310

  4. Deactivation of tracer-flo equipment thru retrieval of its radioactive Krypton-85 gas

    International Nuclear Information System (INIS)

    Tracer-flo equipment must be cleared of Krypton-85 before these can be transported. The rules and regulations on safe transport of radioactive materials require Kr-85 gas to be transported in an approved container. A new innovative technique/procedure in deactivating tracer-flo equipment i.e., without separation of the Kr-85 from the nitrogen was developed by the authors. The developed procedure was successfully applied in four tracer-flo equipment of three (3) semiconductor firms. In the process, the three firms have saved about US$ 28,000.00 (P 800,000.00) if the deactivation were undertaken by a foreign service company. The Philippine Nuclear Research Institute (PNRI) retrieved about P 382,000.00 worth of Kr-85 that could be used in industrial applications such as leak tracing of buried pipes, etc. (author). 1 ref.; 5 figs

  5. Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation

    DEFF Research Database (Denmark)

    Gardini, Diego; Mortensen, Peter Mølgaard; Carvalho, Hudson W. P.;

    2014-01-01

    Hydrodeoxygenation (HDO) is proposed as an efficient way to remove oxygen in bio-oil, improving its quality as a more sustainable alternative to conventional fuels in terms of CO2 neutrality and relative short production cycle [1]. Ni and Ni-MoS2 nanoparticles supported on ZrO2 show potential as...... study of this element through STEM-EDX. Moreover, nickel sintering was observed in the KCl poisoned sample and was ascribed once again to the formation of mobile Ni-Cl species upon reaction of HCl with surface oxides [4]. Furthermore, environmental transmission electron microscopy (ETEM) has been used...... high-pressure (100 bar) catalysts for purification of bio-oil by HDO. However, the catalysts deactivate in presence of sulfur, chlorine and potassium species, which are all naturally occurring in real bio-oil. The deactivation mechanisms of the Ni/ZrO2 have been investigated through scanning...

  6. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    Science.gov (United States)

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  7. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments

    Directory of Open Access Journals (Sweden)

    Ekaterina Kolobova

    2016-04-01

    Full Text Available The catalytic properties of modified Au/TiO2 catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H2 TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au+. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity.

  8. Accelerated deactivation of the boron–oxygen-related recombination centre in crystalline silicon

    International Nuclear Information System (INIS)

    A significant acceleration of the permanent deactivation of the boron–oxygen-related recombination centre in crystalline silicon is observed if the samples are exposed to the plasma during plasma-enhanced chemical vapour deposition (PECVD) of a hydrogen-rich silicon nitride (SiNx) layer. Similar deactivation rate constants are measured in samples passivated with hydrogen-rich SiNx deposited without plasma exposure and hydrogen-lean aluminium oxide (Al2O3) deposited with plasma-assisted atomic layer deposition, suggesting that the critical parameter responsible for the acceleration is not the hydrogen content in the dielectric layer. Instead, we propose increased in-diffusion of hydrogen during or after the deposition of the PECVD SiNx layer, for example due to surface damage caused by plasma exposure, as the cause for the acceleration

  9. Comparative investigations of zeolite catalyst deactivation by coking in the conversion of methanol to hydrocarbons

    OpenAIRE

    Evensen, Kjetil Gurholt

    2014-01-01

    With large countries as India and China in tremendous development accompanied by a growing worldwide population, questions arise in how energy demands can be met in the post-oil society. The methanol-to-hydrocarbon process, catalysed by Brønsted acidic zeolites, constitutes an alternative route for the production of gasoline and other valuable hydrocarbons from feedstocks such as natural gas and coal. Catalyst deactivation by coke formation is nevertheless a big concern, and a better understa...

  10. Platinum Deactivation: In Situ EXAFS Study During Aqueous Alcohol Oxidation Reaction

    OpenAIRE

    Koningsberger, D.C.; Ruitenbeek, M.; B.F.M. Kuster; Marin, G. B.

    1998-01-01

    With a new setup for in situ EXAFS spectroscopy the state of a carbonsupported platinum catalyst during aqueous alcohol oxidation has been observed. The catalyst deactivation during platinumcatalysed cyclohexanol oxidation is caused by platinum surface oxide formation. The detected Pt–O coordination at 2.10 Å during exposure to nitrogensaturated cyclohexanol solution is different from what is observed for the pure oxidised platinum surface (2.06 Å). platinum - EXAFS - catalysis - catalyst dea...

  11. Modelling, estimation and optimization of the methanol synthesis with catalyst deactivation

    OpenAIRE

    Løvik, Ingvild

    2001-01-01

    This thesis studies dynamic modelling, estimation and optimization of the methanol synthesis with catalyst deactivation. Conversion of natural gas is of special interest in Norway for both economic and political reasons. In June 1997 Statoil opened a methanol plant at Tjeldbergodden. It is among the largest in the word with a capacity of 830 000 metric tons per year, which equals 1/4 of Europe's capacity. Methanol is today mainly used as a building block to produce chemical intermediates, and...

  12. Deactivation of signal amplification by reversible exchange catalysis, progress towards in vivo application.

    Science.gov (United States)

    Mewis, Ryan E; Fekete, Marianna; Green, Gary G R; Whitwood, Adrian C; Duckett, Simon B

    2015-06-18

    The catalyst which is used in the signal amplification by reversible exchange (SABRE) process facilitates substrate hyperpolarisation while acting to speed up the rate of relaxation. Consequently, the lifetime over which the hyperpolarised contrast agent is visible is drastically reduced. We show that the addition of a chelating ligand, such as bipyridine, rapidly deactivates the SABRE catalyst thereby lengthening the agent's relaxation times and improving the potential of SABRE for diagnostic MRI. PMID:25989727

  13. In situ UV-vis-NIR Spectroscopy as a Tool to Understand Catalyst Deactivation

    OpenAIRE

    Chan Thaw, C.; Garin, F.; Tzolova-Müller, G.; Jentoft, F.; Schlögl, R.

    2006-01-01

    Introduction Catalyst deactivation is a frequently occurring problem, particularly in hydrocarbon conversion, and is often ascribed to the formation of “carbonaceous deposits”. Amount and nature of such deposits is usually determined by analysis of the spent catalyst after its removal from the reactor. In order to understand the formation and further transformation of surface species and to elucidate their effect on the catalytic performance, in situ measurements are compulsory. UV-vis-NIR...

  14. Atomic absorption determination of platinum and rhenium in deactivated catalysts based on γ-alumina

    International Nuclear Information System (INIS)

    A flame atomic absorption method has been developed for the determination of Pt and Re in deactivated catalysts based on γ-Al2O3. Hydrofluoric acid is used for catalyst dissolution. The lower determination limits are 1 μg/ml for Pt and 5 μg/ml for Re, RSD are 0.01-0.15 and 0.03-0.25 respectively

  15. Studying PW-Amberlite catalyst deactivation in limonene epoxidation by hydrogen peroxide

    OpenAIRE

    Rolando Barrera Zapata; Aída Luz Villa Holguín de P.; Consuelo Montes de Correa

    2010-01-01

    The PW-Amberlite catalyst is active for limonene epoxidation in triphasic conditions; it becomes deactivated in reaction condi- tions. Catalyst stability during the reaction and recovery of catalyst activity when it was treated with several solvents were evalua- ted. It was found that the catalyst recovered 99% of its initial activity when it was washed with toluene and that the recovery was 95% and 97% when ethanol or acetone were used as washing solvents, respectively. Leaching tests ...

  16. Effect Coke and Metal Deposition on Catalyst Deactivation of Early Stages of Resid Hydrodesulfurization Operation

    OpenAIRE

    出井, 一夫; 高橋, 武重; 甲斐, 敬美; IDEI, Kazuo; TAKAHASHI, Takeshige; KAI, Takami

    2001-01-01

    The hydrodesulfurization reaction with two kinds of atmospheric residues was carried out over three kinds of catalysts with different mean pore diameters to obtain catalysts with different deposited amounts of coke and metal on their surfaces. Elemental analysis and physical properties were carried out to elucidate the effects of coke and metal depositions on catalyst deactivation at an early stage of the reaction. Coke density (pc) and metal density (pm) calculated from the mean pore diamete...

  17. Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project

    International Nuclear Information System (INIS)

    This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex

  18. Probing the Carboxyester Side Chain in Controlled Deactivation (−)-Δ8-Tetrahydrocannabinols

    OpenAIRE

    Nikas, Spyros P.; Sharma, Rishi; Paronis, Carol A.; Kulkarni, Shashank; Thakur, Ganesh A.; Hurst, Dow; Wood, JodiAnne T.; Gifford, Roger S.; Rajarshi, Girija; Liu, Yingpeng; Raghav, Jimit Girish; Guo, Jason Jianxin; Järbe, Torbjörn U.C.; Reggio, Patricia H.; Bergman, Jack

    2014-01-01

    We recently reported on a controlled deactivation/detoxification approach for obtaining cannabinoids with improved druggability. Our design incorporates a metabolically labile ester group at strategic positions within the THC structure. We have now synthesized a series of (−)-Δ8-THC analogues encompassing a carboxyester group within the 3-alkyl chain in an effort to explore this novel cannabinergic chemotype for CB receptor binding affinity, in vitro and in vivo potency and efficacy, as well ...

  19. Idaho Chemical Processing Plant and Plutonium-Uranium Extraction Plant phaseout/deactivation study

    International Nuclear Information System (INIS)

    The decision to cease all US Department of Energy (DOE) reprocessing of nuclear fuels was made on April 28, 1992. This study provides insight into and a comparison of the management, technical, compliance, and safety strategies for deactivating the Idaho Chemical Processing Plant (ICPP) at Westinghouse Idaho Nuclear Company (WINCO) and the Westinghouse Hanford Company (WHC) Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this study is to ensure that lessons-learned and future plans are coordinated between the two facilities

  20. Investigation of cylinder deactivation and variable valve actuation on gasoline engine performance

    OpenAIRE

    Kuruppu, C; Pesiridis, A; Rajoo, S

    2014-01-01

    Increasingly stringent regulations on gasoline engine fuel consumption and exhaust emissions require additional technology integration such as Cylinder Deactivation (CDA) and Variable valve actuation (VVA) to improve part load engine efficiency. At part load, CDA is achieved by closing the inlet and exhaust valves and shutting off the fuel supply to a selected number of cylinders. Variable valve actuation (VVA) enables the cylinder gas exchange process to be optimised for different engine spe...

  1. Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation

    International Nuclear Information System (INIS)

    The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cycle condensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9

  2. Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3L Engine with Cylinder Deactivation

    Science.gov (United States)

    This paper describes the method and test results of the engine dyno portion of the benchmarking test results including engine fuel consumption maps showing the effects of cylinder deactivation engine technology.

  3. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed

  4. Incorporation of dynamic flexibility in the design of a methanol synthesis Loop in the presence of catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Parvasi, P.; Rahimpour, M.R.; Jahanmiri, A. [Department of Chemical and Petroleum Engineering, Shiraz University (Iran)

    2008-01-15

    A typical methanol loop reactor is analyzed in this study. All basic equipment in the Lurgi-type methanol loop is included in the proposed model. A detailed dynamic model described by a set of ordinary differential and algebraic equations is developed to predict the behavior of the overall process. The model is validated against plant data. A new deactivation model is proposed and its parameters are estimated using daily plant data. The interesting feature of this model is that it incorporates the effect of carbon dioxide and carbon monoxide on the catalyst deactivation. Using the model, the effect of various factors to compensate for the reduction of production rate due to catalyst deactivation has been examined. Some improvements can be achieved by adjusting the operating conditions. Finally, a strategy is proposed for prevention of reduced production due to catalyst deactivation. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. Annual evaluation of routine radiological survey/monitoring frequencies for the High Ranking Facilities Deactivating Project at Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The Bethel Valley Watershed at the Oak Ridge National Laboratory (ORNL) has several Environmental Management (EM) facilities that are designated for deactivation and subsequent decontamination and decommissioning (D and D). The Surplus Facilities Program at ORNL provides surveillance and maintenance support for these facilities as deactivation objectives are completed to reduce the risks associated with radioactive material inventories, etc. The Bechtel Jacobs Company LLC Radiological Control (RADCON) Program has established requirements for radiological monitoring and surveying radiological conditions in these facilities. These requirements include an annual evaluation of routine radiation survey and monitoring frequencies. Radiological survey/monitoring frequencies were evaluated for two High Ranking Facilities Deactivation Project facilities, the Bulk Shielding Facility and Tower Shielding Facility. Considerable progress has been made toward accomplishing deactivation objectives, thus the routine radiological survey/monitoring frequencies are being reduced for 1999. This report identifies the survey/monitoring frequency adjustments and provides justification that the applicable RADCON Program requirements are also satisfied

  6. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  7. Deactivation of a hydrophobic Pt/SDBC catalyst by nitrogen compounds for hydrogen isotopic exchange reaction

    International Nuclear Information System (INIS)

    In order to evaluate the deactivation of a hydrophobic Pt/SDBC catalyst used for a hydrogen isotopic exchange reaction, changes over time in the reaction rate of H2/HDO(v) isotopic exchange over the catalyst induced by the addition of nitric acid, nitrates and nitrogen oxides were studied experimentally. Deactivation was discussed in terms of the balance of the active sites. The catalyst was poisoned by HNO3 reversibly and the poisoning was well explained in terms of the competitive adsorption of HNO3 with H2 or HDO onto the catalytic active sites. The poisoning kinetics were explained by the Zeldovich rate equation. Neutral nitrates of fission products such as Sr(NO3)2 showed negligible poisoning effect on the catalyst. ZrO(NO3)2 showed very similar poisoning behavior with HNO3, and this was considered to result from hydrolysis reactions which produced HNO3. No deactivation was observed by the introduction of NO, NO2 or NH3 into the reactor. Instead of poisoning, the reaction rate was accelerated by NO or NO2 and this was considered to be due to local heating of the catalyst surface by exothermic reactions between nitrogen oxides and hydrogen. (author)

  8. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    Science.gov (United States)

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi

    2016-01-01

    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity. PMID:26323336

  9. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors.

    Science.gov (United States)

    Wan, Shaolong; Waters, Christopher; Stevens, Adam; Gumidyala, Abhishek; Jentoft, Rolf; Lobban, Lance; Resasco, Daniel; Mallinson, Richard; Crossley, Steven

    2015-02-01

    The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios. PMID:25504857

  10. SMFs-supported Pd nanocatalysts in selective acetylene hydrogenation:Pore structure-dependent deactivation mechanism

    Institute of Scientific and Technical Information of China (English)

    Elaheh; Esmaeili; Ali; Morad; Rashidi; Yadollah; Mortazavi; Abbas; Ali; Khodadadi; Mehdi; Rashidzadeh

    2013-01-01

    In the present study,CNFs,ZnO and Al2O3 were deposited on the SMFs panels to investigate the deactivation mechanism of Pd-based catalysts in selective acetylene hydrogenation reaction.The examined supports were characterized by SEM,NH3-TPD and N2adsorption-desorption isotherms to indicate their intrinsic characteristics.Furthermore,in order to understand the mechanism of deactivation,the resulted green oil was characterized using FTIR and SIM DIS.FTIR results confirmed the presence of more unsaturated constituents and then,more branched hydrocarbons formed upon the reaction over alumina-supported catalyst in comparison with the ones supported on CNFs and ZnO,which in turn,could block the pores mouths.Besides the limited hydrogen transfer,N2 adsorption-desorption isotherms results supported that the lowest pore diameters of Al2O3/SMFs close to the surface led to fast deactivation,compared with the other catalysts,especially at higher temperatures.

  11. Study of the scapular muscle latency and deactivation time in people with and without shoulder impingement.

    Science.gov (United States)

    Phadke, Vandana; Ludewig, Paula M

    2013-04-01

    Changes in muscle activities are commonly associated with shoulder impingement and theoretically caused by changes in motor program strategies. The purpose of this study was to assess for differences in latencies and deactivation times of scapular muscles between subjects with and without shoulder impingement. Twenty-five healthy subjects and 24 subjects with impingement symptoms were recruited. Glenohumeral kinematic data and myoelectric activities using surface electrodes from upper trapezius (UT), lower trapezius (LT), serratus anterior (SA) and anterior fibers of deltoid were collected as subjects raised and lowered their arm in response to a visual cue. Data were collected during unloaded, loaded and after repetitive arm raising motion conditions. The variables were analyzed using 2 or 3 way mixed model ANOVAs. Subjects with impingement demonstrated significantly earlier contraction of UT while raising in the unloaded condition and an earlier deactivation of SA across all conditions during lowering of the arm. All subjects exhibited an earlier activation and delayed deactivation of LT and SA in conditions with a weight held in hand. The subjects with impingement showed some significant differences to indicate possible differences in motor control strategies. Rehabilitation measures should consider appropriate training measures to improve movement patterns and muscle control. PMID:23137918

  12. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    Science.gov (United States)

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results. PMID:427262

  13. Experimental study of accelerated deactivation of high-activity reactor water in growing microbiological cultures

    International Nuclear Information System (INIS)

    In the work for the first time has been observed the process of direct deactivation and utilization of highly active waste by the way of transmutation radioactive isotopes to non-radioactive isotopes by growing microbiological systems. Nuclear transmutation of several kinds of radionuclides by the special MCT (Microbial Catalyst-Transmutator) has been investigated. The MCT represents special granules that include: concentrated biomass of metabolically active microorganisms, sources of carbon and energy, phosphorus, nitrogen, etc., and gluing substances which keep all components in the way of granules stable in water solutions for a long period of time at any external conditions. The base of the MCT are microbe syntrophic associations that contain many thousands kinds of different microorganisms that are in the state of complete symbiosis. These microorganisms appertain to different physiological groups that represent practically whole variety of the microbe metabolism and relevantly all kinds of microbe accumulation mechanisms. The state of complete symbiosis of the syntrophic associations results on the possibility of maximal adaptation of the microorganisms association to any external conditions changes (including utmost aggressive environments and effect of highly active ionizing irradiation). Typical reaction of the association for such aggressive effects demands the existence of some time for internal adaptation. This time is necessary for mutagen change of 5-10 generations that corresponds to several days. During this time occurs a purposeful synergy process of stimulation of the mutant formation of such micro organisms, which are maximally adapted to the changed aggressive conditions. This MCT is able to develop actively, for example, in the water with very high specific activity, while ordinary, not radioactively stable, mono-cultures die in such environment very rapidly. The research has been carried out on the basis of distilled water from first contour

  14. Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

    Directory of Open Access Journals (Sweden)

    Samantha J Broyd

    Full Text Available BACKGROUND: The default-mode network (DMN is characterised by coherent very low frequency (VLF brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. METHODOLOGY/PRINCIPAL FINDINGS: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. CONCLUSIONS/SIGNIFICANCE: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of

  15. Final deactivation report on the Radioisotope Production Lab-E, Building 3032, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of Bldg. 3032, after completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3032 prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3032 will be used as the Health Physics Office for the Isotopes Facilities Deactivation Program area and will require access for these offices and to facilitate required surveillance and maintenance (S ampersand M) activities to maintain the building safety envelope. Bldg. 3032 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated except electricity and steam needed for the office areas

  16. Final deactivation report on the radioisotope area services, Building 3034, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of Bldg. 3034, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a history and profile of Bldg. 3034 before commencement of deactivation activities and a profile of the building after completion of deactivation activities. Turnover, items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, an supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover Package, are discussed. Building 3034 will require access to facilitate required surveillance and maintenance (S ampersand M) activities to maintain the building safety envelope. Building 3034 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. In addition to the minimal S ampersand M activities, the building will be occupied by the maintenance coordinator and the S ampersand M supervisor for the Isotopes Facilities Deactivation Project. The exterior doors are locked when unoccupied to prevent unauthorized access. All materials have been removed from the building. Piping and alarms have been deactivated

  17. Final deactivation report on the Radioisotope Production Lab-E, Building 3032, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3032, after completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3032 prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3032 will be used as the Health Physics Office for the Isotopes Facilities Deactivation Program area and will require access for these offices and to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Bldg. 3032 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated except electricity and steam needed for the office areas.

  18. Life cycle baseline summary for ADS 6504IS Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of the Isotopes Facility Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. This baseline plan establishes the official target schedule for completing the deactivation work and the associated budget required for deactivation and the necessary S ampersand M. Deactivation of the facilities 3026C, 3026D, 3028, 3029, 3038E, 3038M, and 3038AHF, the Center Circle buildings 3047, 3517, and 7025 will continue though Fiscal Year (FY) 1999. The focus of the project in the early years will be on the smaller buildings that require less deactivation and can bring an early return in reducing S ampersand M costs. This baseline plan covers the period from FY1995 throughout FY2000. Deactivation will continue in various facilities through FY1999. A final year of S ampersand M will conclude the project in FY2000. The estimated total cost of the project during this period is $51M

  19. Plasma Deactivation of Oral Bacteria Seeded on Hydroxyapatite Disks as Tooth Enamel Analogue

    Science.gov (United States)

    Blumhagen, Adam; Singh, Prashant; Mustapha, Azlin; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-01-01

    Purpose To study the plasma treatment effects on deactivation of oral bacteria seeded on a tooth enamel analogue. Methods A non-thermal atmospheric pressure argon plasma brush was used to treat two different Gram-positive oral bacteria including Lactobacillus acidophilus (L. acidophilus) and Streptococcus mutans (S. mutans). The bacteria were seeded on hydroxyapatite (HA) disks used as tooth enamel analogue with three initial bacterial seeding concentrations: a low inoculum concentration between 2.1×108 and 2.4×108 cfu/mL, a medium inoculum concentration between 9.8×108 and 2.4×109 cfu/mL, and a high inoculum concentration between 1.7×1010 and 3.5×1010 cfu/mL. The bacterial survivability upon plasma exposure was examined in terms of plasma exposure time and oxygen addition into the plasmas. SEM was performed to examine bacterial morphological changes after plasma exposure. Results The experimental data indicated that 13 second plasma exposure time completely killed all the bacteria when initial bacterial seeding density on HA surfaces were less than 6.9×106 cfu/cm2 for L. acidophilus and 1.7×107 cfu/cm2 for S. mutans, which were resulted from low initial seeding inoculum concentration between 2.1×108 and 2.4×108 cfu/mL. Plasma exposure of the bacteria at higher initial bacterial seeding density obtained with high initial seeding inoculum concentration, however, only resulted in ~ 1.5 to 2 log reduction and ~ 2 to 2.5 log reduction for L. acidophilus and S. mutans, respectively. It was also noted that oxygen addition into the argon plasma brush did not affect the plasma deactivation effectiveness. SEM images showed that plasma deactivation mainly occurred with the top layer bacteria, while shadowing effects from the resulting bacterial debris reduced the plasma deactivation of the underlying bacteria. Clinical Significance The experimental results indicate that, with direct contact, nonthermal atmospheric pressure argon plasmas could rapidly and

  20. Data quality objectives summary report for the 107-N Basin Recirculation Building liquid/sediment

    International Nuclear Information System (INIS)

    The Data Quality Objectives (DQO) process used for this 107-N Basin Recirculation Building liquid/sediment DQO report followed BHI-EE-01, Environmental Investigations Procedures, EIIP 1.2, Data Quality Objectives, Revision 2. Tri-Party Agreement Milestone (M-16-OIE) states that the 100-N Area deactivation must be performed according to the work scope identified in the N Reactor Deactivation Program Plan (WHC 1993c). Consistent with the N Reactor Deactivation Program Plan, the scope of the 107-N liquid/sediment DQO process exclusively involves the determination of sampling requirements during the deactivation period. The sampling requirements are primarily directed at characterization for comparison to decontamination and decommissioning endpoint acceptance criteria in preparation for turnover of the facilities listed below to the D and D organization. The sample characterization will also be used for selection of the appropriate disposition option for liquid and sediment currently contained in the facility. The primary media within the scope of this DQO includes the following: Accumulated liquids and sediment contained in tanks, vessels, pump wells, sumps, associated piping, and valve pit floors; and Limited solid debris (anticipated to be discovered)

  1. Remediation of SRS Basins by In Situ Stabilization/Solidification

    International Nuclear Information System (INIS)

    In the late summer of 1998, the Savannah River Site began remediation of two radiologically contaminated basins using in situ stabilization. These two high-risk, unlined basins contain radiological contaminants, which potentially pose significant risks to human health and the environment. The selected remedy involves in situ stabilization/solidification of the contaminated wastes (basin and pipeline soils, pipelines, vegetation, and other debris) followed by installation of a low permeability soil cover

  2. Delaware Basin Monitoring Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  3. Delaware Basin Monitoring Annual Report

    International Nuclear Information System (INIS)

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  4. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  5. Deactivation of Ni{sub 2}P/SiO{sub 2} catalyst in hydrodechlorination of chlorobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jixiang, E-mail: jxchen@tju.edu.cn; Ci, Donghui; Yang, Qing; Li, Kelun

    2014-11-30

    Highlights: • Ni{sub 2}P/SiO{sub 2} has higher performance than Ni/SiO{sub 2} for hydrodechlorination. • Ni{sub 2}P has higher resistance to HCl poison and to sintering than Ni. • Ni{sub 2}P/SiO{sub 2} deactivation is mainly attributed to carbonaceous deposit. • Ni/SiO{sub 2} deactivation is mostly due to HCl poison and Ni sintering. - Abstract: The deactivation of the Ni{sub 2}P/SiO{sub 2} catalyst in the hydrodechlorination of chlorobenzene was studied. To better illuminate the reasons for the deactivation, the effect of HCl on the structure and activity of Ni{sub 2}P/SiO{sub 2} was investigated. For comparison, the deactivation of the Ni/SiO{sub 2} catalyst was also involved. It was found that the Ni{sub 2}P particles possessed good resistance to HCl poison and to sintering, which is ascribed to the electron-deficiency of Ni{sup δ+}(0 < δ < 1) site in Ni{sub 2}P. Acted as the Lewis and Brönsted acid site, the Ni{sup δ+} site and the P-OH group on Ni{sub 2}P/SiO{sub 2} catalyzed the formation of the carbonaceous deposit that was difficultly eliminated by hydrogenation. The carbonaceous deposit covered the active sites and might also induce a decrease in the Ni{sub 2}P crystallinity, subsequently leading to the Ni{sub 2}P/SiO{sub 2} deactivation. Different from Ni{sub 2}P/SiO{sub 2}, Ni/SiO{sub 2} was mainly deactivated by the chlorine poison and the sintering of nickel crystallites.

  6. Diagnosis of solid waste of oil and natural gas exploration and production activities in Brazil offshore sedimentary basins; Diagnostico dos residuos solidos das atividades de exploracao e producao de petroleo e gas natural em bacias sedimentares maritimas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Pedro Henrique Wisniewski; Mendonca; Gilberto Moraes de

    2012-07-01

    The objective of this study is to analyze the generation and disposal of solid waste from the exploration and production activities of oil and natural gas in Brazilian waters. We used data from the implementation reports of pollution control project of the activities licensed by IBAMA. During 2009 the activities related to exploration and production of offshore oil and gas produced a total of 44,437 tons of solid waste, with the main waste generated corresponding to: oily waste (16,002 t); Metal uncontaminated (11,085 t); contaminated waste (5630 t), non recycling waste (4935 t); Wood uncontaminated (1,861 t), chemicals (1,146 t). Considering the total waste generated by activities during the period analyzed, it was observed that 54.3% are made up of waste Class I (hazardous waste), 27.9% of Class II wastes (waste non-hazardous non-inert); and 17.8% of waste Class IIB (non-hazardous and inert waste). The results obtained in this work enabled the scenario of waste generation by the E and P offshore activities. As a result, the survey serves as a starting point for monitoring the progress in implementing the projects sought Pollution Control of licensed projects, as well as support the monitoring of reflexes arising from the intensification of activities in certain regions. (author)

  7. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  8. Cardiac troponin I tyrosine 26 phosphorylation decreases myofilament Ca2+ sensitivity and accelerates deactivation.

    Science.gov (United States)

    Salhi, Hussam E; Walton, Shane D; Hassel, Nathan C; Brundage, Elizabeth A; de Tombe, Pieter P; Janssen, Paul M L; Davis, Jonathan P; Biesiadecki, Brandon J

    2014-11-01

    Troponin I (TnI), the inhibitory subunit of the troponin complex, can be phosphorylated as a key regulatory mechanism to alter the calcium regulation of contraction. Recent work has identified phosphorylation of TnI Tyr-26 in the human heart with unknown functional effects. We hypothesized that TnI Tyr-26N-terminal phosphorylation decreases calcium sensitivity of the thin filament, similar to the desensitizing effects of TnI Ser-23/24 phosphorylation. Our results demonstrate that Tyr-26 phosphorylation and pseudo-phosphorylation decrease calcium binding to troponin C (TnC) on the thin filament and calcium sensitivity of force development to a similar magnitude as TnI Ser-23/24 pseudo-phosphorylation. To investigate the effects of TnI Tyr-26 phosphorylation on myofilament deactivation, we measured the rate of calcium dissociation from TnC. Results demonstrate that filaments containing Tyr-26 pseudo-phosphorylated TnI accelerate the rate of calcium dissociation from TnC similar to that of TnI Ser-23/24. Finally, to assess functional integration of TnI Tyr-26 with Ser-23/24 phosphorylation, we generated recombinant TnI phospho-mimetic substitutions at all three residues. Our biochemical analyses demonstrated no additive effect on calcium sensitivity or calcium-sensitive force development imposed by Tyr-26 and Ser-23/24 phosphorylation integration. However, integration of Tyr-26 phosphorylation with pseudo-phosphorylated Ser-23/24 further accelerated thin filament deactivation. Our findings suggest that TnI Tyr-26 phosphorylation functions similarly to Ser-23/24N-terminal phosphorylation to decrease myofilament calcium sensitivity and accelerate myofilament relaxation. Furthermore, Tyr-26 phosphorylation can buffer the desensitization of Ser-23/24 phosphorylation while further accelerating thin filament deactivation. Therefore, the functional integration of TnI phosphorylation may be a common mechanism to modulate Ser-23/24 phosphorylation function. PMID:25252176

  9. Quantitative study of catalytic activity and catalytic deactivation of Fe–Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process

    OpenAIRE

    Pirard, Sophie; Heyen, Georges; Pirard, Jean-Paul

    2010-01-01

    The catalytic deactivation during multi-walled carbon nanotube (MWNT) synthesis by the CCVD process and the influence of hydrogen on it were quantified. Initial specific reaction rate, relative specific productivity and catalytic deactivation were studied. Carbon source was ethylene, and a bimetallic iron–cobalt catalyst supported on alumina was used. The catalytic deactivation was modeled by a decreasing hyperbolic law, reflecting the progressive accumulation of amorphous carbon on active si...

  10. Deactivation kinetics of V/Ti-oxide in toluene partial oxidation

    OpenAIRE

    Bulushev, D. A.; Reshetnikov, S. I.; Kiwi-Minsker, L; Renken, A.

    2001-01-01

    The deactivation kinetics of a V/Ti oxide catalyst were studied in partial oxidn. of toluene to PhCHO and PhCO2H at 523-573 K. The catalyst consists of a monolayer of VOx species, and after oxidative pretreatment, contains isolated monomeric and polymeric metavanadate-like vanadia species under dehydrated conditions as was shown by FT Raman spectroscopy. Under the reaction conditions via in situ DRIFTS, fast formation of adsorbed carboxylate and benzoate species was obsd. accompanied by disap...

  11. Step Changes and Deactivation Behavior in the Continuous Decarboxylation of Stearic Acid

    OpenAIRE

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Simakova, Irina L.; Kilpiö, Teuvo; Leino, Anne-Riikka; Kordás, Krisztián; Eränen, Kari; Mäki-Arvela, Päivi; Murzin, Dmitry Yu.

    2011-01-01

    Deoxygenation of dilute and concentrated stearic acid over 2% Pd/C beads was performed in a continuous reactor at 300 °C and 20 bar pressure of Ar or 5% H2/Ar. Stable operation was obtained in 5% H2 atmosphere, with 95% conversion of 10 mol % dilute stearic acid in dodecane and 12% conversion of pure stearic acid. Deactivation took place in H2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step ...

  12. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    Science.gov (United States)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  13. A procedure for the deactivation of radium-containing waters and solutions

    International Nuclear Information System (INIS)

    Radium-containing waters and solutions can be deactivated by mixing the stirred liquid with sludge arising during the production of barium compounds, after leaching off barium sulfit which is formed by heating the flotated baryte concentrate with coke or coal at 1100-1300 degC; water and/or HCl are used for th leaching. The amount of sludge taken per m3 of the radioactive liquid corresponds to 3-100 g of dry sludge matter. The resultin solid is separated from the purified water, e.g., by sedimentation and filtration. (P.A.)

  14. Step changes and deactivation behaviour in the continuous decarboxylation of stearic acid

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmyslowicz, B.; Simakova, I.;

    2011-01-01

    Deoxygenation of dilute and concentrated stearic acid over 2% Pd/C beads was performed in a continuous reactor at 300 degrees C and 20 bar pressure of Ar or 5% H-2/Ar. Stable operation was obtained in 5% H-2 atmosphere, with 95% conversion of 10 mol % dilute stearic acid in dodecane and 12......% conversion of pure stearic acid. Deactivation took place in H-2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step changes were performed: 1 h was required for the step change to be visible in liquid sampling...

  15. Step Changes and Deactivation Behavior in the Continuous Decarboxylation of Stearic Acid

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Simakova, Irina L.;

    2011-01-01

    Deoxygenation of dilute and concentrated stearic acid over 2% Pd/C beads was performed in a continuous reactor at 300 °C and 20 bar pressure of Ar or 5% H2/Ar. Stable operation was obtained in 5% H2 atmosphere, with 95% conversion of 10 mol % dilute stearic acid in dodecane and 12% conversion of...... pure stearic acid. Deactivation took place in H2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step changes were performed: 1 h was required for the step change to be visible in liquid sampling, whereas...

  16. Deactivation of medial prefrontal and posterior cingulate cortex in anxiety disorders

    International Nuclear Information System (INIS)

    Objective: We used blood oxygenation level dependent-functional MR imaging (BOLD- fMRI) to explore the characteristics of deactivation patterns in patients with anxiety disorders and the underlying neural mechanism of this disease. Methods: Ten patients and ten healthy controls participated the experiments. All subjects performed the trait portion of the State-Trait anxiety Inventory (STAI-T) prior to the fMRI scans. The subjects underwent noninvasive functional magnetic resonance imaging while listening actively to emotionally neutral words alternating with no words (experiment 1) and threat related-words alternating with emotionally neutral words (experiment2). During fMRI scanning, subjects were instructed to closely listen to each stimuli word and to silently make a judgment of the word's valence. Data were analyzed with statistical parametric mapping (SPM 99). Individual and group analysis were conducted. Results: Mean STAI-T score was significantly higher for patients group than that of controls (58 ± 8 for patients group and 33 ± 5 for controls, t=8.3, P<0.01). Our fMRI data revealed sets of deactivation brain regions in Experiment for patients and healthy controls, however, the deactivation can be found in experiment 2 only for patients. Interestingly, all the observed deactivation patterns were similar. The related areas compromise medial prefrontal cortex(BA 10, BA 24/32), posterior cingulate (BA 31/30) and Bilateral inferior parietal cortex (MPFC) (BA 39/40), which nearly overlapping with the organized default model network. Further more, the mean t values in the MPFC area (BA 24/32) was significantly higher for control group than that of patient (5.1 controls and 4.2 for patients, t=4.8, P=0.006), conversely, the mean t values in the posterior cingulate cortex(PCC) area was significantly higher for patients l than that of controls (4.9 controls and 5.8 for patients, t=2.4, P=0.026). Conclusion: Our observations suggest that the default model network

  17. A study on the Deactivation of Usy Zeolites with Different Rare Earth Contents

    Directory of Open Access Journals (Sweden)

    Henriques C.A.

    1998-01-01

    Full Text Available The deactivation of USY zeolites with different rare earth contents due to the coke formed from n-heptane at 450oC was studied. The results show that the presence of rare earth elements decreases the cracking and coking activities, increasing catalytic stability. However, reaction selectivity was not significantly influenced. The greater the rare earth content, the lower the coking rates and the coke contents. The TPO/DSC profiles suggested that the catalytic effect of the rare earth elements promoted coke oxidation.

  18. Hanford Site waste treatment/storage/disposal integration

    International Nuclear Information System (INIS)

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps

  19. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds.

    Science.gov (United States)

    Weon, Seunghyun; Choi, Wonyong

    2016-03-01

    We synthesized ordered TiO2 nanotubes (TNT) and compared their photocatalytic activity with that of TiO2 nanoparticles (TNP) film during the repeated cycles of photocatalytic degradation of gaseous toluene and acetaldehyde to test the durability of TNT as an air-purifying photocatalyst. The photocatalytic activity of TNT showed only moderate reduction after the five cycles of toluene degradation, whereas TNP underwent rapid deactivation as the photocatalysis cycles were repeated. Dynamic SIMS analysis showed that carbonaceous deposits were formed on the surface of TNP during the photocatalytic degradation of toluene, which implies that the photocatalyst deactivation should be ascribed to the accumulation of recalcitrant degradation intermediates (carbonaceous residues). In more oxidizing atmosphere (100% O2 under which less carbonaceous residues should form), the photocatalytic activity of TNP still decreased with repeating cycles of toluene degradation, whereas TNT showed no sign of deactivation. Because TNT has a highly ordered open channel structure, O2 molecules can be more easily supplied to the active sites with less mass transfer limitation, which subsequently hinders the accumulation of carbonaceous residues on TNT surface. Contrary to the case of toluene degradation, both TNT and TNP did not exhibit any significant deactivation during the photocatalytic degradation of acetaldehyde, because the generation of recalcitrant intermediates from acetaldehyde degradation is insignificant. The structural characteristics of TNT is highly advantageous in preventing the catalyst deactivation during the photocatalytic degradation of aromatic compounds. PMID:26854616

  20. Hemodynamic changes during neural deactivation in human brain. A positron emission tomography study of crossed cerebellar diaschisis

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Kanno, Iwao; Shimosegawa, Eku; Tamura, Hajime; Okane, Kumiko; Hatazawa, Jun [Research Inst. for Brain and Blood Vessels, Akita (Japan)

    2002-06-01

    The mechanism of crossed cerebellar diaschisis (CCD) is considered to be secondary hypoperfusion due to neural deactivation. To elucidate the hemodynamics during neural deactivation, the hemodynamics of CCD was investigated. The cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO{sub 2}), and vascular responses to hypercapnia and acetazolamide stress for CCD were measured in 20 patients with cerebrovascular disease by positron emission tomography with H{sub 2}{sup 15}O, C{sup 15}O, and {sup 15}O{sub 2}. Vascular responses to hypercapnia and acetazolamide stress were almost the same between CCD side and unaffected side of the cerebellum, a finding that supports the idea that the mechanism of CCD is secondary hypoperfusion due to neural deactivation. The degree of decrease in CBF on the CCD side was almost the same as that in CBV, indicating that vascular blood velocity does not change during neural deactivation. The relation between CBF and CBV of the CCD and unaffected sides was CBV=0.29 CBF{sup 0.56}. On the CCD side, the degree of decrease in CMRO{sub 2} was less than that in CBF, resulting in a significantly increased OEF. The increased OEF along with the decreased CBV on the CCD side might indicate that neural deactivation primarily causes vasoconstriction rather than a reduction of oxygen metabolism. (author)

  1. Final deactivation project report on the Source Development Laboratory, building 3029, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The purpose of this report is to document the condition of Building 3029 after completion of deactivation activities as outlined by the DOE Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration (EM-40). This report provides a history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3029 will require access to facilitate required S&M activities to maintain the building safety envelope. building 3029 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M. 5 refs., 7 figs., 3 tabs.

  2. Final deactivation project report on the Source Development Laboratory, building 3029, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of Building 3029 after completion of deactivation activities as outlined by the DOE Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration (EM-40). This report provides a history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3029 will require access to facilitate required S ampersand M activities to maintain the building safety envelope. building 3029 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M. 5 refs., 7 figs., 3 tabs

  3. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar.

    Science.gov (United States)

    Su, Linlin; Li, Xiaodong; Wu, Xue; Hui, Bo; Han, Shichao; Gao, Jianxin; Li, Yan; Shi, Jihong; Zhu, Huayu; Zhao, Bin; Hu, Dahai

    2016-01-01

    Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy. PMID:27181267

  4. Deactivation of hydrophobic Pt/SDBC catalyst in the WTRF LPCE column for tritium separation

    International Nuclear Information System (INIS)

    The styrene divinylbenzene copolymer (SDBC) supported platinum catalyst and the liquid phase catalytic exchange (LPCE) column have been developed to be applicable to the Wolsong tritium removal facility (WTRF) in Korea. The catalyst deactivation subject to both reversible uniform poisoning and permanent loss by impurity poisoning was investigated using a time-on-stream theory and a simplified shell progressive poisoning scenario in special case of higher internal diffusion resistance. Experimental data from fixed bed reactors with the Pt/SDBC catalysts have been used to establish the deactivation model and to estimate key parameters to be used in the WTRF LPCE column design. It was found that an impurity control in the streams would be critical to the WTRF LPCE column operation since the impurity poisoning played a very important role in the overall catalytic exchange reaction. Except for the case of the severe impurity poisoning of the whole catalysts, the LPCE column can be in operation over 10 years without any regeneration of the catalysts. (author)

  5. Impact of Cylinder Deactivation on Active Diesel Particulate Filter Regeneration at Highway Cruise Conditions

    Directory of Open Access Journals (Sweden)

    Xueting eLu

    2015-08-01

    Full Text Available Abstract—Heavy-duty over-the-road trucks require periodic active diesel particulate filter regeneration to clean the filter of stored particulate matter. These events require sustained temperatures between 500 and 600□C to complete the regeneration process. Engine operation during typical 65 mile/hour highway cruise conditions (1200 rpm/7.6 bar results in temperatures of approximately 350□C, and can reach approximately 420□C with late fuel injection. This necessitates hydrocarbon fueling of a diesel oxidation catalyst or burner located upstream of the diesel particulate filter to reach the required regeneration temperatures. These strategies require increased fuel consumption, and the presence of a fuel-dosed oxidation catalyst (or burner between the engine and particulate filter. This paper experimentally demonstrates that, at the highway cruise condition, deactivation of valve motions and fuel injection for two or three (of six cylinders can instead be used to reach engine outlet temperatures of 520-570□C, a 170-220□C increase compared to normal operation. This is primarily a result of a reduction in the air-to-fuel ratio realized by reducing the displaced cylinder volume through cylinder deactivation.

  6. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  7. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways.

    Science.gov (United States)

    Choi, Sun-Bok; Bae, Gi-Sang; Jo, Il-Joo; Wang, Shaofan; Song, Ho-Joon; Park, Sung-Joo

    2016-06-01

    Acute pancreatitis (AP) is a life-threatening disease. Berberine (BBR), a well-known plant alkaloid, is reported to have anti-inflammatory activity in many diseases. However, the effects of BBR on AP have not been clearly elucidated. Therefore, the present study aimed to investigate the effects of BBR on cerulein-induced AP in mice. AP was induced by either cerulein or l-arginine. In the BBR treated group, BBR was administered intraperitoneally 1h before the first cerulein or l-arginine injection. Blood samples were obtained to determine serum amylase and lipase activities and nitric oxide production. The pancreas and lung were rapidly removed for examination of histologic changes, myeloperoxidase (MPO) activity, and real-time reverse transcription-polymerase chain reaction. Furthermore, the regulating mechanisms of BBR were evaluated. Treatment of mice with BBR reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury, as well as inhibited several inflammatory parameters such as the expression of pro-inflammatory cytokines and inducible nitric oxide synthesis (iNOS). Furthermore, BBR administration significantly inhibited c-Jun N-terminal kinase (JNK) activation in the cerulein-induced AP. Deactivation of JNK resulted in amelioration of pancreatitis and the inhibition of inflammatory mediators. These results suggest that BBR exerts anti-inflammatory effects on AP via JNK deactivation on mild and severe acute pancreatitis model, and could be a beneficial target in the management of AP. PMID:27148818

  8. The role of arsine in the deactivation of methanol synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Mebrahtu, T.; Dahl, T.A.; Lucrezi, F.A.; Toseland, B.A. [Air Products and Chemicals Inc., Adsorption Technology Center, 7201 Hamilton Boulevard, Allentown, PA 18195-1501 (United States)

    2004-06-18

    The liquid phase methanol (LPMEOH) process is successfully producing methanol from coal-derived synthesis gas on an industrial scale. This process uses a standard copper, zinc oxide, and alumina catalyst suspended in an inert mineral oil in a slurry bubble column reactor. An arsenic-containing species, most reasonably arsine, was found in the feed to the LPMEOH commercial demonstration facility located at Eastman Chemical Company's chemicals-from-coal complex in Kingsport, TN. Laboratory testing showed that arsine is, in fact, a powerful methanol synthesis catalyst poison. At levels as low as 150ppbv, arsine results in a rapid deactivation of the catalyst. Removal of arsine results in a deactivation rate consistent with a clean synthesis gas feed; that is, arsine poisoning stops when it is removed from the feed. We infer that arsine reacts irreversibly with the catalyst under the methanol synthesis conditions. X-ray absorption spectroscopy (XAS) of arsenic-containing used catalyst indicated the presence of zero-valent arsenic in an intermetallic surface phase that is structurally related to Domeykite (Cu{sub 3}As). Experimental evidence, thermodynamics, and literature relating to other metal-arsine chemistry were consistent with dissociative adsorption of arsine on the copper surface to form gaseous H{sub 2} and Cu{sub 3}As. To deal with arsine poisoning, we have developed adsorption technology that can remove arsine to levels low enough that catalyst performance is unaffected.

  9. Paths of deactivation of excitation of chlorophyll a in various model systems

    Science.gov (United States)

    Frackowiak, Danuta; Zelent, Bogumil; Malak, Henryk M.; Cegielski, Roman; Planner, Alfons; Goc, Jacek; Niedbalska, Malgorzata

    1994-08-01

    Chlorophyll a (Chl) in most model systems (monolayers, fluid solvents, adsorbed layers, and polymer films) occurs in three forms: `dry monomers' (isolated from interaction with water), hydrated dimers and oligomers built from such dimers; but in nematic liquid crystal (LC) cell `dry monomers' are predominant. It is a competition between the various paths of deactivation of excited Chl. Excitation energy can be emitted as fluorescence, or delayed luminescence, transferred to other forms of Chl (ET), thermally deactivated or used for photochemical reactions. In order to compare the efficiency of these various paths the following measurements were done and analyzed: absorption, fluorescence, fluorescence excitation, photoacoustic spectra, and lifetime of fluorescence in ps range. There are some important differences between Chl in LC cell and polymer films: Chl in LC cell has a much lower concentration of aggregated forms and the pigment molecules are more uniformly distributed as compared to the Chl in polymer samples. To explain ET in polymer films the fractals model has to be used, whereas mean distances between solvated Chl molecules in LC can be obtained from dye concentration. In order to establish the interaction between Chl a and (beta) -carotene the LC cell with both pigments were also investigated.

  10. Mathematical Models of Cobalt and Iron Ions Catalyzed Microwave Bacterial Deactivation

    Directory of Open Access Journals (Sweden)

    Arthur L. Williams

    2007-09-01

    Full Text Available Time differences for Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli survival during microwave irradiation (power 130 W in the presence of aqueous cobalt and iron ions were investigated. Measured dependencies had "bell" shape forms with maximum bacterial viability between 1 - 2 min becoming insignificant at 3 minutes. The deactivation time for E. faecalis, S. aureus and E.coli in the presence of metal ions were smaller compared to a water control (4 -5 min. Although various sensitivities to the metal ions were observed, S. aureus and E. coli and were the most sensitive for cobalt and iron, respectively. The rapid reduction of viable bacteria during microwave treatment in the presence of metal ions could be explained by increased metal ion penetration into bacteria. Additionally, microwave irradiation may have increased the kinetic energy of the metal ions resulting in lower survival rates. The proposed mathematical model for microwave heating took into account the "growth" and "death" factors of the bacteria, forming second degree polynomial functions. Good relationships were found between the proposed mathematical models and the experimental data for bacterial deactivation (coefficient of correlation 0.91 - 0.99.

  11. Elementary reaction steps of NOx trapping and SOx deactivation of NOx storage reduction catalysts

    International Nuclear Information System (INIS)

    The NOx storage reduction concept offers a promising strategy for exhaust aftertreatment of lean-bum and diesel engines. However, to meet further more stringent emission regulations, the sulfur resistance of these catalysts has to be improved. Therefore, a detailed knowledge of the NOx storage reduction mechanism and the SOx deactivation mechanism is important to achieve suitable catalysts. The aim of this thesis is, therefore, to obtain a fundamental insight in the NOx adsorption/reduction mechanism and the SOx deactivation mechanism occurring on NSR (non-selective reduction) catalysts to be able to structure the complex reaction sequences into specific key elementary steps. In chapter 2 the experimental details employed in this thesis are given. The adsorption and reduction mechanisms of NOx on sodium and barium metal exchanged zeolite Y used as model storage components are elucidated in chapter 3. With this knowledge, a detailed investigation of the mechanism of NOx storage on a commercial NSR catalyst was carried out and discussed in chapter 4. The influence of SO2 on the catalytic performance of the catalyst is explored in chapter 5. The information obtained in Chapter 5 was used for a detailed investigation of the interaction of SOx with the storage and the oxidation/reduction component (Chapter 6). Finally, in Chapter 7 the results of these study are summarized and general conclusions are given

  12. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    International Nuclear Information System (INIS)

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  13. Impaired temporoparietal deactivation with working memory load in antipsychotic-naïve patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Nejad, Ayna B; Ebdrup, Bjørn H; Siebner, Hartwig R;

    2011-01-01

    Abstract Objectives. Neuroimaging studies have shown abnormal task-related deactivations during working memory (WM) in schizophrenia patients with recent emphasis on brain regions within the default mode network. Using fMRI, we tested whether antipsychotic-naïve schizophrenia patients were impaired...... at deactivating brain regions that do not subserve WM. Methods. Twenty-three antipsychotic-naïve patients with first-episode schizophrenia and 35 healthy individuals underwent whole-brain 3T fMRI scans while performing a verbal N-back task including 0-back (no WM load), 1-back (low WM load), and 2-back (high WM...... demands. Since patients were antipsychotic-naïve and task performance was equal to controls, we infer that this impaired temporoparietal deactivation may represent a primary dysfunction in schizophrenia....

  14. HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

    2005-03-11

    This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered

  15. HEU measurements of holdup and recovered residue in the deactivation and decommission activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    This paper contains a summary of the holdup and material control and accountability (MC and A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D and D) of the Reactor Fuel Fabrication Facility at the Savannah River Site (SRS). The facility was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., chip compactor, casting furnaces, log saw, lathes A and B, cyclone separator, FreonTM cart, riser crusher, ..., etc). The D and D project is likely to represent an important example for D and D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The 235U holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus, the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of 235U did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdupassays and assays of recovered residue were also important

  16. Gas phase polymerization of ethylene with a silica-supported metallocene catalyst: influence of temperature on deactivation

    OpenAIRE

    Roos, Peter; Meier, Gerben B.; Samson, Job Jan C.; Weickert, Günter; Westerterp, K. Roel

    1997-01-01

    Ethylene was polymerized at 5 bar in a stirred powder bed reactor with silica supported rac-Me2Si[Ind]2ZrCl2/methylaluminoxane (MAO) at temperatures between 40°C and 80°C using NaCl as support bed and triethylaluminium (TEA) as a scavenger for impurities. For this fixed recipe and a given charge of catalyst. the average catalyst activity is reproducible within 10% for low temperatures. The polymerization rate and the rate of deactivation increase with increasing temperature. The deactivation ...

  17. Does self-ligating brackets type influence the hysteresis, activation and deactivation forces of superelastic NiTi archwires?

    OpenAIRE

    José Rino Neto; Gilberto Vilanova Queiroz; João Batista Paiva; Rafael Yagüe Ballester

    2013-01-01

    OBJECTIVE: To compare hysteresis, activation and deactivation forces produced by first-order deformation of Contour 0.014-in NiTi wire (Aditek, Brazil) in four brands of self-ligating brackets: Damon MX, Easy Clip, Smart Clip and In-Ovation. METHODS: Activation and deactivation forces were measured in an Instron universal tensile machine at 3 mm/minute speed to a total displacement of 4 mm. Tests were repeated eight times for each bracket/wire combination. Statistical analysis comprised ANOVA...

  18. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    Science.gov (United States)

    Bartis, E. A. J.; Barrett, C.; Chung, T.-Y.; Ning, N.; Chu, J.-W.; Graves, D. B.; Seog, J.; Oehrlein, G. S.

    2014-01-01

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air-water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C-O and O-C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral species.

  19. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    International Nuclear Information System (INIS)

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air–water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C–O and O–C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral

  20. K Basin sludge treatment process description

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  1. K Basin sludge treatment process description

    International Nuclear Information System (INIS)

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998)

  2. Wastes options

    International Nuclear Information System (INIS)

    After a description of the EEC environmental policy, some wastes families are described: bio-contaminant wastes (municipal and industrial), hospitals wastes, toxic wastes in dispersed quantities, nuclear wastes (radioactive and thermal), plastics compounds wastes, volatiles organic compounds, hydrocarbons and used solvents. Sources, quantities and treatments are given. (A.B.). refs., figs., tabs

  3. On the effect of atomic structure on the deactivation of catalytic gold nanoparticles

    International Nuclear Information System (INIS)

    Here we present atomic scale studies into the nature of both the internal structure and external surfaces of catalytic Au nanoparticles using aberration corrected in-situ electron microscopy. The activity of catalytic nanoparticles is thought to be highly sensitive to the particles' structure, meaning typical local atomic rearrangements are likely to significantly affect the overall performance of the catalyst. As-deposited Au nanoparticles are found to exhibit a variety of morphologies, with many being internally strained or highly stepped at the surface. Upon heating, surface atoms are observed to minimise the particles' surface energy by restructuring towards planar (111) facets, resulting in the removal of low co-ordinated sites thought to be crucial in catalysis by Au nanoparticles. These results suggest the process of surface energy minimisation made possible by heating may lead to a loss of active sites and consequently contribute to the deactivation of the catalyst.

  4. Purification of deactivated hydrodesulfurization catalysts by radiation thermal treatment and the extraction of molybdenum from them

    International Nuclear Information System (INIS)

    Methods of fluorescent X-ray radiometric element determination, electron spectroscopy of diffusion reflection and X-ray diffraction analysis were used to study transformations in 670-1370 K range in deactivated Ni(Co)Mo/Al2O3 catalysts, initiated by the effect of high-power accelerated 2.0 MeV electron beam irradiation leads to crystallization of a series of Mo-containing phases, easily destroyed in result of high-temperature radiolysis. Sublimation of Mo6+ oxide with low temperature threshold (∼ 770 K), proceeding in result of radiation-thermal treatment, is described. Decrease of temperatrure threshold is explained by reactions of radiolysis of Mo-containing compounds. 19 refs., 4 figs

  5. Extraction and purification of molybdenum from deactivated hydrodesulfurization catalysts by radiation-thermal treatment

    International Nuclear Information System (INIS)

    The radiation-thermal processes induced by intense fast electron beams of up to 2.0 MeV energy in deactivated Ni(Co)-Mo/Al2O3 catalysts in the 670 - 1370 K temperature interval are studied by fluorescence X-ray radiometric element analysis, UV-Vis diffuse reflectance spectroscopy, and X-ray diffraction analysis. It is shown that electron-beam irradiation results in crystallization of a number of Mo-containing phases, which are readily destroyed during high-temperature radiolysis. In addition to the production of aluminonickel spinel and corundum phases free of C and S, Mo(VI) oxide sublimation characterized by the low-temperature threshold (∼770 K) is found to occur during radiation-thermal treatment. The lowering of the temperature threshold is explained by radiolysis of Mo-containing compounds. 19 refs., 4 figs

  6. A competitive and reversible deactivation approach to catalysis-based quantitative assays.

    Science.gov (United States)

    Koide, Kazunori; Tracey, Matthew P; Bu, Xiaodong; Jo, Junyong; Williams, Michael J; Welch, Christopher J

    2016-01-01

    Catalysis-based signal amplification makes optical assays highly sensitive and widely useful in chemical and biochemical research. However, assays must be fine-tuned to avoid signal saturation, substrate depletion and nonlinear performance. Furthermore, once stopped, such assays cannot be restarted, limiting the dynamic range to two orders of magnitude with respect to analyte concentrations. In addition, abundant analytes are difficult to quantify under catalytic conditions due to rapid signal saturation. Herein, we report an approach in which a catalytic reaction competes with a concomitant inactivation of the catalyst or consumption of a reagent required for signal generation. As such, signal generation proceeds for a limited time, then autonomously and reversibly stalls. In two catalysis-based assays, we demonstrate restarting autonomously stalled reactions, enabling accurate measurement over five orders of magnitude, including analyte levels above substrate concentration. This indicates that the dynamic range of catalysis-based assays can be significantly broadened through competitive and reversible deactivation. PMID:26891765

  7. HE Machining Complex and Support Buildings Deactivation and Decommissioning Project at the Pantex Plant

    International Nuclear Information System (INIS)

    This paper describes the issues related to the deactivation and decommissioning of a very unique building at the Department of Energy's Pantex Plant located in Amarillo, TX. Building 12-24 was unique in the fact that it had a number of obstacles that have not been previously addressed in the deactivation and decommissioning of a single structure such as asbestos, beryllium, possible radionuclide contamination, lead paint, heavily reinforced concrete walls, and high explosive (HE) contamination inside and out. To date, the building has been razed and the majority of all equipment has been disposed of. Remaining work includes concrete and soil debris removal, earthen barricade removal, and site leveling. Pantex Site Summary: Pantex Plant is America's only nuclear weapons assembly and disassembly facility. Located on the High Plains of the Texas Panhandle, 17 miles northeast of Amarillo, Pantex is centered on a 16,000-acre site just north of U. S. Highway 60 in Carson County. The Pantex Plant industrial operations are conducted for the DOE by a management and operating contractor (BWXT Pantex), and Sandia National Laboratory. DOE owns approximately 9,100 acres at the Pantex Plant. Just over 2,000 acres of the DOE-owned property are used for industrial operations at Pantex Plant excluding the burning ground, firing sites and other outlying areas. The burning ground and firing sites occupy approximately 489 acres. Remaining DOE-owned land serves DOE safety and security purposes. DOE also owns Pantex Lake, a detached piece of property approximately 4 km (2.5 mi) northeast of the main Plant site that comprises 1,077 acres; the playa lake-bed itself occupying approximately 800 acres. Currently no government industrial operations are conducted at the Pantex Lake property. Seventy-six kilometers (47 mi) of roads exist within the Pantex Plant boundaries. Project Summary: Facilities are deactivated and decommissioned (D and D) when there is no longer a mission for them or they

  8. Radiationless deactivation of 6-aminocoumarin from the S1-ICT state in nonspecifically interacting solvents.

    Science.gov (United States)

    Krystkowiak, Ewa; Dobek, Krzysztof; Burdziński, Gotard; Maciejewski, Andrzej

    2012-08-01

    This paper presents the results of a spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in the solvents with which this molecule interacts only nonspecifically (n-alkanes, tetrachloromethane and 1-chloro-n-alkanes) and in nitriles. The strong effects of the solvents on the emission spectra, fluorescence quantum yield and lifetime of 6AC were observed. The results of the steady-state and time-resolved photophysical study suggest the presence of very fast nonradiative deactivation processes. It is concluded that besides fluorescence, the efficient S(1)-ICT → S(0) internal conversion in nonpolar aprotic solvents arises from vibronic interactions between close-lying S(1)-ICT(π,π*) and S(2)(n,π*) states. Moreover, unexpectedly efficient triplet state formation occurs. In nitriles the intermolecular hydrogen-bonding interactions with solvent molecules also facilitate the nonradiative decay process involving the S(1)-exciplex. PMID:22622372

  9. Hot-plug Based Activation and Deactivation of ATCA FRU Devices

    CERN Document Server

    Predki, P

    2009-01-01

    Abstract: One of the most important features of the Advanced Telecommunications Computing Architecture (ATCA) contributing to its exceptional reliability and availability is its hot-swap functionality. In order for the user to be able to add and remove the components of an ATCA shelf without the necessity of switching the power on and off the PCI Industrial Computer Manufacturers Group (PICMG) specification clearly enumerates the stages a Field Replaceable Unit (FRU) has to go through upon insertion into and extraction from the shelf. These stages form the activation and deactivation processes that occur every time an element is changed in the ATCA system. This paper focuses on these processes placing the emphasis on the Electronic Keying (EK) implementation in the Intelligent Platform Management Controller (IPMC) software developed for the self-designed ATCA Carrier Board for FLASH. This Carrier Board utilizes the standard-defined PCI Express (PCIe) interface as well as introduces proprietary protocols in fo...

  10. Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Gardini, Diego; Sharafutdinov, Irek; Damsgaard, Christian Danvad;

    In an effort to find alternative energy sources capable to compete with fossil fuels, methanol synthesis could represent a realistic solution to store “green” hydrogen produced from electrolysis or photo-induced water splitting. Recently, density functional theory (DFT) calculations [1] proposed Ni...... catalyst for methanol production. Synthesis, followed by deactivation and a series of regeneration steps at increasing temperature in pure H2 has been carried out in a fixed-bed reactor connected to a gas chromatography system. In each regeneration step, CH4 is generated and the activity of the catalyst is......-Ga alloys as active catalysts for methanol production from syngas mixtures and Ni-Ga nanoparticles supported on highly porous silica have been prepared using an incipient wetness impregnation technique from a solution of nickel and gallium nitrates [2]. Tests conducted in a fixed-bed reactor showed that the...

  11. O2(1△g) Deactivation on O2-adsorbed Metal Surfaces

    Institute of Scientific and Technical Information of China (English)

    Shu-yan Du; Jing Leng; He-ping Yang; Guo-he Sha; Cun-hao Zhang

    2011-01-01

    A flow system was set up to measure the quenching probability γ of O2(1△g) on various O2-adsorbed metal surfaces including Cu, Cr, Ni, and Ag. γ increased with both the duration of the experiment and the O2(1△g) concentration. After several hours evacuation to a few Pa, γ can return to its original value. A deactivation mechanism of O2(1△g) is suggested by considering first the weak chemisorption of O2 (1 △g) on the surface adsorption sites, followed by the near resonant energy transfer between the gas phase O2(1△g) and surface O2(3∑g-).A phenomenological model in accord with the experimental fact has been proposed together with relevant kinetic equations.

  12. A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer's disease

    International Nuclear Information System (INIS)

    Functional imaging methods such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow in vivo assessment of cerebral metabolism at rest and cerebral responses to cognitive stimuli. Activation studies with different cognitive tasks have deepened the understanding of underlying pathology leading to Alzheimer disease (AD) and how the brain reacts to and potentially compensates the imposed damage inflicted by this disease. The aim of this manuscript study was to summarize current findings of activation studies in healthy people at risk for AD, in people with mild cognitive impairment (MCI) as a possible progenitor of AD and finally in patients with manifest AD, adding recent results about impaired deactivation abilities and default mode function in AD. A new comprehensive model will be introduced integrating these heterogeneous findings and explaining their impact on cognitive performance. (orig.)

  13. Standard Guide for Post-Deactivation Surveillance and Maintenance of Radiologically Contaminated Facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide outlines a method for developing a Surveillance and Maintenance (S&M) plan for inactive nuclear facilities. It describes the steps and activities necessary to prevent loss or release of radioactive or hazardous materials, and to minimize physical risks between the deactivation phase and the start of facility decontamination and decommissioning (D&D). 1.2 The primary concerns for S&M are related to (1) animal intrusion, (2) structural integrity degradation, (3) water in-leakage, (4) contamination migration, (5) unauthorized personnel entry, and (6) theft/intrusion. This document is intended to serve as a guide only, and is not intended to modify existing regulations.

  14. ALARA Review for the Decontamination, Deactivation and Housekeeping of the 233-S Viewing Room

    International Nuclear Information System (INIS)

    A formal as low as reasonably achievable (ALARA) review is required by BHI-SH-02, Vol. 1, Safety and Health Procedures, Procedure 1.22, 'Planning Radiological Work', when radiological conditions exceed trigger level. The level of contamination inside the viewing room of the 233-S Facility meets this criterion. This ALARA review is for task instructions 1997-03-18-005-8.3.1, 'Instructions for Routine Entries and Minor Maintenance Work at 233-S,' and 8.3.2, 'Instructions for Deactivation, Decon, and Housekeeping in Viewing Room.' The radiological work permit (RWP) request broke the two task instructions into nine separate tasks. The nine tasks identified in the RWP request were used to estimate airborne concentrations and the total exposure

  15. Reversible-Deactivation Radical Polymerization of Methyl Methacrylate Induced by Photochemical Reduction of Various Copper Catalysts

    Directory of Open Access Journals (Sweden)

    Jaroslav Mosnáček

    2014-11-01

    Full Text Available Photochemically mediated reversible-deactivation radical polymerization of methyl methacrylate was successfully performed using 50–400 ppm of various copper compounds such as CuSO4·5H2O, copper acetate, copper triflate and copper acetylacetonate as catalysts. The copper catalysts were reduced in situ by irradiation at wavelengths of 366–546 nm, without using any additional reducing agent. Bromopropionitrile was used as an initiator. The effects of various solvents and the concentration and structure of ligands were investigated. Well-defined polymers were obtained when at least 100 or 200 ppm of any catalyst complexed with excess tris(2-pyridylmethylamine as a ligand was used in dimethyl sulfoxide as a solvent.

  16. Facet-selective charge carrier transport, deactivation mechanism and stabilization of a Cu2O photo-electro-catalyst.

    Science.gov (United States)

    Li, Yang; Yun, Xiaogang; Chen, Hong; Zhang, Wenqin; Li, Yongdan

    2016-03-14

    A facet-dependent photo-deactivation mechanism of Cu2O was verified and reported, which is caused by the facet-dependent charge carrier transport. During irradiation, the {100} and {110} crystal facets are selectively corroded by the photo-generated holes, while the {111} facets are comparatively stable. PMID:26898270

  17. Deactivation of solid catalysts in liquid media: the case of leaching of active sites in biomass conversion reactions

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Lopez Granados, Manuel; Riisager, Anders;

    2015-01-01

    This review is aimed to be a brief tutorial covering the deactivation of solid catalysts in the liquid phase, with specific focus on leaching, which can be especially helpful to researchers not familiarized with catalytic processes in the liquid phase. Leaching refers to the loss of active specie...

  18. Does self-ligating brackets type influence the hysteresis, activation and deactivation forces of superelastic NiTi archwires?

    Directory of Open Access Journals (Sweden)

    José Rino Neto

    2013-02-01

    Full Text Available OBJECTIVE: To compare hysteresis, activation and deactivation forces produced by first-order deformation of Contour 0.014-in NiTi wire (Aditek, Brazil in four brands of self-ligating brackets: Damon MX, Easy Clip, Smart Clip and In-Ovation. METHODS: Activation and deactivation forces were measured in an Instron universal tensile machine at 3 mm/minute speed to a total displacement of 4 mm. Tests were repeated eight times for each bracket/wire combination. Statistical analysis comprised ANOVA and Tukey's multiple comparisons test. RESULTS: Using a 4-mm deformation, mean activation forces increased in the following order: Damon = 222 gf, Easy Clip = 228 gf, In-Ovation = 240 gf and Smart Clip = 306 gf. The same order was observed for mean hysteresis values, i.e., 128 gf, 140 gf, 150 gf and 206 gf, respectively. The respective values of deactivation forces for the Damon, Easy Clip, In-Ovation and Smart Clip brackets were 94 gf, 88 gf, 90 gf and 100 gf. CONCLUSIONS: Brackets with higher activation forces were accompanied by higher hysteresis values, which resulted in clinically similar deactivation forces, regardless of the type of self-ligating brackets used.

  19. Health and safety plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    This HASP describes the process for identifying the requirements, written safety documentation, and procedures for protecting personnel involved in the Isotopes Facilities Deactivation Project. Objective of this project is to place 19 former isotope production facilities at ORNL in a safe condition in anticipation of an extended period of minimum surveillance and maintenance

  20. Final deactivation report on the radioisotope production Lab-C, Building 3030, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of Bldg. 3030 completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to DOE's Office of Environmental Restoration Program (EM-40). This report provides profile of Bldg. 3030 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, QA, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Building 3030 will require access to facilitate required S ampersand M activities to maintain the building safety envelope. Building 3030 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S ampersand M effort would be required to maintain the building's safety envelope. Other than the minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only for required S ampersand M. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated

  1. Deactivation of the Arabidopsis BRI1 receptor kinase by autophosphorylation within the glycine-rich loop involved in ATP binding

    Science.gov (United States)

    The activity of the dual-specificity brassinosteroid receptor kinase, BRI1, reflects the balance between phosphorylation-dependent activation and several potential mechanisms for deactivation of the receptor. In the present report, we identify regions of the juxtamembrane domain that are essential f...

  2. Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program

    International Nuclear Information System (INIS)

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  3. Final deactivation report on the radioisotope production Lab-D, Building 3031, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The purpose of this report is to document the condition of Bldg. 3031 after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration (EM-40) Program. This report provides a profile of Bldg. 3031 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package, are discussed. Building 3031 will require access to facilitate required surveillance and maintenance activities to maintain the building safety envelope. Building 3031 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal surveillance and maintenance effort would be required to maintain the building safety envelope. Other than the minimal surveillance and maintenance activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required surveillance and maintenance. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated.

  4. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  5. Tank waste remediation system dangerous waste training plan; TOPICAL

    International Nuclear Information System (INIS)

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the and lt;90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  6. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  7. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network.

    Science.gov (United States)

    Brown, Christopher A; Hakun, Jonathan G; Zhu, Zude; Johnson, Nathan F; Gold, Brian T

    2015-01-01

    Task-induced deactivations within the brain's default mode network (DMN) are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM) microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single) and difficult (mixed) conditions, and underwent diffusion tensor imaging (DTI). The fMRI results revealed an age by condition interaction (β = -0.13, t = -3.16, p = 0.002) such that increasing age affected deactivation magnitude during the mixed condition (β = -0.29, t = -3.24 p = 0.002) but not the single condition (p = 0.58). Additionally, there was a WM by condition interaction (β = 0.10, t = 2.33, p = 0.02) such that decreasing WM microstructure affected deactivation magnitude during the mixed condition (β = 0.30, t = 3.42 p = 0.001) but not the single condition (p = 0.17). Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults. PMID:26500549

  8. White matter microstructure contributes to age-related declines in task-induced deactivation of the default mode network

    Directory of Open Access Journals (Sweden)

    Christopher A Brown

    2015-10-01

    Full Text Available Task-induced deactivations within the brain’s default mode network (DMN are thought to reflect suppression of endogenous thought processes to support exogenous goal-directed task processes. Older adults are known to show reductions in deactivation of the DMN compared to younger adults. However, little is understood about the mechanisms contributing to functional dysregulation of the DMN in aging. Here, we explored the relationships between functional modulation of the DMN and age, task performance and white matter (WM microstructure. Participants were 117 adults ranging from 25 to 83 years old who completed an fMRI task switching paradigm, including easy (single and difficult (mixed conditions, and underwent diffusion tensor imaging (DTI. The fMRI results revealed an age by condition interaction (β = -.13, t = 3.16, p = .002 such that increasing age affected deactivation magnitude during the mixed condition (β = -.29, t = -3.24 p = .002 but not the single condition (p = .58. Additionally, there was a white matter by condition interaction (β = .10, t = 2.33, p = .02 such that decreasing white matter microstructure affected deactivation magnitude during the mixed condition (β = .30, t = 3.42 p = .001 but not the single condition (p = .17. Critically, mediation analyses indicated that age-related reductions in WM microstructure accounted for the relationship between age and DMN deactivation in the more difficult mixed condition. These findings suggest that age-related declines in anatomical connectivity between DMN regions contribute to functional dysregulation within the DMN in older adults.

  9. Geohydrologic study of the West Lake Basin

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, R.E.; Eddy, P.A.; Arnett, R.C.; Robinson, G.A.

    1976-10-01

    The purpose of this investigation was to (1) collect and interpret geochemical data on the surface, unconfined, and confined waters of the West Lake Basin, and (2) evaluate the potential for radiochemical contamination of the uppermost confined aquifers. The report assesses the suitability of Gable Mountain Pond for receiving waste water from 200 East Area operations and applies a predictive digital computer model to assess the impacts to the groundwater regime of maintaining, increasing, or decreasing water discharge into Gable Mountain Pond. East of the 200 East Area lies a natural depression which has been dammed and used as a liquid waste disposal site (B Pond). B Pond waste waters directly recharge the underlying unconfined aquifer. This report will examine the suitability of using B Pond for receiving additional waste waters which would otherwise be discharged to Gable Mountain Pond. A predictive digital computer model will be used for assessments involving various discharges into B Pond.

  10. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    International Nuclear Information System (INIS)

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift

  11. Solid waste

    International Nuclear Information System (INIS)

    The article drawn up within the framework of 'the assessment of the state of the environment in Lebanon' provides an overview of solid waste management, and assesses future wastes volume and waste disposal issues.In particular it addresses the following concerns: - Long term projections of solid waste arisings (i.e. domestic, industrial, such commercial wastes, vehicle types, construction waste, waste oils, hazardous toxic wastes and finally hospital and clinical wastes) are described. - Appropriate disposal routes, and strategies for reducing volumes for final disposal - Balance between municipal and industrial solid waste generation and disposal/treatment and - environmental impacts (aesthetics, human health, natural environment )of existing dumps, and the potential impact of government plans for construction of solid waste facilities). Possible policies for institutional reform within the waste management sector are proposed. Tables provides estimations of generation rates and distribution of wastes in different regions of Lebanon. Laws related to solid waste management are summarized

  12. Waste management

    OpenAIRE

    Knopová Policarová, Táňa

    2014-01-01

    Diploma thesis deals with waste disposal in the Czech Republic, including waste production and waste recovery. The aim of this work is to characterize and evaluate the waste production, sorting a disposal in the Czech Republic. Theoretical basis of diploma thesis are focused on basic concepts of waste management legislation, the generation of waste and how to prevent the formation or at least reduce it. The greatest attention is paid to waste disposal, in which there are presented and analyze...

  13. Savannah River Laboratory seepage basins: Environmental information document

    International Nuclear Information System (INIS)

    The basins are located in the northwestern section of the Savannah River Plant in the 700 Area. The four basins are out of service and are awaiting closure. When in operation, the basins received a total of 128,820 m3 of low-level radioactive wastewater from laboratories located in Buildings 735-A and 773-A. Wastewater with radioactivity less than 100 d/m/mL alpha and/or 50 d/m/mL beta-gamma was discharged to the basins. Low concentrations of radioactive and nonradioactive constituents were found in the sediments beneath the seepage basins and a statistical analysis of monitoring data from the six water-table wells indicates elevated levels of chloride, manganese, and sodium in the groundwater. The closure options considered for the basins are waste removal and closure, no waste removal and closure, and no action. The environmental impact evaluation indicates that the human health risks for all closure options are low. Radioactive risk is dominated by tritium, but there is no significant difference between the closure options because the tritium has leached from the site prior to the closure action. The most significant noncarcinogenic risk results from arsenic. All atmospheric and occupational risks are low. The primary calculated ecological effect is due to direct contact with the basin sediments in the no action option. The relative costs for the various options are $9 million for waste removal and closure, $2.9 million for no waste removal and closure with cap, $2.4 million for no waste removal and closure without cap, and $0.26 million for no action. 36 refs., 27 figs., 98 tabs

  14. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by......Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  15. Residential Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde; Matsufuji, Y.

    2011-01-01

    Residential waste comes from residential areas with multi-family and single-family housing and includes four types of waste: household waste, garden waste, bulky waste and household hazardous waste. Typical unit generation rates, material composition, chemical composition and determining factors...... are discussed in this chapter. Characterizing residential waste is faced with the problem that many residences already divert some waste away from the official collection systems, for example performing home composting of vegetable waste and garden waste, having their bundled newspaper picked up by...... the scouts twice a year or bringing their used furniture to the flea markets organized by charity clubs. Thus, much of the data available on residential waste represents collected waste and not necessarily all generated waste. The latter can only be characterized by careful studies directly at the...

  16. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  17. 1996 Phase 2 soil sampling at the 183-H Solar Evaporation Basin site

    International Nuclear Information System (INIS)

    This report consolidates 1996 soil sampling data collected from the 183-H Solar Evaporation Basin Site. This report is intended to be a data reference and does not make comparisons or conclusions regarding specific regulatory criteria. Chemical and radiological data were collected to support cleanup activities at the Hanford Site; soil sampling occurred beneath and next to the former basin structures. The 183-H Solar Evaporation Basins, which consisted of four adjoining concrete basins, were located in the 100 Area of the Hanford Site, north of the retired 105-H Reactor. Originally, the basins were built as part of the 100-H water treatment structures. The four basins were inactive from the mid-1960's until 1973 when radioactive and dangerous (mixed) waste from the 300 Area Fuel Fabrication Facility was shipped to the basins for storage and treatment. The basins were used for solar evaporation of the waste. The last shipment of waste to the 183-H Basins took place in November 1985. Decontamination of the cement structure took place in 1995. The structure has subsequently been dismantled and disposed. Chapters 2.0 through 4.0 present summary information about sampling (1) beneath the loading ramp and berm piles, (2) in shallow soils beneath the former basin floor, and (3) deep vadose soils. Detailed data are provided in the appendices

  18. Action taken to remediate the 183-H solar evaporation basins at the Hanford, Washington site

    International Nuclear Information System (INIS)

    The four 183-H solar evaporation basins were originally constructed as floccation/settling basins which were part of the cooling water treatment facility associated with the operation of the 100-H plutonium production reactor (circa 1949-1965). The basins were converted in 1973 to solar evaporation basins for chemical/low level radioactive liquid wasted from Hanford fuel fabrication operations. Use of the basins for evaporation continued until 1985. One of the basins was suspected of leaking prior to being taken out of operation. When the current decontamination and decommissioning (D and D) efforts began in 1986, basin number-sign 1 which had suspected leakage, had been cleaned of all liquid and sludge, and the three remaining basins contained a total of 500,000 gallons of liquid and 30,000 cubic feet of sludge. Between 1986 and 1988, the 500,000 gallons of liquid was reduced to 350,000 gallons through natural evaporation

  19. A study on the deactivation and stability of hydrophobic catalyst for hydrogen isotope exchange

    International Nuclear Information System (INIS)

    The hydrophobic catalyst has been prepared by deposition of platinum on porous styrene divinylbenzene copolymers(Pt/SDBC) and at the same time a separated type catalytic reactor has been developed for the Wolsong tritium removal facility(WTRF). Several tests carried out to obtain the experimental performance data of the Pt/SDBC with a recycle reactor system. The long-term stability was also measured with the Pt/SDBC catalyst immersed in water for a long time. The long-term deactivations of the Pt/SDBC catalyst were evaluated quantitatively by mathematical models. The simple mathematical models were presented to evaluate the uniform poisoning and shell progressive poisoning to be occurred simultaneously during the hydrogen isotope exchange between hydrogen gas and liquid water in the Liquid Phase Catalytic Exchange(LPCE) column. The uniform poisoning was well characterized by a time on stream theory and then the deactivation parameters were determined from the experimental performance data. The impurity poisoning was derived by a shell progressive model with two-layer mass transfer. The water vapor condensation was a main cause of the reversible uniform poisoning for the Pt/SDBC catalyst. The values of the decay rate constant (Kd) and order of the decay reaction(m) were of 2 and 4, respectively, based on the experimental data. It indicated that the decay might be attributable to pore mouth poisoning. From the long-term stability of the catalyst immersed in water, there was no intrinsic decay of catalyst activity due to water logging to the catalyst. The activity decreased by only 7% over 18 months, which was equivalent to a catalyst half-life longer than 15 years. On the basis of the above deactivation parameters, the values for kc/kco with Thiele modulus=20 after 3 years and 10 years of operation were expected about 19% and 15% of the initial activity, respectively, while the values for kc/kco with Thiele modulus=100 were of about 22% and 18%, respectively. However

  20. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    Science.gov (United States)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  1. Seepage basin radionuclide transport in sediments and vegetation

    International Nuclear Information System (INIS)

    Radionuclide concentrations were measured in soil and vegetation growing adjacent to and in the Savannah River Laboratory Seepage Basins as part of the plan for closure of the basin system. The results of the measurements provide some information about the mobility of the radionuclides introduced into the basins. 90Sr is the most mobile of the radionuclides in soil. Its high mobility and high relative uptake by vegetation cause 90Sr to be distributed throughout the basin system. 137Cs is not as mobile in the basin soil, limiting its uptake by vegetation growing on the edge of the seepage basins; however, it is readily taken up by the vegetation growing in the basins. Soil mobility and vegetation uptake is relatively low for all of the transuranic radionuclides. For the most part these radionuclides remain near the surface of the basin soils where they were absorbed from the waste-water. The relative role of soil mobility and vegetation uptake on the distribution of radionuclide at the basins was futher evaluated by comparing the vegetation concentration ratio and the half-depth of penetration of the radionuclides in the basin soil. The results suggest that vegetation processes dominate in determining the concentration of 60Co and 137Cs in the vegetation. The influences of soil and vegetation are more balanced for 90Sr. The other radionuclides exhibit both low soil mobility and low vegetation uptake. The lack of soil mobility is seen in the lower concentrations found in vegetation growing on the edge of the basin compared to those growing in the basin

  2. Investigation on the deactivation cause of lead-zinc double oxide for the synthesis of diphenyl carbonate by transesterification

    Institute of Scientific and Technical Information of China (English)

    Zhihui Li; Yanji Wang; Xiaoshu Ding; Xinqiang Zhao

    2009-01-01

    The deactivation cause of lead-zinc double oxide for synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol has been investigated.X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),infrared spectroscopy (IR),thermogravimetry analysis (TG),atomic absorption spectroscopy and elementary analysis are employed for the catalyst characterizaton.The results show that,the formation of Pb40(OC6H5)6 through the reaction of phenol and lead species in the catalyst leads to the crystal phase change of active component and serious leaching of lead,which is the cause of the catalyst deactivation.In addition,the composition of the leached lead is ascertained to be a mixture of Pb40(OC6H5)6 and PbO with the weight percentage of 62.7% and 37.3%,respectively.

  3. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Reilkoff, T. E.; Hetland, M. D.; O' Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  4. Deactivation in Continuous Deoxygenation of C18-Fatty Feedstock over Pd/Sibunit

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Mäki-Arvela, Päivi;

    2013-01-01

    Catalytic continuous deoxygenation of stearic acid, ethyl stearate and tristearin without any solvents was investigated using Pd/Sibunit as a catalyst in a trickle bed reactor at 300 °C. The main emphasis was to investigate the effect of gas atmosphere and catalyst deactivation. In addition to...... relative ratios between stearic acid, ethyl stearate and tristearin conversions to alkanes after 3 days time-on-stream were 2.8/2.3/1.0, respectively using 5 % H2/Ar as a gas atmosphere, whereas rapid catalyst deactivation occurred with all substrates under H2-lacking atmosphere. The spent catalyst......’s specific surface area profile along the downward reactor was maximum in the middle of the catalyst beds with the highest pore shrinking in the beginning and at the end of the reactor catalyst segments in the case of stearic acid and tristearin deoxygenation whereas that decreased consecutively as ethyl...

  5. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    Science.gov (United States)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  6. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in significant contamination of the environment in western Siberia. The radioactive releases to surface waters and the surficial environment from the Mayak site are the largest known in the world. However, they are dwarfed by the amounts of liquid wastes injected into the subsurface at Tomsk and Krasnoyarsk since the early 1960s. This paper provides the status of efforts by Pacific Northwest National Laboratory to quantify the regional hydrogeologic context for potential contaminant migration from areas in western Siberia. The West Siberian Basin is the largest platformal basin and region of low relief on earth. Ground water in the West Siberian Basin is contained in a single geologic structure (i.e., a single basin). Hydrogeologic cross sections indicate that freshwater wedges are present in both unconfined and confined aquifers (as well as in Paleozoic rocks) in the highland regions that rim the basin. The authors developed a 13-layer, finite-element computer model of the West Siberian Basin primarily based on GIS integration of data from geologic studies. The top of the hydrologic system was assumed to coincide with a water table derived from smoothed topography and surface-water occurrences; precipitation supplied the water, and the topographic gradient of the water table supplied the driving force for ground-water flow. The general directions of calculated ground-water flow suggest that (1) the major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks; and (2) ground-water divides that penetrate the entire thickness of the model are evident between the major rivers. Their results suggest that contaminants entering the confined aquifer system may eventually migrate to the surface, discharging within major rivers, rather than remaining confined for long travel distances within the basin sediments

  7. A Novel Approach for Prediction of Industrial Catalyst Deactivation Using Soft Sensor Modeling

    Directory of Open Access Journals (Sweden)

    Hamed Gharehbaghi

    2016-06-01

    Full Text Available Soft sensors are used for fault detection and prediction of the process variables in chemical processing units, for which the online measurement is difficult. The present study addresses soft sensor design and identification for deactivation of zeolite catalyst in an industrial-scale fixed bed reactor based on the process data. The two main reactions are disproportionation (DP and transalkylation (TA, which change toluene and C9 aromatics into xylenes and benzene. Two models are considered based on the mass conservation around the reactor. The model parameters are estimated by data-based modeling (DBM philosophy and state dependent parameter (SDP method. In the SDP method, the parameters are assumed to be a function of the system states. The results show that the catalyst activity during the period under study has approximately a monotonic trend. Identification of the system clearly shows that the xylene concentration has a determining role in the conversion of reactions. The activation energies for both DP and TA reactions are found to be 43.8 and 18 kJ/mol, respectively. The model prediction is in good agreement with the observed industrial data.

  8. Deactivation of carbon supported palladium catalyst in direct formic acid fuel cell

    International Nuclear Information System (INIS)

    A new carbon black supported palladium catalyst for direct formic acid fuel cell applications has been prepared and characterized by X-ray diffraction. Bi-modal distribution of Pd crystallite sizes was observed. The average Pd size for crystallites in small size and large size ranges were about 2.7 nm and 11.2 nm, respectively. The initial activity of the catalyst in the oxidation of formic acid tested in a fuel cell was similar to a commercial well dispersed 20 wt.% Pd/Vulcan. The rates of the fuel cell power decay were measured for formic acid of two purities for various current loadings. The results showed that various mechanisms contribute to the decrease of cell power with time. In direct formic acid fuel cell (DFAFC) fed with a very pure HCOOH accumulation of CO2 gas bubbles in anode catalyst layer is responsible for observed power decay. In DFAFC fed with a pure for analysis (p.a.) grade formic acid the formation of COads poison from the formic acid impurities is the main deactivation reason.

  9. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    Science.gov (United States)

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. PMID:25709062

  10. A Cobalt Hydride Catalyst for the Hydrogenation of CO2: Pathways for Catalysis and Deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Jeletic, Matthew S.; Helm, Monte L.; Hulley, Elliott B.; Mock, Michael T.; Appel, Aaron M.; Linehan, John C.

    2014-10-03

    The complex Co(dmpe)₂H catalyzes the hydrogenation of CO₂ at one atm and 21 ºC with significant improvement in turnover frequency relative to previously reported second and third row transition metal complexes. New studies are presented to elucidate the catalytic mechanism as well as pathways for catalyst deactivation. The catalytic rate was optimized through the choice of the base to match the pKa of the [Co(dmpe)₂(H)₂]⁺ intermediate. By using a strong enough base, the catalytic rate has a zero order dependence on the concentration of base and pressure of hydrogen, and a first order dependence on the pressure of CO₂. However, upon exceeding CO₂:H₂ ratios of greater than one, the catalytically inactive species [(μ-dmpe)(Co(dmpe)₂)₂]²⁺ and [Co(dmpe)₂CO]⁺ are observed. Research by M.S.J., M.T.M., A.M.A., and J.C.L. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by M.L.H. and E.B.H. was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for the DOE by Battelle.

  11. Improving the Identification, Dissemination and Implementation of Deactivation and Decommissioning Lessons Learned and Best Practices

    International Nuclear Information System (INIS)

    Approximately $150 billion of work currently remains in the United States Department of Energy's (DoE's) Office of Environmental Management (EM) life cycle budget for U.S. projects. Contractors who manage facilities for the DOE have been challenged to identify transformational changes to reduce the life cycle costs and to develop a knowledge-management system that identifies, disseminates, and tracks the implementation of lessons learned and best practices. This paper discusses DoE's rationale for using lessons learned and best practices to improve safety and performance while reducing life cycle costs for Deactivation and Decommissioning (D and D) projects. It also provides an update on the Energy Facility Contractors Group's (EFCOG's) progress in supporting DoE's efforts. At this juncture the best practice efforts described are in developmental stages; however, the commitment to and the concrete nature of the work thus far is noteworthy in regard to improving the way D and D lessons learned and best practices are identified, disseminated and implemented across the DOE Complex

  12. Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts

    KAUST Repository

    Rünzi, Thomas

    2012-12-10

    13C-Labeled ethylene polymerization (pre)catalysts [κ2-(anisyl)2P,O]Pd(13CH3)(L) (1-13CH3-L) (L = pyridine, dmso) based on di(2-anisyl)phosphine benzenesulfonate were used to assess the degree of incorporation of 13CH3 groups into the formed polyethylenes. Polymerizations of variable reaction time reveal that ca. 60-85% of the 13C-label is found in the polymer after already 1 min polymerization time, which provides evidence that the pre-equilibration between the catalyst precursor 1-13CH3-L and the active species 1-13CH3-(ethylene) is fast with respect to chain growth. The fraction of 1-13CH3-L that initiates chain growth is likely higher than the 60-85% determined from the 13C-labeled polymer chain ends since (a) chain walking results in in-chain incorporation of the 13C-label, (b) irreversible catalyst deactivation by formation of saturated (and partially volatile) alkanes diminishes the amount of 13CH3 groups incorporated into the polymer, and (c) palladium-bound 13CH3 groups, and more general palladium-bound alkyl(polymeryl) chains, partially transfer to phosphorus by reductive elimination. NMR and ESI-MS analyses of thermolysis reactions of 1-13CH3-L provide evidence that a mixture of phosphonium salts (13CH3)xP+(aryl)4-x (2-7) is formed in the absence of ethylene. In addition, isolation and characterization of the mixed bis(chelate) palladium complex [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) (13CH3)P,O] (11) by NMR and X-ray diffraction analyses from these mixtures indicate that oxidative addition of phosphonium salts to palladium(0) species is also operative. The scrambling of palladium-bound carbyls and phosphorus-bound aryls is also relevant under NMR, as well as preparative reactor polymerization conditions exemplified by the X-ray diffraction analysis of [κ2-(anisyl)2P,O] Pd[κ2-(anisyl)(CH2CH3)P,O] (12) and [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) ((CH2)3CH3)P,O] (13) isolated from pressure reactor polymerization experiments. In addition, ESI-MS analyses of reactor

  13. [Application of deactivating properties of some sorbents in aquaculture feed production].

    Science.gov (United States)

    Vasukevich, T A; Nitievskaya, L S

    2014-01-01

    The possibility and effectiveness of application of selective sorbents for fish feed production in aquaculture in the area exposed to the radioactive pollution were studied. The investigations of the fish feed deactivating properties with additives of ferrocyn and potassium alginate, and magnesium on whitefish fry-fingerlings and yearlings were carried out. The study has shown that the ferrocyn performance is greater than 99% regardless of the fish age. 1% ferrocyn addition to feed allows increasing the acceptable concentration of feed compo- nents polluted by the above norm cesium radionuclide up to 20 times. The alginate additives in feed provide almost double decrease in the activity of fish tissues. The optimally effective alginate dose should exceed the calcium concentration in feed up to 4 times. It was found that utilization of the feedstock (fish meal, crops and legumes, oil meal and oil cake) polluted by radionuclides is possible in combined aquaculture feed pro- duction. The application of sorbents in feed will allow increasing the amount permissible for use of the feed components polluted above the norm; ensure the radiation safety of feed and, finally, the protection of aquatic biological resources from radioactive contamination. It is shown that the sorbent additive in feed is also jus- tified in case of fish farming in closed waters affected by radioactive pollution. Feeding by mixed fodder with the sorbent additives prevents fish from radionuclide intake from natural food sources. PMID:25980288

  14. Nonlinear analysis and modeling of cortical activation and deactivation patterns in the immature fetal electrocorticogram

    Science.gov (United States)

    Schwab, Karin; Groh, Tobias; Schwab, Matthias; Witte, Herbert

    2009-03-01

    An approach combining time-continuous nonlinear stability analysis and a parametric bispectral method was introduced to better describe cortical activation and deactivation patterns in the immature fetal electroencephalogram (EEG). Signal models and data-driven investigations were performed to find optimal parameters of the nonlinear methods and to confirm the occurrence of nonlinear sections in the fetal EEG. The resulting measures were applied to the in utero electrocorticogram (ECoG) of fetal sheep at 0.7 gestation when organized sleep states were not developed and compared to previous results at 0.9 gestation. Cycling of the nonlinear stability of the fetal ECoG occurred already at this early gestational age, suggesting the presence of premature sleep states. This was accompanied by cycling of the time-variant biamplitude which reflected ECoG synchronization effects during premature sleep states associated with nonrapid eye movement sleep later in gestation. Thus, the combined nonlinear and time-variant approach was able to provide important insights into the properties of the immature fetal ECoG.

  15. Deactivation of excitation energy in bacterial photosynthetic reaction centres in Langmuir-Blodgett films

    Science.gov (United States)

    Miyake, J.; Hara, M.; Goc, J.; Planner, A.; Wróbel, D.

    1997-08-01

    Absorption, photoacoustic and time-resolved in μs time range delayed luminescence spectra have been measured in order to follow the interaction among chromophores when Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centres are closely packed in a form of Langmuir-Blodgett multilayers. Two types of Langmuir-Blodgett samples have been prepared and investigated: multilayers consist of one type of reaction centre ( Rhodobacter sphaeroides or Rhodopseudomonas viridis) and multilayers composed of mixed reaction centres ( Rhodobacter sphaeroides mixed with Rhodopseudomonas viridis). Using the Langmuir-Blodgett multilayers composed of two types of bacteria reaction centres mixture, we were able to extend the spectral region of the light/solar energy absorbed by the system. It was shown that each form of pigment participates in thermal dissipation but to a different degree. A special pair (bacteriochlorophyll dimer) does not contribute to delayed luminescence. Delayed luminescence in Rhodopseudomonas viridis and Rhodobacter sphaeroides differs very significantly from each other. Bacteriopheophytin as well as dihydromesochlorophyll contribute to delayed luminescence but the degree of their participation in this radiative process depends strongly on the type of reaction centre. Delayed luminescence and thermal processes have been indicated as important processes of deactivation of the photoexcited chromophores in reaction centres.

  16. Thermal stability and energy of deactivation of free and immobilized cellobiase

    Directory of Open Access Journals (Sweden)

    L.P.V. Calsavara

    2000-12-01

    Full Text Available Commercial cellobiase has been immobilized in controlled pore silica particles by covalent binding with the silane-glutaraldehyde method with protein and activity yields of 67% and 13.7%, respectively. Thermal stability of the free and immobilized enzyme (IE was determined with 0.2% w/v cellobiose solution, pH 4.8, temperatures from 40 to 70°C for free enzyme and 40 to 75°C for IE. Free cellobiase maintained its activity practically constant for 240 min at temperatures up to 55°C. The IE has shown higher stability retaining its activity in the same test up to 60° C. Half-lives for free enzyme were 14.1, 2.1 and 0.17 h at 60, 65 and 70°C, respectively, whereas the IE at the same temperatures had half-lives of 245, 21.3 and 2.9 h. The energy of thermal deactivation was 80.6 kcal/mol for the free enzyme and 85.2 kcal/mol for the IE, confirming stabilization by immobilization.

  17. Enhanced sympathetic arousal in response to FMRI scanning correlates with task induced activations and deactivations.

    Directory of Open Access Journals (Sweden)

    Markus Muehlhan

    Full Text Available It has been repeatedly shown that functional magnetic resonance imaging (fMRI triggers distress and neuroendocrine response systems. Prior studies have revealed that sympathetic arousal increases, particularly at the beginning of the examination. Against this background it appears likely that those stress reactions during the scanning procedure may influence task performance and neural correlates. However, the question how sympathetic arousal elicited by the scanning procedure itself may act as a potential confounder of fMRI data remains unresolved today. Thirty-seven scanner naive healthy subjects performed a simple cued target detection task. Levels of salivary alpha amylase (sAA, as a biomarker for sympathetic activity, were assessed in samples obtained at several time points during the lab visit. SAA increased two times, immediately prior to scanning and at the end of the scanning procedure. Neural activation related to motor preparation and timing as well as task performance was positively correlated with the first increase. Furthermore, the first sAA increase was associated with task induced deactivation (TID in frontal and parietal regions. However, these effects were restricted to the first part of the experiment. Consequently, this bias of scanner related sympathetic activation should be considered in future fMRI investigations. It is of particular importance for pharmacological investigations studying adrenergic agents and the comparison of groups with different stress vulnerabilities like patients and controls or adolescents and adults.

  18. Upgrading wholesomeness of soybeans through radiation deactivation of toxic lectin content

    International Nuclear Information System (INIS)

    The biological effects of raw soybeans were investigated through feeding experiments on rats and the wholesomeness of soybeans after radiation deactivation of toxic lectin present in seeds has been evaluated. The injection of crude lectins extracted from 0.15 g raw soybean by intraperitoneal route was toxic to rats (120-125 g body weight) and caused death within 24 hour while lectins extracted from irradiated beans showed no lethal effect. Administration of 28% raw beans diet as the sole protein in balanced diet caused strong growth depression in young rats. Radiation treatment corrects poor growth but did not prevent liver and stomach hypertrophy. No significant differences in relative organs body weight, between groups fed irradiated soybeans and casein diet were observed, except for an increased relative lever and stomach weights with group fed irradiated beans. Rats which received raw beans in their diet suffered from pancreatic, liver, stomach, testes and kidney hypertrophy and spleen atrophy. Data obtained on certain blood plasma chemical constituents (total plasma protein creatine, creatinine) revealed no significant difference between the control and experimental groups. 4 tabs

  19. Nonradiative Deactivation of Lanthanoid Excited States by Inner-Sphere Carboxylates.

    Science.gov (United States)

    Wahsner, Jessica; Seitz, Michael

    2015-11-16

    The vibrational deactivation of metal-centered excited states is one of the fundamental processes that governs the luminescence of inorganic luminophores. In molecular lanthanoid luminescence, the most reliable way to modulate and systematically investigate these processes is deuteration of X-H stretching modes (X = O, N, C). Apart from the effect of these high-energy vibrational motifs, very little is known about the impact of other oscillator fragments present in lanthanoid complexes. We have developed a synthetic protocol to efficiently and selectively label the popular chelator motif "pyridine-2-carboxylic acid" with stable (13)C/(18)O isotope at the carboxylate group. The corresponding isotopologic lanthanoid complexes (Ln = Sm, Eu, Ho) show a decrease of the local-mode carbonyl stretching frequency of up to 5% after isotopic substitution. While this does not seems to have any effect on the luminescence of lanthanoids with medium- to high-energy gaps (Sm and Eu), we have found the first example of a quantifiable luminescence isotope effect for one of the near-IR transitions of holmium ((3)K8 → (5)I5) that only involves the isotopic editing of the vibrational environment at the four carbonyl oscillators. PMID:26501567

  20. Hydrogenation of xylose to xylitol on sponge nickel catalyst: a study of the process and catalyst deactivation kinetics

    OpenAIRE

    Mikkola J.-P.; Salmi T.; Villela A.; Vainio H.; Mäki-Arvela P.; Kalantar A.; Ollonqvist T.; Väyrynen J.; Sjöholm R.

    2003-01-01

    The kinetics of hydrogenation of xylose to xylitol on a sponge nickel catalyst (commonly referred to as Raney Ni catalyst) and of catalyst deactivation were studied. Plausible explanations for the decrease in catalytic activity by means of surface studies, nitrogen adsorption and thermogravimetric analyses of the fresh and spent catalysts are presented. The kinetic parameters of the process were estimated by the use of a semi-competitive model, which allows full competition between the organi...

  1. Orphanin FQ in the mediobasal hypothalamus facilitates sexual receptivity through the deactivation of medial preoptic nucleus mu-opioid receptors

    OpenAIRE

    Sanathara, Nayna M.; Moraes, Justine; Kanjiya, Shrey; Sinchak, Kevin

    2011-01-01

    Sexual receptivity, lordosis, can be induced by sequential estradiol and progesterone or extended exposure to high levels of estradiol in the female rat. In both cases estradiol initially inhibits lordosis through activation of β-endorphin (β-END) neurons of the arcuate nucleus of the hypothalamus (ARH) that activate μ-opioid receptors (MOP) in the medial preoptic nucleus (MPN). Subsequent progesterone or extended estradiol exposure deactivate MPN MOP to facilitate lordosis. Opioid receptor-l...

  2. Final deactivation report on the tritium target facility, Building 7025, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This report includes a history and profile of Bldg. 7025 before and after completion of deactivation. It also discusses turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation in the EM-60 Turnover package. Other than minimal S&M activities, the building will be unoccupied and the exterior doors locked (access only for the required S&M).

  3. Emotional and cognitive processing of narratives and individual appraisal styles: recruitment of cognitive control networks vs. modulation of deactivations

    Directory of Open Access Journals (Sweden)

    Enrico eBenelli

    2012-08-01

    Full Text Available Research in psychotherapy has shown that the frequency of use of specific classes of words (such as terms with emotional valence in descriptions of scenes of affective relevance is a possible indicator of psychological affective functioning. Using functional magnetic resonance imaging, we investigated the neural correlates of these linguistic markers in narrative texts depicting core aspects of emotional experience in human interaction, and their modulation by individual differences in the propensity to use these markers. Emotional words activated both lateral and medial aspects of the prefrontal cortex, as in previous studies of instructed emotion regulation and in consistence with recruitment of effortful control processes. However, individual differences in the spontaneous use of emotional terms in characterizing the stimulus material were prevalently associated with modulation of the signal in the perigenual cortex, in the retrosplenial cortex and precuneus, and the anterior insula/ventrolateral prefrontal cortex. Modulation of signal by the presence of these textual markers or individual differences mostly involved areas deactivated by the main task, thus further differentiating neural correlates of these appraisal styles from those associated with effortful control. These findings are discussed in the context of reports in the literature of modulations of deactivations, which suggest their importance in orienting attention and generation of response in the presence of emotional information. These findings suggest that deactivations may play a functional role in emotional appraisal and may contribute to characterizing different appraisal styles.

  4. Kinetic study of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al2O3 catalyst

    Institute of Scientific and Technical Information of China (English)

    Farnaz; Tahriri; Zangeneh; Abbas; Taeb; Khodayar; Gholivand; Saeed; Sahebdelfar

    2013-01-01

    The kinetics of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al2O3 catalyst were studied.Performance test runs were carried out in a fixed-bed integral reactor.Using a power-law rate expression for the surface reaction kinetics and independent law for deactivation kinetics,the experimental data were analyzed both by integral and a novel differential method of analysis and the results were compared.To avoid fluctuation of time-derivatives of conversion required for differential analysis,the conversion-time data were first fitted with appropriate functions.While the time-zero and rate constant of reaction were largely insensitive to the function employed,the rate constant of deactivation was much more sensitive to the function form.The advantage of the proposed differential method,however,is that the integration of the rate expression is not necessary which otherwise could be complicated or impossible.It was also found that the reaction is not limited by external and internal mass transfer limitations,implying that the employed kinetics could be considered as intrinsic ones.

  5. Uncovering the deactivation mechanism of Au catalyst with operando high spatial resolution IR and X-ray microspectroscopy measurements

    Science.gov (United States)

    Gross, Elad

    2016-06-01

    Detecting the reaction mechanism of multistep catalytic transformations is essential for optimization of these complex processes. In this study, the mechanism of catalyst deactivation within a flow reactor was studied under reaction conditions. Spectral mapping of the catalyst and the organic phase along a flow reactor were performed with micrometer-sized synchrotron-based X-ray and IR beams, respectively, with a spatial resolution of 15 μm. Heterogeneous Au catalyst was packed in a flow reactor and activated toward the cascade reaction of pyran formation. X-ray absorption microspectroscopy measurements revealed that the highly oxidized Au(III), which is the catalytically active species, was continuously reduced along the flow reactor. IR microspectroscopy measurements detected a direct correlation between the reduction of the Au catalyst and deactivation of the catalytic process. It was observed that within 1.5 mm from the reactor's inlet all the catalytic reactivity was quenched. Microspectroscopy measurements determined that the reduction of Au(III) was induced by nucleophilic attack of butanol, which is one of the reactants in this reaction. Slower deactivation rates were measured once the reactants concentration was decreased by an order of magnitude. Under these conditions the reaction path within the flow reactor was increased from 1.5 to 6 mm. These results demonstrate the molecular level understanding of reaction mechanism which can be achieved by high spatial resolution microspectroscopy measurements.

  6. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) until the facilities are included in the Decontamination and Decommissioning (D ampersand D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes ampersand Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report

  7. Deactivation and cleanout of the 308 Fuels Laboratory and the 232-Z Incinerator at the Hanford site

    International Nuclear Information System (INIS)

    This paper describes the deactivation and source term reduction activities conducted over the recent past in two plutonium-contaminated Hanford Site buildings: the 308 Fuels Development Laboratory and the 232-Z Incinerator. Both of these facilities belong to the U.S. Department of Energy, and the projects are unique success stories carried out in direct support of EM-60 functions and requirements. In both cases the buildings, for different reasons, contained unacceptable amounts of plutonium, and were stabilized and placed in a safe, pre-D ampersand D (decontamination and decommissioning) mode. The concept of deactivation as the last step in the operating life of a facility will be discussed. The need for and requirements of EM-60 transition between operations and D ampersand D, the costs savings, techniques, regulations and lessons learned also will be discussed. This paper describes the strategies that led to successful source term reduction: accurate characterization, cooperation among different divisions within DOE and the Hanford Site, attention to regulations (especially unique in this case since the 232-Z Incinerator has been nominated as a Historic Structure to the National Register of Historic Places), and stakeholder concerns involving the proximity of the 308 Building to the Columbia River. The paper also weaves in the history, missions, and plutonium accumulation of the two buildings. The lessons learned are cogent to many other present and future deactivation activities across the DOE complex and indeed across the world

  8. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    OpenAIRE

    Bin Dai; Qinqin Wang; Feng Yu; Mingyuan Zhu

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction...

  9. Identification of the Mitochondrial ND3 Subunit as a Structural Component Involved in the Active/Deactive Enzyme Transition of Respiratory Complex I*S⃞

    OpenAIRE

    Galkin, Alexander; Meyer, Björn; Wittig, Ilka; Karas, Michael; Schägger, Hermann; Vinogradov, Andrei; Brandt, Ulrich

    2008-01-01

    Mitochondrial complex I (NADH:ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30–37 °C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide:oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification...

  10. Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker; Johnsson, Jan Erik

    2005-01-01

    The deactivation of a commercial type V2O5-WO3-TiO2 monolith catalyst under biomass combustion was studied at a full-scale grate-fired power plant burning straw/wood using a slip stream pilot scale reactor. The aerosols in the flue gas consisted of a mixture of potassium chloride and sulphate. Th...... though reactivation is possible, the deactivation rate appears too high for practical use of the SCR process in straw combustion....

  11. The 1.4-l TSI gasoline engine with cylinder deactivation; Der 1,4-L-TSI-Ottomotor mit Zylinderabschaltung

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, Hermann; Theobald, Joerg; Lang, Leonhard [Volkswagen AG, Wolfsburg (Germany). Bereich Ottomotoren; Hartel, Kai [Volkswagen AG, Salzgitter (Germany). Geschaeftsfeld Komponente Motor

    2012-03-15

    A very promising route to the reduction of fuel consumption that has been little trod thus far is that of cylinder deactivation under partial load. The new 1.4 TSI with petrol direct injection and turbocharging was selected for the first application of this technology in a Volkswagen four-cylinder in-line engine. Within the appropriate map area, the actuation of the inlet and exhaust valves on cylinders 2 and 3 is deactivated and fuel injection shut off. (orig.)

  12. M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1995-04-20

    The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

  13. ACIDIC REMOVAL OF METALS FROM FLUIDIZED CATALYTIC CRACKING CATALYST WASTE ASSISTED BY ELECTROKINETIC TREATMENT

    OpenAIRE

    R. B. G. Valt; A. N. Diógenes; L. S. Sanches; N. M. S. Kaminari; M. J. J. S. Ponte; H. A. Ponte

    2015-01-01

    AbstractOne of the main uses of catalysts in the oil industry is in the fluidized catalytic cracking process, which generates large quantities of waste material after use and regeneration cycles and that can be treated by the electrokinetic remediation technique, in which the contaminant metals are transported by migration. In this study, deactivated FCC catalyst was characterized before and after the electrokinetic remediation process to evaluate the amount of metal removed, and assess struc...

  14. Typical land use pattern in basin - part of the Ziarska kotlina Basin; 1 : 25 000

    International Nuclear Information System (INIS)

    The Ziarska kotlina Basin is one of intensively used areas. Industrial production has distinctly changed the way of land use in this territory. The 'Zavod SNP a. s.' in Ziar nad Hronom producing aluminium is the dominant socio-economic element here. In 1995 the plant was modernised. The stress factors include the largest industrial waste dumping sites in Slovakia (sludge beds and cinder fields). The forest in the Ziarska kotlina Basin contains two main wood species, the durmast oak and beech. The territory stretches over four vegetation zones: the oak, oak-beech, beech-oak, and beech. Nine units in this basin represent the grassy and herbaceous vegetation. The natural and semi-natural meadows are of high ecological value for the local landscape. Cultivated floodplain meadows spread on the alluvium of the Hron river but they also frequently occur next to the brooks flowing in the area. Floristic composition of these meadows is comparatively dull. (authors)

  15. ZERO WASTE

    OpenAIRE

    Upadhyaya, Luv

    2013-01-01

    The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with innovation. The aim of the research was to find out the types of waste being introduced to environment, their consequence on human beings and surroundings, best policies, principles and practices to minimize the effect of the waste to lowest. The study was based on literature. The thesis includes the introduction of types of waste, clarifi...

  16. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    Science.gov (United States)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  17. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action

    International Nuclear Information System (INIS)

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counter-ion, were considered. The counter-ions have been taken into consideration in so far as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counter-ions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2- Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. (authors)

  18. Combined structural and functional imaging reveals cortical deactivations in grapheme-color synaesthesia

    Science.gov (United States)

    O'Hanlon, Erik; Newell, Fiona N.; Mitchell, Kevin J.

    2013-01-01

    Synaesthesia is a heritable condition in which particular stimuli generate specific and consistent sensory percepts or associations in another modality or processing stream. Functional neuroimaging studies have identified potential correlates of these experiences, including, in some but not all cases, the hyperactivation of visuotemporal areas and of parietal areas thought to be involved in perceptual binding. Structural studies have identified a similarly variable spectrum of differences between synaesthetes and controls. However, it remains unclear the extent to which these neural correlates reflect the synaesthetic experience itself or additional phenotypes associated with the condition. Here, we acquired both structural and functional neuroimaging data comparing thirteen grapheme-color synaesthetes with eleven non-synaesthetes. Using voxel-based morphometry and diffusion tensor imaging, we identify a number of clusters of increased volume of gray matter, of white matter or of increased fractional anisotropy in synaesthetes vs. controls. To assess the possible involvement of these areas in the synaesthetic experience, we used nine areas of increased gray matter volume as regions of interest in an fMRI experiment that characterized the contrast in response to stimuli which induced synaesthesia (i.e., letters) vs. those which did not (non-meaningful symbols). Four of these areas showed sensitivity to this contrast in synaesthetes but not controls. Unexpectedly, in two of them, in left lateral occipital cortex and in postcentral gyrus, the letter stimuli produced a strong negative BOLD signal in synaesthetes. An additional whole-brain fMRI analysis identified 14 areas, three of which were driven mainly by a negative BOLD response to letters in synaesthetes. Our findings suggest that cortical deactivations may be involved in the conscious experience of internally generated synaesthetic percepts. PMID:24198794

  19. Deactivating bacteria with RF Driven Hollow Slot Microplasmas in Open Air at Atmospheric Pressure

    Science.gov (United States)

    Yu, Zengqi; Pruden, Amy; Sharma, Ashish; Collins, George

    2003-10-01

    A hollow slot discharge operating in open air at atmospheric pressure has demonstrated its ability to deactivate bacterial growth on nearby surfaces exposed to the RF driven plasma. The cold plasma exits from a hollow slot with a width of 0.2 mm and variable length of 1-35 cm. An internal electrode was powered by 13.56 MHz radio-frequency power at a voltage below 200 V. External electrically grounded slots face the work piece. The plasma plume extends millimeters to centimeter beyond the hollow slot toward the work piece to be irradiated. Argon-Oxygen gas mixtures, at 33 liters per minute flow, were passed through the electrodes and the downstream plasma was employed for the process, with treatment exposure time varied from 0.06 to 0.18 seconds. Bacterial cultures were fixed to 0.22 micron cellulose filter membranes and passed under the plasma at a controlled rate at a distance of about 5-10 millimeters from the grounded slot electrode. Preliminary studies on the effectiveness of the plasma for sterilization were carried out on E. coli. Cultures were grown overnight on the membranes after exposure and the resulting colony forming units (cfu) were determined in treated and untreated groups. In the plasma treated group, a 98.2% kill rate was observed with the lowest exposure time, and increased to 99.8% when the exposure time was tripled. These studies clearly demonstrate the ability of the RF-driven hollow slot atmospheric plasma to inhibit bacterial growth on surfaces.

  20. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  1. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.

    Science.gov (United States)

    Nuber, Susanne; Zabel, Ulrike; Lorenz, Kristina; Nuber, Andreas; Milligan, Graeme; Tobin, Andrew B; Lohse, Martin J; Hoffmann, Carsten

    2016-03-31

    (β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor-β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling. PMID:27007855

  2. Lead Paint Analyzer. Deactivation and Decommissioning Focus Area. OST Reference #2317

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-09-01

    The U.S. Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in decontamination and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology (OST) sponsors Large-Scale Demonstration and Deployment Projects (LSDDP). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to DOE’s projects, and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of statements defining specific needs or problems where improved technology could be incorporated into ongoing D&D tasks. One of the stated needs was for a Lead Paint Analyzer that would reduce costs and shorten schedules in DOE’s Decommissioning Project. The Niton 700 Series Multi-element Analyzer is a hand-held, battery-operated unit that uses x-ray fluorescence spectroscopy (XRF) to analyze 25 elements, including the presence of lead in paint. The baseline technologies consist of collecting field samples and sending the samples to a laboratory for analysis. This demonstration investigated the associated costs and the required time to take an analysis with the multi-element analyzer with respect to the baseline technology. The Niton 700 Series Multi-element Analyzer performs in situ real-time analyses to identify and quantify lead, chromium, cadmium, and other metals in lead-based paint. Benefits expected from using the multi-element spectrum analyzer include: Reduced cost; Easier use; Reduced schedules in DOE’s decommissioning projects.

  3. Vitrification development for mixed wastes

    International Nuclear Information System (INIS)

    Vitrification is a promising approach to waste-form immobilization. It destroys hazardous organic compounds and produces a durable and highly stable glass. Vitrification tests were performed on three surrogate wastes during fiscal year 1994; 183-H Solar Evaporation Basin waste from Hanford, bottom ash from the Oak Ridge TSCA incinerator, and saltcrete from Rocky Flats. Preliminary glass development involved melting trials followed by visual homogeneity examination, short-duration leach tests on glass specimens, and long-term leach tests on selected glasses. Viscosity and electrical conductivity measurements were taken for the most durable glass formulations. Results for the saltcrete are presented in this paper and demonstrate the applicability of vitrification technology to this mixed waste

  4. Proceedings of the fourth Pacific Basin nuclear conference

    International Nuclear Information System (INIS)

    The 45 papers presented at this conference examined the status, future plans and significance of nuclear development for the Pacific Basin. Sessions covered the topics of energy and economics, nuclear power programs, the fuel cycle, waste management, seismic design, radionuclide production and use, and issues affecting nuclear goals

  5. Melo carboniferous basin

    International Nuclear Information System (INIS)

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  6. Waste Calcining Facility remote inspection report

    International Nuclear Information System (INIS)

    The purpose of the Waste Calcining Facility (WCF) remote inspections was to evaluate areas in the facility which are difficult to access due to high radiation fields. The areas inspected were the ventilation exhaust duct, waste hold cell, adsorber manifold cell, off-gas cell, calciner cell and calciner vessel. The WCF solidified acidic, high-level mixed waste generated during nuclear fuel reprocessing. Solidification was accomplished through high temperature oxidation and evaporation. Since its shutdown in 1981, the WCFs vessels, piping systems, pumps, off-gas blowers and process cells have remained contaminated. Access to the below-grade areas is limited due to contamination and high radiation fields. Each inspection technique was tested with a mock-up in a radiologically clean area before the equipment was taken to the WCF for the actual inspection. During the inspections, essential information was obtained regarding the cleanliness, structural integrity, in-leakage of ground water, indications of process leaks, indications of corrosion, radiation levels and the general condition of the cells and equipment. In general, the cells contain a great deal of dust and debris, as well as hand tools, piping and miscellaneous equipment. Although the building appears to be structurally sound, the paint is peeling to some degree in all of the cells. Cracking and spalling of the concrete walls is evident in every cell, although the east wall of the off-gas cell is the worst. The results of the completed inspections and lessons learned will be used to plan future activities for stabilization and deactivation of the facility. Remote clean-up of loose piping, hand tools, and miscellaneous debris can start immediately while information from the inspections is factored into the conceptual design for deactivating the facility

  7. K Basin safety analysis

    International Nuclear Information System (INIS)

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall

  8. K Basin safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  9. K Basin sludge dissolution engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  10. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  11. Alboran Basin, southern Spain - Part I: Geomorphology

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A. [Secretaria General de Pesca Maritima, Corazon de Maria, 8, 28002 Madrid (Spain); Ballesteros, M.; Rivera, J.; Acosta, J. [Instituto Espanol de Oceanografia, Corazon de Maria, 8, 28002 Madrid (Spain); Montoya, I. [Universidad Juan Carlos I, Campus de Mostoles, Madrid (Spain); Uchupi, E. [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2008-01-15

    Bathymetric, 3D relief and shaded relief maps created from multibeam echo-sounding data image the morphology of the Alboran Basin, a structural low along the east-west-trending Eurasian-African plates boundary. Topographic features in the basin are the consequence of volcanism associated with Miocene rifting, rift and post-rift sedimentation, and recent faulting resulting from the convergence of the African-Eurasian plates. Pleistiocene glacially induced regressions/transgressions when the sea level dropped to about 150 m below its present level gas seeps and bottom currents. Recent faulting and the Pleistocene transgressions/regressions led to mass-wasting, formation of turbidity currents and canyon erosion on the basin's slopes. Recent fault traces at the base of the northern basin slope have also served as passageways for thermogenic methane, the oxidation of which by bacteria led to the formation of carbonate mounds along the fault intercepts on the sea floor. Expulsion of thermogenic or biogenic gas has led to the formation of pockmarks; erosion by bottom currents has resulted in the formation of moats around seamounts and erosion of the seafloor of the Alboran Ridge and kept the southern edge of the 36 10'N high sediment free. (author)

  12. Hazardous wastes

    International Nuclear Information System (INIS)

    The dangers and problems of hazardous wastes are described in this pictorial booklet that is part of the EPA solid waste management publication series. It is shown that how the nation's hazardous wastes are managed or mismanaged is a crucial environmental issue with vast implications for public health and for the integrity of the ecological systems on which man depends. The environmental folly of dumping or burning these wastes is emphasized, along with the economic imprudence of continuing to throw away valuable resources as wastes. The public as well as industry must pay the costs of safe hazardous waste management

  13. Wada basin boundaries and basin cells

    NARCIS (Netherlands)

    Nusse, H.E.; Yorke, J.A.

    1996-01-01

    In dynamical systems examples are common in which two or more attractors coexist, and in such cases the basin boundary is nonempty. We consider a two-dimensional diffeomorphism F (that is, F is an invertible map and both F and its inverse are differentiable with continuous derivatives), which has at

  14. Sampling and Analysis Plan for K Basins Debris

    International Nuclear Information System (INIS)

    This Sampling and Analysis Plan presents the rationale and strategy for sampling and analysis activities to support removal of debris from the K-East and K-West Basins located in the 100K Area at the Hanford Site. This project is focused on characterization to support waste designation for disposal of waste at the Environmental Restoration Disposal Facility (ERDF). This material has previously been dispositioned at the Hanford Low-Level Burial Grounds or Central Waste Complex. The structures that house the basins are classified as radioactive material areas. Therefore, all materials removed from the buildings are presumed to be radioactively contaminated. Because most of the materials that will be addressed under this plan will be removed from the basins, and because of the cost associated with screening materials for release, it is anticipated that all debris will be managed as low-level waste. Materials will be surveyed, however, to estimate radionuclide content for disposal and to determine that the debris is not contaminated with levels of transuranic radionuclides that would designate the debris as transuranic waste

  15. Environmental information document: Reactor Seepage Basins

    International Nuclear Information System (INIS)

    This document provides environmental information on postulated closure options for the inactive Reactor Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy's proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act. The closure options considered for the Reactor Seepage Basins are waste removal and closure, no waste removal and closure, and no action. The predominant pathways for human exposure to chemical and/or radioactive constituents are through surface, subsurface, and atmospheric transport. Modeling calculations were made to determine the risks to human population via these general pathways for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options was estimated. 35 refs., 24 figs., 64 tabs

  16. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-11-01

    Full Text Available Major problem in CO2 reforming of methane (CORM process is coke formation which is a carbonaceous residue that can physically cover active sites of a catalyst surface and leads to catalyst deactivation. A key to develop a more coke-resistant catalyst lies in a better understanding of the methane reforming mechanism at a molecular level. Therefore, this paper is aimed to simulate a micro-kinetic approach in order to calculate coking rate in CORM reaction. Rates of encapsulating and filamentous carbon formation are also included. The simulation results show that the studied catalyst has a high activity, and the rate of carbon formation is relatively low. This micro-kinetic modeling approach can be used as a tool to better understand the catalyst deactivation phenomena in reaction via carbon deposition. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 10th May 2011; Revised: 16th August 2011; Accepted: 27th August 2011[How to Cite: I. Istadi, D.D. Anggoro, N.A.S. Amin, and D.H.W. Ling. (2011. Catalyst Deactivation Simulation Through Carbon Deposition in Carbon Dioxide Reforming over Ni/CaO-Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 129-136. doi:10.9767/bcrec.6.2.1213.129-136][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.1213.129-136 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/1213 ] | View in  |  

  17. [Study on deactivation of Cu/Al-Ce-PILC in the selective catalytic reduction of NO by propylene].

    Science.gov (United States)

    Lin, Qi-Chun; Hao, Ji-Ming; Li, Jun-Hua; Fu, Li-Xin; Lin, Wei-Ming

    2007-03-01

    New pillared clay catalysts were studied for NO removal by hydrocarbon in the presence of oxygen. The purpose of this work is to study the deactivation of Cu/Al-Ce-PILC in the SCR of NO. Montmorillonite was pillared by multi oligomeric hydroxyl cation to synthesize Al-Ce-PILC and treated by (NH4) 2SO4, then it was used as catalyst support. Cu/Al-Ce-PILC catalyst was prepared by impregnation and applied to the SCR of NO by C3 H6. The NO conversion to N2 reached its maximum of 56% at 350 degrees C and decreased to 22% at 700 degrees C. To study the deactivation of Cu/Al-Ce-PILC in the SCR of NO at high temperature, the fresh and post-reaction catalysts were characterized by XPS, TPR, TGA, Py-IR and DSC. The results showed that only Cu+ species existed on the fresh catalyst pretreated in hydrogen, while another species CuO was detected on the post-reaction catalyst. The loss of structural hydroxyl and SO4(2-) on Al-Ce-PILC weakened the surface acidity of the catalyst at high reaction temperature. Furthermore, the coke deposition on the catalyst covered part of the active sites and blocked the pores of the catalyst. The deactivation of Cu/Al-Ce-PILC may be due to the combined effects of CuO formation, the decrease on acidity and the coke deposition, which facilitated propylene combustion and inhibited NO reduction. PMID:17633621

  18. Effect of substitution on the ultrafast deactivation of the excited state of benzo[b]thiophene-arylamines.

    Science.gov (United States)

    Pina, J; Queiroz, M-J R P; Seixas de Melo, J

    2016-08-01

    A complete and systematic study of the spectroscopic and photophysical properties of five novel diarylamines in the benzo[b]thiophene series (oligoanilines) was performed in solution at room (293 K) and low (77 K) temperature. The title compounds resulting from the link between one aniline unit with a benzo[b]thiophene unit (with two different methyl and methoxy substitution) were characterized using steady-state absorption, fluorescence and phosphorescence spectroscopy, as well as femto- to nano-second time resolved spectroscopies. The study involved the determination of the absorption, emission and triplet-triplet absorption together with all relevant quantum yields (fluorescence, phosphorescence, intersystem crossing, internal conversion and singlet oxygen yields), excited state lifetimes and the overall set of deactivation rate constants (kF, kIC and kISC). This study was further complemented with theoretical calculations, namely with the determination of the optimized ground-state molecular geometries for the diarylamines together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The DFT results were found to corroborate the observed charge-transfer character of the singlet excited state. The experimental results showed that the radiationless decay processes (internal conversion and intersystem-crossing) constitute the main excited state deactivation pathways and that substitution with methyl and methoxy groups induces significant changes in the spectroscopic and photophysical behaviour of these compounds. This was also corroborated by the femtosecond transient absorption study, where it was found that the ultrafast dynamics of the diarylamines was best described by a sequential model featuring fast solvent relaxation followed by conformational relaxation to a more planar excited state, from where singlet excited state deactivation occurs through internal conversion and

  19. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    Energy Technology Data Exchange (ETDEWEB)

    Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy); Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena (Italy); Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy)

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  20. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    International Nuclear Information System (INIS)

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling

  1. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    Science.gov (United States)

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  2. Reserves in western basins

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, R.H.; Cotton, B.W. [Scotia Group, Dallas, TX (United States)

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  3. Impaired microbial activity caused by metal pollution: A field study in a deactivated uranium mining area

    International Nuclear Information System (INIS)

    European frameworks for the ecological risk assessment (ERA) of contaminated sites integrate information from three lines of evidence: chemical, ecotoxicological, and ecological. Regarding the last one, field observations at the contaminated sites are compared to reference site(s) and the differences recorded are analysed at the light of a cause-effect relationship, taking into account the site-specific contamination. Thus, included in the tier 2 of a site-specific risk assessment that is being carried out in an deactivated uranium mining area, a battery of soil enzyme activities (dehydrogenases, urease, arysulphatase, cellulase, acid phosphate) and potential nitrification were assessed in seven sampling sites (A–D–E–F–G–H–I) at different distances from the mine pit. These parameters have been considered good indicators of impacts on soil microbial communities and, subsequently, on soil functions. Soil enzyme activities were impaired in the most contaminated site (A, near the mine pit), for which a higher degree of risk was determined in the tier 1 of ERA. Three other sites within the mining area (F, G, and D) were discriminated on the basis of their low microbial activity, using uni- and multivariate approaches, and validating what had been previously found with chemical and ecotoxicological lines of evidence. We observed considerable among-site heterogeneity in terms of soil physical and chemical properties, combined with seasonal differences in enzyme activities. Still, the correlation between microbial parameters and soil general physical and chemical parameters was weak. In opposition, significant and negative correlations were found between soil enzyme activities and several metallic elements (Al, Be, Cu, U). These findings suggest a clear correlation between compromised soil function (nutrient recycling) and metal contamination. Such information reinforces the evidence of risks for some sites within the mining area and is an important

  4. Deactivation of selected noble metal catalysts during CO oxidation: An in-situ IR and kinetic study

    International Nuclear Information System (INIS)

    The deactivation of the oxidation of CO over supported Rh, Ru and Pd as a function of the reactant gas composition is discussed. On supported Rh we have found that the rate of CO oxidation is strongly dependent on the oxidation state of the metal. The rate of CO oxidation over supported Ru is strongly inhibited by the incorporation of sub-surface O2. The oxidation of CO on supported Pd is inhibited by the formation of PdO under conditions in which the CO/O2 reactant gas ratio is net oxidizing and by enhanced CO surface coverage following ignition when the reactant gas ratio is net reducing

  5. Isotherm of deactivation in the cocrystallization of a radioelement with low-soluble precipitates formed during coagulation process

    International Nuclear Information System (INIS)

    The isotherm of deactivation was derived for cocrystallization, both according to the Khlopin law and according to the Doerner-Hoskins equation. It was shown that cocrystallization according to the Khlopin law is mathematically indistinguishable from adsorption according to the Henry law, where k=D/Bsub(res). A method is proposed for the separation of these two processes from cocrystallization according to the Doerner-Hoskins law in a study of the dependence of coprecipitation on the amount of the carrier. The applicability of the equations obtained to the treatment of the experimental data is shown for examples taken from the literature

  6. 197Au Moessbauer study of the deactivation and reactivation of a carbon-supported AuCl4- hydrochlorination catalyst

    International Nuclear Information System (INIS)

    Acetylene hydrochlorination catalysts consisting of activated carbon impregnated with a solution of HAuCl4.xH2O in aqua regia have been studied by 197Au Moessbauer spectroscopy. The relative amounts of AuCl4-, of Au(0), and of an Au(I) species formed under certain process conditions were determined quantitatively. Deactivation of the catalyst at low and high temperatures was shown to be due to different mechanisms, and the reactivation of the catalyst by Cl2 gas was studied. (orig.)

  7. Textile Wastes.

    Science.gov (United States)

    Talbot, R. S.

    1978-01-01

    Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

  8. Waste management

    DEFF Research Database (Denmark)

    Bruun Hansen, Karsten; Jamison, Andrew

    2000-01-01

    The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark.......The case study deals with public accountability issues connected to household waste management in the municipality of Copenhagen, Denmark....

  9. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter;

    2014-01-01

    folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...... basins when the direct transitions between them are “energetically favorable”. Edge weights endcode the corresponding saddle heights and thus measure the difficulties of these favorable transitions. BHGs can be approximated accurately and efficiently for RNA molecules well beyond the length range...

  10. Socioeconomic data base report for the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    This report is published as a product of the Civilian Radioactive Waste Management (CRWM) Program. The objective of this program is to develop terminal waste storage facilities in deep, stable geologic formations for high-level nuclear wastes, including spent fuel elements from commercial power reactors and transuranic nuclear waste for which the Federal Government is responsible. The Socioeconomic Analysis Report for the Paradox Basin in Utah is part of the CRWM Program described above. This report presents baseline data on the demography, economics, community facilities, government and fiscal structure, and social structure characteristics in San Juan and Grand Counties, the socioeconomic study area. The technical criteria upon which a repository site(s) will be selected, evaluated, and licensed for high-level waste disposal will be partially based on the data in this report

  11. Food waste

    OpenAIRE

    Arazim, Lukáš

    2015-01-01

    This thesis looks into issues related to food waste and consists of a theoretical and a practical part. Theoretical part aims to provide clear and complex definition of wood waste related problems, summarize current findings in Czech and foreign sources. Introduction chapter explains important terms and legal measures related to this topic. It is followed by description of causes, implications and possibilities in food waste reduction. Main goal of practical part is analyzing food waste in Cz...

  12. Waste incineration

    International Nuclear Information System (INIS)

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NOx). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  13. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S ampersand M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M until decommissioning activities begin

  14. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  15. Nuclear wastes

    International Nuclear Information System (INIS)

    Here is made a general survey of the situation relative to radioactive wastes. The different kinds of radioactive wastes and the different way to store them are detailed. A comparative evaluation of the situation in France and in the world is made. The case of transport of radioactive wastes is tackled. (N.C.)

  16. Waste treatment and disposal progress report for November-December 1962 and January 1963

    Energy Technology Data Exchange (ETDEWEB)

    Parker, F.L.; Blanco, R.E.

    1963-06-12

    Progress is reported on developments in waste treatment and disposal in terms of: high-level-waste calcination; low-level-waste treatment; engineering, economics, and safety evaluation; disposal in deep wells; disposal in natural salt formations; Clinch River study; fundamental studies of minerals; White Oak Creek Basin study; and foam separation.

  17. Early Mesozoic basin aquifers

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Early Mesozoic basin aquifers in the states of Massachusettes, Connecticut, New York, New Jersey, Pennsylvania, Maryland,...

  18. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program....

  19. Tulare Basin protection plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Tulare Basin Protection Plan has been initiated by The Nature Conservancy to elucidate the problems and opportunities of natural diversity protection....

  20. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  1. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  2. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  3. The Ebro river basin

    OpenAIRE

    Darbra Roman, Rosa Maria

    2011-01-01

    River basins worldwide are under pressure from economic activities. In Europe, the two main factors hindering the achievement of good chemical and ecological status of European river basins are pollution, mainly coming from agriculture, and hydromorphology (e.g. for navigation, hydroelectricity and flood control). The economic activities affect the chemical and ecological status of rivers, lakes and groundwater and deplete available soil, sediments and water resources. The w...

  4. Privatization considerations of environmental remediation of DOE wastes

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) is in the process of privatizing the application of environmental cleanup technologies to remediate nuclear waste within the DOE complex. These wastes are the legacy of the production of nuclear materials during the cold war era. It is anticipated that the privatization strategy will result in more efficient and less expensive approaches to the cleanup of DOE wastes. Similar privatization initiatives have the potential to achieve increased efficiency and cost savings at sites under the Department of Defense (DOD) and other Federal agencies. The DOE is privatizing a major, complex portion of the Tank Waste Remediation System (TWRS) Program at the Hanford nuclear reservation located in eastern Washington State. This effort will involve private companies that will design, permit, construct, operate, and finally deactivate waste treatment facilities that will be owned entirely by the private sector. The DOE will purchase treated waste products on a unit cost basis from the facilities after supplying the vendors with waste from the tank farm at Hanford. The privatization of selected United States and international Government functions involve decisions that are based on accurate and valid cost information. Private firms are beginning to privatize certain corporate activities so that they may concentrate business activities along main product or mission lines. In either the public or private sector, many aspects of cost engineering are utilized to make prioritization a success

  5. Waste Management

    International Nuclear Information System (INIS)

    The objectives of SCK-CEN's programme on radioactive waste management are: (1) to reduce the impact of the waste to the stakeholders, the public and the environment; (2) to develop a management tool allowing to identify waste problems and to optimise decommissioning strategies; (3) to perform decommissioning activities in a safe and economical way; (4) to manage waste in a safe and economical way according to legislation; (5) to develop treatment/conditioning processes to minimise risks, volumes and cost of radioactive waste. Main projects and achievements in 1999 are summarised

  6. Studies on accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt Fischer-Tropsch synthesis catalyst

    Institute of Scientific and Technical Information of China (English)

    Shohreh Tehrani; Mohamad Irani; Ahmad Tavasoli; Yadollah Mortazavi; Abbas A.Khodadadi; Ali Nakhaei Pour

    2011-01-01

    Accelerated deactivation of ruthenium-promoted alumina-supported alkalized cobalt(K-Ru-Co/-γ-Al2O3)Fischer-Tropsch(FT)synthesis catalyst along the catalytic bed over 120 h of time-on-stream(TOS)was investigated.Catalytic bed was divided into three parts and structural changes of the spent catalysts collected from each catalytic bed after FT synthesis were studied using different techniques.Rapid deactivation was observed during the reaction due to high reaction temperature and low feed flow rates.The physico-chemical properties of the catalyst charged in the Bed #1 of the reactor did not change significantly.Interaction of cobalt with alumina and the formation of CoAl2O4 increased along the catalytic bed.Reducibility percentage decreased by 4.5%,7.5% and 12.9% for the catalysts in the Beds #1,#2 and #3,respectively.Dispersion decreased by 8.8%,14.4% and 26.6% for the catalysts in the Beds #1,#2 and #3,respectively.Particle diameter increased by 0.6%,2.4% and 10.4% for the catalysts in the Beds #1,#2 and #3,respectively,suggesting higher rate of sintering at the last catalytic bed.The amount of coke at the last catalytic bed was significantly higher than those of Beds #1 and #2.

  7. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell

    International Nuclear Information System (INIS)

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10−5 Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison. (paper)

  8. Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis

    Science.gov (United States)

    Wahab, Rizwan; Khan, Farheen; Lutfullah; Singh, R. B.; Kaushik, Nagendra Kumar; Ahmad, Javed; Siddiqui, Maqsood A.; Saquib, Quaiser; Ali, Bahy A.; Khan, Shams T.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2015-05-01

    A soft chemical solution process was used in synthesis of photocatalytic zinc oxide nanoparticles (ZnO-PNPs) at low temperature. The synthesized PNPs were characterized in terms of their crystallinity, morphological, catalytic, spectroscopic and statistical analysis techniques. X-ray powder diffraction patterns (XRD) were used to know the crystalline property of the prepared materials whereas field emission electronic microscopy (FESEM) was employed to observe the morphology of grown NPs. UV-visible spectroscopy was employed to analyze the absorbance of degraded safranine (SA) dye in presence of NPs at desired time interval. Parameters of statistical analysis give necessary information for established analytical procedures to ensure quality and purity of results. With the help of this analytical method, outcomes were calculated in terms of absorbance such as standard deviation (SD), relative standard deviation (RSD), etc. at 95% confidence level. The photocatalytic deactivation/degradation process significantly enhanced the activity of ZnO-PNPs under UV-visible light in presence of SA dye. The effective concentration of used PNPs was optimized and validated via standard analytical procedure, which exhibited greater significance on deactivation process. The absorption spectra of photocatalyzed solution and activity of ZnO-PNPs were compared with those of pure ZnO, obtained by UV-visible spectroscopy.

  9. Electron beam injected into ground generates subsoil x-rays that may deactivate concealed electronics used to trigger explosive devices

    Science.gov (United States)

    Retsky, Michael

    2008-04-01

    Explosively formed projectiles (EFP) are a major problem in terrorism and asymmetrical warfare. EFPs are often triggered by ordinary infrared motion detectors. A potential weak link is that such electronics are not hardened to ionizing radiation and can latch-up or enter other inoperative states after exposure to a single short event of ionizing radiation. While these can often be repaired with a power restart, they also can produce shorts and permanent damage. A problem of course is that we do not want to add radiation exposure to the long list of war related hazards. Biological systems are highly sensitive to integrated dosage but show no particular sensitivity to short pulses. There may be a way to generate short pulsed subsoil radiation to deactivate concealed electronics without introducing radiation hazards to military personnel and civilian bystanders. Electron beams of 30 MeV that can be produced by portable linear accelerators (linacs) propagate >20 m in air and 10-12 cm in soil. X-radiation is produced by bremsstrahlung and occurs subsoil beneath the point of impact and is mostly forward directed. Linacs 1.5 m long can produce 66 MWatt pulses of subsoil x-radiation 1 microsecond or less in duration. Untested as yet, such a device could be mounted on a robotic vehicle that precedes a military convoy and deactivates any concealed electronics within 10-20 meters on either side of the road.

  10. Implementation of a Peltier-based cooling device for localized deep cortical deactivation during in vivo object recognition testing

    Science.gov (United States)

    Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David

    2012-02-01

    While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.

  11. Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells.

    Science.gov (United States)

    Govan, Jeane M; Uprety, Rajendra; Hemphill, James; Lively, Mark O; Deiters, Alexander

    2012-07-20

    Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, allowing for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture. PMID:22540192

  12. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  13. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO)

  14. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy

    Science.gov (United States)

    Wang, Wenjing; Fang, Chenjie; Wang, Xiaozhu; Chen, Yuxi; Wang, Yaonan; Feng, Wei; Yan, Chunhua; Zhao, Ming; Peng, Shiqi

    2013-06-01

    Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy.Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy. Electronic supplementary information (ESI) available: Experimental details of the synthesis and in vitro and in vivo assays. See DOI: 10.1039/c3nr00227f

  15. Ultrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes

    Science.gov (United States)

    Zhu, Jingyi; Shcherbakova, Daria M.; Hontani, Yusaku; Verkhusha, Vladislav V.; Kennis, John T. M.

    2015-08-01

    Near-infrared fluorescent proteins, iRFPs, are recently developed genetically encoded fluorescent probes for deep-tissue in vivo imaging. Their functions depend on the corresponding fluorescence efficiencies and electronic excited state properties. Here we report the electronic excited state deactivation dynamics of the most red-shifted iRFPs: iRFP702, iRFP713 and iRFP720. Complementary measurements by ultrafast broadband fluorescence and absorption spectroscopy show that single exponential decays of the excited state with 600 ~ 700 ps dominate in all three iRFPs, while photoinduced isomerization was completely inhibited. Significant kinetic isotope effects (KIE) were observed with a factor of ~1.8 in D2O, and are interpreted in terms of an excited-state proton transfer (ESPT) process that deactivates the excited state in competition with fluorescence and chromophore mobility. On this basis, new approaches for rational molecular engineering may be applied to iRFPs to improve their fluorescence.

  16. 金属减活剂的常见检测方法%Commonly Used Detection Methods of Metal Deactivators

    Institute of Scientific and Technical Information of China (English)

    郭佳

    2012-01-01

    Transformer oil unavoidably contact with copper, iron and other metals in storage, transport and application, therefore these metals promote the oxidation of transformer oil as catalyst, for this reason metal deactivators are widely used in transformer oil to prevent the metal from oxidizing the transformer oil. This paper simply introduced several commonly used methods of metal deactivators.%变压器油在储存、运输和应用过程中不可避免的要与铜、铁等金属接触,这些金属对油品的氧化起到了催化作用。故现在普遍采用向变压器油中加入金属减活剂来抑制金属对油品的催化氧化作用。本文简单介绍了几种金属减活剂的常见检测方法。

  17. Experimental investigations and simulation of the deactivation of arsenic during thermal processes after activation by SPER and spike annealing

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Limia, A. [Fraunhofer Institute of Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany); Pichler, P. [Fraunhofer Institute of Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany); Chair of Electron Devices, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany)], E-mail: peter.pichler@iisb.fraunhofer.de; Lerch, W.; Paul, S. [Mattson Thermal Products GmbH, Daimlerstrasse 10, 89160 Dornstadt (Germany); Kheyrandish, H. [CSMA - MATS, Queens Road, Stoke on Trent ST4 7LQ (United Kingdom); Pakfar, A.; Tavernier, C. [STMicroelectronics SA, 850 rue Jean Monnet, 38926 Crolles (France)

    2008-12-05

    The possibility of using solid phase epitaxial regrowth (SPER) for activation of arsenic after amorphizing implantation in silicon is explored in this contribution and compared to spike annealing and published flash-annealing experiments. SPER takes advantage of the high activation level of the dopants after SPER combined with practically no dopant diffusion. We performed implantation and annealing experiments for three combinations of implantation energy and dose, and compared the results of SPER and spike annealing. The thermal stability of the dopant distribution was studied by subsequent post-annealing treatment for temperatures between 750 deg. C and 900 deg. C. The results of these experiments were included in the calibration of a diffusion and activation model for arsenic with high predictive capabilities. Additional simulations over a wide range of implantation energies were done to compare the efficiency of SPER, spike and flash annealing. The specific contributions to deactivation via different processes like clustering, precipitation, and segregation are discussed and annealing strategies to minimize the deactivation are proposed. Spike annealing seems to be the best solution for junctions of 25 nm or deeper, while for shallower junctions other processes combining preamorphization, multiple implantation steps, SPER, and/or flash annealing are needed.

  18. Refinishing contamination floors in Spent Nuclear Fuels storage basins

    International Nuclear Information System (INIS)

    The floors of the K Basins at the Hanford Site are refinished to make decontamination easier if spills occur as the spent nuclear fuel (SNF) is being unloaded from the basins for shipment to dry storage. Without removing the contaminated existing coating, the basin floors are to be coated with an epoxy coating material selected on the basis of the results of field tests of several paint products. The floor refinishing activities must be reviewed by a management review board to ensure that work can be performed in a controlled manner. Major documents prepared for management board review include a report on maintaining radiation exposure as low as reasonably achievable, a waste management plan, and reports on hazard classification and unreviewed safety questions. To protect personnel working in the radiation zone, Operational Health Physics prescribed the required minimum protective methods and devices in the radiological work permit. Also, industrial hygiene safety must be analyzed to establish respirator requirements for persons working in the basins. The procedure and requirements for the refinishing work are detailed in a work package approved by all safety engineers. After the refinishing work is completed, waste materials generated from the refinishing work must be disposed of according to the waste management plan

  19. Nuclear waste

    International Nuclear Information System (INIS)

    Radioactive waste at U.S. nuclear power plants is mounting at a rate of more than 2,000 metric tons a year. Yet the Department of Energy (DOE) does not expect a geologic repository to be available before 2010. In response to concerns about how best to store the waste until a repository is available, GAO reviewed the alternatives of continued storage at utilities' reactor sites or transferring waste to a monitored retrievable storage facility. This paper assesses the likelihood of a monitored retrievable storage facility operating by 1990, legal implications if DOE is unable to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund from which DOE's waste program costs are paid to pay utilities for on-site storage capacity added after 1998, the ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives

  20. Study on Deactivation by Sulfur and Regeneration of Pd/C Catalyst in Hydrogenation of N-(3-nitro-4-methoxyphenyl) Acetamide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qunfeng; L(U) Jinghui; MA Lei; LU Chunshan; LIU Wei; LI Xiaonian

    2013-01-01

    Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials.For instance,the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide.In this study,the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spectrometer and X-ray photoelectron spectroscopy.Sulfur compounds poison the Pd/C catalyst and increase the formation of azo deposit,reducing the activity of catalyst.We report a mild method to regenerate the Pd/C catalyst:wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air.The regenerated Pd/C catalyst can be reused at least ten runs with stable activity.

  1. WASTES: a waste management logistics/economics model

    International Nuclear Information System (INIS)

    The WASTES logistics model is a simulation language based model for analyzing the logistic flow of spent fuel/nuclear waste throughout the waste management system. The model tracks the movement of spent fuel/nuclear waste from point of generation to final destination. The model maintains inventories of spent fuel/nuclear waste at individual reactor sites as well as at various facilities within the waste management system. A maximum of 14 facilities may be utilized within a single run. These 14 facilities may include any combination of the following facilities: (1) federal interim storage (FIS), (2) reprocessing (REP), (3) monitored retrievable storage (MRS), (4) geological disposal facilities (GDF). The movement of spent fuel/nuclear waste between these facilities is controlled by the user specification of loading and unloading rates, annual and maximum capacities and commodity characteristics (minimum age or heat constraints) for each individual facility. In addition, the user may specify varying levels of priority on the spent fuel/nuclear waste that will be eligible for movement within a given year. These levels of priority allow the user to preferentially move spent fuel from reactor sites that are experiencing a loss of full-core-reserve (FCR) margin in a given year or from reactors that may be in the final stages of decommissioning. The WASTES model utilizes the reactor specific data available from the PNL spent fuel database. This database provides reactor specific information on items such as spent fuel basin size, reactor location, and transportation cask preference (i.e., rail or truck cask). In addition, detailed discharge data is maintained that provides the number of assemblies, metric tons, and exposure for both historic and projected discharges at each reactor site

  2. Conversion of methanol to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI: Major differences in deactivation behavior

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie; Højholt, Karen Thrane; Holm, Martin Spangsberg;

    2012-01-01

    Methanol has been converted to hydrocarbons over conventional and mesoporous H-ZSM-5 and H-Ga-MFI. The gallium based zeotypes are analogous to H-ZSM-5, but the Brønsted acidity is introduced by framework incorporation of gallium rather than aluminum, which leads to lower intrinsic acid strength. In...... differences in deactivation mechanisms of the two different catalysts. This is investigated further through FT-IR measurements as well as catalytic experiments employing regenerated and steamed catalysts. From this it is concluded that the H-Ga-MFI is subjected to irreversible deactivation by steaming...

  3. Análise do sistema de gerenciamento dos resíduos de serviços de saúde nos municípios da bacia hidrográfica do Rio dos Sinos, Rio Grande do Sul, Brasil Analysis of the management system of the healthcare waste in municipalities of Rio dos Sinos hydrographic basin, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Luciana Paulo Gomes

    2012-12-01

    Full Text Available Nesta pesquisa focou-se o gerenciamento dos resíduos de serviços de saúde (RSS e especificamente aqueles do tipo perfurocortantes. Foram analisadas as formas atuais de gestão implementadas na bacia hidrográfica do Rio dos Sinos (BHRS, a partir da aplicação de questionários nos estabelecimentos de saúde geradores de RSS. Os resultados indicam que 48,6% dos estabelecimentos de saúde atendem corretamente à legislação específica brasileira, verificando ainda uma melhor gestão para os estabelecimentos privados. Os estabelecimentos de saúde do tipo "laboratórios, bancos de sangue e farmácias" instalados nos municípios com mais de 20.000 habitantes e área municipal na BHRS dentro da faixa de 80 a 100% em relação à área total municipal apresentaram os piores resultados em termos de gestão de RSS. O grupo de atividades de serviços de saúde com o maior número de estabelecimentos na BHRS - "consultórios/clínicas de odontologia, clínicas veterinárias, drogarias e unidade móvel" - indicou um dos menores índices de conhecimento das exigências legais específicas relativas ao tema estudado.This research focused on the management of healthcare waste, specifically about the sharps types. The current ways of management in the Rio dos Sinos basin (BHRS were analyzed with the use of questionnaires in health establishments generators of healthcare waste. The results indicate that 48.6% of health facilities comply with the specific legislation in Brazil, also indicating a better management coming from private institutions. Health facilities of the type "labs, blood banks and pharmacies" installed in municipalities with over 20,000 inhabitants and municipal area in BHRS within the range of 80 to 100% relative to the total municipal area had the worst results in terms of healthcare waste management. The group activities of healthcare services with the highest number of establishments in BHRS - "dental offices/clinics, veterinary

  4. Rock mechanics evaluation of potential repository sites in the Paradox, Permian, and Gulf Coast Basins: Volume 1

    International Nuclear Information System (INIS)

    Thermal and thermomechanical analyses of a conceptual radioactive waste repository containing commercial and defense high-level wastes and spent fuel have been performing using finite element models. The thermal and thermomechanical responses of the waste package, disposal room, and repository regions were evaluated. four bedded salt formations, in Davis and Lavender Canyons in the Paradox Basin of southeastern Utah and in Deaf Smith and Swisher counties in the Permian Basin of northwestern Texas, and three salt domes, Vacherie Dome in northwestern Louisiana and Richton and Cypress Creek Domes in southeastern Mississippi, located in the Gulf Coast Basin, were examined. In the Paradox Basin, the pressure exerted on the waste package overpack was much greater than the initial in situ stress. The disposal room closure was less than 10 percent after 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Permian Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Gulf Coast Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. No significant thermomechanical perturbation of the overlying geology was observed. 40 refs., 153 figs., 32 tabs

  5. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    International Nuclear Information System (INIS)

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns

  6. Industrial Waste

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund

    2011-01-01

    Industrial waste is waste from industrial production and manufacturing. Industry covers many industrial sectors and within each sector large variations are found in terms of which raw materials are used, which production technology is used and which products are produced. Available data on unit...... generation rates and material composition as well as determining factors are discussed in this chapter. Characterizing industrial waste is faced with the problem that often only a part of the waste is handled in the municipal waste system, where information is easily accessible. In addition part of the...... industrial waste may in periods, depending on market opportunities and prices, be traded as secondary rawmaterials. Production-specificwaste from primary production, for example steel slag, is not included in the current presentation. In some countries industries must be approved or licensed and as part of...

  7. Waste indicators

    International Nuclear Information System (INIS)

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  8. Integral Waste

    OpenAIRE

    Cubitt, Sean

    2015-01-01

    It is not only the physical digital media that pile waste upon waste in an era of built-in obsolescence driven by over-production attempting to balance the falling rate of profit. Energy used in the manufacture, employment and recycling of devices belongs to a system where waste is not merely accidental but integral to the operation of cognitive capitalism. Oil and gas, uranium and hydroelectricity all prey disproportionately on indigenous peoples, who are turned into economic externalities a...

  9. Waste Management

    OpenAIRE

    Anonymous

    2006-01-01

    The Productivity Commission’s inquiry report into ‘Waste Management’ was tabled by Government in December 2006. The Australian Government asked the Commission to identify policies that would enable Australia to address market failures and externalities associated with the generation and disposal of waste, and recommend how resource efficiencies can be optimised to improve economic, environmental and social outcomes. In the final report, the Commission maintains that waste management policy sh...

  10. Waste indicators

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Lassen, C.; Hansen, E. [Cowi A/S, Lyngby (Denmark)

    2003-07-01

    The Waste Indicator Project focuses on methods to evaluate the efficiency of waste management. The project proposes the use of three indicators for resource consumption, primary energy and landfill requirements, based on the life-cycle principles applied in the EDIP Project. Trial runs are made With the indicators on paper, glass packaging and aluminium, and two models are identified for mapping the Danish waste management, of which the least extensive focuses on real and potential savings. (au)

  11. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    International Nuclear Information System (INIS)

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  12. Pipe Crawler internal piping characterization system. Deactivation and decommissioning focus area. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Pipe Crawler reg-sign is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler reg-sign has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, and intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems

  13. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2015-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2014. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:26420096

  14. Radioactive Wastes.

    Science.gov (United States)

    Choudri, B S; Baawain, Mahad

    2016-10-01

    Papers reviewed herein present a general overview of radioactive waste activities around the world in 2015. These include safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation and management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in water, soil and ecosystem alongwith other progress made in the management of radioactive wastes. PMID:27620100

  15. WiBasin: basin management through an integrated platform

    OpenAIRE

    Llort Pavon, Xavier; Sánchez-Diezma Guijarro, Rafael; Sancho, David; Rodríguez, Álvaro; Berenguer Ferrer, Marc; Sempere Torres, Daniel

    2014-01-01

    In this work we present WiBasin, a cloud platform for basin and dam management. It includes different sources of precipitation (both observed and forecasted), integration over the catchment domain (to provide an aggregated value of potential rainfall accumulated over the basin) , and a complete dissemination environment (web-viewer, capability of issuing hazard warnings with configurable thresholds, SMS, mails, etc.)

  16. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Catherine L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vigil-Holterman, Luciana R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Felicia Danielle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-07

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  17. Treatment Study Plan for Nitrate Salt Waste Remediation Revision 1.0

    International Nuclear Information System (INIS)

    The two stabilization treatment methods that are to be examined for their effectiveness in the treatment of both the unremediated and remediated nitrate salt wastes include (1) the addition of zeolite and (2) cementation. Zeolite addition is proposed based on the results of several studies and analyses that specifically examined the effectiveness of this process for deactivating nitrate salts. Cementation is also being assessed because of its prevalence as an immobilization method used for similar wastes at numerous facilities around the DOE complex, including at Los Alamos. The results of this Treatment Study Plan will be used to provide the basis for a Resource Conservation and Recovery Act (RCRA) permit modification request of the LANL Hazardous Waste Facility Permit for approval by the New Mexico Environment Department-Hazardous Waste Bureau (NMED-HWB) of the proposed treatment process and the associated facilities.

  18. Permian Basin location recommendation report

    International Nuclear Information System (INIS)

    Candidate study areas are screened from the Palo Duro and Dalhart Basin areas using data obtained from studies to date and criteria and specifications that consider: rock geometry; rock characteristics; human intrusion potential; surface characteristics; and environmental and socioeconomic conditions. Two preferred locations are recommended from among these areas for additional characterization to identify potential National Waste Terminal Storage (NWTS) salt repository sites. One location, in northeastern Deaf Smith County and southeastern Oldham County, is underlain by two salt units that meet the adopted screening specifications. The other location, in northcentral Swisher County, is underlain by one salt unit that meets the adopted screening specifications. Both locations have several favorable features, relative to surrounding areas, and no obviously undesirable characteristics. Both lie wholly on the Southern High Plains surface, are in relatively sparsely populated areas, contain no unique land use conflicts, and comprise large enough geographic areas to provide flexibility in site selection. Data gathered to date indicate that these locations contain salt units sufficient in thickness and in depth for the safe construction and operation of the underground facilities under consideration. 93 references, 34 figures, 6 tables

  19. Modifed Great Basin Extent (Buffered)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two different great basin perimeter files were intersected and dissolved using ArcGIS 10.2.2 to create the outer perimeter of the great basin for use modeling...

  20. Cyclohexene hydrogenation over supported Ru catalysts-study on deactivation-separation of Ru from other metals

    International Nuclear Information System (INIS)

    This work is consecrated to the study of cyclohexene hydrogenation over catalysts on the basis of Ru that belong to the great family of the precious metals based catalysts. These catalysts very sensible to the poisoning by the sulfurated compounds are very active in hydrogenation of unsaturated hydrocarbons. The preparation of their precursors and the realization of the catalysts well identified constituted an important part of this study. The availability of catalytic sites measurement by H sub(2)-O sub(2) titration enables to calculate the number of catalytic sites and opens the possibilities of interesting interpretation of the catalytic properties. In particular it is interesting to compare the observed properties with those described for metallic catalysts on the basis of Pt, Pd, Rh and Ni. The determination of reaction kinetic characteristics and the explanation of the particularities of this system are completed by the study of catalyst deactivation processes during cyclohexene hydrogenation . (Author)