WorldWideScience

Sample records for basin arctic ocean

  1. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, Arthur; Hart, Patrick E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  2. Decorrelation scales for Arctic Ocean hydrography - Part I: Amerasian Basin

    Science.gov (United States)

    Sumata, Hiroshi; Kauker, Frank; Karcher, Michael; Rabe, Benjamin; Timmermans, Mary-Louise; Behrendt, Axel; Gerdes, Rüdiger; Schauer, Ursula; Shimada, Koji; Cho, Kyoung-Ho; Kikuchi, Takashi

    2018-03-01

    Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150-200 km in space and 100-300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.

  3. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, A.; Hart, P.E.

    2011-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed on the northern part of the Amerasia Basin between about 127 and 89-75 Ma. Canada Basin is filled with Early Jurassic to Holocene detritus from the Mackenzie River system, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. Except for the absence of a salt- and shale-bearing mobile substrate Canada Basin is analogous to the Mississippi Delta and the western Gulf of Mexico. Canada Basin contains about 7 to >14 km of sediment beneath the Mackenzie Prodelta on the southeast, 6 to 7 km of sediment beneath the abyssal plain on the west, and roughly 5 or 6 million cubic km of sediment. About three fourths of the basin fill generates low amplitude seismic reflections, interpreted to represent hemiplegic deposits, and a fourth of the fill generates interbedded lenses to extensive layers of moderate to high amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits. Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin may contain intervals of hydrocarbon source rocks and the apparent age of the basin suggests that it contains three of the six stratigraphic intervals that together provided >90?? of the World's discovered reserves of oil and gas.. Worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas window. At least five types of structural or stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin. These consist of 1) a belt of late Eocene to Miocene shale-cored detachment folds containing with at least two anticlines that are capped by beds with bright spots, 2) numerous moderate to high amplitude reflection packets

  4. Chukchi Borderland | Crustal Complex of the Amerasia Basin, Arctic Ocean

    Science.gov (United States)

    Ilhan, I.; Coakley, B.; Houseknecht, D. W.

    2017-12-01

    In the Arctic Ocean, Chukchi Borderland separates the North Chukchi shelf and Toll deep basins to the west and Canada deep basin to the east. Existing plate reconstructions have attempted to restore this north-striking, fragments of the continental crust to all margins of the Amerasia Basin based on sparse geologic and geophysical measurements. Regional multi-channel seismic reflection and potential field geophysics, and geologic data indicate it is a high standing continental block, requiring special accommodation to create a restorable model of the formation of the Amerasia Basin. The Borderland is composed of the Chukchi Plateau, Northwind Basin, and Northwind Ridge divided by mostly north striking normal faults. These offset the basement and bound a sequence of syn-tectonic sediments. Equivalent strata are, locally, uplifted, deformed and eroded. Seaward dipping reflectors (SDRs) are observed in the juncture between the North Chukchi, Toll basins, and southern Chukchi Plateau underlying a regional angular unconformity. This reveals that this rifted margin was associated with volcanism. An inferred condensed section, which is believed to be Hauterivian-Aptian in age, synchronous with the composite pebble shale and gamma-ray zone of the Alaska North Slope forms the basal sediments in the North Chukchi Basin. Approximately 15 km of post-rift strata onlap the condensed section, SDRs and, in part, the wedge sequence on the Chukchi Plateau from west to east, thinning to the north. These post-Aptian sediments imply that the rifted margin subsided no later than the earliest Cretaceous, providing a plausible time constraint for the inferred pre-Cretaceous rifting in this region. The recognition of SDRs and Hauterivian—Aptian condensed section, and continuity of the Early—Late Cretaceous post-rift strata along the margins of the Borderland, strike variations of the normal faults, absence of observable deformation along the Northwind Escarpment substantially constrain

  5. Structure and tectonic evolution of the Southern Eurasia Basin, Arctic Ocean

    Science.gov (United States)

    Sekretov, Sergey B.

    2002-07-01

    Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77-80°N and 115-133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33-30 until 3-1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30-33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33-30 Ma.

  6. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    Science.gov (United States)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  7. Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean

    Science.gov (United States)

    Urlaub, Morelia; Schmidt-Aursch, Mechita C.; Jokat, Wilfried; Kaul, Norbert

    2009-12-01

    The Gakkel Ridge in the Arctic Ocean with its adjacent Nansen and Amundsen Basins is a key region for the study of mantle melting and crustal generation at ultraslow spreading rates. We use free-air gravity anomalies in combination with seismic reflection and wide-angle data to compute 2-D crustal models for the Nansen and Amundsen Basins in the Arctic Ocean. Despite the permanent pack-ice cover two geophysical transects cross both entire basins. This means that the complete basin geometry of the world’s slowest spreading system can be analysed in detail for the first time. Applying standard densities for the sediments and oceanic crystalline crust, the gravity models reveal an unexpected heterogeneous mantle with densities of 3.30 × 103, 3.20 × 103 and 3.10 × 103 kg/m3 near the Gakkel Ridge. We interpret that the upper mantle heterogeneity mainly results from serpentinisation and thermal effects. The thickness of the oceanic crust is highly variable throughout both transects. Crustal thickness of less than 1 km dominates in the oldest parts of both basins, increasing to a maximum value of 6 km near the Gakkel Ridge. Along-axis heat flow is highly variable and heat flow amplitudes resemble those observed at fast or intermediate spreading ridges. Unexpectedly, high heat flow along the Amundsen transect exceeds predicted values from global cooling curves by more than 100%.

  8. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    Science.gov (United States)

    Grantz, A.; Hart, P.E.; Childers, V.A.

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  9. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    Science.gov (United States)

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  10. Sediment stratigraphy of the Nansen Basin, Arctic Ocean and characterization of the ultraslow-spreading oceanic crust

    Science.gov (United States)

    Lutz, R.; Franke, D.; Berglar, K.; Schnabel, M.

    2015-12-01

    The Nansen Basin is the southern part of the Eurasia Basin in the Arctic Ocean. Opening of the Eurasia Basin started here with the tear-off of the continental Lomonossov ridge. Here we present a couple of multichannel reflection seismic lines, covering an area from the Barents Shelf to 83.2 deg N. The profiles extend for about 275 km and 170 km, respectively from the Barents Sea margin (Hinlopen margin) into northern direction and cover together ~300 km of oceanic crust on two parallel lines. One connecting profile was acquired on oceanic crust crossing anomaly C23 (~50-52 Ma). The data were acquired during ice-free conditions and reveal for the first time the architecture of the oldest sediments deposited on the oceanic crust. We discuss the seismic facies of the oldest sediments on the oceanic crust and determine their age by correlation of onlap contacts onto oceanic crust with well defined magnetic anomalies. The lowermost sedimentary unit can be subdivided by at least one more prominent seismic reflector in the distal part of the Nansen Basin and two more seismic reflectors in the proximal part. Furthermore we present images and interpretations of oceanic crust formed at the ultraslow-spreading Gakkel ridge (rate). We discuss the basement morphology, volcanic cones and major faults, bounding horsts and grabens in the light of our present understanding of melt-poor ultraslow-spreading ridges.

  11. Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history

    Science.gov (United States)

    Dong, Linsen; Liu, Yanguang; Shi, Xuefa; Polyak, Leonid; Huang, Yuanhui; Fang, Xisheng; Liu, Jianxing; Zou, Jianjun; Wang, Kunshan; Sun, Fuqiang; Wang, Xuchen

    2017-05-01

    Sediment core ARC4-BN05 collected from the Canada Basin, Arctic Ocean, covers the late to middle Quaternary (Marine Isotope Stage - MIS - 1-15, ca. 0.5-0.6 Ma) as estimated by correlation to earlier proposed Arctic Ocean stratigraphies and AMS14C dating of the youngest sediments. Detailed examination of clay and bulk mineralogy along with grain size, content of Ca and Mn, and planktic foraminiferal numbers in core ARC4-BN05 provides important new information about sedimentary environments and provenance. We use increased contents of coarse debris as an indicator of glacier collapse events at the margins of the western Arctic Ocean, and identify the provenance of these events from mineralogical composition. Notably, peaks of dolomite debris, including large dropstones, track the Laurentide Ice Sheet (LIS) discharge events to the Arctic Ocean. Major LIS inputs occurred during the stratigraphic intervals estimated as MIS 3, intra-MIS 5 and 7 events, MIS 8, and MIS 10. Inputs from the East Siberian Ice Sheet (ESIS) are inferred from peaks of smectite, kaolinite, and chlorite associated with coarse sediment. Major ESIS sedimentary events occurred in the intervals estimated as MIS 4, MIS 6 and MIS 12. Differences in LIS vs. ESIS inputs can be explained by ice-sheet configurations at different sea levels, sediment delivery mechanisms (iceberg rafting, suspension plumes, and debris flows), and surface circulation. A long-term change in the pattern of sediment inputs, with an apparent step change near the estimated MIS 7-8 boundary (ca. 0.25 Ma), presumably indicates an overall glacial expansion at the western Arctic margins, especially in North America.

  12. Distinct trends in the speciation of iron between the shallow shelf seas and the deep basins of the Arctic Ocean

    NARCIS (Netherlands)

    Thuroczy, C-E.; Gerringa, L. J. A.; Klunder, M.; Laan, P.; Le Guitton, M.; de Baar, H. J. W.

    2011-01-01

    The speciation of iron was investigated in three shelf seas and three deep basins of the Arctic Ocean in 2007. The dissolved fraction ( 3 nM on the shelves and [TDFe] <2 nM in the Makarov Basin). A relative enrichment of particulate Fe toward the bottom was revealed at all stations, indicating Fe

  13. Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins

    Science.gov (United States)

    2017-05-01

    Jcec:iftld URL. OOC\\JMENT UR~ The following documents may b" found at ~ccp://w~4.on~.navy.mil/Concraccs · G~ ants /submit·proposal/grants -proposal...Prescribed by ANSI Std. Z39.18 Upper-Ocean Variability in the Arctic’s Amundsen and Nansen Basins John M. Toole MS 2 1/354a Clark Laboratory ...WHOI Woods Hole, MA 02543 phone: (508) 289-2531 fax: (508) 457-2181 email: jtoole@whoi.edu Richard A. Krish:field MS 2 1/128 Clark Laboratory , WHOI

  14. Decorrelation scales for Arctic Ocean hydrography – Part I: Amerasian Basin

    Directory of Open Access Journals (Sweden)

    H. Sumata

    2018-03-01

    Full Text Available Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area, we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150–200 km in space and 100–300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.

  15. Distinct trends in the speciation of iron between the shallow shelf seas and the deep basins of the Arctic Ocean

    NARCIS (Netherlands)

    Thuróczy, C.-E.; Gerringa, L.J.A.; Klunder, M.; Laan, P.; Le Guitton, M.; de Baar, H.J.W.

    2011-01-01

    The speciation of iron was investigated in three shelf seas and three deep basins of the Arctic Ocean in 2007. The dissolved fraction (<0.2 mu m) and a fraction < 1000 kDa were considered here. In addition, unfiltered samples were analyzed. Between 74 and 83% of dissolved iron was present in the

  16. Circulation in the Arctic Ocean

    OpenAIRE

    Jones, E. Peter

    2001-01-01

    Much information on processes and circulation within the Arctic Ocean has emerged from measurements made on icebreaker expeditions during the past decade. This article offers a perspective based on these measurements, summarizing new ideas regarding how water masses are formed and how they circulate. Best understood at present is the circulation of the Atlantic Layer and mid-depth waters, to depths of about 1700 m, which move in cyclonic gyres in the four major basins of the Arctic Ocean. New...

  17. Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models

    Science.gov (United States)

    Steiner, N. S.; Christian, J. R.; Six, K. D.; Yamamoto, A.; Yamamoto-Kawai, M.

    2014-01-01

    Six Earth system models that include an interactive carbon cycle and have contributed results to the 5th Coupled Model Intercomparison Project (CMIP5) are evaluated with respect to Arctic Ocean acidification. Projections under Representative Concentration Pathways (RCPs) 8.5 and 4.5 consistently show reductions in the bidecadal mean surface pH from about 8.1 in 1986-2005 to 7.7/7.9 by 2066-2085 in the Canada Basin, closely linked to reductions in the calcium carbonate saturation state ΩA,C from about 1.4 (2.0) to 0.7 (1.0) for aragonite (calcite) for RCP8.5. The large but opposite effects of dilution and biological drawdown of DIC and dilution of alkalinity lead to a small seasonal amplitude change in Ω, as well as intermodel differences in the timing and sign of the summer minimum. The Canada Basin shows a characteristic layering in Ω: affected by ice melt and inflowing Pacific water, shallow undersaturated layers form at the surface and subsurface, creating a shallow saturation horizon which expands from the surface downward. This is in addition to the globally observed deep saturation horizon which is continuously expanding upward with increasing CO2 uptake. The Eurasian Basin becomes undersaturated much later than the rest of the Arctic. These CMIP5 model results strengthen earlier findings, although large intermodel differences remain: Below 200 m ΩA varies by up to 1.0 in the Canada Basin and the deep saturation horizon varies from 2000 to 4000 m among the models. Differences of projected acidification changes are primarily related to sea ice retreat and responses of wind mixing and stratification.

  18. Generations of spreading basins and stages of breakdown of Wegener's Pangea in the geodynamic evolution of the Arctic Ocean

    Science.gov (United States)

    Shipilov, E. V.

    2008-03-01

    Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific

  19. Searching for the Lost Jurassic and Cretaceous Ocean Basins of the Circum-Arctic Linking Plate Models and Seismic Tomography

    Science.gov (United States)

    Shephard, G. E.; Müller, R.

    2012-12-01

    The tectonic evolution of the circum-Arctic since the breakup of Pangea involves the opening and closing of ocean basins including the Oimyakon, Angayucham, South Anuyi, Amerasia and Eurasia basins. The time-dependent configurations and kinematic history of the basins, adjacent continental terranes, and subduction zones involved are not well understood, and many published tectonic models for particular regions are inconsistent with models for adjacent areas. The age, location, geometry and convergence rates of the subduction zones associated with these ancient ocean basins since at least the Late Jurassic have implications for mantle structure, which can be used as an additional constraint for building plate and plate boundary models. Here we integrate an analysis of both surface and deep mantle observations back to 200 Ma. Based on a digitized set of tectonic features with time-dependent rotational histories we present a refined plate model with topologically closed plate polygons for the circum-Arctic with particular focus on the northern Pacific, Siberian and Alaskan margins (Fig 1). We correlate the location, geometry and timing of subduction zones with associated seismic velocities anomalies from global P and S wave tomography models across different depths. We design a plate model that best matches slabs imaged in seismic tomography in an iterative fashion. This match depends on a combination of relative and absolute plate motions. Therefore we test two end-member absolute plate motion models, evaluating a paleomagnetic model and a model based on hotspot tracks and large igneous provinces. This method provides a novel approach to deciphering the Arctic tectonic history in a global context. Fig 1:Plate reconstruction at 200Ma and 140Ma, visualized using GPlates software. Present-day topography raster (ETOPO2) segmented into major tectonic elements of the circum-Arctic. Plate boundaries delineated in black and selected subduction and arc features labeled in

  20. Significance of Northeast-Trending Features in Canada Basin, Arctic Ocean

    Science.gov (United States)

    Hutchinson, D. R.; Jackson, H. R.; Houseknecht, D. W.; Li, Q.; Shimeld, J. W.; Mosher, D. C.; Chian, D.; Saltus, R. W.; Oakey, G. N.

    2017-11-01

    Synthesis of seismic velocity, potential field, and geological data from Canada Basin and its surrounding continental margins suggests that a northeast-trending structural fabric has influenced the origin, evolution, and current tectonics of the basin. This structural fabric has a crustal origin, based on the persistence of these trends in upward continuation of total magnetic intensity data and vertical derivative analysis of free-air gravity data. Three subparallel northeast-trending features are described. Northwind Escarpment, bounding the east side of the Chukchi Borderland, extends ˜600 km and separates continental crust of Northwind Ridge from high-velocity transitional crust in Canada Basin. A second, shorter northeast-trending zone extends ˜300 km in northern Canada Basin and separates inferred continental crust of Sever Spur from magmatically intruded crust of the High Arctic Large Igneous Province. A third northeast-trending feature, here called the Alaska-Prince Patrick magnetic lineament (APPL) is inferred from magnetic data and its larger regional geologic setting. Analysis of these three features suggests strike slip or transtensional deformation played a role in the opening of Canada Basin. These features can be explained by initial Jurassic-Early Cretaceous strike slip deformation (phase 1) followed in the Early Cretaceous (˜134 to ˜124 Ma) by rotation of Arctic Alaska with seafloor spreading orthogonal to the fossil spreading axis preserved in the central Canada Basin (phase 2). In this model, the Chukchi Borderland is part of Arctic Alaska.

  1. Significance of northeast-trending features in Canada Basin, Arctic Ocean

    Science.gov (United States)

    Hutchinson, Deborah; Jackson, H.R.; Houseknecht, David W.; Li, Q.; Shimeld, J.W.; Mosher, D.C.; Chian, D.; Saltus, Richard; Oakey, G.N.

    2017-01-01

    Synthesis of seismic velocity, potential field, and geological data from Canada Basin and its surrounding continental margins suggests that a northeast-trending structural fabric has influenced the origin, evolution, and current tectonics of the basin. This structural fabric has a crustal origin, based on the persistence of these trends in upward continuation of total magnetic intensity data and vertical derivative analysis of free-air gravity data. Three subparallel northeast-trending features are described. Northwind Escarpment, bounding the east side of the Chukchi Borderland, extends ∼600 km and separates continental crust of Northwind Ridge from high-velocity transitional crust in Canada Basin. A second, shorter northeast-trending zone extends ∼300 km in northern Canada Basin and separates inferred continental crust of Sever Spur from magmatically intruded crust of the High Arctic Large Igneous Province. A third northeast-trending feature, here called the Alaska-Prince Patrick magnetic lineament (APPL) is inferred from magnetic data and its larger regional geologic setting. Analysis of these three features suggests strike slip or transtensional deformation played a role in the opening of Canada Basin. These features can be explained by initial Jurassic-Early Cretaceous strike slip deformation (phase 1) followed in the Early Cretaceous (∼134 to ∼124 Ma) by rotation of Arctic Alaska with seafloor spreading orthogonal to the fossil spreading axis preserved in the central Canada Basin (phase 2). In this model, the Chukchi Borderland is part of Arctic Alaska.

  2. Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin

    Directory of Open Access Journals (Sweden)

    Micha J. A. Rijkenberg

    2018-03-01

    Full Text Available Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton blooms. During the GEOTRACES cruise PS94 in the summer of 2015 we measured dissolved iron (DFe, nitrate and phosphate throughout the central part of the Eurasian Arctic. In the deeper waters concentrations of DFe were higher, which we relate to resuspension on the continental slope in the Nansen Basin and hydrothermal activity at the Gakkel Ridge. The main source of DFe in the surface was the Trans Polar Drift (TPD, resulting in concentrations up to 4.42 nM. Nevertheless, using nutrient ratios we show that a large under-ice bloom in the Nansen basin was limited by Fe. Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production. In the Barents Sea, Fe is expected to be the first nutrient to be depleted as well. Changes in the Arctic biogeochemical cycle of Fe due to retreating ice may therefore have large consequences for primary production, the Arctic ecosystem and the subsequent drawdown of carbon dioxide.

  3. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.

    Directory of Open Access Journals (Sweden)

    Lisa L Robbins

    Full Text Available Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index for the western Arctic Ocean. This data set documents aragonite undersaturation in ≈ 20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean's largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  4. Depositional History of the Western Amundsen Basin, Arctic Ocean, and Implications for Neogene Climate and Oceanographic Conditions

    Science.gov (United States)

    Hopper, J. R.; Castro, C. F.; Knutz, P. C.; Funck, T.

    2017-12-01

    Seismic reflection data collected in the western Amundsen Basin as part of the Law of the Sea program for the Kingdom of Denmark show a uniform and continuous cover of sediments over oceanic basement. An interpretation of seismic facies units shows that the depositional history of the basin reflects changing tectonic, climatic, and oceanographic conditions throughout the Cenozoic. In this contribution, the Miocene to present history is summarized. Two distinct changes in the depositional environment are proposed, first in response to the development of a deep water connection between the Arctic and North Atlantic, and the second in response to the onset of perennial sea ice cover in the Arctic. In the early to mid-Miocene, a buildup of contourite deposits indicates a distinct change in sedimentation that is particularly well developed near the flank of the Lomonosov Ridge. It is suggested that this is a response to the opening of the Fram Strait and the establishment of geostrophic bottom currents that flowed from the Laptev Sea towards Greenland. These deposits are overlain by a seismic facies unit characterized by buried channels and erosional features. These include prominent basinward levee systems that suggest a channel morphology maintained by overbank deposition of muddy sediments carried by suspension currents periodically spilling over the channel pathway. These deposits indicate a change to a much higher energy environment that is proposed to be a response to brine formation associated with the onset of perennial sea ice cover in the Arctic Ocean. This interpretation implies that the development of extensive sea ice cover results in a significant change in the energy environment of the ocean that is reflected in the depositional and erosional patterns observed. The lack of similar high energy erosional features and the presence of contourite deposits throughout most of the Miocene may indicate the Arctic Ocean was relatively ice-free until the very latest

  5. Baseline Monitoring of the Western Arctic Ocean Estimates 20% of Canadian Basin Surface Waters Are Undersaturated with Respect to Aragonite

    Science.gov (United States)

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ∼20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater. PMID:24040074

  6. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2013-04-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the near-surface temperature maximum due to incoming solar radiation, and (3 the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely

  7. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  8. Stratigraphy and Glacial-Marine Sediments of the Amerasian Basin, Central Arctic Ocean.

    Science.gov (United States)

    1981-02-01

    particles and conducting an electronic si/C analisis of the material that passed through the sieve A, using a I A 11 Coulter counter. I he (oulter...sized particles from suspension is similar for all of the deep-sea current with a velocity of 45 to 60 cm s would be required to cause sediments that...distribution of Arctic Ocean glacial-marine surface- relationship, the flow velocities required for erosion of incohesisc sediment types must be

  9. Formation of the Eurasia Basin in the Arctic Ocean as inferred from geohistorical analysis of the anomalous magnetic field

    Science.gov (United States)

    Glebovsky, V. Yu.; Kaminsky, V. D.; Minakov, A. N.; Merkur'ev, S. A.; Childers, V. A.; Brozena, J. M.

    2006-07-01

    A new combined magnetic database and a magnetic-profile map are developed for the Eurasia Basin as a result of adjusting all available historical and recent Russian and American magnetic data sets. The geohistorical analysis of magnetic data includes several steps: identification of linear magnetic anomalies along each trackline, calculation of the Euler rotation pole positions for the relative motion of the North American and Eurasian plates, analysis of temporal and spatial variations in the spreading rate, and plate reconstructions. The pattern of key Cenozoic magnetic isochrons (24, 20, 18, 13, 6, 5, 2a) is constructed for the entire Eurasia Basin. In the western half of the basin, this pattern is consistent with a recently published scheme [16]. In its eastern half, magnetic isochrons are determined in detail for the first time and traced up to the Laptev Sea shelf. The main stages in the seafloor spreading are established for the Eurasia Basin. Each stage is characterized by a specific spreading rate and the degree of asymmetry of the basin opening. The revealed differences are traced along the Gakkel Ridge. Systematic patterns in wandering of the Eurasia Basin opening pole are established for particular stages. The continent-ocean transition zone corresponding to the primary rupture between plates is outlined in the region under consideration on the basis of gravimetric data. The nature of different potential fields and bottom topography on opposite sides of the Gakkel Ridge is discussed. The characteristic features of the basin-bottom formation at main stages of its evolution are specified on the basis of new and recently published data. The results obtained are in good agreement with plate geodynamics of the North Atlantic and the adjacent Arctic basins.

  10. Dissolved Fe in the deep and upper Arctic Ocean with a focus on Fe limitation in the Nansen Basin

    NARCIS (Netherlands)

    Rijkenberg, M.J.A.; Slagter, H.A.; Rutgers van der Loeff, M.; van Ooijen, J.; Gerringa, L.J.A.

    2018-01-01

    Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton

  11. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  12. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2014-09-30

    Arctic sea ice has experienced since at least the beginning of the satellite era are believed to be caused by ice - albedo temperature feedback...dimensional (2D) ocean surface wave interactions with sea ice in a contemporary 3D Arctic ice /ocean model. To accomplish this primary goal, the objectives...of how ocean waves and sea ice interact, for use in operational models of the Arctic Basin and the adjacent seas ; – improve the forecasting

  13. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  14. Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM

    NARCIS (Netherlands)

    Slagter, H.A.; Reader, H.E.; Rijkenberg, M.J.A.; Rutgers van der Loeff, M.; de Baar, H.J.W.; Gerringa, L.J.A.

    2017-01-01

    The bio-essential trace metal iron (Fe) has poor inorganic solubility in seawater, and therefore dissolution is dependent on organic complexation. The Arctic Ocean is subject to strong terrestrial influences which contribute to organic solubility of Fe, particularly in the surface. These influences

  15. Organic Fe speciation in the Eurasian Basins of the Arctic Ocean and its relation to terrestrial DOM

    DEFF Research Database (Denmark)

    Slagter, H. A.; Reader, H. E.; Rijkenberg, M. J.A.

    2017-01-01

    The bio-essential trace metal iron (Fe) has poor inorganic solubility in seawater, and therefore dissolution is dependent on organic complexation. The Arctic Ocean is subject to strong terrestrial influences which contribute to organic solubility of Fe, particularly in the surface. These influences...

  16. Arctic Ocean data in CARINA

    Directory of Open Access Journals (Sweden)

    S. Jutterström

    2010-02-01

    Full Text Available The paper describes the steps taken for quality controlling chosen parameters within the Arctic Ocean data included in the CARINA data set and checking for offsets between the individual cruises. The evaluated parameters are the inorganic carbon parameters (total dissolved inorganic carbon, total alkalinity and pH, oxygen and nutrients: nitrate, phosphate and silicate. More parameters can be found in the CARINA data product, but were not subject to a secondary quality control. The main method in determining offsets between cruises was regional multi-linear regression, after a first rough basin-wide deep-water estimate of each parameter. Lastly, the results of the secondary quality control are discussed as well as applied adjustments.

  17. Baseline monitoring of the western Arctic Ocean estimates 20% of the Canadian Basin surface waters are undersaturated with respect to aragonite

    Science.gov (United States)

    Robbins, Lisa L.; Wynn, Jonathan G.; Lisle, John T.; Yates, Kimberly K.; Knorr, Paul O.; Byrne, Robert H.; Liu, Xuewu; Patsavas, Mark C.; Azetsu-Scott, Kumiko; Takahashi, Taro

    2013-01-01

    Marine surface waters are being acidified due to uptake of anthropogenic carbon dioxide, resulting in surface ocean areas of undersaturation with respect to carbonate minerals, including aragonite. In the Arctic Ocean, acidification is expected to occur at an accelerated rate with respect to the global oceans, but a paucity of baseline data has limited our understanding of the extent of Arctic undersaturation and of regional variations in rates and causes. The lack of data has also hindered refinement of models aimed at projecting future trends of ocean acidification. Here, based on more than 34,000 data records collected in 2010 and 2011, we establish a baseline of inorganic carbon data (pH, total alkalinity, dissolved inorganic carbon, partial pressure of carbon dioxide, and aragonite saturation index) for the western Arctic Ocean. This data set documents aragonite undersaturation in ~20% of the surface waters of the combined Canada and Makarov basins, an area characterized by recent acceleration of sea ice loss. Conservative tracer studies using stable oxygen isotopic data from 307 sites show that while the entire surface of this area receives abundant freshwater from meteoric sources, freshwater from sea ice melt is most closely linked to the areas of carbonate mineral undersaturation. These data link the Arctic Ocean’s largest area of aragonite undersaturation to sea ice melt and atmospheric CO2 absorption in areas of low buffering capacity. Some relatively supersaturated areas can be linked to localized biological activity. Collectively, these observations can be used to project trends of ocean acidification in higher latitude marine surface waters where inorganic carbon chemistry is largely influenced by sea ice meltwater.

  18. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments.

    Science.gov (United States)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T; Platov, Gennady A; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C; Nurser, A J George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  19. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    Science.gov (United States)

    Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Abstract Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state‐of‐the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin. PMID:27818853

  20. Arctic Ocean Scientific Drilling: The Next Frontier

    Directory of Open Access Journals (Sweden)

    Ruediger Stein

    2010-04-01

    Full Text Available The modern Arctic Ocean appears to be changing faster than any other region on Earth. To understand the potential extent of high latitude climate change, it is necessary to sample the history stored in the sediments filling the basins and covering the ridges of the Arctic Ocean. These sediments have been imaged with seismic reflection data, but except for the superficial record, which has been piston cored, they have been sampled only on the Lomonosov Ridge in 2004 during the Arctic Coring Expedition (ACEX-IODP Leg 302; Backman et al., 2006 and in 1993 in the ice-free waters in the Fram Strait/Yermak Plateau area (ODP Leg 151; Thiede et al., 1996.Although major progress in Arctic Ocean research has been made during the last few decades, the short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution are poorly known compared to the other oceans. Despite the importance of the Arctic in the climate system, the database we have from this area is still very weak. Large segments of geologic time have not been sampled in sedimentary sections. The question of regional variations cannot be addressed.

  1. An analysis of the carbon balance of the Arctic Basin from 1997 to 2006

    Science.gov (United States)

    A.D. McGuire; D.J. Hayes; D.W. Kicklighter; M. Manizza; Q. Zhuang; M. Chen; M.J. Follows; K.R. Gurney; J.W. McClelland; J.M. Melillo; B.J. Peterson; R.G. Prinn

    2010-01-01

    This study used several model-based tools to analyze the dynamics of the Arctic Basin between 1997 and 2006 as a linked system of land-ocean-atmosphere C exchange. The analysis estimates that terrestrial areas of the Arctic Basin lost 62.9 Tg C yr-1 and that the Arctic Ocean gained 94.1 Tg C yr-1. Arctic lands and oceans...

  2. Mercury genomics in the Arctic Ocean

    Science.gov (United States)

    Bowman, K.; Lamborg, C. H.; Collins, E.; Hammerschmidt, C. R.; Agather, A. M.

    2017-12-01

    Methyl-mercury production in the ocean is likely dependent on microbial activity, however, methylation pathways remain elusive. In the Arctic, high concentrations of methyl-mercury are found in top predator marine mammals and seabirds. As a result of seafood consumption, pregnant women and women of child-bearing age in the Arctic often have blood Hg concentrations that exceed U.S. and Canadian safety guidelines. To understand the chemical cycling of mercury in the Arctic Ocean we participated in the 2015 U.S. GEOTRACES Arctic expedition (GN01) to measure Hg speciation in the water column of the Bering Sea, Makarov basin, and Canada basin between Dutch Harbor, Alaska and the North Pole. At select stations, seawater was filtered through 0.22 µm Sterivex filters and genomic DNA was collected using a phenol-chloroform extraction. Broad-range degenerate PCR primers were used to detect the presence of hgcAB, and clade-specific degenerate quantitative PCR primers were used to determine the abundance of hgcA. Metagenomic sequencing was done at three stations to identify taxonomic and functional groups, and to search for hgcA-like genes that the PCR primers may have missed.

  3. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  4. Mapping the Surficial Geology of the Arctic Ocean

    Science.gov (United States)

    Mosher, D. C.; Jakobsson, M.; Gebhardt, C.; Mayer, L. A.

    2014-12-01

    Surficial geologic mapping of the Arctic Ocean was undertaken to provide a basis for understanding different geologic environments in this polar setting. Mapping was based on data acquired from numerous icebreaker and submarine missions to the polar region. The intent was to create a geologic layer overlying the International Bathymetric Chart of the Arctic Ocean. Analysis of subbottom profiler and multibeam bathymetric data in conjunction with sediment cores and the regional morphology rendered from the IBCAO data were used to map different surficial geologic units. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of margin and basin types reflecting both the complex tectonic origins of the basin and its diverse sedimentation history. Broad and narrow shelves were subjected to a complex ice-margin history in the Quaternary, and bear the sediment types and morphological features as a result. Some shelfal areas are heavily influenced by rivers. Extensive deep water ridges and plateaus are isolated from coastal input and have a long history of hemipelagic deposition. An active spreading ridge and regions of recent volcanism have volcani-clastic and heavily altered sediments. Some regions of the Arctic Ocean are proposed to have been influenced by bolide impact. The flanks of the basins demonstrate complex sedimentation patterns resulting from mass failures and ice-margin outflow. The deep basins of the Arctic Ocean are filled with turbidites resulting from these mass-flows and are interbedded with hemiplegic deposits.

  5. Quaternary history of sea ice and paleoclimate in the Amerasia Basin, Arctic Ocean, as recorded in the cyclical strata of Northwind Ridge

    Science.gov (United States)

    Phillips, R.L.; Grantz, A.

    1997-01-01

    The 19 middle-early Pleistocene to Holocene bipartite lithostratigraphic cycles observed in high-resolution piston cores from Northwind Ridge in the Amerasia Basin of the Arctic Ocean, provide a detailed record of alternating glacial and interglacial climatic and oceanographic conditions and of correlative changes in the character and thickness of the sea-ice cover in the Amerasia Basin. Glacial conditions in each cycle are represented by gray pelagic muds that are suboxic, laminated, and essentially lacking in microfossils, macrofossils, trace fossils, and generally in glacial erratics. Interglacial conditions are represented by ochre pelagic muds that are oxic and bioturbated and contain rare to abundant microfossils and abundant glacial erratics. The synglacial laminated gray muds were deposited when the central Amerasia Basin was covered by a floating sheet of sea ice of sufficient thickness and continuity to reduce downwelling solar irradiance and oxygen to levels that precluded photosynthesis, maintenance of a biota, and strong oxidation of the pelagic sediment. Except during the early part of 3 of the 19 synglacial episodes, when it was periodically breached by erratic-bearing glacial icebergs, the floating Arctic Ocean sea-ice sheet was sufficiently thick to block the circulation of icebergs over Northwind Ridge and presumably other areas of the central Arctic Ocean. Interglacial conditions were initiated by abrupt thinning and breakup of the floating sea-ice sheet at the close of glacial time, which permitted surges of glacial erratic-laden ice-bergs to reach Northwind Ridge and the central Arctic Ocean, where they circulated freely and deposited numerous, and relatively thick, erratic clast-rich beds. Breakup of the successive synglacial sea-ice sheets initiated deposition of the interglacial ochre mud units under conditions that allowed sunlight and increased amounts of oxygen to enter the water column, resulting in photosynthesis and biologic

  6. Dissolved iron in the Arctic Ocean: Important role of hydrothermal sources, shelf input and scavenging removal

    NARCIS (Netherlands)

    Klunder, M.B.; Laan, P.; Middag, R.; de Baar, H.J.W.; Bakker, K.

    2012-01-01

    Arctic Ocean waters exchange with the North Atlantic, and thus dissolved iron (DFe) in the Arctic has implications for the global Fe cycle. We present deep water (>250 m) DFe concentrations of the Central Arctic Ocean (Nansen, Amundsen and Makarov Basins). The DFe concentration in the deep waters

  7. Dissolved iron in the Arctic Ocean : Important role of hydrothermal sources, shelf input and scavenging removal

    NARCIS (Netherlands)

    Klunder, M. B.; Laan, P.; Middag, R.; de Baar, H. J. W.; Bakker, K.

    2012-01-01

    Arctic Ocean waters exchange with the North Atlantic, and thus dissolved iron (DFe) in the Arctic has implications for the global Fe cycle. We present deep water (>250 m) DFe concentrations of the Central Arctic Ocean (Nansen, Amundsen and Makarov Basins). The DFe concentration in the deep waters

  8. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    Science.gov (United States)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low ( 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  9. Arctic Ocean Pathways in the 21st century

    Science.gov (United States)

    Aksenov, Yevgeny; van Gennip, Simon J.; Kelly, Stephen J.; Popova, Ekaterina E.; Yool, Andrew

    2017-04-01

    In the last three decades, changes in the Arctic environment have been occurring at an increasing rate. The opening up of large areas of previously sea ice-covered ocean affects the marine environment with potential impacts on Arctic ecosystems, including through changes in Arctic access, industries and societies. Changes to sea ice and surface winds result in large-scale shifts in ocean circulation and oceanic pathways. This study presents a high-resolution analysis of the projected ocean circulation and pathways of the Arctic water masses across the 21st century. The analysis is based on an eddy-permitting high-resolution global simulation of the ocean general circulation model NEMO (Nucleus for European Modelling of the Ocean) at the 1/4-degree horizontal resolution. The atmospheric forcing is from HadGEM2-ES model output from IPCC Assessment Report 5 (AR5) simulations performed for Coupled Model Intercomparison Project 5 (CMIP5), and follow the Representative Concentration Pathway 8.5 (RCP8.5) scenario. During the 21st century the AO experiences a significant warming, with sea surface temperature increased by in excess of 4 deg. C. Annual mean Arctic sea ice thickness drops to less than 0.5m, and the Arctic Ocean is ice-free in summer from the mid-century. We use an off-line tracer technique to investigate Arctic pathways of the Atlantic and Pacific waters (AW and PW respectively) under this future climate. The AW tracers have been released in the eastern Fram Strait and in the western Barents Sea, whereas the PW tracer has been seeded in the Bering Strait. In the second half of the century the upper 1000 m ocean circulation shows a reduction in the eastward AW flow along the continental slopes towards the Makarov and Canada basins and a deviation of the PW flow away from the Beaufort Sea towards the Siberian coast. Strengthening of Arctic boundary current and intensification of the cyclonic gyre in the Nansen basin of the Arctic Ocean is accompanied by

  10. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  11. Cesium-137 contamination in Arctic Ocean ice

    International Nuclear Information System (INIS)

    Meese, D.; Tucker, W.; Cooper, L.; Larsen, I.L.; Grebmeier, J.

    1995-01-01

    Sea ice and ice-borne sediment samples were collected across the western Arctic basin on the joint US/Canada Arctic Ocean Section during August 1994. Samples were processed on board and returned at the completion of the cruise to Oak Ridge National Laboratory for analysis. Sediment was observed on the surface and in the ice from the southern ice limit in the Chukchi Sea to the North Pole. Preliminary results on the ice-borne sediment samples show widespread elevated concentrations of 137 Cs, ranging from 4.9 to 73 mBq g dry weight -1 . An analysis of the measurements indicate that sea ice is primary transport mechanism by which contaminated sediments are redistributed throughout the Arctic Ocean and possibly exported into the Greenland Sea and North Atlantic through Fram Strait. The wide variability in the ice-borne sediment concentrations of 137 Cs measured along the transect argues that contaminants incorporated on the Siberian shelves can follow much more variable trajectories than is suggested by mean ice drift calculations. 2 figs

  12. Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012

    Science.gov (United States)

    Kondo, Yoshiko; Obata, Hajime.; Hioki, Nanako; Ooki, Atsushi; Nishino, Shigeto; Kikuchi, Takashi; Kuma, Kenshi

    2016-10-01

    Distributions of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in September 2012 were investigated to elucidate the mechanisms behind the transport of these metals from the Chukchi Shelf to the Canada Basin. Filtered (metal concentrations, respectively. We identified maxima in vertical profiles for the concentrations of D-Fe and TD-Fe, as well as for the other four analyzed trace metals, which occurred in the halocline and/or near-bottom waters. Concentration profiles of all trace metals except for Cd also tended to show peaks near the surface, which suggest that the inflow of low-salinity Pacific-origin water from the Bering Strait, as well as local fresh water inputs such as river water and melting sea-ice, influenced trace metal concentrations. The distribution patterns and concentration ranges were generally similar between the D and TD fractions for Ni, Zn and Cd, which indicate that Ni, Zn and Cd were present mainly in their dissolved forms, whereas the concentrations of TD-Fe and TD-Mn were generally higher than those of D-Fe and D-Mn, respectively. These results are consistent with the results of previous studies of this region. For both Fe and Mn, labile particulate (LP) concentrations (the difference between the TD and D fractions, which is acid-leachable fraction in the particles during storage at pH 1.5-1.6) were highest in the near-bottom waters of the Chukchi Shelf region. The relationships between the distance from the shelf break and the concentrations of trace metals revealed that Fe and Mn concentrations in halocline waters tended to decrease logarithmically with distance, whereas changes in the concentrations of Ni, Zn, Cd and phosphate with distance were small. These results suggest that the distributions of Fe and Mn were controlled mainly by input from shelf sediment and removal through scavenging processes. Based on the phase distributions of Fe and Mn, which were calculated as ratios between

  13. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    International Nuclear Information System (INIS)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of 134 Cs, 137 Cs and 90 Sr from these sources has been decreasing during the 1990's, while 129 I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest 137 Cs, 129 I and 90 Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived 137 Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990's the fraction to total 137 Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of 239 , 240 Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  14. Deep Arctic Ocean warming during the last glacial cycle

    Science.gov (United States)

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  15. Radiocesium in the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014.

    Science.gov (United States)

    Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Nishino, Shigeto; Murata, Akihiko; Kikuchi, Takashi

    2017-08-01

    We measured radiocesium ( 134 Cs and 137 Cs) in seawater from the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014. Fukushima-derived 134 Cs in surface seawater was observed in the western subarctic area and Bering Sea but not in the Arctic Ocean. Vertical profile of 134 Cs in the Canada Basin of the Arctic Ocean implies that Fukushima-derived 134 Cs intruded into the basin from the Bering Sea through subsurface (150m depth) in 2014. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Arctic and Southern Ocean Sea Ice Concentrations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly sea ice concentration for Arctic (1901 to 1995) and Southern oceans (1973 to 1990) were digitized on a standard 1-degree grid (cylindrical projection) to...

  17. Arctic Ocean Regional Climatology (NCEI Accession 0115771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Arctic Ocean, NCEI developed a new set of high-resolution...

  18. International Regulation of Central Arctic Ocean Fisheries

    NARCIS (Netherlands)

    Molenaar, E.J.

    Due in particular to the impacts of climate change, the adequacy of the international regulation of Central Arctic Ocean fisheries has come under increasing scrutiny in recent years. As shown in this article, however, international regulation of Central Arctic Ocean fisheries is by no means entirely

  19. Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean

    Science.gov (United States)

    Wang, Zeliang; Hamilton, James; Su, Jie

    2017-06-01

    Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.

  20. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    Science.gov (United States)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah R.

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares

  1. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    Science.gov (United States)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity-depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity-depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity-depth profiles for each seismic trace. A thickness of 12-13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity-depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with

  2. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    Science.gov (United States)

    Miroshnikov, A; Semenkov, I

    2012-11-01

    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  3. Rossby Waves in the Arctic Ocean

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Schmith, Torben

    The Arctic Ocean has a characteristic stable stratification with fresh and cold water occupying the upper few hundred meters and the warm and more saline Atlantic waters underneath. These water masses are separated by the cold halocline. The stability of the cold halocline regulates the upward...... directed turbulent heat flux from the Atlantic water to the Arctic water. This heat flux is a part of the arctic energy budget and is important for large scale sea ice formation and melting. Due to the strong vertical stratification combined with its almost circular boundary, the Arctic Ocean supports...

  4. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas.

    Science.gov (United States)

    Matthiessen, Jens; Knies, Jochen; Vogt, Christoph; Stein, Ruediger

    2009-01-13

    The Pliocene is important in the geological evolution of the high northern latitudes. It marks the transition from restricted local- to extensive regional-scale glaciations on the circum-Arctic continents between 3.6 and 2.4Ma. Since the Arctic Ocean is an almost land-locked basin, tectonic activity and sea-level fluctuations controlled the geometry of ocean gateways and continental drainage systems, and exerted a major influence on the formation of continental ice sheets, the distribution of river run-off, and the circulation and water mass characteristics in the Arctic Ocean. The effect of a water mass exchange restricted to the Bering and Fram Straits on the oceanography is unknown, but modelling experiments suggest that this must have influenced the Atlantic meridional overturning circulation. Cold conditions associated with perennial sea-ice cover might have prevailed in the central Arctic Ocean throughout the Pliocene, whereas colder periods alternated with warmer seasonally ice-free periods in the marginal areas. The most pronounced oceanographic change occurred in the Mid-Pliocene when the circulation through the Bering Strait reversed and low-salinity waters increasingly flowed from the North Pacific into the Arctic Ocean. The excess freshwater supply might have facilitated sea-ice formation and contributed to a decrease in the Atlantic overturning circulation.

  5. Arctic/North Pacific Ocean Environmental Studies

    National Research Council Canada - National Science Library

    Mikhalevsky, Peter

    1997-01-01

    .... The objective of the effort was to test the feasibility of acoustic monitoring of the Arctic Ocean and ice cap using long range low frequency acoustic propagation, by answering the fundamental questions: (1...

  6. Hydrochemical Atlas of the Arctic Ocean (NODC Accession 0044630)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present Hydrochemical Atlas of the Arctic Ocean is a description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical...

  7. The great challenges in Arctic Ocean paleoceanography

    International Nuclear Information System (INIS)

    Stein, Ruediger

    2011-01-01

    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 10 6 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  8. The measurement of I-129 in the Canadian Arctic basin and other Arctic waters

    International Nuclear Information System (INIS)

    Kilius, L.R.; Zhao, X.L.

    1995-01-01

    Since the first demonstration by accelerator mass spectrometry for the measurement of 129 I in oceanic systems, the use of 129 I as a long range tracer has become widespread because the constraint of large sample volumes has been removed. Following extensive measurements of 129 I in both the Barents and Kara Seas, seawater samples were collected within the Canadian Arctic Basin, and at a cruise from the Chuchi Sea, across the pole, to the Norwegian Sea. Only 450 ml samples were required for all AMS measurements of Arctic seawater. Enhanced concentrations of 129 I were observed. Based on 137 Cs measurements for the same samples, the 129 I/ 137 Cs ratios showed the signature of Sellafield reprocessing effluents as the primary source of this 129 I. Based on average estimates, 13% of the total Sellafield/La Hague 129 I emissions now resides within the Atlantic layer of the Arctic Ocean. 7 refs., 3 figs

  9. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  10. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of {sup 134}Cs, {sup 137}Cs and {sup 90}Sr from these sources has been decreasing during the 1990`s, while {sup 129}I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest {sup 137}Cs, {sup 129}I and {sup 90}Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived {sup 137}Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990`s the fraction to total {sup 137}Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of {sup 239}, {sup 240}Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  11. An inventory of Arctic Ocean data in the World Ocean Database

    Science.gov (United States)

    Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.

    2018-03-01

    The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (https://doi.org/10.7289/V54Q7S16" target="_blank">https://doi.org/10.7289/V54Q7S16).

  12. A Meteoric Water Budget for the Arctic Ocean

    Science.gov (United States)

    Alkire, Matthew B.; Morison, James; Schweiger, Axel; Zhang, Jinlun; Steele, Michael; Peralta-Ferriz, Cecilia; Dickinson, Suzanne

    2017-12-01

    A budget of meteoric water (MW = river runoff, net precipitation minus evaporation, and glacial meltwater) over four regions of the Arctic Ocean is constructed using a simple box model, regional precipitation-evaporation estimates from reanalysis data sets, and estimates of import and export fluxes derived from the literature with a focus on the 2003-2008 period. The budget indicates an approximate/slightly positive balance between MW imports and exports (i.e., no change in storage); thus, the observed total freshwater increase observed during this time period likely resulted primarily from changes in non-MW freshwater components (i.e., increases in sea ice melt or Pacific water and/or a decrease in ice export). Further, our analysis indicates that the MW increase observed in the Canada Basin resulted from a spatial redistribution of MW over the Arctic Ocean. Mean residence times for MW were estimated for the Western Arctic (5-7 years), Eastern Arctic (3-4 years), and Lincoln Sea (1-2 years). The MW content over the Siberian shelves was estimated (˜14,000 km3) based on a residence time of 3.5 years. The MW content over the entire Arctic Ocean was estimated to be ≥44,000 km3. The MW export through Fram Strait consisted mostly of water from the Eastern Arctic (3,237 ± 1,370 km3 yr-1) whereas the export through the Canadian Archipelago was nearly equally derived from both the Western Arctic (1,182 ± 534 km3 yr-1) and Lincoln Sea (972 ± 391 km3 yr-1).

  13. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  14. Does Arctic sea ice reduction foster shelf-basin exchange?

    Science.gov (United States)

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  15. Mean Dynamic Topography of the Arctic Ocean

    Science.gov (United States)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  16. Origin of freshwater and polynya water in the Arctic Ocean halocline in summer 2007

    NARCIS (Netherlands)

    Bauch, D.; Rutgers van der Loeff, M.; Andersen, N.; Torres-Valdes, S.; Bakker, K.; Abrahamsen, E.Povl

    2011-01-01

    Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and delta O-18 dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of

  17. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  18. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives

    Science.gov (United States)

    Michel, Christine; Hamilton, Jim; Hansen, Edmond; Barber, David; Reigstad, Marit; Iacozza, John; Seuthe, Lena; Niemi, Andrea

    2015-12-01

    Over the past decade or so, international research efforts, many of which were part of the International Polar Year, have accrued our understanding of the Arctic outflow shelves. The Arctic outflow shelves, namely the East Greenland Shelf (EGS) and the Canadian Arctic Archipelago (CAA), serve as conduits through which Arctic sea ice and waters and their properties are exported to the North Atlantic. These shelves play an important role in thermohaline circulation and global circulation patterns, while being influenced by basin-scale and regional changes taking place in the Arctic. Here, we synthesize the current knowledge on key forcings of primary production and ecosystem processes on the outflow shelves, as they influence their structure and functionalities and, consequently their role in Arctic Ocean productivity and global biogeochemical cycles. For the CAA, a fresh outlook on interannual and decadal physical and biological time-series reveals recent changes in productivity patterns, while an extensive analysis of sea ice conditions over the past 33 years (1980-2012) demonstrates significant declines in multi-year ice and a redistribution of ice types. For the EGS, our analysis shows that sea ice export strongly contributes to structuring spatially diverse productivity regimes. Despite the large heterogeneity in physical and biological processes within and between the outflow shelves, a conceptual model of productivity regimes is proposed, helping identify general productivity patterns and key forcings. The different productivity regimes are expected to respond differently to current and future Arctic change, providing a useful basis upon which to develop predictive scenarios of future productivity states. Current primary production estimates for both outflow shelves very likely underestimate their contribution to total Arctic production.

  19. Increased fluxes of shelf-derived materials to the central Arctic Ocean.

    Science.gov (United States)

    Kipp, Lauren E; Charette, Matthew A; Moore, Willard S; Henderson, Paul B; Rigor, Ignatius G

    2018-01-01

    Rising temperatures in the Arctic Ocean region are responsible for changes such as reduced ice cover, permafrost thawing, and increased river discharge, which, together, alter nutrient and carbon cycles over the vast Arctic continental shelf. We show that the concentration of radium-228, sourced to seawater through sediment-water exchange processes, has increased substantially in surface waters of the central Arctic Ocean over the past decade. A mass balance model for 228 Ra suggests that this increase is due to an intensification of shelf-derived material inputs to the central basin, a source that would also carry elevated concentrations of dissolved organic carbon and nutrients. Therefore, we suggest that significant changes in the nutrient, carbon, and trace metal balances of the Arctic Ocean are underway, with the potential to affect biological productivity and species assemblages in Arctic surface waters.

  20. Developing a new synthesis of Arctic Ocean tectonics

    Science.gov (United States)

    Coakley, Bernard

    2014-05-01

    Tectonic models for the Mesozoic opening of the Amerasia Basin are dominated by the "windshield wiper" model, first articulated by Sam Carey in 1958. This theory was developed in the context of an expanding earth paradigm for global tectonics. While the expanding earth theory has been rejected, this zombie hypothesis for the development of the Amerasia Basin lingers on. Most models for the development of the Mesozoic Arctic Ocean work from the large scale down, assuming the overall pattern for the tectonic development of the Amerasia Basin is effectively described by a scissors-like opening, a separation of northern Alaska and Siberia from the conjugate margin of northern Canada, rotating apart around a pivot in the Mackenzie Delta. The problem for these models is how to resolve the space problems caused by the ridges that subdivide the basin. The most prominent of these being the Chukchi Borderland, a large block of extended continental crust, which projects out northward into the basin from the continental shelf north of the Bering Strait. A new approach can be based on first understanding the features in the basin and their inter-relationships, then using that knowledge to infer the larger scale basin tectonics, building a tectonic model from local observations. This approach will be discussed in the light of new results from recent studies in the Amerasia Basin and plans for future activities.

  1. A model study of the first ventilated regime of the Arctic Ocean during the early Miocene

    Directory of Open Access Journals (Sweden)

    Bijoy Thompson

    2012-07-01

    Full Text Available The tectonic opening of Fram Strait during the Neogene was a significant geological event that transferred the Arctic Ocean from a poorly ventilated enclosed basin, with weak exchange with the North Atlantic, to a fully ventilated “ocean stage”. Previous tectonic and physical oceanographic analyses suggest that the early Miocene Fram Strait was likely several times narrower and less than half as deep as the present-day 400 km wide and 2550 m deep strait. Here we use an ocean general circulation model with a passive age tracer included to further address the effect of the Fram Strait opening on the early Miocene Arctic Ocean circulation. The model tracer age exhibits strong spatial gradient between the two major Arctic Ocean deep basins: the Eurasian and Amerasian basins. There is a two-layer stratification and the exchange flow through Fram Strait shows a bi-layer structure with a low salinity outflow from the Arctic confined to a relatively thin upper layer and a saline inflow from the North Atlantic below. Our study suggests that although Fram Strait was significantly narrower and shallower during early Miocene, and the ventilation mechanism quite different in our model, the estimated ventilation rates are comparable to the chemical tracer estimates in the present-day Arctic Ocean. Since we achieved ventilation of the Arctic Ocean with a prescribed Fram Strait width of 100 km and sill depth of 1000 m, ventilation may have preceded the timing of a full ocean depth connection between the Arctic Ocean and North Atlantic established through seafloor spreading and the development of the Lena Trough.

  2. New aero-gravity results from the Arctic: Linking the latest Cretaceous-early Cenozoic plate kinematics of the North Atlantic and Arctic Ocean

    DEFF Research Database (Denmark)

    Døssing, Arne; Hopper, J.R.; Olesen, Arne Vestergaard

    2013-01-01

    The tectonic history of the Arctic Ocean remains poorly resolved and highly controversial. Details regarding break up of the Lomonosov Ridge from the Barents-Kara shelf margins and the establishment of seafloor spreading in the Cenozoic Eurasia Basin are unresolved. Significantly, the plate...... tectonic evolution of the Mesozoic Amerasia Basin is essentially unknown. The Arctic Ocean north of Greenland is at a critical juncture that formed at the locus of a Mesozoic three-plate setting between the Lomonosov Ridge, Greenland, and North America. In addition, the area is close to the European plate...... plateau against an important fault zone north of Greenland. Our results provide new constraints for Cretaceous-Cenozoic plate reconstructions of the Arctic. Key Points Presentation of the largest aero-gravity survey acquired over the Arctic Ocean Plate tectonic link between Atlantic and Arctic spreading...

  3. The relation between Arctic Ocean circulation and the Arctic Oscillation as revealed by satellite altimetry and gravimetry

    Science.gov (United States)

    Morison, J.; Kwok, R.; Peralta Ferriz, C.; Dickinson, S.; Morison, D.; Andersen, R.; Dewey, S.

    2017-12-01

    Arctic Ocean circulation is commonly characterized by the persistent anticyclonic Beaufort Gyre in the Canada Basin and the Transpolar Drift. While these are clearly important features, their role in changing Arctic Ocean circulation is at times distorted by sampling biases inherent in drifting buoy and standard shipboard measurements of western nations. Hydrographic measurements from SCICEX submarine cruises for science in the early 1990s revealed an increasingly cyclonic circulation along the Russian side of the Arctic Ocean related to the low sea level pressure pattern in the same region associated with a high Arctic Oscillation (AO) index. More recently satellite altimetry (ICESat and CryoSat2) and gravimetry (GRACE) have provided the basin-wide observational coverage needed to see shifts to increased cyclonic circulation in 2004 to 2008 and decreased cyclonic circulation in 2008 to 2015. These shifts are related to changes in the AO and are important for their effect on the trajectories of sea ice and freshwater through the Arctic Ocean.

  4. Mesozoic­ and Cenozoic Tectono-depositional History of the Southwestern Chukchi Borderland: Implications of Pre-Brookian Passive-margin Slope Deposits for the Jurassic Extensional Deformation of the Amerasia Basin, Arctic Ocean

    Science.gov (United States)

    Ilhan, I.; Coakley, B.

    2016-12-01

    A stratigraphic framework for offshore northwest of Alaska has been developed from multi-channel seismic reflection data and direct seismic-well ties to the late 80's Crackerjack and Popcorn exploration wells along the late Cretaceous middle Brookian unconformity. This unconformity is characterized by downlap, onlap, and bi-directional onlap of the overlying upper Brookian strata in high accommodation, and erosional incision of the underlying lower Brookian strata in low accommodation. This surface links multiple basins across the southwestern Chukchi Borderland, Arctic Ocean. The lower Brookian strata are characterized by pinch out basin geometry in which parallel-continuous reflectors show north-northeasterly progressive onlap of the younger strata onto a lower Cretaceous unconformity. These strata are subdivided into Aptian-Albian and Upper Cretaceous sections along a middle Cretaceous unconformity. The north-northeasterly thinning-by-onlap is consistent across hundreds of kilometers along the southwestern Chukchi Borderland. While this suggests a south-southwesterly regional source of sediment and transport from the Early Cretaceous Arctic Alaska-Chukotka orogens, pre-Brookian clinoform strata, underlying the lower Cretaceous unconformity angularly, have been observed for the first time in southeastern margin of the Chukchi Abyssal Plain. This suggests a change in sediment source and transport direction between the pre-Brookian and the lower Brookian strata. Although the mechanism for the accommodation is not well understood, we interpret the pre-Brookian strata as passive-margin slope deposits due to the fact that we have not observed any evidence for upper crustal tectonic deformation or syn-tectonic "growth" strata in the area. Thus, this implies that depositional history of the southwestern Chukchi Borderland post-dates the accommodation. This interpretation puts a new substantial constrain on the pre-Valanginian clockwise rotation of the Chukchi Borderland

  5. Limited predictability of extreme decadal changes in the Arctic Ocean freshwater content

    Science.gov (United States)

    Schmith, Torben; Olsen, Steffen M.; Ringgaard, Ida M.; May, Wilhelm

    2018-02-01

    Predictability of extreme changes in the Arctic Ocean freshwater content and the associated release into the subpolar North Atlantic up to one decade ahead is investigated using a CMIP5-type global climate model. The perfect-model setup consists of a 500 year control run, from which selected 10 year long segments are predicted by initialized, perturbed ensemble predictions. Initial conditions for these are selected from the control run to represent large positive or negative decadal changes in the total freshwater content in the Arctic Ocean. Two different classes of ensemble predictions are performed, one initialized with the `observed' ocean globally, and one initialized with the model climatology in the Arctic Ocean and with the observed ocean elsewhere. Analysis reveals that the former yields superior predictions 1 year ahead as regards both liquid freshwater content and sea ice volume in the Arctic Ocean. For prediction years two and above there is no overall gain in predictability from knowing the initial state in the Arctic Ocean and damped persistence predictions perform just as well as the ensemble predictions. Areas can be identified, mainly in the proper Canadian and Eurasian basins, where knowledge of the initial conditions gives a gain in predictability of liquid freshwater content beyond year two. Total freshwater export events from the Arctic Ocean into the subpolar North Atlantic have no predictability even 1 year ahead. This is a result of the sea ice component not being predictable and LFW being on the edge of being predictable for prediction time 1 year.

  6. Latitudinal variation of phytoplankton communities in the western Arctic Ocean

    Science.gov (United States)

    Min Joo, Hyoung; Lee, Sang H.; Won Jung, Seung; Dahms, Hans-Uwe; Hwan Lee, Jin

    2012-12-01

    Recent studies have shown that photosynthetic eukaryotes are an active and often dominant component of Arctic phytoplankton assemblages. In order to explore this notion at a large scale, samples were collected to investigate the community structure and biovolume of phytoplankton along a transect in the western Arctic Ocean. The transect included 37 stations at the surface and subsurface chlorophyll a maximum (SCM) depths in the Bering Sea, Chukchi Sea, and Canadian Basin from July 19 to September 5, 2008. Phytoplankton (>2 μm) were identified and counted. A cluster analysis of abundance and biovolume data revealed different assemblages over the shelf, slope, and basin regions. Phytoplankton communities were composed of 71 taxa representing Dinophyceae, Cryptophyceae, Bacillariophyceae, Chrysophyceae, Dictyochophyceae, Prasinophyceae, and Prymnesiophyceae. The most abundant species were of pico- to nano-size at the surface and SCM depths at most stations. Nano- and pico-sized phytoplankton appeared to be dominant in the Bering Sea, whereas diatoms and nano-sized plankton provided the majority of taxon diversity in the Bering Strait and in the Chukchi Sea. From the western Bering Sea to the Bering Strait, the abundance, biovolume, and species diversity of phytoplankton provided a marked latitudinal gradient towards the central Arctic. Although pico- and nano-sized phytoplankton contributed most to cell abundance, their chlorophyll a contents and biovolumes were less than those of the larger micro-sized taxa. Micro-sized phytoplankton contributed most to the biovolume in the largely ice-free waters of the western Arctic Ocean during summer 2008.

  7. Persistent organic pollutants in ocean sediments from the North Pacific to the Arctic Ocean

    Science.gov (United States)

    Ma, Yuxin; Halsall, Crispin J.; Crosse, John D.; Graf, Carola; Cai, Minghong; He, Jianfeng; Gao, Guoping; Jones, Kevin

    2015-04-01

    Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OC pesticides), and polybrominated diphenyl ethers (PBDEs) are reported in surficial sediments sampled along cruise transects from the Bering Sea to the central Arctic Ocean. OCs and PCBs all had significantly higher concentrations in the relatively shallow water (500 m) of the Bering Sea and Arctic Ocean (e.g., Canada Basin ΣPCB 149 ± 102 pg g-1 dw). Concentrations were similar to, or slightly lower than, studies from the 1990s, indicating a lack of a declining trend. PBDEs (excluding BDE-209) displayed very low concentrations (e.g., range of median values, 3.5-6.6 pg/g dw). In the shelf areas, the sediments comprised similar proportions of silt and clay, whereas the deep basin sediments were dominated by clay, with a lower total organic carbon (TOC) content. While significant positive correlations were observed between persistent organic pollutant (POP) concentrations and TOC (Pearson correlation, r = 0.66-0.75, p technical formulations (and/or marine surface waters), indicate substantial chemical processing during transfer to the benthic environment. Marked differences in sedimentation rates between the shallow and deeper water regions are apparent (the ˜5 cm-depth grab samples collected here representing ˜100 years of accumulation for the shelf sediments and ˜1000 years for the deeper ocean regions), which may bias any comparisons. Nonetheless, the sediments of the shallower coastal arctic seas appear to serve as significant repositories for POPs deposited from surface waters.

  8. Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean.

    Science.gov (United States)

    Carrizo, Daniel; Sobek, Anna; Salvadó, Joan A; Gustafsson, Örjan

    2017-07-18

    There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of ∑ 6 DDT (0.10-66 pg L -1 ) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.

  9. Gas Hydrate Mounds in the Eastern Slope of the Chukchi Basin, Arctic Ocean: Indicators of Methane-rich Focused Fluid Flow

    Science.gov (United States)

    Kim*, Young-Gyun; Kim, Hyoung-Jun; Kim, Sookwan; Lee, Imgyo; Kim, Ji-Hoon; Lee, Dong-Hun; Kang, Seung-Goo; Jin, Young Keun

    2017-04-01

    While the origin and distribution vary across geological conditions, there have been numerous reports on the occurrence of natural gas hydrate in the continental margins over the world ocean. However, in situ gas hydrate in the Chukchi Basin has not yet been found despite a favorable condition for its occurrence. Here we document, for the first time, the discovery of mound morphologies containing gas hydrate as well as methane-derived authigenic carbonate (MDAC) in the Chukchi Basin obtained during the IBRV Araon Expedition ARA07C in 2016. We analyzed high-resolution multibeam and sub-bottom profiler images, and radioactive isotopes (δ13CCH4, δDCH4) of gases from both the retrieved cores and dissociated hydrate to unravel the origin of the mounds. The mounds were found solitarily along certain water depth intervals and characterized by a circular shape, sizing up to tens of meters in width and a few meters in height. Acoustic turbidity is common below thin hemipelagic sediment layer, indicative of shallow accumulation of gas. The isotopic signatures suggest that thermogenic methane may migrate to the shallow depth although its migration pathway cannot be clarified. Our findings bring new insight on the occurrence of gas hydrate mounds in the Chukchi Basin, and their development linked to methane-rich focused fluid flow from deep. We will further investigate microbial characterization from the MDAC with analyses of the lipid marker and 16s rRNA to demonstrate methane flux variation with geological time.

  10. Challenges in selecting sites for Arctic Ocean drilling

    Science.gov (United States)

    Mikkelsen, Naja; Coakley, Bernard; Stein, Ruediger

    2012-06-01

    Overcoming Barriers to Arctic Ocean Drilling: The Site Survey Challenge; Copenhagen, Denmark, 1-3 November 2011 The climate of the high Arctic appears to be changing faster than any other region on Earth. To place contemporary change in context, it is necessary to use scientific ocean drilling to sample the climate history stored in the sediments of the Arctic Ocean. The focus of the November 2011 workshop was to define site survey investigations for drilling campaigns based on existing proposals and preproposals; to identify themes and areas for developing new and innovative science proposals; and to discuss opportunities, technical needs, and limitations for drilling in the Arctic Ocean.

  11. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  12. Arctic Ocean freshwater: How robust are model simulations?

    NARCIS (Netherlands)

    Jahn, A.; Aksenov, Y.; de Cuevas, B.A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the

  13. Processes of multibathyal aragonite undersaturation in the Arctic Ocean

    Science.gov (United States)

    Wynn, J.G.; Robbins, L.L.; Anderson, L.G.

    2016-01-01

    During 3 years of study (2010–2012), the western Arctic Ocean was found to have unique aragonite saturation profiles with up to three distinct aragonite undersaturation zones. This complexity is produced as inflow of Atlantic-derived and Pacific-derived water masses mix with Arctic-derived waters, which are further modified by physiochemical and biological processes. The shallowest aragonite undersaturation zone, from the surface to ∼30 m depth is characterized by relatively low alkalinity and other dissolved ions. Besides local influence of biological processes on aragonite undersaturation of shallow coastal waters, the nature of this zone is consistent with dilution by sea-ice melt and invasion of anthropogenic CO2 from the atmosphere. A second undersaturated zone at ∼90–220 m depth (salinity ∼31.8–35.4) occurs within the Arctic Halocline and is characterized by elevated pCO2 and nutrients. The nature of this horizon is consistent with remineralization of organic matter on shallow continental shelves bordering the Canada Basin and the input of the nutrients and CO2 entrained by currents from the Pacific Inlet. Finally, the deepest aragonite undersaturation zone is at greater than 2000 m depth and is controlled by similar processes as deep aragonite saturation horizons in the Atlantic and Pacific Oceans. The comparatively shallow depth of this deepest aragonite saturation horizon in the Arctic is maintained by relatively low temperatures, and stable chemical composition. Understanding the mechanisms controlling the distribution of these aragonite undersaturation zones, and the time scales over which they operate will be crucial to refine predictive models.

  14. Processes of multibathyal aragonite undersaturation in the Arctic Ocean

    Science.gov (United States)

    Wynn, J. G.; Robbins, L. L.; Anderson, L. G.

    2016-11-01

    During 3 years of study (2010-2012), the western Arctic Ocean was found to have unique aragonite saturation profiles with up to three distinct aragonite undersaturation zones. This complexity is produced as inflow of Atlantic-derived and Pacific-derived water masses mix with Arctic-derived waters, which are further modified by physiochemical and biological processes. The shallowest aragonite undersaturation zone, from the surface to ˜30 m depth is characterized by relatively low alkalinity and other dissolved ions. Besides local influence of biological processes on aragonite undersaturation of shallow coastal waters, the nature of this zone is consistent with dilution by sea-ice melt and invasion of anthropogenic CO2 from the atmosphere. A second undersaturated zone at ˜90-220 m depth (salinity ˜31.8-35.4) occurs within the Arctic Halocline and is characterized by elevated pCO2 and nutrients. The nature of this horizon is consistent with remineralization of organic matter on shallow continental shelves bordering the Canada Basin and the input of the nutrients and CO2 entrained by currents from the Pacific Inlet. Finally, the deepest aragonite undersaturation zone is at greater than 2000 m depth and is controlled by similar processes as deep aragonite saturation horizons in the Atlantic and Pacific Oceans. The comparatively shallow depth of this deepest aragonite saturation horizon in the Arctic is maintained by relatively low temperatures, and stable chemical composition. Understanding the mechanisms controlling the distribution of these aragonite undersaturation zones, and the time scales over which they operate will be crucial to refine predictive models.

  15. Polycyclic aromatic hydrocarbons in ocean sediments from the North Pacific to the Arctic Ocean.

    Science.gov (United States)

    Ma, Yuxin; Halsall, Crispin J; Xie, Zhiyong; Koetke, Danijela; Mi, Wenying; Ebinghaus, Ralf; Gao, Guoping

    2017-08-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) were measured in surficial sediments along a marine transect from the North Pacific into the Arctic Ocean. The highest average Σ 18 PAHs concentrations were observed along the continental slope of the Canada Basin in the Arctic (68.3 ± 8.5 ng g -1 dw), followed by sediments in the Chukchi Sea shelf (49.7 ± 21.2 ng g -1 dw) and Bering Sea (39.5 ± 11.3 ng g -1 dw), while the Bering Strait (16.8 ± 7.1 ng g -1 dw) and Central Arctic Ocean sediments (13.1 ± 9.6 ng g -1 dw) had relatively lower average concentrations. The use of principal components analysis with multiple linear regression (PCA/MLR) indicated that on average oil related or petrogenic sources contributed ∼42% of the measured PAHs in the sediments and marked by higher concentrations of two methylnaphthalenes over the non-alkylated parent PAH, naphthalene. Wood and coal combustion contributed ∼32%, and high temperature pyrogenic sources contributing ∼26%. Petrogenic sources, such as oil seeps, allochthonous coal and coastally eroded material such as terrigenous sediments particularly affected the Chukchi Sea shelf and slope of the Canada Basin, while biomass and coal combustion sources appeared to have greater influence in the central Arctic Ocean, possibly due to the effects of episodic summertime forest fires. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Diurnal tides in the Arctic Ocean

    Science.gov (United States)

    Kowalik, Z.; Proshutinsky, A. Y.

    1993-01-01

    A 2D numerical model with a space grid of about 14 km is applied to calculate diurnal tidal constituents K(1) and O(1) in the Arctic Ocean. Calculated corange and cotidal charts show that along the continental slope, local regions of increased sea level amplitude, highly variable phase and enhanced currents occur. It is shown that in these local regions, shelf waves (topographic waves) of tidal origin are generated. In the Arctic Ocean and Northern Atlantic Ocean more than 30 regions of enhanced currents are identified. To prove the near-resonant interaction of the diurnal tides with the local bottom topography, the natural periods of oscillations for all regions have been calculated. The flux of energy averaged over the tidal period depicts the gyres of semitrapped energy, suggesting that the shelf waves are partially trapped over the irregularities of the bottom topography. It is shown that the occurrence of near-resonance phenomenon changes the energy flow in the tidal waves. First, the flux of energy from the astronomical sources is amplified in the shelf wave regions, and afterwards the tidal energy is strongly dissipated in the same regions.

  17. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    Science.gov (United States)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments. Paleoceanography 11, 679-699.

  18. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    Science.gov (United States)

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  19. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model

    Directory of Open Access Journals (Sweden)

    E. E. Popova

    2010-11-01

    Full Text Available Until recently, the Arctic Basin was generally considered to be a low productivity area and was afforded little attention in global- or even basin-scale ecosystem modelling studies. Due to anthropogenic climate change however, the sea ice cover of the Arctic Ocean is undergoing an unexpectedly fast retreat, exposing increasingly large areas of the basin to sunlight. As indicated by existing Arctic phenomena such as ice-edge blooms, this decline in sea-ice is liable to encourage pronounced growth of phytoplankton in summer and poses pressing questions concerning the future of Arctic ecosystems. It thus provides a strong impetus to modelling of this region.

    The Arctic Ocean is an area where plankton productivity is heavily influenced by physical factors. As these factors are strongly responding to climate change, we analyse here the results from simulations of the 1/4° resolution global ocean NEMO (Nucleus for European Modelling of the Ocean model coupled with the MEDUSA (Model for Ecosystem Dynamics, carbon Utilisation, Sequestration and Acidification biogeochemical model, with a particular focus on the Arctic basin. Simulated productivity is consistent with the limited observations for the Arctic, with significant production occurring both under the sea-ice and at the thermocline, locations that are difficult to sample in the field.

    Results also indicate that a substantial fraction of the variability in Arctic primary production can be explained by two key physical factors: (i the maximum penetration of winter mixing, which determines the amount of nutrients available for summer primary production, and (ii short-wave radiation at the ocean surface, which controls the magnitude of phytoplankton blooms. A strong empirical correlation was found in the model output between primary production and these two factors, highlighting the importance of physical processes in the Arctic Ocean.

  20. Arctic Ocean: hydrothermal activity on Gakkel Ridge.

    Science.gov (United States)

    Jean-Baptiste, Philippe; Fourré, Elise

    2004-03-04

    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  1. Pumices from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    sediments are significant not only volumetrically but also as indicators of tectonic environments. A few studies in the past concerning the volcanogenic components in the Indian Ocean are informative but these do not pertain to the Central Indian Ocean Basin...

  2. Radioactive dumping in the Arctic Ocean

    International Nuclear Information System (INIS)

    Lamb, J.; Gizewski, P.

    1993-01-01

    Recent revelations concerning the possible environmental hazards posed by the sunken Soviet nuclear submarine Komsomolets and the disposal of radioactive materials in the Arctic and North Atlantic oceans have generated much controversy and debate. Too often, however, the key scientific and policy issues that the dumping raises are treated as two solitudes. In reality, decisions taken by national governments and international agencies in connection with remediation, regulation, and even research must be based on both science and policy. Indeed, a sound approach to the dumping issue must integrate scientific evidence and policy considerations relating to legal, political, social, and economic matters. Radioactive waste disposal is an exceedingly difficult problem. Information detailing the Soviet Navy's past dumping practices, and increasing awareness of the problems that Russia and other states may encounter in the future disposal of radioactive waste, indicate that the global inventory of radioactive wastes requiring storage and disposal is large and growing

  3. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    OpenAIRE

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars Henrik

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation...

  4. Increase in acidifying water in the western Arctic Ocean

    Science.gov (United States)

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun

    2017-02-01

    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  5. Peculiarities in the Fabric of Oceanic Crust Generated at the Gakkel Ridge, Arctic Ocean.

    Science.gov (United States)

    Weigelt, E.; Jokat, W.

    2001-12-01

    The Gakkel Ridge, northern boundary of the American and Eurasian plates, presents the lowest spreading rate (< 20 mm/yr) of the global ridge system. Therefore it provides an excellent opportunity to study any dependence of crustal fabric on spreading rate. Subject of this contribution are the crustal thickness and the roughness of basement surface in the Eurasian Basin. Reflection seismics and gravity records aquired during the ARCTIC'91 expedition across the Gakkel Ridge and the adjacent Nansen and Amundsen Basin are used. The data are combined with results of former refraction seismic experiments to constrain starting-points for gravity modeling. The topography of the basements surface, buried under more than 3000m thick sediments in the central parts of the basins, appears to be very rough. It varies from several hundred meters up to 1000 m. The RMS-roughness ranges from 450 m in the central Amundsen Basin to 584 m in the southern Eurasian Basin. These values agree reasonably well with RMS-roughness values derived by an empirical model from spreading rates. The gravity models reveal a 5-6 km thick oceanic crust (density of 2900 kg/cm) in the central part of the Amundsen Basin, increasing to 9 km towards the Gakkel Ridge. At the southwestern end of the Eurasian Basin, oceanic crust is only 2-5 km thick and thickens towards the Gakkel Ridge. In our model the ridge is composed of a 2 km thick upper layer with a density of 2600 kg/cm, underlain by an 8 km thick zone with a density of 2900 kg/cm. This is a surprising result, contradicting most theoretical models from which crustal thickness is supposed to decrease with decreasing spreading rate.

  6. Pacific Water in the Arctic Ocean and Fram Strait

    Science.gov (United States)

    Dodd, Paul; Blaesterdalen, Torgeir; Karcher, Michael; Stedmon, Colin

    2017-04-01

    The volume, characteristics and sources of freshwater circulating in the Arctic Ocean vary in time and are expected to change under a declining sea ice cover, influencing the physical environment and Arctic ecosystem. Here we focus on relatively fresh (S = 32) Pacific Water, which enters the Arctic Ocean via the Bering Strait and makes up a significant part of the freshwater exiting the Arctic Ocean through Fram Strait. More than 30 repeated sections of nutrient measurements were collected across Fram Strait between 1980 and 2015. The fraction of Pacific Water along these repeated sections can be estimated from the ratio of nitrate to phosphate together with salinity. The time-series of repeated Fram Strait sections indicates that the fraction of Pacific Water passing out of the Arctic Ocean has changed significantly over the last 30 years. Pacific water fractions remained high from 1980 to 1998, but in 1999 Pacific water almost disappeared from Fram Strait, reappearing only briefly from 2011 to 2012. Several hypotheses suggest how variations in the large-scale atmospheric circulation over the Arctic Ocean may influence the transport and pathways of Pacific Water. Here we test those hypotheses by comparing established atmospheric indices with the long time series of repeated sections across Fram Strait. Repeated sections across Fram Strait are also compared with a simulated Pacific Water tracer in the NAOSIM numerical model to further investigate the upstream drivers of changes observed in Fram Strait. The principle aim of this work is to identify the processes causing variability in freshwater fluxes out of the Arctic Ocean so that we may better distinguish inter-annual variability from longer-term changes to the Arctic freshwater budget. However, the volume of fresh, silicate-rich Pacific water exported from the Arctic Ocean may also have implications for the ecosystem in the Nordic Seas.

  7. Comprehensive Ocean - Atmosphere Data Set (COADS) LMRF Arctic Subset

    Data.gov (United States)

    National Aeronautics and Space Administration — The Comprehensive Ocean - Atmosphere Data Set (COADS) LMRF Arctic subset contains marine surface weather reports for the region north of 65 degrees N from ships,...

  8. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  9. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  10. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans

    Science.gov (United States)

    Carmack, E. C.; Yamamoto-Kawai, M.; Haine, T. W. N.; Bacon, S.; Bluhm, B. A.; Lique, C.; Melling, H.; Polyakov, I. V.; Straneo, F.; Timmermans, M.-L.; Williams, W. J.

    2016-03-01

    The Arctic Ocean is a fundamental node in the global hydrological cycle and the ocean's thermohaline circulation. We here assess the system's key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.

  11. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  12. Contrasting spreading processes at Gakkel Ridge across the 3°E boundary shaped the Arctic Ocean lithosphere

    OpenAIRE

    Schlindwein, Vera; Schmid, Florian

    2015-01-01

    The Arctic mid-ocean ridge system is one of the two main representatives of the particular class of ultraslow spreading ridges with spreading rates of less than 20 mm/y full rate. The formation of new ocean lithosphere at these ridges strongly deviates from any other ocean basin. Typical properties of ultraslow spreading ridges are alternating rift sections with magmatic and amagmatic spreading. At 3°E on Gakkel Ridge, a prominent boundary exists. Here magmatic spreading in the...

  13. From the Arctic Lake to the Arctic Ocean: Radiogenic Isotope Signature of Transitional Sediments

    Science.gov (United States)

    Poirier, A.; Hillaire-Marcel, C.; Veron, A. J.; Stevenson, R.; Carignan, J.

    2011-12-01

    The Arctic Ocean was once an enclosed basin with fresh surface water conditions during the Paleocene and most of the Eocene epochs (e.g. Moran et al. 2004), until a readjustment in high latitude plate tectonics allowed North Atlantic marine water to flow into the Arctic basin some 36 Ma ago (Poirier and Hillaire-Marcel, 2011). This first input was sufficient to overprint the earlier osmium isotopic composition in the basin (ibid.) and deposit marine sediments on the Lomonosov Ridge between 36 Ma and present day. Here, we present Sr and Pb isotope signatures in the transitional layers of the same ACEX sequence from Lomonosov Ridge (ca. 190 to 210 mcd). Bulk sediment samples were leached prior to total dissolution in order to remove the hydrogeneous Sr fraction of the sediment. The Sr isotopic signature of the residual fraction is thought to reflect the origin of the sedimentary load that was deposited before, during, and after the transition (source tracing). Leaching was not required for the Pb isotope analyses as leached residues and bulk sediments yielded similar isotopic composition for the oxic sediments. Moreover, correction for in-situ production is needed within the anoxic lacustrine section (see below), so bulk sediments were measured. Above and below the lacustrine/marine boundary, we note relatively constant source provenances (or mixture of sources). This implies that the relative contributions from regional detrital sedimentary sources, and thus relative erosion rates over surrounding continents, did not change much on the long term scale. On the other hand, a sharp change in the isotopic compositions highlights the transition level itself, with an abrupt shift to low 87Sr/88Sr isotope compositions and by a smaller excursion in all three 204Pb-normalised lead isotopes compositions (corrected for in-situ decay of U). In the light of the recently revised age of the transitional layer (~36 Ma at the lacustrine/marine transition), this isotopic excursion

  14. Enabling Technology for the Exploration of the Arctic Ocean - Multi Channel Seismic Reflection data acquisition

    Science.gov (United States)

    Coakley, B.; Anderson, R.; Chayes, D. N.; Goemmer, S.; Oursler, M.

    2009-12-01

    Great advances in mapping the Arctic Ocean have recently been made through the relatively routine acquisition of multibeam data from icebreakers operating on various cruise. The USCGC Healy, the German icebreaker Polarstern, the Canadian icebreaker Amundsen and the Swedish icebreaker Oden all routinely collect multibeam data, even while in heavy ice pack. This increase in data has substantially improved our knowledge of the form of the Arctic Ocean seafloor. Unfortunately, it is not possible to routinely collect Multi Channel Seismic Reflection (MCS) data while underway in the ice pack. Our inability to simply collect these data restricts how we understand many of the features that segment the basin by depriving us of the historical information that can be obtained by imaging the stratigraphy. Without these data, scientific ocean drilling, the ultimate ground truth for Marine Geology, cannot be done. The technology and expertise to collect MCS must be adapted for the particular circumstances of the Arctic Ocean. While MCS data have been collected in the Arctic Ocean, the procedures have relied on icebreakers towing equipment. Since icebreakers follow the path of least resistance through the pack, data are acquired in locations that are not scientifically optimal and rarely in the relatively straight lines necessary for optimal processing. Towing in the ice pack is also difficult, inefficient and puts this equipment at substantial risk of crushing or loss. While icebreakers are one means to collect these data, it is time to conduct a systematic evaluation of the costs and benefits of different platforms for MCS data acquisition. This evaluation should enable collection of high-quality data set at selected locations to solve scientific problems. Substantial uncertainties exist about the relative capabilities, costs and limitations for acquisition of MCS data from various platforms in the Arctic Ocean. For example; - Is it possible to collect multi-channel seismic

  15. Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda

    Science.gov (United States)

    Cronin, T. M.; Holtz, T.R.; Whatley, R.C.

    1994-01-01

    Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long

  16. Sea level variability in the Arctic Ocean observed by satellite altimetry

    OpenAIRE

    Prandi, P.; Ablain, M.; Cazenave, A.; Picot, N.

    2012-01-01

    We investigate sea level variability in the Arctic Ocean from observations. Variability estimates are derived both at the basin scale and on smaller local spatial scales. The periods of the signals studied vary from high frequency (intra-annual) to long term trends. We also investigate the mechanisms responsible for the observed variability. Different data types are used, the main one being a recent reprocessing of satellite altimetry data...

  17. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic

    Science.gov (United States)

    Phillips, R.L.; Grantz, A.

    2001-01-01

    The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modem circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during

  18. Continental Margins of the Arctic Ocean: Implications for Law of the Sea

    Science.gov (United States)

    Mosher, David

    2016-04-01

    A coastal State must define the outer edge of its continental margin in order to be entitled to extend the outer limits of its continental shelf beyond 200 M, according to article 76 of the UN Convention on the Law of the Sea. The article prescribes the methods with which to make this definition and includes such metrics as water depth, seafloor gradient and thickness of sediment. Note the distinction between the "outer edge of the continental margin", which is the extent of the margin after application of the formula of article 76, and the "outer limit of the continental shelf", which is the limit after constraint criteria of article 76 are applied. For a relatively small ocean basin, the Arctic Ocean reveals a plethora of continental margin types reflecting both its complex tectonic origins and its diverse sedimentation history. These factors play important roles in determining the extended continental shelves of Arctic coastal States. This study highlights the critical factors that might determine the outer edge of continental margins in the Arctic Ocean as prescribed by article 76. Norway is the only Arctic coastal State that has had recommendations rendered by the Commission on the Limits of the Continental Shelf (CLCS). Russia and Denmark (Greenland) have made submissions to the CLCS to support their extended continental shelves in the Arctic and are awaiting recommendations. Canada has yet to make its submission and the US has not yet ratified the Convention. The various criteria that each coastal State has utilized or potentially can utilize to determine the outer edge of the continental margin are considered. Important criteria in the Arctic include, 1) morphological continuity of undersea features, such as the various ridges and spurs, with the landmass, 2) the tectonic origins and geologic affinities with the adjacent land masses of the margins and various ridges, 3) sedimentary processes, particularly along continental slopes, and 4) thickness and

  19. Rolling the dice on the ice; New modes for underway data acquisition in the Arctic Ocean

    Science.gov (United States)

    Coakley, B.; Dove, D.

    2012-12-01

    Exploration of the Arctic Ocean has always depended on the sea ice. It has been a platform supporting drifting ice stations and an obstacle to be over come by force (icebreakers) or finesse (US Navy fast attack submarines). Reduced seasonal sea ice cover has made it possible to work more freely in the peripheral Arctic Ocean, opening relatively unknown regions to scientific exploration and study. In September 2011, the RV Marcus G. Langseth set sail from Dutch Harbor, Alaska bound through Bering Strait for the Arctic Ocean. This was the first Arctic Ocean trip for MGG data acquisition by a US academic research vessel since 1994, when the RV Maurice Ewing collected a 2-D MCS profile across the Bering Shelf, through the Strait and along the Beaufort Shelf, stopping near Barrow, Alaska. RV Langseth arrived on the mid-Chukchi shelf and streamed gear just south of the "Crackerjack" well, drilled by Shell Exploration in the late eighties. The ship sailed north, crossing the "Popcorn" well and then set a course to the NW, setting the baseline for the survey parallel to the Beaufort Shelf edge. Sailing through almost entirely ice-free waters, approximately 5300 km of multi-channel seismic reflection data were acquired on a NW-SE oriented grid, which straddled the transition from Chukchi Shelf to the Chukchi Borderland. It would not have been possible for Langseth, which is not ice reinforced, to acquire these data prior to 2007. The dramatic expansion of late Summer open water in the western Arctic Ocean made it possible to use this ship effectively across a broad swath of the shelf and the periphery of the deep central basin. While the survey region was almost entirely ice free during this cruise, which straddled the ice minimum for 2011, it was not possible to predict this a priori, despite expectations set by the previous five years of ice edge retreat. For this reason, the Canadian Ice Service was engaged to provide interpreted ice imagery, multiple times per day

  20. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean

  1. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean: Is China a Threat for Arctic Ocean Security?

    DEFF Research Database (Denmark)

    Cassotta, Sandra; Hossain, Kamrul; Ren, Jingzheng

    2015-01-01

    The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitates natural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in the Arctic Ocean. Climate change facilitates natural resource extractions and increases competition...... imperialistic” resulting in substantial impact on the Arctic and Antartic dynamism. Due to ice-melting, an easy access to natural resources, China’s Arctic strategy in the Arctic Ocean has reinforced its military martitime strategy and has profoundly changed its maritime military doctrine shifting from regional...... between states and can result in tensions, even military ones. This article investigates through a political and legal analysis the role of China as an emerging regulatory sea power in the Arctic Ocean given its assertive “energy hungry country behaviour” in the Arctic Ocean. The United Nations Convention...

  2. Acoustic Mapping of Thermohaline Staircases in the Arctic Ocean.

    Science.gov (United States)

    Stranne, Christian; Mayer, Larry; Weber, Thomas C; Ruddick, Barry R; Jakobsson, Martin; Jerram, Kevin; Weidner, Elizabeth; Nilsson, Johan; Gårdfeldt, Katarina

    2017-11-09

    Although there is enough heat contained in inflowing warm Atlantic Ocean water to melt all Arctic sea ice within a few years, a cold halocline limits upward heat transport from the Atlantic water. The amount of heat that penetrates the halocline to reach the sea ice is not well known, but vertical heat transport through the halocline layer can significantly increase in the presence of double diffusive convection. Such convection can occur when salinity and temperature gradients share the same sign, often resulting in the formation of thermohaline staircases. Staircase structures in the Arctic Ocean have been previously identified and the associated double diffusive convection has been suggested to influence the Arctic Ocean in general and the fate of the Arctic sea ice cover in particular. A central challenge to understanding the role of double diffusive convection in vertical heat transport is one of observation. Here, we use broadband echo sounders to characterize Arctic thermohaline staircases at their full vertical and horizontal resolution over large spatial areas (100 s of kms). In doing so, we offer new insight into the mechanism of thermohaline staircase evolution and scale, and hence fluxes, with implications for understanding ocean mixing processes and ocean-sea ice interactions.

  3. Arctic Ocean freshwater composition, pathways and transformations from a passive tracer simulation

    Directory of Open Access Journals (Sweden)

    Per Pemberton

    2014-07-01

    Full Text Available Freshwater (FW induced transformations in the upper Arctic Ocean were studied using a coupled regional sea ice-ocean model driven by winds and thermodynamic forcing from a reanalysis of data during the period 1948–2011, focusing on the mean state during 1968–2011. Using passive tracers to mark a number of FW sources and sinks, their mean composition, pathways and export were examined. The distribution of the simulated FW height reproduced the known features of the Arctic Ocean and volume-integrated FW content matched climatological estimates reasonably well. Input from Eurasian rivers and extraction by sea-ice formation dominate the composition of the Arctic FW content whilst Pacific water increases in importance in the Canadian Basin. Though pathways generally agreed with previous studies the locus of the Eurasian runoff shelf-basin transport centred at the Alpha-Mendeleyev ridge, shifting the Pacific–Atlantic front eastwards. A strong coupling between tracers representing Eurasian runoff and sea-ice formation showed how water modified on the shelf spreads across the Arctic and mainly exits through the Fram Strait. Transformation to salinity dependent coordinates showed how Atlantic water is modified by both low-salinity shelf and Pacific waters in an estuary-like overturning producing water masses of intermediate salinity that are exported to the Nordic Seas. A total halocline renewal rate of 1.0 Sv, including both shelf-basin exchange and cross-isohaline flux, was estimated from the transports: both components were of equal magnitude. The model's halocline shelf-basin exchange is dominated by runoff and sea-ice processes at the western shelves (the Barents and Kara seas and Pacific water at the eastern shelves (the Laptev, East Siberian and Chukchi seas.

  4. Ice-tethered measurement platforms in the Arctic Ocean: a contribution by the FRAM infrastructure program

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel

    2016-04-01

    The Arctic Ocean has been in the focus of many studies during recent years, investigating the state, the causes and the implications of the observed rapid transition towards a thinner and younger sea-ice cover. However, consistent observational datasets of sea ice, ocean and atmosphere are still sparse due to the limited accessibility and harsh environmental conditions. One important tool to fill this gap has become more and more feasible during recent years: autonomous, ice-tethered measurement platforms (buoys). These drifting instruments independently transmit their data via satellites, and enable observations over larger areas and over longer time periods than manned expeditions, even throughout the winter. One aim of the newly established FRAM (FRontiers in Arctic marine Monitoring) infrastructure program at the Alfred-Wegener-Institute is to realize and maintain an interdisciplinary network of buoys in the Arctic Ocean, contributing to an integrated, Arctic-wide observatory. The additional buoy infrastructure, ship-time, and developments provided by FRAM are critical elements in the ongoing international effort to fill the large data gaps in a rapidly changing Arctic Ocean. Our focus is the particularly underrepresented Eurasian Basin. Types of instruments range from snow depth beacons and ice mass balance buoys for monitoring ice growth and snow accumulation, over radiation and weather stations for energy budget estimates, to ice-tethered profiling systems for upper ocean monitoring. Further, development of new bio-optical and biogeochemical buoys is expected to enhance our understanding of bio-physical processes associated with Arctic sea ice. The first set of FRAM buoys was deployed in September 2015 from RV Polarstern. All datasets are publicly available on dedicated web portals. Near real time data are reported into international initiatives, such as the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). The

  5. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean.

    Science.gov (United States)

    Zhao, Mengwei; Wang, Weiguo; Liu, Yanguang; Dong, Linsen; Jiao, Liping; Hu, Limin; Fan, Dejiang

    2016-03-15

    To analyze the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) and evaluate their potential ecological risks, the concentrations of 16 PAHs were measured in 43 surface sediment samples from the Bering Sea and western Arctic Ocean. Total PAH (tPAH) concentrations ranged from 36.95 to 150.21 ng/g (dry weight). In descending order, the surface sediment tPAH concentrations were as follows: Canada Basin>northern Chukchi Sea>Chukchi Basin>southern Chukchi Sea>Aleutian Basin>Makarov Basin>Bering Sea shelf. The Bering Sea and western Arctic Ocean mainly received PAHs of pyrogenic origin due to pollution caused by the incomplete combustion of fossil fuels. The concentrations of PAHs in the sediments of the study areas did not exceed effects range low (ERL) values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of the East Siberian barrier on the echinoderm dispersal in the Arctic Ocean

    Science.gov (United States)

    Mironov, A. N.; Dilman, A. B.

    2010-06-01

    The distributional patterns were analyzed for 43 species and 33 genera of echinoderms in the Laptev and East Siberian seas and for 59 species and 35 genera of the asteroid species in the Arctic Ocean. The probable colonization route through the Arctic was suggested for each species based on (1) the distributional patterns of the Arctic species, (2) the distributional patterns of the closely related species, and (3) the location of the center of the diversity of the species belonging to a certain genus. The species of the Pacific origin prevailed in the asteroid fauna of the Arctic seas. The asteroid species diversity and the ratio of the species of Pacific origin decreased from the Barents towards the Laptev Sea and increased, respectively, in the East Siberian and the Chukchee seas. The species range limits were found for 19 species in the East Siberian Sea compared to only 3 species in the Laptev Sea. The East Siberian Sea was a limiting area for the dispersal of four species groups: (1) invaders from the North Pacific dispersing along the Asian coast of the Arctic (shallow-water stenobathic species), (2) invaders from the North Pacific dispersing along the American coast of the Arctic and further on back into the Arctic along the Eurasian coast (secondarily Atlantic species); (3) originally invaders from the Northern Atlantic; (4) representatives of the Arctic autochthonous fauna. A great width of the biotic boundaries (i.e., the zones of the species range boundaries crowding) was typical for the Arctic Basin, which was a sign of their young geological age.

  7. The seasonal cycle of the Arctic Ocean under climate change

    Science.gov (United States)

    Carton, James A.; Ding, Yanni; Arrigo, Kevin R.

    2015-09-01

    The seasonal cycle of Arctic Ocean temperature is weak due to the insulating and light-scattering effects of sea ice cover and the moderating influence of the seasonal storage and release of heat through ice melting and freezing. The retreat of sea ice and other changes in recent decades is already warming surface air temperatures in winter. These meteorological changes raise the question of how the seasonal cycle of the ocean may change. Here we present results from coupled climate model simulations showing that the loss of sea ice will dramatically increase the amplitude of the seasonal cycle of sea surface temperature in the Arctic Ocean. Depending on the rate of growth of atmospheric greenhouse gases, the seasonal range in Arctic sea surface temperature may exceed 10°C by year 2300, greatly increasing the stratification of the summer mixed layer.

  8. Arctic Lena Trough -- NOT a Mid-Ocean Ridge

    Science.gov (United States)

    Snow, J. E.; Hellebrand, E.; Handt, A. V.; Nauret, F.; Gao, Y.; Feig, S.; Jovanovic, Z.

    2005-12-01

    The North American-Eurasian plate boundary traverses the Atlantic and Arctic oceans. Over most of that length, it is a Mid-Ocean Ridge that spreads between about 23 mm/yr (MAR) and 10 mm/yr (Gakkel Ridge) full rate. The northern MAR and the Gakkel ridge are connected by a deep linear feature called Lena Trough. Until about 10 million years ago, Lena Trough was not an oceanic domain at all, but a continental shear zone through a narrow isthmus of continental crust that connected the American and Eurasian plates. Its opening was, significantly, the most recent and final event in the separation of the North American from the Eurasian continent, and opened the gateway for deep water circulation between the Arctic and North Atlantic oceans. Models for the tectonic configuration of Lena Trough have until now differed only in the number and length of fracture zones and spreading segments thought to be present. Lena Trough is a deep fault-bounded basin with depths of 3800-4200m, and irregular, steep valley sides that are oblique to the spreading direction. Basement horst structures outcrop as sigmoidal ridges with steeply dipping sides project out of the valley floor, but these are not traceable to any parallel structures on either side. Ridge-orthogonal topography is simply absent (ie no segments trending parallel nor fracture zones perpendicular to Gakkel Ridge). Most faults trend approximately SSE-NNW, an obliquity with respect to Gakkel Ridge (SW-NE) of about 55 degrees. The basement ridges are composed nearly entirely of mantle peridotite, as are the valley walls. Only at the northern and southern extremities of Lena Trough do basalts appear at all. The Northern basalts show strong chemical affinities to those of Gakkel Ridge, and can be considered a part of the Gakkel volcanic system. The rare southernmost basalts, however, are quite unique. They are alkali basalts with K2O up to 2 weight percent, highly incompaitble element enriched and occupy a corner of isotope

  9. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Renate Degen

    2015-08-01

    Full Text Available Little is known about the distribution and dynamics of macrobenthic communities of the deep Arctic Ocean. The few previous studies report low standing stocks and confirm a gradient with declining biomass from the slopes down to the basins, as commonly reported for deep-sea benthos. In this study, we investigated regional differences of faunal abundance and biomass, and made for the first time ever estimates of deep Arctic community production by using a multi-parameter artificial neural network model. The underlying data set combines data from recent field studies with published and unpublished data from the past 20 years, to analyse the influence of water depth, geographical latitude and sea-ice concentration on Arctic benthic communities. We were able to confirm the previously described negative relationship of macrofauna standing stock with water depth in the Arctic deep sea, while also detecting substantial regional differences. Furthermore, abundance, biomass and production decreased significantly with increasing sea-ice extent (towards higher latitudes down to values <200 ind m−2, <65 mg C m−2 and <73 mg C m−2 y−1, respectively. In contrast, stations under the seasonal ice zone regime showed much higher standing stock and production (up to 2500 mg C m−2 y−1, even at depths down to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic Ocean as it explains both the low values in the ice-covered Arctic basins and the higher values in the seasonal ice zone.

  10. Sea ice inertial oscillations in the Arctic Basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert

    2012-10-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic Basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong interaction between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant multi-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  11. Importance of Ocean Processes and Feedbacks with Sea Ice in Arctic Amplification

    Science.gov (United States)

    Maslowski, Wieslaw; DiMaggio, Dominic; Lee, Younjoo; Osinski, Robert; Roberts, Andrew

    2017-04-01

    The Arctic is undergoing some of the most coordinated and rapid climatic changes currently occurring anywhere on Earth. While historical reconstructions from Earth System Models (ESMs) are in broad agreement with these changes, the rate of change in ESMs remains outpaced by observations. This is due to a combination of coarse resolution, inadequate parameterizations, under-represented processes and a limited knowledge of physical interactions. We hypothesize that these limitations are in part the result of an inadequate representation of critical high-latitude processes controlling the accumulation and distribution of sub-surface oceanic heat content and its interaction with the sea ice cover, especially in the western Arctic. Several CMIP5 models are evaluated using a skill metric that combines both variance and correlation between modeled and observed quantities. Models inadequately represent the upper ocean hydrology in the central Canada Basin, and the potentially important heat sources of the near-surface temperature maximum and Pacific Summer Water are missing. This is evidenced by the fact that the CMIP5 multi-model mean exhibits a cold temperature bias near the surface and a warm bias at intermediate depths. To identify the sensitivity of upper Arctic Ocean hydrography to physical processes and model configurations, a series of experiments are performed using the Regional Arctic System Model (RASM), a high-resolution, fully-coupled regional climate model. Analysis of RASM output suggests that surface momentum coupling (air-ice, ice-ocean, and air-ocean), brine-rejection parameterization, and model resolution, both horizontal and vertical, influence thermohaline structure down to 700 m. We argue that such improvements are needed in future CMIP-type models to advance their simulation and prediction of Arctic climate change.

  12. Mid-Cenozoic tectonic and paleoenvironmental setting of the central Arctic Ocean

    Science.gov (United States)

    O'Regan, M.; Moran, K.; Backman, J.; Jakobsson, M.; Sangiorgi, F.; Brinkhuis, Henk; Pockalny, Rob; Skelton, Alasdair; Stickley, Catherine E.; Koc, N.; Brumsack, Hans-Juergen; Willard, Debra A.

    2008-01-01

    Drilling results from the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge (LR) document a 26 million year hiatus that separates freshwater-influenced biosilica-rich deposits of the middle Eocene from fossil-poor glaciomarine silty clays of the early Miocene. Detailed micropaleontological and sedimentological data from sediments surrounding this mid-Cenozoic hiatus describe a shallow water setting for the LR, a finding that conflicts with predrilling seismic predictions and an initial postcruise assessment of its subsidence history that assumed smooth thermally controlled subsidence following rifting. A review of Cenozoic tectonic processes affecting the geodynamic evolution of the central Arctic Ocean highlights a prolonged phase of basin-wide compression that ended in the early Miocene. The coincidence in timing between the end of compression and the start of rapid early Miocene subsidence provides a compelling link between these observations and similarly accounts for the shallow water setting that persisted more than 30 million years after rifting ended. However, for much of the late Paleogene and early Neogene, tectonic reconstructions of the Arctic Ocean describe a landlocked basin, adding additional uncertainty to reconstructions of paleodepth estimates as the magnitude of regional sea level variations remains unknown.

  13. Central American paleogeography controlled Pliocene Arctic Ocean molluscan migrations

    Science.gov (United States)

    Marincovich, Louie, Jr.

    2000-06-01

    The Pliocene interchange of North Pacific and North Atlantic marine faunas via the Arctic Ocean was long thought to have been a single episode of faunal exchange between the northern oceans that took place as soon as the Bering Strait first opened. New evidence implies that there were two northern migration events instead of one, and that the second phase of migration was much later than the first. The migration of Atlantic-Arctic mollusks into the Bering Sea and North Pacific when the Bering Strait first opened at 4.8 5.5 Ma constituted the initial phase of this interchange, but the abrupt appearance of North Pacific mollusks in the North Atlantic at 3.6 Ma postdated the first opening of the Bering Strait by 1.2 1.9 m.y. This second phase of trans-Arctic migration was also coeval with shoaling of the Central American seaway between North and South America. This late Pliocene trans-Arctic migration of North Pacific mollusks is evidence for the reversal of marine flow to northward through the Bering Strait, which was one consequence of the reorganization of Northern Hemisphere ocean circulation caused by substantial closure of the Central American seaway. This inferred causal link between the histories of the Beringian and Panamanian ocean gateways is in agreement with ocean circulation models.

  14. Physical constrains and productivity in the future Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Dag eSlagstad

    2015-10-01

    Full Text Available Todays physical oceanography and primary and secondary production was investigated for the entire Arctic Ocean with the physical-biologically coupled SINMOD model. To obtain indications on the effect of climate change in the 21th century the magnitude of change, and where and when these may take place SINMOD was forced with down-scaled climate trajectories of the International Panel of Climate Change with the A1B climate scenario which appears to predict an average global atmospheric temperature increase of 3.5 to 4 °C at the end of this century. It is projected that some surface water features of the physical oceanography in the Arctic Ocean and adjacent regions will change considerably. The largest changes will occur along the continuous domains of Pacific and in particular regarding Atlantic Water advection and the inflow shelves. Withdrawal of ice will increase primary production, but stratification will persist or, for the most, get stronger as a function of ice-melt and thermal warming along the inflow shelves. Thus the nutrient dependent new and harvestable production will not increase proportionally with increasing photosynthetic active radiation. The greatest increases in primary production are found along the Eurasian perimeter of the Arctic Ocean (up to 40 g C m-2 y-1 and in particular in the northern Barents and Kara Seas (40-80 g C m-2 y-1 where less ice-cover implies less Arctic Water and thus less stratification. Along the shelf break engirdling the Arctic Ocean upwelling and vertical mixing supplies nutrients to the euphotic zone when ice-cover withdraws northwards. The production of Arctic copepods along the Eurasian perimeter of the Arctic Ocean will increase significantly by the end of this century (2-4 g C m-2 y-1. Primary and secondary production will decrease along the southern sections of the continuous advection domains of Pacific and Atlantic Water due to increasing thermal stratification. In the central Arctic Ocean

  15. Ocean currents shape the microbiome of Arctic marine sediments

    NARCIS (Netherlands)

    Hamdan, L.J.; Coffin, R.B.; Sikaroodi, M.; Greinert, J.; Treude, T.; Gillevet, P.M.

    2013-01-01

    Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and

  16. Fluvial and hydrothermal input of manganese into the Arctic Ocean

    NARCIS (Netherlands)

    Middag, R.; de Baar, H. J. W.; Laan, P.; Klunder, M. B.; Shaw, Timothy J.

    2011-01-01

    A total of 773 samples were analysed for dissolved manganese (Mn) in the Arctic Ocean aboard R. V. Polarstern during expedition ARK XXII/2 from 28 July until 07 October 2007 from Tromso (Norway) to Bremerhaven. Concentrations of Mn were elevated in the surface layer with concentrations of up to 6 nM

  17. Response of halocarbons to ocean acidification in the Arctic

    NARCIS (Netherlands)

    Hopkins, F.E.; Kimmance, S.A.; Stephens, J.A.; Bellerby, R.G.J.; Brussaard, C.P.D.; Czerny, J.; Schulz, K.G.; Archer, S.D.

    2013-01-01

    The potential effect of ocean acidification (OA) on seawater halocarbons in the Arctic was investigated during a mesocosm experiment in Spitsbergen in June-July 2010. Over a period of 5 weeks, natural phytoplankton communities in nine ~ 50 m3 mesocosms were studied under a range of pCO2 treatments

  18. Dissolved aluminium and the silicon cycle in the Arctic Ocean

    NARCIS (Netherlands)

    Middag, R.; de Baar, H. J. W.; Laan, P.; Bakker, K.

    2009-01-01

    Concentrations of dissolved (0.2 mu m filtered) aluminium (Al) have been determined for the first time in the Eurasian part of the Arctic Ocean over the entire water column during expedition ARK XXII/2 aboard R.V. Polarstern (2007). An unprecedented number of 666 samples was analysed for 44 stations

  19. Arctic Ocean gravity anomalies measured from the icebreaker USCGC Healy; Issues and Opportunities

    Science.gov (United States)

    Coakley, B.; Kenyon, S. C.

    2010-12-01

    The release of the initial Arctic Gravity Project (ArcGP) grid for the Earth North of 64 degrees latitude was a big step forward in the basic description of the Arctic Ocean and the continents that surround it. A compilation of data collected by US Navy submarines, satellites, airplanes and surface data, it provided the first synthesis of these data and complemented existing bathymetric and magnetic anomaly grids and associated maps. With these data, for the first time, it was possible to recognize and study individual features and propose meaningful hypotheses as to their origin and history. The ArcGP grid effectively synthesized the incomplete mapping that preceded it, but it can be improved. The primary means to improve this map is the collection of new gravity anomaly data throughout the Arctic Ocean basin. Since the 2008 field season, the US icebreaker USCGC Healy has carried two Bell BGM-3 gravimeters on board, collecting data in tandem, during the last three field seasons while the ship supported the US Extended Continental Shelf mapping effort and various scientific cruises. In addition to improving resolution and determinations of level throughout the Amerasian Basin, simultaneous data acquisition on both instruments has made possible a more complete understand of time varying system behavior, particularly meter drift. The accumulated data collected by USCGC Healy will be used to improve the ArcGP for future earth gravity models, satellite missions, and to support US and Canadian Extended Continental Shelf submissions under the Law of the Sea.

  20. Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean

    Science.gov (United States)

    Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.

    1999-01-01

    Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature

  1. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  2. Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean

    Science.gov (United States)

    Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.

    2009-01-01

    Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.

  3. The Arctic Mid-Ocean Ridge Expedition - AMORE 2001

    Science.gov (United States)

    Michael, P.; Thiede, J.; Langmuir, C.; Jokat, W.; Dick, H.; Snow, J.; Goldstein, S.; Graham, D.; Edmonds, H.

    2003-04-01

    The first high resolution mapping and sampling study of the ultraslow-spreading Gakkel Ridge was accomplished during an international icebreaker expedition to the high Arctic in summer 2001 involving research icebreakers PFS POLARSTERN and USCGC HEALY. Gakkel Ridge extends 1800 km from north of Greenland to Laptev Sea, all of it beneath Arctic sea ice. High-resolution maps of the seafloor were made with multibeam sonars, even while breaking ice. The western part of the ridge was mapped for the first time. We sampled and analyzed igneous rocks from over 200 sites along 1000 km of the ridge. Seismic refraction and reflection profiles were run across the basins flanking Gakkel Ridge and show that crustal thickness varies with time. Along-axis seismic refraction profiles show anomalously fast velocities present at shallow levels in the crust. Abundant hydrothermal activity was found using MAPRs deployed while rock sampling, and by dredging sulfides. For this slowest spreading mid-ocean ridge (MOR), predictions were that magmatism and crustal thickness should progressively diminish as the spreading rate decreases progressively eastward along the ridge and that hydrothermal activity should be rare. Instead, magmatic variations are irregular and hydrothermal activity is abundant. A 300-kilometer long central amagmatic zone where mantle peridotites are emplaced directly in the axis lies between abundant, continuous volcanism in the west and large, widely spaced volcanic centers in the east. Distinctive geochemical trends in basalts show that the extent of mantle melting is low and varies along axis but not systematically with spreading rate. They also show systematic variations in source composition. Most peridotites are less refractory and less altered than typical abyssal peridotites, but enigmatic harzburgites are also present. These observations show that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth and/or mantle

  4. Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Directory of Open Access Journals (Sweden)

    Sylvia T. Cole

    2017-09-01

    Full Text Available The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations

  5. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  6. Nodules of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Kodagali, V.N.

    The Central Indian Ocean Basin (CIOB) extends from 0 degree S to 25 degrees S latitudes and 70 degrees E to 90 degrees E longitudes The major portion of CIOB is an abyssal plain and the plains are believed to be developed by the Ganges Fan turbidity...

  7. The Role and Variability of Ocean Heat Content in the Arctic Ocean: 1948-2009

    Science.gov (United States)

    2014-06-01

    the top of the atmosphere, and via atmospheric constituents, including methane and carbon dioxide . The strength of these models lies in their ability...moved from the Bering Sea past the Bering Strait into the Beaufort Sea (Logerwell 2008). However, besides the risks of ocean acidification and...VARIABILITY OF OCEAN HEAT CONTENT IN THE ARCTIC OCEAN : 1948–2009 by Dominic F. DiMaggio June 2014 Thesis Co-Advisors: Wieslaw Maslowski

  8. Storm-Driven Mixing and Potential Impact on the Arctic Ocean

    National Research Council Canada - National Science Library

    Yang, Jiayan

    2004-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean...

  9. Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean.

    Science.gov (United States)

    Hioki, Nanako; Kuma, Kenshi; Morita, Yuichirou; Sasayama, Ryouhei; Ooki, Atsushi; Kondo, Yoshiko; Obata, Hajime; Nishioka, Jun; Yamashita, Youhei; Nishino, Shigeto; Kikuchi, Takashi; Aoyama, Michio

    2014-10-27

    The location and magnitude of oceanic iron sources remain uncertain owing to a scarcity of data, particularly in the Arctic Ocean. The formation of cold, dense water in the subsurface layer of the western Arctic Ocean is a key process in the lateral transport of iron, macronutrients, and other chemical constituents. Here, we present iron, humic-like fluorescent dissolved organic matter, and nutrient concentration data in waters above the continental slope and shelf and along two transects across the shelf-basin interface in the western Arctic Ocean. We detected high concentrations in shelf bottom waters and in a plume that extended in the subsurface cold dense water of the halocline layer in slope and basin regions. At σθ = 26.5, dissolved Fe, humic-like fluorescence intensity, and nutrient maxima coincided with N* minima (large negative values of N* indicate significant denitrification within shelf sediments). These results suggest that these constituents are supplied from the shelf sediments and then transported laterally to basin regions. Humic dissolved organic matter probably plays the most important role in the subsurface maxima and lateral transport of dissolved Fe in the halocline layer as natural Fe-binding organic ligand.

  10. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    Science.gov (United States)

    Marzen, Rachel E.; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-10-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  11. Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean

    Science.gov (United States)

    Marzen, Rachel; DeNinno, Lauren H.; Cronin, Thomas M.

    2016-01-01

    Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital-scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere-productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and constructed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ∼20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice-volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations.

  12. The Oslo Declaration on High Seas Fishing in the Central Arctic Ocean

    OpenAIRE

    Molenaar, Erik Jaap

    2015-01-01

    On 16 July 2015, in Oslo, the coastal states of the Arctic Ocean – Canada, Denmark, Norway, the Russian Federation and the United States (Arctic Five) – took a long-awaited further step in the international regulation of Arctic Ocean fisheries by signing the ‘Declaration Concerning the Prevention of Unregulated High Seas Fishing in the Central Arctic Ocean’ (Oslo Declaration). Key features of the Declaration are that it contains various political commitments, rather than internati...

  13. US Navy Operational Global Ocean and Arctic Ice Prediction Systems

    Science.gov (United States)

    2014-09-01

    the black ribbon of color in the Southern Hemisphere represents the northern edge of the Antarctic Circumpolar Current. The ice environment in the...the Arctic forecast system discussed below. The ocean model uses atmospheric forcing from the Fleet Numerical Meteorology and Oceanography Center...University of Rhode Island and Ziv Sirkes, University of Southern Mississippi, pers. comm., January 22, 1997). NOGAPS atmospheric forcing was used in the

  14. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    with propagation into the Central Arctic Ocean along the Gakkel Ridge, (iv) deep-water ocean basins and shallow-water shelves of the North Atlantic and Arctic Oceans, and (v) associated large igneous provinces (LIPs).We present a series of maps for the Circumpolar Arctic which include maps of the depth to Moho...

  15. First Recovery of Submarine Basalts from the Chukchi Borderland and Alpha / Mendeleev Ridge, Arctic Ocean

    Science.gov (United States)

    Andronikov, A.; Mukasa, S.; Mayer, L. A.; Brumley, K.

    2008-12-01

    In addition to multibeam bathymetric mapping of the Amerasia Basin in the high Arctic Ocean, the August- September 2008 cruise of USCGC Icebreaker HEALY (HLY0805) conducted a total of seven dredging profiles along the southern sectors of the Alpha/Mendeleev Ridge and in the northernmost region of Northwind Ridge of Chukchi Borderland. Five of the seven dredges were recovered on relatively gentle slopes (30-40°) and yielded mostly mud with a small number of fragments of sedimentary rocks and ice rafted debris (IRD), which indicates either rapid sedimentation rates on the bathymetrically high features sampled or lack of recently active volcanism on these features. Two dredges taken from steep escarpments with slopes (> 55°) at >3.5 km depth recovered some of the first known submarine basaltic samples from the Arctic Ocean floor away from the Gakkel Ridge. Ragged, freshly exposed edges indicate that these samples were broken from outcrop rather than being IRD. In some cases (e.g., a rise on the ocean floor between the Alpha/Mendeleev Ridge and Northwind Ridge) the samples have well-preserved pillow-basalt structures with fresh glassy rims up to 4 cm thick. Inward from the rims, the rocks are dark-grey lavas, some with visible plagioclase laths and rare phenocrysts up to 0.5 mm in length, some with visible signs of alteration such as local occurrence of chlorite. Surfaces that were exposed to water can be covered with a thin black film of Mn oxides. Occurrence of this volcanism away from any obvious spreading centers compels us to hypothesize that forthcoming geochemical analyses are likely to identify these rocks as the first Arctic Ocean floor samples to exhibit ocean island basalt compositions. The dredge taken from the northern slope of Northwind Ridge, along slopes as steep as > 45°, recovered a variety of rock types including sedimentary and basaltic rocks. Some of the basalts have columnar jointing (the size of the columns is only up to 5-6 cm across

  16. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean.

    Science.gov (United States)

    Jakobsson, Martin; Backman, Jan; Rudels, Bert; Nycander, Jonas; Frank, Martin; Mayer, Larry; Jokat, Wilfried; Sangiorgi, Francesca; O'Regan, Matthew; Brinkhuis, Henk; King, John; Moran, Kathryn

    2007-06-21

    Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic's deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated ('ventilated') conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygen-poor 'lake stage', to a transitional 'estuarine sea' phase with variable ventilation, and finally to the fully ventilated 'ocean' phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum, although it remains unclear if there is a causal relationship between these two events.

  17. The Experience of Barometric Drifter Application for Investigating the World Ocean Arctic Region

    Directory of Open Access Journals (Sweden)

    S.V. Motyzhev

    2016-08-01

    Full Text Available Efficiency of the problem solution to create a regionally-oriented data computing system for marine dynamics and ecosystem evolution modeling and forecasting (that should be capable for providing reliable information for managerial decision making, justifying future economic projects and adjusting the existing ones depends on development level of observational systems, environmental evolution, mathematical models and techniques for observational data assimilation. The analysis of the system as an observational segment of modern geo-informational technology allows us to draw a conclusion that the system of drifter observations is one of the most effective ones nowadays. Surface drifter network, continuously operating in the World Ocean, provides systematic operational data on the surface water circulation, thermal processes in the upper ocean and air pressure. Drifter data, acquired over the past 15 years, allowed one to improve and even change the existing concepts of patterns and mechanisms of regional climatic trend and hydrometeorological anomaly formation under effect of global processes in the Ocean – Atmosphere model (in the high latitudes as well. In the present paper the principle results of the analysis of expediency and feasibility of drifting systematic operative pressure field monitoring establishment in the near-surface atmosphere layer over the Arctic Ocean and the seas of the Russian Federation Arctic Zone have been considered. More than 30 drifters of BTC60/GPS/ice type, whose summarized lifetime as for June 2015 exceeded 6500 days, were deployed in the Arctic in 2012–2015. According to data acquired from the drifters, more than 155 000 air pressure readings were received. The most intensive drifter observations were carried out in two regions: in the Beaufort Sea – Canada Basin and in the Central Arctic. The results of experiments revealed that hardware-software solutions implemented in polar modifications of barometric

  18. First evaluation of MyOcean altimetric data in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2012-01-01

    The MyOcean V2 preliminary (V2p) data set of weekly gridded sea level anomaly (SLA) maps from 1993 to 2009 over the Arctic region is evaluated against existing altimetric data sets and tide gauge data. Compared with DUACS V3.0.0 (Data Unification and Altimeter Combination System) data set, My......Ocean V2p data set improves spatial coverage and quality as well as maximum temporal correlation coefficient between altimetry and tide gauge data. The estimated amplitude of sea level annual signal and linear sea level trend from MyOcean data set are evaluated against altimetry from DUACS and RADS (Radar...... Altimeter Database System), the SODA (Simple Ocean Data Assimilation) ocean reanalysis and tide gauge data sets from PSMSL (Permanent Service for Mean Sea Level). The results show that the MyOcean data set fits in-situ measurements better than DUACS data set with respect to amplitude of annual signal...

  19. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean.

    Science.gov (United States)

    Liu, Chuan-Zhou; Snow, Jonathan E; Hellebrand, Eric; Brügmann, Gerhard; von der Handt, Anette; Büchl, Anette; Hofmann, Albrecht W

    2008-03-20

    The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.

  20. BAROMETRIC PRESSURE and Other Data From Arctic Ocean from 19771114 to 19890517 (NODC Accession 9200249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession is from the CD-Rom containing data from eastern Arctic collected as part of Global Ocean Data Archeaology and Rescue (GODAR) project...

  1. Arctic Ocean Drift Tracks from Ships, Buoys and Manned Research Stations, 1872-1973

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Thirty-four drift tracks in the Arctic Ocean pack ice are collected in a unified tabular data format, one file per track. Data are from drifting ships, manned...

  2. Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models

    Science.gov (United States)

    Lee, Younjoo J.; Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Aumont, Olivier; Babin, Marcel; Buitenhuis, Erik T.; Chevallier, Matthieu; de Mora, Lee; Dessert, Morgane; Dunne, John P.; Ellingsen, Ingrid H.; Feldman, Doron; Frouin, Robert; Gehlen, Marion; Gorgues, Thomas; Ilyina, Tatiana; Jin, Meibing; John, Jasmin G.; Lawrence, Jon; Manizza, Manfredi; Menkes, Christophe E.; Perruche, Coralie; Le Fouest, Vincent; Popova, Ekaterina E.; Romanou, Anastasia; Samuelsen, Annette; Schwinger, Jörg; Séférian, Roland; Stock, Charles A.; Tjiputra, Jerry; Tremblay, L. Bruno; Ueyoshi, Kyozo; Vichi, Marcello; Yool, Andrew; Zhang, Jinlun

    2016-12-01

    The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Zeu), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Zeu throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

  3. The emergence of modern sea ice cover in the Arctic Ocean.

    Science.gov (United States)

    Knies, Jochen; Cabedo-Sanz, Patricia; Belt, Simon T; Baranwal, Soma; Fietz, Susanne; Rosell-Melé, Antoni

    2014-11-28

    Arctic sea ice coverage is shrinking in response to global climate change and summer ice-free conditions in the Arctic Ocean are predicted by the end of the century. The validity of this prediction could potentially be tested through the reconstruction of the climate of the Pliocene epoch (5.33-2.58 million years ago), an analogue of a future warmer Earth. Here we show that, in the Eurasian sector of the Arctic Ocean, ice-free conditions prevailed in the early Pliocene until sea ice expanded from the central Arctic Ocean for the first time ca. 4 million years ago. Amplified by a rise in topography in several regions of the Arctic and enhanced freshening of the Arctic Ocean, sea ice expanded progressively in response to positive ice-albedo feedback mechanisms. Sea ice reached its modern winter maximum extension for the first time during the culmination of the Northern Hemisphere glaciation, ca. 2.6 million years ago.

  4. Ferromanganese nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.; Pattan, J.N.

    In order to delineate a mine site for ferromanganese nodules, extensive surveys were conducted in Central Indian Ocean Basin. Mapping of the basin by multibeam swath bathymetry (Hydrosweep) has revealed many new bottom relief features...

  5. Factors Reducing Efficiency of the Operational Oceanographic Forecast Systems in the Arctic Basin

    Directory of Open Access Journals (Sweden)

    V.N. Belokopytov

    2017-04-01

    Full Text Available Reliability of the forecasted fields in the Arctic Basin is limited by a number of problems resulting, in the first turn, from lack of operational information. Due to the ice cover, satellite data on the sea level and the sea surface temperature is either completely not available or partially accessible in summer. The amount of CTD measuring systems functioning in the operational mode (3 – 5 probes is not sufficient. The number of the temperature-profiling buoys the probing depth of which is limited to 60 m, is not enough for the Arctic as well. Lack of spatial resolution of the available altimetry information (14 km, as compared to the Rossby radius in the Arctic Ocean (2 – 12 km, requires a thorough analysis of the forecasting system practical goals. The basic factor enhancing reliability of the oceanographic forecast consists in the fact that the key oceanographic regions, namely the eastern parts of the Norwegian and Greenland seas, the Barents Sea and the Chukchi Sea including the Bering Strait (where the Atlantic and Pacific waters flow in and transform, and the halocline structure is formed are partially or completely free of ice and significantly better provided with operational information.

  6. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    Science.gov (United States)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  7. Particle-reactive radionuclides in the central Arctic Ocean. Evidence for shelf scavenging

    International Nuclear Information System (INIS)

    Ellis, K.M.; Smith, J.N.; Nelson, R.W.P.; Moran, S.B.

    1997-01-01

    Full text: Distributions of particle-reactive radionuclides 239,240 Pu, 238 Pu, 210 Pb and 210 Po measured in the central Arctic Ocean during expeditions on the Canadian icebreakers, CCGS Henry Larsen in 1993 and CCGS Louis St Laurent in 1994 and 1995 reflect their sources, circulation pathways and scavenging histories. Disequilibria between the naturally occurring 210 Pb (T 1/2 = 22.3 y) and its grandparent 226 Ra (T 1/2 = 1600 y) can be used to determine residence times for dissolved 210 Pb on the order of 10 to 100 years. Disequilibria is evident throughout the water column in the Arctic Ocean but is greatest in the halo-cline water (100 to 300 m) in the Makarov, Canada and Amundsen Basins where minima in 210 Pb activities are observed. Vertical distributions of 239,240 Pu, a long-lived radionuclide derived mainly from atmospheric nuclear fallout, are remarkably similar throughout the Arctic Ocean. Profiles are characterized by low activities in the surface mixed layer, increased levels through the halo-cline and maximum values in the Atlantic layer, decreasing to levels below the detection limit at depths greater than 1500 m. Comparison of the ratio of 239,240 Pu to 90 Sr, a non particle-reactive fallout radionuclide, to the global fallout ratio is used to determine 239,240 Pu removal rates. Both particle-reactive radionuclide distributions are consistent with recent contact of surface and halo-cline water with particle-rich continental shelf regions where 239,240 Pu and 210 Pb evidently undergo enhanced scavenging from seawater. Atlantic layer water is characterized by fallout 239,240 Pu/ 90 Sr ratios and limited 210 Pb/ 226 Ra disequilibria, which provides evidence for reduced scavenging and interaction of Atlantic layer water with shelf regions

  8. Arctic Ocean sea ice drift origin derived from artificial radionuclides

    International Nuclear Information System (INIS)

    Camara-Mor, P.; Masque, P.; Garcia-Orellana, J.; Cochran, J.K.; Mas, J.L.; Chamizo, E.; Hanfland, C.

    2010-01-01

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of 137 Cs and 239,240 Pu activities and the 240 Pu/ 239 Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The 240 Pu/ 239 Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the 240 Pu/ 239 Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the 137 Cs and 239,240 Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice.

  9. Phytoplankton distribution in the Western Arctic Ocean during a summer of exceptional ice retreat

    Science.gov (United States)

    Coupel, P.; Jin, H. Y.; Ruiz-Pino, D.; Chen, J. F.; Lee, S. H.; Li, H. L.; Rafizadeh, M.; Garçon, V.; Gascard, J. C.

    2011-07-01

    A drastic ice decline in the Arctic Ocean, triggered by global warming, could generate rapid changes in the upper ocean layers. The ice retreat is particularly intense over the Canadian Basin where large ice free areas were observed since 2007. The CHINARE 2008 expedition was conducted in the Western Arctic (WA) ocean during a year of exceptional ice retreat (August-September 2008). This study investigates whether a significant reorganization of the primary producers in terms of species, biomass and productivity has to be observed in the WA as a result of the intense ice melting. Both pigments (HPLC) and taxonomy (microscopy) acquired in 2008 allowed to determine the phytoplanktonic distribution from Bering Strait (65° N) to extreme high latitudes over the Alpha Ridge (86° N) encompassing the Chukchi shelf, the Chukchi Borderland and the Canadian Basin. Two different types of phytoplankton communities were observed. Over the ice-free Chukchi shelf, relatively high chl-a concentrations (1-5 mg m-3) dominated by 80 % of diatoms. In the Canadian Basin, surface waters are oligotrophic (poverty (Canadian Basin) and the richness (Chukchi shelf) of the WA, we explore the role of the nutrient-rich Pacific Waters, the bathymetry and two characteristics linked to the intense ice retreat: the stratification and the Surface Freshwater Layer (SFL). The freshwater accumulation induced a strong stratification limiting the nutrient input from the subsurface Pacific waters. This results in a biomass impoverishment of the well-lit layer and compels the phytoplankton to grow in subsurface. The phytoplankton distribution in the Chukchi Borderland and north Canadian Basin, during the summer of exceptional ice retreat (2008), suggested when compared to in-situ data from a more ice covered year (1994), recent changes with a decrease of the phytoplankton abundance while averaged biomass was similar. The 2008 obtained phytoplankton data in the WA provided a state of the ecosystem which

  10. Investigating the role of wind in generating surface currents over the slope area of the Laptev Sea, Arctic Ocean

    Science.gov (United States)

    Patteson, R. N.

    2017-12-01

    Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.

  11. Arctic cryosphere and Milankovitch forcing of Great Basin paleoclimate.

    Science.gov (United States)

    Lachniet, Matthew; Asmerom, Yemane; Polyak, Victor; Denniston, Rhawn

    2017-10-11

    Although Great Basin paleoclimate history has been examined for more than a century, the orbital-scale paleoclimate forcings remain poorly understood. Here we show - by a detailed phasing analysis of a well-dated stalagmite δ 18 O time series - that Great Basin paleoclimate is linearly related to, but lagged, the 23,000 yr precession cycle in northern hemisphere summer insolation by an average of 3240 years (-900 to 6600 yr range) over the last two glacial cycles. We interpret these lags as indicating that Great Basin climate is sensitive to and indirectly forced by changes in the cryosphere, as evidenced by fast and strong linkages to global ice volume and Arctic paleoclimate indicators. Mid-latitude atmospheric circulation was likely impacted by a northward shifted storm track and higher pressure over the region arising from decreased sea ice and snow cover. Because anthropogenic warming is expected to reduce northern hemisphere snow and ice cover, continued increase in atmospheric greenhouse gases is likely to result in warming and drying over coming centuries that will amplify a warming trend that began ~2400 years ago.

  12. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  13. Winter bloom of a rare betaproteobacterium in the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Laura eAlonso-Saez

    2014-08-01

    Full Text Available Extremely low abundance microorganisms (members of the ‘rare biosphere’ are believed to include dormant taxa, which can sporadically become abundant following environmental triggers. Yet, microbial transitions from rare to abundant have seldom been captured in situ, and it is uncertain how widespread these transitions are. A bloom of a single ribotype (≥99% similarity in the 16S ribosomal RNA gene of a widespread betaproteobacterium (Janthinobacterium sp. occurred over two weeks in Arctic marine waters. The Janthinobacterium population was not detected microscopically in situ in January and early February, but suddenly appeared in the water column thereafter, eventually accounting for up to 20% of bacterial cells in mid February. During the bloom, this bacterium was detected at open water sites up to 50 km apart, being abundant down to more than 300 meters. This event is one of the largest monospecific bacterial blooms reported in polar oceans. It is also remarkable because Betaproteobacteria are typically found only in low abundance in marine environments. In particular, Janthinobacterium were known from non-marine habitats and had previously been detected only in the rare biosphere of seawater samples, including the polar oceans. The Arctic janthinobacterium formed mucilagenous monolayer aggregates after short (ca. 8 hours incubations, suggesting that biofilm formation may play a role in maintaining rare bacteria in pelagic marine environments. The spontaneous mass occurrence of this opportunistic rare taxon in polar waters during the energy-limited season extends current knowledge of how and when microbial transitions between rare and abundant occur in the ocean.

  14. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    Full Text Available Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2, maintaining an estimated net primary production of 0.4-40 mg C m(-2 d(-1, and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  15. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cassotta Pertoldi-Bianchi, Sandra; Hossain, Kamrul; Ren, Jingzheng

    2015-01-01

    on the Law of the Sea (UNCLOS) and the Arctic Council (AC) are taken into consideration under climate change effects, to assess how global legal frameworks and institutions can deal with China’s strategy in the Arctic Ocean. China’s is moving away from its role as “humble power” to one of “informal...... between states and can result in tensions, even military ones. This article investigates through a political and legal analysis the role of China as an emerging regulatory sea power in the Arctic Ocean given its assertive “energy hungry country behaviour” in the Arctic Ocean. The United Nations Convention...... be considered as a variable for Arctic security as there are no sufficient legal and policy objective elements to adduct that it constitutes a threat to Artic ocean security....

  16. An environmental DNA assay for detecting Arctic grayling in the upper Missouri River basin, North America

    Science.gov (United States)

    K. J. Carim; J. C. S. Dysthe; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    The upper Missouri River basin in the northwestern US contains disjunct Arctic grayling (Thymallus arcticus) populations of conservation concern. To assist efforts aimed at understanding Artic grayling distribution, we developed a quantitative PCR assay to detect the presence of Arctic grayling DNA in environmental samples. The assay amplified low...

  17. Validation of satellite data with IASOA observatories and shipboard measurements in Arctic Ocean

    Science.gov (United States)

    Repina, Irina; Artamonov, Arseniy; Mazilkina, Alexandra; Valiullin, Denis; Stanichny, Sergey

    2016-04-01

    The paper shows the possibility of using surface observation data at high latitudes for the validation of different satellite products. We use data from International Arctic Systems for Observing the Atmosphere (IASOA) observatories and data from Nansen and Amundsen basins observation system (NABOS) project. The NABOS field experiment was carried out in the central part of the Arctic and in the eastern Arctic seas during summer and fall period of 2004-2009, 2013 and 2015. Newly improved satellite products and surface observations provide an opportunity to revisit remote-sensing capabilities for estimating shortwave and longwave radiative fluxes, as well as turbulent fluxes at high latitudes. Estimates of SW fluxes from the MODIS and LW fluxes from the NOAA satellites are evaluated against land observations from IASOA observatories, and unique shipboard measurements. Results show that the satellite products are in better agreement with observations than those from numerical models. Therefore, the large scale satellite based estimates should be useful for model evaluation and for providing information in formulating energy budgets at high latitudes. Visible and near-infrared albedos over snow and ice surfaces are retrieved from AVHRR. Comparison with surface measurements of albedo in arctic observatories and Arctic ocean shows very good agreement. Meteorological and micrometeorological observations were used to validate the surface temperature and surface heat fluxes in the satellite data. Compared data arrays are independent and sufficiently detailed to perform trustworthy evaluations. The spatial and temporal patterns of the resulting flux fields are investigated and compared with those derived from satellite observations such as HOAPS, from blended data such as AOFLUX (in the open water cases). A computation of the sensible heat flux at the surface is formulated on the basis of spatial variations of the surface temperature estimated from satellite data. Based on

  18. Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    M. Tjernström

    2012-08-01

    Full Text Available Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as the Arctic Summer Cloud-Ocean Study (ASCOS, described here. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this.

    To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean: the AOE-96, SHEBA and AOE-2001 expeditions.

    We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of surface-shear and

  19. An Improved 20-Year Arctic Ocean Altimetric Sea Level Data Record

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2015-01-01

    For ocean and climate research, it is essential to get long-term altimetric sea level data that is as accurate as possible. However, the accuracy of the altimetric data is frequently degraded in the interior of the Arctic Ocean due to the presence of seasonal or permanent sea ice. We have...... reprocessed ERS-1/2/Envisat satellite altimetry to develop an improved 20-year sea level dataset for the Arctic Ocean. We have developed both an along-track dataset and three-day gridded sea level anomaly (SLA) maps from September 1992 to April 2012. A major improvement in data coverage was gained...... estimation of sea level changes from satellite altimetry in the Arctic Ocean. The reprocessed dataset exhibit a mean sea level trend of 2.1 +/- 1.3mm/year (without Glacial Isostatic Adjustment correction) covering the Arctic Ocean between 66 degrees N and 82 degrees N with significant higher spatial...

  20. A new high resolution tidal model in the arctic ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, Ole Baltazar; Lyard, F.

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence......, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge...... of the tides improves the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever...

  1. Synechococcus in the Atlantic gateway to the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Maria Lund Paulsen

    2016-10-01

    Full Text Available Increasing temperatures, with pronounced effects at high latitudes, have raised questions about potential changes in species composition, as well as possible increased importance of small-celled phytoplankton in marine systems. In this study, we mapped out one of the smallest and globally most widespread primary producers, the picocyanobacterium Synechococcus, within the Atlantic inflow to the Arctic Ocean. In contrast to the general understanding that Synechococcus is almost absent in polar oceans due to low temperatures, we encountered high abundances (up to 21,000 cells mL-1 at 79 °N, and documented their presence as far north as 82.5 °N. Covering an annual cycle in 2014, we found that during autumn and winter, Synechococcus was often more abundant than picoeukaryotes, which usually dominate the picophytoplankton communities in the Arctic. Synechococcus community composition shifted from a quite high genetic diversity during the spring bloom to a clear dominance of two specific operational taxonomic units (OTUs in autumn and winter. We observed abundances higher than 1,000 cells mL-1 in water colder than 2 °C at seven distinct stations and size-fractionation experiments demonstrated a net growth of Synechococcus at 2 °C in the absence of nano-sized grazers at certain periods of the year. Phylogenetic analysis of petB sequences demonstrated that these high latitude Synechococcus group within the previously described cold-adapted clades I and IV, but also contributed to unveil novel genetic diversity, especially within clade I.

  2. The Experience of Using Autonomous Drifters for Studying the Ice Fields and the Ocean Upper Layer in the Arctic

    Directory of Open Access Journals (Sweden)

    S.V. Motyzhev

    2017-04-01

    Full Text Available The constructional and operational features of the BTC60/GPS/ice temperature-profiling drifters, developed in Marine Hydrophysical institute RAS for investigation of polar areas, are considered in this article. The drifters operated in completely automatic mode measuring air pressure, water temperatures at 17 depths down to 60 m, ocean pressures at 20, 40 and 60 m nominal depths and current locations. Accuracies of measurements were: +/-2 hPa for air pressure, +/-0.1°C for temperatures, +/-30 hPa for ocean pressure, 60 m for locations. Iridium satellite communication system was used for data transfer. Time delay between sample and delivery to a user did not exceed 10 minutes. More than 30 thermodrifters were developed in the Beaufort Sea – Canada Basin and central Arctic for the period from September 2012 to September 2014. Total duration of drifting buoys in operation was more of 4800 days. It was accepted the data of hourly samples about variability of ice-flows and ice field as a whole movements, thermo processes within upper water layer below ice, air pressure in near surface atmosphere of the Arctic region. The article includes some results of statistical analysis of data from drifter ID247950, the 3-year trajectory of which depended on the processes of transfer and evolution of ice fields in the Beaufort Sea – Canada Basin. Over a long period of time the Arctic buoy in-situ experiments allowed resulting about capability and reasonability to create reliable, technological and low-cost buoy network on basis of BTC60/GPS/ice drifters to monitor Arctic area of the World Ocean.

  3. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    Science.gov (United States)

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All

  4. Sea State and Boundary Layer Physics of the Emerging Arctic Ocean

    Science.gov (United States)

    2013-09-01

    heating of the Arctic Ocean and adjacent seas , 1979–2005: Attribution and role in the ice - albedo feedback. Geophys. Res. Lett., 34, doi:10.1029...M., 2008. Sea ice – albedo feedback and nonlinear Arctic climate change. In Arctic Sea Ice Decline, 111–131(Washington DC, American Geophysical...observations and climatology . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Wave forecasting in the presence of sea ice

  5. Dissolved organic matter (DOM) in pore water of Arctic Ocean sediments: linking DOM molecular composition with microbial community structure

    Science.gov (United States)

    Rossel, P. E.; Bienhold, C.; Boetius, A.; Dittmar, T.

    2016-02-01

    Marine organic matter (OM) that sinks from surface waters to the seafloor is the energy and carbon source for benthic communities. These communities produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. In the Arctic Ocean, primary production is limited by nutrients and light and is thus strongly influenced by sea ice cover. Ice cover is expected to further decrease due to global warming, which may have important consequences for primary production and the quantity and quality of OM exported to the seafloor. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether there is any relation between Arctic Ocean ice cover and DOM composition and 3) whether the DOM composition correlates with microbial community structure. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometry, were statistically correlated with environmental parameters. The productive ice margin stations showed higher abundances of molecular formulae of peptides, unsaturated aliphatics and saturated fatty acids. This molecular trend is indicative of fresh OM and phytodetritus deposition, compared to the northernmost, ice-covered stations which had stronger aromatic signals. Benthic bacterial community structure, as assessed with the fingerprinting method ARISA, was significantly correlated with DOM molecular composition. Further analyses using Illumina next-generation sequencing will enable the taxonomic identification of specific bacterial groups and their interdependence with DOM compounds. This study contributes to the understanding of the coupling between Arctic Ocean productivity and its depositional regime, and provides first insights into potential links between microbial community structure and DOM molecular composition in Arctic sediments

  6. Depth anomalies in the Arabian Basin, NW Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ajay, K.K.; Chaubey, A.K.

    as the difference between the observed depth to oceanic basement (corrected for sediment load) and the calculated depth to oceanic basement of the same age. The results indicate an anomalous depth to basement of oceanic crust in the Arabian Basin in the age bracket...

  7. Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean.

    Science.gov (United States)

    Sohn, Robert A; Willis, Claire; Humphris, Susan; Shank, Timothy M; Singh, Hanumant; Edmonds, Henrietta N; Kunz, Clayton; Hedman, Ulf; Helmke, Elisabeth; Jakuba, Michael; Liljebladh, Bengt; Linder, Julia; Murphy, Christopher; Nakamura, Ko-Ichi; Sato, Taichi; Schlindwein, Vera; Stranne, Christian; Tausenfreund, Maria; Upchurch, Lucia; Winsor, Peter; Jakobsson, Martin; Soule, Adam

    2008-06-26

    Roughly 60% of the Earth's outer surface is composed of oceanic crust formed by volcanic processes at mid-ocean ridges. Although only a small fraction of this vast volcanic terrain has been visually surveyed or sampled, the available evidence suggests that explosive eruptions are rare on mid-ocean ridges, particularly at depths below the critical point for seawater (3,000 m). A pyroclastic deposit has never been observed on the sea floor below 3,000 m, presumably because the volatile content of mid-ocean-ridge basalts is generally too low to produce the gas fractions required for fragmenting a magma at such high hydrostatic pressure. We employed new deep submergence technologies during an International Polar Year expedition to the Gakkel ridge in the Arctic Basin at 85 degrees E, to acquire photographic and video images of 'zero-age' volcanic terrain on this remote, ice-covered ridge. Here we present images revealing that the axial valley at 4,000 m water depth is blanketed with unconsolidated pyroclastic deposits, including bubble wall fragments (limu o Pele), covering a large (>10 km(2)) area. At least 13.5 wt% CO(2) is necessary to fragment magma at these depths, which is about tenfold the highest values previously measured in a mid-ocean-ridge basalt. These observations raise important questions about the accumulation and discharge of magmatic volatiles at ultraslow spreading rates on the Gakkel ridge and demonstrate that large-scale pyroclastic activity is possible along even the deepest portions of the global mid-ocean ridge volcanic system.

  8. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    Science.gov (United States)

    Stein, R.; Coakley, B.

    2009-04-01

    Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the

  9. IODP Expedition 302, Arctic Coring Expedition (ACEX: A First Look at the Cenozoic Paleoceanography of the Central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    the IODP Expedition 302 Scientists

    2005-09-01

    Full Text Available Introduction The behavior and inf luence of the A rct ic Oceanthroughout the course of the global Cenozoic climateevolution have been virtually unknown. Only the uppermostfew meters of the Arctic’s sediment record, representingHolocene and late Pleistocene times, have been retrievedfrom ridges through a limited number of short piston,gravity, and box cores. Even less of the thick sedimentsequences, ~6 km in the Canada Basin and ~3 km in theNansen Basin(Grantz et al., 1990; Jokat et al., 1995, restingon the Arctic Ocean’s abyssal plains, have been cored.Prior to the Arctic Coring Expedition (ACEX, informationon Neogene or Paleogene conditions in the central Arcticwas limited to a 1.6-m interval in a 3.6-m-long T-3 gravitycore raised from the Alpha Ridge (Clark, 1974, providingthe sole evidence for marine conditions no older than themiddle Eocene in the central Arctic (Bukry, 1984.

  10. Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas

    DEFF Research Database (Denmark)

    Lynghammar, A.; Christiansen, J. S.; Mecklenburg, C. W.

    2013-01-01

    The sea ice cover decreases and human activity increases in Arctic waters. Fisheries and bycatch issues, shipping and petroleum exploitation (pollution issues) make it imperative to establish biological baselines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). Species...

  11. International Bathymetric Chart of the Arctic Ocean, Version 3.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — IBCAO Version 3.0 represents the largest improvement since 1999 taking advantage of new data sets collected by the circum-Arctic nations, opportunistic data...

  12. Effects of an Arctic Ocean Ski Traverse on the Protective Capabilities of Expedition Footwear

    National Research Council Canada - National Science Library

    Endrusick, Thomas; Frykman, Peter; O'Brien, Catherine; Giblo, Joseph

    2005-01-01

    A traverse of the Arctic Ocean during a 2000-km unsupported ski expedition provided an opportunity to assess the impact of an extreme cold environment on the protective capabilities of a specialized footwear system (FS...

  13. Comprehensive Ocean - Atmosphere Data Set (COADS) LMRF Arctic Subset, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Comprehensive Ocean - Atmosphere Data Set (COADS) Long Marine Reports Fixed-Length (LMRF) Arctic subset contains marine surface weather reports for regions north...

  14. NODC Standard Product: International ocean atlas Volume 6 - Zooplankton of the Arctic Seas 2002 (NODC Accession 0098570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and biological data for the Arctic and sub-Arctic regions extending from the Barents Sea to the Northwest Pacific, sampled during 25 scientific cruises for...

  15. Splitting of Atlantic water transport towards the Arctic Ocean into the Fram Strait and Barents Sea Branches - mechanisms and consequences

    Science.gov (United States)

    Beszczynska-Möller, Agnieszka; Skagseth, Øystein; von Appen, Wilken-Jon; Walczowski, Waldemar; Lien, Vidar

    2016-04-01

    The heat content in the Arctic Ocean is to a large extent determined by oceanic advection from the south. During the last two decades the extraordinary warm Atlantic water (AW) inflow has been reported to progress through the Nordic Seas into the Arctic Ocean. Warm anomalies can result from higher air temperatures (smaller heat loss) in the Nordic Seas, and/or from an increased oceanic advection. But the ultimate fate of warm anomalies of Atlantic origin depends strongly on their two possible pathways towards the Arctic Ocean. The AW temperature changes from 7-10°C at the entrance to the Nordic Seas, to 6-6.5°C in the Barents Sea opening and 3-3.5°C as the AW leaving Fram Strait enters the Arctic Ocean. When AW passes through the shallow Barents Sea, nearly all its heat is lost due to atmospheric cooling and AW looses its signature. In the deep Fram Strait the upper part of Atlantic water becomes transformed into a less saline and colder surface layer and thus AW preserves its warm core. A significant warming and high variability of AW volume transport was observed in two recent decades in the West Spitsbergen Current, representing the Fram Strait Branch of Atlantic inflow. The AW inflow through Fram Strait carries between 26 and 50 TW of heat into the Arctic Ocean. While the oceanic heat influx to the Barents Sea is of a similar order, the heat leaving it through the northern exit into the Arctic Ocean is negligible. The relative strength of two Atlantic water branches through Fram Strait and the Barents Sea governs the oceanic heat transport into the Arctic Ocean. According to recently proposed mechanism, the Atlantic water flow in the Barents Sea Branch is controlled by the strength of atmospheric low over the northern Barents Sea, acting through a wind-induced Ekman divergence, which intensifies eastward AW flow. The Atlantic water transport in the Fram Strait Branch is mainly forced by the large-scale low-pressure system over the eastern Norwegian and

  16. North Pole Environmental Observatory CTD surveys: Springtime temperature and salinity measurements in the Arctic Ocean by aircraft, 2000 - 2008 (NODC Accession 0057592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The investigators propose to take annual springtime, large-scale airborne surveys of the Arctic Ocean. These surveys will be in two regions: the central Arctic Ocean...

  17. Organophosphate Ester Flame Retardants and Plasticizers in Ocean Sediments from the North Pacific to the Arctic Ocean.

    Science.gov (United States)

    Ma, Yuxin; Xie, Zhiyong; Lohmann, Rainer; Mi, Wenying; Gao, Guoping

    2017-04-04

    The presence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ 7 OPEs (total concentration of the observed OPEs) was in the range of 159-4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ 7 OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17-292) tons for Σ 7 OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic.

  18. Comparative Paleomagnetic Study of the Quaternary-Pliocene Sedimentation Rates in the Arctic Basin: First Results

    Science.gov (United States)

    Elkina, D.; Piskarev, A.

    2017-12-01

    Accurate dating of marine sediments from the Arctic Basin continues to remain a subject of great debates over the last decades. Due to the lack of adequate materials for biostratigraphy, and isotope analyses, paleomagnetic reconstructions came on line here but still yielded ambivalent interpretations. Moreover, sedimentation rates, estimated for isolated morphological features in the Arctic Ocean, are often extended to the whole Basin and, therefore, lead to significant approximations of the sedimentation pattern distribution. Paleomagnetic study of two sediment cores up to 8 meter long, collected at the Mendeleev Rise, and the Lomonosov Ridge, have provided the opportunity to compare sedimentation regimes on these two profound structures of the Arctic Basin. Cores PS72/396 and PS87/023 were carried out along the cruises of RV Polarstern at the Mendeleev Rise (Stein et. al, 2010), and the Lomonosov Ridge (Stein, 2015) respectively. Measurements of natural remanent magnetization (NRM) and anhysteretic remanence (ARM) acquisition with the following alternating field (AF) demagnetization were performed on u-channel samples, obtained from the cores, at the Center for Geo-Environmental Research and Modeling (GEOMODEL) of the Research Park, St. Petersburg State University. According to preliminary results, core PS72/396 has shown a change from positive to negative inclinations at ca. 120 cm below sea floor (cmbsf), prevailed up to ca. 360 cmbsf where it gets back to the positive ones. This trend is comparable with some previous paleomagnetic results, conducted on cores from the Mendeleev Rise (Piskarev et al., 2013; Elkina, 2014). In contrast, for core PS87/023, a relevant drop to negative inclinations can be observed only after 330 cmbsf. That could signify a dramatic difference in sedimentation rates between the sites during the Quaternary and Pliocene. Nevertheless, a rather complicated picture of the AF data assumes effects of secondary overprints, having influenced

  19. Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2

    Science.gov (United States)

    Bulusu, S.

    2017-12-01

    Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.

  20. A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2014-06-01

    In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite

  1. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  2. The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean

    Science.gov (United States)

    Bruvoll, Vibeke; Kristoffersen, Yngve; Coakley, Bernard J.; Hopper, John R.; Planke, Sverre; Kandilarov, Aleksandre

    2012-01-01

    The Alpha-Mendeleev ridge complex, over 1500 km long and 250-400 km wide, is the largest submarine structure in the Arctic Ocean basin. Its origin is unknown, but often inferred to represent a large igneous province where domains of continental crust may also be a possibility. We investigate the basement geology of part of this large scale feature using 1100 km of multichannel seismic reflection data, sonobuoy recordings and marine gravity data acquired in 2005 from USCG icebreaker Healy. The sonobuoy results show top and intra-acoustic basement velocities in the range of 2.3-4.0 km/s and the seismic reflection attributes define three main acoustic facies: 1) continuous high amplitude reflections often with abrupt breaks, 3) weak wedge geometry and 3) segmented, disrupted to chaotic reflections. The acoustic characteristics and seismic velocities compare more closely with basement on Ontong Java Plateau than normal ocean crust or wedges of seaward dipping reflections at volcanic margins. The acoustic facies are interpreted to represent basalt flows and sills capping voluminous tuff deposits and possible sediments. At least two volcanic centres are identified. The upper volcanic carapace on the surveyed part of Mendeleev and northwestern Alpha ridges was emplaced during a brief igneous episode no later than Campanian (80 Ma) and most likely part of wider Late Cretaceous circum Arctic volcanism. The horst and graben morphology on Mendeleev Ridge is largely a result of post-emplacement faulting where a number of the major extensional faults remained active until a late Miocene intrusive event.

  3. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone

    OpenAIRE

    Kashiwase, Haruhiko; Ohshima, Kay I.; Nihashi, Sohey; Eicken, Hajo

    2017-01-01

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979?2014) ...

  4. 77 FR 2513 - Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XA934 Draft Environmental Impact Statement for Effects of Oil and Gas Activities in the Arctic Ocean AGENCY: National Marine... Environmental Impact Statement (DEIS) for the Effects of Oil and Gas Activities in the Arctic Ocean.'' Based on...

  5. The radiocarbon reservoir age of the Chukchi Sea, Arctic Ocean

    Science.gov (United States)

    Pearce, C.; Gyllencreutz, R.; West, G.; O'Regan, M.; Jakobsson, M.

    2017-12-01

    Radiocarbon (14C) dating is the standard method for obtaining the age of marine sediments of Holocene and late Pleistocene age. For accurate calibrations, however, this tool relies on precise knowledge of the local radiocarbon reservoir age of the surface ocean, i.e. the regional difference (ΔR) from the average global marine calibration dataset. This parameter has become impossible to measure from modern mollusk samples because of 14C contamination from extensive testing of thermo-nuclear bombs in the second half of the twentieth century. The local reservoir age can thus only be calculated from the radiocarbon age of samples collected before AD 1950 or from sediment records containing absolute age markers, derived from e.g. tephrochronology or paleomagnetism. Knowledge of the marine reservoir age in the Arctic Ocean is extremely sparse, and relies on work by only a few studies. No information exists for the entire East Siberian Sea, and the Chukchi Sea is represented solely by sites along the Alaskan coast. Here we present new radiocarbon measurements on historical mollusk collections from the East Siberian and Chukchi margins. Our results show a clear and consistent signal of "old" Pacific Water in the Chukchi Sea with ΔR values around 450 years. Towards the East Siberian Sea the values drop as Pacific Water has decreased influence further away from the Bering Strait. Complementing the modern data, we also provide constraints on the reservoir age during the late Holocene. These are based on tephrochronology and high resolution analyses of paleomagnetic secular variation from a sediment archive from Herald Canyon, Chukchi Sea.

  6. Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone.

    Science.gov (United States)

    Kashiwase, Haruhiko; Ohshima, Kay I; Nihashi, Sohey; Eicken, Hajo

    2017-08-15

    Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

  7. Library holdings for The Hidden Ocean: Explorations Under the Ice of the Western Arctic - The Pelagic Fauna: Phase II on the USCGC Healy in the Canada Basin between June 27, 2005 and July 26, 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Library Catalog may include: Data Management Plans, Cruise Plans, Cruise Summary Reports, Scientific "Quick Look Reports", Video Annotation Logs, Image Collections,...

  8. Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Jokat, Wilfried; Schmidt-Aursch, Mechita C.

    2007-03-01

    The northernmost spreading centre of the world, the Gakkel Ridge, is also an end-member in terms of global spreading velocities. Models show that full spreading rates vary between 1.3 and 0.63 mm yr-1 along the almost 1800 km long ridge system in the Central Arctic Ocean. The western part of the ridge was investigated in great detail by a two-ship expedition in summer 2001. The complete data sets and the modelling of the seismic refraction and aeromagnetic experiments gathered during this expedition are shown in this study. The magnetic signals along the dense (2 km spacing) aeromagnetic flight lines acquired at the same time show a good correlation between high amplitudes and a shallowing of the rift valley and the presence of large volcanic constructions at the rift shoulders. The magnetic anomalies rapidly fade out east and west of these centres of focused magmatism. This might indicate that the basaltic layer producing the magnetic anomaly thins away from the volcanic centres. A continuous magnetic anomaly is observed along the rift valley west of 3°30'E, consistent with increasing and more robust magmatism. The crustal thickness along the Gakkel Ridge varies greatly. Beneath some of the centres of focused magmatism, the oceanic crust thickens up to 3.5 km. In the amagmatic segments in between the crust thins to 1.4-2.9 km. This observation is also valid for the Western Volcanic Zone west of 3°30'E, where despite the stronger magnetic anomaly the crust does not significantly thicken. The strength of the magnetic anomaly along the rift valley is thus not a reliable indicator of crustal thickness beneath the Gakkel Ridge. The data show that the crustal thickness does not change dramatically across 3°30'E. Only the occurrence of a large elongate volcanic ridge significantly influences this parameter. More frequent volcanic eruptions along such ridges are most likely responsible for the basalts found in the westernmost part of the Gakkel Ridge. In the non

  9. Seamount volcanism along the Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Cochran, James R.

    2008-09-01

    The Gakkel Ridge in the Arctic Ocean is the slowest spreading portion of the global mid-ocean ridge system. Total spreading rates vary from 12.8 mm yr-1 near Greenland to 6.5 mm yr-1 at the Siberian margin. Melting models predict a dramatic decrease in magma production and resulting crustal thickness at these low spreading rates. At slow spreading ridges, small volcanic seamounts are a dominant morphologic feature of the rift valley floor and an important mechanism in building the oceanic crust. This study quantitatively investigates the extent, nature and distribution of seamount volcanism at the ultraslow Gakkel Ridge, the manner in which it varies along the ridge axis and the relationship of the volcanoes to the larger scale rift morphology. A numerical algorithm is used to identify and characterize isolated volcanic edifices by searching gridded swath-bathymetry data for closed concentric contours protruding above the surrounding seafloor. A maximum likelihood model is used to estimate the total number of seamounts and the characteristic height within different seamount populations. Both the number and size of constructional volcanic features is greatly reduced at the Gakkel Ridge compared with the Mid-Atlantic Ridge (MAR). The density of seamounts (number/area) on the rift valley floor of the Western Volcanic Zone (WVZ) is ~55% that of the MAR. The observed volcanoes are also much smaller, so, the amount of erupted material is greatly reduced compared with the MAR. However, the WVZ is still able to maintain a MAR-like morphology with axial volcanic ridges, volcanoes scattered on the valley floor and rift valley walls consisting of high-angle faults. Seamount density at the Eastern Volcanic Zone (EVZ) is ~45% that of the WVZ (~25% that of the MAR). Seamounts are clustered at the widely spaced magmatic centres characteristic of the EVZ, although some seamounts are found between magmatic centres. These seamounts tend to be located at the edge of the rift valley

  10. Dazzled by ice and snow: improving medium ocean color images in Arctic waters

    Science.gov (United States)

    Babin, M.; Goyens, C.; Belanger, S.

    2016-02-01

    The importance of phytoplankton blooms for the Arctic marine ecosystem is well recognized but studies disagree as the consequences of sea ice melt on the phytoplankton distribution and growth. This limited understanding in actual and future Arctic phytoplankton dynamics mostly results from a lack of accurate data at the receding ice-edges where phytoplankton blooms are known to occur. Ocean color sensors on-board satellites represent therefore a crucial tool providing a synoptic view of the ocean systems over broad spatio-temporal scales. However, today the use of ocean color data in Arctic environments remains strongly compromised due to, among others, sea ice contamination. Indeed, medium ocean color data along the receding ice edge are "dazzled" by nearby and/or sub-pixel highly reflective ice floes. Standard ocean color data methods ignore ice-contamination during data processing which deteriorates the quality of the radiometric data and subsequent satellite derived bio-geochemical products. Moreover, since Arctic phytoplankton spring blooms typically develop along the receding ice-edges, ignoring ice-contaminated pixels may lead to wrong interpretation of satellite data. The present study shows how adjacent and sub-pixel sea-ice floes affect the retrieved ocean color data. A correction approach is also suggested to improve the "dazzled" ocean color pixels along the receding ice edge in the aim to provide additional support to better understand current and future trends in phytoplankton dynamics.

  11. Hydrothermal activity at the Arctic mid-ocean ridges

    Science.gov (United States)

    Pedersen, Rolf B.; Thorseth, Ingunn H.; Nygård, Tor Eivind; Lilley, Marvin D.; Kelley, Deborah S.

    Over the last 10 years, hydrothermal activity has been shown to be abundant at the ultraslow spreading Arctic Mid-Ocean Ridges (AMOR). Approximately 20 active and extinct vent sites have been located either at the seafloor, as seawater anomalies, or by dredge sampling hydrothermal deposits. Decreasing spreading rates and decreasing influence of the Icelandic hot spot toward the north along the AMOR result in a north-south change from a shallow and magmatically robust to a deep and magmatically starved ridge system. This contrast gives rise to large variability in the ridge geology and in the nature of the associated hydrothermal systems. The known vent sites at the southern part of the ridge system are either low-temperature or white smoker fields. At the deep, northern parts of the ridge system, a large black smoker field has been located, and seawater anomalies and sulfide deposits suggest that black smoker-type venting is common. Several of these fields may be peridotite-hosted. The hydrothermal activity at parts of the AMOR exceeds by a factor of 2 to 3 what would be expected by extrapolating from observations on faster spreading ridges. Higher fracture/fault area relative to the magma volume extracted seems a likely explanation for this. Many of the vent fields at the AMOR are associated with axial volcanic ridges. Strong focusing of magma toward these ridges, deep rifting of the ridges, and subsequent formation of long-lived detachment faults that are rooted below the ridges may be the major geodynamic mechanisms causing the unexpectedly high hydrothermal activity.

  12. A synthesis of light absorption properties of the Pan-Arctic Ocean: application to semi-analytical estimates of dissolved organic carbon concentrations from space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2013-11-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aφ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific aφ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC vs. CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  13. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    Science.gov (United States)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  14. Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas

    DEFF Research Database (Denmark)

    Lynghammar, A.; Christiansen, J. S.; Mecklenburg, C. W.

    2013-01-01

    The sea ice cover decreases and human activity increases in Arctic waters. Fisheries and bycatch issues, shipping and petroleum exploitation (pollution issues) make it imperative to establish biological baselines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). Species...... richness, zoogeographic affiliations and Red List statuses among chondrichthyan fishes (Chondrichthyes) were examined across 16 AOAS regions as a first step towards credible conservation actions. Published literature and museum vouchers were consulted for presence/absence data. Although many regions...

  15. Genetic Diversity of Eukaryotic Picoplankton in the Arctic Ocean (Fram Strait)

    OpenAIRE

    Kilias, Estelle; Nöthig, Eva-Maria; Peeken, Ilka; Wolf, Christian; Metfies, Katja

    2011-01-01

    Climate change is expected to be particularly intense in the Arctic Ocean having as well extensive consequences on Arctic pelagic ecosystems. Thus, evaluations of the impact on the base of the food web, on local phytoplankton communities, are required. Prerequisite of such an evaluation is comprehensive information about the present phytoplankton diversity and distribution. Recent investigations indicate that rising temperatures as well as freshening of surface waters in the marine environmen...

  16. Oceanographic temperature and salinity measurements collected using drifting buoys in the Arctic Ocean from 2003 to 2006 (NODC Accession 0014672)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic temperature and salinity measurements collected using drifting buoys in the Arctic Ocean. Data from JAMSTEC drifting buoys which were deployed both as...

  17. Biological response to climate change in the Arctic Ocean: The view from the past

    Science.gov (United States)

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  18. Natural and anthropogenic radionuclide distributions in the Nansen Basin, Artic Ocean: Scavenging rates and circulation timescales

    Science.gov (United States)

    Kirk Cochran, J.; Hirschberg, David J.; Livingston, Hugh D.; Buesseler, Ken O.; Key, Robert M.

    Determination of the naturally occurring radionuclides 232Th, 230Th, 228 Th and 210Pb, and the anthropogenic radionuclides 241Am, 239,240Pu, 134Cs and 137Cs in water samples collected across the Nansen Basin from the Barents Sea slope to the Gakkel Ridge provides tracers with which to characterize both scavenging rates and circulation timescales in this portion of the Arctic Ocean. Large volume water samples (˜ 15001) were filtered in situ to separate particulate (> 0.5 μm) and dissolved Th isotopes and 241Am. Thorium-230 displays increases in both particulate and dissolved activities with depth, with dissolved 230Th greater and particulate 230Th lower in the deep central Nansen Basin than at the Barents Sea slope. Dissolved 228Th activities also are greater relative to 228Ra, in the central basin. Residence times for Th relative to removal from solution onto particles are ˜1 year in surface water, ˜10 years in deep water adjacent to the Barents Sea slope, and ˜20 years in the Eurasian Basin Deep Water. Lead-210 in the central basin deep water also has a residence time of ˜20 years with respect to its removal from the water column. This texture of scavenging is reflected in distributions of the particle-reactive anthropogenic radionuclide 241Am, which shows higher activities relative to Pu in the central Nansen Basin than at the Barents Sea slope. Distributions Of 137Cs show more rapid mixing at the basin margins (Barents Sea slope in the south, Gakkel Ridge in the north) than in the basin interior. Cesium-137 is mixed throughout the water column adjacent to the Barents Sea slope and is present in low but detectable activities in the Eurasian Basin Deep Water in the central basin. At the time of sampling (1987) the surface water at all stations had been labeled with 134Cs released in the 1986 accident at the Chernobyl nuclear power station. In the ˜1 year since the introduction of Chernobyl 134Cs to the Nansen Basin, it had been mixed to depths of ˜800 m at

  19. Proxy representation of Arctic Ocean Bottom Pressure: Bridging gaps in GRACE measurements

    Science.gov (United States)

    Peralta Ferriz, C.; Morison, J.; Wallace, J. M.

    2016-12-01

    Ocean bottom pressure (OBP) measurements from the Gravity Recovery and Climate Experiment (GRACE) have proved to be invaluable tools for understanding Arctic Ocean circulation patterns and variability [Morison et al., 2007; Morison et al., 2012; Peralta-Ferriz et al., 2014]. Here we use GRACE data from 2005 to 2015 jointly with a 9-year record of in situ OBP at the North Pole, and wind reanalysis products, to identify primary predictor time series that allow us to create a proxy representation of the Arctic OBP anomalies that explains the largest possible fraction of the observed Arctic OBP variability. We do this by performing a linear regression analysis, combined with maximum covariance analysis (MCA). The first predictor time series is the in situ OBP record at the North Pole; the second predictor time series is the expansion coefficients time series of the leading mode of MCA between the GRACE OBP coupled with the winds. After cross-validation, the proxy representation explains 50% of the total variance of Arctic OBP. This work identifies key locations where measuring OBP in situ contribute the most to the large-scale variability in Arctic OBP. It also provides a means for bridging short gaps in GRACE measurements as well as potentially larger future gaps that would result if GRACE does not overlap with its follow-on mission, GRACE-FO. Here we focus in the Arctic Ocean, but the technique may be applicable to bridge gaps in GRACE measurements in other oceanic regions. References:Morison, J. H., J. Wahr, R. Kwok and C. Peralta-Ferriz (2007), Recent trends in Arctic Ocean mass distribution revealed by GRACE, Geophys. Res. Lett., 34, L07602, doi:10.1029/2006GL029016. Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen and M. Steele (2012), Changing Arctic Ocean freshwater pathways. Nature, 481, 66-70.Peralta-Ferriz, C., J. H. Morison, J. M. Wallace, J. Bonin and J. Zhang (2014), Arctic Ocean circulation patterns revealed by GRACE, J. of

  20. Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Yamamoto

    2012-06-01

    Full Text Available The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state in the Arctic Ocean have been caused by the melting of sea ice as well as by an increase in the concentration of atmospheric carbon dioxide. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. The observed recent Arctic sea-ice loss has been more rapid than projected by many of the climate models that contributed to the Intergovernmental Panel on Climate Change Fourth Assessment Report. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an Earth system model with different sea-ice reduction rates under similar CO2 emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO2 concentration reaches 513 (606 ppm in year 2046 (2056 in new (old version. At an atmospheric CO2 concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.1 and 0.21 respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO2 uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea

  1. Using an Environmental Intelligence Framework to Evaluate the Impacts of Ocean Acidification in the Arctic

    Science.gov (United States)

    Mathis, J. T.; Baskin, M.; Cross, J.

    2016-12-01

    The highly productive coastal seas of the Arctic Ocean are located in areas that are projected to experience strong global change, including rapid transitions in temperature and ocean acidification-driven changes in pH and other chemical parameters. Many of the marine organisms that may be most intensely affected by ocean acidification (OA) and other environmental stressors contribute substantially to the commercial fisheries of the Bering Sea and traditional subsistence food supplies across the Arctic. This could represent a looming challenge in many communities as the average prevalence of household food insecurity and very low food security in Alaska are already 12 percent and 4.3 percent, respectively. Here, we evaluate the patterns of dependence on marine resources within Alaska's Arctic that could be negatively impacted by OA and current community characteristics to assess the potential risk to the fishery sector from OA. We used a risk assessment framework to analyze an earth-system global model of ocean chemistry, fisheries harvest data, and demographic information. The analysis showed that regions around Alaska vary in their vulnerability to OA, but that each one will have to deal with possible impacts. Therefore, OA merits consideration in policy planning, as it may represent another challenge to Alaskan communities, some of which are already under acute socio-economic strains. With this in mind, we will present a number of adaptation strategies for communities living throughout Alaska's Arctic that could be applicable to other Arctic regions.

  2. Late Pleistocene and Holocene meltwater events in the western Arctic Ocean

    Science.gov (United States)

    Poore, R.Z.; Osterman, L.; Curry, W.B.; Phillips, R.L.

    1999-01-01

    Accelerator mass spectrometer 14C dated stable isotope data from Neogloboquadrina pachyerma in cores raised from the Mendeleyev Ridge and slope provide evidence for significant influx of meltwater to the western Arctic Ocean during the early part of marine oxygen isotope stage 1 (OIS 1) and during several intervals within OIS 3. The strongest OIS 3 meltwater event occurred before ca. 45 ka (conventional radiocarbon age) and was probably related to the deglaciation at the beginning of OIS 3. Major meltwater input to the western Arctic Ocean during the last deglaciation coincides closely with the maximum rate of global sea-level rise as determined from the Barbados sea-level record, demonstrating a strong link between the global record and changes in the central Arctic Ocean. OIS 2, which includes the last glacial maximum, is very condensed or absent in the cores. Abundance and ??13C values for N. pachyderma in the middle part of OIS 3 are similar to modern values, indicating high productivity and seasonal ice-free areas along the Arctic margin at that time. These records indicate that the Arctic Ocean was a source of heat and moisture to the northern polar atmosphere during parts of OIS 3.

  3. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  4. Patterns and controlling factors of species diversity in the Arctic Ocean

    Science.gov (United States)

    Yasuhara, Moriaki; Hunt, Gene; van Dijken, Gert; Arrigo, Kevin R.; Cronin, Thomas M.; Wollenburg, Jutta E.

    2012-01-01

    Aim  The Arctic Ocean is one of the last near-pristine regions on Earth, and, although human activities are expected to impact on Arctic ecosystems, we know very little about baseline patterns of Arctic Ocean biodiversity. This paper aims to describe Arctic Ocean-wide patterns of benthic biodiversity and to explore factors related to the large-scale species diversity patterns.Location  Arctic Ocean.Methods  We used large ostracode and foraminiferal datasets to describe the biodiversity patterns and applied comprehensive ecological modelling to test the degree to which these patterns are potentially governed by environmental factors, such as temperature, productivity, seasonality, ice cover and others. To test environmental control of the observed diversity patterns, subsets of samples for which all environmental parameters were available were analysed with multiple regression and model averaging.Results  Well-known negative latitudinal species diversity gradients (LSDGs) were found in metazoan Ostracoda, but the LSDGs were unimodal with an intermediate maximum with respect to latitude in protozoan foraminifera. Depth species diversity gradients were unimodal, with peaks in diversity shallower than those in other oceans. Our modelling results showed that several factors are significant predictors of diversity, but the significant predictors were different among shallow marine ostracodes, deep-sea ostracodes and deep-sea foraminifera.Main conclusions  On the basis of these Arctic Ocean-wide comprehensive datasets, we document large-scale diversity patterns with respect to latitude and depth. Our modelling results suggest that the underlying mechanisms causing these species diversity patterns are unexpectedly complex. The environmental parameters of temperature, surface productivity, seasonality of productivity, salinity and ice cover can all play a role in shaping large-scale diversity patterns, but their relative importance may depend on the ecological

  5. Satellite surface salinity maps to determine fresh water fluxes in the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Estrella, Olmedo; Emelianov, Mikhail; Ballabrera, Joaquim; Turiel, Antonio

    2017-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) are also a key ingredient of the thermohaline circulation. Recent observational studies have documented changes in upper Arctic Ocean hydrography [1, 2]. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, have the objective to measure soil moisture over the continents and sea surface salinity over the oceans [3]. However, SMOS is also making inroads in Cryospheric science, as the measurements of thin ice thickness and sea ice concentration. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but more frequently at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, such sensitivity is rather low, even lower at cold waters [4]: 90% of ocean SSS values span a range of brightness temperatures of just 5K. This implies that the SMOS SSS retrieval requires a high performance of the MIRAS interferometric radiometer [5]. New algorithms, recently developed at the Barcelona Expert Center (BEC) to improve the quality of SMOS measurements [6], allow for the first time to derive cold-water SSS maps from SMOS data, and to observe the variability of the SSS in the higher north Atlantic and the Arctic Ocean. In this work, we will provide an assessment of the quality of these new SSS Arctic maps, and we will illustrate their potential to monitor the impact on ocean state of the discharges from the main rivers to the Arctic Ocean. Moreover

  6. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses

    Science.gov (United States)

    Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin

    2018-04-01

    Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.

  7. The morphology and nature of the East Arctic ocean acoustic basement

    Science.gov (United States)

    Rekant, Pavel

    2017-04-01

    As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.

  8. The Air-Sea Nitrous Oxide Flux along Cruise Tracks to the Arctic Ocean and Southern Ocean

    Directory of Open Access Journals (Sweden)

    Liyang Zhan

    2017-11-01

    Full Text Available Nitrous oxide is a trace gas with two global environmental effects: it depletes stratospheric ozone and contributes to the greenhouse effect. Oceans are one of the most significant nitrous oxide sources; however, there are ocean areas whose contributions to the nitrous oxide budget are not yet well studied. The Southern Ocean and the Arctic Ocean feature strong winds and portions that are covered by sea ice. These intense environmental conditions and the remoteness of these regions hamper fieldwork; hence, very limited data are available on the distributions and the source and sink characteristics of nitrous oxide. Using data from the 4th Chinese National Arctic Research Expedition and the 27th Chinese National Antarctic Research Expedition, the first global-scale investigation of the surface water N2O distribution pattern, the factors influencing the N2O distribution and the air-sea N2O flux are discussed in this study. The results show that the tropical and subtropical regions (30° N–30° S exhibit significant source characteristics, with a maximum air-sea flux of approximately 21.0 ± 3.9 μmol·m−2·d−1. The high air-sea flux may result from the coastal influences and high wind speeds in certain areas. The distribution patterns of N2O in the sub-polar regions (30° N–60° N, 30° S–60° S transition from oversaturated to approximate equilibrium with the atmosphere, and the boundaries generally correspond with frontal structures. The distributions of N2O in the high-latitude Southern Ocean and Arctic Ocean (>60° N and 60° S exhibit contrasting patterns. With the exception of the continental shelf hotspot, the Arctic Ocean surface water is undersaturated with N2O; in contrast, the high-latitude Southern Ocean along the cruise track is oversaturated with N2O. The high-latitude Southern Ocean may act as a N2O source, with a maximum air-sea N2O flux of approximately 9.8 ± 0.5 μmol·m−2·d−1 at approximately 60° S, whereas the

  9. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has...... glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water...... are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different...

  10. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    DEFF Research Database (Denmark)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert

    2017-01-01

    glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water...... the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has...... are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different...

  11. The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River.

    Science.gov (United States)

    Leitch, Daniel R; Carrie, Jesse; Lean, David; Macdonald, Robie W; Stern, Gary A; Wang, Feiyue

    2007-02-01

    Very high levels of mercury (Hg) have recently been reported in marine mammals and other higher trophic-level biota in the Mackenzie Delta and Beaufort Sea of the western Arctic Ocean. To quantify the input of Hg (particulate, dissolved and methylated) by the Mackenzie River as a potential source for Hg in the ecosystem, surface water and sediment samples were taken from 79 sites in the lower Mackenzie Basin during three consecutive summers (2003-2005) and analyzed for Hg and methylmercury (MeHg). Intensive studies were also carried out in the Mackenzie Delta during the freshets of 2004 and 2005. Large seasonal and annual variations were found in Hg concentrations in the river, coincident with the variations in water discharge. Increased discharges during spring freshet and during the summers of 2003 and 2005 compared to 2004 were mirrored by higher Hg concentrations. The correlation between Hg concentration and riverflow suggests additional Hg sources during periods of high water, potentially from increased surface inundation and increased bank erosion. The increase in the Hg concentration with increasing water discharge amplifies the annual Hg and MeHg fluxes during high water level years. For the period 2003-2005, the Hg and MeHg fluxes from the Mackenzie River to the Beaufort Sea averaged 2.2 tonnes/yr and 15 kg/yr, respectively, the largest known Hg source to the Beaufort Sea. More than half of the mercury flux occurs during the short spring freshet season which coincides with the period of rapid growth of marine biota. Consequently, the Mackenzie River input potentially provides the major mercury source to marine mammals of the Beaufort Sea. The Hg and MeHg fluxes from the Mackenzie River are expected to further increase with the projected climate warming in the Mackenzie Basin.

  12. On the Arctic Ocean ice thickness response to changes in the external forcing

    Science.gov (United States)

    Stranne, Christian; Björk, Göran

    2012-12-01

    Submarine and satellite observations show that the Arctic Ocean ice cover has undergone a large thickness reduction and a decrease in the areal extent during the last decades. Here the response of the Arctic Ocean ice cover to changes in the poleward atmospheric energy transport, F wall, is investigated using coupled atmosphere-ice-ocean column models. Two models with highly different complexity are used in order to illustrate the importance of different internal processes and the results highlight the dramatic effects of the negative ice thickness—ice volume export feedback and the positive surface albedo feedback. The steady state ice thickness as a function of F wall is determined for various model setups and defines what we call ice thickness response curves. When a variable surface albedo and snow precipitation is included, a complex response curve appears with two distinct regimes: a perennial ice cover regime with a fairly linear response and a less responsive seasonal ice cover regime. The two regimes are separated by a steep transition associated with surface albedo feedback. The associated hysteresis is however small, indicating that the Arctic climate system does not have an irreversible tipping point behaviour related to the surface albedo feedback. The results are discussed in the context of the recent reduction of the Arctic sea ice cover. A new mechanism related to regional and temporal variations of the ice divergence within the Arctic Ocean is presented as an explanation for the observed regional variation of the ice thickness reduction. Our results further suggest that the recent reduction in areal ice extent and loss of multiyear ice is related to the albedo dependent transition between seasonal and perennial ice i.e. large areas of the Arctic Ocean that has previously been dominated by multiyear ice might have been pushed below a critical mean ice thickness, corresponding to the above mentioned transition, and into a state dominated by

  13. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification

    OpenAIRE

    N. R. Bates; M. I. Orchowska; R. Garley; J. T. Mathis

    2013-01-01

    The Arctic Ocean accounts for only 4% of the global ocean area, but it contributes significantly to the global carbon cycle. Recent observations of seawater CO2-carbonate chemistry in shelf waters of the western Arctic Ocean, primarily in the Chukchi Sea, from 2009 to 2011 indicate that bottom waters are seasonally undersaturated with respect to calcium carbonate (CaCO3) minerals, particularly aragonite. Nearly 40% of sampled bottom waters on the shelf have saturation states...

  14. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales

    Science.gov (United States)

    Wang, Rujian; Polyak, Leonid; Xiao, Wenshen; Wu, Li; Zhang, Taoliang; Sun, Yechen; Xu, Xiaomei

    2018-02-01

    We use sediment cores collected by the Chinese National Arctic Research Expeditions from the Alpha Ridge to advance Quaternary stratigraphy and paleoceanographic reconstructions for the Arctic Ocean. Our cores show a good litho/biostratigraphic correlation to sedimentary records developed earlier for the central Arctic Ocean, suggesting a recovered stratigraphic range of ca. 0.6 Ma, suitable for paleoclimatic studies on orbital time scales. This stratigraphy was tested by correlating the stacked Alpha Ridge record of bulk XRF manganese, calcium and zirconium (Mn, Ca, Zr), to global stable-isotope (LR04-δ18O) and sea-level stacks and tuning to orbital parameters. Correlation results corroborate the applicability of presumed climate/sea-level controlled Mn variations in the Arctic Ocean for orbital tuning. This approach enables better understanding of the global and orbital controls on the Arctic climate. Orbital tuning experiments for our records indicate strong eccentricity (100-kyr) and precession (∼20-kyr) controls on the Arctic Ocean, probably implemented via glaciations and sea ice. Provenance proxies like Ca and Zr are shown to be unsuitable as orbital tuning tools, but useful as indicators of glacial/deglacial processes and circulation patterns in the Arctic Ocean. Their variations suggest an overall long-term persistence of the Beaufort Gyre circulation in the Alpha Ridge region. Some glacial intervals, e.g., MIS 6 and 4/3, are predominated by material presumably transported by the Transpolar Drift. These circulation shifts likely indicate major changes in the Arctic climatic regime, which yet need to be investigated. Overall, our results demonstrate applicability of XRF data to paleoclimatic studies of the Arctic Ocean.

  15. A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4

    Science.gov (United States)

    Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas

    2018-04-01

    In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.

  16. Ferromanganese oxides on sharks' teeth from Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.

    The mineralogy, composition and growth rates of ferromanganese (Fe-Mn) oxides over the sharks' teeth from the Central Indian Ocean Basin are presented. The trends of metal enrichment (Mn, Ni, Cu and Zn) and depletion (Fe and Co), the Mn/Fe ratio...

  17. From Greenhouse to Icehouse: Marine and Terrestrial Palynological Evidence for Climatic and Oceanic Change Through the Cenozoic of the Arctic

    Science.gov (United States)

    Bujak, J. P.; Brinkhuis, H.

    2004-12-01

    The marine and terrestrial biotas of northern Alaska and the Canadian Beaufort Mackenzie Basin (BMB) are intimately linked to changes in the climate and oceanography of the region. These changes can be reconstructed using palynological data from surface sections and numerous exploration wells drilled in the region over the past 30 years. During the Late Triassic to Early Eocene, marine dinoflagellate cyst (dinocyst) and terrestrial miospore (pollen and spore) palynomorphs were diverse and abundant across the region, reflecting the presence of a relatively warm and productive polar ocean that was fringed by extensive forests. The region was heated by northward-flowing Pacific currents, but lay north of the Arctic Circle and had seasonal 24 hour winter darkness and summer daylight. No modern analogue exists for this environment. A dramatic change occurred at the end of the Early Eocene as global climate shifted from the greenhouse towards the modern icehouse world. This had a particularly strong effect in high latitudes. A succession of major extinction events reflected falling sea and air temperatures in the Arctic and progressively eliminated marine and terrestrial species from the region. These events can be correlated with Eocene cooling steps known from the North Atlantic, where they had a milder effect, and provide a chronostratigraphic link between the regions. By Oligocene time the Arctic populations were strongly impoverished, but Miocene warming permitted the immigration of cold-temperate species including marine dinoflagellates and terrestrial angiosperms. Following this warm phase, the marine and terrestrial populations became increasingly restricted as air and water temperatures fell during the Plio-Pleistocene, leading to the modern highly endemic Arctic biotas.

  18. Ferrobasalts from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Mukhopadhyay, R.; Popko, D.C.

    and Johnson GL (1973) Magnetic telechemistry of oceanic crust. Nature 245 :373}375 Wilson DS, Clague DA, Sleep NH, and Morton JL (1988) Implica- tions of magma convection for the size and temperature of magma chambers at fast spreading ridges. Journal...

  19. Quaternary paleoceanography of the central Arctic based on Integrated Ocean Drilling Program Arctic Coring Expedition 302 foraminiferal assemblages

    Science.gov (United States)

    Cronin, T. M.; Smith, S.A.; Eynaud, F.; O'Regan, M.; King, J.

    2008-01-01

    The Integrated Ocean Drilling Program (IODP) Arctic Coring Expedition (ACEX) Hole 4C from the Lomonosov Ridge in the central Arctic Ocean recovered a continuous 18 in record of Quaternary foraminifera yielding evidence for seasonally ice-free interglacials during the Matuyama, progressive development of large glacials during the mid-Pleistocene transition (MPT) ???1.2-0.9 Ma, and the onset of high-amplitude 100-ka orbital cycles ???500 ka. Foraminiferal preservation in sediments from the Arctic is influenced by primary (sea ice, organic input, and other environmental conditions) and secondary factors (syndepositional, long-term pore water dissolution). Taking these into account, the ACEX 4C record shows distinct maxima in agglutinated foraminiferal abundance corresponding to several interglacials and deglacials between marine isotope stages (MIS) 13-37, and although less precise dating is available for older sediments, these trends appear to continue through the Matuyama. The MPT is characterized by nearly barren intervals during major glacials (MIS 12, 16, and 22-24) and faunal turnover (MIS 12-24). Abundant calcareous planktonic (mainly Neogloboquadrina pachyderma sin.) and benthic foraminifers occur mainly in interglacial intervals during the Brunhes and very rarely in the Matuyama. A distinct faunal transition from calcareous to agglutinated foraminifers 200-300 ka in ACEX 4C is comparable to that found in Arctic sediments from the Lomonosov, Alpha, and Northwind ridges and the Morris Jesup Rise. Down-core disappearance of calcareous taxa is probably related to either reduced sea ice cover prior to the last few 100-ka cycles, pore water dissolution, or both. Copyright 2008 by the American Geophysical Union.

  20. Internal modes of multidecadal variability in the Arctic Ocean

    NARCIS (Netherlands)

    Frankcombe, L.M.; Dijkstra, H.A.

    2010-01-01

    Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate variability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment

  1. Towards improved estimation of the dynamic topography and ocean circulation in the high latitude and arctic ocean: The importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.

    2013-01-01

    The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability...... dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean........ In this respect this study combines in-situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice - ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE derived mean...

  2. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, Jennifer [Univ. of Alaska, Fairbanks, AK (United States); Joseph, Renu [Univ. of Alaska, Fairbanks, AK (United States)

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project will facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.

  3. {sup 236}U and {sup 129}I as tracers of water masses in the Arctic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Casacuberta, Nuria; Christl, Marcus; Vockenhuber, Christof; Synal, Hans-Arno [Laboratory of Ion Beam Physics, ETH-Zurich (Switzerland); Walther, Clemens [Institut fuer Radiooekologie und Strahlenschutz, Leibniz Universitaet Hannover (Germany); Loeff, Michiel van der [AWI-Geochemistry, Alfred Wegener Institut Fuer Polar und Meeresforshung, Bremerhaven (Germany); Masque, Pere [Institut de Ciencia i Tecnologia Ambientals, Universitat Autonoma de Barcelona, Bellaterra (Spain)

    2014-07-01

    Recently {sup 236}U attested to be a new transient oceanographic tracer: it is conservative in seawater and far from having reached steady state in the oceans. Its main sources in the North Atlantic are global fallout and European reprocessing plants. In this study, concentrations of {sup 236}U and {sup 129}I of eight deep profiles in the Arctic Ocean collected in 2011-2012 were determined with a compact ETH Zurich AMS system (TANDY). Results on {sup 236}U/{sup 238}U show a steep gradient, from the lowest ever-reported {sup 236}U/{sup 238}U atomic ratio in open ocean water (5±5) x 10{sup -12} up to (3700±80) x 10{sup -12}. Whereas the very low ratios are indicative for deep old waters, high ratios in shallow and surface waters show a clear signature of Atlantic Waters (AW) penetrating to the Arctic Ocean. The combination of {sup 236}U with {sup 129}I, both being released by the nuclear reprocessing plants of Sellafield and La Hague, with a distinct temporal input function, is used to estimate transit time of AW distributions in the Arctic Ocean.

  4. Arctide2017, a high-resolution regional tidal model in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cancet, M.; Andersen, O. B.; Lyard, F.

    2018-01-01

    The Arctic Ocean is a challenging region for tidal modelling. The accuracy of the global tidal models decreases by several centimeters in the Polar Regions, which has a large impact on the quality of the satellite altimeter sea surface heights and the altimetry-derived products. NOVELTIS, DTU Space...... and LEGOS have developed Arctide2017, a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Ocean (CP4O) ESA STSE (Support to Science Element) project. In particular, this atlas benefits from the assimilation of the most complete satellite...... altimetry dataset ever used in this region, including Envisat data up to 82°N and CryoSat-2 data between 82°N and 88°N. The combination of these satellite altimetry missions gives the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data were also used for data...

  5. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970-2009

    DEFF Research Database (Denmark)

    Koldunov, Nikolay V.; Serra, Nuno; Koehl, Armin

    2014-01-01

    is in reasonable agreement with available measurements. Focusing on results from one of the models for a detailed analysis, it is shown that the decadal-scale SSH variability over shelf areas and deep parts of the Arctic Ocean have pronounced differences that are determined mostly by salinity variations. A further......The performance of several numerical ocean models is assessed with respect to their simulation of sea surface height (SSH) in the Arctic Ocean, and the main patterns of SSH variability and their causes over the past 40 years (1970-2009) are analyzed. In comparison to observations, all tested models...... of low-salinity shelf water. Overall, we show that present-day models can be used for investigating the reasons for low-frequency SSH variability in the region....

  6. Assessing the added value of the recent declaration on unregulated fishing for sustainable governance of the central Arctic Ocean

    DEFF Research Database (Denmark)

    Shephard, Grace Elizabeth; Dalen, Kari; Peldszus, Regina

    2016-01-01

    . In this paper, the four Interim Measures in the Declaration are discussed and what value these measures bring beyond the existing international agreements is explored. It is found that even though the Declaration fills a gap in the management of potential fish stocks in the central Arctic Ocean, adopts......The ‘Declaration concerning the prevention of unregulated high seas fishing in the central Arctic Ocean’ signed by the Arctic 5 nations, limits unregulated high seas fishing in the central part of the Arctic Ocean, and holds potential social, economic and political impacts for numerous stakeholders...... understanding of the fisheries as well as the broader Arctic environment. Furthermore, the research generated by this measure will provide an important decision base for both regulation and management of human activity in the Arctic....

  7. Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean

    Science.gov (United States)

    Xie, Zhouqing; Blum, Joel D.; Utsunomiya, Satoshi; Ewing, R. C.; Wang, Xinming; Sun, Liguang

    2007-01-01

    The chemistry, morphology, and microscale to nanoscale structures of carbonaceous aerosols from the marine boundary layer of the Arctic Ocean were investigated by a variety of electron microscopy techniques, including scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The relative levels of particles of black carbon (BC) were determined by electron paramagnetic resonance (EPR). Polycyclic aromatic hydrocarbons (PAHs) absorbed onto BC particles were extracted by the soxhlet extraction method and analyzed by gas chromatography mass spectrometry (GC-MS). The results show that the dominant particles of BC are char particles with spherical shape, porous structure, and high sulfur content, which are typically derived from residual oil combustion on ships. The spatial distribution of BC from ship emissions was found to be concentrated around the periphery of the Arctic Ocean, suggesting relatively intensive contamination by ships in the Russian and Canadian Arctic. The abundance of PAHs on BC particles ranges from 142 to 2672 pg/m3 (mean = 702 pg/m3), which is significantly higher than values previously measured by land-based observation. Thus we find that ship emissions are a potentially important contributor to the PAH levels at some locations in the Arctic Ocean during the summer.

  8. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    Science.gov (United States)

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  9. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    Science.gov (United States)

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport.

  10. Arctic North Atlantic Water pathways and heat fluxes in Eddy-Admitting and Eddy-Permitting Global Ocean Simulations

    Science.gov (United States)

    Aksenov, Yevgeny; Kelly, Stephen; Popova, Ekaterina; Bacon, Sheldon; Nurser, A. J. George; Yool, Andrew; Coward, Andrew C.

    2017-04-01

    Results from the model tracer releases in global NEMO configurations at 1/4 and 1/12 degree resolution are presented. We examine North Atlantic water (NAW) inflows in the Arctic Ocean in the models in "eddying" regimes and investigate the role of the eddies in the NAW dynamics and heat transports. In the model experiments the NAW tracers have been released in the eastern Fram Strait and the western Barents Sea and traced in the Arctic Ocean and Nordic Sea for the 2000-2015. The model results demonstrate that NAW follows continental shelf slopes within the Arctic Boundary Current and also flows across the shelf slopes in the Arctic Ocean, with the eddy transport being a principal mechanism for the NAW spread. We investigate cascading of the dense northern Barents Sea water into the deep Arctic Ocean, which is another mechanism to transport the modified NAW into the deep Arctic Ocean. The study quantifies eddy heat fluxes across Siberian shelf slopes towards the central Arctic Ocean. By comparing the eddying runs with the similar runs at a lower resolution, the study highlights difference in the NAW model dynamics due to eddy resolving model capabilities.

  11. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    DEFF Research Database (Denmark)

    Fernandez-Mendez, Mar; Wenzhöfer, Frank; Peeken, Ilka

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly...... Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen...

  12. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    Directory of Open Access Journals (Sweden)

    P. Sakov

    2012-08-01

    Full Text Available We present a detailed description of TOPAZ4, the latest version of TOPAZ – a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003–2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation in the North Atlantic and the sea-ice variability in the Arctic. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates – a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in-situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  13. Anthropogenic radioactivity in the Arctic Ocean--review of the results from the joint German project.

    Science.gov (United States)

    Nies, H; Harms, I H; Karcher, M J; Dethleff, D; Bahe, C

    1999-09-30

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239 + 240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclide by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas.

  14. Anthropogenic radioactivity in the Arctic Ocean. Review of the results from the joint German project

    International Nuclear Information System (INIS)

    Nies, H.; Harms, I.H.; Karcher, M.J.; Dethleff, D.; Bahe, C.

    1999-01-01

    The paper presents the results of the joint project carried out in Germany in order to assess the consequences in the marine environment from the dumping of nuclear wastes in the Kara and Barents Seas. The project consisted of experimental work on measurements of radionuclides in samples from the Arctic marine environment and numerical modelling of the potential pathways and dispersion of contaminants in the Arctic Ocean. Water and sediment samples were collected for determination of radionuclide such as 137Cs, 90Sr, 239+240Pu, 238Pu, and 241Am and various organic micropollutants. In addition, a few water and numerous surface sediment samples collected in the Kara Sea and from the Kola peninsula were taken by Russian colleagues and analysed for artificial radionuclides by the BSH laboratory. The role of transport by sea ice from the Kara Sea into the Arctic Ocean was assessed by a small subgroup at GEOMAR. This transport process might be considered as a rapid contribution due to entrainment of contaminated sediments into sea ice, following export from the Kara Sea into the transpolar ice drift and subsequent release in the Atlantic Ocean in the area of the East Greenland Current. Numerical modelling of dispersion of pollutants from the Kara and Barents Seas was carried out both on a local scale for the Barents and Kara Seas and for long range dispersion into the Arctic and Atlantic Oceans. Three-dimensional baroclinic circulation models were applied to trace the transport of pollutants. Experimental results were used to validate the model results such as the discharges from the nuclear reprocessing plant at Sellafield and subsequent contamination of the North Sea up the Arctic Seas

  15. Shear and Stability at the Base of the Mixed Layer in the Arctic Ocean: The Role of Inertial Motions

    Science.gov (United States)

    2011-03-01

    predictive models. Observations made in the Canadian Basin and the Transpolar Drift by high resolution Autonomous Ocean Flux Buoys (AOFBs), SSMI ...Ocean Flux Buoy, Ice-Tethered Profiler, SSMI , AMSR-E, ECMWF, Oceanic Forcing, Canada Basin, Beaufort Sea, Transpolar Drift. 15. NUMBER OF PAGES 99...predictive models. Observations made in the Canadian Basin and the Transpolar Drift by high resolution Autonomous Ocean Flux Buoys (AOFBs), SSMI and

  16. Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing

    Science.gov (United States)

    Doxaran, D.; Ehn, J.; Belanger, S.; Matsuoka, A.; Hooker, S.; Babin, M.

    2012-01-01

    Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future

  17. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene

    Directory of Open Access Journals (Sweden)

    Carolyn Wegner

    2015-12-01

    Full Text Available Arctic coastal zones serve as a sensitive filter for terrigenous matter input onto the shelves via river discharge and coastal erosion. This material is further distributed across the Arctic by ocean currents and sea ice. The coastal regions are particularly vulnerable to changes related to recent climate change. We compiled a pan-Arctic review that looks into the changing Holocene sources, transport processes and sinks of terrigenous sediment in the Arctic Ocean. Existing palaeoceanographic studies demonstrate how climate warming and the disappearance of ice sheets during the early Holocene initiated eustatic sea-level rise that greatly modified the physiography of the Arctic Ocean. Sedimentation rates over the shelves and slopes were much greater during periods of rapid sea-level rise in the early and middle Holocene, as a result of the relative distance to the terrestrial sediment sources. However, estimates of suspended sediment delivery through major Arctic rivers do not indicate enhanced delivery during this time, which suggests enhanced rates of coastal erosion. The increased supply of terrigenous material to the outer shelves and deep Arctic Ocean in the early and middle Holocene might serve as analogous to forecast changes in the future Arctic.

  18. Deep water methane hydrates in the Arctic Ocean: Reassessing the significance of a shallow BSR on the Lomonosov Ridge

    Science.gov (United States)

    O'Regan, Matthew; Moran, Kathryn

    2010-05-01

    Recently published multichannel seismic data from the Lomonosov Ridge image a reversed polarity bottom-simulating reflector (BSR) tentatively attributed to the presence of deepwater marine hydrates and recognized throughout a survey area exceeding 100,000 km2. In addition to the importance of these findings for estimating Arctic hydrate reserves, if shown to correspond to the base of the hydrate stability zone, this seismic marker could provide a means for expanding spatial cover of heat flow data in deepwater settings of the Amerasian Basin, where little is known about the tectonic origin and nature of plate boundaries. As an initial test on the validity of this assumption, we develop a petrophysical model using sediments collected from circumpolar regions of the Lomonosov Ridge to derive an estimate of surface heat flow patterns from the BSR. The results show that the BSR inferred geothermal gradient and surface heat flow are exceedingly high when compared to published regional measurements. Although potential errors in the analysis may explain some of this discrepancy, the observation that the BSR remains at a constant subbottom depth despite large variations in water depths (>2400 m) and relative sedimentation rates provides additional evidence that it cannot mark the base of the hydrate stability zone. A further understanding of its origin requires a more detailed investigation of the existing seismic data and highlights the need for renewed collection of heat flow data from the Arctic Ocean.

  19. Late Cenozoic Arctic Ocean sea ice and terrestrial paleoclimate.

    Science.gov (United States)

    Carter, L.D.; Brigham-Grette, J.; Marincovich, L.; Pease, V.L.; Hillhouse, J.W.

    1986-01-01

    Sea otter remains found in deposits of two marine transgressions (Bigbendian and Fishcreekian) of the Alaskan Arctic Coastal Plain which occurred between 2.4 and 3 Ma suggest that during these two events the southern limit of seasonal sea ice was at least 1600 km farther north than at present in Alaskan waters. Perennial sea ice must have been severely restricted or absent, and winters were warmer than at present during these two sea-level highstands. Paleomagnetic, faunal, and palynological data indicate that the later transgression (Fishcreekian) occurred during the early part of the Matuyama Reversed-Polarity Chron. -from Authors

  20. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE

    DEFF Research Database (Denmark)

    Forsberg, René; Skourup, Henriette

    2005-01-01

    ICESat laser measurements provide a high-resolution mapping of the sea-ice surface of the Arctic Ocean, which can be inverted to determine gravity anomalies and sea-ice freeboard heights by a "lowest-level'' filtering scheme. In this paper we use updated terrestrial gravity data from the Arctic...... Gravity Project in combination with GRACE gravity field models to derive an improved Arctic geoid model. This model is then used to convert ICESat measurements to sea-ice freeboard heights with a coarse lowest-level surface method. The derived freeboard heights show a good qualitative agreement...... to the coverage of multi-year sea-ice; however, comparison to an airborne lidar underflight north of Greenland shows that the lowest-level filtering scheme may introduce a bias. We finally use the ICESat and GRACE results to derive new gravity anomalies by Fourier inversion. The satellite-only gravity field shows...

  1. Influence of Sea Ice on the Thermohaline Circulation in the Arctic-North Atlantic Ocean

    Science.gov (United States)

    Mauritzen, Cecilie; Haekkinen, Sirpa

    1997-01-01

    A fully prognostic coupled ocean-ice model is used to study the sensitivity of the overturning cell of the Arctic-North-Atlantic system to sea ice forcing. The strength of the thermohaline cell will be shown to depend on the amount of sea ice transported from the Arctic to the Greenland Sea and further to the subpolar gyre. The model produces a 2-3 Sv increase of the meridional circulation cell at 25N (at the simulation year 15) corresponding to a decrease of 800 cu km in the sea ice export from the Arctic. Previous modeling studies suggest that interannual and decadal variability in sea ice export of this magnitude is realistic, implying that sea ice induced variability in the overturning cell can reach 5-6 Sv from peak to peak.

  2. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    Science.gov (United States)

    2015-09-30

    The first investigates how the brine volume gradient between the surface and underside of the sea ice affects its rigidity and flexural strength and... Auckland , December 2014. Montiel, F. Transmission of ocean waves through a row of randomly perturbed circular ice floes. Minisymposium on Wave Motions of...2014 AUT Mathematical Sciences Symposium, Auckland , December 2014. Mosig, J. E. M. Rheological models of flexural-gravity waves in an ice covered ocean

  3. Ultraslow spreading processes along the Arctic mid-ocean ridge system

    Science.gov (United States)

    Schlindwein, Vera

    2013-04-01

    Generation of new seafloor in the Arctic Ocean occurs along the more than 2800 km long Arctic Ridge System from the Knipovich Ridge in the south to Gakkel ridge in the northeast. The plates separate at velocities of only 6-15 mm/y making the Arctic Ridge System the most prominent representative of an ultraslow spreading mid-ocean ridge. The engine of crustal production splutters at very low spreading rates such that ultraslow spreading ridges show a unique morphology: Isolated volcanoes, capable of vigorous eruptions, pierce the seafloor at distances of several hundred kilometres; in between there are long stretches without volcanism. My work group studies at global, regional and local scale the spreading processes of the Arctic ridge system, using earthquake records of ocean bottom seismometers, seismometers on drifting ice floes and of the global seismic network. We discovered that, contrary to faster spreading ridges, amagmatic portions of the Arctic ridge system are characterised by decreased seismicity rates with few and relatively weak earthquakes, whereas magmatically robust segments display more frequent seismic events. The maximum depth of earthquake hypocentres varies markedly along axis reaching maxima of 22 km depth below sea floor. Volcanic centres are characterized by vigorous earthquake swarm activity including large earthquake swarms that are recorded teleseismically. These earthquake swarms appear to be connected to episodes of active spreading as demonstrated at the 85°E volcanic complex at eastern Gakkel ridge which experienced an unusual spreading event between 1999 and 2001. The varying patterns of seismicity along the ridge axis correlate well with the pronounced differences in ridge morphology and petrology and its magnetic and gravimetric signatures. Our results support current theories of magma production at ultraslow spreading ridges which postulate a lateral melt flow towards isolated volcanic centres.

  4. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  5. Ocean-atmosphere state dependence of the atmospheric response to Arctic sea ice loss

    Science.gov (United States)

    Osborne, Joe; Screen, James; Collins, Mat

    2017-04-01

    The Arctic is warming faster than the global average. This disproportionate warming - known as Arctic amplification - has caused significant local changes to the Arctic system and more uncertain remote changes across the Northern Hemisphere midlatitudes. Here, an atmospheric general circulation model (AGCM) is used to test the sensitivity of the atmospheric and surface response to Arctic sea ice loss to the phase of the Atlantic Multidecadal Oscillation (AMO), which varies on (multi-) decadal time scales. Four experiments are performed, combining low and high sea ice states with global sea surface temperature (SST) anomalies associated with opposite phases of the AMO. A trough-ridge-trough response to wintertime sea ice loss is seen in the Pacific-North American sector in the negative phase of the AMO. We propose that this is a consequence of an increased meridional temperature gradient in response to sea ice loss, just south of the climatological maximum, in the midlatitudes of the central North Pacific. This causes a southward shift in the North Pacific storm track, which strengthens the Aleutian low with circulation anomalies propagating into North America. While the climate response to sea ice loss is sensitive to AMO-related SST anomalies in the North Pacific, there is little sensitivity to larger-magnitude SST anomalies in the North Atlantic. With background ocean-atmosphere states persisting for a number of years, there is the potential to improve predictions of the impacts of Arctic sea ice loss on decadal time scales.

  6. Arctic Ocean outflow and glacier-ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland)

    Science.gov (United States)

    Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.

    2017-12-01

    The first-ever conductivity-temperature-depth (CTD) observations on the Wandel Sea shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  7. Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

    DEFF Research Database (Denmark)

    Johannessen, J. A.; Raj, R. P.; Nilsen, J. E. Ø.

    2014-01-01

    quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time......The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent...... of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean...

  8. Early Student Support for the Study of Inertial Motions in the Arctic Ocean

    Science.gov (United States)

    2014-09-30

    University of Washington Oceanography program . Her work involves a combination of the analysis of existing observational data and numerical modeling to...Study of Inertial Motions in the Arctic Ocean 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Water maximum (near 400m ) and very near the surface. Periods of high amplitude waves are observed every few weeks, and are distributed fairly evenly

  9. Optimizing Ship Classification in the Arctic Ocean: A Case Study of Multi-Disciplinary Problem Solving

    OpenAIRE

    Mark Rahmes; Rick Pemble; Kevin Fox; John Delay

    2014-01-01

    We describe a multi-disciplinary system model for determining decision making strategies based upon the ability to perform data mining and pattern discovery utilizing open source actionable information to prepare for specific events or situations from multiple information sources. We focus on combining detection theory with game theory for classifying ships in Arctic Ocean to verify ship reporting. More specifically, detection theory is used to determine probability of deciding if a ship or c...

  10. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    OpenAIRE

    Dahle, H?kon; ?kland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent f...

  11. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    release; distribution is unlimited. DRI TECHNICAL PROGRAM: Emerging Dynamics Of The Marginal Ice Zone Ice, Ocean and Atmosphere Interactions in the...Arctic Marginal Ice Zone Year 4 Annual Report Jeremy Wilkinson British Antarctic Survey phone: 44 (0)1223 221489 fax: 44 (0) 1223...sams.ac.uk LONG-TERM GOALS This DRI TECHNICAL PROGRAM (Emerging Dynamics Of The Marginal Ice Zone) brings together a high-level

  12. Impact of North Atlantic Current changes on the Nordic Seas and the Arctic Ocean

    OpenAIRE

    Kauker, Frank; Gerdes, Rüdiger; Karcher, Michael; Köberle, Cornelia

    2005-01-01

    The impact of North Atlantic Current (NAC) volume, heat, and salt transport variability onto the NordicSeas and the Arctic Ocean is investigated using numerical hindcast and sensitivity experiments. Theocean-sea ice model reproduces observed propagation pathways and speeds of SST anomalies.Part of the signal reaching the entrance to the Nordic Seas between Iceland and Scotland originatesin the lower latitude North Atlantic. Response experiments with different prescribed conditionsat 50N show ...

  13. HY-2A satellite altimetric data evaluation in the Arctic ocean

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar

    2014-01-01

    in the Arctic Ocean. The results demonstrates that the HY-2 data shows higher standard variation and mean sea level than AltiKa and CryoSat-2 data during HY-2 cycle 49 (20130803 and 20130817) with more available sea level measurements than CryoSat-2 satellite altimetry. Moreover, consistent sea level variation...... is observed from AltiKa and CryoSat-2 monthly sea level time series....

  14. Changes in the Arctic Ocean CO2 sink (1996-2007): A regional model analysis

    Science.gov (United States)

    Manizza, M.; Follows, M. J.; Dutkiewicz, S.; Menemenlis, D.; Hill, C. N.; Key, R. M.

    2013-12-01

    The rapid recent decline of Arctic Ocean sea ice area increases the flux of solar radiation available for primary production and the area of open water for air-sea gas exchange. We use a regional physical-biogeochemical model of the Arctic Ocean, forced by the National Centers for Environmental Prediction/National Center for Atmospheric Research atmospheric reanalysis, to evaluate the mean present-day CO2 sink and its temporal evolution. During the 1996-2007 period, the model suggests that the Arctic average sea surface temperature warmed by 0.04°C a-1, that sea ice area decreased by ˜0.1 × 106 km2 a-1, and that the biological drawdown of dissolved inorganic carbon increased. The simulated 1996-2007 time-mean Arctic Ocean CO2 sink is 58 ± 6 Tg C a-1. The increase in ice-free ocean area and consequent carbon drawdown during this period enhances the CO2 sink by ˜1.4 Tg C a-1, consistent with estimates based on extrapolations of sparse data. A regional analysis suggests that during the 1996-2007 period, the shelf regions of the Laptev, East Siberian, Chukchi, and Beaufort Seas experienced an increase in the efficiency of their biological pump due to decreased sea ice area, especially during the 2004-2007 period, consistent with independently published estimates of primary production. In contrast, the CO2 sink in the Barents Sea is reduced during the 2004-2007 period due to a dominant control by warming and decreasing solubility. Thus, the effect of decreasing sea ice area and increasing sea surface temperature partially cancel, though the former is dominant.

  15. The simulated response of dimethylsulfide production in the Arctic Ocean to global warming

    International Nuclear Information System (INIS)

    Gabric, Albert J.; Qu, Bo; Hirst, Anthony C.

    2005-01-01

    Sulfate aerosols (of both biogenic and anthropogenic origin) play a key role in the Earth's radiation balance both directly through scattering and absorption of solar and terrestrial radiation, and indirectly by modifying cloud microphysical properties. However, the uncertainties associated with radiative forcing of climate due to aerosols substantially exceed those associated with the greenhouse gases. The major source of sulfate aerosols in the remote marine atmosphere is the biogenic compound dimethylsulfide (DMS), which is ubiquitous in the world's oceans and is synthesized by plankton. Climate models point to significant future changes in sea-ice cover in the Arctic Ocean due to warming. This will have consequences for primary production and the sea-to-air flux of a number of biogenic compounds, including DMS. In this paper we discuss the impact of warming on the future production of DMS in the Arctic Ocean. A DMS production model has been calibrated to current climate conditions with satellite ocean colour data (SeaWiFS) using a genetic algorithm, an efficient non-derivative based optimization technique. We use the CSIRO Mk 2 climate model to force the DMS model under enhanced greenhouse climate conditions. We discuss the simulated change in DMS flux and its consequences for future aerosol production and the radiative budget of the Arctic. Significant decreases in sea-ice cover (by 18.5% annually and 61% in summer-autumn), increases in mean annual sea surface temperature of 1 deg C, and a decrease of mixed layer depth by 13% annually are predicted to result in annual DMS flux increases of over 80% by the time of equivalent CO 2 tripling (2080). Estimates of the impact of this increase in DMS emissions suggest significant changes to summer aerosol concentrations and the radiative balance in the Arctic region

  16. Profile data from CTD casts aboard the F/V Ocean Explorer in the Arctic Ocean and Beaufort Sea from 2008-08-06 to 2008-08-22 (NODC Accession 0001920)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This profile data aboard the F/V Ocean Explorer in the Arctic Ocean and Beaufort Sea from August 6, 2008 to August 22, 2008 was supported by the Minerals Management...

  17. Arctic black shale formation during Cretaceous Oceanic Anoxic Event 2

    DEFF Research Database (Denmark)

    Lenniger, Marc; Nøhr-Hansen, Henrik; Hills, Len V.

    2014-01-01

    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid-paleolatitudes are re......The Late Cretaceous Oceanic Anoxic Event 2 (OAE2) represents a major perturbation of the global carbon cycle caused by the widespread deposition of organic-rich black shales. Although the paleoceanographic response and the spatial extent of bottom-water anoxia in low and mid...

  18. Arctic Ocean Paleoenvironmental Change in the last 50 kyr Reconstructed from an Alpha Ridge to Gakkel Ridge Transect

    Science.gov (United States)

    Spielhagen, R. F.; Glogowski, S.; Noergaard-Pedersen, N.; Schmidt, A.

    2011-12-01

    The Arctic Ocean has undergone profound changes in the last ca. 50 kyr, reaching from a dense sea ice cover with large numbers of icebergs during the mid-Weichselian glaciation (MWG, >45 ka) to a perennial sea ice cover with seasonally open leads in the Holocene. During the main glacial phases (MWG and last glacial maximum (ca. 20 ka)), large parts of the surrounding continents were covered by ice sheets which discharged icebergs to the ocean, leaving traces in the form of ice-rafted debris (IRD) in the bottom sediments. Different lithologies in the source areas of the icebergs allow to reconstruct the pathways of the ice and thus the large-scale drift pattern of the oceanic ice cover. Microfossils and geochemical proxies give evidence of other parameters of the surface-near water masses and their spatial and temporal variability. In our presentation we will use a multiproxy data set from sediment cores obtained between the Alpha (130-160°W) and Gakkel (30-60°E) ridges to reconstruct the paleoenvironment in the central Arctic with emphasis on the intervals with extensive continental glaciations. Sedimentation rates were generally low (1 cm/kyr or less) with the exception of the MWG with several cm/kyr. Coarse fraction content (IRD and microfossils) in sediments from both glaciation intervals is increasing towards the Alpha Ridge, revealing a stronger influence (iceberg discharge) of the North American Arctic ice sheet if compared to the northern Eurasian ice sheet. Planktic foraminifer occurrences in Alpha Ridge sediments from the MWG indicate that seasonally open waters were present occasionally and may have allowed higher melt rates than in the Eurasian subbasin. The paleoenvironmantal picture for the LGM is more ambiguous because of extremely low sedimentation rates or even an interval of non-sedimentation. However, it seems likely that the eastern part of the Eurasian Basin was largely free of icebergs for a few thousand years during the LGM. The different

  19. A comparison of tracking methods for extreme cyclones in the Arctic basin

    Directory of Open Access Journals (Sweden)

    Ian Simmonds

    2014-09-01

    Full Text Available Dramatic climate changes have occurred in recent decades over the Arctic region, and very noticeably in near-surface warming and reductions in sea ice extent. In a climatological sense, Arctic cyclone behaviour is linked to the distributions of lower troposphere temperature and sea ice, and hence the monitoring of storms can be seen as an important component of the analysis of Arctic climate. The analysis of cyclone behaviour, however, is not without ambiguity, and different cyclone identification algorithms can lead to divergent conclusions. Here we analyse a subset of Arctic cyclones with 10 state-of-the-art cyclone identification schemes applied to the ERA-Interim reanalysis. The subset is comprised of the five most intense (defined in terms of central pressure Arctic cyclones for each of the 12 calendar months over the 30-yr period from 1 January 1979 to 31 March 2009. There is a considerable difference between the central pressures diagnosed by the algorithms of typically 5–10 hPa. By contrast, there is substantial agreement as to the location of the centre of these extreme storms. The cyclone tracking algorithms also display some differences in the evolution and life cycle of these storms, while overall finding them to be quite long-lived. For all but six of the 60 storms an intense tropopause polar vortex is identified within 555 km of the surface system. The results presented here highlight some significant differences between the outputs of the algorithms, and hence point to the value using multiple identification schemes in the study of cyclone behaviour. Overall, however, the algorithms reached a very robust consensus on most aspects of the behaviour of these very extreme cyclones in the Arctic basin.

  20. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  1. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  2. Persistent export of 231Pa from the deep central Arctic Ocean over the past 35,000 years.

    Science.gov (United States)

    Hoffmann, Sharon S; McManus, Jerry F; Curry, William B; Brown-Leger, L Susan

    2013-05-30

    The Arctic Ocean has an important role in Earth's climate, both through surface processes such as sea-ice formation and transport, and through the production and export of waters at depth that contribute to the global thermohaline circulation. Deciphering the deep Arctic Ocean's palaeo-oceanographic history is a crucial part of understanding its role in climatic change. Here we show that sedimentary ratios of the radionuclides thorium-230 ((230)Th) and protactinium-231 ((231)Pa), which are produced in sea water and removed by particle scavenging on timescales of decades to centuries, respectively, record consistent evidence for the export of (231)Pa from the deep Arctic and may indicate continuous deep-water exchange between the Arctic and Atlantic oceans throughout the past 35,000 years. Seven well-dated box-core records provide a comprehensive overview of (231)Pa and (230)Th burial in Arctic sediments during glacial, deglacial and interglacial conditions. Sedimentary (231)Pa/(230)Th ratios decrease nearly linearly with increasing water depth above the core sites, indicating efficient particle scavenging in the upper water column and greater influence of removal by lateral transport at depth. Although the measured (230)Th burial is in balance with its production in Arctic sea water, integrated depth profiles for all time intervals reveal a deficit in (231)Pa burial that can be balanced only by lateral export in the water column. Because no enhanced sink for (231)Pa has yet been found in the Arctic, our records suggest that deep-water exchange through the Fram strait may export (231)Pa. Such export may have continued for the past 35,000 years, suggesting a century-scale replacement time for deep waters in the Arctic Ocean since the most recent glaciation and a persistent contribution of Arctic waters to the global ocean circulation.

  3. Arctic Ocean outflow and glacier–ocean interactions modify water over the Wandel Sea shelf (northeastern Greenland

    Directory of Open Access Journals (Sweden)

    I. A. Dmitrenko

    2017-12-01

    Full Text Available The first-ever conductivity–temperature–depth (CTD observations on the Wandel Sea shelf in northeastern Greenland were collected in April–May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014–2015 drift. The CTD profiles are used to reveal the origin of water masses and interactions with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has interacted with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral interaction with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature–salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean–glacier interaction. Our observations of Pacific water are set within the context of upstream observations in the Beaufort Sea and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel Sea slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.

  4. Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Das, P.; Iyer, S.D.; Kodagali, V.N.

    The morphotectonic features of the Central Indian Ocean Basin (CIOB) provide information regarding the development of the basin. Multibeam mapping of the CIOB reveals presence of abundant isolated seamounts and seamount chains sub-parallel to each...

  5. Temperature, salinity, conductivity, and other measurements collected in the Northern Ocean as part of the Arctic Experiment in 1994 (NODC Accession 0002728)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Investigation of thermohaline circulation in Nordic Seas, hydrography and pathways of Atlantic water summer Arctic experiments

  6. Physical and Chemical Properties of Individual Marine Aerosols Collected over the Arctic Ocean

    Science.gov (United States)

    Yoshizue, M.; Taketani, F.; Adachi, K.; Iwamoto, Y.; Mori, T.; Miura, K.

    2017-12-01

    Atmospheric aerosol particles including black carbon (BC) play an important role in Arctic climate effect through absorbing and scattering solar radiation. However, quantitative understanding of atmospheric aerosol's behavior in Arctic region is limited. In this study, we characterized the mixing states and chemical compositions of marine aerosol particles collected over the Arctic Ocean on the basis of an individual particle analysis using a transmission electron microscope (TEM) and an energy dispersive X-ray spectrometer. Observations and TEM samplings were conducted on-board the R/V Mirai from 22 August to 5 October 2016 in a round trip to the Arctic Ocean from a port of Hachinohe (40.52°N, 141.51°E), Japan. Samplings of atmospheric aerosol particles were carried out on the flying deck (18 m a.s.l.) of R/V Mirai using a low volume cascade impactor with a volumetric flow of 1 L/min. The sampling times ranged from 40 to 70 min. To monitor ambient BC mass concentrations, we also used an online instrument of single particle soot photometer (SP2). In >70°N, we captured relatively high BC mass concentration events on 7 and 16 September 2016 at 71.70°N, 155.10°W and 72.48°N, 155.42°W, respectively. Within clean condition samples on 11 and 14 September 2016, the number fractions of sulfur-rich (S-rich) and carbon-rich (C-rich) particles were, respectively, less than 40% and 15% in the analyzed particles (n=423). On the other hand, in the sample collected at 7 September, the number fractions of S- and C-rich particles were more than 70% and about 5% (n=299), respectively, suggesting that the air mass had been affected by anthropogenic substances. In a sample collected at 16 September, the number fractions of S- and C-rich particles were about 15% and 40% (n=88), respectively. The backward trajectory analyses indicated that the air masses came from Siberian coastal area through the East Siberian Sea, suggesting that the events might be influenced by long

  7. Meteorological, oceanographic, and buoy data from JAMSTEC from five drifting buoys, named J-CAD (JAMSTEC Compact Arctic Drifter) in the Arctic Ocean from 2000 to 2003 (NODC Accession 0002201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1999, JAMSTEC and MetOcean Data System Ltd. developed a new drifting buoy, named J-CAD (JAMSTEC Compact Arctic Drifter), to conduct long-term observations in the...

  8. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    NARCIS (Netherlands)

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively

  9. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean.

    Science.gov (United States)

    Horikawa, Keiji; Martin, Ellen E; Basak, Chandranath; Onodera, Jonaotaro; Seki, Osamu; Sakamoto, Tatsuhiko; Ikehara, Minoru; Sakai, Saburo; Kawamura, Kimitaka

    2015-06-29

    Warming of high northern latitudes in the Pliocene (5.33-2.58 Myr ago) has been linked to the closure of the Central American Seaway and intensification of North Atlantic Deep Water. Subsequent cooling in the late Pliocene may be related to the effects of freshwater input from the Arctic Ocean via the Bering Strait, disrupting North Atlantic Deep Water formation and enhancing sea ice formation. However, the timing of Arctic freshening has not been defined. Here we present neodymium and lead isotope records of detrital sediment from the Bering Sea for the past 4.3 million years. Isotopic data suggest the presence of Alaskan glaciers as far back as 4.2 Myr ago, while diatom and C37:4 alkenone records show a long-term trend towards colder and fresher water in the Bering Sea beginning with the M2 glaciation (3.3 Myr ago). We argue that the introduction of low-salinity Bering Sea water to the Arctic Ocean by 3.3 Myr ago preconditioned the climate system for global cooling.

  10. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  11. Impact of CryoSat-2 for marine gravity field - globally and in the Arctic Ocean

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Knudsen, Per

    -in) designed to improve the sea surface /ice height mapping in the Polar Regions. We have investigated the use of two years of CryoSat-2 LRM data as well as CryoSat SAR and SAR-in data for deriving a global gravity field as well as a regional marine gravity field in the Arctic. Both conventional ESA Level 2...... GDR data, NOAA LRM data, but also Level1b (LRM, SAR and SAR-in waveforms) data have been analyzed. A suite of eight different empirical retrackers have been developed and investigated for their ability to predict marine gravity in the Arctic Ocean. The impact of the various improvement offered by Cryo...... days repeat offered by CryoSat-2 provides denser coverage than older geodetic mission data set like ERS-1. Thirdly, the 92 degree inclination of CryoSat-2 is designed to map more of the Arctic Ocean than previous altimetric satellites. Finally, CryoSat-2 is able to operate in two new modes (SAR and SAR...

  12. Perfluoroalkyl acids in surface seawater from the North Pacific to the Arctic Ocean: Contamination, distribution and transportation.

    Science.gov (United States)

    Li, Lei; Zheng, Hongyuan; Wang, Tieyu; Cai, Minghong; Wang, Pei

    2018-03-16

    The bioaccumulative, persistent and toxic properties of long-chain perfluoroalkyl acids (PFAAs) resulted in strict regulations on PFAAs, especially in developed countries. Consequently, the industry manufacturing of PFAAs shifts from long-chain to short-chain. In order to better understand the pollution situation of PFAAs in marine environment under this new circumstance, the occurrence of 17 linear PFAAs was investigated in 30 surface seawater samples from the North Pacific to Arctic Ocean (123°E to 24°W, 32 to 82°N) during the sixth Chinese Arctic Expedition in 2014. Total concentrations of PFAAs (∑PFAAs) were between 346.9 pg per liter (pg/L) to 3045.3 pg/L. The average concentrations of ∑PFAAs decreased in the order of East China Sea (2791.4 pg/L, n = 2), Sea of Japan (East Sea) (832.8 pg/L, n = 6), Arctic Ocean (516.9 pg/L, n = 7), Chukchi Sea (505.2 pg/L, n = 4), Bering Sea (501.2 pg/L, n = 8) and Sea of Okhotsk (417.7 pg/L, n = 3). C4 to C9 perfluoroalkyl carboxylic acids (PFCAs) were detected in more than 80% of the surface water samples. Perfluorobutanoic acid (PFBA) was the most prevalent compound and perfluorooctanoic acid (PFOA) was the second abundant homolog. The concentration of individual PFAAs in the surface seawater of East China Sea was much higher than other sampling seas. As the spatial distribution of PFAAs in the marine environment was mainly influenced by the river inflow from the basin countries, which proved the large input from China. Furthermore, the marginal seas of China were found with the greatest burden of PFOA comparing the pollution level in surface seawater worldwide. PFBA concentration in the surrounding seas of China was also high, but distributed more evenly with an obvious increase in recent years. This large-scale monitoring survey will help the improvement and development of PFAAs regulations and management, where production shift should be taken into consideration. Copyright

  13. Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean

    Science.gov (United States)

    Ehlers, Birte-Marie; Jokat, Wilfried

    2009-05-01

    Five basin-wide seismic reflection profiles of up to 550 km each were acquired in the Arctic Ocean and the northern North Atlantic in 2001 and 2002. The main objective was to investigate the depth to the basement and to analyse the crustal structure, morphology and roughness of ultra-slow spreading ridges of the Gakkel, Molloy and Knipovich ridges. To date, little is known to date of the ultra-slow spectrum of such spreading ridges. The seismic profiles of all investigated ridges show similar morphological characteristics with deep axial valleys and rough basement topography. Magnetic data compilation and interpretation suggests that the ultra-slow spreading systems are fairly stable and existed during the entire evolution of the basins to the north of the Greenland Fracture Zone. The thermal subsidence curve was calculated and corrected for sediment loads, and crustal roughness values are estimated for all five profiles. The resulting roughness values append the global roughness data set for ultra-slow spreading systems. The results are higher than those predicted by interpolating existing global roughness. This study confirms the presence of a global relationship between crustal roughness, ridge morphology and spreading rates. New curve fits, supporting the global relationship, are discussed. Data on present spreading rates, ridge morphology, subsidence and roughness provide a better insight into the development of the axial ridge morphology in the study area. The results show that the basins to the north of the Greenland Fracture Zone were formed at ultra-slow spreading axial rift valleys and continued spreading at ultra-slow rates to the present day configuration.

  14. New data on the geological structure of the southwestern Mendeleev Rise, Arctic Ocean

    Science.gov (United States)

    Skolotnev, S. G.; Fedonkin, M. A.; Korniychuk, A. V.

    2017-09-01

    This communication considers the ideas about the geological structure of the southwestern Mendeleev Rise belonging to the East Arctic rises of the Arctic Ocean. These ideas have resulted from analyzing the data obtained from bathymetric surveys, visual observations, and bottom coring using the technical tools of a research submarine. We distinguished the lower sequence of quartzite sandstones and dolomites, which has a visible thickness of about 230 m and occurs in the lowermost visible section, at depths between 1500 and 1270 m. This sequence is superimposed with stratigraphic and angular unconformity by the upper sequence of limestones and sandstones having a visible thickness of 40 m. The lower sequence is pierced by subvolcanic rocks of basaltic to andesitic composition, and in the lowermost part of the slope, a tuffaceous sequence having a visible thickness of 50 m adjoins it.

  15. Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5

    Science.gov (United States)

    Tietsche, Steffen; Balmaseda, Magdalena A.; Zuo, Hao; Mogensen, Kristian

    2017-08-01

    We discuss the state of Arctic sea ice in the global eddy-permitting ocean reanalysis Ocean ReAnalysis Pilot 5 (ORAP5). Among other innovations, ORAP5 now assimilates observations of sea ice concentration using a univariate 3DVar-FGAT scheme. We focus on the period 1993-2012 and emphasize the evaluation of model performance with respect to recent observations of sea ice thickness. We find that sea ice concentration in ORAP5 is close to assimilated observations, with root mean square analysis residuals of less than 5 % in most regions. However, larger discrepancies exist for the Labrador Sea and east of Greenland during winter owing to biases in the free-running model. Sea ice thickness is evaluated against three different observational data sets that have sufficient spatial and temporal coverage: ICESat, IceBridge and SMOSIce. Large-scale features like the gradient between the thickest ice in the Canadian Arctic and thinner ice in the Siberian Arctic are simulated well by ORAP5. However, some biases remain. Of special note is the model's tendency to accumulate too thick ice in the Beaufort Gyre. The root mean square error of ORAP5 sea ice thickness with respect to ICESat observations is 1.0 m, which is on par with the well-established PIOMAS model sea ice reconstruction. Interannual variability and trend of sea ice volume in ORAP5 also compare well with PIOMAS and ICESat estimates. We conclude that, notwithstanding a relatively simple sea ice data assimilation scheme, the overall state of Arctic sea ice in ORAP5 is in good agreement with observations and will provide useful initial conditions for predictions.

  16. 3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean)

    Science.gov (United States)

    Schmidt-Aursch, Mechita C.; Jokat, Wilfried

    2016-11-01

    Near-orthogonal ultra-slow (13.3 mm yr- 1 to 6.5 mm yr- 1) sea floor spreading in the absence of large transform faults make the Arctic Gakkel Ridge ideally suited for the study of magmatic processes. To enable this, we generated a three-dimensional gravity model of crustal thickness over the ridge and parts of the adjacent Nansen and Amundsen basins west of 65° E. The model shows that oceanic crust accreted prior to chrons C5/C6 is generally very thin (1-3 km). Magnetic anomalies over this thin crust are highly variable both parallel and perpendicular to the ridge axis. This is the result of amagmatic or weakly volcanic spreading that started with the opening of the basins 56 Ma ago. The separation of Greenland from Svalbard at chron C5/C6 led to the inflow of North Atlantic mantle into the western Eurasia Basin leading to a change in the mantle convection system and the establishment of a magmatic dichotomy along the Gakkel Ridge. Robust magmatism was established in the Western Volcanic Zone (6° 30‧ W-3° 30‧ E), leading to creation of a 6.6 km thick igneous crust, characterized by a strong positive axial magnetic anomaly, numerous volcanic cones, and widespread thick mid-ocean ridge basalts. The transition to the neighbouring Sparsely Magmatic (3° 30‧ E-29° E) and Eastern Volcanic (29° E-85° E) zones is sharp. Peridotites cover the central valley and the inner rift flanks, the central magnetic anomaly vanishes and crustal thickness decreases to 1-4 km. Transverse basement ridges, extending for as much as 100 km into the adjacent basins, intersect the central valley. Although partly of tectonic origin, the transverse ridges are also an expression of long-living magmatic centres, as revealed by increased magnetic anomaly intensities and local thickening of the crust to values as great as 5.9 km.

  17. Orbital-scale Central Arctic Ocean Temperature Records from Benthic Foraminiferal δ18O and Ostracode Mg/Ca Ratios

    Science.gov (United States)

    Keller, K.; Cronin, T. M.; Dwyer, G. S.; Farmer, J. R.; Poirier, R. K.; Schaller, M. F.

    2017-12-01

    Orbital-scale climate variability is often amplified in the polar region, for example in changes in seawater temperature, sea-ice cover, deep-water formation, ecosystems, heat storage and carbon cycling. Yet, the relationship between the Arctic Ocean and global climate remains poorly understood due largely to limited orbital-scale paleoclimate records, the complicated nature of sea-ice response to climate and limited abundance of deep sea biological proxies. Here we reconstruct central Arctic Ocean bottom temperatures over the last 600 kyr using ostracode Mg/Ca ratios (genus Krithe) and benthic foraminiferal oxygen isotope ratios (δ18Obf - I. teretis, O. tener, P. bulloides, C. reniforme, C. wuellerstorfi) in six sediment cores recovered from the Mendeleev and Northwind Ridges (700- 2726 m water depth). We examined glacial-interglacial cycles in Arctic seawater temperatures and Arctic δ18Obf chronostratigraphy to reconcile effects of changing bottom water temperature, ice volume and regional hydrography on δ18Obf records. Results show lower ( 10-12 mmol/mol) interglacial and higher ( 16-23 mmol/mol) glacial Mg/Ca ratios, signifying intermediate depth ocean warming during glacials of up to 2 ºC. These temperature maxima are likely related to a deepening of the halocline and the corresponding deeper influence of warm Atlantic water. Glacial-interglacial δ18Obf ranges are smaller in the Arctic ( 0.8-1‰ VPDB) than in the global ocean ( 1.8 ‰). However, when the distinct glacial-interglacial temperature histories of the Arctic (glacial warming) and global ocean (glacial cooling) are accounted for, both Arctic and global ocean seawater δ18O values (δ18Osw) exhibit similar 1.2-1.3 ‰ glacial-interglacial ranges. Thus, Arctic δ18Obf confirms glacial Arctic warming inferred from ostracode Mg/Ca. This study will discuss the strengths and limitations of applying paired Mg/Ca and oxygen isotope proxies in reconstructing more robust paleoceanographic changes in the

  18. The Rockall Trough, NE Atlantic: An Extinct Young Ocean Basin or a Failed Breakup Basin?

    Science.gov (United States)

    Roberts, Alan; Kusznir, Nick; Alvey, Andy

    2017-04-01

    We investigate the crustal structure and composition of the Rockall Trough which is located in the NE Atlantic to the west of Ireland and the UK. The Rockall Trough is a large extensional basin formed in the Early Cretaceous and has dimensions of approximately 250 km in width and 1000 km in length. It is one of several basins formed during the complex Mesozoic northward propagation of rifting, continental breakup and sea-floor spreading initiation of the North Atlantic; other adjacent basins formed at this time include the Porcupine Trough to its east and the East and West Orphan Basins on the Canadian conjugate margin. To investigate the crustal structure of the Rockall Trough we have used three independent analyses of available 2D and 3D data: 1. 3D gravity inversion, using public-domain gravity and sediment-thickness information, has produced maps of (i) depth to Moho, (ii) crustal thickness (figure 1) and (iii) stretching/thinning factor across both margins. 2. Gravity inversion as above, but using public-domain gravity data combined with new proprietary 2D sediment-thickness information, has produced a series of cross-sections which show (i) depth to Moho, (ii) crustal thickness and (iii) stretching/thinning factor across both margins 3. Geodynamic modelling, comprising 2D flexural backstripping and forward modelling, has been used to produce (i) estimates of stretching/thinning factor, (ii) whole-crustal cross-sections and (iii) predictions of palaeobathymetry through time along a series of project-specific transects. Our analysis of the Rockall Trough shows a rapid shallowing of crustal basement thicknesses on the flanks of the basin with central values of crustal thickness typically 8-10 km consistent with previously published seismic estimates. An important question is whether this thin crust is hyper-extended continental crust or proto-oceanic crust. Locally isolated patches of crustal thicknesses as low as 3km are observed which are consistent with the

  19. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from POLARSTERN in the Arctic Ocean from 1993-08-10 to 1993-09-24 (NODC Accession 9600042)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD); and other data were collected using ship POLARSTERN from Arctic Ocean. The data was collected from August 10, 1993 to...

  20. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  1. Temperature, salinity, and other data from buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993 (NODC Accession 9800040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, and other data were collected using buoy casts in the Arctic Ocean, Barents Sea and Beaufort Sea from 1948 to 1993. Data were collected by the...

  2. Zooplankton species identification and counts data from drifting station ARLIS II and Fletchers ice island T-3 in the Arctic Ocean from 19521229 to 19680129 (NODC Accession 6900643)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are counts of 3 copepod species collected during plankton tows in the Arctic Ocean from December 1952 through January 1968 by the University of...

  3. Temperature, salinity, and other data from CTD and XCTD casts in the Arctic Ocean from 26 March 1995 to 08 May 1995 (NODC Accession 0000474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, XCTD, and other data were collected in the Arctic Ocean from 26 March 1995 to 08 May 1995. Surface data were collected by CTD. XCTD data were corrected for...

  4. Rare gases in lavas from the ultraslow spreading Lena Trough, Arctic Ocean

    Science.gov (United States)

    Nauret, F.; Moreira, M.; Snow, J. E.

    2010-06-01

    Mid-ocean ridge basalts (MORB) from the Arctic Ocean have been much less studied than those from the Indian, Atlantic, and Pacific due to the difficulty of access related to ice cover. In 2001 and 2004 the Arctic ridges (Gakkel Ridge and Lena Trough) were intensively sampled. In this study we present the first helium, neon, and argon concentrations and isotopic ratios in a suite of samples from the ultraslow spreading Lena Trough (˜0.75 cm/yr effective full rate). Central Lena Trough (CLT) lavas display 4He/3He between 89,710 and 97,530 (R/Ra between 7.4 and 8.1), similar to the mean MORB ratio of 90,000 ± 10,000 (R/Ra = 8 ± 1). In a three neon isotope diagram, the samples fall on the MORB line, without showing any excess of nucleogenic 21Ne. The 40Ar/36Ar ratios vary from 349 to 6964. CLT samples have a typical MORB He and Ne isotopic composition. Rare gases do not indicate any mantle heterogeneities or contribution of subcontinental lithospheric mantle, although this has been suggested previously on the basis of the Sr-Nd and Pb isotopic systems. Based on noble gas systematics, a DUPAL-like anomaly is not observed in the Arctic Ocean. We propose two possible models which reconcile the rare gases with these previous studies. The first is that the Lena Trough mantle has a marble cake structure with small-scale heterogeneities (<1 km), allowing rapid diffusion and homogenization of rare gases compared to elements such as Sr, Nd, and Pb. The second model proposes that the recycled component identified by other isotopic systems was fully degassed at a recent date. It would therefore have a negligible mass budget of rare gases compared to other isotopic systems. This would suggest that the mantle enrichment beneath Lena Trough was generated by rift-forming processes and not by recycling.

  5. Microseismicity of the ultraslow-spreading Gakkel ridge, Arctic Ocean: a pilot study

    Science.gov (United States)

    Schlindwein, Vera; Müller, Christian; Jokat, Wilfried

    2007-04-01

    The active mid-ocean ridge of the Arctic Ocean, named Gakkel ridge, is the slowest spreading ridge of the global system of mid-oceanic ridges with full spreading rates declining from about 12.5 to 6 mm yr-1 from west to east. Geological models of seafloor spreading predict a decreasing intensity of magmatic processes with decreasing spreading rate. In summer 2001, the multidisciplinary Arctic Mid-Ocean Ridge Expedition (AMORE2001) discovered robust magmatism at western Gakkel ridge, an amagmatic section further east and pronounced volcanic centres at eastern Gakkel ridge. During AMORE2001, an attempt was made at recording the microearthquake activity of the ridge which allows important insights into the character and dynamics of active crustal accretion at the ridge axis. Due to the permanent ice cover of the Arctic Ocean, the use of ocean-bottom seismometers bears the risk of instrument and data loss. In this pilot study, we used for the first time drifting ice floes as platforms for small seismological arrays. The arrays consisted of four three-component seismometers equipped with GPS devices and arranged as a triangle with a central seismometer and a side length of about 1 km. Three such arrays were deployed in different rift segments and recorded the seismic activity continuously for 5-11 days at a sampling rate of 100 Hz. The array technique allowed to distinguish clearly between icequakes and earthquakes and to localize the earthquake source to within few kilometres or less depending on epicentral distance. We intensively discuss the detection capabilities and the location accuracy of this single array on a drifting ice floe. Earthquake magnitudes could not be calculated in our pilot study but are estimated to be significantly smaller than magnitude 2 by comparison with a regional earthquake of known magnitude. Furthermore, we analyse the characteristics of the recorded seismic events ranging from long waveforms of regional events to short local events with

  6. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties

    NARCIS (Netherlands)

    David, Carmen; Lange, Benjamin; Krumpen, Thomas; Schaafsma, F.L.; Franeker, van J.A.; Flores, H.

    2016-01-01

    In the Arctic Ocean, sea-ice habitats are undergoing rapid environmental change. Polar cod (Boreogadus saida) is the most abundant fish known to reside under the pack-ice. The under-ice distribution, association with sea-ice habitat properties and origins of polar cod in the central Arctic Ocean,

  7. Characterization of Seafloor Volcanism Along the Extremely Slow-Spreading Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Cochran, J. R.

    2006-12-01

    The Gakkel Ridge, in the Eurasian Basin of the Arctic Ocean, is the slowest spreading portion of the global mid-ocean ridge system. Full spreading rates vary from 12.7 mm/a at the western end to 6.0 mm/a near the Laptev shelf. Mantle melting models based on decompression melting predict that melt production and crustal thickness decrease dramatically as the spreading rate drops below 15 mm/a. The very low spreading rate is expected to affect not only the crustal thickness, but also the form and distribution of volcanic activity. We have used a seamount-locating algorithm to locate and characterize volcanic features along the Gakkel Ridge axis in order to determine the nature of volcanic processes along the ridge and the manner in which these processes vary along the axis. The technique searches gridded bathymetry data for concentric closed contours shallower than the surrounding seafloor. Volcanic and tectonic features are distinguished primarily by their aspect ratio. The Gakkel Ridge has been divided into three regions on the basis of relative abundance of rock types by Michael et al [2003], a western volcanic zone (WVZ), a central "sparsely magnetic zone" (SMZ) and eastern volcanic zone (EVZ). The WVZ (west of 3°E) is characterized by a relatively shallow rift valley (4200 m), abundant recovery of basalt and clearly volcanic landforms, and visually appears similar to the Mid-Atlantic Ridge (MAR). This analogy is supported by our analysis that shows numerous volcanoes scattered across the rift valley floor and perched on terraces of the rift valley walls. The density of volcanoes (number/sq. km) is similar to regions of the MAR where we have carried out similar analyses. Volcanoes on this portion of the Gakkel Ridge tend however to be smaller than on the MAR. The magmatic vigor of this area, which varies greatly from what is observed both on the rest of the Gakkel Ridge and on most of the faster-spreading Southeast Indian Ridge, requires unusual thermal and

  8. Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge.

    Science.gov (United States)

    Stärz, Michael; Jokat, Wilfried; Knorr, Gregor; Lohmann, Gerrit

    2017-06-05

    High latitude ocean gateway changes are thought to play a key role in Cenozoic climate evolution. However, the underlying ocean dynamics are poorly understood. Here we use a fully coupled atmosphere-ocean model to investigate the effect of ocean gateway formation that is associated with the subsidence of the Greenland-Scotland Ridge. We find a threshold in sill depth (∼50 m) that is linked to the influence of wind mixing. Sill depth changes within the wind mixed layer establish lagoonal and estuarine conditions with limited exchange across the sill resulting in brackish or even fresher Arctic conditions. Close to the threshold the ocean regime is highly sensitive to changes in atmospheric CO 2 and the associated modulation in the hydrological cycle. For larger sill depths a bi-directional flow regime across the ridge develops, providing a baseline for the final step towards the establishment of a modern prototype North Atlantic-Arctic water exchange.

  9. Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling

    Science.gov (United States)

    Le Fouest, Vincent; Matsuoka, Atsushi; Manizza, Manfredi; Shernetsky, Mona; Tremblay, Bruno; Babin, Marcel

    2018-03-01

    Future climate warming of the Arctic could potentially enhance the load of terrigenous dissolved organic carbon (tDOC) of Arctic rivers due to increased carbon mobilization within watersheds. A greater flux of tDOC might impact the biogeochemical processes of the coastal Arctic Ocean (AO) and ultimately its capacity to absorb atmospheric CO2. In this study, we show that sea-surface tDOC concentrations simulated by a physical-biogeochemical coupled model in the Canadian Beaufort Sea for 2003-2011 compare favorably with estimates retrieved by satellite imagery. Our results suggest that, over spring-summer, tDOC of riverine origin contributes to 35 % of primary production and that an equivalent of ˜ 10 % of tDOC is exported westwards with the potential of fueling the biological production of the eastern Alaskan nearshore waters. The combination of model and satellite data provides promising results to extend this work to the entire AO so as to quantify, in conjunction with in situ data, the expected changes in tDOC fluxes and their potential impact on the AO biogeochemistry at basin scale.

  10. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria

    2010-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  11. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast

    International Nuclear Information System (INIS)

    Zhao Zhen; Xie Zhiyong; Möller, Axel; Sturm, Renate; Tang Jianhui; Zhang Gan; Ebinghaus, Ralf

    2012-01-01

    The global distribution and long-range transport of polyfluoroalkyl substances (PFASs) were investigated using seawater samples collected from the Greenland Sea, East Atlantic Ocean and the Southern Ocean in 2009–2010. Elevated levels of ΣPFASs were detected in the North Atlantic Ocean with the concentrations ranging from 130 to 650 pg/L. In the Greenland Sea, the ΣPFASs concentrations ranged from 45 to 280 pg/L, and five most frequently detected compounds were perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS). PFOA (15 pg/L) and PFOS (25–45 pg/L) were occasionally found in the Southern Ocean. In the Atlantic Ocean, the ΣPFASs concentration decreased from 2007 to 2010. The elevated PFOA level that resulted from melting snow and ice in Greenland Sea implies that the Arctic may have been driven by climate change and turned to be a source of PFASs for the marine ecosystem. - Highlights: ► PFOA is released from the Arctic snow and ice and might be transport southwards to the Atlantic. ► Decline temporal trends of PFASs are present in the Northern Hemisphere in the Atlantic. ► PFOS has elevate concentration in comparison to PFOA in the Southern Ocean. - Polyfluoroalkyl substances (PFASs) have been reported for the Arctic, Atlantic and the Southern Ocean, which improves understanding the fate of PFASs in the global oceans.

  12. Profile and meteorological data collected for the Atlantic Layer Tracking Experiment in the Arctic Ocean, Greenland Sea, and North Pacific Ocean, from 2001-05 to 2001-11 (NODC Accession 0001111)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, pressure, salinity, temperature, and other data were collected using meteorological sensors and CTD casts in the Arctic Ocean, Greenland Sea, and North...

  13. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge.

    Science.gov (United States)

    Jokat, W; Ritzmann, O; Schmidt-Aursch, M C; Drachev, S; Gauger, S; Snow, J

    2003-06-26

    Most models of melt generation beneath mid-ocean ridges predict significant reduction of melt production at ultraslow spreading rates (full spreading rates &<20 mm x yr(-1)) and consequently they predict thinned oceanic crust. The 1,800-km-long Arctic Gakkel mid-ocean ridge is an ideal location to test such models, as it is by far the slowest portion of the global mid-ocean-ridge spreading system, with a full spreading rate ranging from 6 to 13 mm x yr(-1) (refs 4, 5). Furthermore, in contrast to some other ridge systems, the spreading direction on the Gakkel ridge is not oblique and the rift valley is not offset by major transform faults. Here we present seismic evidence for the presence of exceptionally thin crust along the Gakkel ridge rift valley with crustal thicknesses varying between 1.9 and 3.3 km (compared to the more usual value of 7 km found on medium- to fast-spreading mid-ocean ridges). Almost 8,300 km of closely spaced aeromagnetic profiles across the rift valley show the presence of discrete volcanic centres along the ridge, which we interpret as evidence for strongly focused, three-dimensional magma supply. The traces of these eruptive centres can be followed to crustal ages of approximately 25 Myr off-axis, implying that these magma production and transport systems have been stable over this timescale.

  14. Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2013-08-01

    Full Text Available The Arctic Ocean accounts for only 4% of the global ocean area, but it contributes significantly to the global carbon cycle. Recent observations of seawater CO2-carbonate chemistry in shelf waters of the western Arctic Ocean, primarily in the Chukchi Sea, from 2009 to 2011 indicate that bottom waters are seasonally undersaturated with respect to calcium carbonate (CaCO3 minerals, particularly aragonite. Nearly 40% of sampled bottom waters on the shelf have saturation states less than one for aragonite (i.e., Ωaragonite 3-secreting organisms, while 80% of bottom waters present had Ωaragonite values less than 1.5. Our observations indicate seasonal reduction of saturation states (Ω for calcite (Ωcalcite and aragonite (Ωaragonite in the subsurface in the western Arctic by as much as 0.8 and 0.5, respectively. Such data indicate that bottom waters of the western Arctic shelves were already potentially corrosive for biogenic and sedimentary CaCO3 for several months each year. Seasonal changes in Ω are imparted by a variety of factors such as phytoplankton photosynthesis, respiration/remineralization of organic matter and air–sea gas exchange of CO2. Combined, these processes either increase or enhance in surface and subsurface waters, respectively. These seasonal physical and biological processes also act to mitigate or enhance the impact of Anthropocene ocean acidification (OA on Ω in surface and subsurface waters, respectively. Future monitoring of the western Arctic shelves is warranted to assess the present and future impact of ocean acidification and seasonal physico-biogeochemical processes on Ω values and Arctic marine ecosystems.

  15. Seismoacoustic evidence for volcanic activity on the ultraslow-spreading Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Schlindwein, Vera; Müller, Christian; Jokat, Wilfried

    2005-09-01

    In 1999, a swarm of earthquakes and a lava flow signaled a volcanic eruption at the eastern end of Gakkel Ridge, the slowest spreading ridge worldwide. In summer 2001, the multidisciplinary Arctic Mid-Ocean Ridge Expedition studied these ridge processes which are unusual at ultraslow spreading rates. As part of these studies, we examined the microearthquake activity of the ridge with seismological arrays on ice-floes. Near the volcanic center (85°40'N 85°E) active in 1999, we recorded a remarkable swarm of 200 acoustic events. The signals consist of two to four explosive phases, representing the direct water wave and multiple reflections. We localized the acoustic source at the northern rim of the lava flow of 1999. By comparison with similar signals produced at the ocean entry of the Kilauea lava, we postulate that we made an exceptional observation of the sounds of active submarine volcanism.

  16. Analysis of sea-level reconstruction techniques for the Arctic Ocean

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Sea-level reconstructions spanning several decades have been examined in numerous studies for most of the world's ocean areas, where satellite missions such as TOPEX/Poseidon and Jason-1 and -2 have provided much-improved knowledge of variability and long-term changes in sea level. However...... a reasonable amount of tide gauge data available, we focus on a reconstruction timespan of the last five decades, and the implementation of the model is validated by applying it to global sea-level data. We examine the influence of the individual tide gauges on the resulting solution and the ability......, these dedicated oceanographic missions are limited in coverage to between ±66° latitude, and satellite altimeter data at higher latitudes is of a substantially worse quality. Following the approach of Church et al. (2004), we apply a model based on empirical orthogonal functions (EOFs) to the Arctic Ocean...

  17. Insights on the evolution of mid-ocean basins: the Atlantis Basin of southern Azores

    Science.gov (United States)

    Alves, T.; Bouriak, S.; Volkonskaya, A.; Monteiro, J.; Ivanov, M.

    2003-04-01

    Single-channel seismic reflection and sidescan (OKEAN) data acquired in an unstudied region of the North Atlantic give important insights on the evolution of mid-ocean basins. Located on the eastern flank of the Mid-Atlantic Ridge, south of the Azores Islands, the study area contains more than 1,000 ms two-way travel-time of sediments with a similar seismic stratigraphy to that of ODP sites 950-952 in the Madeira Abyssal Plain. Processed thickness values correspond to a maximum thickness of about 1450 m and an average thickness of more than 500 m based on velocity data from ODP sites 950-952. The structure of the surveyed area and its location in relation to the Madeira Abyssal Plain and Mid-Atlantic Ridge indicate the existence, south of Azores, of two distinct sedimentary basins separated by major structural lineaments (Azores-Gibraltar and Atlantis Fracture Zones) and by seamount chains (Cruiser-Great Meteor Chain, Plato-Atlantis Chain). The basement of the sedimentary basins is irregular, showing multiple dome-shaped volcanic structures identical to those in the Norwegian-Greenland Sea and Madeira Abyssal Plain. However, half-graben/graben basement blocks predominate east of 30ºW underneath a moderately deformed overburden. The complex structure observed most likely reflects changes in the direction and velocity of ocean spreading plus variations in the regional thermal gradients induced by local hot spots. In parallel, some of the sub-surface structures identified next to basin-bounding Fracture Zones may have resulted from transtensional and transpressional tectonism.

  18. Increasing transnational sea-ice exchange in a changing Arctic Ocean

    Science.gov (United States)

    Newton, Robert; Pfirman, Stephanie; Tremblay, Bruno; DeRepentigny, Patricia

    2017-06-01

    The changing Arctic sea-ice cover is likely to impact the trans-border exchange of sea ice between the exclusive economic zones (EEZs) of the Arctic nations, affecting the risk of ice-rafted contamination. We apply the Lagrangian Ice Tracking System (LITS) to identify sea-ice formation events and track sea ice to its melt locations. Most ice (52%) melts within 100 km of where it is formed; ca. 21% escapes from its EEZ. Thus, most contaminants will be released within an ice parcel's originating EEZ, while material carried by over 1 00,000 km2 of ice—an area larger than France and Germany combined—will be released to other nations' waters. Between the periods 1988-1999 and 2000-2014, sea-ice formation increased by ˜17% (roughly 6 million km2 vs. 5 million km2 annually). Melting peaks earlier; freeze-up begins later; and the central Arctic Ocean is more prominent in both formation and melt in the later period. The total area of ice transported between EEZs increased, while transit times decreased: for example, Russian ice reached melt locations in other nations' EEZs an average of 46% faster while North American ice reached destinations in Eurasian waters an average of 37% faster. Increased trans-border exchange is mainly a result of increased speed (˜14% per decade), allowing first-year ice to escape the summer melt front, even as the front extends further north. Increased trans-border exchange over shorter times is bringing the EEZs of the Arctic nations closer together, which should be taken into account in policy development—including establishment of marine-protected areas.

  19. Sea ice phenology and timing of primary production pulses in the Arctic Ocean.

    Science.gov (United States)

    Ji, Rubao; Jin, Meibing; Varpe, Øystein

    2013-03-01

    Arctic organisms are adapted to the strong seasonality of environmental forcing. A small timing mismatch between biological processes and the environment could potentially have significant consequences for the entire food web. Climate warming causes shrinking ice coverage and earlier ice retreat in the Arctic, which is likely to change the timing of primary production. In this study, we test predictions on the interactions among sea ice phenology and production timing of ice algae and pelagic phytoplankton. We do so using the following (1) a synthesis of available satellite observation data; and (2) the application of a coupled ice-ocean ecosystem model. The data and model results suggest that, over a large portion of the Arctic marginal seas, the timing variability in ice retreat at a specific location has a strong impact on the timing variability in pelagic phytoplankton peaks, but weak or no impact on the timing of ice-algae peaks in those regions. The model predicts latitudinal and regional differences in the timing of ice algae biomass peak (varying from April to May) and the time lags between ice algae and pelagic phytoplankton peaks (varying from 45 to 90 days). The correlation between the time lag and ice retreat is significant in areas where ice retreat has no significant impact on ice-algae peak timing, suggesting that changes in pelagic phytoplankton peak timing control the variability in time lags. Phenological variability in primary production is likely to have consequences for higher trophic levels, particularly for the zooplankton grazers, whose main food source is composed of the dually pulsed algae production of the Arctic. © 2012 Blackwell Publishing Ltd.

  20. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves.

    Science.gov (United States)

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  1. CMIP5-based global wave climate projections including the entire Arctic Ocean

    Science.gov (United States)

    Casas-Prat, M.; Wang, X. L.; Swart, N.

    2018-03-01

    This study presents simulations of the global ocean wave climate corresponding to the surface winds and sea ice concentrations as simulated by five CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models for the historical (1979-2005) and RCP8.5 scenario future (2081-2100) periods. To tackle the numerical complexities associated with the inclusion of the North Pole, the WAVEWATCH III (WW3) wave model was used with a customized unstructured Spherical Multi-Cell grid of ∼100 km offshore and ∼50 km along coastlines. The climate model simulated wind and sea ice data, and the corresponding WW3 simulated wave data, were evaluated against reanalysis and hindcast data. The results show that all the five sets of wave simulations projected lower waves in the North Atlantic, corresponding to decreased surface wind speeds there in the warmer climate. The selected CMIP5 models also consistently projected an increase in the surface wind speed in the Southern Hemisphere (SH) mid-high latitudes, which translates in an increase in the WW3 simulated significant wave height (Hs) there. The higher waves are accompanied with increased peak wave period and increased wave age in the East Pacific and Indian Oceans, and a significant counterclockwise rotation in the mean wave direction in the Southern Oceans. The latter is caused by more intense waves from the SH traveling equatorward and developing into swells. Future wave climate in the Arctic Ocean in summer is projected to be predominantly of mixed sea states, with the climatological mean of September maximum Hs ranging mostly 3-4 m. The new waves approaching Arctic coasts will be less fetch-limited as ice retreats since a predominantly southwards mean wave direction is projected in the surrounding seas.

  2. Anomalous circulation in the Pacific sector of the Arctic Ocean in July-December 2008

    Science.gov (United States)

    Francis, Oceana P.; Yaremchuk, Max; Panteleev, Gleb G.; Zhang, Jinlun; Kulakov, Mikhail

    2017-09-01

    Variability of the mean summer-fall ocean state in the Pacific Sector of the Arctic Ocean (PSAO) is studied using a dynamically constrained synthesis (4Dvar) of historical in situ observations collected during 1972 to 2008. Specifically, the oceanic response to the cyclonic (1989-1996) and anticyclonic (1972-1978, 1997-2006) phases of the Arctic Ocean Oscillation (AOO) is assessed for the purpose of quantitatively comparing the 2008 circulation pattern that followed the 2007 ice cover minimum. It is shown that the PSAO circulation during July-December of 2008 was characterized by a pronounced negative Sea Surface Height (SSH) anomaly along the Eurasian shelf break, which caused a significant decline of the transport in the Atlantic Water (AW) inflow region into the PSAO and increased the sea level difference between the Bering and Chukchi Seas. This anomaly could be one of the reasons for the observed amplification of the Bering Strait transport carrying fresh Pacific Waters into the PSAO. Largrangian analysis of the optimized solution suggests that the freshwater (FW) accumulation in the Beaufort Gyre has a negligible contribution from the East Siberian Sea and is likely caused by the enhanced FW export from the region north of the Canadian Archipelago/Greenland. The inverse modeling results are confirmed by validation against independent altimetry observations and in situ velocity data from NABOS moorings. It is also shown that presented results are in significantly better agreement with the data than the output of the PIOMAS model run utilized as a first guess solution for the 4dVar analysis.

  3. Central Arctic Ocean freshwater during a period of anomalous melt and advection in 2015

    Science.gov (United States)

    Rabe, Benjamin; Korhonen, Meri; Hoppmann, Mario; Ricker, Robert; Hendricks, Stefan; Krumpen, Thomas; Beckers, Justin; Schauer, Ursula

    2016-04-01

    During the recent decade the Arctic Ocean has shown several years of very low sea-ice extent and an increase in liquid freshwater. Yet, the processes underlying the interannual variability are still not fully understood. Hydrographic observations by ship campaigns and autonomous platforms reveal that summer 2015 showed above average liquid freshwater in the upper ocean of the central Arctic. Surface temperatures and sea level pressure were also higher than the average of the preceeding two decades. From hydrographic observations and atmospheric reanalysis data we show that this liquid freshwater anomaly is associated with above average sea-ice melt and intensified northward Ekman transport. We, further, found significant amounts of Pacific Water in the upper water column, from the mixed-layer to the upper halocline. Our results suggest that the freshening was due to both advection of low-salinity water from the direction of the Siberian shelves, the Beaufort Gyre and the Bering Strait, and enhance sea-ice melt.

  4. Sea State and Boundary Layer Physics in the Emerging Arctic Ocean

    Science.gov (United States)

    Thomson, J. M.

    2016-12-01

    The sea state of the Arctic Ocean is changing. With an increasing retreat of sea ice in the summer months, storms are now more likely to occur over open water, and the result is an increasing trend in both the heights and periods of surface waves in the Chukchi and Beaufort Seas. The elevated sea state affects, in turn, the refreezing process in the autumn. In 2015, a field campaign collected a comprehensive suite of air-ice-ocean measurements during the autumn freeze-up in the Beaufort Sea, and these measurements are used to investigate the surface wave effects and coupled dynamics. The most prominent process is the formation of pancake ice, which occurs when surface wave motions disturb newly forming frazil ice. Analysis of a wave event from open water through different stages of a gradually maturing pancake ice cover shows high sensitivity of the surface waves to the types of ice cover. Other cases suggest that waves impact the near-surface heat flux convergence, impacting the ice formation. Hence, there is a two-way interaction between ice and waves. Wave attenuation is captured with adjustment of a viscoelastic parameterization in a wave hindcast model. The results suggest that a fully coupled air-ice-wave model will be necessary to describe the evolution of sea state and ice cover during the Arctic freeze-up.

  5. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean

    Science.gov (United States)

    Ramage, Justine L.; Irrgang, Anna M.; Morgenstern, Anne; Lantuit, Hugues

    2018-03-01

    Retrogressive thaw slumps (RTSs) are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC) budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1) describe the evolution of RTSs between 1952 and 2011; (2) calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC) and dissolved organic carbon (DOC); and (3) estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high-resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73 % increase in the number of RTSs and 14 % areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6×106 m3 of material, 53 % of which was ice, and mobilized 145.9×106 kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6×103 m3 yr-1 of material, adding 0.6 % to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean.

  6. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean

    Science.gov (United States)

    Cronin, Thomas M.; DeNinno, Lauren H.; Polyak, L.V.; Caverly, Emma K.; Poore, Richard; Brenner, Alec R.; Rodriguez-Lazaro, J.; Marzen, R.E.

    2014-01-01

    The stratigraphic distributions of ostracodes and selected calcareous benthic and planktic foraminiferal species were studied in sediment cores from ~ 700 to 2700 m water depth on the Northwind, Mendeleev, and Lomonosov Ridges in the western Arctic Ocean. Microfaunal records in most cores cover mid- to late Quaternary sediments deposited in the last ~ 600 ka, with one record covering the last ~ 1.5 Ma. Results show a progressive faunal turnover during the mid-Pleistocene transition (MPT, ~ 1.2 to 0.7 Ma) and around the mid-Brunhes event (MBE, ~ 0.4 Ma) reflecting major changes in Arctic Ocean temperature, circulation and sea-ice cover. The observed MPT shift is characterized by the extinction of species that today inhabit the sea-ice free subpolar North Atlantic and/or seasonally sea-ice free Nordic Seas (Echinocythereis sp., Rockalliacf. enigmatica, Krithe cf. aquilonia, Pterygocythereis vannieuwenhuisei). After a very warm interglacial during marine isotope stage (MIS) 11 dominated by the temperate planktic foraminifer Turborotalita egelida, the MBE experienced a shift to polar assemblages characteristic of predominantly perennial Arctic sea-ice cover during the interglacial and interstadial periods of the last 300 ka. These include the planktic foraminifera Neogloboquadrina pachyderma, the sea-ice dwelling ostracodeAcetabulastoma arcticum and associated benthic taxa Pseudocythere caudata,Pedicythere neofluitans, and Polycope spp. Several species can be used as biostratigraphic markers of specific intervals such as ostracodes Rabilimis mirabilis — MIS 5 and P. vannieuwenhuisei extinction after MIS 11, and foraminiferal abundance zones Bulimina aculeata — late MIS 5 and Bolivina arctica — MIS 5-11.

  7. Tectonic structure, seismic stratigraphy and hydrocarbon potential of the North Kara Basin (Russian Arctic)

    Science.gov (United States)

    Verzhbitsky, V.; Kosenkova, N.; Murzin, R.; Vasilyev, V.; Malysheva, S.; Komissarov, D.; Ananyev, V.; Roslov, Yu.; Khudoley, A.

    2012-04-01

    North Kara shelf represents one of the remote and still poorly studied sedimentary megabasins of Russian West Arctic. North Kara area lacks any offshore wells so the understanding of its structure is based on the geology of adjacent East Barents Basin, as well as surrounding land areas (Taimyr, Severnaya and Novaya Zemlya fold belts) and stratigraphic columns of the scattered Arctic Islands. It is widely believed that North Kara shelf is mostly composed of Riphean-Paleozoic sedimentary units, underlain by Precambrian basement (North Kara massif), and represents one of the most promising areas of the Russian Arctic for hydrocarbon (mostly oil) discoveries. Our study is based on the reinterpretation of several regional seismic lines acquired by Sevmorgeo. We used the main Paleozoic and Mesozoic tectonic events known for Severnaya Zemlya Archipelago and Taimyr Peninsula for interpretation of the age of main seismic complexes/boundaries within the North Kara sedimentary cover (first of all within the Priseverozemelsky Trough). We correlated the sharp angular unconformity in the lower part of sedimentary succession with Cambrian/Ordovician unconformity described earlier on the nearby Severnaya Zemlya onshore domain. It is likely that the pre-Ordovician tectonic event corresponds to the Late Baikalian (Timanian) orogeny, which took place on Timan-Pechora and Novaya Zemlya areas. Above the unconformity we proposed the occurrence of Ordovician-Silurian shelfal sedimentary sequence of ~ 2 km thickness. This strata are overlain by thick (~3-4 km) progradational unit. It is likely that this sequence should correspond to molassic deposits of old red sandstones, related to the regional Caledonian orogeny. We believe that general structural pattern of the North Kara region was formed in Late Carboniferous-Early Permian time as a result of Kara massif/Siberian Craton collision-related Hercynian orogeny of Taimyr-Severnaya Zemlya domain. This event led to gentle folding of the

  8. Modeling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean

    Science.gov (United States)

    Le Fouest, V.; Manizza, M.; Tremblay, B.; Babin, M.

    2014-12-01

    The planktonic and biogeochemical dynamics of the Arctic shelves exhibit a strong variability in response to Arctic warming. In this study, in order to elucidate on the processes regulating the production of phytoplankton (PP) and bacterioplankton (BP) and their interactions, we employ a biogeochemical model coupled to a pan-Arctic ocean-sea ice model (MITgcm) to explicitly simulate and quantify the contribution of usable dissolved organic nitrogen (DON) drained by the major circum-Arctic rivers on PP and BP in a scenario of melting sea ice (1998-2011). Model simulations suggest that on average between 1998 and 2011, the removal of usable RDON by bacterioplankton is responsible of a ~26% increase of the annual BP for the whole Arctic Ocean. With respect to total PP, the model simulates an increase of ~8% on an annual basis and of ~18% in summer. Recycled ammonium is responsible for the PP increase. The recycling of RDON by bacterioplankton promotes higher BP and PP but there is no significant temporal trend in the BP : PP ratio within the ice-free shelves over the 1998-2011 period. This suggests no significant evolution in the balance between autotrophy and heterotrophy in the last decade with a constant annual flux of RDON into the coastal ocean although changes in RDON supply and further reduction in sea ice cover could potentially alter this delicate balance.

  9. Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean

    Science.gov (United States)

    Le Fouest, V.; Manizza, M.; Tremblay, B.; Babin, M.

    2015-06-01

    The planktonic and biogeochemical dynamics of the Arctic shelves exhibit a strong variability in response to Arctic warming. In this study, we employ a biogeochemical model coupled to a pan-Arctic ocean-sea ice model (MITgcm) to elucidate the processes regulating the primary production (PP) of phytoplankton, bacterioplankton (BP), and their interactions. The model explicitly simulates and quantifies the contribution of usable dissolved organic nitrogen (DON) drained by the major circum-Arctic rivers to PP and BP in a scenario of melting sea ice (1998-2011). Model simulations suggest that, on average between 1998 and 2011, the removal of usable riverine dissolved organic nitrogen (RDON) by bacterioplankton is responsible for a ~ 26% increase in the annual BP for the whole Arctic Ocean. With respect to total PP, the model simulates an increase of ~ 8% on an annual basis and of ~ 18% in summer. Recycled ammonium is responsible for the PP increase. The recycling of RDON by bacterioplankton promotes higher BP and PP, but there is no significant temporal trend in the BP : PP ratio within the ice-free shelves over the 1998-2011 period. This suggests no significant evolution in the balance between autotrophy and heterotrophy in the last decade, with a constant annual flux of RDON into the coastal ocean, although changes in RDON supply and further reduction in sea-ice cover could potentially alter this delicate balance.

  10. The Role of Ocean and Atmospheric Heat Transport in the Arctic Amplification

    Science.gov (United States)

    Vargas Martes, R. M.; Kwon, Y. O.; Furey, H. H.

    2017-12-01

    Observational data and climate model projections have suggested that the Arctic region is warming around twice faster than the rest of the globe, which has been referred as the Arctic Amplification (AA). While the local feedbacks, e.g. sea ice-albedo feedback, are often suggested as the primary driver of AA by previous studies, the role of meridional heat transport by ocean and atmosphere is less clear. This study uses the Community Earth System Model version 1 Large Ensemble simulation (CESM1-LE) to seek deeper understanding of the role meridional oceanic and atmospheric heat transports play in AA. The simulation consists of 40 ensemble members with the same physics and external forcing using a single fully coupled climate model. Each ensemble member spans two time periods; the historical period from 1920 to 2005 using the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical forcing and the future period from 2006 to 2100 using the CMIP5 Representative Concentration Pathways 8.5 (RCP8.5) scenario. Each of the ensemble members are initialized with slightly different air temperatures. As the CESM1-LE uses a single model unlike the CMIP5 multi-model ensemble, the internal variability and the externally forced components can be separated more clearly. The projections are calculated by comparing the period 2081-2100 relative to the time period 2001-2020. The CESM1-LE projects an AA of 2.5-2.8 times faster than the global average, which is within the range of those from the CMIP5 multi-model ensemble. However, the spread of AA from the CESM1-LE, which is attributed to the internal variability, is 2-3 times smaller than that of the CMIP5 ensemble, which may also include the inter-model differences. CESM1LE projects a decrease in the atmospheric heat transport into the Arctic and an increase in the oceanic heat transport. The atmospheric heat transport is further decomposed into moisture transport and dry static energy transport. Also, the oceanic heat

  11. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  12. Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean

    NARCIS (Netherlands)

    Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer

  13. Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

    Science.gov (United States)

    Duarte, Pedro; Meyer, Amelie; Olsen, Lasse M.; Kauko, Hanna M.; Assmy, Philipp; Rösel, Anja; Itkin, Polona; Hudson, Stephen R.; Granskog, Mats A.; Gerland, Sebastian; Sundfjord, Arild; Steen, Harald; Hop, Haakon; Cohen, Lana; Peterson, Algot K.; Jeffery, Nicole; Elliott, Scott M.; Hunke, Elizabeth C.; Turner, Adrian K.

    2017-07-01

    Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.

  14. Diversity of cultured photosynthetic flagellates in the northeast Pacific and Arctic Oceans in summer

    Directory of Open Access Journals (Sweden)

    S. Balzano

    2012-11-01

    Full Text Available During the MALINA cruise (summer 2009, an extensive effort was undertaken to isolate phytoplankton strains from the northeast (NE Pacific Ocean, the Bering Strait, the Chukchi Sea, and the Beaufort Sea. In order to characterise the main photosynthetic microorganisms occurring in the Arctic during the summer season, strains were isolated by flow cytometry sorting (FCS and single cell pipetting before or after phytoplankton enrichment of seawater samples. Strains were isolated both onboard and back in the laboratory and cultured at 4 °C under light/dark conditions. Overall, we isolated and characterised by light microscopy and 18 S rRNA gene sequencing 104 strains of photosynthetic flagellates which grouped into 21 genotypes (defined by 99.5% 18 S rRNA gene sequence similarity, mainly affiliated to Chlorophyta and Heterokontophyta. The taxon most frequently isolated was an Arctic ecotype of the green algal genus Micromonas (Arctic Micromonas, which was nearly the only phytoplankter recovered within the picoplankton (< 2 μm size range. Strains of Arctic Micromonas as well as other strains from the same class (Mamiellophyceae were identified in further detail by sequencing the internal transcribed spacer (ITS region of the rRNA operon. The MALINA Micromonas strains share identical 18 S rRNA and ITS sequences suggesting high genetic homogeneity within Arctic Micromonas. Three other Mamiellophyceae strains likely belong to a new genus. Other green algae from the genera Nephroselmis, Chlamydomonas, and Pyramimonas were also isolated, whereas Heterokontophyta included some unidentified Pelagophyceae, Dictyochophyceae (Pedinellales, and Chrysophyceae (Dinobryon faculiferum. Moreover, we isolated some Cryptophyceae (Rhodomonas sp. as well as a few Prymnesiophyceae and dinoflagellates. We identified the dinoflagellate Woloszynskia cincta by scanning electron microscopy (SEM and 28 S r

  15. Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2013-05-01

    Full Text Available Primary marine aerosols (PMAs are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent, will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw range between −1°C and 15°C. A sharp decrease in PMA emissions for a Tw increase from −1°C to 4°C was followed by a lower rate of change in PMA emissions for Tw up to about 6°C. Near constant number concentrations for water temperatures between 6°C to 10°C and higher were recorded. Even though the total particle number concentration changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for a dry diameter (DpDp > 0.125μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%. The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1°C to 10°C during winter measurements showed a decrease in the peak of relative particle number concentration at about a Dp of 0.180μm, while an increase was observed for particles with Dp > 1μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range

  16. Pockmarks, Western Ross Sea, Antarctica and Mendeleev Ridge, Central Arctic Ocean: Recent and/or Prevalent?

    Science.gov (United States)

    Lawver, L. A.; Hornbach, M. J.; Davis, M. B.; Brumley, K.; Phillips, R. L.

    2008-12-01

    In 2004, the NBP-0401 cruise to the western Ross Sea, found a large field of pockmarks to the north and west of Franklin Island. The pockmarks ranged in size up to 300 m or more in diameter and are up to 30 m deep. The pockmarks are generally circular and are found in a partially surveyed 3,000 km2 region at water depths ranging from 450 m to 510 m. The pockmarks were most concentrated in an area of approximately 400 km2 where they cover as much as 20% of the seafloor. About 50 km to the west of the heavily pockmarked area, a series of seafloor constructions, up to 5 km in diameter and 120 m high were found in water depths of 490 m to 520 m. Again, ice conditions precluded a complete survey but it is believed the circular features may be carbonate mounds very similar in size and water depth to the ones found by Shannon et al. (2007) in the Porcupine Bight region, offshore Ireland. In 2006, the HLY-0602 cruise undertook a seismic refraction experiment along the Mendeleev Ridge in the Arctic ocean. In the course of the experiment, two to three multibeam lines were run approximately along the crest of the ridge from 76° 40'N to 78° 50'N. On HLY-0503, pockmarks were found in the vicinity of 78° 15'N including one extraordinary cluster of pockmarks at 78° 20'N which were cored on HLY-0602. Three gravity cores taken within pockmarks recovered a significant shell hash in the upper 1 cm but carbon analysis on the shells did not reveal any evidence of chemosynthetic origin for the mollusks. Cores taken along the ridge but away from pockmarks had at most a single shell in the upper 1 cm. Shells were not found below the surface of the cores. Pockmarks along the Mendeleev Ridge are found at depths from 820 m to an extraordinary feature at a depth of ~1420 M. This collapse? feature is 10 km by 5 km with a series of pockmarks in its deepest part. The major feature itself has a central depth of 1480 m but pockmarks withing the feature are as deep as 1520 m at their individual

  17. Correlated Increase of High Ocean Waves and Winds in the Ice-Free Waters of the Arctic Ocean.

    Science.gov (United States)

    Waseda, Takuji; Webb, Adrean; Sato, Kazutoshi; Inoue, Jun; Kohout, Alison; Penrose, Bill; Penrose, Scott

    2018-03-14

    The long-term trend of extreme ocean waves in the emerging ice-free waters of the summer Arctic is studied using ERA-Interim wave reanalysis, with validation by two drifting wave buoys deployed in summer 2016. The 38-year-long reanalysis dataset reveals an increase in the expected largest significant wave height from 2.3 m to 3.1 m in the ice-free water from the Laptev to the Beaufort Seas during October. The trend is highly correlated with the expected increase in highest wind speed from 12.0 m/s to 14.2 m/s over the ice-free ocean, and less so with the extent of the ice-free water. Since the storms in this area did not strengthen throughout the analysis period, the increase in the expected largest significant wave height follows from the enhanced probability of storms in ice-free waters, which is pertinent to the estimation of extreme sea conditions along the Northern Sea Route.

  18. Reconstruction of the Arctic Ocean environment during the Eocene Azolla interval using geochemical proxies and climate modeling. Geologica Ultraiectina (331)

    NARCIS (Netherlands)

    Speelman, E.N.

    2010-01-01

    With the realization that the Arctic Ocean was covered with enormous quantities of the aquatic floating fern Azolla 49 Myrs ago, new questions regarding the Eocene conditions facilitating these blooms arose. This dissertation describes the reconstruction of paleo-environmental conditions

  19. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    DEFF Research Database (Denmark)

    Cozar, Andres; Marti, Elisa; Duarte, Carlos M.

    2017-01-01

    The subtropical ocean gyres are recognized as greatmarine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Oceanwas extensively ...

  20. Productivity, chlorophyll a, Photosynthetically Active Radiation (PAR) and other phytoplankton data from the Arctic Ocean, Bering Sea, Chukchi Sea, Beaufort Sea, East Siberian Sea, Kara Sea, Barents Sea, and Arctic Archipelago measured between 17 April, 1954 and 30 May, 2006 compiled as part of the Arctic System Science Primary Production (ARCSS-PP) observational synthesis project (NODC Accession 0063065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Arctic Ocean primary production data were assembled from original input data archived in various international databases, provided by individual investigators or in...

  1. The Open-Ocean Sensible Heat Flux and Its Significance for Arctic Boundary Layer Mixing During Early Fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dongliang

    2016-01-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and

  2. The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean

    Science.gov (United States)

    Haver, Samara M.; Klinck, Holger; Nieukirk, Sharon L.; Matsumoto, Haru; Dziak, Robert P.; Miksis-Olds, Jennifer L.

    2017-04-01

    Anthropogenic noise in the ocean has been shown, under certain conditions, to influence the behavior and health of marine mammals. Noise from human activities may interfere with the low-frequency acoustic communication of many Mysticete species, including blue (Balaenoptera musculus) and fin whales (B. physalus). This study analyzed three soundscapes in the Atlantic Ocean, from the Arctic to the Antarctic, to document ambient sound. For 16 months beginning in August 2009, acoustic data (15-100 Hz) were collected in the Fram Strait (79°N, 5.5°E), near Ascension Island (8°S, 14.4°W) and in the Bransfield Strait (62°S, 55.5°W). Results indicate (1) the highest overall sound levels were measured in the equatorial Atlantic, in association with high levels of seismic oil and gas exploration, (2) compared to the tropics, ambient sound levels in polar regions are more seasonally variable, and (3) individual elements beget the seasonal and annual variability of ambient sound levels in high latitudes. Understanding how the variability of natural and man-made contributors to sound may elicit differences in ocean soundscapes is essential to developing strategies to manage and conserve marine ecosystems and animals.

  3. Salinity of the Eocene Arctic Ocean from oxygen isotope analysis of fish bone carbonate

    Science.gov (United States)

    Waddell, Lindsey M.; Moore, Theodore C.

    2008-03-01

    Stable isotope analysis was performed on the structural carbonate of fish bone apatite from early and early middle Eocene samples (˜55 to ˜45 Ma) recently recovered from the Lomonosov Ridge by Integrated Ocean Drilling Program Expedition 302 (the Arctic Coring Expedition). The δ18O values of the Eocene samples ranged from -6.84‰ to -2.96‰ Vienna Peedee belemnite, with a mean value of -4.89‰, compared to 2.77‰ for a Miocene sample in the overlying section. An average salinity of 21 to 25‰ was calculated for the Eocene Arctic, compared to 35‰ for the Miocene, with lower salinities during the Paleocene Eocene thermal maximum, the Azolla event at ˜48.7 Ma, and a third previously unidentified event at ˜47.6 Ma. At the Azolla event, where the organic carbon content of the sediment reaches a maximum, a positive δ13C excursion was observed, indicating unusually high productivity in the surface waters.

  4. High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community

    Directory of Open Access Journals (Sweden)

    N. Aberle

    2013-03-01

    Full Text Available Impacts of ocean acidification (OA on marine biota have been observed in a wide range of marine systems. We used a mesocosm approach to study the response of a high Arctic coastal microzooplankton community during the post-bloom period in Kongsfjorden (Svalbard to direct and indirect effects of high pCO2/low pH. We found almost no direct effects of OA on microzooplankton composition and diversity. Both the relative shares of ciliates and heterotrophic dinoflagellates as well as the taxonomic composition of microzooplankton remained unaffected by changes in pCO2/pH. Although the different pCO2 treatments affected food availability and phytoplankton composition, no indirect effects (e.g. on the total carrying capacity and phenology of microzooplankton could be observed. Our data point to a high tolerance of this Arctic microzooplankton community to changes in pCO2/pH. Future studies on the impact of OA on plankton communities should include microzooplankton in order to test whether the observed low sensitivity to OA is typical for coastal communities where changes in seawater pH occur frequently.

  5. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2012-11-01

    Full Text Available Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known.

    In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.

  6. Shelf ice glaciation in the Arctic Ocean? New results from northernmost Greenland

    Science.gov (United States)

    Kjaer, K.; Moller, P.; Larsen, N. K.

    2007-12-01

    Bounding on the last remaining patch of permanent sea ice and capped by an ice sheet with meltwater sufficient to disrupt the thermohaline circulation, North Greenland is strategically located for contributing to the understanding of the climate system. The coastal plain, which faces the Arctic Ocean, more than 100 km long and 15 km wide, is covered by a continuous blanket of Quaternary sediment that spans at least the period since the last deglaciation c. 9000 years ago, and is capped by an array of glacial and marine landforms. This area therefore contains an unsurpassed source for recording marine and glacial activities along the world's northernmost coast - a source which, owing to its inaccessibility, has largely remained untapped. Preliminary results from the 'LongTerm Project', which ended this summer, show that at least two major glacial events hit the coasts by the end of the last ice age. One of them was possibly a large scale expansion of the Inland Ice resulting in formation of a 100,000 km2 ice shelf in the Arctic Ocean - a type of glaciation, which has usually been thought to be an Antarctic speciality. Even more significantly, abundant accumulations of glacio- fluvial and -lacustrine sediments show that heat transfer to these extreme latitudes by the end of the last ice age was sufficient to allow massive melting of land-based ice. Finally, among the summer's surprises was the discovery of thick piles of raised marine sediments along the coast, allowing a detailed record of sea level history and faunal change, which can be correlated with a terrestrial record from cores, obtained from two lakes on the coastal plain.

  7. New ichthyoliths from ferromanganese crusts and nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    Ferromanganese encrusted hardgrounds, their intraclasts and the nuclei of manganese nodules collected from the Central Indian Ocean basin have yielded plentiful numbers of ichthyoliths. Forty well-knon ichthyoliths, one new type and 35 new subtypes...

  8. Variation in size, morphology and chemical composition of polymetallic nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.; Karisiddaiah, S.M.; Parthiban, G.

    Chemical composition of 613 polymetallic nodules from 150 stations in the Central Indian Ocean Basin (CIOB) are determined and variations in Mn, Fe, Cu, Ni, Co, Zn and moisture content are studied with respect to their size and surface texture...

  9. Benthic disturbance and monitoring experiment in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.

    Environmental impact assessment studies for deep-sea manganese nodule mining have been initiated in the Central indian Ocean Basin since 1995. As a part of the first phase for collecting the benthic baseline data, echosounding, subbottom profiling...

  10. Petrology of seamounts in the Central Indian Ocean Basin: Evidence for near-axis origin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Batiza, R.; Iyer, S.D.

    Previous studies on the distribution and morphology of ancient seamount chains (>50 Ma) in the Central Indian Ocean basin (CIOB) indicated their generation from the fast spreading Southeast Indian Ridge. The petrology of some of these seamounts...

  11. Composition and genesis of zeolitic claystones from the central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D; Sudhakar, M.; Das, P.

    More than fifty indurated sediments recovered from the Central Indian Ocean Basin (CIoB) are examined during the course of collection for manganese nodules and crusts. The samples occur as slabs either over which ferromanganese oxides are present...

  12. Effectiveness and Sensitivity of the Arctic Observing Network in a Coupled Ocean-Sea Ice State Estimation Framework

    Science.gov (United States)

    Nguyen, A. T.; Heimbach, P.; Garg, V.; Ocana, V.

    2016-12-01

    Over the last few decades, various agencies have invested heavily in the development and deployment of Arctic ocean and sea ice observing platforms, especially moorings, profilers, gliders, and satellite-based instruments. These observational assets are heterogeneous in terms of variables sampled and spatio-temporal coverage, which calls for a dynamical synthesis framework of the diverse data streams. Here we introduce an adjoint-based Arctic Subpolar gyre sTate estimate (ASTE), a medium resolution model-data synthesis that leverages all the possible observational assets. Through an established formal state and parameter estimation framework, the ASTE framework produces a 2002-present ocean-sea ice state that can be used to address Arctic System science questions. It is dynamically and kinematically consistent with known equations of motion and consistent with observations. Four key aspects of ASTE will be discussed: (1) How well is ASTE constrained by the existing observations; (2) which data most effectively constrain the system, and what impact on the solution does spatial and temporal coverage have; (3) how much information does one set of observation (e.g. Fram Strait heat transport) carry about a remote, but dynamically linked component (e.g. heat content in the Beaufort Gyre); and (4) how can the framework be used to assess the value of hypothetical observations in constraining poorly observed parts of the Arctic Ocean and the implied mechanisms responsible for the changes occurring in the Arctic. We will discuss the suggested geographic distribution of new observations to maximize the impact on improving our understanding of the general circulation, water mass distribution and hydrographic changes in the Arctic.

  13. Sea surface height determination in the arctic ocean from Cryosat2 SAR data, the impact of using different empirical retrackers

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Stenseng, Lars

    2012-01-01

    Cryosat2 Level 1B SAR data can be processed using different empirical retrackers to determine the sea surface height and its variations in the Arctic Ocean. Two improved retrackers based on the combination of OCOG (Offset Centre of Gravity), Threshold methods and Leading Edge Retrieval is used...... to estimate the sea surface height in the Arctic Region. This sea surface height determination is to be compared with the Level2 sea surface height components available in the Cryosat2 data. Further a comparison is done with the marine gravity field for retracker performance evaluation....

  14. Ice–ocean coupled computations for sea-ice prediction to support ice navigation in Arctic sea routes

    Directory of Open Access Journals (Sweden)

    Liyanarachchi Waruna Arampath De Silva

    2015-11-01

    Full Text Available With the recent rapid decrease in summer sea ice in the Arctic Ocean extending the navigation period in the Arctic sea routes (ASR, the precise prediction of ice distribution is crucial for safe and efficient navigation in the Arctic Ocean. In general, however, most of the available numerical models have exhibited significant uncertainties in short-term and narrow-area predictions, especially in marginal ice zones such as the ASR. In this study, we predict short-term sea-ice conditions in the ASR by using a mesoscale eddy-resolving ice–ocean coupled model that explicitly treats ice floe collisions in marginal ice zones. First, numerical issues associated with collision rheology in the ice–ocean coupled model (ice–Princeton Ocean Model [POM] are discussed and resolved. A model for the whole of the Arctic Ocean with a coarser resolution (about 25 km was developed to investigate the performance of the ice–POM model by examining the reproducibility of seasonal and interannual sea-ice variability. It was found that this coarser resolution model can reproduce seasonal and interannual sea-ice variations compared to observations, but it cannot be used to predict variations over the short-term, such as one to two weeks. Therefore, second, high-resolution (about 2.5 km regional models were set up along the ASR to investigate the accuracy of short-term sea-ice predictions. High-resolution computations were able to reasonably reproduce the sea-ice extent compared to Advanced Microwave Scanning Radiometer–Earth Observing System satellite observations because of the improved expression of the ice–albedo feedback process and the ice–eddy interaction process.

  15. An Arctic source for the Great Salinity Anomaly - A simulation of the Arctic ice-ocean system for 1955-1975

    Science.gov (United States)

    Hakkinen, Sirpa

    1993-01-01

    The paper employs a fully prognostic Arctic ice-ocean model to study the interannual variability of sea ice during the period 1955-1975 and to explain the large variability of the ice extent in the Greenland and Iceland seas during the late 1960s. The model is used to test the contention of Aagaard and Carmack (1989) that the Great Salinity Anomaly (GSA) was a consequence of the anomalously large ice export in 1968. The high-latitude ice-ocean circulation changes due to wind field changes are explored. The ice export event of 1968 was the largest in the simulation, being about twice as large as the average and corresponding to 1600 cu km of excess fresh water. The simulations suggest that, besides the above average ice export to the Greenland Sea, there was also fresh water export to support the larger than average ice cover. The model results show the origin of the GSA to be in the Arctic, and support the view that the Arctic may play an active role in climate change.

  16. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Directory of Open Access Journals (Sweden)

    M. Ganeshan

    2016-10-01

    Full Text Available The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean–atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime, yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure followed by the highly stable (stratus regime. Overall, it can explain  ∼  10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for

  17. Poles apart: the "bipolar" pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans.

    Science.gov (United States)

    Hunt, Brian; Strugnell, Jan; Bednarsek, Nina; Linse, Katrin; Nelson, R John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-03-23

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five "forma". However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (+/-0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems.

  18. An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater

    Science.gov (United States)

    Wang, Qiang; Ilicak, Mehmet; Gerdes, Rüdiger; Drange, Helge; Aksenov, Yevgeny; Bailey, David A.; Bentsen, Mats; Biastoch, Arne; Bozec, Alexandra; Böning, Claus; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Curry, Beth; Danabasoglu, Gokhan; Danilov, Sergey; Fernandez, Elodie; Fogli, Pier Giuseppe; Fujii, Yosuke; Griffies, Stephen M.; Iovino, Doroteaciro; Jahn, Alexandra; Jung, Thomas; Large, William G.; Lee, Craig; Lique, Camille; Lu, Jianhua; Masina, Simona; Nurser, A. J. George; Rabe, Benjamin; Roth, Christina; Salas y Mélia, David; Samuels, Bonita L.; Spence, Paul; Tsujino, Hiroyuki; Valcke, Sophie; Voldoire, Aurore; Wang, Xuezhu; Yeager, Steve G.

    2016-03-01

    The Arctic Ocean simulated in 14 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II) is analyzed in this study. The focus is on the Arctic liquid freshwater (FW) sources and freshwater content (FWC). The models agree on the interannual variability of liquid FW transport at the gateways where the ocean volume transport determines the FW transport variability. The variation of liquid FWC is induced by both the surface FW flux (associated with sea ice production) and lateral liquid FW transport, which are in phase when averaged on decadal time scales. The liquid FWC shows an increase starting from the mid-1990s, caused by the reduction of both sea ice formation and liquid FW export, with the former being more significant in most of the models. The mean state of the FW budget is less consistently simulated than the temporal variability. The model ensemble means of liquid FW transport through the Arctic gateways compare well with observations. On average, the models have too high mean FWC, weaker upward trends of FWC in the recent decade than the observation, and low consistency in the temporal variation of FWC spatial distribution, which needs to be further explored for the purpose of model development.

  19. Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Theodora Pados

    2014-05-01

    Full Text Available To describe the horizontal and vertical distribution of recent planktic foraminifera in Fram Strait (Arctic, plankton samples were collected in the early summer of 2011 using a MultiNet sampler (>63 µm at 10 stations along a west–east transect at 78°50′N. Five depth intervals were sampled from the sea surface down to 500 m. Additionally, sediment surface samples from the same locations were analysed. The ratio between absolute abundances of planktic foraminifera in the open ocean, at the ice margin and in the ice-covered ocean was found to be approximately 2:4:1. The assemblage was dominated by the polar Neogloboquadrina pachyderma (sin. and the subpolar Turborotalita quinqueloba, which accounted for 76 and 15% of all tests in the warm, saline Atlantic waters and 90 and 5% in the cold and fresh Polar waters, respectively. Both species had maximum absolute abundances between 0 and 100 m water depth, however, they apparently lived shallower under the ice cover than under ice-free conditions. This indicates that the depth habitat of planktic foraminifera in the study area is predominantly controlled by food availability and not by temperature. The distribution pattern obtained by plankton tows was clearly reflected on the sediment surface and we conclude that the assemblage on the sediment surface can be used as an indicator for modern planktic foraminiferal fauna.

  20. Transport of contaminants by Arctic sea ice and surface ocean currents

    International Nuclear Information System (INIS)

    Pfirman, S.

    1995-01-01

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brine drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins

  1. Absolute migration of Pacific basin mid-ocean ridges since 85 Ma ...

    African Journals Online (AJOL)

    Mid-ocean ridges are major physiographic features that dominate the world seafloor. Their absolute motion and tectonics are recorded in magnetic lineations they created. The absolute migration of mid-ocean ridges in the Pacific basin since 85 Ma and their tectonic implications was investigated in this work and the results ...

  2. First scientific dives of the Nereid Under Ice hybrid ROV in the Arctic Ocean.

    Science.gov (United States)

    German, C. R.; Boetius, A.; Whitcomb, L. L.; Jakuba, M.; Bailey, J.; Judge, C.; McFarland, C.; Suman, S.; Elliott, S.; Katlein, C.; Arndt, S.; Bowen, A.; Yoerger, D.; Kinsey, J. C.; Mayer, L.; Nicolaus, M.; Laney, S.; Singh, H.; Maksym, T. L.

    2014-12-01

    The first scientific dives of the new Nereid Under Ice (NUI) hybrid ROV were conducted in the Arctic Ocean in July 2014 on RV Polarstern cruise PS86, a German-US collaboration. NUI is the latest in a family of vehicles derived from the Nereus prototype, using a single optical fiber to provide real-time telemetry to and from a battery-powered vehicle allowing much greater lateral maneuverability relative to its support ship than a conventional ROV. During PS86, dives conducted in the Arctic Ocean (typical water depths ~4000m) were completed in >80% ice cover beneath multi-year ice that was typically 2-4m thick (increasing to depths of up to 20m beneath ridges). Dives extended up to 800m away from the ship and, over dive durations of approximately 5 hours each, covered survey tracklines of up to 3.7km at depths varying from "landing" on the underside of the sea-ice to maximum depths of 45m to conduct upward looking multibeam sonar mapping. Ultimately, the vehicle will be capable of both AUV and ROV mode operations at ranges of 10-20km away from the support ship and at up to 2000m water depth (including seafloor as well as under ice operations). During the current cruise, the following major science suites were utilized to prove a range of scientific capabilities of the vehicle in ice-covered oceans: multibeam mapping of rugged topography beneath multi-year sea-ice; video- and digital still photography of the under side of the ice, biota associated with the ice-water interface (algal material) and abundant fauna in the immediately underlying water column (ctenophores, larvaceans, copepods were all notable for their abundance in our study site over the Gakkel Ridge near 83N, 6W). Other scientific activities included: vertical profiles combining CTD data with a suite of biosensors to investigate the structure of primary productivity and biogeochemical cycling in minimally distrubed areas of the sunlit under-ice water column, revealing high stratification associated with

  3. Oceanographic temperature, salinity, oxygen, and other measurements collected using bottle in the Arctic Ocean from 1956 to 1990 (NODC Accession 0014543)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity and other measurements found in dataset OSD taken from the NICOLAI KNIPOVICH, and other platforms in the Arctic, Baltic Sea and other locations...

  4. Temperature, salinity, and nutrients data from CTD and bottle casts in the Arctic, North Atlantic and North Pacific Oceans from multiple platforms from 1963-04-30 to 1999-02-15 (NODC Accession 0000418)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, bottle, and other data were collected from the Arctic Ocean, North Atlantic Ocean, and North Pacific from multiple platforms from 30 April 1963 to 15 February...

  5. Salinity of the Early and Middle Eocene Arctic Ocean From Oxygen Isotope Analysis of Fish Bone Carbonate

    Science.gov (United States)

    Waddell, L. M.; Moore, T. C.

    2006-12-01

    Plate tectonic reconstructions indicate that the Arctic was largely isolated from the world ocean during the early and middle Eocene, with exchange limited to shallow, and possibly intermittent, connections to the North Atlantic and Tethys (via the Turgay Strait). Relative isolation, combined with an intensification of the hydrologic cycle under an Eocene greenhouse climate, is suspected to have led to the development of a low- salinity surface water layer in the Arctic that could have affected deep and intermediate convection in the North Atlantic. Sediment cores recently recovered from the Lomonosov Ridge by the IODP 302 Arctic Coring Expedition (ACEX) allow for the first assessment of the salinity of the Arctic Ocean during the early and middle Eocene. Stable isotope analysis performed on the structural carbonate of fish bone apatite from ~30 samples between the ages of ~55 and ~44 myr yielded δ18O values between -6.84‰ and -2.96‰ VPDB, with a mean value of -4.89‰. From the δ18O values we calculate that the Arctic Ocean was probably brackish during most of the early and middle Eocene, with an average salinity of 19 to 24‰. Negative excursions in the δ18O record (<-6‰) indicate three events during which the salinity of the Arctic surface waters was severely lowered: the Paleocene Eocene Thermal Maximum (PETM), the Azolla event at ~49 Ma, and a third previously unidentified event at ~46 Ma. During the PETM, low salinities developed under conditions of increased regional precipitation and runoff associated with extreme high latitude warmth and possible tectonic uplift in the North Atlantic. During the other two low-salinity events, sea level was lowered by ~20-30 m, implying a possible severing of Arctic connections to the world ocean. The most positive δ18O value (-2.96‰) occurs at ~45 Ma, the age of the youngest dropstone discovered in the ACEX sediments, and may therefore correspond to a climatic cooling rather than a high salinity event.

  6. A Study of Plagioclase-bearing Pyroxenites from the Ultraslow-spreading Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Lambert, R.; Gale, A.; Von Der Handt, A.

    2015-12-01

    Mantle pyroxenites play an important role in models on melt petrogenesis at mid-ocean ridges and ocean islands. Thus their study can give extremely valuable insights on mantle heterogeneity and deep melting and melt transport processes but only a limited number of studies exist. A recent study on pyroxenites sampled at the Lena Trough showed that measuring the elemental composition of minerals within pyroxenites can give important information on their formation processes and associated pressures and temperatures. Here we build on this recent study by working on fresh plagioclase-bearing pyroxenites from the nearby Gakkel Ridge, Arctic Ocean. Very little has been published on abyssal pyroxenites and plagioclase-bearing pyroxenites in particular, and the ability to contrast our results - including estimates of formation pressures and temperatures - with pyroxenites from a nearby ridge is particularly useful. In this study we determined the chemical and modal composition of three samples of plagioclase-bearing pyroxenites dredged within the Sparsely Magmatic Zone. These samples are particularly fresh, allowing a detailed study of mineral compositional variation and their textural context. Different generations of pyroxene can be identified and plagioclase occurs as rims around spinel, pl-opx symplectites and lamellae in and around clinopyroxene and crosscutting olivines. Mineral compositions are variable within a given thin section and distinctly different from pyroxenites from Lena Trough. We established temperature and pressure conditions under which the samples likely formed using mineral equilibria and single mineral thermometers; we then compared and contrasted the studied samples with published data from other plagioclase pyroxenites and peridotites. Pressure estimates show that plagioclase formation occurred shallower relative to Lena Trough but comparable to pyroxenites from the Southwest Indian Ridge.

  7. Turbulence in the statically unstable oceanic boundary layer under Arctic leads

    Science.gov (United States)

    McPhee, Miles G.; Stanton, Timothy P.

    1996-03-01

    Measurements of turbulent stress, heat flux, salinity flux, and turbulent kinetic energy (TKE) dissipation were made in the oceanic boundary layer under freezing leads during the 1992 Lead Experiment project in the Arctic Ocean north of Alaska. Results from two instrument systems, one comprising a vertical array of four turbulence-measuring instrument clusters, the other an automated, loose-tethered microstructure profiler, show that forcing by modest surface fluxes (surface friction velocity u*0 ˜ 0.7 cm s-1, surface buoyancy flux 0 ˜ -0.7 × 10-7 W kg-1) substantially changes the scales and character of boundary layer turbulence relative to forcing by stress alone. Despite continuous freezing at the surface, a diurnal cycle of heating and cooling of the mixed layer was seen, with downward oceanic heat flux as high as 70 W m-2 observed at middepth in the mixed layer near solar noon. Heat flux was determined both by direct eddy covariance of temperature and vertical velocity at fixed levels and from TKE and thermal dissipation estimates from the profiling instrument, with reasonable agreement. Similarly, there was close correspondence between TKE dissipation estimates obtained from inertial subrange spectral levels at the fixed instruments and from microstructure shear profiles. TKE production was dominated by buoyancy flux through most of the boundary layer. Thermal and saline eddy diffusivities were computed from directly measured fluxes and mixed layer temperature and salinity gradients, with mean values of 0.046 and 0.049 m2 s-1 for temperature and salinity, respectively. Kolmogorov constants for relating thermal and saline dissipations to inertial subrange spectral levels were found to be 0.9 and 1.0, respectively, but with large scatter.

  8. Circulation pathways and spreading rates of the Atlantic Water in the Arctic Ocean: Results from 25 years of tracer observations

    Science.gov (United States)

    Schlosser, Peter; Pasqualini, Angelica; Newton, Robert; Koffman, Tobias; Friedrich, Ronny; Smethie, William M.

    2017-04-01

    The Atlantic Ocean supplies heat to the Arctic Ocean along two pathways: one entering through Fram Strait (Fram Strait Branch) and one entering through the St. Anna Trough after seasonal modifications on the Barents Sea shelf (Barents Sea Branch). Although shielded from direct contact with the sea ice cover by the cold mixed layer and halocline, some of the heat reaches the sea ice via turbulent exchange and thus has impact on sea ice extent and thickness. This raises the question of the stability of the Atlantic Water circulation in the Arctic Ocean in a rapidly changing Arctic system and the consequences of potential changes in its position within the water column. The presently accepted circulation scheme of Atlantic Water in the Arctic Ocean was first depicted by Rudels et al. (1994) based on hydrographic data and dynamical considerations and has been extensively discussed in the literature and widely used in many studies. Although the general circulation patterns seem to be robust, so far not all of its branches have been verified by direct observations such as current meter measurements or geostrophic flow estimates. Additionally, there are few direct measurements of the spreading velocities of the individual components of the overall circulation scheme. We present tritium/3He data and discuss how they add to our understanding of the circulation patterns and spreading velocities. Specifically, we use 3H/3He and hydrographic data from 21 expeditions spanning 25 years of Arctic Ocean section work (1987-2013) to estimate spreading velocities and flow paths of both Atlantic Water branches on a pan-Arctic scale. Our tracer data corroborate and add a time dimension to previously estimated circulation schemes. The results confirm the presence of a well-organized boundary current that cyclonically flows along the continental slope and add insights on the other, typically topographically steered, circulation branches of Atlantic water, most notably those following the

  9. The Arctic Summer Cloud Ocean Study (ASCOS) : Overview and experimental design

    NARCIS (Netherlands)

    Tjernström, M.; Leck, C.; Birch, C.E.; Bottenheim, J.W.; Brooks, B.J.; Brooks, I.M.; Bäcklin, L.; Chang, R.Y.W.; Leeuw, G. de; Liberto, L. di; Rosa, S. de la; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P.A.; Mauritsen, T.; Müller, M.; Norris, S.J.; Orellana, M.V.; Orsini, D.A.; Paatero, J.; Persson, P.O.G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M.D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C.R.

    2014-01-01

    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of

  10. Inter-comparison of state-of-the-art MSS and geoid models in the Arctic Ocean

    DEFF Research Database (Denmark)

    Skourup, Henriette; Farrell, Sinead; Hendricks, Stefan

    level change.This study, part of the ESA CryoVal Sea Ice project, focuses on an inter-comparison of various state-of-the-art Arctic MSS models (UCL13/DTU13/ICEn) and commonly-used geoid models (EGM08). We show improved definition of gravity features, such as the Gakkel ridge, in the latest MSS models......State-of-the-art Arctic Ocean mean sea surface (MSS) and geoid models are used to support sea ice freeboard estimation from satellite altimeters, and for oceanographic studies. However, errors in a given model in the high frequency domain, e.g. due to unresolved gravity features, can result...... in errors in the estimated freeboard heights, especially in areas with a sparse lead distribution in consolidated ice conditions. Additionally these errors can impact ocean geostrophic current estimates and remaining biases in the models may impact longer-term, multi-sensor oceanographic time-series of sea...

  11. Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy

    Science.gov (United States)

    Cronin, T. M.; Gemery, L.; Briggs, W.M.; Jakobsson, M.; Polyak, L.; Brouwers, E.M.

    2010-01-01

    Paleo-sea-ice history in the Arctic Ocean was reconstructed using the sea-ice dwelling ostracode Acetabulastoma arcticum from late Quaternary sediments from the Mendeleyev, Lomonosov, and Gakkel Ridges, the Morris Jesup Rise and the Yermak Plateau. Results suggest intermittently high levels of perennial sea ice in the central Arctic Ocean during Marine Isotope Stage (MIS) 3 (25-45 ka), minimal sea ice during the last deglacial (16-11 ka) and early Holocene thermal maximum (11-5 ka) and increasing sea ice during the mid-to-late Holocene (5-0 ka). Sediment core records from the Iceland and Rockall Plateaus show that perennial sea ice existed in these regions only during glacial intervals MIS 2, 4, and 6. These results show that sea ice exhibits complex temporal and spatial variability during different climatic regimes and that the development of modern perennial sea ice may be a relatively recent phenomenon. ?? 2010.

  12. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    Science.gov (United States)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters

  13. Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992–2009; sources and atmospheric flux

    NARCIS (Netherlands)

    Lorenson, T.D.; Greinert, J.; Coffin, R.B.

    2016-01-01

    Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of theArctic Ocean during 11 surveys spanning the years of 1992–1995 and 2009. During ice-free periods, methaneflux from the Beaufort shelf varies from 0.14 mg CH4 m22 d21 to 0.43 mg CH4 m22 d21. Maximum

  14. Baroclinic stabilization effect of the Atlantic-Arctic water exchange simulated by the eddy-permitting ocean model and global atmosphere-ocean model

    Science.gov (United States)

    Moshonkin, Sergey; Bagno, Alexey; Gritsun, Andrey; Gusev, Anatoly

    2017-04-01

    Numerical experiments were performed with the global atmosphere-ocean model INMCM5 (for version of the international project CMIP6, resolution for atmosphere is 2°x1.5°, 21 level) and with the three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM). Spatial resolution of the INMCM5 oceanic component is 0.5°x0.25°. Both models have 40 s-levels in ocean. Previously, the simulations were carried out for INMCM5 to generate climatic system stable state. Then model was run for 180 years. In the experiment with INMOM, CORE-II data for 1948-2009 were used. As the goal for comparing results of two these numerical models, we selected evolution of the density and velocity anomalies in the 0-300m active ocean layer near Fram Strait in the Greenland Sea, where oceanic cyclonic circulation influences Atlantic-Arctic water exchange. Anomalies were count without climatic seasonal cycle for time scales smaller than 30 years. We use Singular Value Decomposition analysis (SVD) for density-velocity anomalies with time lag from minus one to six months. Both models perform identical stable physical result. They reveal that changes of heat and salt transports by West Spitsbergen and East Greenland currents, caused by atmospheric forcing, produce the baroclinic modes of velocity anomalies in 0-300m layer, thereby stabilizing ocean response on the atmospheric forcing, which stimulates keeping water exchange between the North Atlantic and Arctic Ocean at the certain climatological level. The first SVD-mode of density-velocity anomalies is responsible for the cyclonic circulation variability. The second and third SVD-modes stabilize existing ocean circulation by the anticyclonic vorticity generation. The second and third SVD-modes give 35% of the input to the total dispersion of density anomalies and 16-18% of the

  15. Scientific Discoveries in the Central Arctic Ocean Based on Seafloor Mapping Carried out to Support Article 76 Extended Continental Shelf Claims (Invited)

    Science.gov (United States)

    Jakobsson, M.; Mayer, L. A.; Marcussen, C.

    2013-12-01

    Despite the last decades of diminishing sea-ice cover in the Arctic Ocean, ship operations are only possible in vast sectors of the central Arctic using the most capable polar-class icebreakers. There are less than a handful of these icebreakers outfitted with modern seafloor mapping equipment. This implies either fierce competition between those having an interest in using these icebreakers for investigations of the shape and properties of Arctic Ocean seafloor or, preferably, collaboration. In this presentation examples will be shown of scientific discoveries based on mapping data collected during Arctic Ocean icebreaker expeditions carried out for the purpose of substantiating claims for an extended continental shelf under United Nations Convention of the Law of the Sea (UNCLOS) Article 76. Scientific results will be presented from the suite of Lomonosov Ridge off Greenland (LOMROG) expeditions (2007, 2009, and 2012), shedding new light on Arctic Ocean oceanography and glacial history. The Swedish icebreaker Oden was used in collaboration between Sweden and Denmark during LOMROG to map and sample portions of the central Arctic Ocean; specifically focused on the Lomonosov Ridge north of Greenland. While the main objective of the Danish participation was seafloor and sub-seabed mapping to substantiate their Article 76 claim, LOMROG also included several scientific components, with scientists from both countries involved. Other examples to be presented are based on data collected using US Coast Guard Cutter Healy, which for several years has carried out mapping in the western Arctic Ocean for the US continental shelf program. All bathymetric data collected with Oden and Healy have been contributed to the International Bathymetric Chart of the Arctic Ocean (IBCAO). This is also the case for bathymetric data collected by Canadian Coast Guard Ship Louis S. St-Laurent for Canada's extended continental shelf claim. Together, the bathymetric data collected during these

  16. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation.

    Science.gov (United States)

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J; Eguíluz, Victor M; González-Gordillo, J Ignacio; Pedrotti, Maria L; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    2017-04-01

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

  17. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    Science.gov (United States)

    Cózar, Andrés; Martí, Elisa; Duarte, Carlos M.; García-de-Lomas, Juan; van Sebille, Erik; Ballatore, Thomas J.; Eguíluz, Victor M.; González-Gordillo, J. Ignacio; Pedrotti, Maria L.; Echevarría, Fidel; Troublè, Romain; Irigoien, Xabier

    2017-01-01

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris. PMID:28439534

  18. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation

    KAUST Repository

    Cózar, Andrés

    2017-04-20

    The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

  19. Using the Environmental Intelligence Framework to Address Arctic Issues: A Case Study of Alaskan Fisheries and Ocean Acidification

    Science.gov (United States)

    Mathis, J. T.; Osborne, E.; Bamzai, A. S.; Starkweather, S.

    2017-12-01

    Profound environmental change in the Arctic region is driving an urgent need for faster and more efficient knowledge creation and delivery for residents of the Arctic as well as stakeholders around the globe. The overarching issues at play include environmental stewardship, community health and cultural survival. To effectively address these issues, the Interagency Arctic Research Policy Committee (IAPRC) recently established the Environmental Intelligence Collaboration Team (EICT) that integrates observing capabilities, modelling efforts and data management. Since its inception, the EICT has been working to create pathways to environmental knowledge that sustains end-to-end integration of research across the linked steps of data integration, environmental observing, predictive modelling, assessing responsiveness to stakeholder needs and ultimately providing decision support. The EICT is currently focusing on the carbon-climate aspect of environmental knowledge and identifing specific decision-making needs to meet policy goals for topics such as carbon emissions from permafrost thaw, increasing wildfire frequency and ocean acidification. As a case study, we applied the Environmental Intelligence framework to understanding the effects of ocean acidification in southern Alaska where there are critical commercial and subsistence fisheries. The results of this work revealed that there is currently a 5-month window of optimal growing conditions at a hatchery facility for many juvenile shellfish although that window is expected to close by 2040. The outcome of this work relates directly to fisheries management decisions and identifies the need for continued Environmental Intelligence collection to monitor and mitigate ocean acidification in the Alaskan region.

  20. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    Science.gov (United States)

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  1. Brief communication: Increasing shortwave absorption over the Arctic Ocean is not balanced by trends in the Antarctic

    Science.gov (United States)

    Katlein, Christian; Hendricks, Stefan; Key, Jeffrey

    2017-09-01

    On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortwave energy deposited into the polar oceans.

  2. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    Science.gov (United States)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants that can be transferred long distances and tend to accumulate in marine sediments. However, less is known regarding the distribution of PAHs and their natural bioattenuation in the open sea, especially the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to the Makarov Basin in the summer of 2010. PAH compositions and total concentrations were examined with GC-MS. The concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight and decreased with sediment depth and movement from the southern to the northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. The 16S rRNA gene of the total environmental DNA was analyzed with Illumina high-throughput sequencing (IHTS) to determine the diversity of bacteria involved in PAH degradation in situ. The potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant, occurred in all sediment samples. Meanwhile, enrichment with PAHs was initiated onboard and transferred to the laboratory for further enrichment and to obtain the degrading consortia. Most of the abovementioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas occurred alternately as predominant members in the enrichment cultures from different sediments based on IHTS and PCR-DGGE analysis. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus Pseudomonas showed the best degradation capability under low temperatures. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may

  3. Ancient Continental Lithosphere Dislocated Beneath Ocean Basins Along the Mid-Lithosphere Discontinuity: A Hypothesis

    Science.gov (United States)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2017-09-01

    The documented occurrence of ancient continental cratonic roots beneath several oceanic basins remains poorly explained by the plate tectonic paradigm. These roots are found beneath some ocean-continent boundaries, on the trailing sides of some continents, extending for hundreds of kilometers or farther into oceanic basins. We postulate that these cratonic roots were left behind during plate motion, by differential shearing along the seismically imaged mid-lithosphere discontinuity (MLD), and then emplaced beneath the ocean-continent boundary. Here we use numerical models of cratons with realistic crustal rheologies drifting at observed plate velocities to support the idea that the mid-lithosphere weak layer fostered the decoupling and offset of the African continent's buoyant cratonic root, which was left behind during Meso-Cenozoic continental drift and emplaced beneath the Atlantic Ocean. We show that in some cratonic areas, the MLD plays a similar role as the lithosphere-asthenosphere boundary for accommodating lateral plate tectonic displacements.

  4. Molybdenum and Osmium isotope evidence for palaeoceanographic changes in the Arctic Ocean over the Paleocene-Eocene Thermal Maximum (PETM)

    Science.gov (United States)

    Dickson, A. J.; Cohen, A. S.; Coe, A. L.

    2010-12-01

    The Paleocene Eocene Thermal Maximum (PETM) was a period of substantial global warming thought to have been caused by the sudden input of large amounts of carbon to the ocean/atmosphere system. This carbon may have been sourced from the dissociation of methane hydrate reservoirs, although there is some debate over the role of other carbon sources, e.g. from thermogenic combustion of organic rich marine sediments during the emplacement of the North Atlantic Igneous Province. We present the first Molybdenum (Mo) and Osmium (Os) isotope data measured over the PETM interval of IODP 302 (Arctic Ocean) that reflect changes in ocean oxygenation (Mo), and in the balance between the weathering of old terrestrial rocks and younger basaltic material (Os). Both records display downcore variations that reflect the widely-recognised PETM carbon isotope excursion, suggesting clear changes in oxygenation state and weathering inputs over this event. Furthermore, isotope mass-balance constraints and comparison with other published datasets provides evidence that the Arctic Ocean remained connected to the global ocean over the course of the PETM. We will examine the implications of the new datasets for our understanding of climate dynamics during this interval.

  5. Active spreading processes at ultraslow mid-ocean ridges: Unusual seismicity at the amagmatic Lena Trough, Arctic Ocean

    Science.gov (United States)

    Läderach, Christine; Schlindwein, Vera; Riedel, Carsten

    2010-05-01

    Lena Trough is the southern continuation of the ultraslow-spreading Gakkel Ridge and with its position in the Fram Strait between Greenland and Spitsbergen it is the only deep-sea gateway to the Arctic Ocean. DFG funded Emmy Noether group 'Mid-Ocean Volcanoes and Earthquakes' located at Alfred Wegener Institute for Polar and Marine Research is focusing on the seismicity of ultraslow spreading ridges and is especially interested in Lena Trough as an ultraslow spreading ridge in a developing stage. The southern Lena Trough shows similarities to the northern Red Sea spreading centre which is in the early stage of development from continental to oceanic rift. Cochran postulated in 2003 that the continental crust within the water-covered Red Sea is less than 10 km thick and that the northern part of the Red Sea rift spreads ultraslow as well. At Lena Trough an actively spreading mid-ocean ridge with a narrow rift valley has already developed but continental crust lies within a short distance. Lena Trough is extending from 83°N/5°W to 80.3°N/2°W where it passes into the transform fault of the Spitsbergen Fracture Zone. The geometry of Lena Trough and certain asymmetric structures in the rift valley indicate oblique spreading and mostly tectonic and amagmatic rifting. There are several topographic highs west of the ridge axis which could be bounded by deep faults with normal faulting or detachment character exposing mantle material at the surface. Seismicity at the Lena Trough shows apparently the same asymmetric character with epicenters of teleseismically recorded earthquakes concentrating predominantly west of the ridge axis. The most frequent focal mechanism of the earthquakes within the rift valley is normal faulting, whereas strike-slip faults occur in the Spitsbergen Fracture Zone. We relocalized teleseismic earthquakes recorded from May 1973 to April 2009 in the region using a refined localization algorithm and could confirm systematic asymmetry in the

  6. Tropical Cyclone Exposure for U.S. waters within the North Atlantic Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the North Atlantic Ocean basin. BOEM Outer...

  7. Tropical Cyclone Exposure for U.S. waters within the Eastern Pacific Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the Eastern Pacific Ocean basin. BOEM Outer...

  8. The Santos Basin Ocean Observing System: From R&D to Operational Regional Forecasts

    Science.gov (United States)

    Da Rocha Fragoso, M.; Moore, A. M.; dos Santos, F. A.; Marques Da Cruz, L.; Carvalho, G. V.; Soares, F.

    2016-02-01

    Santos Basin is located on the Southwestern Brazilian Ocean Basin and comprises the main offshore oil reserves of Brazil. The exploration and production activities on its ocean are growing in accelerated pace, which means that oil spill contingency and search & rescue operations are likely to be more frequent. Therefore, ocean current reliable nowcasts and forecasts has become even more important for this region. The Santos Basin Ocean Observing System was designed as an R&D project and its main objective was to establish and maintain a systematic oceanographic data collection for this region in order to study its ocean dynamics and improve regional ocean forecast through data assimilation. In the first three years of the project surface drifters, profiling floats and gliders were deployed to measure and monitor mainly the Brazil Current Western Boundary System, a highly unstable baroclinic current system, that present several meanders and mesoscale eddies activities. Throughout the development of the project, the team involved was able to learn how to operate the equipment, treat the collected data and use it to assimilate on the Regional Ocean Modeling System (ROMS). After performing a one-year 4DVAR assimilation cycle (Fragoso et al., 2015) in which the forecasting skill was assessed, the system was considered mature enough to start producing ocean circulation forecasts for Santos Basin. It is the first time in Brazil that a regional ocean model using a 4DVAR data assimilation scheme was used to produce high resolution operational ocean current forecasts. This paper describes all the components of this forecasting system, its main results and discoveries with special focus on the Brazil Current System Transport and mesocale eddies dynamics and statistics.

  9. Arctic-ice history and its related sedimentary regimes in the central Arctic Ocean: IODP Expedition 302 "Arctic Coring Expedition: ACEX by new non-destructive 2-D XRF and transmission X-Ray sediment-scanning techniques, TATSCAN

    Science.gov (United States)

    Sakamoto, T.; Sugisaki, S.; Iijima, K.; Yamamoto, M.; O'Regan, M.; King, J. W.; Moran, K.

    2006-12-01

    Until the recent when the Integrated Ocean Drilling Program (IODP) Expedition 302 has conducted a deep sea drilling at the central Arctic Ocean, the past Arctic-ice history has been a mystery of the Cenozoic icehouse Earth system. The IODP- Arctic Coring Expedition (ACEX) has successfully recovered over 400m sediment records (about 0 to 55 Ma) on the Lomonosov Ridge in 2004 (Moran et al., 2006). In order to reconstruct and reveal the ice history in the central Arctic Ocean, we conducted new non- destructive sediment core scanning techniques, TATSCAN, that is a code name of developing original instruments for non-destructive sediment scanning and imaging in range of millimeter and micrometer scale. In the recent, we have newly developed non-destructive energy dispersive type X-ray Fluorescence (XRF) scanner, TATSCAN-F2, for 2-dimensional elemental imaging of the surface of sediment with 1mm- or 1cm- measuring diamter in the length of up to 150 cm. The TATSCAN-X is another non-destructive scanning technique by using transmission X-ray, which can detect and identify discrete shapes such like isolated granule and pebble in the sediment core. The number of ice-rafted debris (IRD) that was defined as discrete grains more than 1mm in diameter in the X- ray imaging, was direct information of the past Arctic ice recorded in the sediment. IRD increased 1.6 1.75 Ma and 0.0 - 0.8 Ma. During 0.8 Ma, especially, IRD significantly became 2 to 4 time richer than previous duration. IRD increased in the glacial and decreased in the interglacial. The IRD variation was consistent with biomarkers in the sediment core. The increase of IRD corresponds to high amount of diagenetic hopanes and to low concentration of other biomarkers such as long-chain organic compounds derived from fresh higher plant, which was mainly supplying by river discharge. The variation of the IRD should be related to expansion of northern Siberian ice-sheet to the Arctic during the cold durations. High

  10. History of sea ice in the Arctic basin: Lessons from the past for future

    Directory of Open Access Journals (Sweden)

    I. I. Borzenkova

    2016-01-01

    Full Text Available The process of the sea ice formation in the Arctic Ocean is analyzed for the period of the last 65 million years, i.e. from the Paleocene to the present time. Appearance of sea ice in the high latitudes is demonstrated to be caused by the negative trend in global temperatures due to decreasing of the CO2 concentration in the ancient atmosphere. Formation of seasonal and perennial ice cover in the limited area near the Pole could take place during the mid-Neogene period, about 12–13 Ma ago. However, areas of the sea icing could be obviously changed for this time during periods of the climate warming and cooling. Permanent sea ice had been formed in the early Pleistocene, i.e. about 2.0–1.8 Ma ago only. Paleoclimatic reconstructions, based on the indirect data and modeling simulation for the Holocene optimum (10–6 ka ago and for the Last Interglacial period (the isotopic substage in the marine cross-section 5e, about 125–127 ka ago had shown that rising of global temperatures by 1.0–1.5 °C resulted in strong decreasing of the sea ice area, and the perennial ice cover became the seasonal one. Relatively small changes in the incoming solar radiation originating during the spring-summer time due to the orbital factors played the role of a trigger for onset of the melting process. Further on, the process could be enhanced owing to difference in the albedo between the ice cover and open water. Recently, the rapid shortening of the sea ice area is noted, and in some parts of the Arctic Ocean the area is twice cut down as compared with the normal. In 2015, the record low area of the winter sea ice was observed, and therewith the maximum of the ice area shifted to the earlier period (by 15 days as compared with the period of 1981–2010. The winter fluctuations of the sea ice areas are as much important as the summer ones, since they are the best indicators of the present-day global warming. Thus, it can be supposed that some

  11. Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes

    Science.gov (United States)

    Bice, Karen L.; Arthur, Michael A.; Marincovich, Louie

    1996-01-01

    Late Paleocene high-latitude (80°N) Arctic Ocean shallow-marine temperatures are estimated from molluscan δ18O time series. Sampling of individual growth increments of two specimens of the bivalve Camptochlamys alaskensis provides a high-resolution record of shell stable isotope composition. The heavy carbon isotopic values of the specimens support a late Paleocene age for the youngest marine beds of the Prince Creek Formation exposed near Ocean Point, Alaska. The oxygen isotopic composition of regional freshwater runoff is estimated from the mean δ18O value of two freshwater bivalves collected from approximately coeval fluviatile beds. Over a 30 – 34‰ range of salinity, values assumed to represent the tolerance of C. alaskensis, the mean annual shallow-marine temperature recorded by these individuals is between 11° and 22°C. These values could represent maximum estimates of the mean annual temperature because of a possible warm-month bias imposed on the average δ18O value by slowing or cessation of growth in winter months. The amplitude of the molluscan δ18O time series probably records most of the seasonality in shallow-marine temperature. The annual temperature range indicated is approximately 6°C, suggesting very moderate high-latitude marine temperature seasonality during the late Paleocene. On the basis of analogy with modern Chlamys species, C. alaskensis probably inhabited water depths of 30–50 m. The seasonal temperature range derived from δ18O is therefore likely to be damped relative to the full range of annual sea surface temperatures. High-resolution sampling of molluscan shell material across inferred growth bands represents an important proxy record of seasonality of marine and freshwater conditions applicable at any latitude. If applied to other regions and time periods, the approach used here would contribute substantially to the paleoclimate record of seasonality.

  12. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Michael, P. J.; Langmuir, C. H.; Dick, H. J. B.; Snow, J. E.; Goldstein, S. L.; Graham, D. W.; Lehnert, K.; Kurras, G.; Jokat, W.; Mühe, R.; Edmonds, H. N.

    2003-06-01

    A high-resolution mapping and sampling study of the Gakkel ridge was accomplished during an international ice-breaker expedition to the high Arctic and North Pole in summer 2001. For this slowest-spreading endmember of the global mid-ocean-ridge system, predictions were that magmatism should progressively diminish as the spreading rate decreases along the ridge, and that hydrothermal activity should be rare. Instead, it was found that magmatic variations are irregular, and that hydrothermal activity is abundant. A 300-kilometre-long central amagmatic zone, where mantle peridotites are emplaced directly in the ridge axis, lies between abundant, continuous volcanism in the west, and large, widely spaced volcanic centres in the east. These observations demonstrate that the extent of mantle melting is not a simple function of spreading rate: mantle temperatures at depth or mantle chemistry (or both) must vary significantly along-axis. Highly punctuated volcanism in the absence of ridge offsets suggests that first-order ridge segmentation is controlled by mantle processes of melting and melt segregation. The strong focusing of magmatic activity coupled with faulting may account for the unexpectedly high levels of hydrothermal activity observed.

  13. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    Science.gov (United States)

    van Kempen, Monique M L; Smolders, Alfons J P; Lamers, Leon P M; Roelofs, Jan G M

    2012-01-01

    In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  14. Micro-halocline enabled nutrient recycling may explain extreme Azolla event in the Eocene Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Monique M L van Kempen

    Full Text Available In order to understand the physicochemical mechanisms that could explain the massive growth of Azolla arctica in the Eocene Arctic Ocean, we carried out a laboratory experiment in which we studied the interacting effects of rain and wind on the development of salinity stratification, both in the presence and in the absence of a dense Azolla cover. Additionally, we carried out a mesocosm experiment to get a better understanding of the nutrient cycling within and beneath a dense Azolla cover in both freshwater and brackish water environments. Here we show that Azolla is able to create a windproof, small-scale salinity gradient in brackish waters, which allows for efficient recycling of nutrients. We suggest that this mechanism ensures the maintenance of a large standing biomass in which additional input of nutrients ultimately result in a further expansion of an Azolla cover. As such, it may not only explain the extent of the Azolla event during the Eocene, but also the absence of intact vegetative Azolla remains and the relatively low burial efficiency of organic carbon during this interval.

  15. Optimizing Ship Classification in the Arctic Ocean: A Case Study of Multi-Disciplinary Problem Solving

    Directory of Open Access Journals (Sweden)

    Mark Rahmes

    2014-08-01

    Full Text Available We describe a multi-disciplinary system model for determining decision making strategies based upon the ability to perform data mining and pattern discovery utilizing open source actionable information to prepare for specific events or situations from multiple information sources. We focus on combining detection theory with game theory for classifying ships in Arctic Ocean to verify ship reporting. More specifically, detection theory is used to determine probability of deciding if a ship or certain ship class is present or not. We use game theory to fuse information for optimal decision making on ship classification. Hierarchy game theory framework enables complex modeling of data in probabilistic modeling. However, applicability to big data is complicated by the difficulties of inference in complex probabilistic models, and by computational constraints. We provide a framework for fusing sensor inputs to help compare if the information of a ship matches its AIS reporting requirements using mixed probabilities from game theory. Our method can be further applied to optimizing other choke point scenarios where a decision is needed for classification of ground assets or signals. We model impact on decision making on accuracy by adding more parameters or sensors to the decision making process as sensitivity analysis.

  16. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  17. Ocean basin volume constraints on global sea level since the Jurassic

    Science.gov (United States)

    Seton, M.; Müller, R. D.

    2011-12-01

    Changes in the volume of the ocean basins, predominately via changes in the age-area distribution of oceanic lithosphere, have been suggested as the main driver for long-term eustatic sea-level change. As ocean lithosphere cools and thickens, ocean depth increases. The balance between the abundance of hot and buoyant crust along mid ocean ridges relative to abyssal plains is the primary driving force of long-term sea level changes. The emplacement of volcanic plateaus and chains as well as sedimentation contribute to raising eustatic sea level. Quantifying the average ocean basin depth through time primarily relies on the present day preserved seafloor spreading record, an analysis of the spatio-temporal record of plate boundary processes recorded on the continental margins adjacent to ocean basins as well as a consideration of the rules of plate tectonics, to reconstruct the history of seafloor spreading in the oceanic basins through time. This approach has been successfully applied to predict the magnitude and pattern of eustatic sea-level change since the Cretaceous (Müller et. al. 2008) but uncertainties in reconstructing mid ocean ridges and flanks increase back through time, given that we mainly depend on information preserved in preserved ocean crust. We have reconstructed the age-area distribution of oceanic lithosphere and the plate boundary configurations back to the Jurassic (200 Ma) in order to assess long-term sea-level change from amalgamation to dispersal of Pangaea. We follow the methodology presented in Müller et. al. (2008) but incorporate a new absolute plate motion model derived from Steinberger and Torsvik (2008) prior to 100 Ma, a merged Wessel et. al. (2006) and Wessel and Kroenke (2008) fixed Pacific hotspot reference frame, and a revised model for the formation of Panthalassa and the Cretaceous Pacific. Importantly, we incorporate a model for the break-up of the Ontong Java-Manihiki-Hikurangi plateaus between 120-86 Ma. We extend a

  18. Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux

    Science.gov (United States)

    Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.

    2016-01-01

    Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.

  19. The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard

    Directory of Open Access Journals (Sweden)

    J. J. Day

    2012-01-01

    Full Text Available The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m.

    The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.

  20. Late Quaternary environments on the western Lomonosov Ridge (Arctic Ocean) - first results from RV Polarstern expedition PS87 (2014)

    Science.gov (United States)

    Spielhagen, Robert F.; Stein, Rüdiger; Mackensen, Andreas; PS87 Shipboard Scientific Party

    2016-04-01

    The interior Arctic Ocean is still one of the least known parts of the earth's surface. In particular this holds true for the deep-sea area north of Greenland which has been reached by research ships only within the last decade. The region is of special interest for climate researchers because numerical climate models predict that under future global warming the shrinking summer sea ice cover will finde a place of refuge here until it totally disappears. In summer 2014 several short and long undisturbed large-volume sediment cores were obtained from the western Lomonosov Ridge between 86.5°N and the North Pole. Here we present first results from site PS87/030 situated at 88°40'N. The combined sedimentary record of a box core and a kasten core analyzed so far is interpreted to represent the environmental variability in the last ca. 200,000 years and can be correlated to comparable records from the eastern Lomonosov Ridge and the Morris Jesup Rise. The well-defined coarse layers with abundant ice-rafted detritus reflect the history of circum-Arctic ice sheets. Planktic foraminifers with a distinct dominance of the polar species were found in most of the analyzed samples and allow to reconstruct the water mass history for this part of the Arctic Ocean. Planktic oxygen and carbon isotope records allow to identify several freshwater events which can be correlated to the decay of ice sheets surrounding the Arctic Ocean. The results presented are, however, preliminary and will be refined by future work including an improved temporal resolution of the records and the addition of further proxy records.

  1. Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait.

    Directory of Open Access Journals (Sweden)

    Cecile Cathalot

    Full Text Available The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents. Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m, a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1 compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1. The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger

  2. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  3. Composition of macrobenthos from the Central Indian Ocean Basin

    Indian Academy of Sciences (India)

    considered to have a high quality of commercial grade nodules (Prasad 2007). However, of the three oceans, the Indian Ocean is the least studied in terms of deep sea fauna. Benthic organisms play an important role as food for large carnivores and some sediment-dwelling forms influence the mixing of organic and inor-.

  4. Helium-3 and Manganese in Hydrothermal Plumes Along the Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Graham, D. W.; Connelly, D. P.; German, C. R.; Lupton, J. E.; Michael, P. J.; Edmonds, H. N.

    2002-12-01

    The Gakkel Ridge is the slowest spreading end-member of the global ocean ridge system. It thus represents a key locality for investigating hydrothermal activity, both as it relates to spreading rate, magma flux and tectonics, and for its potential impact on Arctic Ocean chemistry and biogeography. We report new helium, manganese and hydrographic results for a reconnaissance survey of ~1100 km of the western Gakkel Ridge between 2°W and 85°E. Six CTD stations were completed during AMORE (the Arctic Mid-Ocean Ridge Expedition), a geological sampling and seafloor mapping expedition carried out jointly by American and German scientists, in August-October 2001 aboard the icebreakers USCGC Healy and PFS Polarstern. CTD station locations were targeted using water column light-scattering and temperature profiles, obtained during the dredging operations using Miniature Autonomous Plume Recorders (MAPRs) supplied by Ed Baker (NOAA/PMEL). Hydrothermal plumes were discovered at several localities, most notably at 37.0°E, 43.2°E and 84.9°E, all of which are near the summits of axial volcanoes. The last site is significant in light of its seismic activity during 1999, possibly associated with a volcanic eruption. A very large plume, >1000 m thick, was observed in the 85°E region, with δ3He ranging up to 40% and total dissolvable [Mn] up to 10 nmol/kg. Combined with a temperature anomaly of ~0.05°C, the 3He/heat ratio is 5x10-13 std-cm3/g per cal at 85°E, similar to megaplumes discovered along the Juan de Fuca Ridge, and to smaller plumes observed along the East Pacific Rise that appear to represent "equilibrium" conditions. In contrast, at 43.2°E a plume ~350 m thick has δ3He up to 85% while [Mn] ranges up to 3 nmol/kg. The 3He/heat ratio at 43.2°E is 2x10-12 std-cm3/g per cal, equivalent to the theoretical ratio for Earth's upper mantle having 3He/4He=8 RA, U=5 ppb and Th/U=2.5. These 3He, heat and Mn characteristics at 43.2°E are similar to those observed

  5. Ocean Acidification in the Surface Waters of the Pacific-Arctic Boundary Regions

    Science.gov (United States)

    Mathis, J. T.; Cross, J. N.; Evans, W.; Doney, S. C.

    2016-02-01

    The continental shelves of the Pacific-Arctic Region (PAR) are especially vulnerable to the effects of ocean acidification (OA) because the intrusion of anthropogenic CO2 is not the only process that can reduce pH and carbonate mineral saturation states for aragonite (ΩArag). Enhanced sea-ice melt, respiration of organic matter, upwelling and riverine inputs have been shown to exacerbate CO2-driven ocean acidification in high-latitude regions. Additionally, the indirect effect of changing sea-ice coverage is providing a positive feedback to OA as more open water will allow for greater uptake of atmospheric CO2. Here, we compare model-based outputs from the Community Earth System Model with a subset of recent ship-based observations, and take an initial look at future model projections of surface water ΩArag in the Bering, Chukchi and Beaufort Seas. We then use the model outputs to define benchmark years when biological impacts are likely to result from reduced ΩArag. Each of the three continental shelf seas in the PAR will become undersaturated with respect to aragonite at approximately 30-year intervals, indicating that aragonite undersaturations gradually progress upstream along the flow path of the waters as they move north from the Pacific Ocean. However, naturally high variability in ΩArag may indicate higher resilience of the Bering Sea ecosystem to these low-ΩArag conditions than the Chukchi and the Beaufort Seas. Based on our initial results, we have determined that the annual mean for ΩArag will pass below the current range of natural variability in 2025 for the Beaufort Sea and 2027 for the Chukchi Sea. Because of the higher range of natural variability, the annual mean for ΩArag for the Bering Sea does not pass out of the natural variability range until 2044. As ΩArag in these shelf seas slips below the present-day range of large seasonal variability by midcentury, it could put tremendous pressure on the diverse ecosystems that support some of

  6. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    Science.gov (United States)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from POLARSTERN in the Arctic Ocean, North Atlantic Ocean and others from 2007-12-03 to 2008-08-05 (NCEI Accession 0157407)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157407 includes Surface underway, chemical, meteorological and physical data collected from POLARSTERN in the Arctic Ocean, North Atlantic Ocean,...

  8. Nondestructive X-Ray Computed Tomography Analysis of Sediment Cores: A Case Study from the Arctic Ocean

    Science.gov (United States)

    Oti, E.; Polyak, L. V.; Cook, A.; Dipre, G.

    2014-12-01

    Investigation of marine sediment records can help elucidate recent changes in the Arctic Ocean circulation and sea ice conditions. We examine sediment cores from the western Arctic Ocean, representing Late to Early Quaternary age (potentially up to 1 Ma). Previous studies of Arctic sediment cores indicate that interglacial/interstadial periods with relatively high sea levels and reduced ice cover are characterized by vigorous bioturbation, while glacial intervals have little to no bioturbation. Traditional methods for studying bioturbation require physical dissection of the cores, effectively destroying them. To treat this limitation, we evaluate archival sections of the cores using an X-ray Computed Tomography (XCT) scanner, which noninvasively images the sediment cores in three dimensions. The scanner produces density sensitive images suitable for quantitative analysis and for identification of bioturbation based on size, shape, and orientation. We use image processing software to isolate burrows from surrounding sediment, reconstruct them three-dimensionally, and then calculate their surface areas, volumes, and densities. Preliminary analysis of a core extending to the early Quaternary shows that bioturbation ranges from 0 to approximately 20% of the core's volume. In future research, we will quantitatively define the relationship between bioturbation activity and glacial regimes. XCT examination of bioturbation and other sedimentary features has the potential to shed light on paleoceanographic conditions such as sedimentation patterns and food flux. XCT is an alternative, underexplored investigation method that bears implications not only for illustrating paleoclimate variations but also for preserving cores for future, more advanced technologies.

  9. Implications of sea-ice biogeochemistry for oceanic production and emissions of dimethyl sulfide in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Hayashida

    2017-06-01

    Full Text Available Sea ice represents an additional oceanic source of the climatically active gas dimethyl sulfide (DMS for the Arctic atmosphere. To what extent this source contributes to the dynamics of summertime Arctic clouds is, however, not known due to scarcity of field measurements. In this study, we developed a coupled sea ice–ocean ecosystem–sulfur cycle model to investigate the potential impact of bottom-ice DMS and its precursor dimethylsulfoniopropionate (DMSP on the oceanic production and emissions of DMS in the Arctic. The results of the 1-D model simulation were compared with field data collected during May and June of 2010 in Resolute Passage. Our results reproduced the accumulation of DMS and DMSP in the bottom ice during the development of an ice algal bloom. The release of these sulfur species took place predominantly during the earlier phase of the melt period, resulting in an increase of DMS and DMSP in the underlying water column prior to the onset of an under-ice phytoplankton bloom. Production and removal rates of processes considered in the model are analyzed to identify the processes dominating the budgets of DMS and DMSP both in the bottom ice and the underlying water column. When openings in the ice were taken into account, the simulated sea–air DMS flux during the melt period was dominated by episodic spikes of up to 8.1 µmol m−2 d−1. Further model simulations were conducted to assess the effects of the incorporation of sea-ice biogeochemistry on DMS production and emissions, as well as the sensitivity of our results to changes of uncertain model parameters of the sea-ice sulfur cycle. The results highlight the importance of taking into account both the sea-ice sulfur cycle and ecosystem in the flux estimates of oceanic DMS near the ice margins and identify key uncertainties in processes and rates that should be better constrained by new observations.

  10. Geological evolution and hydrocarbon potential of the Hatton Basin (UK sector), north-east Atlantic Ocean

    OpenAIRE

    McInroy, David; Hitchen, Ken

    2008-01-01

    The deep-water Hatton Basin (flanked by the Hatton and Rockall Highs) is located 600km west of Scotland (NE Atlantic Ocean) on the western margin of the Eurasian continental plate. Prior to Atlantic opening the area was adjacent to SE Greenland. The basin straddles the UK/Irish median line. Water depths increase southwards from 1000m to over 1300m. The basin has never been licensed for hydrocarbon exploration and is currently the subject of ownership negotiations related to the UN Conven...

  11. Numerical Modeling of the Vertical Heat Transport Through the Diffusive Layer of the Arctic Ocean

    Science.gov (United States)

    2013-03-01

    transport through thermohaline staircases in the Arctic region. Results revealed that vertical fluxes exceeded those of extant “four-thirds flux...vertical heat flux, thermohaline staircase 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18...DNS) were conducted to assess the vertical heat transport through thermohaline staircases in the Arctic region. Results revealed that vertical

  12. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean

    NARCIS (Netherlands)

    Kühn, Susanne; Schaafsma, Fokje L.; Werven, van Bernike; Flores, Hauke; Bergmann, Melanie; Egelkraut-Holtus, Marion; Tekman, Mine B.; Franeker, van Jan A.

    2018-01-01

    One of the recently recognised stressors in Arctic ecosystems concerns plastic litter. In this study, juvenile polar cod (Boreogadus saida) were investigated for the presence of plastics in their stomachs. Polar cod is considered a key species in the Arctic ecosystem. The fish were collected both

  13. Biogenic and detrital-rich intervals in central Arctic Ocean cores identified using x-ray fluorescence scanning

    Directory of Open Access Journals (Sweden)

    Daniela Hanslik

    2013-02-01

    Full Text Available X-ray fluorescence (XRF scanning of sediment cores from the Lomonosov Ridge and the Morris Jesup Rise reveals a distinct pattern of Ca intensity peaks through Marine Isotope Stages (MIS 1 to 7. Downcore of MIS 7, the Ca signal is more irregular and near the detection limit. Virtually all major peaks in Ca coincide with a high abundance of calcareous microfossils; this is particularly conspicuous in the cores from the central Arctic Ocean. However, the recorded Ca signal is generally caused by a combination of biogenic and detrital carbonate, and in areas influenced by input from the Canadian Arctic, detrital carbonates may effectively mask the foraminiferal carbonates. Despite this, there is a strong correlation between XRF-detected Ca content and foraminiferal abundance. We propose that in the Arctic Ocean north of Greenland a common palaeoceanographic mechanism is controlling Ca-rich ice-rafted debris (IRD and foraminiferal abundance. Previous studies have shown that glacial periods are characterized by foraminfer-barren sediments. This implies that the Ca-rich IRD intervals with abundant foraminifera were most likely deposited during interglacial periods when glaciers left in the Canadian Arctic Archipelago were still active and delivered a large amount of icebergs. At the same time, conditions were favourable for planktic foraminifera, resulting in a strong covariance between these proxies. Therefore, we suggest that the XRF scanner's capability to efficiently map Ca concentrations in sediment cores makes it possible to systematically examine large numbers of cores from different regions to investigate the palaeoceanographic reasons for the calcareous microfossils’ spatial and temporal variability.

  14. Implications of ocean acidification in the Pacific Arctic: Experimental responses of three Arctic bivalves to decreased pH and food availability

    Science.gov (United States)

    Goethel, Christina L.; Grebmeier, Jacqueline M.; Cooper, Lee W.; Miller, Thomas J.

    2017-10-01

    Recent sea ice retreat and seawater warming in the Pacific Arctic are physical changes that are impacting arctic biological communities. Recently, ocean acidification from increases in anthropogenic CO2 has been identified as an additional stressor, particularly to calcifying organisms like bivalves. These bivalves are common prey items for benthivorous predators such as Pacific walruses (Odobenus rosmarus divergens), bearded seals (Erignathus barbatus), and diving seaducks, such as Spectacled Eiders (Somateria fischeri). We investigated the effects of decreased pH and food availability on growth (% change in length and wet weight and allometric growth characterizations) and oxygen consumption (mg/L/hour) of three common Arctic bivalves, Macoma calcarea, Astarte montagui, and Astarte borealis. Two sets of experiments were run for seven and eleven weeks, exposing the bivalves to control (8.05 ± 0.02 and 8.19 ± 0.003, respectively) and acidified (7.76 ± 0.01 and 7.86 ± 0.01, respectively) pH treatments. Length, weight, and oxygen consumption were not significantly different among the varying treatments after the seven-week exposure and only one significant effect of decreased pH and one significant effect of decreased food availability were observed after the end of the eleven-week exposure. Specifically, shells of A. borealis displayed a decrease in length in response to decreased pH and M. calcarea showed a decrease in length in response to limited food. The negative effects of pH observed in the experiments on growth and oxygen consumption were small, suggesting that at least two of these species are generally resilient to decreasing pH.

  15. Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.

    Science.gov (United States)

    Winter, Christian; Payet, Jérôme P; Suttle, Curtis A

    2012-01-01

    One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.

  16. Modeling the Winter–to–Summer Transition of Prokaryotic and Viral Abundance in the Arctic Ocean

    Science.gov (United States)

    Winter, Christian; Payet, Jérôme P.; Suttle, Curtis A.

    2012-01-01

    One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations. PMID:23285186

  17. New data about small-magnitude earthquakes of the ultraslow-spreading Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Morozov, Alexey N.; Vaganova, Natalya V.; Ivanova, Ekaterina V.; Konechnaya, Yana V.; Fedorenko, Irina V.; Mikhaylova, Yana A.

    2016-01-01

    At the present time there is available detailed bathymetry, gravimetric, magnetometer, petrological, and seismic (mb > 4) data for the Gakkel Ridge. However, so far not enough information has been obtained on the distribution of small-magnitude earthquakes (or microearthquakes) within the ridge area due to the absence of a suitable observation system. With the ZFI seismic station (80.8° N, 47.7° E), operating since 2011 at the Frantz Josef Land Archipelago, we can now register small-magnitude earthquakes down to 1.5 ML within the Gakkel Ridge area. This article elaborates on the results and analysis of the ZFI station seismic monitoring obtained for the period from December 2011 to January 2015. In order to improve the accuracy of the earthquakes epicenter locations, velocity models and regional seismic phase travel-times for spreading ridges in areas within the Euro-Arctic Region have been calculated. The Gakkel Ridge is seismically active, regardless of having the lowest spreading velocity among global mid-ocean ridges. Quiet periods alternate with periods of higher seismic activity. Earthquakes epicenters are unevenly spread across the area. Most of the epicenters are assigned to the Sparsely Magmatic Zone, more specifically, to the area between 1.5° E and 19.0° E. We hypothesize that assignment of most earthquakes to the SMZ segment can be explained by the amagmatic character of the spreading of this segment. The structuring of this part of the ridge is characterized by the prevalence of tectonic processes, not magmatic or metamorphic ones.

  18. Environmental Variability, Bowhead Whale Distributions, and Inupiat Subsistence Whaling in the Coastal Arctic Ocean

    Science.gov (United States)

    Ashjian, C. J.; Campbell, R. G.; George, J. C.; Moore, S. E.; Okkonen, S. R.; Sherr, B. F.; Sherr, E. B.

    2006-12-01

    The annual migration of bowhead whales (Balaena mysticetus) past Barrow, Alaska has provided subsistence hunting opportunities to Native whalers for centuries. Bowheads regularly feed along the Arctic coast near Barrow in autumn, presumably to utilize recurrent aggregations of their zooplankton prey (e.g., copepods, euphausiids). Oceanographic field-sampling on the narrow continental shelf near Barrow and in Elson Lagoon was conducted during mid-August to mid-September of 2005 and 2006 to describe the different water mass types and plankton communities, to identify exchange of water and material between the shelf and lagoon and offshore, and to identify biological and physical mechanisms of plankton aggregation. High spatial resolution profiles of temperature, salinity, fluorescence, optical backscatter, and C-DOM were collected using an Acrobat undulating towed vehicle in the lagoon and across the shelf from near-shore to the ~150 m isobath. Discrete sampling for nutrients, chlorophyll a, and phytoplankton, and microzooplankton and mesozooplankton abundance and composition was conducted in distinct water types and across frontal boundaries identified from the high-resolution data. The distributions of bowhead whales were documented using aerial surveys. Inter-annual and shorter-term (days to weeks) variability in the distribution of water masses and intrinsic biological properties was observed. Distinct hydrographic and biological-chemical regions were located across the shelf that may contribute to the formation of bowhead whale prey aggregations. The lagoon system is an important interface between the ocean and land and may be critical to the formation of nearshore bowhead whale prey aggregations. Results from the field sampling will be coupled to biological-physical modeling and retrospective analyses to understand the response of this complex environment-whale-human system to climate variability.

  19. Simulating the natural variability of the freshwater budget of the Arctic ocean from the mid to late Holocene using LOVECLIM

    Science.gov (United States)

    Davies, F. J.; Goosse, H.; Renssen, H.

    2012-04-01

    The influence of freshwater on the long term climatic variability of the Arctic region is currently of significant interest. Alterations to the natural variability of the oceanic, terrestrial and atmospheric sources of freshwater to the Arctic ocean, caused by anthropogenic induced warming, are likely to have far reaching effects on oceanic processes and climate. A number of these changes are already observable, such as an intensification of the hydrological cycle, a 7% increase in Eurasian river runoff (1936-1999), a 9% reduction of sea-ice extent per decade (1979-2006), a 120km northward migration of permafrost in Northern Canada (1968-1994), and air temperatures 6°C warmer, in parts, from 2007 to 2010, when compared to the 1958-1996 average. All of these changes add another layer of complexity to understanding the role of the freshwater budget, and this makes it difficult to say with any certainty how these future changes will impact freshwater fluxes of the Arctic gateways, such as the Bering Strait, Fram Strait, Canadian Arctic Archipelago and the Barents Sea inflow. Despite these difficulties, there have been studies that have integrated the available data, from both in situ measurements and modelling studies, and used this as a basis to form a picture of the current freshwater budget, and then project upon these hypotheses for the future (Holland et al., 2007). However, one particular aspect of these future projections that is lacking is the accountability of how much future variance is attributable to both natural variability and anthropogenic influences. Here we present results of a mid to late (6-0ka) Holocene transient simulation, using the earth model of intermediate complexity, LOVECLIM (Goosse et al., 2010). The model is forced with orbital and greenhouse gas forcings appropriate for the time period. The results will highlight the natural variability of the oceanic, terrestrial and atmospheric components of the freshwater budget, over decadal and

  20. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean

    Science.gov (United States)

    Villamil-Otero, Gian A.; Zhang, Jing; He, Juanxiong; Zhang, Xiangdong

    2018-01-01

    Poleward atmospheric moisture transport (AMT) into the Arctic Ocean can change atmospheric moisture or water vapor content and cause cloud formation and redistribution, which may change downward longwave radiation and, in turn, surface energy budgets, air temperatures, and sea-ice production and melt. In this study, we found a consistently enhanced poleward AMT across 60°N since 1959 based on the NCAR-NCEP reanalysis. Regional analysis demonstrates that the poleward AMT predominantly occurs over the North Atlantic and North Pacific regions, contributing about 57% and 32%, respectively, to the total transport. To improve our understanding of the driving force for this enhanced poleward AMT, we explored the role that extratropical cyclone activity may play. Climatologically, about 207 extratropical cyclones move across 60°N into the Arctic Ocean each year, among which about 66 (32% of the total) and 47 (23%) originate from the North Atlantic and North Pacific Ocean, respectively. When analyzing the linear trends of the time series constructed by using a 20-year running window, we found a positive correlation of 0.70 between poleward yearly AMT and the integrated cyclone activity index (measurement of cyclone intensity, number, and duration). This shows the consistent multidecadal changes between these two parameters and may suggest cyclone activity plays a driving role in the enhanced poleward AMT. Furthermore, a composite analysis indicates that intensification and poleward extension of the Icelandic low and accompanying strengthened cyclone activity play an important role in enhancing poleward AMT over the North Atlantic region.

  1. Mantle flow and oceanic crust formation during the opening of the Tyrrhenian back-arc basin

    Science.gov (United States)

    Magni, Valentina

    2017-04-01

    The formation of the Tyrrhenian back-arc basin occurred through short-lived episodes of fast spreading alternated with periods of slow rifting. I present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, I explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. Moreover, the occurrence of collision results in the formation of two slab windows at the ocean-continent boundaries, which is in very good agreement with what is observed in the Central Mediterranean, nearby the Calabrian slab. During the evolution of the system the trench velocity shows pulses of fast trench retreat that last a few millions of years. This is associated with episodes of more intense melting of the asthenosphere rising at the back-arc basin. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  2. Mineralogy of polymetallic nodules and associated sediments from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    in montmorillonite, chlorite and illite, delta MnO sub(2) is the dominant mineral phase in the nodules of the southern Central Indian Ocean Basin. These nodules have a smooth surface texture, are relatively rich in Fe and Co, and are associated with pelagic clay...

  3. Macrobenthic standing stock in the nodule areas of Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.

    Diversity, distribution and standing stock of macrofauna in the nodule areas of Central Indian Ocean Basin (CIOB) were studied during April 2003. The density ranged between 22 to 132 no.m super(-2) (mean: 55 + or - 37 SD, n=25) and biomass ranged...

  4. Chemical, temperature, zooplankton count and other data from bottle and plankton net casts in the Arctic Ocean, Barents Sea and Kara Sea from 1913-08-30 to 1999-09-08 (NODC Accession 0000283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, temperature, zooplankton count, and other data were collected using bottle and plankton net casts from multiple ships in the Arctic Ocean, Barents Sea, and...

  5. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from USCGC POLAR STAR in the Arctic Ocean from 2002-08-19 to 2002-09-23 (NODC Accession 0115588)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115588 includes discrete sample and profile data collected from USCGC POLAR STAR in the Arctic Ocean from 2002-08-19 to 2002-09-23. These data...

  6. Temperature, salinity, and nutrients data from bottle casts in the Arctic and North Atlantic Oceans from R/V EVERGREEN and other platforms from 13 July 1962 to 01 October 1975 (NODC Accession 0000457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle and other data were collected in the Arctic and North Atlantic Oceans from the R/V EVERGREEN and other platforms from 13 July 1962 to 01 October 1975. Data...

  7. Physical and chemical oceanographic profile data, and meteorological data collected in the Atlantic and Arctic Oceans, and adjoining seas by multiple platforms from 14 August 1951 to 27 October 1994 (NODC Accession 0073741)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, oxygen, silicate, phosphate, nitrite, nitrate, alkalinity, and pH data collected in Arctic Ocean, Barents Sea, East Siberian Sea, Greenland...

  8. Plankton and nutrients data collected using net and CTD casts in the Arctic Ocean from the OSHORO MARU and HOKUSEI MARU from 11 June 1984 to 03 September 1994 (NODC Accession 0000855)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Plankton and nutrients data were collected using net and CTD casts from the OSHORO MARU and HOKUSEI MARU in the Arctic Ocean. Data were collected from 11 June 1984...

  9. Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from HEALY in the Arctic Ocean and Beaufort Sea from 2003-09-11 to 2003-10-18 (NODC Accession 0115676)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115676 includes biological, chemical, discrete sample, optical, physical and profile data collected from HEALY in the Arctic Ocean and Beaufort Sea...

  10. Nutrients, transient tracers, and other variables collected from profile and discrete sampling observations using Niskin bottle, CTD and other instruments in the Arctic Ocean from 2005-05-02 to 2009-05-18 (NODC Accession 0117695)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117695 includes discrete CTD profile data collected from aircraft lending expeditions in the Arctic Ocean from 2005-05-02 to 2009-05-18. All...

  11. Temperature, salinity, and nutrients data from CTD, MBT, and bottle casts in the Arctic, North Atlantic and North Pacific Oceans from the SACKVILLE and other platforms from 1928-05-12 to 1998-11-03 (NODC Accession 0000448)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD, MBT, bottle and other data were collected in the Arctic, North Atlantic, and North Pacific Oceans from the SACKVILLE and other platforms from 12 May 1928 to 03...

  12. Composition of macrobenthos from the Central Indian Ocean Basin

    Indian Academy of Sciences (India)

    The deep sea is well known for its high faunal diversity. But the current interest in its abundant polymetallic nodules, poses a threat to the little known benthic organisms surviving in this unique environment. The present study is the first attempt to document the Indian Ocean abyssal benthic diversity of macroinvertebrates ...

  13. Composition of macrobenthos from the Central Indian Ocean Basin

    Indian Academy of Sciences (India)

    Mediterranean. These values were comparable with those of other studies from Indian Ocean (Ingole et al 1992; Pavithran et al 2007). In contrast, work carried out by Sibuet et al (1989) using a sieve size of 0.25mm ..... subjected to a different diet regime characterized by a large predominance of carbohydrates and pos-.

  14. Brief communication: Increasing shortwave absorption over the Arctic Ocean is not balanced by trends in the Antarctic

    OpenAIRE

    C. Katlein; S. Hendricks; J. Key

    2017-01-01

    On the basis of a new, consistent, long-term observational satellite dataset we show that, despite the observed increase of sea ice extent in the Antarctic, absorption of solar shortwave radiation in the Southern Ocean poleward of 60° latitude is not decreasing. The observations hence show that the small increase in Antarctic sea ice extent does not compensate for the combined effect of retreating Arctic sea ice and changes in cloud cover, which both result in a total increase in solar shortw...

  15. Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project

    Science.gov (United States)

    Chevallier, Matthieu; Smith, Gregory C.; Dupont, Frédéric; Lemieux, Jean-François; Forget, Gael; Fujii, Yosuke; Hernandez, Fabrice; Msadek, Rym; Peterson, K. Andrew; Storto, Andrea; Toyoda, Takahiro; Valdivieso, Maria; Vernieres, Guillaume; Zuo, Hao; Balmaseda, Magdalena; Chang, You-Soon; Ferry, Nicolas; Garric, Gilles; Haines, Keith; Keeley, Sarah; Kovach, Robin M.; Kuragano, Tsurane; Masina, Simona; Tang, Yongming; Tsujino, Hiroyuki; Wang, Xiaochun

    2017-08-01

    Ocean-sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent

  16. Arctic Tundra Flux Study in the Kuparuk River Basin (Alaska), 1994-1996

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: CO2 and water vapor fluxes and ecosystem characteristics were measured at 24 sites along a 317-km transect from the Arctic coast to the latitudinal...

  17. Arctic Tundra Flux Study in the Kuparuk River Basin (Alaska), 1994-1996

    Data.gov (United States)

    National Aeronautics and Space Administration — CO2 and water vapor fluxes and ecosystem characteristics were measured at 24 sites along a 317-km transect from the Arctic coast to the latitudinal treeline in...

  18. Can we constrain postglacial sedimentation in the western Arctic Ocean by ramped pyrolysis 14C? A case study from the Chukchi-Alaskan margin.

    Science.gov (United States)

    Suzuki, K.; Yamamoto, M.; Rosenheim, B. E.; Omori, T.; Polyak, L.; Nam, S. I.

    2017-12-01

    The Arctic Ocean underwent dramatic climate changes in the past. Variations in sea-ice extent and ocean current system in the Arctic cause changes in surface albedo and deep water formation, which have global climatic implications. However, Arctic paleoceanographic studies are lagging behind the other oceans due largely to chronostratigraphic difficulties. One of the reasons for this is a scant presence of material suitable for 14C dating in large areas of the Arctic seafloor. To enable improved age constraints for sediments impoverished in datable material, we apply ramped pyrolysis 14C method (Ramped PyrOx 14C, Rosenheim et al., 2008) to sedimentary records from the Chukchi-Alaska margin recovering Holocene to late-glacial deposits. Samples were divided into five fraction products by gradual heating sedimentary organic carbon from ambient laboratory temperature to 1000°C. The thermographs show a trimodal pattern of organic matter decomposition over temperature, and we consider that CO2 generated at the lowest temperature range was derived from autochthonous organic carbon contemporaneous with sediment deposition, similar to studies in the Antarctic margin and elsewhere. For verification of results, some of the samples treated for ramped pyrolysis 14C were taken from intervals dated earlier by AMS 14C using bivalve mollusks. Ultimately, our results allow a new appraisal of deglacial to Holocene deposition at the Chukchi-Alaska margin with potential to be applied to other regions of the Arctic Ocean.

  19. AARI 10-Day Arctic Ocean EASE-Grid Sea Ice Observations

    Data.gov (United States)

    National Aeronautics and Space Administration — NOTE: This data set has been replaced by the Sea Ice Charts of the Russian Arctic in Gridded Format, 1933-2006 data set. These gridded ice charts represent a...

  20. Acoustic detections of summer and winter whales at Arctic gateways in the Atlantic and Pacific Oceans

    Science.gov (United States)

    Stafford, K.; Laidre, K. L.; Moore, S. E.

    2016-02-01

    Changes in sea ice phenology have been profound in regions north of arctic gateways, where the seasonal open-water period has increased by 1.5-3 months over the past 30 years. This has resulted in changes to the Arctic ecosystem, including increased primary productivity, changing food web structure, and opening of new habitat. In the "new normal" Arctic, ice obligate species such as ice seals and polar bears may fare poorly under reduced sea ice while sub-arctic "summer" whales (fin and humpback) are poised to inhabit new seasonal ice-free habitats in the Arctic. We examined the spatial and seasonal occurrence of summer and "winter" (bowhead) whales from September through December by deploying hydrophones in three Arctic gateways: Bering, Davis and Fram Straits. Acoustic occurrence of the three species was compared with decadal-scale changes in seasonal sea ice. In all three Straits, fin whale acoustic detections extended from summer to late autumn. Humpback whales showed the same pattern in Bering and Davis Straits, singing into November and December, respectively. Bowhead whale detections generally began after the departure of the summer whales and continued through the winter. In all three straits, summer whales occurred in seasons and regions that used to be ice-covered. This is likely due to both increased available habitat from sea ice reductions and post-whaling population recoveries. At present, in the straits examined here, there is spatial, but not temporal, overlap between summer and winter whales. In a future with further seasonal sea ice reductions, however, increased competition for resources between sub-Arctic and Arctic species may arise to the detriment of winter whales.

  1. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast.

    Science.gov (United States)

    Zhao, Zhen; Xie, Zhiyong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; Ebinghaus, Ralf

    2012-11-01

    The global distribution and long-range transport of polyfluoroalkyl substances (PFASs) were investigated using seawater samples collected from the Greenland Sea, East Atlantic Ocean and the Southern Ocean in 2009-2010. Elevated levels of ΣPFASs were detected in the North Atlantic Ocean with the concentrations ranging from 130 to 650 pg/L. In the Greenland Sea, the ΣPFASs concentrations ranged from 45 to 280 pg/L, and five most frequently detected compounds were perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS). PFOA (15 pg/L) and PFOS (25-45 pg/L) were occasionally found in the Southern Ocean. In the Atlantic Ocean, the ΣPFASs concentration decreased from 2007 to 2010. The elevated PFOA level that resulted from melting snow and ice in Greenland Sea implies that the Arctic may have been driven by climate change and turned to be a source of PFASs for the marine ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  3. Insights into mantle heterogeneities: mid-ocean ridge basalt tapping an ocean island magma source in the North Fiji Basin

    Science.gov (United States)

    Brens, R., Jr.; Jenner, F. E.; Bullock, E. S.; Hauri, E. H.; Turner, S.; Rushmer, T. A.

    2015-12-01

    The North Fiji Basin (NFB), and connected Lau Basin, is located in a complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an extinct subduction zone, incorporating the complicated geodynamics of two rotating landmasses: Fiji and the Vanuatu island arc. Collectively this makes the spreading centers of the NFB the highest producing spreading centers recorded. Here we present volatile concentrations, major, and trace element data for a previously undiscovered triple junction spreading center in the NFB. We show our enrichment samples contain some of the highest water contents yet reported from (MORB). The samples from the NFB exhibit a combination of MORB-like major chemical signatures along with high water content similar to ocean island basalts (OIB). This peculiarity in geochemistry is unlike other studied MORB or back-arc basin (to our knowledge) that is not attributed to subduction related signatures. Our results employ the use of volatiles (carbon dioxide and water) and their constraints (Nb and Ce) combined with trace element ratios to indicate a potential source for the enrichment in the North Fiji Basin. The North Fiji Basin lavas are tholeiitic with similar major element composition as averaged primitive normal MORB; with the exception of averaged K2O and P2O5, which are still within range for observed normal MORB. For a mid-ocean ridge basalt, the lavas in the NFB exhibit a large range in volatiles: H2O (0.16-0.9 wt%) and CO2 (80-359 ppm). The NFB lavas have volatile levels that exceed the range of MORB and trend toward a more enriched source. In addition, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm values in the NFB lavas range from 0.9 to 3.8 while, Gd/Yb values range from 1.2 to 2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3). However, they span a larger range outside of the MORB array. High La/Sm and Gd/Yb ratios (>1) are indications of deeper melting within the

  4. Investigations of a novel fauna from hydrothermal vents along the Arctic Mid-Ocean Ridge (AMOR) (Invited)

    Science.gov (United States)

    Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.

    2010-12-01

    The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and hydrothermal vents. Deep-sea hydrothermal vents are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea hydrothermal vents on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker venting and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle vent field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature venting and barite chimneys. The Jan Mayen sites show low abundance of specialized hydrothermal vent fauna. Single groups have a few specialized representatives but groups otherwise common in hydrothermal vent areas are absent. Slightly more than 200 macrofaunal species have been identified from this vent area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle vent field contains a much more diverse vent endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea

  5. Quantifying the Fluxes of Atmospherically Derived Trace Elements in the Arctic Ocean/Ice System using 7Be

    Science.gov (United States)

    Landing, W. M.; Kadko, D. C.; Shelley, R.; Galfond, B.

    2016-02-01

    Aerosol deposition is an important pathway for delivering biologically-essential and anthropogenically-derived trace elements to the Arctic Ocean. Limited field study in the harsh Arctic environment has forced a reliance on poorly constrained models for the atmospheric deposition of trace elements. Here we use the cosmic ray produced radioisotope 7Be to link aerosol concentrations to flux to the Arctic water/ice system. Seawater, ice, snow, melt pond, and aerosol samples were collected during late summer 2011 as part of the RV Polarstern ARK-XXVI/3 campaign. The average 7Be aerosol loading was 0.018 dpm m-3 and we determined an average 7Be flux of 125 dpm m-2 d-1, consistent with results from previous studies in the region. None of the lithogenic aerosol elements showed any significant enrichment above crustal composition, while the pollution-type elements showed varying degrees of enrichment relative to crustal values. In addition to our own measurements, we use two years of continuous aerosol 7Be and trace element data from the Alert (Canada) monitoring site to generate seasonal and annual estimates for the fluxes of 7Be and trace elements to the Arctic water/ice system. Fluxes of 7Be are 30% higher in Winter (Nov-May) than in Summer (Jun-Oct) due to the strong seasonality in aerosol 7Be concentrations. Fluxes of lithogenic elements (Al, Mn, Fe) are 2-3 times higher in Summer, possibly due to local dust sources on Ellesmere Island. Fluxes of V and Pb are strongly correlated and are 2-3 times higher in Winter, while fluxes of Ni, Cu, and Zn are relatively uniform for both seasons.

  6. USGS Arctic Ocean carbon cruise 2010: field activity H-03-10-AR to collect carbon data in the Arctic Ocean, August - September 2010

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Gove, Matthew D.; Knorr, Paul O.; Wynn, Jonathan; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form carbonic acid, a weak, naturally occurring acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  7. USGS Arctic Ocean carbon cruise 2011: field activity H-01-11-AR to collect carbon data in the Arctic Ocean, August - September 2011

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Knorr, Paul O.; Wynn, Jonathan; Lisle, John; Buczkowski, Brian J.; Moore, Barbara; Mayer, Larry; Armstrong, Andrew; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  8. Evidence of recent, off-axis volcanism on Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Edwards, M.; Cochran, J. R.; Dick, H. J.

    2010-12-01

    In 1998 and 1999 the Science and Ice Exercise (SCICEX) programs used interferometric sonars installed on a U.S. Navy nuclear-powered submarine to map the morphology, texture and crustal structure of Gakkel Ridge from 6° E to 96° E with coverage out to ~50 km from the ridge axis (Edwards et al., 2001; Cochran et al., 2003). This effort represented the most comprehensive, systematic survey of this important end-member ridge on the spreading rate spectrum (Cochran et al., 2003). The SCICEX programs were followed by the Arctic Mid-Ocean Ridge Expedition (AMORE) in 2001 which used both the USCGC Healy and PFS Polarstern to map the axial valley floor and walls along Gakkel Ridge at high resolution (Michael et al., 2003; Jokat et al., 2003) from the Lena Trough to an inferred active volcanic construrct at 85°E (Müller and Jokat, 2000; Edwards et al., 2001). We have used the GPS-navigated AMORE data to refine the navigation of the SCICEX data, extending the coverage of both the SCICEX and AMORE datasets and improving the resolution and positional accuracy of the SCICEX data. The integrated dataset allows identification of several reflective, and thus relatively recent, off-axis lava flows. These flows are analogous to off-axis eruptions that have been reported on the Southwest Indian Ridge [Standish and Sims, 2010]. Several of the flows on Gakkel Ridge originate along fissures located at or near the top of the axial valley walls and spill down onto the axial valley floors. Other flows are associated with small (a few hundred meter or less in diameter) constructs contained entirely within the axial valley. We present a comparison of the integrated topographic and textural data with the results of dredge samples recovered during the AMORE expedition to document the petrology and relative age of these flow features. We further use the morphology of the reflective flow features, in combination with tectonic interpretations of the local terrain, to demonstrate the eruptive

  9. Effects of the Atmosphere-Ocean Climate Oscillations on Missouri River Basin River Flows

    Science.gov (United States)

    St-Jacques, J. M.; Wise, E.; Woodhouse, C. A.; McCabe, G. J., Jr.; Pederson, G. T.

    2017-12-01

    The basic hydroclimatology of the Missouri River Basin (MRB) as a whole and its drivers has been relatively unstudied. This knowledge gap is of concern given the costly regional hydroclimatic extremes, such as droughts and floods, that have occurred over the past half century and their likely future increase and intensification due to anthropogenic climate change. In this study, we used observed hydroclimate data and estimated MRB natural flow records from the US Geological Survey and US Army Corps of Engineers to investigate the atmosphere-ocean climate oscillations' impacts on streamflow in the entire MRB, further examining in detail the upper and lower sub-basins. We examined the impact of climate oscillations on the MRB, using the North Pacific Index (NPI), Pacific North American mode (PNA), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO), among others. Permutation t-tests showed that the North Pacific-based NPI and PNA have the strongest associations with upper basin flow, while the Atlantic-based NAO has the most significant impacts on lower basin flow. The SOI, a measure of the atmospheric component of ENSO, has a significant lagged effect on UMRB streamflow, similar to that previously described for the Pacific Northwest. Understanding these drivers can potentially aid in streamflow forecasting, particularly when there is high persistence in the ocean-atmosphere system or when there are lags between the ocean-atmosphere system and terrestrial hydroclimate (as with ENSO).

  10. Determination of iridium in the Bering Sea and Arctic Ocean seawaters by anion exchange preconcentration-neutron activation analysis

    International Nuclear Information System (INIS)

    Li Shihong; Mao Xueying; Chai Zhifang

    2004-01-01

    Anion exchange method is investigated to separate and enrich iridium in seawater by radiotracer 192 Ir. The adsorption of Ir in the resin increases with the decreasing acidity in the 0.05-1.2 mol/L HCl media, The recovery of iridium in pH=1.5 seawater reaches 89% by a single anion-exchange column. The polyethylene container of acidity of pH=1.5 are suitable for storing trace Ir in seawater. An anion exchange preconcentration-neutron activation analysis procedure is developed to determine iridium in seawaters sampled from the Bering Sea and Arctic Ocean at different depth. The reagent blank value of the whole procedures is (0.18-0.20) x 10 -12 g Ir. The iridium concentrations in the Bering Sea and Arctic Ocean seawater samples are (0.85-3.58) x 10 -12 g/L (0-3504 m) and (1.26-1.97) x 10 -12 g/L (25-1900 m), respectively

  11. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    Science.gov (United States)

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-03

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (Arctic.

  12. Microzooplankton grazing on the picophytoplankton and bacteria in the Chukchi Sea and East Siberian Sea, Arctic Ocean

    Science.gov (United States)

    Yang, E. J.

    2016-02-01

    In the summer of 2012, we measured microzooplankton grazing rate on picophytoplankton and bacterioplankton in the Chukchi Sea and East Siberian Sea using the icebreaker R/V Araon as part of the Korean Arctic Research Program. A variety of environmental conditions and trophic condition were encountered, from low chlorophyll-a (diatom bloom (maximum 17.1 ug L-1) in the northern part of the East Siberian Sea which is characterized by high phytoplankton biomass driven by the influx of more productive waters from the river. Of the microzooplankton, naked ciliates dominated in low chlorophyll-a concentration area and small-HDF dominated in high chlorophyll-a concentration sites. Picophytoplankton biomass accounted for 11 to 83% of total phytoplankton and for a greater percentage in the Chukchi borderland (average 70%). Microzooplankton grazing rate varied by the assemblage composition of picoplankton and microzooplankton. Microzooplankton exerted higher grazing pressure on picophytoplankton compared to bacterioplankton. Picophytoplankton growth rate and mortality rate ranged from undetectable (i.e. not significant) to 2.0 d-1 and undetectable to 2.4 d-1, respectively. Microzooplankton removed >100% daily picophytoplankton production, and grazing rate was highest in the Chukchi borderland. Bacterioplankton growth rate and mortality rate ranged from undetectable (i.e. not significant) to 1.74 d-1 and undetectable to 1.07 d-1, respectively. Microzooplankton often removed average 89% of daily bacterioplankton production. Our study suggests the importance of microbial loop in the planktonic ecosytstems of the Arctic Ocean. Therefore, microzooplankton were the major consumers of picoplankton production, and that their grazing is one of the most important losses affecting the piocophytoplankton and bacterioplankton biomass during summer in the Arctic Ocean.

  13. Dive and Discover: New Arctic Educational Modules and Near Real-Time Coverage of Exploration on the Gakkel Ridge, Arctic Ocean

    Science.gov (United States)

    Humphris, S. E.; Conrad, D. S.; Joyce, K.; Whitcomb, L.; Carignan, C.

    2006-12-01

    The award-winning Dive and Discover web site will provide education and outreach activities during the International Polar Year for an expedition to investigate hydrothermal activity on the Gakkel Ridge using autonomous underwater vehicles. Created in 2000, this web site is targeted mainly at middle-school students (Grades 6-8) and the general public, but is structured to provide multiple layers and levels of information to cover a wide range of educational experience. The backbone of the site is a series of educational modules that address basic science concepts central to marine science and research being conducted in the deep ocean and on the seafloor. The site already contains considerable material on a range of topics pertinent to seafloor exploration, including mid-ocean ridges, hydrothermal vents, and vent biology, as well as Antarctica. For the cruise to the Gakkel Ridge, two new modules relevant to the upcoming Gakkel Ridge cruise are being developed: one on the geography, oceanography and ecosystems of the Arctic Ocean, and another on underwater robotics. During the 2007 cruise, Dive and Discover will provide daily updates on the progress of the cruise through still and video images from the ship and from the seafloor, graphical representations of a wide variety of oceanographic data, explanations about the technology being used, general information about life at sea on an ice breaker conducting marine research, and interviews with the scientists, engineers, and mariners that make oceanographic research possible. In addition, a "Mail Buoy" will allow the general public to communicate directly by email with scientists at sea. Once the cruise is completed, it will remain live on the site so that it can continue to be accessed and used by teachers during any part of the school year.

  14. Differential heating in the Indian Ocean differentially modulates precipitation in the Ganges and Brahmaputra basins

    Science.gov (United States)

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2016-01-01

    Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO) and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i) the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii) the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  15. Differential Heating in the Indian Ocean Differentially Modulates Precipitation in the Ganges and Brahmaputra Basins

    Directory of Open Access Journals (Sweden)

    Md Shahriar Pervez

    2016-10-01

    Full Text Available Indo-Pacific sea surface temperature dynamics play a prominent role in Asian summer monsoon variability. Two interactive climate modes of the Indo-Pacific—the El Niño/Southern Oscillation (ENSO and the Indian Ocean dipole mode—modulate the amount of precipitation over India, in addition to precipitation over Africa, Indonesia, and Australia. However, this modulation is not spatially uniform. The precipitation in southern India is strongly forced by the Indian Ocean dipole mode and ENSO. In contrast, across northern India, encompassing the Ganges and Brahmaputra basins, the climate mode influence on precipitation is much less. Understanding the forcing of precipitation in these river basins is vital for food security and ecosystem services for over half a billion people. Using 28 years of remote sensing observations, we demonstrate that (i the tropical west-east differential heating in the Indian Ocean influences the Ganges precipitation and (ii the north-south differential heating in the Indian Ocean influences the Brahmaputra precipitation. The El Niño phase induces warming in the warm pool of the Indian Ocean and exerts more influence on Ganges precipitation than Brahmaputra precipitation. The analyses indicate that both the magnitude and position of the sea surface temperature anomalies in the Indian Ocean are important drivers for precipitation dynamics that can be effectively summarized using two new indices, one tuned for each basin. These new indices have the potential to aid forecasting of drought and flooding, to contextualize land cover and land use change, and to assess the regional impacts of climate change.

  16. The Opening of the Tyrrhenian Back-arc Basin and the Formation of New Oceanic Crust

    Science.gov (United States)

    Magni, V.

    2016-12-01

    The opening of the Tyrrhenian basin in the Central Mediterranean is a well-documented example of back-arc extension, which is characterized by short-lived episodes of fast spreading. We present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, we explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Our results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. During this process the trench retreating velocity dramatically increases for a few million of years. This is associated with an episode of intense melt production of the asthenosphere rising at the back-arc basin. Afterwards, the slab breaks off forming slab windows at the ocean/continent boundaries and causing a second pulse of fast extension. This is in very good agreement with what is observed in the Central Mediterranean, where two slab window formed: one in northern Africa around 12-10 Ma, and propagates laterally westward beneath Sicily until the Middle Pleistocene, and a second one beneath the Central Apennines in the Middle Pleistocene. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  17. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    Science.gov (United States)

    2015-09-30

    of prior studies conducted at a local or regional scale. The comparison of acoustic time series from different ocean basins provides a synoptic ...current data acquisition are shown in Table 1. Data continues to be downloaded on a monthly basis to keep the database current. Sources Driving Long...variables for Bryde’s, blue, and minke whales, while the GLM was a best fit for fin whales. Significant predictors are summarized in Table 2, and

  18. Assessing the distribution and abundance of seabed minerals from seafloor photographic data in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Khadge, N.H.; JaiSankar, S.

    estimation of a deposit from photographic data in conjunction with sounding and sampling data in the Central Indian Ocean Basin. Data from more than 20,000 photos were analysed and correlated with geological features such as bathymetry, sediment thickness...

  19. Deep-sea nematode assemblages from a commercially important polymetallic nodule area in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, R.; Miljutin, D.M.; Miljutina, M.; Martinez, P.A.; Ingole, B.S.

    The Central Indian Ocean Basin (CIOB) is an important area for prospective mining for polymetallic nodules. However, little is known about the biodiversity or community structure of abyssal benthic assemblages in the area. The aim of this study...

  20. The North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) cart site begins operation: Collaboration with SHEBA and FIRE

    Energy Technology Data Exchange (ETDEWEB)

    Zak, D. B.; Church, H.; Ivey, M.; Yellowhorse, L.; Zirzow, J.; Widener, K. B.; Rhodes, P.; Turney, C.; Koontz, A.; Stamnes, K.; Storvold, R.; Eide, H. A.; Utley, P.; Eagan, R.; Cook, D.; Hart, D.; Wesely, M.

    2000-04-04

    Since the 1997 Atmospheric Radiation Measurement (ARM) Science Team Meeting, the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) site has come into being. Much has happened even since the 1998 Science Team Meeting at which this paper was presented. To maximize its usefulness, this paper has been updated to include developments through July 1998.

  1. A modeling experiment on the grounding of an ice shelf in the central Arctic Ocean during MIS 6

    Science.gov (United States)

    Jakobsson, M.; Siegert, M.; Paton, M.

    2003-12-01

    High-resolution chirp sonar subbottom profiles from the Lomonosov Ridge in the central Arctic Ocean, acquired from the Swedish icebreaker Oden in 1996, revealed large-scale erosion of the ridge crest down to depths of 1000 m below present sea level [Jakobsson, 1999]. Subsequent acoustic mapping during the SCICEX nuclear submarine expedition in 1999 showed glacial fluting at the deepest eroded areas and subparallel ice scours from 950 m water depth to the shallowest parts of the ridge crest [Polyak et al., 2001]. The directions of the mapped glaciogenic bed-forms and the redeposition of eroded material on the Amerasian side of the ridge indicate ice flow from the Barents-Kara Sea area. Core studies revealed that sediment drape the eroded areas from Marine Isotope Stage (MIS) 5.5 and, thus, it was proposed that the major erosional event took place during Marine Isotope Stage (MIS) 6 [Jakobsson et al., 2001]. Glacial geological evidence suggests strongly that the Late Saalian (MIS 6) ice sheet margin reached the shelf break of the Barents-Kara Sea [Svendsen et al. in press] and this gives us two possible ways to explain the ice erosional features on the Lomonosov Ridge. One is the grounding of a floating ice shelf and the other is the scouring from large deep tabular iceberg. Here we apply numerical ice sheet modeling to test the hypothesis that an ice shelf emanating from the Barents/Kara seas grounded across part of the Lomonsov Ridge and caused the extensive erosion down to a depth of around 1000 m below present sea level. A series of model experiments was undertaken in which the ice shelf mass balance (surface accumulation and basal melting) and ice shelf strain rates were adjusted. Grounding of the Lomonosov Ridge was not achieved when the ice shelf strain rate was 0.005 yr-1 (i.e. a free flowing ice shelf). However this model produced two interesting findings. First, with basal melt rates of up to 50 cm yr-1 an ice shelf grew from the St. Anna Trough ice stream

  2. An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll‐a based models

    Science.gov (United States)

    Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Antoine, David; Ardyna, Mathieu; Asanuma, Ichio; Babin, Marcel; Bélanger, Simon; Benoît‐Gagné, Maxime; Devred, Emmanuel; Fernández‐Méndez, Mar; Gentili, Bernard; Hirawake, Toru; Kang, Sung‐Ho; Kameda, Takahiko; Katlein, Christian; Lee, Sang H.; Lee, Zhongping; Mélin, Frédéric; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Turpie, Kevin R.; Waters, Kirk J.; Westberry, Toby K.

    2015-01-01

    Abstract We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll‐a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed‐layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite‐derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low‐productivity seasons as well as in sea ice‐covered/deep‐water regions. Depth‐resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption‐based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll‐a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic‐relevant parameters. PMID:27668139

  3. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    rate of 10-3 per year. Additional tsunami threat might arise from rare earthquake occurrences within the continental slope of deep-sea basin of the Arctic Ocean and near the coast of the continent, where high probability of triggering submarine landslides exists that can generate even more dangerous tsunamis than those of seismotectonic origin. The most reliable information about the manifestation of the tsunami in the Arctic is associated with submarine landslide Storegga located on the continental slope of the Norwegian Sea and collapsed 8,200 years ago. Traces of sediment left behind by the tsunami waves on the coast, show that the maximum vertical tsunami runup could reach 20 meters. Factors causing the potential tsunami thread of landslides in Russian Arctic are sedimentation processes that can be associated with the formation of the alluvial fans of the great Siberian rivers Ob, Yenisei and Lena.

  4. Transport mechanisms of radioactive substances in the Arctic Ocean. Modelling and experimental studies in the Kara and Barents Seas

    International Nuclear Information System (INIS)

    Nies, H.; Karcher, M.; Bahe, C.; Backhaus, J.; Harms, I.

    1999-03-01

    In 1992, it became known to the public that the former Soviet Union had dumped large amounts of radioactive waste in the Arctic Ocean since about 1959. The waste was dumped into the Kara and Barents Seas in liquid and solid form, sealed in barrels or containers, as reactor parts but also as complete ship reactors including spent fuel. Wrecks of nuclear submarines were dumped near the coast of Novaya Semlya, in depths less than 50 m. The dumping took place in strong contradiction to international rules and conventions. After some confusion and overestimation of the total radioactive inventory, the amount of the waste and the dump site locations are well known, meanwhile. International pressure and the more open information policy of Russia helped to improve the situation. Various international fora primarily within the IAEA and the Arctic Monitoring and Assessment Programme (AMAP) investigated the potential consequences from these dumping practices. This report is the German contribution to these international assessments. The dumped objects in the Kara Sea encompass 17 nuclear ship reactors, seven of them still carrying spent fuel. Four dump sites are located in small and shallow fjords at the east coast of Novaya Semlya, and in the Novaya Semlya Trough, in max. depth of 420 m. The total radioactive inventory was, at the time of dumping, 37 PBq. During the project numerous samples from seawater and sediment were analysed on artificial radionuclides in Arctic waters. This included samples from the Kara Sea but also samples around the Russian nuclear submarine Komsomolets sunk in the Norwegian Sea at a depth of about 1700 m in 1989. Numerical hydrodynamic models in local, regional and global scale were used to predict the potential dispersion of released radionuclides from the dumped wastes and reactors in the Kara Sea. (orig.) [de

  5. Concentration maxima of volatile organic iodine compounds in the bottom layer water and the cold, dense water over the Chukchi Sea in the western Arctic Ocean: a possibility of production related to degradation of organic matter

    Science.gov (United States)

    Ooki, A.; Kawasaki, S.; Kuma, K.; Nishino, S.; Kikuchi, T.

    2015-07-01

    We conducted a shipboard observation over the Chukchi Sea and the Canada Basin in the western Arctic Ocean in September and October 2012 to obtain vertical distributions of four volatile organic iodine compounds (VOIs) in seawater. VOIs are believed to play a role in ozone destruction in the troposphere and lower stratosphere. The VOIs observed in this study were iodomethane (CH3I), iodoethane (C2H5I), diiodomethane (CH2I2) and chloroiodomethane (CH2ClI). Maximum concentrations of the four VOIs were found in the bottom layer water over the Chukchi Sea shelf, in which layer the maximum concentration of ammonium (NH4+) also occurred. A significant correlation was observed between C2H5I and NH4+ (correlate coefficient R = 0.93) and between CH3I and NH4+ (R = 0.77), suggesting production of these VOIs increased with degradation of organic matter. Over the northern Chukchi Sea shelf-slope area, concentration maxima of CH2I2, CH2ClI, and CH3I were found in the subsurface cold, dense water (CDW). A large nitrogen deficit (N-deficit = NH4+ + NO3- + NO2- - 16PO43-) simultaneously occurred in this water, suggesting production of the three VOIs in the sediment or the bottom layer water over the shelf, probably in association with degradation of organic matter. We conclude that VOI production over the Chukchi Sea shelf can be largely attributed to the degradation of organic matter that is produced in the highly productive shelf water. High concentrations of CH2ClI were also found in the Alaskan Coastal Water (ACW) from the Bering Strait to the surface of the northern Chukchi slope. The VOIs that originated at the Chukchi Sea shelf are expected to be laterally transported to the Arctic Ocean Basin though the subsurface CDW and the surface ACW.

  6. Multielemental analysis of ferromanganese nodules from Central Indian Ocean Basin by PIXE

    International Nuclear Information System (INIS)

    Dutta, R. K.; Vijayan, V.; Ghosh, S.; Chakravortty, V.

    1997-01-01

    Ferromanganese nodules found on the Ocean bed are complex heterogeneous mixtures of several components. Two nodules from Central Indian Ocean Basin (CIOB) were analysed by proton induced X-ray emission (PIXE) technique using 3UD Tandem pelletron. The precision and the accuracy of this technique for chemical analyses has been confirmed by analysing USGS Geological Standards. Thick sample targets were bombarded by 3 MeV protons for the multielemental analysis. GUPIX-96 software was used for spectral data analysis. Quantitative estimate of K, Ca, Tl, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Ba, Ce, Tl and Pb has been ascertained. The occurrence of Ga, Ge, Rb and Zr in nodules from this region is reported for the first time. The role of manganese and iron oxide phases in determining the uptake of various trace elements from ocean water and bottom sediment pore water has been discussed. (author)

  7. New paleomagnetic poles from Arctic Siberia support Indian Ocean option for the Neoproterozoic APWP of the Siberian craton.

    Science.gov (United States)

    Pasenko, A.; Malyshev, S. V.

    2017-12-01

    Quantity and quality of paleomagnetic poles obtained so far for Neoproterozoic of Siberia are still insufficient even to outline the general trend of APWP of Siberia for this huge and very interesting time interval. Meanwhile, the solution of this problem is crucial for choice of polarity option for Siberian proterozoic paleomagnetic directions, for construction and testing of world paleotectonic and paleogeographic reconstructions. For example, whether or not the Siberian craton could be connected with Laurentia within the supercontinent Rodinia depends directly on paleomagnetic polarity option choice, which , in its turn, is determined by either we choose for neoproterozoic drift of Siberian paleomagnetic poles Pacific ocean trend [Smethurst et al., 1998] or Indian ocean [Pavlov et al., 2015] trend. To advance in solution of this problem we have carried out the paleomagnetic investigations of several sedimentary sections and sills of Arctic Siberia considered to be meso-neoproterozoic in age. In particular we have studied the terrigenous Udza and Unguohtah Formations and basic sills of the Udzha Uplift; the carbonate Khaipakh Formation of the Olenek Uplift; the carbonate Burovaya Formation of the Turukhansk Uplift; basic sills of the Kparaulakh Mountains.In this report we present the paleomagnetic poles obtained, discuss their bearing on construction of the adequate Siberian neoproterozoic APWP and show that our new data rather support the Indian ocean option.This research were supported by Grant from RF President #MK-739.2017.5

  8. Mechanisms influencing seasonal to inter-annual prediction skill of sea ice extent in the Arctic Ocean in MIROC

    Science.gov (United States)

    Ono, Jun; Tatebe, Hiroaki; Komuro, Yoshiki; Nodzu, Masato I.; Ishii, Masayoshi

    2018-02-01

    To assess the skill of seasonal to inter-annual predictions of the detrended sea ice extent in the Arctic Ocean (SIEAO) and to clarify the underlying physical processes, we conducted ensemble hindcasts, started on 1 January, 1 April, 1 July and 1 October for each year from 1980 to 2011, for lead times up to three years, using the Model for Interdisciplinary Research on Climate (MIROC) version 5 initialised with the observed atmosphere and ocean anomalies and sea ice concentration. Significant skill is found for the winter months: the December SIEAO can be predicted up to 11 months ahead (anomaly correlation coefficient is 0.42). This skill might be attributed to the subsurface ocean heat content originating in the North Atlantic. A plausible mechanism is as follows: the subsurface water flows into the Barents Sea from spring to fall and emerges at the surface in winter by vertical mixing, and eventually affects the sea ice variability there. Meanwhile, the September SIEAO predictions are skillful for lead times of up to two months, due to the persistence of sea ice in the Beaufort, Chukchi, and East Siberian seas initialised in July, as suggested by previous studies.

  9. Two new species and a remarkable record of the genus Dendronotus from the North Pacific and Arctic oceans (Nudibranchia

    Directory of Open Access Journals (Sweden)

    Tatiana Korshunova

    2016-11-01

    Full Text Available Two new species of the nudibranch genus Dendronotus, D. arcticus sp. n. and D. robilliardi sp. n., are described from the Arctic and North Pacific oceans respectively, based on morphological and molecular data, and the North Pacifi