WorldWideScience

Sample records for basin 631-g volume

  1. Constant energy DFT molecular dynamics simulations of solvated carbohydrates at the B3LYP/6-31+G* level of theory

    Science.gov (United States)

    The disaccharide, alpha/beta-maltose, has been studied using constant energy ab initio molecular dynamics at the B3LYP/6-31+G* COSMO (solvent) level of theory. Maltose is of particular interest as the variation in glycosidic dihedral angles is dependent upon the starting hydroxyl conformation. Tha...

  2. DFT STUDIES OF HYDRATED CARBOHYDRATES: DFT MOLECULAR DYNAMICS SIMULATIONS AT THE B3LYP/6-31+G* LEVEL OF THEORY

    Science.gov (United States)

    Several mono- and disaccharides have been studied by performing constant energy molecular dynamics at the B3LYP/6-31+G* + COSMO (solvation) level of theory, alpha-maltose is of particular interest as the variation in glycosidic dihedral angles is dependent upon the starting hydroxyl conformation. T...

  3. Volume of Contamination Poured in Ariguanabo Basin, Artemisa Province, Cuba

    Directory of Open Access Journals (Sweden)

    Barbara Liz Miravet Sanchez

    2016-11-01

    Full Text Available In the Ariguanabo basin were identified and characterized a total of 88 contamination points (66 are populated centers, 14 associated to the centers of breeding of pigs and eight are production and service centers, many of which don’t have treatment of their residual waters. The values of the chemical oxygen demand (QOD, the biochemical oxygen demand (BOD5, the total phosphorus (Pt and the total solids (TS of 14 selected point of contamination amply exceed the established limits in the NC-27-2012. The populated centers with the biggest values of BOD5, QOD, nitrogen (Nt and Pt and the breeding of pigs centers responsible for 46 % of DBO5, 38 % of DQO and more than 95 % of the TS and grease are the fundamental contribution of contamination in the basin. The risk of contamination of the underground waters is very high, even more when the biggest number of points (61% is located in areas with high and extremely high grade of intrinsic vulnerability of the aquifer and the volume of contamination in the basin has come increasing in the last years.

  4. Columbia River Basin Seasonal Volumes and Statistics, 1928-1989. 1990 Level Modified Streamflows Computed Seasonal Volumes 61-Year Statistics.

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Crook Company

    1993-04-01

    This report was prepared by the A.G. Crook Company, under contract to Bonneville Power Administration, and provides statistics of seasonal volumes and streamflow for 28 selected sites in the Columbia River Basin.

  5. Water resources data, Texas water year 1998, volume 3. Colorado River basin, Lavaca River basin, Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 3 contains records for water discharge at 126 gaging stations; stage only at 3 gaging stations; stage and contents at 15 lakes and reservoirs; water quality at 62 gaging stations; and data for 35 partial-record stations comprised of 8 flood-hydrograph, 14 low-flow, and 18 creststage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  6. Water resources data, Texas water year 1998, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, Trinity River Basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Andrews, F.L.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas are presented in four volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 112 gaging stations; stage only at 5 gaging stations; stage and contents at 33 lakes and reservoirs; water quality at 65 gaging stations; and data for 12 partial-record stations comprised of 7 flood-hydrograph, 2 low-flow, and 3 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  7. Water resources data Texas water year 2002, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, Susan C.

    2003-01-01

    Water-resources data for the 2002 water year for Texas are presented in six volumes and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 63 gaging stations; stage only at 3 gaging stations; stage and contents at 34 lakes and reservoirs; water quality at 35 gaging stations; and data for 8 partial-record stations comprised of 6 flood-hydrograph and 2 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  8. Water resources data Texas water year 2000, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 68 gaging stations; stage only at 3 gaging stations; stage and contents at 37 lakes and reservoirs; water quality at 39 gaging stations; and data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  9. Water resources data Texas water year 2001, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, Susan C.

    2002-01-01

    Water-resources data for the 2001 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 68 gaging stations; stage only at 3 gaging stations; stage and contents at 30 lakes and reservoirs; water quality at 40 gaging stations; and data for 12 partial-record stations comprised of 6 flood-hydrograph and 6 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  10. Water resources data Texas water year 1999, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 71 gaging stations; stage only at 3 gaging stations; stage and contents at 23 lakes and reservoirs; water quality at 47 gaging stations; and data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  11. Water resources data Texas water year 2003, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, Susan C.

    2004-01-01

    Water-resources data for the 2003 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 72 gaging stations; stage only at 3 gaging stations; stage and contents at 35 lakes and reservoirs; water quality at 28 gaging stations; and data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  12. Water resources data Texas, water year 2004, volume 1. Arkansas River basin, Red River basin, Sabine River basin, Neches River basin, and intervening coastal basins

    Science.gov (United States)

    Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

    2005-01-01

    Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 1 contains records for water discharge at 72 gaging stations; stage only at 3 gaging stations; elevation at 29 lakes and reservoirs; content at 6 lakes and reservoirs; and water quality at 26 gaging stations. Also included are data for 9 partial-record stations comprised of 6 flood-hydrograph and 3 low-flow stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  13. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U.S.

    Science.gov (United States)

    Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.

    2008-01-01

    Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in

  14. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  15. Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

    2011-01-04

    Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal → uraninite → metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume

  16. Interpretation of a 3D Seismic-Reflection Volume in the Basin and Range, Hawthorne, Nevada

    Science.gov (United States)

    Louie, J. N.; Kell, A. M.; Pullammanappallil, S.; Oldow, J. S.; Sabin, A.; Lazaro, M.

    2009-12-01

    A collaborative effort by the Great Basin Center for Geothermal Energy at the University of Nevada, Reno, and Optim Inc. of Reno has interpreted a 3d seismic data set recorded by the U.S. Navy Geothermal Programs Office (GPO) at the Hawthorne Army Depot, Nevada. The 3d survey incorporated about 20 NNW-striking lines covering an area of approximately 3 by 10 km. The survey covered an alluvial area below the eastern flank of the Wassuk Range. In the reflection volume the most prominent events are interpreted to be the base of Quaternary alluvium, the Quaternary Wassuk Range-front normal fault zone, and sequences of intercalated Tertiary volcanic flows and sediments. Such a data set is rare in the Basin and Range. Our interpretation reveals structural and stratigraphic details that form a basis for rapid development of the geothermal-energy resources underlying the Depot. We interpret a map of the time-elevation of the Wassuk Range fault and its associated splays and basin-ward step faults. The range-front fault is the deepest, and its isochron map provides essentially a map of "economic basement" under the prospect area. There are three faults that are the most readily picked through vertical sections. The fault reflections show an uncertainty in the time-depth that we can interpret for them of 50 to 200 ms, due to the over-migrated appearance of the processing contractor’s prestack time-migrated data set. Proper assessment of velocities for mitigating the migration artifacts through prestack depth migration is not possible from this data set alone, as the offsets are not long enough for sufficiently deep velocity tomography. The three faults we interpreted appear as gradients in potential-field maps. In addition, the southern boundary of a major Tertiary graben may be seen within the volume as the northward termination of the strong reflections from older Tertiary volcanics. Using a transparent volume view across the survey gives a view of the volcanics in full

  17. Computational Studies of Hard Disks: Contact Percolation, Fragility, Frictional Families and Basin Volumes

    Science.gov (United States)

    Shen, Tianqi

    This thesis presents four computational and theoretical studies of the structural, mechanical, and vibrational properties of purely repulsive disks, dimer-, and ellipse-shaped particles with and without friction. The first study investigated the formation of interparticle contact networks below jamming onset at packing fraction φJ, where the pressure of the system becomes nonzero. We generated ensembles of static packings of frictionless disks over a range of packing fraction. We find that the network of interparticle contacts forms a system spanning cluster at a critical packing fraction φP missing contacts relative to the isostatic value N0c We show that the probability Pm(micro) to obtain a static packing with m missing contacts at micro can be expressed as a power series in micro. Using Pm(micro), we find that the average contact number versus micro agrees quantitatively with that from simulations of the Cundall-Strack model for frictional disks. In the final project, we performed calculations of the structure of the basin volumes of mechanically stable packings in configuration space as a function packing fraction. Using the basin volumes, we show that the probability to obtain a given MS packing depends strongly on the packing fraction of the initial configuration.

  18. Water resources data Texas water year 2001, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, Susan C.

    2002-01-01

    Water-resources data for the 2001 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 77 gaging stations; stage only at 4 gaging stations; stage and contents at 5 lakes and reservoirs; water quality at 27 gaging stations; and data for 23 partial-record stations comprised of 3 flood-hydrograph, 8 low-flow, 4 crest-stage, and 3 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  19. Water resources data Texas water year 2003, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, Susan C.

    2004-01-01

    Water-resources data for the 2003 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 84 gaging stations; stage only at 6 gaging stations; stage and contents at 6 lakes and reservoirs; water quality at 28 gaging stations; and data for 18 partial-record stations comprised of 1 flood-hydrograph, 10 low-flow, 4 crest-stage, and 3 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  20. Water resources data Texas water year 1999, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.; Jones, R.E.

    2000-01-01

    Water-resources data for the 1999 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 76 gaging stations; stage only at 1 gaging stations; stage and contents at 4 lakes and reservoirs; water quality at 38 gaging stations; and data for 30 partial-record stations comprised of 3 flood-hydrograph, 14 low-flow, and 8 crest-stage, and 5 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  1. Water resources data Texas water year 2002, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, Susan C.

    2003-01-01

    Water-resources data for the 2002 water year for Texas are presented in six volumes and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 82 gaging stations; stage only at 6 gaging stations; stage and contents at 8 lakes and reservoirs; water quality at 25 gaging stations; and data for 30 partial-record stations comprised of 2 flood-hydrograph, 6 low-flow, 4 crest-stage, and 18 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  2. Water resources data Texas water year 2000, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Gandara, S.C.; Gibbons, W.J.; Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 71 gaging stations; stage only at 4 gaging stations; stage and contents at 4 lakes and reservoirs; water quality at 29 gaging stations; and data for 23 partial-record stations comprised of 3 flood-hydrograph, 10 low-flow, 6 crest-stage, and 4 miscellaneous stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  3. Water resources data Texas, water year 2004, volume 5. Guadalupe River basin, Nueces River basin, Rio Grande basin, and intervening coastal basins

    Science.gov (United States)

    Long, Susan C. Aragon; Reece, Brian D.; Eames, Deanna R.

    2005-01-01

    Water-resources data for the 2004 water year for Texas are presented in six volumes, and consist of records of stage, discharge, and water quality of streams and canals; stage, contents, and water-quality of lakes and reservoirs; and water levels and water quality of ground-water wells. Volume 5 contains records for water discharge at 86 gaging stations; stage only at 5 gaging stations; elevation at 3 lakes and reservoirs; content at 4 lakes and reservoirs;and water quality at 24 gaging stations. Also included are data for 16 partial-record stations comprised of 1 flood-hydrograph, 11 low-flow, and 4 crest-stage stations. Also included are lists of discontinued surface-water discharge or stage-only stations and discontinued surface-water-quality stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas. Records for a few pertinent stations in the bordering States also are included.

  4. Precipitation Frequency for Ohio River Basin, USA - NOAA Atlas 14 Volume 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This GIS grid atlas contains precipitation frequency estimates for the Ohio River Basin and Surrounding states is based on precipitation data collected between...

  5. H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    Chase, J.A.

    1994-03-01

    Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988.

  6. Methodologies for Assessing the Cumulative Environmental Effects of Hydroelectric Development of Fish and Wildlife in the Columbia River Basin, Volume 1, Recommendations, 1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Elizabeth Ann

    1987-07-01

    This volume is the first of a two-part set addressing methods for assessing the cumulative effects of hydropower development on fish and wildlife in the Columbia River Basin. Species and habitats potentially affected by cumulative impacts are identified for the basin, and the most significant effects of hydropower development are presented. Then, current methods for measuring and assessing single-project effects are reviewed, followed by a review of methodologies with potential for use in assessing the cumulative effects associated with multiple projects. Finally, two new approaches for cumulative effects assessment are discussed in detail. Overall, this report identifies and reviews the concepts, factors, and methods necessary for understanding and conducting a cumulative effects assessment in the Columbia River Basin. Volume 2 will present a detailed procedural handbook for performing a cumulative assessment using the integrated tabular methodology introduced in this volume. 308 refs., 18 figs., 10 tabs.

  7. GIS (Geographic Information Systems) based calculation on hydrocarbon generated volume: Amazon Basin example; O uso de SIG no calculo de hidrocarbonetos gerados: exemplo da Bacia do Amazonas

    Energy Technology Data Exchange (ETDEWEB)

    Pedrinha, Saulo; Simoes, Leonardo; Goncalves, Felix T.T.; Carneiro, Jason T.G. [Petroleum Geoscience Technology Ltda. (PGT), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The calculation of the volume of hydrocarbons generated from a particular source rock a sedimentary basin provides numerical data that help to better describe the petroleum system, and evaluate its potential. Among the various methodologies developed for calculating the volume of oil there is a proposal by Schmoker (1994), which has the advantage to take into account the occurrence of the source rock area in the basin, and the spatial variations in the main geological parameters. Using the tools of a GIS, through the manipulation of georeferred maps, it is possible to calculate the volume of oil generated in a way that would be virtually impossible by using punctual data, only. Even the discretiation maps in minors areas allows, via attribute table in the GIS, the application of a Monte Carlo simulation, which allows to incorporate all the uncertainties related to the input data in the calculation, obtaining distributions of volumes associated with various parts of the final map being integrated throughout the basin. Isopac and maturation maps (Gonzaga et al., 2000), along with TOC data from Barreirinha formation, Amazon Basin, have been scanned and georeferred and, once in the GIS database, were treated in order to spatially distribute the geological properties of the source rock. Then, such maps were handled in accordance with Schmoker (1994) method, leading to a map of mass and distribution of oil generated in the basin at the regional scale. (author)

  8. F-Area Seepage Basins groundwater monitoring report -- third and fourth quarters 1993. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.T.

    1994-03-01

    During the second half of 1993, the groundwater at the F-Area Seepage Basins (FASB) was monitored in compliance with Module 3, Section C, of South Carolina Hazardous Waste Permit SC1-890-008-989, effective November 2, 1992. The monitoring well network is composed of 87 FSB wells screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1990. Beginning in the first quarter of 1993, the standard for comparison became the SCDHEC Groundwater Protection Standard (GWPS) specified in the approved F-Area Seepage Basins Part B permit. Currently and historically, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the second half of 1993, notably aluminum, iodine-129, and zinc. The elevated constituents are found primarily in Aquifer Zone 2B{sub 2} and Aquifer Zone 2B{sub 1} wells. However, several Aquifer Unit 2A wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Water-level maps indicate that the groundwater flow rates and directions at the FASB have remained relatively constant since the basins ceased to be active in 1988.

  9. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 4. Pacific basin spent fuel logistics system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    This report summarizes the conceptual framework for a Pacific Basin Spent Fuel Logistics System (PBSFLS); and preliminarily describes programatic steps that might be taken to implement such a system. The PBSFLS concept is described in terms of its technical and institutional components. The preferred PBSFLS concept embodies the rationale of emplacing a fuel cycle system which can adjust to the technical and institutional non-proliferation solutions as they are developed and accepted by nations. The concept is structured on the basis of initially implementing a regional spent fuel storage and transportation system which can technically and institutionally accommodate downstream needs for energy recovery and long-term waste management solutions.

  10. Environmental status of the Lake Michigan region. Volume 14. Birds of the Lake Michigan drainage basin

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G.J.

    1977-07-01

    This report characterizes the bird life found in 100 counties of the four states peripheral to Lake Michigan. It discusses major habitats (the Lake Michigan shoreline, inland lakes, rivers and streams, marshes, fields and open spaces, and woodlots) and associates specific birds with habitats according to preferences for space and food. It also discusses the special attributes of state parks and lakeshores, refuges and sanctuaries, and other special areas which are attractive to avifauna. Patterns of historical occurrence and abundance, and the influence of pesticides and pollution, disease, and hunting pressure are explored to place present occurrence in a modern perspective. Migration patterns are discussed to explain increases and decreases which occur in nonresident avifauna of the Basin. The distribution and habits of birds that occur regularly in the Basin are described in an annotated list; a more complete list is presented in a table which encapsulates data for rapid and convenient reference. Separate sections deal with extinct, extirpated, and introduced species, and with endangered, threatened, and declining species.

  11. Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth

    Directory of Open Access Journals (Sweden)

    I. Didenkulova

    2010-11-01

    Full Text Available Tsunami wave generation by submarine landslides of a variable volume in a basin of variable depth is studied within the shallow-water theory. The problem of landslide induced tsunami wave generation and propagation is studied analytically for two specific convex bottom profiles (h ~ x4/3 and h ~ x4. In these cases the basic equations can be reduced to the constant-coefficient wave equation with the forcing determined by the landslide motion. For certain conditions on the landslide characteristics (speed and volume per unit cross-section the wave field can be described explicitly. It is represented by one forced wave propagating with the speed of the landslide and following its offshore direction, and two free waves propagating in opposite directions with the wave celerity. For the case of a near-resonant motion of the landslide along the power bottom profile h ~ xγ the dynamics of the waves propagating offshore is studied using the asymptotic approach. If the landslide is moving in the fully resonant regime the explicit formula for the amplitude of the wave can be derived. It is demonstrated that generally tsunami wave amplitude varies non-monotonically with distance.

  12. F-area seepage basins groundwater monitoring report. Volume 1. First and second quarters 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Groundwater at the F-Area Seepage Basins (FASB) is monitored in compliance with Module 111, Section C, of South Carolina Hazardous Waste Permit SCl-890-008-989, effective November 2, 1992. The monitoring well network is composed of 86 FSB wells and well HSB 85A. These wells are screened in the three hydrostratigraphic Units that make up the uppermost aquifer beneath the FASB. A detailed description of the uppermost aquifer is included in the Resource Conservation and Recovery Act Part B post-closure care permit application for the F-Area Hazardous Waste Management Facility submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) in December 1900. Data from 9 FSL wells are included in this report only to provide additional information for this area; the FSL wells are not part of Permit SCl-890-008-989. Monitoring results are compared to the SCDHEC Groundwater Protection Standard (GWPS), which is specified in the approved F-Area Seepage Basins Part B permit (November 1992). Historically and currently, gross alpha, nitrate, nonvolatile beta, and tritium are among the primary constituents to exceed standards. Numerous other radionuclides and hazardous constituents also exceeded the GWPS in the groundwater at the FASB during the first half of 1995, notably aluminum, iodine-129, pH, strontium-90, and zinc. The elevated constituents are found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contain elevated levels of constituents. Isoconcentration/isoactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the first half of 1995.

  13. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  14. An initial abstraction and constant loss model, and methods for estimating unit hydrographs, peak streamflows, and flood volumes for urban basins in Missouri

    Science.gov (United States)

    Huizinga, Richard J.

    2014-01-01

    Streamflow data, basin characteristics, and rainfall data from 39 streamflow-gaging stations for urban areas in and adjacent to Missouri were used by the U.S. Geological Survey in cooperation with the Metropolitan Sewer District of St. Louis to develop an initial abstraction and constant loss model (a time-distributed basin-loss model) and a gamma unit hydrograph (GUH) for urban areas in Missouri. Study-specific methods to determine peak streamflow and flood volume for a given rainfall event also were developed.

  15. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  16. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  17. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

  18. Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian-Mississippian), eastern Illinois Basin

    Science.gov (United States)

    Strapoc, D.; Mastalerz, Maria; Schimmelmann, A.; Drobniak, A.; Hasenmueller, N.R.

    2010-01-01

    This study involved analyses of kerogen petrography, gas desorption, geochemistry, microporosity, and mesoporosity of the New Albany Shale (Devonian-Mississippian) in the eastern part of the Illinois Basin. Specifically, detailed core analysis from two locations, one in Owen County, Indiana, and one in Pike County, Indiana, has been conducted. The gas content in the locations studied was primarily dependent on total organic carbon content and the micropore volume of the shales. Gas origin was assessed using stable isotope geochemistry. Measured and modeled vitrinite reflectance values were compared. Depth of burial and formation water salinity dictated different dominant origins of the gas in place in the two locations studied in detail. The shallower Owen County location (415-433 m [1362-1421 ft] deep) contained significant additions of microbial methane, whereas the Pike County location (832-860 m [2730-2822 ft] deep) was characterized exclusively by thermogenic gas. Despite differences in the gas origin, the total gas in both locations was similar, reaching up to 2.1 cm3/g (66 scf/ton). Lower thermogenic gas content in the shallower location (lower maturity and higher loss of gas related to uplift and leakage via relaxed fractures) was compensated for by the additional generation of microbial methane, which was stimulated by an influx of glacial melt water, inducing brine dilution and microbial inoculation. The characteristics of the shale of the Maquoketa Group (Ordovician) in the Pike County location are briefly discussed to provide a comparison to the New Albany Shale. Copyright ??2010. The American Association of Petroleum Geologists. All rights reserved.

  19. Environmental status of the Lake Michigan region. Volume 16. Amphibians and reptiles of the Lake Michigan drainage basin

    Energy Technology Data Exchange (ETDEWEB)

    Pentecost, E.D.; Vogt, R.C.

    1976-07-01

    The focus of this report is on regional distribution of the herpetofauna of the Lake Michigan Drainage Basin. The introduction includes a brief discussion of plant communities and their associated herpetofauna, and the importance of hibernacula and migration routes. Some aspects of the status, distribution, habitat, and life history of the amphibians and reptiles of the Basin are described in an annotated checklist. Special attention is given to uncommon and endangered species. Species range is shown on distribution maps.

  20. Assessment of retention basin volume and outlet capacity in urban stormwater drainage systems with respect to water quality

    Indian Academy of Sciences (India)

    Mehmet A Yurdusev; Ahmet A Kumanlioğlu; Bekir Solmaz

    2005-12-01

    The quality of river water or other surface waters is detrimentally affected by the contaminants carried by the rainfall runoff in urban areas. The control of pollution moved by rainfall runoff is achieved by installing outlets and small retention basins in stormwater collection systems, thereby allowing only a certain amount of rainfall water to overflow and leading the remaining to treatment plants. This study analyses the effect of concentration time on surface water pollution caused by rainfall runoff. For this purpose, a linear -curve is assumed for the flow hydrograph arising from the collection system, based on parameters of rainfall considered and the catchment area. An independent code is developed to analyse such a system and this is applied to an urban area using nine-year single-discrete rainfall records of Izmir Station, Turkey. The system is capable of tackling situations where there is only a basin or a basin with outlet.

  1. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  2. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  3. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 5. Group III. Crude Petroleum.

    Science.gov (United States)

    1980-12-01

    Petroleum Administration for Defense District II (PADD II), which includes major crude oil production areas in the Ohio fiver Basin, reported an excess of...the total disappearance of local movements. This occurred partly because of the decrease in crude oil production in the PSAs, but mostly because of...Production, on the other hand, decreased rapidly and steadily throughout the period. In 1976, crude oil production in the study area was estimated at only 48

  4. Energy development in the Southwest: problems of water, fish, and wildlife in the Upper Colorado River Basin. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Spofford, W.O. Jr.; Parker, A.L.; Kneese, A.V. (eds.)

    1980-01-01

    This two-volume set is based primarily on an RFF forum held in Albuquerque, New Mexico, in October 1976. Most of the papers in the book were presented at this forum. All of them were revised and updated after the forum; some were partly or even wholly rewritten. Some of the papers depend directly on research results reported in others, and therefore major revisions were necessary to integrate these papers. Two new papers were added after the forum was held, as was the appendix and five new discussions. This volume, Vol. I, contains the introductory chapter, 6 other papers (chapters), and an appendix; a separate abstract was prepared for each.

  5. Energy development in the Southwest: problems of water, fish, and wildlife in the Upper Colorado River Basin. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Spofford, W.O. Jr.; Parker, A.L.; Kneese, A.V. (eds.)

    1980-01-01

    The two-volume set is based primarily on an RFF forum held in Albuquerque, New Mexico, in October 1976. Most of the papers in the book were presented at this forum. All of them were revised and updated after the forum; some were partly or even wholly rewritten. Some of the papers depend directly on research results reported in others, and therefore major revisions were necessary to integrate these papers. Two new papers were added after the forum was held, as was the appendix, and five new discussions. This volume, Vol. II, contains the 10 other papers (chapters) of the set; a separate abstract was prepared for each.

  6. Estimating the Effect of Urban Growth on Annual Runoff Volume Using GIS in the Erbil Sub-Basin of the Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Hasan Mohammed Hameed

    2017-02-01

    Full Text Available The growth and spread of impervious surfaces within urbanizing catchment areas pose signiificant threats to the quality of natural and built-up environments. Impervious surfaces prevent water infiltration into the soil, resulting in increased runoff generation. The Erbil Sub-basin was selected because the impervious cover is increasing rapidly and is affecting the hydrological condition of the watershed. The overall aim of this study is to examine the impact of urban growth and other changes in land use on runoff response during the study period of 1984 to 2014. The study describes long-term hydrologic responses within the rapidly developing catchment area of Erbil city, in the Kurdistan Region of Iraq. Data from six rainfall stations in and around the Erbil Sub-basin were used. A Digital Elevation Model (DEM was also used to extract the distribution of the drainage network. Historical levels of urban growth and the corresponding impervious areas, as well as land use/land cover changes were mapped from 1984 to 2014 using a temporal satellite image (Landsat to determine land use/land cover changes. Land use/land cover was combined with a hydrological model (SCS-CN to estimate the volume of runoff from the watershed. The study indicates that the urbanization of the watershed has increased the impervious land cover by 71% for the period from 1984 to 2004 and by 51% from 2004 to 2014. The volume of runoff was 85% higher in 2014 as compared to 1984 due to the increase in the impervious surface area; this is attributed to urban growth. The study also points out that the slope of the watershed in the Erbil sub-basin should be taken into account in surface runoff estimation as the upstream part of the watershed has a high gradient and the land is almost barren with very little vegetation cover; this causes an increase in the velocity of the flow and increases the risk of flooding in Erbil city.

  7. Learning to Be Drier in the Southern Murray-Darling Basin: Setting the Scene for This Research Volume

    Science.gov (United States)

    Golding, Barry; Campbell, Coral

    2009-01-01

    In this article, the authors set the scene for this research volume. They sought to emphasize and broaden their interest and concern about their "Learning to be drier" theme in this edition to the 77 per cent of Australians who live within 50 km of the Australian coast, the majority of whom also live in major cities and urban complexes.…

  8. Enhanced recovery of unconventional gas. Volume II. The program. [Tight gas basins; Devonian shale; coal seams; geopressured aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Kuuskraa, V.A.; Brashear, J.P.; Doscher, T.M.; Elkins, L.E.

    1978-10-01

    This study was conducted to assist public decision-makers in selecting among many choices to obtain new gas supplies by addressing 2 questions: 1) how severe is the need for additional future supplies of natural gas, and what is the economic potential of providing part of future supply through enhanced recovery from unconventional natural gas resources. The study also serves to assist the DOE in designing a cost-effective R and D program to stimulate industry to recover this unconventional gas and to produce it sooner. Tight gas basins, Devonian shale, methane from coal seams, and methane from geopressured aquifers are considered. It is concluded that unconventional sources, already providing about 1 Tcf per year, could provide from 3 to 4 Tcf in 1985 and from 6 to 8 Tcf in 1990 (at $1.75 and $3.00 per Mcf, respectively). However, even with these additions to supply, gas supply is projected to remain below 1977 usage levels. (DLC)

  9. Smolt Monitoring Program, Volume II, Migrational Characteristics of Columbia Basin Salmon and Steelhead Trout, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fish Passage Center

    1987-02-01

    Smolt Monitoring Program Annual Report, 1986, Volume I, describes the results of travel time monitoring and other migrational characteristics of yearling and sub-yearling chinook salmon (Oncorhynchus tshawytscha), sockeye salmon (Oncorhynchus nerka), and steelhead trout (Salmo gairdneri). This volume presents the data from Fish Passage Center freeze brands used in the analysis of travel time for Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, and John Day dams. Summary of data collection procedures and explanation of data listings are presented in conjunction with the mark recapture data. Data for marked fish not presented in this report will be provided upon request. Daily catch statistics (by species), flow, and sample parameters for the smolt monitoring sites, Clearwater, Lewiston, Lower Granite, Lower Monumental, Rock Island, McNary, John Day, and Bonneville also will be provided upon request.

  10. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

    1979-09-01

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  11. Wadter Resources Data Ohio: Water year 1994. Volume 2, St. Lawrence River Basin and Statewide Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synaptic sites, and partial-record sites; and (4) water-level data for observation wells. Locations of lake- and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures ga through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two to three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  12. Integrative method in lithofacies characteristics and 3D velocity volume of the Permian igneous rocks in H area, Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    Yang Haijun; Liu Yongfu; Xie Huiwen; Xu Yongzhong; Sun Qi; Wang Shuangshuang

    2013-01-01

    This paper introduces horizon control,seismic control,logging control and facies control methods through the application of the least squares fitting of logging curves,seismic inversion and facies-controlled techniques.Based on the microgeology and thin section analyses,the lithology,lithofacies and periods of the Permian igneous rocks are described in detail.The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume.The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data.Through analysis of thin sections,the lithofacies can be classified into eruption airfall subfacies,eruption pyroclastic flow subfacies and eruption facies.

  13. Monitoring instream turbidity to estimate continuous suspended-sediment loads and yields and clay-water volumes in the upper North Santiam River Basin, Oregon, 1998-2000

    Science.gov (United States)

    Uhrich, Mark A.; Bragg, Heather M.

    2003-01-01

    Three real-time, instream water-quality and turbidity-monitoring sites were established in October 1998 in the upper North Santiam River Basin on the North Santiam River, the Breitenbush River, and Blowout Creek, the main tributary inputs to Detroit Lake, a large, controlled reservoir that extends from river mile 61 to 70. Suspended-sediment samples were collected biweekly to monthly at each station. Rating curves provided estimated suspended-sediment concentration in 30-minute increments from log transformations of the instream turbidity monitoring data. Turbidity was found to be a better surrogate than discharge for estimating suspended-sediment concentration. Daily and annual mean suspended-sediment loads were estimated using the estimated suspended-sediment concentrations and corresponding streamflow data. A laboratory method for estimating persistent (residual) turbidity from separate turbidity samples was developed. Turbidity was measured over time for each sample. Turbidity decay curves were derived as the suspended sediment settled. Each curve was used to estimate a turbidity value for a given settling time. Medium to fine clay particle (size clay particle persistent turbidity for each site. The monitored instream 30-minute turbidity values were converted to a calculated persistent turbidity value that would have resulted after 8.5 hours of settling in the laboratory. Persistent turbidities of 10 NTU and above were tabulated for each site. (Water of 10 NTU and above can interfere with or damage treatment filters and result in intake closures at drinking-water facilities.) A method was developed that used the persistent turbidity experiments, turbidity decay curves, and stream discharge to estimate the volume of water containing suspended clay that entered Detroit Lake from the three main tributaries. 'Suspended-clay water' was defined as water having a value of at least 10 NTU after settling the required 8.5 hours. The suspended-clay concentrations of 10

  14. The annual mean sketches and climatological variability of the volume and heat transports through the inter-basin passages:A study based on 1 400-year spin up of MOM4p1

    Institute of Scientific and Technical Information of China (English)

    ZHU Yaohua; WEI Zexun; WANG Yonggang; GUAN Yuping; WANG Xinyi

    2014-01-01

    The annual mean volume and heat transport sketches through the inter-basin passages and transoceanic sections have been constructed based on 1 400-year spin up results of the MOM4p1. The spin up starts from a state of rest, driven by the monthly climatological mean force from the NOAA World Ocean Atlas (1994). The volume transport sketch reveals the northward transport throughout the Pacific and southward trans-port at all latitudes in the Atlantic. The annual mean strength of the Pacific-Arctic-Atlantic through flow is 0.63×106 m3/s in the Bering Strait. The majority of the northward volume transport in the southern Pacific turns into the Indonesian through flow (ITF) and joins the Indian Ocean equatorial current, which subse-quently flows out southward from the Mozambique Channel, with its majority superimposed on the Ant-arctic Circumpolar Current (ACC). This anti-cyclonic circulation around Australia has a strength of 11×106 m3/s according to the model-produced result. The atmospheric fresh water transport, known as P-E+R (pre-cipitation minus evaporation plus runoff ), constructs a complement to the horizontal volume transport of the ocean. The annual mean heat transport sketch exhibits a northward heat transport in the Atlantic and poleward heat transport in the global ocean. The surface heat flux acts as a complement to the horizontal heat transport of the ocean. The climatological volume transports describe the most important features through the inter-basin passages and in the associated basins, including:the positive P-E+R in the Arctic substantially strengthening the East Greenland Current in summer;semiannual variability of the volume transport in the Drake Passage and the southern Atlantic-Indian Ocean passage;and annual transport vari-ability of the ITF intensifying in the boreal summer. The climatological heat transports show heat storage in July and heat deficit in January in the Arctic;heat storage in January and heat deficit in July in the

  15. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume II : Evaluation of the 1996 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1998-07-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  16. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin ; Volume 1 ; Evaluation of the 1995 Predictions of the Run-Timing of Wild Migrant Subyearling Chinook in the Snake River Basin Using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Richard L.

    1997-06-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1) to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2) to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3) to design better analysis tools for evaluation programs; and (4) to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community.

  17. Natural frequency of regular basins

    Science.gov (United States)

    Tjandra, Sugih S.; Pudjaprasetya, S. R.

    2014-03-01

    Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.

  18. Environmental Status of the Lake Michigan Region Volume 11. Natural Areas of the Lake Michigan Drainage Basin and Endangered or Threatened Plant and Animal Species

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Forest [Argonne National Lab. (ANL), Argonne, IL (United States); Lindsley, Diane [Argonne National Lab. (ANL), Argonne, IL (United States)

    1977-09-01

    The accelerating encroachment of human activity on the natural landscape has made many citizens appreciate the need to save representative biotic communities before urbanization and technologically induced change eliminate such communities. Active programs in natural-area preservation a.re now in progress in the four basin states; these programs have strong public support and legislative mandate. Local, state, and federal agencies and private individuals have taken an active interest in protecting select areas as samples of the biotic communities and natural features of the Basin. Most natural areas described in this report have been dedicated or reserved in some fashion. Other areas are being added by the basin states each year. The maintenance of natural communities is closely linked to the preservation of endangered and threatened species of plants and animals which would cease to survive as isolated populations. Under federal regulations, certain plants and animals are listed as endange~ ed or threatened in the Basin. As individual state lists are prepared and investigations proceed, it is probable that many more threatened species will be found.

  19. Environmental status of the Lake Michigan region. Volume II. Natural areas of the Lake Michigan drainage basin and endangered or threatened plant and animal species

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, F.; Lindsley, D.

    1977-09-01

    The accelerating encroachment of human activity on the natural landscape has made many citizens appreciate the need to save representative biotic communities before urbanization and technologically induced change eliminate such communities. Active programs in natural-area preservation are now in progress in the four basin states; these programs have strong public support and legislative mandate. Local, state, and federal agencies and private individuals have taken an active interest in protecting select areas as samples of the biotic communities and natural features of the Basin. Most natural areas described in this report have been dedicated or reserved in some fashion. Other areas are being added by the basin states each year. The maintenance of natural communities is closely linked to the preservation of endangered and threatened species of plants and animals which would cease to survive as isolated populations. Under federal regulations, certain plants and animals are listed as endangered or threatened in the Basin. As individual state lists are prepared and investigations proceed, it is probable that many more threatened species will be found.

  20. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  1. Louisiana Coastal Area, Louisiana. Freshwater Diversion to Barataria and Breton Sound Basins. Feasibility Study. Volume 1. Draft Main Report. Draft Environmental Impact Statement.

    Science.gov (United States)

    1984-09-01

    nickel, selenium , zinc, nitrogen, phosphorus, hydrocarbons, and fecal coliform bacteria in Barataria and Breton Sound Basins, primarly in the upper...Loutiian,1 is stable and has the potential to increase; however, .subnormal clutch i ;e and poor egg hatchability are inhibiting population growth. There Is...proposed EIS-132 sites would likely result in increased mean concentrations of cadmium, mercury, nickel, selenium , zinc, nitrogen, phosphorus, and

  2. Analytical results for 35 mine-waste tailings cores and six bed-sediment samples, and an estimate of the volume of contaminated material at Buckeye meadow on upper Basin Creek, northern Jefferson County, Montana

    Science.gov (United States)

    Fey, D.L.; Church, S.E.; Finney, C.J.

    1999-01-01

    Metal-mining related wastes in the Boulder River basin study area in northern Jefferson County, Montana have been implicated in their detrimental effects on water quality with regard to acidgeneration and toxic-metal solubilization. Flotation-mill tailings in the meadow below the Buckeye mine, hereafter referred to as the Buckeye mill-tailings site, have been identified as significant contributors to water quality degradation of Basin Creek, Montana. Basin Creek is one of three tributaries to the Boulder River in the study area; bed sediments and waters draining from the Buckeye mine have also been implicated. Geochemical analysis of 35 tailings cores and six bed-sediment samples was undertaken to determine the concentrations of Ag, As, Cd, Cu, Pb,and Zn present in these materials. These elements are environmentally significant, in that they can be toxic to fish and/or the invertebrate organisms that constitute their food. A suite of one-inch cores of dispersed flotation-mill tailings and underlying premining material was taken from a large, flat area north of Basin Creek near the site of the Buckeye mine. Thirty-five core samples were taken and divided into 204 subsamples. The samples were analyzed by ICP-AES (inductively coupled plasma-atomic emission spectroscopy) using a mixed-acid digestion. Results of the core analyses show that the elements listed above are present at moderate to very high concentrations (arsenic to 63,000 ppm, silver to 290 ppm, cadmium to 370 ppm, copper to 4,800 ppm, lead to 93,000 ppm, and zinc to 23,000 ppm). Volume calculations indicate that an estimated 8,400 metric tons of contaminated material are present at the site. Six bed-sediment samples were also subjected to the mixed-acid total digestion, and a warm (50oC) 2M HCl-1% H2O2 leach and analyzed by ICP-AES. Results indicate that bed sediments of Basin Creek are only slightly impacted by past mining above the Buckeye-Enterprise complex, moderately impacted at the upper (eastern

  3. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume XVI; Alternative Designs for Future Adult PIT-Tag Detection Studies, 2000 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Comas, Jose A.; Skalski, John R. (University of Washington, School of Fisheries, Seattle, WA)

    2000-09-25

    In the advent of the installation of a PIT-tag interrogation system in the Cascades Island fish ladder at Bonneville Dam (BON), and other CRB dams, this overview describes in general terms what can and cannot be estimated under seven different scenarios of adult PIT-tag detection capabilities in the CRB. Moreover, this overview attempted to identify minimal adult PIT-tag detection configurations required by the ten threatened Columbia River Basin (CRB) chinook and steelhead ESUs. A minimal adult PIT-tag detection configuration will require the installation of adult PIT-tag detection facilities at Bonneville Dam and another dam above BON. Thus, the Snake River spring/summer and fall chinook salmon, and the Snake River steelhead will require a minimum of three dams with adult PIT-tag detection capabilities to guarantee estimates of ''ocean survival'' and at least of one independent, in-river returning adult survival (e.g., adult PIT-tag detection facilities at BON and LGR dams and at any other intermediary dam such as IHR). The Upper Columbia River spring chinook salmon and steelhead will also require a minimum of three dams with adult PIT-tag detection capabilities: BON and two other dams on the BON-WEL reach. The current CRB dam system configuration and BPA's and COE's commitment to install adult PIT-tag detectors only in major CRB projects will not allow the estimation of an ''ocean survival'' and of any in-river adult survival for the Lower Columbia River chinook salmon and steelhead. The Middle Columbia River steelhead ESU will require a minimum of two dams with adult PIT-tag detection capabilities: BON and another upstream dam on the BON-McN reach. Finally, in spite of their importance in terms of releases, PIT-tag survival studies for the Upper Willamette chinook and Upper Willamette steelhead ESUs cannot be perform with the current CRB dam system configuration and PIT-tag detection capabilities.

  4. 鄂尔多斯盆地致密油水平井体积压裂优化设计%Optimization design for volume fracturing of horizontal wells in tight oil reservoir of Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    白晓虎; 齐银; 陆红军; 段鹏辉; 顾燕凌; 吴甫让

    2015-01-01

    鄂尔多斯盆地长7致密油储层致密、油藏低压。储层天然微裂缝发育程度和岩石脆性评价表明,盆地致密油储层物性对水平井分段体积压裂具有良好的适应性。以提高水平井多段压裂井网形式和布缝的匹配性为目的,优化了与注采井网相适配的施工参数,结果表明,实现体积压裂的排量为4~8 m3/min,单段砂量40~80 m3,入地液量300~700 m3,并形成了“低黏液体造缝、高黏液体携砂、组合粒径支撑剂、不同排量注入”的混合压裂设计模式。矿场井下微地震监测对比了体积压裂与常规压裂对裂缝扩展形态的影响,结果显示致密储层采用体积压裂的改造体积和复杂指数是常规压裂的2倍左右,且与井网适配性良好。通过开展致密油开发矿场先导性试验,水平井单井初期产量达到8~10 t/d,第1年累计产油量达2000 t左右,且无裂缝性见水井,证明对于鄂尔多斯盆地的致密油开发,采用水平井五点井网+混合水体积压裂可以获得较高的单井产量和良好的开发效益。该项技术对其他油田的非常规储层开发有一定的借鉴意义。%Chang 7 tight oil reservoir of Ordos Basin features tight and low-pressure reservoir. It is shown from natural microfracture development degree and rock brittleness assessment of the reservoir that, properties of tight oil reservoir of the basin are highly adaptable to segmented volume fracturing of horizontal wells. The construction parameters which match with lfood pattern are optimized for the purpose of improving compatibility between multi-segment fracturing pattern form and fracture distribution of horizontal wells, and results indicate that volume fracturing is realized by displacement between 4 m3/min to 8m3/min, single-segment sand amount between 40 m3 to 80 m3, and buried liquid amount between 300 m3 to 700 m3. The mixed fracturing design mode of fracture formation by low

  5. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin, Volume I; Assessment of Temporal Trends in Daily Survival Estimates of Spring Chinook, 1994-1996 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, John R.; Perez-Comas, Jose A.; Lady, Jim

    1998-10-01

    This report if the first of a series of reports produced by the University of Washington for the Bonneville Power Administration under the title ''The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin'', with the purpose of offering new and alternative methods to analyzing data from tagging studies in the Columbia Basin.

  6. Basin stability in delayed dynamics

    Science.gov (United States)

    Leng, Siyang; Lin, Wei; Kurths, Jürgen

    2016-02-01

    Basin stability (BS) is a universal concept for complex systems studies, which focuses on the volume of the basin of attraction instead of the traditional linearization-based approach. It has a lot of applications in real-world systems especially in dynamical systems with a phenomenon of multi-stability, which is even more ubiquitous in delayed dynamics such as the firing neurons, the climatological processes, and the power grids. Due to the infinite dimensional property of the space for the initial values, how to properly define the basin’s volume for delayed dynamics remains a fundamental problem. We propose here a technique which projects the infinite dimensional initial state space to a finite-dimensional Euclidean space by expanding the initial function along with different orthogonal or nonorthogonal basis. A generalized concept of basin’s volume in delayed dynamics and a highly practicable calculating algorithm with a cross-validation procedure are provided to numerically estimate the basin of attraction in delayed dynamics. We show potential applicabilities of this approach by applying it to study several representative systems of biological or/and physical significance, including the delayed Hopfield neuronal model with multistability and delayed complex networks with synchronization dynamics.

  7. Volume Entropy

    CERN Document Server

    Astuti, Valerio; Rovelli, Carlo

    2016-01-01

    Building on a technical result by Brunnemann and Rideout on the spectrum of the Volume operator in Loop Quantum Gravity, we show that the dimension of the space of the quadrivalent states --with finite-volume individual nodes-- describing a region with total volume smaller than $V$, has \\emph{finite} dimension, bounded by $V \\log V$. This allows us to introduce the notion of "volume entropy": the von Neumann entropy associated to the measurement of volume.

  8. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  9. On Restoring Sedimentary Basins for Post-Depositional Deformation - Paleozoic Basins of the Central Andes

    Science.gov (United States)

    Bahlburg, H.

    2015-12-01

    The reconstruction and interpretation of sedimentary basins incorporated into folded and thrusted mountain belts is strongly limited by the style and intensity of shortening. This problem is exacerbated if deformation is polyphasic as is the case for the Paleozoic basins in the central Andes. Some of these have been deformed by folding and thrusting during at least 3 events in the Late Ordovician, the Late Paleozoic and Cenozoic. A realistic reconstruction of the original basin dimensions and geometries from outcrops and maps appears to be almost impossible. We present results of a stepwise reconstruction of the Paleozoic basins of the central Andes by restoring basin areas and fills accounting for crustal shortening. The structurally most prominent feature of the central Andes is the Bolivian Orocline which accomodated shortening in the last 45 Ma on the order of between 300 and 500 km. In a first step basins were restored by accounting for Cenozoic rotation and shortening by deconvolving the basins using an enhanced version of the oroclinal bending model of Ariagada et al. (2008). Results were then restored stepwise for older deformation. Constraints on these subsequent steps are significantly poorer as values of shortening can be derived only from folds and thusts apparent in outcrops. The amount of shortening accomodated on unexposed and therefore unknown thrusts can not be quantified and is a significant source of error very likely leading to an underestimation of the amount of shortening. Accepting these limitations, basin restoration results in an increase in basin area by ≥100%. The volumes of stratigraphically controlled basin fills can now be redistributed over the wider, restored area, translating into smaller rates of accumulation and hence required subsidence. The restored rates conform to those of equivalent modern basin settings and permit a more realistic and actualistic analysis of subsidence drivers and the respective tectonic framework.

  10. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the

  11. Development of a System-Wide Program, Volume II : Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, 1992 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Nigro, Anthony A. (Oregon Department of Fish and Wildlife); Willis, Charles F. (S.P. Cramer and Associates., Gresham, OR)

    1994-06-01

    The authors report their results of studies to determine the extent to which northern squawfish predation on juvenile salmonids is a problem in the Columbia River Basin, and to evaluate how effectively fisheries can be used to control northern squawfish populations and reduce juvenile salmonid losses to predation. These studies were initiated as part of a basinwide program to control northern squawfish predation and reduce mortality of juvenile salmonids on their migration to the ocean. Three papers are included in this report. They are entitled: (1) Development of a Systemwide Predator Control Program: Indexing and Fisheries Evaluation; (2) Economic, Social and Legal Feasibility of Commercial Sport, and Bounty Fisheries on Northern Squawfish; (3) Columbia River Ecosystem Model (CREM): Modeling Approach for Evaluation of Control of Northern Squawfish Populations using Fisheries Exploitation.

  12. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the

  13. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon

  14. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon

  15. Advanced Workflows for Fluid Transfer in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Thibaut Muriel

    2014-07-01

    Full Text Available The traditional 3D basin modeling workflow is made of the following steps: construction of present day basin architecture, reconstruction of the structural evolution through time, together with fluid flow simulation and heat transfers. In this case, the forward simulation is limited to basin architecture, mainly controlled by erosion, sedimentation and vertical compaction. The tectonic deformation is limited to vertical slip along faults. Fault properties are modeled as vertical shear zones along which rock permeability is adjusted to enhance fluid flow or prevent flow to escape. For basins having experienced a more complex tectonic history, this approach is over-simplified. It fails in understanding and representing fluid flow paths due to structural evolution of the basin. This impacts overpressure build-up, and petroleum resources location. Over the past years, a new 3D basin forward code has been developed in IFP Energies nouvelles that is based on a cell centered finite volume discretization which preserves mass on an unstructured grid and describes the various changes in geometry and topology of a basin through time. At the same time, 3D restoration tools based on geomechanical principles of strain minimization were made available that offer a structural scenario at a discrete number of deformation stages of the basin. In this paper, we present workflows integrating these different innovative tools on complex faulted basin architectures where complex means moderate lateral as well as vertical deformation coupled with dynamic fault property modeling. Two synthetic case studies inspired by real basins have been used to illustrate how to apply the workflow, where the difficulties in the workflows are, and what the added value is compared with previous basin modeling approaches.

  16. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  17. 夏季加拿大海盆海冰边缘区声体积后向散射强度研究%Study on volume backscattering strength in summer marginal ice zone of Canada Basin

    Institute of Scientific and Technical Information of China (English)

    刘洪宁; 吕连港; 刘娜; 杨光兵; 姜莹; 杨春梅; 刘宗伟; 林丽娜

    2015-01-01

    Volume backscatter strength (Sv)is a key parameter for acoustic transmission.Study on volume back-scattering strength in marginal ice zone (MIZ)in the Arctic plays an important role in the knowledge of the Arctic acoustic environment.Based on the investigation during the Sixth Chinese National Arctic Research Expedition in summer 2014,the characteristics of backscatter strength in MIZ are analyzed.The results show that Sv under the open water (ice concentration less than 15%)is significantly higher than that in seawater under the packed ice (ice concentration more than 50%).Ice melt causes increasing of opaque creatures and suspended sediment,and leads to increase of Sv.According to the characteristics of low Sv under the packed ice,the proposal about the parameters of LADCP setting is given.%声信号的体积后向散射强度是声传播过程中一个关键的参数。海冰边缘区的声体积后向散射强度研究对深入认识北极声场环境有着十分重要的意义。本文利用中国第六次北极科学考察获取的数据资料研究了海冰边缘区声体积后向散射强度特性。结果表明:加拿大海盆海冰边缘区是声体积后向散射强度的明显过渡区。无冰海面(海冰密集度小于15%)海洋深层水的声体积后向散射强度明显大于密集海冰区域的海水(海冰密集度大于50%)。讨论了声体积后向散射强度与海冰融化之间的关系,造成融冰区声体积后向散射强度增大的原因是水下悬浮泥沙、浮游生物等悬浮物质增加。根据海冰密集海域的海水后向散射强度弱的特点,对北极下放式声学多普勒测流仪(LADCP)观测的设置提出建议。

  18. GIS Analysis of Size Relationships between Drainage Basins and Alluvial Fans

    Science.gov (United States)

    Wright, S. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Imagery from the global database of modern sedimentary basins compiled by Weissman et al. (2010) allows us to test whether a size relationship between drainage basin area and distributive fluvial system (DFS) area exists. We are testing this hypothesis using a combination of SRTM-based digital elevation models and Landsat satellite imagery in ArcGIS. Sedimentary basins are delineated by preforming a Gaussian smoothing on the DEM, followed by optimal edge detection through application of a modified Canny edge detector. The pour points defining the link between contributing hydrologic basins and these sedimentary basins are then located by generating a stream network in ArcGIS and intersecting the stream network arcs with the sedimentary basin polygons. From these pour points we delineate the adjacent contributing drainage basin using the watershed tool in ArcGIS. We manually digitize the boundary and geometry of the DFS identified for each drainage basin, using the higher resolution imagery found on Google Earth for visual confirmation if the scale or resolution of the Landsat imagery requires it. We then extract drainage basins and DFS polygon parameters and calculate areal extents in order to evaluate whether such a size relationship exists within basins, regionally across several basins, or across different basin types (e.g., endorheic vs exhoreic). A limitation of this approach is that we cannot evaluate sediment volumes, only aerial coverage. Results from this study may provide a better understanding of extrabasinal processes that control DFS shape and size.

  19. Reserves in western basins

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, R.H.; Cotton, B.W. [Scotia Group, Dallas, TX (United States)

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  20. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08

    affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

  1. The transition from complex crater to peak-ring basin on Mercury: New observations from MESSENGER flyby data and constraints on basin formation models

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Schon, Samuel C.; Ernst, Carolyn M.; Prockter, Louise M.; Murchie, Scott L.; Denevi, Brett W.; Solomon, Sean C.; Strom, Robert G.

    2011-12-01

    suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. The relationship between impact-melt production and peak-ring formation is strengthened further by agreement between power laws fit to ratios of ring diameter to rim-crest diameter for peak-ring basins and protobasins and the power-law relation between the dimension of a melt cavity and the crater diameter. More detailed examination of Mercury's peak-ring basins awaits the planned insertion of the MESSENGER spacecraft into orbit about Mercury in 2011.

  2. A hydrologic analysis for the infiltration basins planned on Jeju Island, Korea

    Science.gov (United States)

    Lee, S.; Kang, T.; Lee, J.; Kang, S.

    2010-12-01

    Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Infiltration basins can be a method to receive storm water and to let the water move into the soil. The contents of the study include a hydrologic analysis on a site and an evaluation of the capacity of infiltration basins planned on the site. Most region of Jeju Island, Korea is highly pervious. Three infiltration basins were designed on the area of the Jeju English Education City. To evaluate adequacy of the capacities of the infiltration basins, infiltration rates were measured and storm water runoff was simulated. Infiltration rates on the surface of the reserved land for infiltration basins were measured by a standard double ring infiltrometer or a small infiltrometer. A FORTRAN version of SWMM was modified to incorporate the infiltration basin and the basic equations of the infiltration basin are same as those of the infiltration trench used in MIDUSS. The code modified was used to simulate storm runoff from watersheds, infiltration from the infiltration basins, and reservoir routing of the infiltration basins. The saturated hydraulic conductivities on the reserved sites were measured by 0.0068, 0.0038, and 0.00017 cm/sec. The return period of the design rainfall is fifty years. The following results were obtained from a hydrologic analysis on the watersheds and the infiltration basins to be built. The two infiltration basins with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the basins. Some water, however releases from the other infiltration basin and the capacity of the basin is not sufficient to infiltrate the total runoff after the land use change. A channel is needed in which the water released from the less pervious basin flows. The hydrologic analysis method of the study can be used for capacity evaluation of future infiltration basins on highly pervious areas in

  3. Subsurface structure and the stress state of Utopia basin, Mars

    Science.gov (United States)

    Searls, Mindi Lea

    Topography and gravity data from recent Mars' space missions are used to analyze the subsurface structure of the Utopia basin, focusing on the volume and density of fill that causes the shallowness of the basin. Using the assumption that the initial isostatic state of Utopia was similar to that of the Hellas basin allows for construction of a thin-shell elastic model of Utopia that facilitates investigation of its interior configuration. A system of equations was developed that allows a solution for the original basin shape, the amount of fill within Utopia basin, the amount of flexure due to the fill material, the total vertical load and the horizontal load potential. The presence of apparently ancient impact craters within the Utopia basin indicates that the majority of the material within Utopia was deposited early in Mars' history when the elastic lithosphere of Mars was (presumably) relatively thin (shell model also allows us to calculate the stress field due to the flexure/membrane strains. The stress results indicate that the radial tectonic features seen in the Utopia region are not due solely to deformation of the elastic lithosphere. However, a more rigorous finite element analysis of the basin mechanics predicts a zone of observed radial faults for large elastic thicknesses. This model also predicts a region of strike-slip faulting just outside of the basin where concentric reverse faults are located. The inclusion of global compressional stresses due to the Tharsis load, global cooling, and/ or global climate changes could effectively increase the zone of predicted radial faults within the basin as well as shift the faulting style outside of the basin from strike-slip to the observed concentric faults.

  4. Tulare Basin protection plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Tulare Basin Protection Plan has been initiated by The Nature Conservancy to elucidate the problems and opportunities of natural diversity protection....

  5. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program. A...

  6. California Air Basins

    Data.gov (United States)

    California Department of Resources — Air ResourcesCalifornia Air Resources BoardThe following datasets are from the California Air Resources Board: * arb_california_airbasins - California Air BasinsThe...

  7. Watershed Planning Basins

    Data.gov (United States)

    Vermont Center for Geographic Information — The Watershed Planning Basin layer is part of a larger dataset contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  8. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  9. K Basins Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  10. SOME ASPECTS OF HYDROLOGICAL RISK MANIFESTATION IN JIJIA BASIN

    Directory of Open Access Journals (Sweden)

    D. BURUIANĂ

    2012-03-01

    Full Text Available Jijia river basin surface geographically fits in Moldavian Plateau, Plain of Moldavia subunit. Being lowered by 200 to 300 m compared to adjacent subunits, it appears as a depression with altitudes between 270-300 m.Through its position in the extra-Carpathian region, away from the influence of oceanic air masses, but wide open to the action of air masses of eastern, north-eastern and northern continental origin, Jijia basin receives precipitations which vary according to the average altitude differing from the northern to the southern part of the basin (564 mm in north, 529.4 mm in Iasi. A characteristic phenomenon to the climate is represented by the torrential rains in the hot season, under the form of rain showers with great intensity, fact that influences the drainage of basin rivers. Jijia hydrographic basin is characterized by frequent and sharp variations of flow volumes and levels which lead to floods and flooding throughout the basin. The high waters generally occur between March and June, when approximately 70% of the annual stock is transported. The paper analyzes the main causes and consequences of flooding in the studied area, also identifying some structural and non-structural measures of flood protection applied by authorities in Jijia hydrographic basin. As a case study, the flood recorded in Dorohoi in June 28-29, 2010 is presented.

  11. The Aquitaine basin

    Energy Technology Data Exchange (ETDEWEB)

    Biteau, J.-J.; Le Marrec, A.; Le Vot, M.; Masset, J.-M.

    2006-07-01

    The Aquitaine Basin is located in the southwest of France, between the Gironde Arch in the north and the Pyrenean Mountain Chain in the south. It is a triangular-shaped domain, extending over 35000km{sup 2}. From north to south, six main geological provinces can be identified: (1) the Medoc Platform located south of the Gironde Arch; (2) the Parentis sub-basin; (3) the Landes Saddle; (4) the North Aquitaine Platform; (5) the foreland of the Pyrenees (also known as the Adour, Arzacq and Comminges sub-basins); and (6) the Pyrenean fold-and-thrust belt. Only the Parentis sub-basin, the foreland of the Pyrenean Chain and a minor part of the fold-and-thrust belt itself are proven hydrocarbon provinces. The Aquitaine Basin, in turn, is subdivided into four sub-basins - the Parentis, Adour-Arzacq, Tarbes and Comminges areas. The lozenge shape of these depocentres is related to the Hercynian tectonic framework of the Palaeozoic basement, reactivated during Early Cretaceous rifting. This rift phase aborted at the end of the Albian (prior to the development of an oceanic crust) in response to the beginning of the subduction of the Iberian plate under the European plate. During the Upper Cretaceous, continued subduction led to the creation of northwards-migrating flexural basins. In the Eocene, a paroxysmal phase of compression was responsible for the uplift of the Pyrenean Mountain Chain and for the thin-skinned deformation of the foreland basin. The resulting structuration is limited to the south by the internal core of the chain and to the north by the leading edge of the fold-and-thrust belt, where the Lacq and Meillon gas fields are located. Four main petroleum provinces have been exploited since the Second World War: (1) the oil-prone Parentis sub-basin and (2) salt ridges surrounding the Arzacq and Tarbes sub-basins; and (3) the gas-prone southern Arzacq sub-basin (including the external Pyrenean fold-and-thrust belt and the proximal foreland sub-basin) and (4

  12. Water Temperature Controls in Arctic Basins

    Science.gov (United States)

    Neilson, B. T.; King, T.; Schmadel, N. M.; Heavilin, J.; Overbeck, L. D.; Kane, D. L.

    2015-12-01

    Understanding the dynamics of heat transfer mechanisms in arctic rivers is critical for forecasting the effects of climate change on river temperatures. Building on the collection of key data and a dynamic river temperature model that accounts for heat fluxes found important in temperate climates, we were able to identify portions of an arctic basin and hydrologic conditions for which heat flux dynamics differ from those found in temperate systems. During the open water season, similarities in heat flux influences include dominant shortwave radiation, greater surface exchanges than bed exchanges and greater influences of lateral inflows in the lower order portions of the basin. Differing from temperate systems, the heat flux contribution of net longwave radiation is consistently negative and both latent heat and bed friction are negligible. Despite these differences, accounting for the bulk lateral inflows from the basin resulted in accurate predictions during higher flows. Under lower flow conditions, however, lateral inflows were limited and resulting temperature predictions were poor. Work in a temperate system demonstrated that spatial variability in hydraulics influencing stream residence times are necessary for accurate river temperature predictions. Because heat fluxes at the air-water interface become increasingly dominant at low flows and these fluxes are sensitive to parameters representing the water surface area to volume ratio, similar to temperate systems, we expect that high-resolution representations of stream geometry and hydraulics are important both for accurate flux and residence time estimates. Furthermore, given the highly dynamic nature of flows in arctic basins, we anticipate that detailed information regarding spatially variable hydraulic characteristics (e.g., channel width, depth, and velocity) is critical for accurate predictions in low arctic rivers through a large range of flow conditions. Upon identifying key processes controlling

  13. Petroleum prospectivity of the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Grantz, A.; Hart, P.E.

    2012-01-01

    Reconnaissance seismic reflection data indicate that Canada Basin is a >700,000 sq. km. remnant of the Amerasia Basin of the Arctic Ocean that lies south of the Alpha-Mendeleev Large Igneous Province, which was constructed across the northern part of the Amerasia Basin between about 127 and 89-83.5 Ma. Canada Basin was filled by Early Jurassic to Holocene detritus from the Beaufort-Mackenzie Deltaic System, which drains the northern third of interior North America, with sizable contributions from Alaska and Northwest Canada. The basin contains roughly 5 or 6 million cubic km of sediment. Three fourths or more of this volume generates low amplitude seismic reflections, interpreted to represent hemipelagic deposits, which contain lenses to extensive interbeds of moderate amplitude reflections interpreted to represent unconfined turbidite and amalgamated channel deposits.Extrapolation from Arctic Alaska and Northwest Canada suggests that three fourths of the section in Canada Basin is correlative with stratigraphic sequences in these areas that contain intervals of hydrocarbon source rocks. In addition, worldwide heat flow averages suggest that about two thirds of Canada Basin lies in the oil or gas windows. Structural, stratigraphic and combined structural and stratigraphic features of local to regional occurrence offer exploration targets in Canada Basin, and at least one of these contains bright spots. However, deep water (to almost 4000 m), remoteness from harbors and markets, and thick accumulations of seasonal to permanent sea ice (until its possible removal by global warming later this century) will require the discovery of very large deposits for commercial success in most parts of Canada Basin. ?? 2011 Elsevier Ltd.

  14. Equations for estimating timber volume in the region of the River Basin of Ituxi, Lábrea, Amazon, Brazil Equações para estimativa de volume de madeira para a região da bacia do Rio Ituxi, Lábrea, AM

    Directory of Open Access Journals (Sweden)

    Fabio Thaines

    2010-12-01

    Full Text Available

    To quantify the stock of commercial timber in forests demands efficient methods, making possible to estimate efficiently and accurately the present and future timber volume. The aim of this work was to  adjust the mathematical models used to estimate timber volume, allowing the determination of the timber potential of a region with greater accuracy and lower cost. The study was conducted at Lábrea, State of  Amazonas, Brazil in an area of 6,000 ha, inserted in the Project Forest Management Seringal Iracema II. The forest is predominantly dense with emergent trees, also with the occurrence of open forest with bamboo and palms. For the process of adjusting the models to estimate the volume of commercial timber, 141 trees of commercial species were cubed by Smalian method. The equations developed for the Forest Management Project Seringal Iracema II are valid for diameters between 50 cm and 140 cm and for forests with similar structure; to standing trees due to its simplicity and accuracy, the best equation was Kopezki-Gehrardt (V = - 0.6870 + 0.00103 d²; for felling trees or for studies of biomass and carbon stock, the equation indicated is Schumacher-Hall (LnV = -9.5452 + 2.12837 Ln (d + 0.72209Ln (h.

    doi: 10.4336/2010.pfb.30.64.283

    A necessidade de quantificação do estoque de matéria-prima florestal, em floresta nativa, conduz para a busca de métodos eficientes de estimativa do volume de madeira, que possibilitem quantificar o estoque presente e futuro de maneira eficiente e precisa. O objetivo desse trabalho foi ajustar modelos matemáticos, para estimativa de volume comercial de madeira, permitindo a determinação do potencial madeireiro de uma região, com maior precisão e menor custo. O estudo foi realizado no Município de Lábrea, AM, em uma área de 6 mil ha, inserida no Projeto de Manejo Florestal Seringal Iracema II. A floresta é predominantemente densa com árvores emergentes, também com ocorrência de Foresta

  15. Water quality performance of a batch-type stormwater detention basin.

    Science.gov (United States)

    Middleton, John R; Barrett, Michael E

    2008-02-01

    The objective of this research was to modify an extended detention basin to provide batch treatment of stormwater runoff. An automated valve/controller was developed and placed on the outlet of a detention basin in Austin, Texas, which allowed the water quality volume to be retained in the basin for a preset length of time. The influent and effluent of the modified basin were monitored for total suspended solids (TSS), nutrients, chemical oxygen demand (COD), and total and dissolved metals. Statistically significant removal of total metals, COD, total nitrogen, total phosphorus, and TSS was observed, with a discharge event mean TSS concentration of 7 mg/L and a TSS removal efficiency of 91%. The modified basin has substantially better pollutant removal than conventional extended detention basins and is comparable with that of Austin sand filters, which are a common structural stormwater treatment system in the Austin area. The valve also can be used to isolate hazardous material spills.

  16. Assessment of undiscovered oil and gas resources of the North Sakhalin Basin Province, Russia, 2011

    Science.gov (United States)

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.; Cook, Troy A.; Tennyson, Marilyn E.

    2011-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the North Sakhalin Basin Province of Russia. The mean volumes were estimated at 5.3 billion barrels of crude oil, 43.8 trillion cubic feet of natural gas, and 0.8 billion barrels of natural gas liquids.

  17. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lake and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down

  18. Modifed Great Basin Extent (Buffered)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Two different great basin perimeter files were intersected and dissolved using ArcGIS 10.2.2 to create the outer perimeter of the great basin for use modeling...

  19. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    Motivation RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis...... of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  20. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  1. Single-basined choice

    NARCIS (Netherlands)

    Bossert, W.; Peters, H.J.M.

    2013-01-01

    Single-basined preferences generalize single-dipped preferences by allowing for multiple worst elements. These preferences have played an important role in areas such as voting, strategy-proofness and matching problems. We examine the notion of single-basinedness in a choice-theoretic setting. In co

  2. Renormalized Volume

    CERN Document Server

    Gover, A Rod

    2016-01-01

    For any conformally compact manifold with hypersurface boundary we define a canonical renormalized volume functional and compute an explicit, holographic formula for the corresponding anomaly. For the special case of asymptotically Einstein manifolds, our method recovers the known results. The anomaly does not depend on any particular choice of regulator, but the coefficients of divergences do. We give explicit formulae for these divergences valid for any choice of regulating hypersurface; these should be relevant to recent studies of quantum corrections to entanglement entropies. The anomaly is expressed as a conformally invariant integral of a local Q-curvature that generalizes the Branson Q-curvature by including data of the embedding. In each dimension this canonically defines a higher dimensional generalization of the Willmore energy/rigid string action. We show that the variation of these energy functionals is exactly the obstruction to solving a singular Yamabe type problem with boundary data along the...

  3. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    Science.gov (United States)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream

  4. Assessment of undiscovered oil and gas resources of the Dnieper-Donets Basin Province and Pripyat Basin Province, Russia, Ukraine, and Belarus, 2010

    Science.gov (United States)

    Klett, T.R.

    2011-01-01

    The U.S. Geological Survey, using a geology-based assessment methodology, estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 84 million barrels of crude oil, 4.7 trillion cubic feet of natural gas, and 130 million barrels of natural gas liquids for the Dnieper-Donets Basin Province and 39 million barrels of crude oil, 48 billion cubic feet of natural gas, and 1 million barrels of natural gas liquids for the Pripyat Basin Province. The assessments are part of a program to estimate these resources for priority basins throughout the world.

  5. Geology and hydrocarbon potential of the Oued Mya basin, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Benamrane, O.; Messaoudi, M.; Messelles, H. (Sonatrach Division Exploration, Algiers (Algeria))

    1993-09-01

    The Oued Mya hydrocarbon system is located in the Sahara basin. It is one of the best producing basins in Algeria, along with the Ghadames and Illizi basins. The stratigraphic section consists of Paleozoic and Mesozoic, and is about 5000 m thick. This intracratonic basin is limited to the north by the Toughourt saddle, and to the west and east it is flanked by regional arches, Allal-Tilghemt and Amguid-Hassi Messaoud, which culminate in the super giant Hassi Messaoud and Hassi R'mel hydrocarbon accumulations, respectively, producing oil from the Cambrian sands and gas from the Trissic sands. The primary source rock in this basin is lower Silurian shale, with an average thickness of 50 m and a total organic carbon of 6% (14% in some cases). Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also source rocks, but in a second order. Clastic reservoirs are in the Trissic sequence, which is mainly fluvial deposits with complex alluvial channels, and the main target in the basin. Clastic reservoirs in the lower Devonian section have a good hydrocarbon potential east of the basin through a southwest-northwest orientation. The Late Trissic-Early Jurassic evaporites that overlie the Triassic clastic interval and extend over the entire Oued Mya basin, are considered to be a super-seal evaporite package, which consists predominantly of anhydrite and halite. For paleozoic targets, a large number of potential seals exist within the stratigraphic column. This super seal does not present oil dismigration possibilities. We can infer that a large amount of the oil generated by the Silurian source rock from the beginning of Cretaceous until now still is not discovered and significantly greater volumes could be trapped within structure closures and mixed or stratigraphic traps related to the fluvial Triassic sandstones, marine Devonian sands, and Cambrian-Ordovician reservoirs.

  6. Frontier petroleum basins of Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Keith, J.F. Jr.; Perez, V.E.

    1989-03-01

    The frontier basins of Colombia with hydrocarbon potential are numerous, have varying geological histories, and are in different stages of exploration development. In this paper, sedimentary or structural basins are classified as frontier petroleum basins if commercial discoveries of hydrocarbons are lacking, if the basin has not attained a high degree of exploration development, or if a new play concept has been perceived or developed for a portion of a mature exploration basin. Using these criteria for classification, the authors discuss the Cauca-Patia Choco-Pacifico, and Lower Magdalena basin complexes; the Cordillera Oriental foreland basin; and the Cesar-Rancheria, Sabana, and Amazonas basins. A comprehensive geological and structural setting of each of these frontier basins will be presented. The depositional and tectonic evolution of the basins will be highlighted, and the play concepts for each will be inventoried, catalogued, and categorized as to whether they are theoretical or established. The discussion of the available plays in each of these basins will include the main play concept elements of reservoirs traps, seals, source rocks, maturation, and timing. When detailed data permit, the reservoir and trap geometry will be presented.

  7. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  8. MONTHLY AVERAGE FLOW IN RÂUL NEGRU HYDROGRAPHIC BASIN

    Directory of Open Access Journals (Sweden)

    VIGH MELINDA

    2014-03-01

    Full Text Available Râul Negru hydrographic basin represents a well individualised and relatively homogenous physical-geographical unity from Braşov Depression. The flow is controlled by six hydrometric stations placed on the main collector and on two of the most powerful tributaries. Our analysis period is represented by the last 25 years (1988 - 2012 and it’s acceptable for make pertinent conclusions. The maximum discharge month is April, that it’s placed in the high flow period: March – June. Minimum discharges appear in November - because of the lack of pluvial precipitations; in January because of high solid precipitations and because of water volume retention in ice. Extreme discharge frequencies vary according to their position: in the mountain area – small basin surface; into a depression – high basin surface. Variation coefficients point out very similar variation principles, showing a relative homogeneity of flow processes.

  9. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  10. Geology and hydrocarbon occurrences in the Ghadames Basin, Algeria, Tunisia, Libya

    Energy Technology Data Exchange (ETDEWEB)

    Echikh, K. [Petroleum Exploration Consulting Ltd., London (United Kingdom)

    1998-12-31

    The Ghadames Basin is a large intra-cratonic basin, covering portions of Algeria, Tunisia and Libya. The three countries are independently conducting petroleum exploration in their portions of the basin, using different play concepts and consequently obtaining different exploration results. This paper presents the first published basin-wide view of petroleum stratigraphy and play types. Some 700 exploratory wells have been drilled in the basin, resulting in the discovery of at least 150 oil pools with 9500 MMBO (million barrels of oil) in place. Most wells were located in the structurally higher parts of the basin, with deeper portions being less explored because of shifting dune conditions and an expectation of reservoir thinning into the basin centre. Silurian and Devonian source rocks occur across large parts of the basin and have generated volumes of hydrocarbon orders of magnitude above those discovered. The numerous structural phases (Taconic, Caledonian, Hercynian and Austrian) that have affected the basin have had important implications for depocentre migration, structural style, and for patterns of trap formation, alteration and destruction. (author)

  11. The Neuquén basin, Argentina: A case study in sequence stratigraphy and basin dynamics

    Institute of Scientific and Technical Information of China (English)

    Alberto C. Riccardi

    2006-01-01

    @@ As stated in one of the contributions to this volume, the Neuquen Basin-covering more than 160,000 km2 between c. 32° and 42° S and 68° and 71° W, and containing a Meso-zoic-Cenozoic sedimentary succession at least 7 km thick-is perhaps one of the most thoroughly prospected areas in Argentina. Its geological study goes back to the 19th Century, and shows an exponential increase throughout the 20th, when it became the main source of Argentine oil and gas production.

  12. Assessment of undiscovered oil and gas resources of the West Siberian Basin Province, Russia, 2010

    Science.gov (United States)

    Klett, T.R.

    2011-01-01

    The U.S. Geological Survey, using a geology-based assessment methodology, estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 8 billion barrels of crude oil, 670 trillion cubic feet of natural gas, and 21 billion barrels of natural gas liquids for the West Siberian Basin Province in Russia as part of a program to estimate petroleum resources for priority basins throughout the world.

  13. Intracontinental basins and strong earthquakes

    Institute of Scientific and Technical Information of China (English)

    邓起东; 高孟潭; 赵新平; 吴建春

    2004-01-01

    The September 17, 1303 Hongtong M=8 earthquake occurred in Linfen basin of Shanxi down-faulted basin zone. It is the first recorded M=8 earthquake since the Chinese historical seismic records had started and is a great earthquake occurring in the active intracontinental basin. We had held a Meeting of the 700th Anniversary of the 1303 Hongtong M=8 Earthquake in Shanxi and a Symposium on Intracontinental Basins and Strong Earthquakes in Taiyuan City of Shanxi Province on September 17~18, 2003. The articles presented on the symposium discussed the relationships between active intracontinental basins of different properties, developed in different regions, including tensional graben and semi-graben basins in tensile tectonic regions, compression-depression basins and foreland basins in compressive tectonic regions and pull-apart basins in strike-slip tectonic zones, and strong earthquakes in China. In this article we make a brief summary of some problems. The articles published in this special issue are a part of the articles presented on the symposium.

  14. Basin Depth Control on the Autogenic Timescale of Fluviodeltaic Systems

    Science.gov (United States)

    Carlson, B.; Kim, W.; Piliouras, A.

    2013-12-01

    ABSTRACT Autogenic processes are inherent processes in sediment transport that influence landscape building and leave distinct signatures in the sedimentary record. It is of great interest to understand autogenic processes in order to decouple internal processes from external controls, such as tectonics or climate change. Here we present results from a series of delta-building experiments to determine the variability of the fluviodeltaic autogenic timescale in response to varying basin water depth. This internal timescale was measured as the time that is required for the delta topset to be reworked through a full cycle of storage and release of sediment. The topset aggrades by fluvial sedimentation until it reaches a maximum slope, at which point a large amount of sediment starts to release, typically resulting in strong channelization. This is followed by a period of avulsions, lateral migration, and backfilling of channels on the topset. These storage and release events are repeated. We used time-lapse images to track shoreline positions and observe changes in progradation rate. The changes in topset topography were also used to determine storage and release duration. The experimental results indicate that the autogenic timescales generally increase with increasing basin water depth. These observations may be explained by the amount of time required to build a lobe with an area large enough to trigger a switch from a lobe-building release event to a backfilling storage event. Individual lobes show a similar surface area regardless of basin depth in the experiments. Deeper basin depth simply requires a larger volume to be filled within this area, thus more time to complete one autogenic process. However, when channel depth is significantly smaller than basin depth, e.g., in very deep basins, stochastic variability in sediment transport and channel lateral mobility outweighs the autogenic cyclicity. This study suggests that internal dynamics and its stratigraphic

  15. Morphometric analysis of the Marmara Sea river basins, Turkey

    Science.gov (United States)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    (GIS). This study shows that morphometric analysis of the basins in regional level are very important to understand general morphological characteristics of the basins. In this case, tectonic and lithological conditions of the basins have greatly affected the morphometric characteristics of the north and south basins of the Marmara Sea. References Abrahams, AD. 1984. Channel Networks: A Geomorphological Perspective. Water Resources Research, Volume 20, Issue 2, pages 161-188. Horton, R.E. 1932. Drainage basin characteristics. Trans Am Geophys Union 13:350-361. Keller, E.A., Pinter, N. 2002. Active Tectonics Earthquakes, Uplift, and Landscape, Second Edition, Prentice Hall, New Jersey. Ozdemir H., Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, vol.56, pp.1405-1415. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646. Strahler, A.N. 1957. Quantitative geomorphology of drainage and channel networks. In: Chow YT (ed) Handbook of appliecl hydrology. Me Graw Hill Book Company, New York. Verstappen, H.Th. 1983. Applied geomorphology. ITC, Enschede.

  16. Estancia Basin dynamic water budget.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Richard P.

    2004-09-01

    The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflow from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by

  17. Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

    2012-09-01

    Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

  18. Heavy Oil and Natural Bitumen Resources in Geological Basins of the World

    Science.gov (United States)

    Meyer, Richard F.; Attanasi, E.D.; Freeman, P.A.

    2007-01-01

    Heavy oil and natural bitumen are oils set apart by their high viscosity (resistance to flow) and high density (low API gravity). These attributes reflect the invariable presence of up to 50 weight percent asphaltenes, very high molecular weight hydrocarbon molecules incorporating many heteroatoms in their lattices. Almost all heavy oil and natural bitumen are alteration products of conventional oil. Total resources of heavy oil in known accumulations are 3,396 billion barrels of original oil in place, of which 30 billion barrels are included as prospective additional oil. The total natural bitumen resource in known accumulations amounts to 5,505 billion barrels of oil originally in place, which includes 993 billion barrels as prospective additional oil. This resource is distributed in 192 basins containing heavy oil and 89 basins with natural bitumen. Of the nine basic Klemme basin types, some with subdivisions, the most prolific by far for known heavy oil and natural bitumen volumes are continental multicyclic basins, either basins on the craton margin or closed basins along convergent plate margins. The former includes 47 percent of the natural bitumen, the latter 47 percent of the heavy oil and 46 percent of the natural bitumen. Little if any heavy oil occurs in fore-arc basins, and natural bitumen does not occur in either fore-arc or delta basins.

  19. USING SRTM TO QUANTIFY SIZE PARAMETERS AND SPATIAL DISTRIBUTION OF ENDORHEIC BASINS IN SOUTHERN SOUTH AMERICA

    Directory of Open Access Journals (Sweden)

    Ralf Hesse

    2008-08-01

    Full Text Available The SRTM data set is the highest resolution DEM with global or continental coverage. It is therefore theDEM of choice for continental-scale geomorphological mapping and quantitative analysis. In this study,SRTM data are used for the identification and characterisation of endorheic basins in southern SouthAmerica (south of 19°S. The results show the feasibility of continental-scale quantitative geomorphologybased on SRTM data and provide insights into the distribution of closed basins. The largest endorheicbasin is located in the Puna region and consists of several interconnected sub-basins. This basin accountsfor 38.6 % (7877 km3 of the total volume of the endorheic basins identified in this study. Analyses of thegeographic distribution show a narrow longitudinal distribution between 64.5 and 71.5° W and a multimodallatitudinal distribution which is characterised by two groups of basins at 22.5–27.5°S and 37.5–50.0° Sand an almost complete absence of basins between 27.5 and 37.5° S. Problems and sources ofmisinterpretation arising from data quality and resolution are discussed. Further research, targeting in particularthe genesis and potential for paleoenvironmental reconstruction of closed basins in southern Argentina, iscalled for.

  20. A Physically Based Runoff Model Analysis of the Querétaro River Basin

    Directory of Open Access Journals (Sweden)

    Carlos Javier Villa Alvarado

    2014-01-01

    Full Text Available Today the knowledge of physical parameters of a basin is essential to know adequately the rainfall-runoff process; it is well known that the specific characteristics of each basin such as temperature, geographical location, and elevation above sea level affect the maximum discharge and the basin time response. In this paper a physically based model has been applied, to analyze water balance by evaluating the volume rainfall-runoff using SHETRAN and hydrometric data measurements in 2003. The results have been compared with five ETp different methodologies in the Querétaro river basin in central Mexico. With these results the main effort of the authorities should be directed to better control of land-use changes and to working permanently in the analysis of the related parameters, which will have a similar behavior to changes currently being introduced and presented in observed values in this basin. This methodology can be a strong base for sustainable water management in a basin, the prognosis and effect of land-use changes, and availability of water and also can be used to determine application of known basin parameters, basically depending on land-use, land-use changes, and climatological database to determine the water balance in a basin.

  1. GRACE captures basin mass dynamic changes in China based on a multi-basin inversion method

    Science.gov (United States)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-04-01

    Complex landform, miscellaneous climate and enormous population have enriched China with geophysical phenomena ranging from water depletion in the underground to glaciers retreat on the high mountains and have aroused large scientific interests. This paper, utilizing gravity observations 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to make a comprehensive estimation of mass status in 16 drainage basins in the whole region. We proposed a multi-basin inversion method, which is featured by resistance to the stripe noise and ability to alleviate signal attenuation due to truncation and smoothing of GRACE data. The results show both positive and negative trends: there is a tremendous mass accumulation spreading from the Tibetan plateau (12.2 ± 0.6 Gt/yr) to the Yangtze River (7.6 ± 1.3 Gt/yr), and further to the southeast coastal areas, which is suggested to involve an increase in the ground water storage, lake and reservoir water volume and likely materials flowed in by tectonic process; a mass loss is occurring in Huang-Huai-Hai-Liao River Basin (-10.5 ± 0.8 Gt/yr), as well as the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 0.9 Gt/yr) and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), which is a result of groundwater pumping and glacier melting. The groundwater depletion area is well consistent with the distribution of land subsidence in North China. In the end, we find intensified precipitation can alter the local water supply and GRACE is proficient to capture this dynamics, which could be instructive for the South-to-North Water Diversion - one China's giant hydrologic project.

  2. Meteorological, stream-discharge, and water-quality data for 1986 through 1991 from two small basins in central Nevada

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, P.W.; Oliver, T.A.

    1994-04-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is investigating the volcanic tuffs of Yucca Mountain, Nevada, for their suitability as storage sites for nuclear waste. Two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to the ground water. The semiarid 3 Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. This publication presents the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Data were collected throughout the two basins. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins. Meteorological data are available from the lower sites from the winter of 1986 through the fall of 1991. Periods of data collection were shorter for additional sites in the basin.

  3. Luminescence dating of ancient Darhad basin, Mongolia

    Science.gov (United States)

    Cheul Kim, Jin; Yi, Sangheon; Lim, Jaesoo; Kim, Ju-Yong

    2016-04-01

    . Thus, age control on existing 14C ages from this site is limited, chronological interpretation based on the 14C ages is still incomplete in Hodon outcrop sediments. OSL (Optically Stimulated Luminescence) is an alternative method for dating to overcome the problems associated with 14C methods. OSL has been extensively used for dating arctic sediments (Thomas et al., 2006; more). Previous optical ages on Darhad paleolake sediments obtained using IRSL (Infrared-stimulated luminescence) on feldspars (Gillespie et al., 2008; Batbaatar et al., 2009). Feldspar has much brighter luminescence than quartz, while the OSL signal of feldspars bleaches at least one order of magnitude slower than the OSL signal of quartz (Godfrey-Smith et al., 1988; Huntly and Lamothe, 2001; Mauz and Bungenstock, 2007; Kim et al., 2012). In glaciofluvial, glaciolacustrine environments, inadequate bleaching of the OSL signal is known to be a potential problem of burial ages (Thomas et al., 2006). OSL dating of permafrost deposits may also involve uncertainty about the inhomogeneous radiation field surrounding the dosimeter and the absorption of ionizing energy alternately by water and ice in a not-constant pore volume (Haeberli et al., 2003). In this study, we test the applicability of quartz OSL dating for the uppermost paleolake sediments in the Hodon outcrop of the Darhad basin. The OSL results were systematically compared with additional radiocarbon ages from wood fragments to conclude the reliability of the OSL dates and to construct intensive chronology for Late-Pleistocene Darhad paleolake. To evaluate the time of recent expansion of the paleolake, the northern piedmont (Talyn outcrop) of the basin was dated by OSL.

  4. Hydroclimatological Aspects of the Extreme 2011 Assiniboine River Basin Flood

    Science.gov (United States)

    Brimelow, J.; Szeto, K.; Bonsal, B. R.; Hanesiak, J.; Kochtubajda, B.; Stewart, R. E.

    2014-12-01

    In the spring and early summer of 2011, the Assiniboine River Basin in Canada experienced an extreme flood that was unprecedented in terms of duration and volume of water. The flood had significant socioeconomic impacts and caused over one billion dollars in damage. Contrary to what one might expect for such an extreme flood, individual precipitation events before and during the 2011 flood were not extreme; instead, it was the cumulative impact and timing of precipitation events going back to the summer of 2010 that played a key role in the 2011 flood. The summer and fall of 2010 were exceptionally wet, resulting in soil moisture levels being much above normal at the time of freeze up. This was followed by above-average precipitation during the winter of 2010-2011, and record-breaking basin-averaged snow-water equivalent values in March and April 2011. Abnormally cold temperatures in March delayed the spring melt by about two weeks, with the result that the above-average seasonal melt freshet occurred close to the onset of abnormally heavy rains in May and June. The large-scale atmospheric flow during May and June 2011 favoured increased cyclone activity over the central and northern U.S., which produced an anomalously large number of heavy rainfall events over the basin. All of these factors combined to generate extreme surface runoff and flooding. We used JRA-55 reanalysis data to quantify the relative importance of snowmelt, soil moisture and spring precipitation in contributing to the unprecedented flood and to demonstrate how the 2011 flood was unique compared to previous floods in the basin. Data and research from this study can be used to validate and improve flood forecasting techniques over this important basin; our findings also raise important questions regarding the impact of climate change on basins that experience pluvial and nival flooding.

  5. K-Basins design guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

  6. Hydrogeology of the Socorro and La Jencia basins, Socorro County, New Mexico

    Science.gov (United States)

    Anderholm, Scott K.

    1987-01-01

    The Socorro and La Jencia Basins are located in central Socorro County, New Mexico. The principal aquifer system in the Socorro and La Jencia Basins consists of, in descending order, the shallow aquifer, the Popotosa confining bed, and the Popotosa aquifer. The minor aquifer systems, which are dominant along the basin margins, are the Socorro volcanics aquifer system and the Mesozoic-Paleozoic aquifer system. On the east side of the Socorro Basin, water enters the principal aquifer system from the Mesozoic-Paleozoic aquifer system. On the west side of the Socorro Basin, groundwater flows from the principal aquifer system in La Jencia Basin eastward to the principal aquifer system in the Socorro Basin. The volume of this flow is limited by the permeability of the minor aquifer systems and the Popotosa confining bed. A water budget indicates that if no change in groundwater storage occurs in the Socorro Basin, groundwater inflow to the basin is about 53,000 acre-feet per year greater than groundwater outflow. Dissolution of gypsum, calcite, and dolomite seems to control water quality in the Mesozoic-Paleozoic aquifer. Water with a chloride concentration of as much as 1,000 milligrams per liter and a specific conductance of as much as 6,700 microsiemens per centimeter at 25 C is present in the northern and southern parts of the Socorro Basin. These large chloride concentrations may indicate upward movement of water from deeper in the basin in these areas. The water with the large chloride concentration in the southern part of the basin also may be caused by leakage of geothermal waters along the Capitan Lineament. In the central part of the Socorro Basin, infiltration of excess irrigation water and inflow of groundwater from the basin margins control water quality. In this area, specific conductance generally is less than 1,000 microsiemens per centimeter. Water in La Jencia Basin generally is of the calcium sodium bicarbonate type with specific conductance less than

  7. Geologic Basin Boundaries (Basins_GHGRP) GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a coverage shapefile of geologic basin boundaries which are used by EPA's Greenhouse Gas Reporting Program. For onshore production, the "facility" includes...

  8. The Amazon basin in transition.

    Science.gov (United States)

    Davidson, Eric A; de Araújo, Alessandro C; Artaxo, Paulo; Balch, Jennifer K; Brown, I Foster; C Bustamante, Mercedes M; Coe, Michael T; DeFries, Ruth S; Keller, Michael; Longo, Marcos; Munger, J William; Schroeder, Wilfrid; Soares-Filho, Britaldo S; Souza, Carlos M; Wofsy, Steven C

    2012-01-18

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime. These signs include changing energy and water cycles in the southern and eastern portions of the Amazon basin.

  9. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data

    Directory of Open Access Journals (Sweden)

    M. Shrestha

    2013-09-01

    Full Text Available Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modeling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimizes an altitude-based snowfall correction factor (Cfsnow. This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS. The Shuffled Complex Evolution – University of Arizona automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash–Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002–2003, obtaining an optimized Cfsnow of 0.0007 m−1. For validation purposes, the optimized Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated vs. observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction. Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly-gauged basins, where elevation dependence of snowfall

  10. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data

    Science.gov (United States)

    Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y.

    2014-02-01

    Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modelling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimises an altitude-based snowfall correction factor (Cfsnow). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution-University of Arizona (SCE-UA) automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash-Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002-2003), obtaining an optimised Cfsnow of 0.0007 m-1. For validation purposes, the optimised Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated versus observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly gauged basins, where elevation dependence of snowfall amount is

  11. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data

    Science.gov (United States)

    Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y.

    2013-09-01

    Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modeling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimizes an altitude-based snowfall correction factor (Cfsnow). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution - University of Arizona automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash-Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002-2003), obtaining an optimized Cfsnow of 0.0007 m-1. For validation purposes, the optimized Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated vs. observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly-gauged basins, where elevation dependence of snowfall amount is strong.

  12. Ovarian volume throughout life

    DEFF Research Database (Denmark)

    Kelsey, Thomas W; Dodwell, Sarah K; Wilkinson, A Graham

    2013-01-01

    cancer. To date there is no normative model of ovarian volume throughout life. By searching the published literature for ovarian volume in healthy females, and using our own data from multiple sources (combined n=59,994) we have generated and robustly validated the first model of ovarian volume from...... to about 2.8 mL (95% CI 2.7-2.9 mL) at the menopause and smaller volumes thereafter. Our model allows us to generate normal values and ranges for ovarian volume throughout life. This is the first validated normative model of ovarian volume from conception to old age; it will be of use in the diagnosis...

  13. Trip report Rainwater Basin Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary a trip to Rainwater Basin Wetland Management District in 1991, and focuses on the hydrology and soil habitat types. It is part of the...

  14. Allegheny County Basin Outlines Map

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This basins dataset was created to initiate regional watershed approaches with respect to sewer rehabilitation. If viewing this description on the Western...

  15. Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available To reveal the revolution law of hydrologic extremes in the next 50 years and analyze the impact of climate change on hydrologic extremes, the following main works were carried on: firstly, the long duration (15 d, 30 d, and 60 d rainfall extremes according to observed time-series and forecast time-series by dynamical climate model product (BCC-CSM-1.1 were deduced, respectively, on the basis that the quantitative estimation of the impact of climate change on rainfall extremes was conducted; secondly, the SWAT model was used to deduce design flood with the input of design rainfall for the next 50 years. On this basis, quantitative estimation of the impact of climate change on long duration flood volume extremes was conducted. It indicates that (1 the value of long duration rainfall extremes for given probabilities (1%, 2%, 5%, and 10% of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years and (2 long duration flood volume extremes of given probabilities of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years. The conclusions may provide technical supports for basin level planning of flood control and hydropower production.

  16. Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011

    Science.gov (United States)

    Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael

    2011-01-01

    Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.

  17. Performance of a 'Transitioned' Infiltration Basin Part 2: Nitrogen and Phosphorus Removals.

    Science.gov (United States)

    Natarajan, Poornima; Davis, Allen P

    2016-04-01

    Infiltration basins have been widely used for stormwater runoff management. However, their longevity could be compromised over time, up to the point of operational failure. This research study showed that a 'failed' infiltration basin can 'transition' into a wetpond/wetland-like practice and provide water quality benefits. Performance evaluation over three years showed that the transitioned infiltration basin reduced the discharge event mean concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), NOx-N (nitrate+nitrite), total Kjeldahl nitrogen (TKN), organic-N (ON), and total nitrogen (TN) during most storm events. Exports of TP, DP, ON, and TKN masses were observed only during the coldest periods. The cumulative mass removals were 61% TP, 53% DP, 63% PP, 79% NOx-N, 51% TKN, 45% ON, and 64% TN. The dry-weather nutrient concentrations combined with the environmental conditions at the transitioned basin indicated that sedimentation, adsorption, denitrification, and volume reduction were the removal mechanisms.

  18. Mean nuclear volume

    DEFF Research Database (Denmark)

    Mogensen, O.; Sørensen, Flemming Brandt; Bichel, P.

    1999-01-01

    We evaluated the following nine parameters with respect to their prognostic value in females with endometrial cancer: four stereologic parameters [mean nuclear volume (MNV), nuclear volume fraction, nuclear index and mitotic index], the immunohistochemical expression of cancer antigen (CA125...

  19. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Science.gov (United States)

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  20. Quantification of denudation of Iberian basins, the erosional signal of continental scale capture processes

    Science.gov (United States)

    Antón, Loreto; Muñoz Martín, Alfonso; De Vicente, Gerardo

    2016-04-01

    In central and northern Iberia, the development of the present-day drainage network was related to the opening of formerly closed fluvial systems developed within the ancient Cenozoic basins. The lowering of base level, induced by tectonic activity, fluvial capture or eustatic or climate variability, was transmitted upstream along fluvial channels in the form of erosional waves. For the main foreland basins in Iberia (Duero, Tajo and Ebro Basins) the opening of an outward drainage system leads to high incision and denudation rates, within intrabasinal areas. These processes had main influence in the evolution of the Iberian topography, since the late Cenozoic. Although, key questions on the timing and processes involved in the basin opening, as well as the influence of tectonics on it, remain open. Signals of this change in drainage conditions are still preserved in some areas, and can be analyzed by the study of longitudinal profile shapes, and by the analysis of the present topography and the spatial distribution of surface erosion associated to the exorheic history of the basins. The analysis of the denudation processes for these main basins, through the reconstruction of the former (Late Miocene) sedimentary infill, provides a quantification of the sediment fluxes in response to the drainage opening. Maps of denudation are performed for the different basins, and an integrated analysis of erosional volumes and spatial distribution of dissection are approach in terms of timing, tectonic influences and the fluvial response to the captures. The analyses of the longitudinal river profiles and the erosional patterns and volumes within the main Iberian Basins, seems to highlight important questions about the different response of the studied catchments, which may help to understand the processes and timing involved in the post Neogene drainage, and the topographic evolution of the former internally drained central Iberia.

  1. A volume law for specification of linear channel storage for estimation of large floods

    Science.gov (United States)

    Zhang, Shangyou; Cordery, Ian; Sharma, Ashish

    2000-02-01

    A method of estimating large floods using a linear storage-routing approach is presented. The differences between the proposed approach and those traditionally used are (1) that the flood producing properties of basins are represented by a linear system, (2) the storage parameters of the distributed model are determined using a volume law which, unlike other storage-routing models, accounts for the distribution of storage in natural basins, and (3) the basin outflow hydrograph is determined analytically and expressed in a succinct mathematical form. The single model parameter is estimated from observed data without direct fitting, unlike most traditionally used methods. The model was tested by showing it could reproduce observed large floods on a number of basins. This paper compares the proposed approach with a traditionally used storage routing approach using observed flood data from the Hacking River basin in New South Wales, Australia. Results confirm the usefulness of the proposed approach for estimation of large floods.

  2. Assessment of undiscovered oil and gas resources of the Azov-Kuban Basin Province, Ukraine and Russia, 2010

    Science.gov (United States)

    Klett, T.R.

    2011-01-01

    The U.S. Geological Survey, using a geology-based assessment methodology, estimated mean volumes of technically recoverable, conventional, undiscovered petroleum resources at 218 million barrels of crude oil, 4.1 trillion cubic feet of natural gas, and 94 million barrels of natural gas liquids for the Azov-Kuban Basin Province as part of a program to estimate petroleum resources for priority basins throughout the world.

  3. Review and analysis of existing Alberta data on drinking water quality and treatment facilities for the Northern River basins study. Northern River Basins Study project report No. 55

    Energy Technology Data Exchange (ETDEWEB)

    Prince, D.S.; Smith, D.W.; Stanley, S.J.

    1995-12-31

    This report summarizes the results of a project conducted to gather existing information about drinking water quality, drinking water facilities, and water treatment effectiveness in the area covered by the Northern River Basins Study (Peace, Slave, and Athabasca River basins in northern Alberta). The report includes a comparison of water treatment performance to the Canada Drinking Water Quality Guidelines. The appendices contain summaries of parameters in the treated water survey, of the comparisons between raw and treated water, and of samples not meeting the Guidelines, as well as an inventory of treatment facilities giving facility name and location, water source, community population, treatment method used, raw storage capacity, and treated volumes.

  4. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  5. Reserve estimates in western basins: Unita Basin. Final report, Part III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This study characterizes an extremely large gas resource located in low permeability, sandstone reservoirs of the Mesaverde group and Wasatch formation in the Uinta Basin, Utah. Total in-place resource is estimated at 395.5 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 3.8 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Two plays were included in this study and each was separately analyzed in terms of its tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources; in other words, to convert those resources to economically recoverable reserves. About 82.1% of the total evaluated resource is contained within sandstones that have extremely poor reservoir properties with permeabilities considered too low for commerciality using current frac technology.

  6. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2017-03-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  7. Integrated Hydrosystem Modeling of the California Basin

    Science.gov (United States)

    Davison, J. H.; Hwang, H. T.; Sudicky, E. A.; Mallia, D.; Lin, J. C.

    2015-12-01

    The Western United States is facing one of the worst droughts on record. Climate change projections predict warmer temperatures, higher evapotranspiration rates, and no foreseeable increase in precipitation. California, in particular, has supplemented their decreased surface water supplies by mining deep groundwater. However, this supply of groundwater is limited, especially with reduced recharge. These combined factors place California's water-demanding society at dire risk. In an effort to quantify California's risks, we present a fully integrated water cycle model that captures the dynamics of the subsurface, land surface, and atmospheric domains over the entire California basin. Our water cycle model combines HydroGeoSphere (HGS), a 3-D control-volume finite element model that accommodates variably-saturated subsurface and surface water flow with evapotranspiration processes to the Weather Research and Forecasting (WRF) model, a 3-D finite difference nonhydrostatic mesoscale atmospheric simulator. The two-way coupling within our model, referred to as HGS-WRF, tightly integrates the water cycling processes by passing precipitation and potential evapotranspiration data from WRF to HGS, while exchanging actual evapotranspiration and soil saturation data from HGS to WRF. Furthermore, HGS-WRF implements a flexible coupling method that allows each model to use a unique mesh while maintaining mass conservation within and between domains. Our simulation replicated field measured evapotranspiration fluxes and showed a strong correlation between the soil saturation (depth to groundwater table) and latent heat fluxes. Altogether, the HGS-WRF California basin model is currently the most complete water resource simulation framework as it combines groundwater, surface water, the unsaturated zone, and the atmosphere into one coupled system.

  8. Water Accounting from Ungauged Basins

    Science.gov (United States)

    Bastiaanssen, W. G.; Savenije, H.

    2014-12-01

    Water scarcity is increasing globally. This requires a more accurate management of the water resources at river basin scale and understanding of withdrawals and return flows; both naturally and man-induced. Many basins and their tributaries are, however, ungauged or poorly gauged. This hampers sound planning and monitoring processes. While certain countries have developed clear guidelines and policies on data observatories and data sharing, other countries and their basin organization still have to start on developing data democracies. Water accounting quantifies flows, fluxes, stocks and consumptive use pertaining to every land use class in a river basin. The objective is to derive a knowledge base with certain minimum information that facilitates decision making. Water Accounting Plus (WA+) is a new method for water resources assessment reporting (www.wateraccounting.org). While the PUB framework has yielded several deterministic models for flow prediction, WA+ utilizes remote sensing data of rainfall, evaporation (including soil, water, vegetation and interception evaporation), soil moisture, water levels, land use and biomass production. Examples will be demonstrated that show how remote sensing and hydrological models can be smartly integrated for generating all the required input data into WA+. A standard water accounting system for all basins in the world - with a special emphasis on data scarce regions - is under development. First results of using remote sensing measurements and hydrological modeling as an alternative to expensive field data sets, will be presented and discussed.

  9. Estimating the volume of Alpine glacial lakes

    Science.gov (United States)

    Cook, S. J.; Quincey, D. J.

    2015-12-01

    Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated (r2 = 0.38) and that although lake volume and area are well correlated (r2 = 0.91), and indeed are auto-correlated, there are distinct outliers in the data set. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled data set to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.

  10. Quantifying Snow Volume Uncertainty from Repeat Terrestrial Laser Scanning Observations

    Science.gov (United States)

    Gadomski, P. J.; Hartzell, P. J.; Finnegan, D. C.; Glennie, C. L.; Deems, J. S.

    2014-12-01

    Terrestrial laser scanning (TLS) systems are capable of providing rapid, high density, 3D topographic measurements of snow surfaces from increasing standoff distances. By differencing snow surface with snow free measurements within a common scene, snow depths and volumes can be estimated. These data can support operational water management decision-making when combined with measured or modeled snow densities to estimate basin water content, evaluate in-situ data, or drive operational hydrologic models. In addition, change maps from differential TLS scans can also be used to support avalanche control operations to quantify loading patterns for both pre-control planning and post-control assessment. However, while methods for computing volume from TLS point cloud data are well documented, a rigorous quantification of the volumetric uncertainty has yet to be presented. Using repeat TLS data collected at the Arapahoe Basin Ski Area in Summit County, Colorado, we demonstrate the propagation of TLS point measurement and cloud registration uncertainties into 3D covariance matrices at the point level. The point covariances are then propagated through a volume computation to arrive at a single volume uncertainty value. Results from two volume computation methods are compared and the influence of data voids produced by occlusions examined.

  11. Geology, exploration status of Uruguay's sedimentary basins

    Energy Technology Data Exchange (ETDEWEB)

    Goso, C.; Santa Ana, H. de (Administracion Nacional de Combustibles, Alcohol y Portland (Uruguay))

    1994-02-07

    This article attempts to present the geological characteristics and tectonic and sedimentary evolution of Uruguayan basins and the extent to which they have been explored. Uruguay is on the Atlantic coast of South America. The country covers about 318,000 sq km, including offshore and onshore territories corresponding to more than 65% of the various sedimentary basins. Four basins underlie the country: the Norte basin, the Santa Lucia basin, the offshore Punta del Este basin, and the offshore-onshore Pelotas-Merin basin. The Norte basin is a Paleozoic basin while the others are Mesozoic basins. Each basin has been explored to a different extent, as this paper explains.

  12. Geothermal and Hydrocarbon Regimes, Northern Gulf of Mexico Basin

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Paul H.

    1975-01-01

    Geothermal heat flow in the Gulf basin is primarily a function of its hydrology. Water expelled from sediments with deepening burial and increasing overburden load escapes upward and toward the basin margin. Where it moves freely in the hydropressure zone, the basin is relatively cool; but where rapid sedimentation and contemporaneous faulting have retarded water loss from compacting sediments, the interstitial fluid pressure reflects a part of the overburden load, and the formation waters are superheated and geopressured. The geopressured zone is common below depths of about 3 km (9,600 ft) in the basin, beneath an area of 375,000 km{sup 2} (150,000 mi{sup 2}), and extends downward perhaps 15 km (50,000 ft) to the base of Cenozoic deposits. The upper boundary of the geopressured zone is the most important physical interface in the basin. Across it the head of formation water increases downward from a few hundred to several thousand feet above sea level; the geothermal gradient increases downward from 20° to 40° C/km to 100°C/km or more; the salinity of formation water decreases downward, commonly by 50,000 mg/l or more; and the porosity of shale and sand increases downward by 10 to 25 percent. Petroleum matures in geopressured clay at 140° to 220°F. Montmorillonite is dehydrated at 180° to 250°F; fresh water released may equal half the volume of the mineral altered. Molecular solubility in fresh water of the hydrocarbons in Gulf basin crude, under geopressured zone conditions, could account for petroleum resources of the basin. Exsolution of petroleum hydrocarbons near the geopressured zone boundary could account for observed occurrences. This geopressured zone is a natural pressure vessel from which superheated water of moderate salinity could be produced through wells, each yielding millions of gallons a day at pressures of several thousand pounds per square inch, and temperatures above 300°F. with considerable amounts of methane gas in solution. (63

  13. Testing for Basins of Wada.

    Science.gov (United States)

    Daza, Alvar; Wagemakers, Alexandre; Sanjuán, Miguel A F; Yorke, James A

    2015-11-10

    Nonlinear systems often give rise to fractal boundaries in phase space, hindering predictability. When a single boundary separates three or more different basins of attraction, we say that the set of basins has the Wada property and initial conditions near that boundary are even more unpredictable. Many physical systems of interest with this topological property appear in the literature. However, so far the only approach to study Wada basins has been restricted to two-dimensional phase spaces. Here we report a simple algorithm whose purpose is to look for the Wada property in a given dynamical system. Another benefit of this procedure is the possibility to classify and study intermediate situations known as partially Wada boundaries.

  14. The Central European Permian Basins; Rheological and structural controls on basin history and on inter-basin connectivity

    NARCIS (Netherlands)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2014-01-01

    We analyse the relative importance of the major crustal-scale fault zones and crustal architecture in controlling basin formation, deformation and the structural connections between basins. The North and South Permian Basins of Central Europe are usually defined by the extend of Rotliegend sedimenta

  15. Origin of the earth's ocean basins

    Science.gov (United States)

    Frey, H.

    1977-01-01

    The earth's original ocean basins are proposed to be mare-type basins produced 4 billion y.a. by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upward from the observed number of lunar basins for the greater capture cross-section and impact velocity of the earth indicates that at least 50% of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60% oceanic, 40% continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  16. WATSTORE Stream Flow Basin Characteristics File

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Stream Flow Basin Characteristics file contains information about the drainage basins of selected USGS gaging stations. Data elements of this file were converted...

  17. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    - serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...... of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......, controlled cell death and cellular migration. Volume regulatory mechanisms has long been in focus for regulating cellular proliferation and my thesis work have been focusing on the role of Cl- channels in proliferation with specific emphasis on ICl, swell. Pharmacological blockage of the ubiquitously...

  18. H-Area Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  19. Predicting the probability and volume of postwildfire debris flows in the intermountain western United States

    Science.gov (United States)

    Cannon, S.H.; Gartner, J.E.; Rupert, M.G.; Michael, J.A.; Rea, A.H.; Parrett, C.

    2010-01-01

    Empirical models to estimate the probability of occurrence and volume of postwildfire debris flows can be quickly implemented in a geographic information system (GIS) to generate debris-flow hazard maps either before or immediately following wildfires. Models that can be used to calculate the probability of debris-flow production from individual drainage basins in response to a given storm were developed using logistic regression analyses of a database from 388 basins located in 15 burned areas located throughout the U.S. Intermountain West. The models describe debris-flow probability as a function of readily obtained measures of areal burned extent, soil properties, basin morphology, and rainfall from short-duration and low-recurrence-interval convective rainstorms. A model for estimating the volume of material that may issue from a basin mouth in response to a given storm was developed using multiple linear regression analysis of a database from 56 basins burned by eight fires. This model describes debris-flow volume as a function of the basin gradient, aerial burned extent, and storm rainfall. Applications of a probability model and the volume model for hazard assessments are illustrated using information from the 2003 Hot Creek fire in central Idaho. The predictive strength of the approach in this setting is evaluated using information on the response of this fire to a localized thunderstorm in August 2003. The mapping approach presented here identifies those basins that are most prone to the largest debris-flow events and thus provides information necessary to prioritize areas for postfire erosion mitigation, warnings, and prefire management efforts throughout the Intermountain West.

  20. Precision volume measurement system.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  1. Practical Significance of Basin Water Market Construction on Agricultural Production

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On the basis of introducing the concept of water market and the water market research in cluding both domestic market and foreign market,the system design features of water market are analyzed.The features include the prior distribution of agricultural water right,the close construction of market structure,reasonable price of water obtaining right and water pollution-discharge right and scientific stipulation of total volume of water use and total volume of pollution drainage.The practical significances of basin water market construction on Chinese agricultural production are revealed,which clover safeguarding the safety of agricultural water;effectively alleviating agricultural drought;saving the agricultural production water and improving the quality of agricultural products.

  2. The Linguado, Carapeba, Vermelho, and Marimba giant oil fields, Campos basin, offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Stank, C.V.; Esteves, F.R.; Martins, C.C.; Cruz, W.M.; Da Silva Barroso, A.; Horschutz, P.M.C. (Petrobras, Rio de Janeiro (Brazil))

    1990-09-01

    About 40 hydrocarbon accumulations have been discovered in the Campos basin in the period 1978-1984, including four giant fields in shallow to moderate water depths. The Linguado oil field is located on the extreme south of the producing area of the Campos basin. The pool was discovered in May 1978. The reservoir rocks occur between 1,700 and 3,000 m, and are constituted by fractured Neocomian basalts, Barremian pelecypod coquinas, Albian oolitic calcarenites, and, secondarily, by some Cretaceous turbidite sandstones. The main reservoir is formed by coquinas, which contain 76% of the total recoverable oil volume estimated at 104.6 million bbl. The field is located on a regional high and the accumulation is strongly controlled by stratigraphic and diagenetic factors. High-quality oil is produced through a floating producing system (FPS), and the cumulative oil production amounts to 63.8 million bbl. The Carapeba and Vermelho oil fields are situated in the northern limit of the Campos basin producing area and, together with the smaller Pargo field, make up the so-called Northeast Pole of Campos basin. Carapeba field was discovered in February 1982, and has an estimated recoverable oil volume of 127.8 million bbl. Production comes mainly from two Upper Cretaceous turbidite sandstone reservoirs. The Vermelho field in December 1982, and its main reservoir is formed by a massive Eocene turbidite sandstone. The estimated recoverable oil volume amounts to 119.7 million bbl. Both Carapeba and Vermelho fields are structural traps associated with the development of subtle anticlines caused by salt movements. The fields are gradually being put on stream through five fixed platforms installed in water depths ranging from 70 to 90 m. The Marimba field, discovered in March 1984, drilled in a water depth of 383 m, is considered the first deep-water oil strike in the Campos basin. The field has an estimated recoverable oil volume of 115 million bbl of good-quality oil.

  3. Assessment of Undiscovered Natural Gas Resources of the Arkoma Basin Province and Geologically Related Areas

    Science.gov (United States)

    Houseknecht, David W.; Coleman, James L.; Milici, Robert C.; Garrity, Christopher P.; Rouse, William A.; Fulk, Bryant R.; Paxton, Stanley T.; Abbott, Marvin M.; Mars, John L.; Cook, Troy A.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Pollastro, Richard M.; Ellis, Geoffrey S.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 38 trillion cubic feet (TCF) of undiscovered natural gas, 159 million barrels of natural gas liquid (MMBNGL), and no oil in accumulations of 0.5 million barrels (MMBO) or larger in the Arkoma Basin Province and related areas. More than 97 percent of the undiscovered gas occurs in continuous accumulations-70 percent in shale gas formations, 18 percent in a basin-centered accumulation with tight sandstone reservoirs, and 9 percent in coal beds. Less than 3 percent of the natural gas occurs in conventional accumulations.

  4. The Socio-Economic Impacts on Water Resources in the Răut River Basin

    Directory of Open Access Journals (Sweden)

    Petru Bacal

    2016-10-01

    Full Text Available The purpose of this research consists in the elucidation of spatial and economic aspects of the water use in the Răut river basin. The main topics presented in this paper are: 1 the dynamics of volume of wastewater discharged into the river Raut basin and its sections; 2 wastewater discharge by the degree of treatment; 3 spatial and branch profile of wastewater discharged: 4 existing problems in evaluation and monitoring of waste water. To achieve these objectives were used traditional methods of geographical and economic research.

  5. Variations of climate and streamflow over the Saint John Basin since 1872

    Energy Technology Data Exchange (ETDEWEB)

    Hare, F.K. [Toronto Univ., Toronto, ON (Canada). Dept. of Geography; Dickison, R.B.B. [Atlantic Weather and Environment Consultants Ltd., Fredericton, NB (Canada); Ismail, S. [New Brunswick Power, NB (Canada)

    1997-12-31

    Long-term climate and streamflow records for the Saint John River Basin of Quebec, Maine and New Brunswick were examined in order to determine what may happen in the Basin`s future and to understand to what extent the Basin`s experience reflects broader-scale changes over North America and the rest of the world. The physical characteristics of the Basin were described, including a list of the main dams and hydraulic stations above the Mactaquac. The Saint John River appears to have changed its habits in the past four decades. The spring freshet has tended to come earlier and has increased in volume since 1972. There is no evidence, however, that this change has been caused by the greenhouse effect. No enduring changes in mean annual precipitation and streamflow were detected. The mean annual temperature has risen 1.3 degrees C since 1871, or about 1 degrees C per century. Snowy or wet winters with high interannual variability have resulted in earlier thaws and several major flood and ice-jam events. The risk of severe rainstorms at the time of freshet can lead to higher flows than have been recorded in the past. 19 refs., 3 tabs., 10 figs.

  6. Numerical modeling of the formation and structure of the Orientale impact basin

    Science.gov (United States)

    Potter, Ross W. K.; Kring, David A.; Collins, Gareth S.; Kiefer, Walter S.; McGovern, Patrick J.

    2013-05-01

    The Orientale impact basin is the youngest and best-preserved lunar multi-ring basin and has, thus, been the focus of studies investigating basin-forming processes and final structures. A consensus about how multi-ring basins form, however, remains elusive. Here we numerically model the Orientale basin-forming impact with the aim of resolving some of the uncertainties associated with this basin. By using two thermal profiles estimating lunar conditions at the time of Orientale's formation and constraining the numerical models with crustal structures inferred from gravity data, we provide estimates for Orientale's impact energy (2-9 × 1025 J), impactor size (50-80 km diameter), transient crater size (˜320-480 km), excavation depth (40-55 km), and impact melt volume (˜106 km3). We also analyze the distribution and deformation of target material and compare our model results and Orientale observations with the Chicxulub crater to investigate similarities between these two impact structures.

  7. BASIN: Beowulf Analysis Symbolic INterface

    Science.gov (United States)

    Vesperini, Enrico; Goldberg, David M.; McMillan, Stephen L. W.; Dura, James; Jones, Douglas

    2013-08-01

    BASIN (Beowulf Analysis Symbolic INterface) is a flexible, integrated suite of tools for multiuser parallel data analysis and visualization that allows researchers to harness the power of Beowulf PC clusters and multi-processor machines without necessarily being experts in parallel programming. It also includes general tools for data distribution and parallel operations on distributed data for developing libraries for specific tasks.

  8. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  9. Evaluation of climate change impact on Blue Nile Basin Cascade Reservoir operation – case study of proposed reservoirs in the Main Blue Nile River Basin, Ethiopia

    OpenAIRE

    2015-01-01

    This study mainly deals with evaluation of climate change impact on operation of the Blue Nile Basin Cascade Reservoir. To evaluate the impact of climate change, climate change scenarios of evapotranspiration and precipitation were developed for three periods. Output of ECHAM5 with RCM for the A1B emissions scenario were used to develop the future climate change scenarios. A hydrological model, HEC-HMS, was used to simulate current and future inflow volume to the reservoirs. The projected fut...

  10. Variable volume combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  11. Basin bifurcation in quasiperiodically forced systems

    Energy Technology Data Exchange (ETDEWEB)

    Feudel, U.; Witt, A.; Grebogi, C. [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais, PF 601553, D-14415, Potsdam (Germany); Lai, Y. [Departments of Physics and Astronomy and of Mathematics, The University of Kansas, Lawrence, Kansas 66045 (United States); Grebogi, C. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States)

    1998-09-01

    In this paper we study quasiperiodically forced systems exhibiting fractal and Wada basin boundaries. Specifically, by utilizing a class of representative systems, we analyze the dynamical origin of such basin boundaries and we characterize them. Furthermore, we find that basin boundaries in a quasiperiodically driven system can undergo a unique type of bifurcation in which isolated {open_quotes}islands{close_quotes} of basins of attraction are created as a system parameter changes. The mechanism for this type of basin boundary bifurcation is elucidated. {copyright} {ital 1998} {ital The American Physical Society}

  12. SLIDE INVENTORY IN DUBRACINA RIVER BASIN

    Directory of Open Access Journals (Sweden)

    Aleksandar Toševski

    2013-12-01

    Full Text Available he slide inventory in Dubračina river basin consists of 39 slides. They have been detected by field geomorphological mapping and visual analysis of 1 meter digital elevation model. The slides detected using elevation model are validated by the field checking as well. The outline of all slides is generated using digital elevation model. The total area affected by sliding is 81873 m2 which is 0,44% of researched area. The area, volume, total lenght, width of displaced mass, dip angle of slope on the slide location and dip direction of sliding have been defined for each slide. Slides areas are ranging from 150 to 12956 m2. Minimal total slide lenght from the crown to the tip is 20 m and maximal is 226 m. Angles of slope dip on slide locations are ranging from 10,1° to 28,6° focusing that 76,7% total area affected by sliding has slope dip angle on slide location up to 20°. According to weighting factor calculations lithological unit flysch (E2,3 is marked as the most significant lithological factor of the sliding. All slides are located in the flysch weathering zone where zone crop out. It has been shown that terrain tendency for excessive erosion is very limitative factor in using digital elevation model for the remote slide mapping (the paper is published in Croatian.

  13. Domain of composition and finite volume schemes on non-matching grids; Decomposition de domaine et schemas volumes finis sur maillages non-conformes

    Energy Technology Data Exchange (ETDEWEB)

    Saas, L.

    2004-05-01

    This Thesis deals with sedimentary basin modeling whose goal is the prediction through geological times of the localizations and appraisal of hydrocarbons quantities present in the ground. Due to the natural and evolutionary decomposition of the sedimentary basin in blocks and stratigraphic layers, domain decomposition methods are requested to simulate flows of waters and of hydrocarbons in the ground. Conservations laws are used to model the flows in the ground and form coupled partial differential equations which must be discretized by finite volume method. In this report we carry out a study on finite volume methods on non-matching grids solved by domain decomposition methods. We describe a family of finite volume schemes on non-matching grids and we prove that the associated global discretized problem is well posed. Then we give an error estimate. We give two examples of finite volume schemes on non matching grids and the corresponding theoretical results (Constant scheme and Linear scheme). Then we present the resolution of the global discretized problem by a domain decomposition method using arbitrary interface conditions (for example Robin conditions). Finally we give numerical results which validate the theoretical results and study the use of finite volume methods on non-matching grids for basin modeling. (author)

  14. Successor Characteristics of the Mesozoic and Cenozoic Songliao Basins

    Institute of Scientific and Technical Information of China (English)

    LI Zhongquan; Timothy KUSKY; YING Danlin; GUO Xiaoyu; LI Hongkui

    2008-01-01

    The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we suggest that the Songliao basin contains several different successor basins resting on top of Carboniferous-Permian folded strata forming the basement to the Songliao basin. These basins include the Triassic-Mid Jurassic Paleo-foreland basin, the Late Jurassic-Early Cretaceous downfaulted basin, and an early Cretaceous depressed basin (since the Denglouku Group). This paper presents a systematic study of the basin-mountain interactions, and reveals that there are different types of prototype basin at different geologic times. These prototype basins sequentially superimposed and formed the large Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin fills a Triassic-early Middle Jurassic gap in the geologic history of the Songliao basin. The paleoforeland basin, downfaulted basin, and depressed thermal subsidence basin all together represent the whole Mesozoic-Cenozoic geologic history and deformation of the Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin plays an important role both for deep natural gas exploration and the study of basin-mountain coupling in north China and eastern China in general. This example gives dramatic evidence that we should give much more attention to the polyphase tectonic evolution of related basins for the next phase of exploration and study.

  15. Geothermal resources of the northern gulf of Mexico basin

    Science.gov (United States)

    Jones, P.H.

    1970-01-01

    Published geothermal gradient maps for the northern Gulf of Mexico basin indicate little or no potential for the development of geothermal resources. Results of deep drilling, from 4000 to 7000 meters or more, during the past decade however, define very sharp increases in geothermal gradient which are associated with the occurrence of abnormally high interstitial fluid pressure (geopressure). Bounded by regional growth faults along the landward margin of the Gulf Basin, the geopressured zone extends some 1300 km from the Rio Grande (at the boundary between the United States and Mexico) to the mouth of the Mississippi river. Gulfward, it extends to an unknown distance across the Continental Shelf. Within geopressured deposits, geothermal gradients range upwards to 100 ??C/km, being greatest within and immediately below the depth interval in which the maximum pressure gradient change occurs. The 120 ??C isogeotherm ranges from about 2500 to 5000 m below sea level, and conforms in a general way with depth of occurrence of the top of the geopressured zone. Measured geostatic ratios range upward to 0.97; the maximum observed temperature is 273 ??C, at a depth of 5859 m. Dehydration of montmorillonite, which comprises 60 to 80 percent of clay deposited in the northern Gulf Basin during the Neogene, occurs at depths where temperature exceeds about 80 ??C, and is generally complete at depths where temperature exceeds 120 ??C. This process converts intracrystalline and bound water to free pore water, the volume produced being roughly equivalent to half the volume of montmorillonite so altered. Produced water is fresh, and has low viscosity and density. Sand-bed aquifers of deltaic, longshore, or marine origin form excellent avenues for drainage of geopressured deposits by wells, each of which may yield 10,000 m3 or more of superheated water per day from reservoirs having pressures up to 1000 bars at depths greater than 5000 m. ?? 1971.

  16. Geodynamics of the Sivas Basin (Turkey): from a forearc basin to a retroarc foreland basin

    Science.gov (United States)

    Legeay, Etienne; Ringenbach, Jean-Claude; Kergaravat, Charlie; Callot, Jean-Paul; Mohn, Geoffroy; Kavak, Kaan

    2016-04-01

    Anatolia records the consumption of several oceanic basins, from the Northern Neotethys domain, by north-dipping subduction until the end of Mesozoic. The associated obduction event occurred during Campanian, from North to South and from Greece to Oman, leading to the emplacement of ophiolite thrust sheets and associated ophiolitic mélange. In particular, the Sivas Basin in Eastern Anatolia is located at the boundary between the Kırsehir block to the East, Pontide arc to the North and Tauride Platform to the South, sutured by ophiolitic belts. The Sivas Basin formed a Tertiary fold-and-thrust belt, which exhibits mainly north verging thrust in Paleogene deposits, and South verging thrust in oligo-miocene sequence. To understand the northern verging thrust above south verging obduction, it is necessary to zoom out of the basin, and include a set of processes that affect the eastern Anatolia. This study aims to characterize the structural and sedimentary evolution of the Sivas Basin, based on a fieldwork approach, coupled to the interpretation of subsurface data, thermochronology and biostratigraphy. The Sivas Basin was initiated in a forearc setting relatively to the subduction of the Inner-Tauride Ocean while the associated ophiolites are obducted onto the northern passive margin of the Tauride margin. Early Maastrichtian to Paleocene deposits are represented by carbonate platforms located on ophiolitic highs, passing to turbidites and olistostomes toward the North. The early Eocene sediments, mainly composed of ophiolitic clasts, are deposited on a regional unconformity marked along the southern margin of the basin by incisions in response to the emergence of north-verging thrust. The middle Eocene sediments, intensively folded by northward thrusting, are mostly represented by flysch type deposits (olistostromes, mass-flows and turbidites). The onset of the compression is related to the initiation of the Taurus shortening in a retroarc situation, in response to

  17. THE ADVANCED CHEMISTRY BASINS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  18. Bronchoscopic lung volume reduction

    Directory of Open Access Journals (Sweden)

    M. I. Polkey

    2006-12-01

    Full Text Available Surgical lung volume reduction can improve exercise performance and forced expiratory volume in one second in patients with emphysema. However, the procedure is associated with a 5% mortality rate and a nonresponse rate of 25%. Accordingly, interest has focused on alternative ways of reducing lung volume. Two principle approaches are used: collapse of the diseased area using blockers placed endobronchially and the creation of extrapulmonary pathways. Preliminary data from the former approach suggest that it can be successful and that the magnitude of success is related to reduction in dynamic hyperinflation.

  19. Unsteady flow volumes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, B.G.; Lane, D.A.; Max, N.L.

    1995-03-01

    Flow volumes are extended for use in unsteady (time-dependent) flows. The resulting unsteady flow volumes are the 3 dimensional analog of streamlines. There are few examples where methods other than particle tracing have been used to visualize time varying flows. Since particle paths can become convoluted in time there are additional considerations to be made when extending any visualization technique to unsteady flows. We will present some solutions to the problems which occur in subdivision, rendering, and system design. We will apply the unsteady flow volumes to a variety of field types including moving multi-zoned curvilinear grids.

  20. Volume regulation in epithelia

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Hoffmann, Else Kay

    2016-01-01

    function of iso-osmotic fluid transport that depends on Na+ recirculation. The causative relationship is discussed for a fluid-absorbing and a fluid-secreting epithelium of which the Na+ recirculation mechanisms have been identified. A large number of transporters and ion channels involved in cell volume...... regulation are cloned. The volume-regulated anion channel (VRAC) exhibiting specific electrophysiological characteristics seems exclusive to serve cell volume regulation. This is contrary to K+ channels as well as cotransporters and exchange mechanisms that may serve both transepithelial transport and cell...

  1. Towards the Amplituhedron Volume

    CERN Document Server

    Ferro, Livia; Orta, Andrea; Parisi, Matteo

    2015-01-01

    It has been recently conjectured that scattering amplitudes in planar N=4 super Yang-Mills are given by the volume of the (dual) amplituhedron. In this paper we show some interesting connections between the tree-level amplituhedron and a special class of differential equations. In particular we demonstrate how the amplituhedron volume for NMHV amplitudes is determined by these differential equations. The new formulation allows for a straightforward geometric description, without any reference to triangulations. Finally we discuss possible implications for volumes related to generic N^kMHV amplitudes.

  2. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  3. Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6

    Energy Technology Data Exchange (ETDEWEB)

    1981-06-01

    This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

  4. Volumetric analysis of complex lunar craters - Implications for basin ring formation

    Science.gov (United States)

    Hale, W. S.; Grieve, R. A. F.

    1982-01-01

    The crater to basin transition in complex lunar craters is characterized by combining morphological and volumetric analyses of their central peaks with subsurface data from terrestrial complex impact structures which suggest that the amount of uplifted material, as judged from its depth of origin, continues to increase with increasing rim diameter. This latter phenomenon implies that a redistribution of uplifted material away from a centralized peak may occur in the larger craters. The morphological and volumetric changes described occur over a rim diameter range of 51-80 km, which is considerably lower than the previously proposed range for the crater to basin transition of 140-175 km. Evidence is given in support of a crater to basin transition which begins at 51-80 km, and is characterized by a relative reduction in central peak volume and a development of rings of floor roughening which may be precursors of peak ring development.

  5. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  6. Salt Lake in Chaidamu Basin

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    Chaidamu Basin(柴达木盆地) is in the west of China. It covers an area(地区) of 220,000 square kilometres(平方公里). The number of salt lakes(盐湖) is more than twenty in it. Chaerhan(察尔汗) Salt Lake is the largest in this area. If you get here, you will find that in the lake there is no water but a thick layer(层) of salt. You can walk in it without difficulty, and cars can come and go across it. The thickest layer of salt in this basin is about fifty metres thick. People tried their best to use the salt to build house...

  7. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  8. Renormalized Volumes with Boundary

    CERN Document Server

    Gover, A Rod

    2016-01-01

    We develop a general regulated volume expansion for the volume of a manifold with boundary whose measure is suitably singular along a separating hypersurface. The expansion is shown to have a regulator independent anomaly term and a renormalized volume term given by the primitive of an associated anomaly operator. These results apply to a wide range of structures. We detail applications in the setting of measures derived from a conformally singular metric. In particular, we show that the anomaly generates invariant (Q-curvature, transgression)-type pairs for hypersurfaces with boundary. For the special case of anomalies coming from the volume enclosed by a minimal hypersurface ending on the boundary of a Poincare--Einstein structure, this result recovers Branson's Q-curvature and corresponding transgression. When the singular metric solves a boundary version of the constant scalar curvature Yamabe problem, the anomaly gives generalized Willmore energy functionals for hypersurfaces with boundary. Our approach ...

  9. Free volume under shear

    Science.gov (United States)

    Maiti, Moumita; Vinutha, H. A.; Sastry, Srikanth; Heussinger, Claus

    2015-10-01

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems — particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior.

  10. Integers annual volume 2013

    CERN Document Server

    Landman, Bruce

    2014-01-01

    ""Integers"" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. This work presents all papers of the 2013 volume in book form.

  11. Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma

    Science.gov (United States)

    Laine, L.L.

    1958-01-01

    Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the

  12. Generalized Partial Volume

    DEFF Research Database (Denmark)

    Darkner, Sune; Sporring, Jon

    2011-01-01

    Mutual Information (MI) and normalized mutual information (NMI) are popular choices as similarity measure for multimodal image registration. Presently, one of two approaches is often used for estimating these measures: The Parzen Window (PW) and the Generalized Partial Volume (GPV). Their theoret......Mutual Information (MI) and normalized mutual information (NMI) are popular choices as similarity measure for multimodal image registration. Presently, one of two approaches is often used for estimating these measures: The Parzen Window (PW) and the Generalized Partial Volume (GPV...

  13. Great Basin geoscience data base

    Science.gov (United States)

    Raines, Gary L.; Sawatzky, Don L.; Connors, Katherine A.

    1996-01-01

    This CD-ROM serves as the archive for 73 digital GIS data set for the Great Basin. The data sets cover Nevada, eastern California, southeastern Oregon, southern Idaho, and western Utah. Some of the data sets are incomplete for the total area. On the CD-ROM, the data are provided in three formats, a prototype Federal Data Exchange standard format, the ESRI PC ARCVIEW1 format for viewing the data, and the ESRI ARC/INFO export format. Extensive documentation is provided to describe the data, the sources, and data enhancements. The following data are provided. One group of coverages comes primarily from 1:2,000,000-scale National Atlas data and can be assembled for use as base maps. These various forms of topographic information. In addition, public land system data sets are provided from the 1:2,500,000-scale Geologic Map of the United States and 1:500,000-scale geologic maps of Nevada, Oregon, and Utah. Geochemical data from the National Uranium Resource Evaluation (NURE) program are provided for most of the Great Basin. Geophysical data are provided for most of the Great Basin, typically gridded data with a spacing of 1 km. The geophysical data sets include aeromagnetics, gravity, radiometric data, and several derivative products. The thematic data sets include geochronology, calderas, pluvial lakes, tectonic extension domains, distribution of pre-Cenozoic terranes, limonite anomalies, Landsat linear features, mineral sites, and Bureau of Land Management exploration and mining permits.

  14. North Atlantic Ocean deep-water processes and depositional environments: A study of the Cenozoic Norway Basin

    Science.gov (United States)

    Oline Hjelstuen, Berit; Andreassen, Elin V.

    2015-04-01

    Despite the enormous areas deep-water basins occupy in modern oceans, our knowledge about them remains poor. At depths of greater than 2000 m, the Cenozoic Norway Basin in the northernmost part of the Atlantic Ocean, is one such basin. Interpretation of 2D multichannel seismic data suggests a three-stage evolution for the Norway Basin. (1) Eocene-Pliocene. This time period is characterised by deposition of ooze-rich sediments in a widening and deepening basin. (2) Early-Middle Pleistocene. A significant shift in sedimentary processes and depositional environments took place in the Early Pleistocene. Mass failures initiated on the Norwegian continental slope, and three Early and Middle Pleistocene slide debrites, with maximum thicknesses of 600 m and sediment volumes of up to 25000 km3, were deposited. With ages estimated at c. 2.7-1.7 Ma, 1.7-1.1 Ma and 0.5 Ma, these slide deposits are among the largest identified worldwide, and among the oldest mapped along the entire NE Atlantic continental margin. (3) Late Pleistocene-Present. Since c. 0.5 Ma the Norway Basin has been effected by glacigenic debris flows, the Storegga Slide and hemipelagic-glacimarine sedimentation. These sedimentary processes were active during a time of repeated shelf-edge ice advances along the NE Atlantic continental margin. This study shows that deep-water basins represent dynamic depositional environments reflecting regional tectonic and climatic changes trough time.

  15. Reachable volume RRT

    KAUST Repository

    McMahon, Troy

    2015-05-01

    © 2015 IEEE. Reachable volumes are a new technique that allows one to efficiently restrict sampling to feasible/reachable regions of the planning space even for high degree of freedom and highly constrained problems. However, they have so far only been applied to graph-based sampling-based planners. In this paper we develop the methodology to apply reachable volumes to tree-based planners such as Rapidly-Exploring Random Trees (RRTs). In particular, we propose a reachable volume RRT called RVRRT that can solve high degree of freedom problems and problems with constraints. To do so, we develop a reachable volume stepping function, a reachable volume expand function, and a distance metric based on these operations. We also present a reachable volume local planner to ensure that local paths satisfy constraints for methods such as PRMs. We show experimentally that RVRRTs can solve constrained problems with as many as 64 degrees of freedom and unconstrained problems with as many as 134 degrees of freedom. RVRRTs can solve problems more efficiently than existing methods, requiring fewer nodes and collision detection calls. We also show that it is capable of solving difficult problems that existing methods cannot.

  16. Application of Muskingum routing method with variable parameters in ungauged basin

    Directory of Open Access Journals (Sweden)

    Xiao-meng SONG

    2011-03-01

    Full Text Available This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical characteristics of the river reach and flood, including the reach slope, length, width, and flood discharge. Three formulas for estimating parameters of wide rectangular, triangular, and parabolic cross sections are proposed. The influence of the flood on channel flow routing parameters is taken into account. The HEC-HMS hydrological model and the geospatial hydrologic analysis module HEC-GeoHMS were used to extract channel or watershed characteristics and to divide sub-basins. In addition, the initial and constant-rate method, user synthetic unit hydrograph method, and exponential recession method were used to estimate runoff volumes, the direct runoff hydrograph, and the baseflow hydrograph, respectively. The Muskingum model with variable parameters was then applied in the Louzigou Basin in Henan Province of China, and of the results, the percentages of flood events with a relative error of peak discharge less than 20% and runoff volume less than 10% are both 100%. They also show that the percentages of flood events with coefficients of determination greater than 0.8 are 83.33%, 91.67%, and 87.5%, respectively, for rectangular, triangular, and parabolic cross sections in 24 flood events. Therefore, this method is applicable to ungauged basins.

  17. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  18. Drainage basin delineations for selected USGS streamflow-gaging stations in Virginia (Drainage_Basin)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Drainage_Basin polygon feature class was created as a digital representation of drainage basins for more than 1,650 continuous-record streamflow-gaging stations,...

  19. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  20. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia.

    Directory of Open Access Journals (Sweden)

    Yihun Taddele Dile

    Full Text Available Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM was used to downscale the HadCM3 (Hadley centre Climate Model 3 Global Circulation Model (GCM scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season and Kiremit (main rainy season periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.

  1. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin -Upper Blue Nile Basin of Ethiopia.

    Science.gov (United States)

    Dile, Yihun Taddele; Berndtsson, Ronny; Setegn, Shimelis G

    2013-01-01

    Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin.

  2. Uranium Mill Tailings Remedial Action Project (UMTRAP), Slick Rock, Colorado, Revision 1, Volume 3. Calculations, Final design for construction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Volume three contains calculations for: site hydrology--rainfall intensity, duration, and frequency relations; site hydrology-- probable maximum precipitation; erosion protection--rock quality evaluation; erosion protection--embankment top and side slope; erosion protection--embankment toe apron; erosion protection-- gradations and layer thicknesses; Union Carbide site--temporary drainage ditch design; Union Carbide site--retention basin sediment volume; Union Carbide site--retention basin sizing; Burro Canyon site temporary drainage--temporary drainage facilities; and Union Carbide site temporary drainage--water balance.

  3. Hack's law of debris-flow basins

    Institute of Scientific and Technical Information of China (English)

    LI Yong; YUE Z.Q.; LEE C.F.; BEIGHLEY R.E.; CHEN Xiao-Qing; HU Kai-Heng; CUI Peng

    2009-01-01

    Hack's law was originally derived from basin statistics for varied spatial scales and regions.The exponent value of the law has been shown to vary between 0.47 and 0.70,causing uncertainty in its application.This paper focuses on the emergence of Hack's law from debris-flow basins in China.Over 5,000 debris-flow basins in different regions of China with drainage areas less than 100km2 are included in this study.Basins in the different regions are found to present similar distributions.Hack's law is derived fi'om maximum probability and conditional distributions,suggesting that the law should describe some critical state of basin evolution.Results suggest the exponent value is approximately 0.5.Further analysis indicates that Hack's law is related to other scaling laws underlying the evolution of a basin and that the exponent is not dependent on basin shape but rather on the evolutionary stage.A case study of a well known debris-flow basin further confirms Hack's law and its implications in basin evolution.

  4. Gela submarine slide: gigantic basin-wide event in the Plio-Quaternary foredeep of Sicily

    Energy Technology Data Exchange (ETDEWEB)

    Argnani, A.; Trincardi, F.

    1988-08-01

    The Gela basin is a Pliocene-Quaternary foredeep basin located at the front of the Maghrebian fold-thrust belt of Sicily, filled with 2,500 m-thick shallowing-upward marine sediments. An important contribution to the basin fill comes from a huge, basin-wide submarine slide which extends for 3,500 km/sup 2/ and thickens as much as 450 m; the estimated sediment volume involved in the slide is close to 1,000 km/sup 3/. The authors investigation used more than 3,000 km of multichannel and single-channel seismic reflection profiles. The slide depositional geometries and facies relationships have been reconstructed from seismic interpretation to provide insight into transport and emplacement mechanisms. Apparently, the slide was not simply deposited via mass transfer from the slope into the basin. Indeed, the bulk of the slide is composed of basin sediments plastically deformed under the gravitational force driven by the correspondent slope sediments. Such a deformation occurred above an extremely effective decollement surface which controlled the slide distribution throughout the basin. More localized decollement planes are, however, present within the slide body and contributed to its complex deformation. The slide can thus be considered the result of a generalized gravitational collapse which affected the sediments lying above a peculiar decollement horizon. A general uplift characterized the late Quaternary evolution of the area, and volcanic activity was quite widespread and documented in the historical record. A punctuated episode of energy release (volcanic related ), superimposed to the uplift trend, may have triggered the slide in conjunction with potentially easy detachment of a decollement.

  5. Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts

    Science.gov (United States)

    Coleman, James

    2016-01-01

    The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.

  6. Basin Management under the Global Climate Change (Take North-East Asia Heilongjiang -Amur Basin and Taihu Basin For Example)

    Science.gov (United States)

    Liu, S.; Zhou, Z.; Zhong, G.; Zhang, X.

    2015-12-01

    The impact of global climate change on environment and society causes increasingly concern in different countries around the world. The main climate characteristic values, such as precipitation and temperature, have been changed, which leads to the variation of water resources, especially in large basins. Heilongjiang-Amur Basin and Taihu Basin are two large and important basins in China with large area and population. As global climate change and human activities have siganificant impacts on hydrology and water resources in two basins, the analysis of climate change are of great value. In this study, in Heilongjiang-Amur Basin, precipitation and temperature are investigated and their variation are predicted. And in Taihu Basin, precipitation including plum rain and typhoon, are studied and the variation trend of precipitation is predicted. Hence, the impacts of global climate change are assessed. From the result, it shows that the average temperature will continue to increase, and the precipitation will reduce first and then turn to increase in these two basins. It demonstrates that the water resources have been affected a lot by climate change as well as human activities. And these conclusions are provided as reference for policy makers and basin authorities in water resources management and natural hazards mitigation. Meanwhile, according to basins' particualr characters, the suggestions to future water resources management in two basins are given, and more scientific, comprehensive and sustained managements are required. Especially, in Heilongjiang-Amur River, which is a boundary river between China and Russia, it is very essential to enhance the cooperation between two countries.

  7. Relating petroleum system and play development to basin evolution: West African South Atlantic basins

    NARCIS (Netherlands)

    Beglinger, S.E.; Doust, H.; Cloetingh, S.A.P.L.

    2012-01-01

    Sedimentary basins can be classified according to their structural genesis and evolutionary history and the latter can be linked to petroleumsystem and playdevelopment. We propose an approach in which we use the established concepts in a new way: breaking basins down into their natural basin cycle d

  8. HARNESSING BIG DATA VOLUMES

    Directory of Open Access Journals (Sweden)

    Bogdan DINU

    2014-04-01

    Full Text Available Big Data can revolutionize humanity. Hidden within the huge amounts and variety of the data we are creating we may find information, facts, social insights and benchmarks that were once virtually impossible to find or were simply inexistent. Large volumes of data allow organizations to tap in real time the full potential of all the internal or external information they possess. Big data calls for quick decisions and innovative ways to assist customers and the society as a whole. Big data platforms and product portfolio will help customers harness to the full the value of big data volumes. This paper deals with technical and technological issues related to handling big data volumes in the Big Data environment.

  9. Volumes of chain links

    CERN Document Server

    Kaiser, James; Rollins, Clint

    2011-01-01

    Agol has conjectured that minimally twisted n-chain links are the smallest volume hyperbolic manifolds with n cusps, for n at most 10. In his thesis, Venzke mentions that these cannot be smallest volume for n at least 11, but does not provide a proof. In this paper, we give a proof of Venzke's statement. The proof for n at least 60 is completely rigorous. The proof for n between 11 and 59 uses a computer calculation, and can be made rigorous for manifolds of small enough complexity, using methods of Moser and Milley. Finally, we prove that the n-chain link with 2m or 2m+1 half-twists cannot be the minimal volume hyperbolic manifold with n cusps, provided n is at least 60 or |m| is at least 8, and we give computational data indicating this remains true for smaller n and |m|.

  10. The volume of a soliton

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Haberichter, M. [School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF (United Kingdom); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2016-03-10

    There exists, in general, no unique definition of the size (volume, area, etc., depending on dimension) of a soliton. Here we demonstrate that the geometric volume (area etc.) of a soliton is singled out in the sense that it exactly coincides with the thermodynamical or continuum-mechanical volume. In addition, this volume may be defined uniquely for rather arbitrary solitons in arbitrary dimensions.

  11. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  12. Groundwater Availability Within the Salton Sea Basin Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

    2008-01-11

    It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment

  13. Topological Active Volumes

    Directory of Open Access Journals (Sweden)

    Barreira N

    2005-01-01

    Full Text Available The topological active volumes (TAVs model is a general model for 3D image segmentation. It is based on deformable models and integrates features of region-based and boundary-based segmentation techniques. Besides segmentation, it can also be used for surface reconstruction and topological analysis of the inside of detected objects. The TAV structure is flexible and allows topological changes in order to improve the adjustment to object's local characteristics, find several objects in the scene, and identify and delimit holes in detected structures. This paper describes the main features of the TAV model and shows its ability to segment volumes in an automated manner.

  14. Aperiodic Volume Optics

    Science.gov (United States)

    Gerke, Tim D.

    Presented in this thesis is an investigation into aperiodic volume optical devices. The three main topics of research and discussion are the aperiodic volume optical devices that we call computer-generated volume holograms (CGVH), defects within periodic 3D photonic crystals, and non-periodic, but ordered 3D quasicrystals. The first of these devices, CGVHs, are designed and investigated numerically and experimentally. We study the performance of multi-layered amplitude computer-generated volume holograms in terms of efficiency and angular/frequency selectivity. Simulation results show that such aperiodic devices can increase diffraction efficiency relative to periodic amplitude volume holograms while maintaining angular and wavelength selectivity. CGVHs are also designed as voxelated volumes using a new projection optimization algorithm. They are investigated using a volumetric diffraction simulation and a standard 3D beam propagation technique as well as experimentally. Both simulation and experiment verify that the structures function according to their design. These represent the first diffractive structures that have the capacity for generating arbitrary transmission and reflection wave fronts and that provide the ability for multiplexing arbitrary functionality given different illumination conditions. Also investigated and discussed in this thesis are 3D photonic crystals and quasicrystals. We demonstrate that these devices can be fabricated using a femtosecond laser direct writing system that is particularly appropriate for fabrication of such arbitrary 3D structures. We also show that these devices can provide 3D partial bandgaps which could become complete bandgaps if fabricated using high index materials or by coating lower index materials with high index metals. Our fabrication method is particularly suited to the fabrication of engineered defects within the periodic or quasi-periodic systems. We demonstrate the potential for fabricating defects within

  15. Evolution of the West Siberian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Vyssotski, A.V. [Chevron, 1500 Louisiana Street, Houston (United States); Vyssotski, V.N. [TNK-BP, 1 Arbat St, Moscow 119019 (Russian Federation); Nezhdanov, A.A. [OOO TyumenNIIgiprogas, 2 Vorovskogo Str., Tyumen 625019 (Russian Federation)

    2006-01-01

    The West Siberian Basin is one of the largest intra-cratonic basins of the world and an important hydrocarbon province of Russia. Perhaps the most important geologic event in Siberia was the emplacement of basalts around {approx} 250Ma (i.e. Permo-Triassic boundary) covering an area of about 5x10{sup 6} km{sup 2}. This volcanism may be responsible for a mass extinction that occurred around Permian-Triassic time. The pre-basaltic rifting event was limited to the north-northeastern sector of the basin. Initial basin wide subsidence took place in the Jurassic as a result of which the western part of Siberia became the West Siberian Basin bounded by uplifts to the east and to the west. One of the surprising aspects of the West Siberian Basin is the abundance of sub-vertical faults believed to be result of strike-slip movement. While intra-plate inversions and fault reactivation structures have been observed in many cratons, sub-vertical faults observed in the West Siberian Basin are unique because of their geometries and abundance. The differentiation between the effects of tectonics and eustasy in cratonic basins is simple-the global eustatic signal is basin-wide with regional and local tectonics playing an overprinting role. Thus, the Middle Jurassic-Turonian 1st, 2nd, and 3rd order cycles in the West Siberian Basin were primarily driven by eustasy. The Middle Jurassic-Turonian series can be subdivided into two second-order and 16 third-order transgressive-regressive cycles (within dataset extent). Fourth-order cycles appear to be controlled by delta shifting. Although extensively studied, a number of fundamental questions regarding the origin and evolution of the West Siberian Basin remain unresolved or poorly documented in the literature. [Author].

  16. Gully development in Pavon Creeks: Downstream sediment supply and sub-basin restoration

    Science.gov (United States)

    Pearce, S.; McKee, L. J.

    2011-12-01

    Sediment supply in watersheds is a function of geology, climate, and land use. Small watersheds in the Coast Ranges of California can provide large volumes of sediment to downstream waterbodies due to the active tectonic setting, the Mediterranean climate, and the history of intense land use. The Pavon Creeks sub-basin, a 1.1 km2 tributary to Pinole Creek which drains to San Francisco Bay, California, currently provides a large supply of fine-grained sediment to the detriment of creek function and native species habitat. The sub-basin is situated near the active Hayward Fault Zone, is underlain by highly erosive shales and siltstones, and has experienced over 100 years of cattle grazing. Despite only comprising 3% of the total watershed area, the Pavon Creeks sub-basin has been identified as one of the largest sources of fine sediment within the Pinole Creek watershed. To protect creek function and habitat, watershed stakeholders have prioritized preventing excess fine sediment delivery to Pinole Creek. The sub-basin includes four small ephemeral gully channels that are primarily actively eroding, downcutting, and extending over their length, and secondarily aggrading over a shorter localized reach. Field-based geomorphic data including channel cross-sections, longitudinal profiles, bank pins, and headcut monitoring have documented channel incision, erosion, and lengthening of the channel network over six years. During Water Year 2006, the first and wettest year of measurements, we observed maximum rates of incision of 0.75 m, lateral bank erosion of 2.5 m, and gully extension of 16.3 m. Annual repeat surveys show continued gully evolution, and allowed for quantitative assessment of incision, aggradation, and extension rates over this time period, as well as eroded sediment volume. We found that the largest storm events of a season cause the greatest instantaneous amount of change in the sub-basin, but cumulative seasonal rainfall determines the total amount and

  17. Fractal basins in an ecological model

    Directory of Open Access Journals (Sweden)

    I. Djellit

    2013-09-01

    Full Text Available Complex dynamics is detected in an ecological model of host-parasitoid interaction. It illustrates fractalization of basins with self-similarity and chaotic attractors. This paper describes these dynamic behaviors, bifurcations, and chaos. Fractals basins are displayed by numerical simulations.

  18. Deep controls on intraplate basin inversion

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Stephenson, Randell Alexander; Schiffer, Christian

    2014-01-01

    Basin inversion is an intermediate-scale manifestation of continental intraplate deformation, which produces earthquake activity in the interior of continents. The sedimentary basins of central Europe, inverted in the Late Cretaceous– Paleocene, represent a classic example of this phenomenon. It ...

  19. 33 CFR 401.48 - Turning basins.

    Science.gov (United States)

    2010-07-01

    ... shall be turned about in any canal, except: (a) With permission from the traffic controller; and (b) At the locations set out in the table to this section. Table 1. South Shore Canal: (a) Turning Basin No. 1—Opposite Brossard. (b) Turning Basin No. 2—Between Lock 7 and the Guard Gate Cut for vessels up...

  20. Introduction to the Volume.

    Science.gov (United States)

    Emihovich, Catherine; Schroder, Barbara; Panofsky, Carolyn P.

    1999-01-01

    Introduces a volume that examines the issue of critical thinking and whether or not it is culturally specific, discussing recent research on the subject. The papers focus on critical thinking and culture, historical consciousness and critical thinking, critical thinking as cultural-historical practice, culture and the development of critical…

  1. Neotectonic of subsiding basins : case of studies from Marañon and Beni basins, Peru and Bolivia

    OpenAIRE

    Dumont, Jean-Francois

    1994-01-01

    Climatic conditions make the fluvial processes very sensitive in the extended flood plain of subandean basins, giving typical morphostructures. Because of high subsidence rate, these basins are case for the understanding of neotectonics in subsiding basins. Recent anciente fluvial traces are used in combination with sub surface structures, neotectonic and seismotectonic data to study the neotectonic evolution of the Peruvian and Bolivian active foreland basins. These basins, the Marañon Basin...

  2. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Santiago Fire, Orange County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  3. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Witch Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  4. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Canyon Fire, Los Angeles County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  5. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ammo Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  6. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Buckweed Fire, Los Angeles County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  7. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Harris Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  8. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Poomacha Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  9. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Rice Fire, San Diego County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  10. Constraining Annual Water Balance Estimates with Basin-Scale Observations from the Airborne Snow Observatory during the Current Californian Drought

    Science.gov (United States)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.; Deems, J. S.; Patterson, V.; McGurk, B. J.

    2015-12-01

    One of the great unknowns in mountain hydrology is how much water is stored within a seasonal snowpack at the basin scale. Quantifying mountain water resources is critical for assisting with water resource management, but has proven elusive due to high spatial and temporal variability of mountain snow cover, complex terrain, accessibility constraints and limited in-situ networks. The Airborne Snow Observatory (ASO, aso.jpl.nasa.gov) uses coupled airborne LiDAR and spectrometer instruments for high resolution snow depth retrievals which are used to derive unprecedented basin-wide estimates of snow water mass (snow water equivalent, SWE). ASO has been operational over key basins in the Sierra Nevada Mountains in California since 2013. Each operational year has been very dry, with precipitation in 2013 at 75% of average, 2014 at 50% of average and 2015 - the lowest snow year on record for the region. With vastly improved estimates of the snowpack water content from ASO, we can now for the first time conduct observation-based mass balance accounting of surface water in snow-dominated basins, and reconcile these estimates with observed reservoir inflows. In this study we use ASO SWE data to constrain mass balance accounting of basin annual water storages to quantify the water contained within the snowpack above the Hetch Hetchy water supply reservoir (Tuolumne River basin, California). The analysis compares and contrasts annual snow water volumes from observed reservoir inflows, snow water volume estimates from ASO, a physically based model that simulates the snowpack from meteorological inputs and a semi-distributed hydrological model. The study provides invaluable insight to the overall volume of water contained within a seasonal snowpack during a severe drought and how these quantities are simulated in our modelling systems. We envisage that this research will be of great interest to snowpack modellers, hydrologists, dam operators and water managers worldwide.

  11. Basins in ARC-continental collisions

    Science.gov (United States)

    Draut, Amy E.; Clift, Peter D.; Busby, Cathy; Azor, Antonio

    2012-01-01

    Arc-continent collisions occur commonly in the plate-tectonic cycle and result in rapidly formed and rapidly collapsing orogens, often spanning just 5-15 My. Growth of continental masses through arc-continent collision is widely thought to be a major process governing the structural and geochemical evolution of the continental crust over geologic time. Collisions of intra-oceanic arcs with passive continental margins (a situation in which the arc, on the upper plate, faces the continent) involve a substantially different geometry than collisions of intra-oceanic arcs with active continental margins (a situation requiring more than one convergence zone and in which the arc, on the lower plate, backs into the continent), with variable preservation potential for basins in each case. Substantial differences also occur between trench and forearc evolution in tectonically erosive versus tectonically accreting margins, both before and after collision. We examine the evolution of trenches, trench-slope basins, forearc basins, intra-arc basins, and backarc basins during arc-continent collision. The preservation potential of trench-slope basins is low; in collision they are rapidly uplifted and eroded, and at erosive margins they are progressively destroyed by subduction erosion. Post-collisional preservation of trench sediment and trench-slope basins is biased toward margins that were tectonically accreting for a substantial length of time before collision. Forearc basins in erosive margins are usually floored by strong lithosphere and may survive collision with a passive margin, sometimes continuing sedimentation throughout collision and orogeny. The low flexural rigidity of intra-arc basins makes them deep and, if preserved, potentially long records of arc and collisional tectonism. Backarc basins, in contrast, are typically subducted and their sediment either lost or preserved only as fragments in melange sequences. A substantial proportion of the sediment derived from

  12. Determination of the Relationship between Hydrologic Processes and Basin Morphometry - The Lamos Basin (Mersin, Turkey)

    Science.gov (United States)

    Yıldırım, Ümit; Güler, Cüneyt

    2016-04-01

    This study has been carried out to determine the relationship between hydrologic processes and basin morphometry in the Lamos Basin, which is located at the northern part of the Mersin (SE Turkey). The morphometric parameters of the basin was derived from the 1:25K scale topographic map sheets that were digitized using ArcGIS 9.3.1 geographic information system (GIS) software. Morphometric parameters considered in this study include basin area, basin length, basin perimeter length, stream order, stream number, stream length, mean stream length, basin relief, drainage density, stream frequency, drainage texture, bifurcation ratio, form factor, elongation ratio, overland flow length, relief ratio, and hypsometric integral. The results have shown that there are 1252 individual stream reaches with a total length of 1414.1 km in the Lamos basin, which covers an area of 1358 km2 and has a length of 103 km in the N-S direction. Furthermore, the basin has a medium drainage density of 1.04 1/km with a stream frequency and drainage texture values of 0.92 and 4.33, respectively. The basin can be classified as elongated because of the low values of elongation ratio (0.48) and form factor (0.12). The hypsometric integral of the basin (0.58) indicates that it is in the youth period and thus reasonably sensitive to erosion. The values of drainage texture, drainage density, and stream frequency indicate that the Lamos basin is moderately well drained, therefore overland flow in the basin is not expected to be so quick. Thus, in case of occurrence of sudden peak flows, sensitivity to the land sliding and erosion may increase further. As a result, it is suggested that human activities in the basin should be limited in areas in fairly close proximity to the present day stream network to prevent or reduce the risk to life and property.

  13. Diagenetic effects of compaction on reservoir properties: The case of early callovian ``Dalle Nacrée'' formation (Paris basin, France)

    Science.gov (United States)

    Nader, Fadi H.; Champenois, France; Barbier, Mickaël; Adelinet, Mathilde; Rosenberg, Elisabeth; Houel, Pascal; Delmas, Jocelyne; Swennen, Rudy

    2016-11-01

    The impact of compaction diagenesis on reservoir properties is addressed by means of observations made on five boreholes with different burial histories of the Early Callovian "Dalle Nacrée" Formation in the Paris Basin. Petrographic analyses were carried out in order to investigate the rock-texture, pore space type and volume, micro-fabrics, and cement phases. Based on the acquired data, a chronologically ordered sequence of diagenetic events (paragenesis) for each borehole was reconstructed taking the burial history into account. Point counting and a segmentation algorithm (Matlab) were used to quantify porosity, as well as the amounts of grain constituents and cement phases on scanned images of studied thin sections. In addition, four key samples were analyzed by 3D imaging using microfocus X-ray computer tomography. Basin margin grainstones display a different burial diagenesis when compared to basin centre grainstones and wackestones. The former have been affected by considerable cementation (especially by blocky calcite) prior to effective burial, in contrast to the basin centre lithologies where burial and compaction prevailed with relatively less cementation. Fracturing and bed-parallel stylolitization, observed especially in basinal wackestone facies also invoke higher levels of mechanical and chemical compaction than observed in basin marginal equivalents. Compaction fluids may have migrated at the time of burial from the basin centre towards its margins, affecting hence the reservoir properties of similar rock textures and facies and resulting in cross-basin spatial diagenetic heterogeneities.

  14. Monitoring hydraulic fracturing with seismic emission volume

    Science.gov (United States)

    Niu, F.; Tang, Y.; Chen, H.; TAO, K.; Levander, A.

    2014-12-01

    Recent developments in horizontal drilling and hydraulic fracturing have made it possible to access the reservoirs that are not available for massive production in the past. Hydraulic fracturing is designed to enhance rock permeability and reservoir drainage through the creation of fracture networks. Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. Based on data acquisition, seismic monitoring techniques have been divided into two categories: downhole and surface monitoring. Surface monitoring is challenging because of the extremely low signal-to-noise ratio of the raw data. We applied the techniques used in earthquake seismology and developed an integrated monitoring system for mapping hydraulic fractures. The system consists of 20 to 30 state-of-the-art broadband seismographs, which are generally about hundreds times more sensible than regular geophones. We have conducted two experiments in two basins with very different geology and formation mechanism in China. In each case, we observed clear microseismic events, which may correspond to the induced seismicity directly associated with fracturing and the triggered ones at pre-existing faults. However, the magnitude of these events is generally larger than magnitude -1, approximately one to two magnitudes larger than those detected by downhole instruments. Spectrum-frequency analysis of the continuous surface recordings indicated high seismic energy associated with injection stages. The seismic energy can be back-projected to a volume that surrounds each injection stage. Imaging seismic emission volume (SEV) appears to be an effective way to map the stimulated reservior volume, as well as natural fractures.

  15. Unraveling the hydrocarbon charge potential of the Nordkapp Basin, Barents Sea: An integrated approach to reduce exploration risk in complex salt basins

    Science.gov (United States)

    Schenk, Oliver; Shtukert, Olga; Bishop, Andrew; Kornpihl, Kristijan; Milne, Graham

    2014-05-01

    Pleistocene (glacial). The models have been thermally calibrated. Consideration of Pleistocene glacial/interglacial cycles was required for thermal calibration as well as to better understand and predict the hydrocarbon phase behavior. References: Koyi, H., Talbot, C.J., Tørudbakken, B.O., 1993, Salt diapirs of the southwest Nordkapp Basin: analogue modelling, Tectonophysics, Volume 228, Issues 3-4, Pages 167-187. Nilsen, K.T., Vendeville, B.C., Johansen, J.-T., 1995, Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In: Jackson, M.P.A., Roberts, D.G., Snelson, S. (eds), Salt tectonics, a global perspective, AAPG Memoir 65, 413-436.

  16. Water resources of the Penobscot River basin, Maine

    Science.gov (United States)

    Barrows, Harold Kilbrith; Babb, Cyrus Cates

    1912-01-01

    This report on the Penobscot River drainage system, the largest and one of the most important in Maine, has been compiled chiefly from the records, reports, and maps of the United States Geological Survey and from the results of surveys made in cooperation with the Maine State Survey Commission. The report includes all data on precipitation, stream flow, water storage, and water power that were available at the end of the calendar year 1909 and is accompanied by plans and profiles of the principal rivers, lakes, and ponds in the basin (Pis. XIII-XIX, at end of volume). Stream-flow data for 1910 and 1911 will be published in Water-Supply Papers 281 and 301, respectively.

  17. Incorporating safety into surface haulage in the Powder River basin

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, W.; Jennings, C.

    1996-12-31

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  18. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    Science.gov (United States)

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  19. Assessment of circulation and inter-basin transport in the Salish Sea including Johnstone Strait and Discovery Islands pathways

    Science.gov (United States)

    Khangaonkar, Tarang; Long, Wen; Xu, Wenwei

    2017-01-01

    The Salish Sea consisting of Puget Sound and Georgia Basin in U.S and Canadian waters has been the subject of several independent data collection and modeling studies. However, these interconnected basins and their hydrodynamic interactions have not received attention as a contiguous unit. The Strait of Juan de Fuca is the primary pathway through which Pacific Ocean water enters the Salish Sea but the role played by Johnstone Strait and the complex channels northeast of Vancouver Island, connecting the Salish Sea and the Pacific Ocean, on overall Salish Sea circulation has not been characterized. In this paper we present a modeling-based assessment of the two-layer circulation and transport through the multiple interconnected sub-basins within the Salish Sea including the effect of exchange via Johnstone Strait and Discovery Islands. The Salish Sea Model previously developed using the finite volume community ocean model (FVCOM) was expanded over the continental shelf for this assessment encircling Vancouver Island, including Discovery Islands, Johnstone Strait, Broughton Archipelago and the associated waterways. A computational technique was developed to allow summation of volume fluxes across arbitrary transects through unstructured finite volume cells. Tidally averaged volume fluxes were computed at multiple transects. The results were used to validate the classic model of Circulation in Embracing Sills for Puget Sound and to provide quantitative estimates of the lateral distribution of tidally averaged transport through the system. Sensitivity tests with and without exchanges through Johnstone Strait demonstrate that it is a pathway for Georgia Basin runoff and Fraser River water to exit the Salish Sea and for Pacific Ocean inflow. However the relative impact of this exchange on circulation and flushing in Puget Sound Basin is small.

  20. Assessment of Circulation and Inter-Basin Transport in the Salish Sea including Johnstone Strait and Discovery Islands Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Khangaonkar, Tarang P.; Long, Wen; Xu, Wenwei

    2017-01-01

    The Salish Sea consisting of Puget Sound and Georgia Basin in U.S and Canadian waters has been the subject of several independent data collection and modeling studies. However, these interconnected basins and their hydrodynamic interactions have not received attention as a contiguous unit. The Strait of Juan de Fuca is the primary pathway through which Pacific Ocean water enters the Salish Sea but the role played by Johnstone Strait and the complex channels northeast of Vancouver Island, connecting the Salish Sea and the Pacific Ocean, on overall Salish Sea circulation has not been characterized. In this paper we present a modeling-based assessment of the two-layer circulation and transport through the multiple interconnected sub-basins within the Salish Sea including the effect of exchange via Johnstone Strait and Discovery Islands. The Salish Sea Model previously developed using the finite volume community ocean model (FVCOM) was expanded over the continental shelf for this assessment encircling Vancouver Island, including Discovery Islands, Johnstone Strait, Broughton Archipelago and the associated waterways. A computational technique was developed to allow summation of volume fluxes across arbitrary transects through unstructured finite volume cells. Tidally averaged volume fluxes were computed at multiple transects. The results were used to validate the classic model of Circulation in Embracing Sills for Puget Sound and to provide quantitative estimates of the lateral distribution of tidally averaged transport through the system. Sensitivity tests with and without exchanges through Johnstone Strait demonstrate that it is a pathway for Georgia Basin runoff and Fraser River water to exit the Salish Sea and for Pacific Ocean inflow. However the relative impact of this exchange on circulation and flushing in Puget Sound Basin is small.

  1. Technical analysis of a river basin-based model of advanced power plant cooling technologies for mitigating water management challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, Ashlynn S [Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 1 University Station C1786, Austin, TX 78712 (United States); Clayton, Mary E; Webber, Michael E, E-mail: ashlynn.stillwell@mail.utexas.edu, E-mail: mclayton34@mail.utexas.edu, E-mail: webber@mail.utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2011-07-15

    Thermoelectric power plants require large volumes of water for cooling, which can introduce drought vulnerability and compete with other water needs. Alternative cooling technologies, such as cooling towers and hybrid wet-dry or dry cooling, present opportunities to reduce water diversions. This case study uses a custom, geographically resolved river basin-based model for eleven river basins in the state of Texas (the Brazos and San Jacinto-Brazos, Colorado and Colorado-Brazos, Cypress, Neches, Nueces, Red, Sabine, San Jacinto, and Trinity River basins), focusing on the Brazos River basin, to analyze water availability during drought. We utilized two existing water availability models for our analysis: (1) the full execution of water rights-a scenario where each water rights holder diverts the full permitted volume with zero return flow, and (2) current conditions-a scenario reflecting actual diversions with associated return flows. Our model results show that switching the cooling technologies at power plants in the eleven analyzed river basins to less water-intensive alternative designs can potentially reduce annual water diversions by 247-703 million m{sup 3}-enough water for 1.3-3.6 million people annually. We consider these results in a geographic context using geographic information system tools and then analyze volume reliability, which is a policymaker's metric that indicates the percentage of total demand actually supplied over a given period. This geographic and volume reliability analysis serves as a measure of drought susceptibility in response to changes in thermoelectric cooling technologies. While these water diversion savings do not alleviate all reliability concerns, the additional streamflow from the use of dry cooling alleviates drought concerns for some municipal water rights holders and might also be sufficient to uphold instream flow requirements for important bays and estuaries on the Texas Gulf coast.

  2. Delaware basin/Central basin platform margin: The development of a subthrust deep-gas province in the Permian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Purves, W.J. (Mobil Oil Corp., Midland, TX (USA)); Ting, S.C. (Mobil, Farmers Branch, TX (USA))

    1990-05-01

    A deep-gas-prone province was identified along the Delaware basin/Central Basin platform margin, a margin conventionally interpreted to be bounded by high-angle normal or high-angle reverse structures. Redefinition of the tectonic style between the Delaware basin and the adjacent platform resulted in the identification of this Delaware basin/Central Basin platform subthrust province and a giant prospect within it. Definition of a giant-sized gas prospect in northern Pecos County, Texas, revealed that portions of this margin may be characterized by shingled, low-angle, eastward-dipping, basement involved thrust faults. Interpretations suggest that hidden, subthrust footwall structures may trend discontinuously for greater than 100 mi along this structural margin. Subthrust footwall structures formed as basinal buttress points for the Central Basin platform to climb over the Delaware basin. In this area, structural relief of over 19,000 ft over a 10-mi width is believed due to stacking of low-angle thrust sheets. Seismic resolution of this subthrust margin has been complexed by allochtonous hanging-wall gravity-glide blocks and folds and by velocity changes in overlying syn- and posttectonic sediments associated with basin-to-shelf lithofacies changes. Statistical studies indicate that this deep-gas province has a play potential of greater than 10 tcf of gas, with individual prospect sizes exceeding 1 tcfg. The prospects defined along this trend are deep (approximately 20,000 ft) subthrust structural traps that are indigenously sourced and reservoired by dual-matrix porosity. Vitrinite supported maturation modeling suggests that these subthrust structures formed prior to catagenic conversion of the oldest source rocks to oil and later to gas. Tectonically fractured Ordovician Ellenburger and Devonian sediments are considered the principal reservoirs. Shales overlying reservoir intervals form vertical seals.

  3. Paleozoic evolution of active margin basins in the southern Central Andes (northwestern Argentina and northern Chile)

    Science.gov (United States)

    Bahlburg, H.; Breitkreuz, C.

    The geodynamic evolution of the Paleozoic continental margin of Gondwana in the region of the southern Central Andes is characterized by the westward progression of orogenic basin formation through time. The Ordovician basin in the northwest Argentinian Cordillera Oriental and Puna originated as an Early Ordovician back-arc basin. The contemporaneous magmatic arc of an east-dipping subduction zone was presumably located in northern Chile. In the back-arc basin, a ca. 3500 meter, fining-up volcaniclastic apron connected to the arc formed during the Arenigian. Increased subsidence in the late Arenigian allowed for the accomodation of large volumes of volcaniclastic turbidites during the Middle Ordovician. Subsidence and sedimentation were caused by the onset of collision between the para-autochthonous Arequipa Massif Terrane (AMT) and the South American margin at the Arenigian-Llanvirnian transition. This led to eastward thrusting of the arc complex over its back-arc basin and, consequently, to its transformation into a marine foreland basin. As a result of thrusting in the west, a flexural bulge formed in the east, leading to uplift and emergence of the Cordillera Oriental shelf during the Guandacol Event at the Arenigian-Llanvirnian transition. The basin fill was folded during the terminal collision of the AMT during the Oclóyic Orogeny (Ashgillian). The folded strata were intruded post-tectonically by the presumably Silurian granitoids of the "Faja Eruptiva de la Puna Oriental." The orogeny led to the formation of the positive area of the Arco Puneño. West of the Arco Puneño, a further marine basin developed during the Early Devonian, the eastern shelf of which occupied the area of the Cordillera Occidental, Depresión Preandina, and Precordillera. The corresponding deep marine turbidite basin was located in the region of the Cordillera de la Costa. Deposition continued until the basin fill was folded in the early Late Carboniferous Toco Orogeny. The basin

  4. Discrete kinematic modeling of the 3-D deformation of sedimentary basins; Modelisation cinematique discrete de la deformation 3D des bassins sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, T.

    2001-01-01

    The present work deals with three-dimensional deformation of sedimentary basins. The main goal of the work was to propose new ways to study tectonic deformation and to insert it into basin-modeling environment for hydrocarbon migration applications. To handle the complexity of the deformation, the model uses kinematic laws, a discrete approach, and the construction of a code that allows the greatest diversity in the deformation mechanisms we can take into account. The 3-D-volume deformation is obtained through the calculation of the behavior of the neutral surface of each basin layer. The main idea is to deform the neutral surface of each layer with the help of geometrical laws and to use the result to rebuild the volume deformation of the basin. The constitutive algorithm includes three characteristic features. The first one deals with the mathematical operator we use to describe the flexural-slip mechanism which is a combination of the translation of the neutral surface nodes and the rotation of the vertical edges attached to these nodes. This performs the reversibility that was required for the basin modeling. The second one is about. the use of a discrete approach, which gives a better description of the global deformation and offers to locally control volume evolutions. The knowledge of volume variations can become a powerful tool in structural geology analysis and the perfect complement for a field study. The last one concerns the modularity of the developed code. Indeed, the proposed model uses three main mechanisms of deformation. But the architecture of the code allows the insertion of new mechanisms or a better interaction between them. The model has been validated first with 2-D cases, then with 3-D natural cases. They give good results from a qualitative point of view. They also show the capacity of the model to provide a deformation path that is geologically acceptable, and its ability to control the volume variations of the basin through the

  5. Postoperative volume balance

    DEFF Research Database (Denmark)

    Frost, H; Mortensen, C.R.; Secher, N H;

    2016-01-01

    In healthy humans, stroke volume (SV) and cardiac output (CO) do not increase with expansion of the central blood volume by head-down tilt or administration of fluid. Here, we exposed 85 patients to Trendelenburg's position about one hour after surgery while cardiovascular variables were determined...... non-invasively by Modelflow. In Trendelenburg's position, SV (83 ± 19 versus 89 ± 20 ml) and CO (6·2 ± 1·8 versus 6·8 ± 1·8 l/min; both P... (39%) with a > 10% increase in SV (from 78 ± 16 to 90 ± 17 ml) corresponding to an increase in CO from 5·9 ± 1·5 to 6·9 ± 1·6 l min(-1) (Phead-down, administration of 250 ml Ringer's lactate solution increased SV (to 88 ± 18 ml) and CO (to 6·8 ± 1·7 l min(-1) ). In conclusion...

  6. The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury

    Science.gov (United States)

    Blair, David M.; Freed, Andrew M.; Byrne, Paul K.; Klimczak, Christian; Prockter, Louise M.; Ernst, Carolyn M.; Solomon, Sean C.; Melosh, H. Jay; Zuber, Maria T.

    2013-01-01

    The Rachmaninoff, Raditladi, and Mozart peak-ring impact basins on Mercury display a distinctive pattern of tectonic features consisting of a central zone that is either devoid of tectonic landforms or contains small ridges, a medial annulus of prominent and predominantly circumferentially oriented graben, and a distal zone displaying graben that occur in a mix of orientations and that are less evident toward the peak ring. Here we use finite element models to explore three candidate scenarios for the formation of these tectonic features: (1) thermal contraction of the interior smooth plains, (2) isostatic uplift of the basin floor, and (3) subsidence following volcanic loading. Our results suggest that only thermal contraction can account for the observed pattern of graben, whereas some combination of subsidence and global contraction is the most likely explanation for the central ridges in Rachmaninoff and Mozart. Thermal contraction models, however, predict the formation of graben in the centermost region of each basin, where no graben are observed. We hypothesize that graben in this region were buried by a thin, late-stage flow of plains material, and images of partially filled graben provide evidence of such late-stage plains emplacement. These results suggest that the smooth plains units in these three basins are volcanic in origin. The thermal contraction models also imply a cooling unit ~1 km thick near the basin center, further supporting the view that plains-forming lavas on Mercury were often of sufficiently high volume and low viscosity to pool to substantial thicknesses within basins and craters.

  7. Geologic Assessment of Undiscovered Oil and Gas Resources of the North Cuba Basin, Cuba

    Science.gov (United States)

    Schenk, Christopher J.

    2010-01-01

    Petroleum generation in the North Cuba Basin is primarily the result of thrust loading of Jurassic and Cretaceous source rocks during formation of the North Cuba fold and thrust belt in the Late Cretaceous to Paleogene. The fold and thrust belt formed as Cuban arc-forearc rocks along the leading edge of the Caribbean plate translated northward during the opening of the Yucatan Basin and collided with the passive margin of southern North America in the Paleogene. Petroleum fluids generated during thrust loading migrated vertically into complex structures in the fold and thrust belt, into structures in the foreland basin, and possibly into carbonate reservoirs along the margins of the Yucatan and Bahama carbonate platforms. The U.S. Geological Survey (USGS) defined a Jurassic-Cretaceous Composite Total Petroleum System (TPS) and three assessment units (AU)-North Cuba Fold and Thrust Belt AU, North Cuba Foreland Basin AU, and the North Cuba Platform Margin Carbonate AU-within this TPS based mainly on structure and reservoir type (fig. 1). There is considerable geologic uncertainty as to the extent of petroleum migration that might have occurred within this TPS to form potential petroleum accumulations. Taking this geologic uncertainty into account, especially in the offshore area, the mean volumes of undiscovered resources in the composite TPS of the North Cuba Basin are estimated at (1) 4.6 billion barrels of oil (BBO), with means ranging from an F95 probability of 1 BBO to an F5 probability of 9 BBO; and (2) 8.6 trillion cubic feet of of gas (TCFG), of which 8.6 TCFG is associated with oil fields, and about 1.2 TCFG is in nonassociated gas fields in the North Cuba Foreland Basin AU.

  8. Select Papers. Volume 1

    Science.gov (United States)

    2011-08-01

    non- uniform rational B-splines (NURBS), 127 and BRL-CAD TM format. This dual-package development allowed for rapid development of components ...next generation of scientists and engineers. A fundamental component of our outreach program is to provide students research experiences at ARL...summer intern. There, I ran Volume Based Morphometry , an application of Statistical Parametric Mapping that was new to the Hirsch lab. I

  9. Submarine Landslides in Arctic Sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  10. Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins

    Science.gov (United States)

    Xie, Minggang; Zhu, Meng-Hua

    2016-04-01

    A clear understanding of thickness distributions of primary ejecta and local material is critical to interpreting the process of ballistic sedimentation, provenances of lunar samples, the evolution of the lunar surface, and the origin of multi-ring basins. The youngest lunar multi-ring basin, Orientale, provides the best preserved structure for determining the thicknesses of primary ejecta and local material. In general, the primary ejecta thickness was often estimated using crater morphometry. However, previous methods ignored either crater erosion, the crater interior geometry, or both. In addition, ejecta deposits were taken as mostly primary ejecta. And, as far as we know, the local material thickness had not been determined for the Orientale. In this work, we proposed a model based on matching measurements of partially filled pre-Orientale craters (PFPOCs) with the simulations of crater erosion to determine their thicknesses. We provided estimates of primary ejecta thickness distribution with the thickness of 0.85 km at Cordillera ring and a decay power law exponent of b = 2.8, the transient crater radius of 200 km, excavation volume of 2.3 ×106 km3, primary ejecta volume of 2.8 ×106 km3. These results suggest that previous works (e.g., Fassett et al., 2011; Moore et al., 1974) might overestimate the primary ejecta thicknesses of Orientale, and the primary ejecta thickness model of Pike (1974a) for multi-ring basins may give better estimates than the widely cited model of McGetchin et al. (1973) and the scaling law for impacts into Ottawa Sand (Housen et al., 1983). Structural uplift decays slower than previously thought, and rim relief is mostly rim uplift for Orientale. The main reason for rim uplift may be the fracturing and squeezing upward of the surrounding rocks. The proportion of local material to ejecta deposits increases with increasing radial distance from basin center, and the thickness of local material is larger than that of primary ejecta at

  11. How integrated is river basin management?

    Science.gov (United States)

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew

    1991-05-01

    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  12. Tectono-stratigraphic evolution of an inverted extensional basin: the Cameros Basin (north of Spain)

    Science.gov (United States)

    Omodeo Salè, Silvia; Guimerà, Joan; Mas, Ramón; Arribas, José

    2014-09-01

    The Cameros Basin is a part of the Mesozoic Iberian Rift. It is an extensional basin formed during the late Jurassic and early Cretaceous, in the Mesozoic Iberian Rift context, and it was inverted in the Cenozoic as a result of the Alpine contraction. This work aims to reconstruct the tectono-stratigraphic evolution of the basin during the Mesozoic, using new and revised field, geophysical and subsurface data. The construction of a basin-wide balanced section with partial restorations herein offers new insights into the geometry of the syn-rift deposits. Field data, seismic lines and oil well data were used to identify the main structures of the basin and the basin-forming mechanisms. Mapping and cross-sectional data indicate the marked thickness variation of the depositional sequences across the basin, suggesting that the extension of the depositional area varied during the syn-rift stage and that the depocentres migrated towards the north. From field observation and seismic line interpretation, an onlap of the depositional sequences to the north, over the marine Jurassic substratum, can be deduced. In the last few decades, the structure and geometry of the basin have been strongly debated. The structure and geometry of the basin infill reconstructed herein strongly support the interpretation of the Cameros Basin as an extensional-ramp synclinal basin formed on a blind south-dipping extensional ramp. The gradual hanging-wall displacement to the south shifted the depocentres to the north over time, thus increasing the basin in size northwards, with onlap geometry on the pre-rift substratum. The basin was inverted by means of a main thrust located in a detachment located in the Upper Triassic beds (Keuper), which branched in depth with the Mesozoic extensional fault flat. The reconstruction of the tectono-stratigraphic evolution of the Cameros Basin proposed herein represents a synthesis and an integration of previous studies of the structure and geometry of the

  13. Western Gas Sands Project. Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-01-31

    This report is a summation of 3 months' drilling and testing activities in the four primary WGSP study areas: Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. The monitoring of basin activities is part of resource assessment. (DLC)

  14. Western Gas Sands Project Quarterly Basin Activities Report

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, C H

    1979-04-30

    This quarterly basin activities report is a summation of three months drilling and testing activities in the Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. Detailed information is given for each study area for the first quarter of 1979.

  15. Waste storage potential of Triassic basins in southeast United States

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1976-07-01

    Triassic basins, elongated deep basins filled with sediments, extend from Nova Scotia to Florida. The geology of the basins is discussed for each state. Their potential for liquid waste storage is assessed. Seismic risk is among the factors evaluated. It is recommended that the shallow Triassic Florence basin in northeast South Carolina be studied. 10 fig. (DLC)

  16. K Basins isolation barriers summary report

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on

  17. Gravity Analysis of the Jeffera Basin, Tunisia

    Science.gov (United States)

    Mickus, K.; Gabtni, H.; Jallouli, C.

    2004-12-01

    Southern Tunisia consists of two main tectonic provinces: 1) the Saharan Platform and 2) the folded Atlasic domain, separated by the North Saharan Flexure. The Saharan Platform, which contains the Ghadames Basin and the Telemzane Arch, consists of gently dipping Paleozoic strata overlain by Triassic to Cretaceous sediments. The Atlasic domain consists of a thicker sequence of mainly Mesozoic and younger rock with less complete sequences of Paleozoic strata. Within the Atlasic domain are the still actively subsiding Chotts and Jeffera basins. The Jeffera basin, which occurs to the east of the Telemzane Arch contains at least eight kilometers of Paleozoic and younger sediment that were formed during numerous subsidence episodes since Carboniferous time. The Jeffera basin is dominated by tilted fault blocks that were formed during numerous tectonic episodes. Several unpublished seismic reflection profiles and well data exist for the Jeffera basin, however a deep structural analysis of the basin has not been published. We examined the existing gravity data in conjunction with available well and geologic data to determine structural features within the basin. The Bouguer gravity anomaly map shows that the Jeffera basin is dominated by a narrow northwest-trending gravity minimum. However, a more detailed analysis consisting of wavelength filtering and edge enhancements indicate that the structure of the basin is more complicated than indicated by the Bouguer gravity anomaly map. A residual gravity anomaly map indicates that the Jeffera basin consists of at least three and maybe four subbasins. Additionally, the Jeffera Fault marks the boundary between northwest-trending gravity anomalies to its northeast and east-trending anomalies over the Saharan Platform. The above observation is amplified by the construction of the enhanced horizontal derivatives (EHG) of both the complete Bouguer gravity and the residual gravity anomaly maps. The EHG maps highlight the lateral

  18. Inner Harbor Navigation Canal Basin Velocity Analysis

    Science.gov (United States)

    2014-10-01

    ER D C/ CH L TR -1 4- 12 Inner Harbor Navigation Canal Basin Velocity Analysis Co as ta l a nd H yd ra ul ic s La bo ra to ry...library at http://acwc.sdp.sirsi.net/client/default. ERDC/CHL TR-14-12 October 2014 Inner Harbor Navigation Canal Basin Velocity Analysis...system of levees, gates, and drainage structures in the Inner Harbor Navigation Canal (IHNC) basin and the greater New Orleans, Louisiana, area. Two

  19. Tarim Basin: China's Potential Oil Giant

    Institute of Scientific and Technical Information of China (English)

    Qiu Baolin

    1996-01-01

    @@ Tarim Basin has an area of 560,000 square kilometers.Taklamakan Desert, the world's second largest shifting desert, is located in the hinterland of the basin. The desert is equal to Germany in area. The desert is called "Desert of No Return" for its harsh and adverse environments. A 522-kilometer highway crossing the desert from north to south was opened to the traffic in 1995 because an oilfield with the reserves of more than 100 million tons was discovered in the central part of the basin. The local traffic and ecological conditions have been much improved in the recent years.

  20. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (βCanning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture

  1. Environmental Report 1996, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Harrach, R.J.

    1996-01-01

    This is Volume 2 of the Lawrence Livermore National Laboratory`s (LLNL`s) annual Environmental Report 1996, prepared for the US Department of Energy. Volume 2 supports Volume 1 summary data and is essentially a detailed data report that provides individual data points, where applicable. Volume 2 includes information on monitoring of air, air effluents, sewerable water, surface water, ground water, soil and sediment, vegetation and foodstuff, environmental radiation, and quality assurance.

  2. Calculus Students' Understanding of Volume

    Science.gov (United States)

    Dorko, Allison; Speer, Natasha M.

    2013-01-01

    Researchers have documented difficulties that elementary school students have in understanding volume. Despite its importance in higher mathematics, we know little about college students' understanding of volume. This study investigated calculus students' understanding of volume. Clinical interview transcripts and written responses to volume…

  3. Temporal and spatial distribution of landslides in the Redwood Creek Basin, Northern California

    Science.gov (United States)

    Madej, Mary Ann; Medley, C. Nicholas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    Mass movement processes are a dominant means of supplying sediment to mountainous rivers of north coastal California, but the episodic nature of landslides represents a challenge to interpreting patterns of slope instability. This study compares two major landslide events occurring in 1964-1975 and in 1997 in the Redwood Creek basin in north coastal California. In 1997, a moderate-intensity, long-duration storm with high antecedent precipitation triggered 317 landslides with areas greater than 400 m2 in the 720-km2 Redwood Creek basin. The intensity-duration threshold for landslide initiation in 1997 was consistent with previously published values. Aerial photographs (1:6,000 scale) taken a few months after the 1997 storm facilitated the mapping of shallow debris slides, debris flows, and bank failures. The magnitude and location of the 1997 landslides were compared to the distributions of landslides generated by larger floods in 1964, 1972, and 1975. The volume of landslide material produced by the 1997 storm was an order of magnitude less than that generated in the earlier period. During both periods, inner gorge hillslopes produced many landslides, but the relative contribution of tributary basins to overall landslide production differed. Slope stability models can help identify areas susceptible to failure. The 22 percent of the watershed area classified as moderately to highly unstable by the SHALSTAB slope stability model included locations that generated almost 90 percent of the landslide volume during the 1997 storm.

  4. Structural Architecture and Evolution of Kumkuli Basin, North Tibet

    Institute of Scientific and Technical Information of China (English)

    He Bizhu; Xu Zhiqin; Jiao Cunli; Cui Junwen; Wang Shenglang; Wang Gonghuai; Li Zhaoyang; Qiu Zhuli

    2009-01-01

    Utilizing the new data of gravity, magnetic, and magnetotelluric survey, we analyzed the characteristics of the three geophysical attribute (gravity, magnetic, and resistivity) interfaces and the deep architecture and structure of Kumkuli basin. The research results can provide basic data for early basin structural study. From coupled basin and mountain system, analysis of the structure, and evolution of Knmknli basin, we found that there was zoning from north to south and from west to east. Kumkuli basin has three structural architecture layers including metamorphic crystallization basement, fold basement and sedimentary cover. Knmkuli basin can be divided into three structural units, two depressions, and one uplift. Structural evolution of the Kumkuli basin can be divided into five evolution stages, including Kumkuli microcontinent formed in Sinian-Ordovician, suture around Kumkuli basin formed in Eopaleozoic, retroarc foreland basin formed in Neopaleozoic, rejuvenated foreland hasin developed in Mesozoic, and strike slip and compression basin developed in Cenozoic.

  5. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    Science.gov (United States)

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional

  6. Hydrologic sensitivity of flood runoff and inundation: 2011 Thailand floods in the Chao Phraya River basin

    Science.gov (United States)

    Sayama, T.; Tatebe, Y.; Iwami, Y.; Tanaka, S.

    2015-07-01

    The Thailand floods in 2011 caused unprecedented economic damage in the Chao Phraya River basin. To diagnose the flood hazard characteristics, this study analyses the hydrologic sensitivity of flood runoff and inundation to rainfall. The motivation is to address why the seemingly insignificant monsoon rainfall, or 1.2 times more rainfall than for past large floods, including the ones in 1995 and 2006, resulted in such devastating flooding. To quantify the hydrologic sensitivity, this study simulated long-term rainfall-runoff and inundation for the entire river basin (160 000 km2). The simulation suggested that the flood inundation volume was 1.6 times more in 2011 than for the past flood events. Furthermore, the elasticity index suggested that a 1 % increase in rainfall causes a 2.3 % increase in runoff and a 4.2 % increase in flood inundation. This study highlights the importance of sensitivity quantification for a better understanding of flood hazard characteristics; the presented basin-wide rainfall-runoff-inundation simulation was an effective approach to analyse the sensitivity of flood runoff and inundation at the river basin scale.

  7. Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland

    Science.gov (United States)

    Brooke-Barnett, Samuel; Flottmann, Thomas; Paul, Pijush K.; Busetti, Seth; Hennings, Peter; Reid, Ray; Rosenbaum, Gideon

    2015-07-01

    The Jurassic to Cretaceous sedimentary rocks of the Surat Basin in southeast Queensland host a significant volume of coal seam gas resources. Consequently, knowledge of the in situ stress is important for coal permeability enhancement and wellbore stability. Using wireline log data and direct stress measurements, we have calculated stress orientations from 36 wells and stress magnitudes from 7 wells across the Surat Basin. Our results reveal a relationship between high tectonic stress and proximity to structures within the underlying "basement" rocks. The influence of tectonic stresses is diminished with depth in areas with thicker sedimentary cover that are relatively far from the basement structures. We suggest that this relationship is due to the redistribution of in situ stresses around areas where basement is shallower and where basement structures, such as the Leichhardt-Burunga Fault System, are present. This behavior is explained by a lower rigidity in the thickest basin cover, which reduces the ability to maintain higher tectonic stress. Over the entire Surat Basin, a significant amount of variability in in situ stress orientation is observed. The authors attribute this stress variability to complex plate boundary interactions on the northern and eastern margins of the Indo-Australian Plate.

  8. Groundwater quality assessment/corrective action feasibility plan. Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  9. BASIN STRUCTURE FROM TWO-DIMENSIONAL SEISMIC REFLECTION DATA, CRAZY MOUNTAINS BASIN, MONTANA

    Energy Technology Data Exchange (ETDEWEB)

    David J. Taylor

    2003-08-01

    Some 140 miles of multichannel seismic reflection data, acquired commercially in the 1970's, were reprocessed by the U.S. Geological Survey in late 2000 and early 2001 to interpret the subsurface geology of the Crazy Mountains Basin, an asymmetric Laramide foreland basin located in south-central Montana. The seismic data indicate that the northwestern basin margin is controlled by a thrust fault that places basement rocks over a thick (22,000 feet) sequence of Paleozoic and Mesozoic sedimentary rocks to the south. From the deep basin trough, Paleozoic through Tertiary rocks slope gently upward to the south and southeast. The northern boundary of the basin, which is not imaged well by the seismic data, appears to be folded over a basement ridge rather than being truncated against a fault plane. Seismic data along the basin margin to the south indicate that several fault controlled basement highs may have been created by thin-skinned tectonics where a series of shallow thrust faults cut Precambrian, Paleozoic, and early Mesozoic rocks, whereas, in contrast, Cretaceous and Tertiary strata are folded. The data are further interpreted to indicate that this fault-bounded asymmetric basin contains several structures that possibly could trap hydrocarbons, provided source rocks, reservoirs, and seals are present. In addition, faults in the deep basin trough may have created enough fracturing to enhance porosity, thus developing ''sweet spots'' for hydrocarbons in basin-centered continuous gas accumulations.

  10. K-Basins S/RIDS

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  11. K-Basins S/RIDS

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.J.

    1995-09-22

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  12. USGS Streamgage NHDPlus Version 1 Basins 2011

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset represents 19,031 basin boundaries and their streamgage locations for the U.S. Geological Survey's (USGS) active and historical streamgages from the...

  13. Ferris coalfield boundary, Hanna Basin, Wyoming (ferbndg)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shapefile contains a representation of the boundary of the Ferris coalfield in the Hanna Basin, Wyoming. This theme was created specifically for the...

  14. Cretaceous Onlap, Gulf of Mexico Basin [cretonlapg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The maximum extent of Cretaceous onlap is generalized from Plate 3, Structure at the base and subcrop below Mesozoic marine section, Gulf of Mexico Basin (compiled...

  15. Oil production in the Orinoco basin

    Energy Technology Data Exchange (ETDEWEB)

    Borregales, C.J.

    1980-02-01

    With an extension of 42,000 sq km, the Orinoco basin is one of the largest petroliferous zones in the world which contains high viscosity and low API gravity crude. Results from production tests performed in the central and southern parts of the basin indicate that its productive potential is similar to that in Morichal, Pilon and Jobo fields, and reveals that the heaviest oil existing in the Orinoco basin could be economically exploited by conventional methods of primary oil recovery. It is estimated that the oil recovery could be 5% of the total oil-in-place by using primary recovery methods, 8% by using alternate steam injection, and 20% by secondary recovery methods (continuous steam injection). However, if the compaction phenomenon takes place, an estimate of 5% to 15% additional oil recovery could be possible. Geology, fluid properties, results from production tests, and recovery methods in the Orinoco basin are presented.

  16. Gulf Coast Basins and Uplifts [gcstructsg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide generalized outlines of major basins and uplifts in the Gulf Coast region modified after Plate 2, Principal structural features, Gulf of Mexico...

  17. Volume of an Industrial Autoclave

    Directory of Open Access Journals (Sweden)

    Nicholas Madaffari

    2010-01-01

    Full Text Available We were able to determine the volume of an industrial autoclave sterilization tank using a technique learned in calculus. By measuring the dimensions of the tank and roughly estimating the equation of curvature at the ends of the tank, we were able to revolve half of the end of the tank around the x axis to get its fluid volume. Adding the two volumes of the ends and the volume of the cylindrical portion on the tank yielded the total volume.

  18. River Basin Standards Interoperability Pilot

    Science.gov (United States)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  19. Fractal Basins in the Lorenz Model

    Institute of Scientific and Technical Information of China (English)

    I.Djellit; J.C.Sprott; M. R. Ferchichi

    2011-01-01

    @@ The Lorenz mapping is a discretization of a pair of differential equations.It illustrates the pertinence of compu- tational chaos.We describe complex dynamics, bifurcations, and chaos in the map.Fractal basins are displayed by numerical simulation.%The Lorenz mapping is a discretization of a pair of differential equations. It illustrates the pertinence of computational chaos. We describe complex dynamics, bifurcations, and chaos in the map. Fractal basins are displayed by numerical simulation.

  20. Microbiology of spent nuclear fuel storage basins.

    Science.gov (United States)

    Santo Domingo, J W; Berry, C J; Summer, M; Fliermans, C B

    1998-12-01

    Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 10(4) to 10(7) cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biologtrade mark plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms.

  1. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    Science.gov (United States)

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  2. Water scarcity in the Jordan River basin.

    Science.gov (United States)

    Civic, M A

    1999-03-01

    This article reports the problem on water scarcity in the Jordan River basin. In the Jordan River basin, freshwater scarcity results from multiple factors and most severely affects Israel, Jordan, the West Bank, and the Gaza Strip. One of these multiple factors is the duration of rainfall in the region that only occurs in a small area of highlands in the northwest section. The varying method of water use parallels that of Israel that utilizes an estimated 2000 million cu. m. The national patterns of water usage and politically charged territorial assertions compound the competition over freshwater resources in the region. The combination of political strife, resource overuse, and contaminated sources means that freshwater scarcity in the Jordan River basin will reach a critical level in the near future. History revealed that the misallocation/mismanagement of freshwater from the Jordan River basin was the result of centuries of distinct local cultural and religious practices combined with historical influences. Each state occupying near the river basin form their respective national water development schemes. It was not until the mid-1990s that a shared-use approach was considered. Therefore, the critical nature of water resource, the ever-dwindling supply of freshwater in the Jordan River basin, and the irrevocability of inappropriate policy measures requires unified, definitive, and ecologically sound changes to the existing policies and practices to insure an adequate water supply for all people in the region.

  3. Geothermal resources of California sedimentary basins

    Science.gov (United States)

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  4. Short description of the Peruvian coal basins

    Energy Technology Data Exchange (ETDEWEB)

    Carrascal-Miranda, Eitel R. [UNI, Lima (Peru); Suarez-Ruiz, Isabel [Instituto Nacional del Carbon (CSIC), Ap. Co., 73, 33080 Oviedo (Spain)

    2004-04-23

    This work synthesizes the main general characteristics of the Peruvian Coal Basins in relation to age, coal facies and coal rank. Peruvian coals are located in a series of coal basins from the Paleozoic to the Cenozoic age. Paleozoic coal seams are mainly of Mississippian age (Carboniferous). They are of continental origin and their reduced thickness and ash content are their main characteristics. Mesozoic coal seams (Upper Jurassic-Lower Cretaceous) are located in the so-called Peruvian Western Basin and in the depressions close to the 'Maranon Geoanticline'. They were originated in deltaic facies under the influence of brackish and fresh waters. Some of these coal basins (those distributed in the central and northern parts of Peru) are relatively well known because they are of economic importance. Finally, Cenozoic coal seams (Tertiary) are found in both paralic and limnic basins and their reserves are limited. All the Peruvian coals are of humic character and are vitrinite-rich. Their rank is highly variable and normally related with the different orogenic events which strongly affected this region. Thus, Paleozoic and Mesozoic coals are of bituminous to anthracite/meta-anthracite coal rank while peats, lignite and subbituminous coals are found in Cenozoic basins.

  5. Summit Lake landslide and geomorphic history of Summit Lake basin, northwestern Nevada

    Science.gov (United States)

    Curry, B. Brandon; Melhorn, W.N.

    1990-01-01

    The Summit Lake landslide, northwestern Nevada, composed of Early Miocene pyroclastic debris, Ashdown Tuff, and basalt and rhyolite of the Black Rock Range, blocked the upper Soldier Creek-Snow Creek drainage and impounded Summit Lake sometimes prior to 7840 yr B.P. The slide covers 8.2 km2 and has geomorphic features characteristic of long run-out landslides, such as lobate form, longitudinal and transverse ridges, low surface gradient (7.1 ??), and preservation of original stratigraphic position of transported blocks. However, estimated debris volume is the smallest reported (2.5 ?? 105 m3) for a landslide of this type. The outflow channel of the Summit Lake basin was a northward-flowing stream valley entrenched by Mahogany Creek. Subsequent negative tectonic adjustment of the basin by about 35 m, accompanied by concommitant progradation of a prominent alluvial fan deposited by Mahogany Creek, argues for a probable diversion of drainage from the Alvord basin southward into the Lahontan basin. The landslide occurred while the creek flowed southward, transferring about 147 km2 of watershed from the Lahontan basin back to the Alvord basin. Overflow northward occurred during high stands of Pluvial Lake Parman in the basin; otherwise, under drier climates, the Summit Lake basin has been closed. Within large depressions on the slide surface, the ca. 6800 yr old Mazama Bed and other sediments have buried a weakly developed soil. Disseminated humus in the soil yields an age of 7840 ?? 310 yr B.P. Absence of older tephra (such as St. Helens M) brackets the slide age between 7840 and 19,000 yr B.P. Projectile points found on the highest strandlines of Pluvial Lake Parman suggest a ca 8700 yr B.P. age by correlation with cultural artifacts and radiocarbon ages from nearby Last Supper Cave, Nevada. Organic matter accumulation in landslide soils suggests ages ranging from 9100 to 16,250 yr B.P. Estimation of the age of the slide from morphologic data for the isolated Summit

  6. Light Propagation Volumes

    OpenAIRE

    Mikulica, Tomáš

    2016-01-01

    Cílem diplomové práce je popsat různé metody výpočtu globálního osvětlení scény včetně techniky Light Propagation Volumes. Pro tuto metodu jsou podrobně popsány všechny tři kroky výpočtu: injekce, propagace a vykreslení. Dále je navrženo několik vlastních rozšíření zlepšující grafickou kvalitu metody. Části návrhu a implementace jsou zaměřeny na popis scény, zobrazovacího systému, tvorby stínů, implementace metody Light Propagation Volumes a navržených rozšíření. Práci uzavírá měření, porovná...

  7. Illite/smectite clays preserving porosity at depth in Lower Permian Reservoirs, Northern Perth Basin

    Energy Technology Data Exchange (ETDEWEB)

    D.D. Ferdinando; J.C. Baker; A. Gongora; B.A. Pidgeon

    2007-07-01

    The appraisal well Hovea-2, drilled in July 2002, was the first well in the onshore Perth Basin to discover commercial volumes of gas in sandstone reservoirs of the Artinskian (Early Permian) High Cliff Sandstone sealed beneath basal shales and siltstones of the Irwin River Coal Measures. A drill stem test in this formation, in the interval 2,370-419 mMDRT (measured depth below rotary table), flowed gas to surface at 16.5 MMcfd. Thereafter, the High Cliff Sandstone became an important play for exploration in the basin; however, no additional discoveries have been made in this reservoir, even though it has been tested in another seven wells (Jingemia-1, Eremia-1, Kunzia-1, Corybas-1, Yardarino-6, Hakia-2 and Bunjong-1).

  8. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    DEFF Research Database (Denmark)

    Riegels, Niels; Jensen, Roar; Benasson, Lisa

    2011-01-01

    Resource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water...... scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until...... an allocation is found that maximizes net benefits given WFD requirements. Water use values are estimated for urban/domestic, agricultural, industrial, livestock, and tourism water users. Ecological status is estimated using metrics that relate average monthly river flow volumes to the natural hydrologic regime...

  9. Morphometrical Analysis and Peak Runoff Estimation for the Sub-Lower Niger River Basin, Nigeria

    Science.gov (United States)

    Salami, Adebayo Wahab; Amoo, Oseni Taiwo; Adeyemo, Joshiah Adetayo; Mohammed, Abdulrasaq Apalando; Adeogun, Adeniyi Ganiyu

    2016-03-01

    This study utilized Spatial Information Technology (SIT) such as Remote Sensing (RS), a Geographical Information System (GIS), the Global Positioning System (GPS) and a high-resolution Digital Elevation Model (DEM) for a morphometrical analysis of five sub-basins within the Lower Niger River Basin, Nigeria. Morpho-metrical parameters, such as the total relief, relative relief, relief ratio, ruggedness number, texture ratio, elongation ratio, circularity ratio, form factor ratio, drainage density, stream frequency, sinuosity factor and bifurcation ratio, have been computed and analyzed. The study revealed that the contribution of the morphometric parameters to flooding suggest catchment No. 1 has the least concentration time and the highest runoff depth. Catchment No. 4 has the highest circularity ratio (0.35) as the most hazardous site where floods could reach a great volume over a small area.

  10. Tectonic-sedimentary evolution of the eastern Brazilian marginal basins: Implications in their petroleum systems

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, N.F.; Azambuja, N.C.; Mello, M.R. (Petrobras, Rio de Janeiro (Brazil))

    1993-02-01

    A geological survey of eastern Brazilian marginal basins using sedimentological, tectonic and geochemical data has been carried out. The almost 4000 km long set of basins can be classified as component of a typical divergent, mature Atlantic-continental margin. Based on their tectonic-sedimentary sequence, they can be linked to a single evolutionary history, which can be divided in three main stages: pre-rift, rift, and drift. The integration of all data allowed the characterization of two major petroleum systems that represent about 90% of the known Brazilian hydrocarbons reserves: (1) the rift (Early Cretaceous) and the drift (Late Cretaceous-Paleogene). With respect to the oil-in-place volume and production, the most significant one is the drift system associated with the siliciclastic deep water turbidites reservoirs deposited in bathyal environments. Such reservoirs are clearly controlled by a favorable relationship of stratigraphic and tectonic settings.

  11. Reproduction of Baltic cod, Gadus morhua (Actinopterygii: Gadiformes: Gadidae), in the Gotland Basin: Causes of annual variability

    DEFF Research Database (Denmark)

    Plikshs, Maris; Hinrichsen, Hans-Harald; Elferts, D.

    2015-01-01

    ‰ isohaline is above the 2 mL· L–1 isooxygen. In such situation the water volume between the isolines is called the “suitable reproduction volume”. When the position of the isolines is reversed, the salinity and the oxygen level of the water layer demarcated by them are below the required thresholds...... and as such the water is unsuitable for the cod development. We refer to it as the “unsuitable reproduction volume”. The main aim of the presently reported study was to examine whether variations in suitable and unsuitable reproduction habitat estimates could explain the fl uctuations in cod recruitment. Material...... and methods. The suitable and unsuitable reproduction volumes in the Gotland Basin were estimated based on single point observations at three oceanographic monitoring stations using the contouring software Balthypsograph. To test the spatial hydrological heterogeneity in the Gotland Basin we used 15...

  12. Lumped conceptual hydrological model for Purna river basin, India

    Indian Academy of Sciences (India)

    V D Loliyana; P L Patel

    2015-12-01

    In present study, a lumped conceptual hydrological model, NAM (MIKE11), is calibrated while optimizing the runoff simulations on the basis of minimization of percentage water balance (% WBL) and root mean square error (RMSE) using measured stream flow data of eight years from 1991 to 1998 for Yerli catchment (area = 15,701 km2) of upper Tapi basin, Maharashtra in Western India. The sensitivity of runoff volume and peak-runoff has been undertaken with reference to nine NAM parameters using the data of calibration period. The runoff volume and peak-runoff have been found to be highly sensitive with reference to maximum water content in root zone storage (Lmax) and overland flow coefficient (CQOF) respectively. On the other hand, runoff volume is found to be moderately sensitive with maximum water content in surface storage (Umax). The calibrated model has been validated for independent stream flow data of Yerli gauging site for years 2001–2004, and Gopalkheda gauging site for years 1991–1998 and 2001–2004. The model performance has been assessed using statistical performance indices, and compared the same with their yardsticks suggested in published literature. The simulated results demonstrated that calibrated model is able to simulate hydrographs satisfactorily for Yerli (NSE = 0.86–0.88, r = 0.93–0.96, EI = 1.05–1.12) as well as Gopalkheda subcatchments (NSE = 0.76–0.92 and r = 0.88–0.96, EI = 0.89–0.91) at monthly time scale. The model also performs reasonably well in simulating the annual hydrographs at daily time scale. The calibrated model may be useful in prediction of water yield and flooding conditions in the Purna catchment.

  13. Surface-water hydrology and runoff simulations for three basins in Pierce County, Washington

    Science.gov (United States)

    Mastin, M.C.

    1996-01-01

    Creek Basin model and the Clear-Clarks Basin model-by incorporating the generalizations of the conceptual model into the construction of two HSPF numerical models. Initially, the process-related parameters for runoff from glacial-till hillslopes were calibrated with numerical models for three catchment sites and one headwater basin where streamflows were continuously measured and little or no influence from ground water, channel storage, or channel losses affected runoff. At one of the catchments soil moisture was monitored and compared with simulated soil moisture. The values for these parameters were used in the basin models. Basin models were calibrated to the first year of observed streamflow data by adjusting other parameters in the numerical model that simulated channel losses, simulated channel storage in a few of the reaches in the headwaters and in the floodplain of the main stem of Clover Creek, and simulated volume and outflow of the ground-water reservoir representing the regional ground-water aquifers. The models were run for a second year without any adjustments, and simulated results were compared with observed results as a measure of validation of the models. The investigation showed the importance of defining the ground-water flow boundaries and demonstrated a simple method of simulating the influence of the regional ground-water aquifer on streamflows. In the Clover Creek Basin model, ground-water flow boundaries were used to define subbasins containing mostly glacial outwash soils and not containing any surface drainage channels. In the Clear-Clarks Basin model, ground-water flow boundaries outlined a recharge area outside the surface-water boundaries of the basin that was incorporated into the model in order to provide sufficient water to balance simulated ground-water outflows to the creeks. A simulated ground-water reservoir used to represent regional ground-water flow processes successfully provided the proper water balance of inflows and outfl

  14. Integrated geophysical studies of the Fort Worth Basin (Texas), Harney Basin (Oregon), and Snake River Plain (Idaho)

    Science.gov (United States)

    Khatiwada, Murari

    geospatial data to understand the basement and sub-basement structures in the study area. Major tectonic features including the Ouachita thrust-fold belt, Lampasas arch, Llano uplift, and Bend arch surround the southeast Fort Worth Basin. The effects of these tectonic units in the basement were imaged in form of faulted and folded basement and sub-basement layers. Euler deconvolution and integrated forward gravity modeling were employed to extend the interpretations beyond the 3D seismic survey into a regional context. The Harney Basin is a relatively flat lying depression in the northeast portion of the enigmatic High Lava Plains volcanic province in eastern Oregon. In addition to the High Lava Plains active source seismic data, I also employed gravity, magnetic, digital elevation, geologic maps, and other geospatial data in this integrated study. I generated an upper crustal 3D seismic tomographic model of the Harney Basin and surrounding area using the active source seismic data. I then integrated it with gravity, magnetic, and geologic data to produce a geophysical model of the upper crustal structure, which reveals that the basin reaches as deep as 6 km in the central areas. I observed two major caldera shaped features within the basin. These calderas reveal seismic low velocity areas along with low gravity and magnetic anomalies. I interpreted the extent of these calderas with the help of integrated geophysical results. I propose a nested caldera complex in the northern Harney Basin and another caldera in the southern part. The Snake River Plain is an arcuate-shaped topographic low that lies in southern Idaho. This rifted valley is filled by large volume of mafic magma with numerous exposures of silicic volcanic centers. The scientific discussion on the structural complexities and evolution of the Snake River Plain and the role of extension in its formation has been going on for decades. Similarly, high gravity and magnetic anomalies are associated with the Snake River

  15. The long wavelength topography of Beethoven and Tolstoj basins, Mercury

    Science.gov (United States)

    André, Sarah L.; Watters, Thomas R.; Robinson, Mark S.

    2005-11-01

    Topography derived from Mariner 10 stereo images is used to characterize the interior structure of two mercurian basins, Beethoven and Tolstoj. Beethoven and Tolstoj basins are shallow (~2.5 km and ~2 km deep, respectively) and relatively flat-floored. Beethoven basin has an interior topographic rise near the northwest margin. The topography of Beethoven and Tolstoj basins is similar to that of lunar mare-filled basins. Well-developed basin-concentric wrinkle ridges and arcuate graben associated with lunar mascons are absent in both Beethoven and Tolstoj basins. The lack of mascon tectonic features suggests that either 1) the mercurian basins have a relatively thin veneer of fill material, 2) Mercury's elastic lithosphere was too strong for significant lithospheric flexure and subsidence to occur, or 3) the basin fill material has little or no density contrast with the surrounding crust and thus exerts little net load on the mercurian lithosphere.

  16. Implication of drainage basin parameters of a tropical river basin of South India

    Science.gov (United States)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  17. Petroleum in the Junggar basin, northwestern China

    Science.gov (United States)

    Taner, Irfan; Kamen-Kaye, Maurice; Meyerhoff, Arthur A.

    The Junggar basin occupies a large triangular area of some 130 000 km 2 in northwestern China. Situated between the Altay Shan (Altay Range) on the northeast and the Tian Shan (Tian Range) on the southwest, and between lesser ranges around the remainder of its periphery, the Junggar basin is completely intermontane. Its history as a basin began in the Permian, and continued as various uplifts and downwarps evolved. Through the Paleozoic the characteristics of the Junggar basin area were largely geosynclinal and marine. Its post-Permian development took place exclusively in continental regimes. Inhabitants of the Junggar basin have known and utilized its numerous oil and asphalt seeps and its spectacular spreads of asphalt for more than 2000 years, especially in the Karamay-Urho thrust belt near the northwestern rim. The first discovery of oil in the modern sense came at Dushanzi, one of the steeply folded anticlines of theÜrümqi foredeep near the southern rim. The first shallow oil in the Karamay-Urho thrust belt came in 1937, followed by commercial production in the Karamay field in 1955. Output continued to be modest until wells were drilled through local thrusts and reverse faults in the early 1980s. By 1985, cumulative production of the Karamay group of fields had reached 42,000,000 t (metric tonnes) (306,000,000 bbl), with a calculated minimum ultimate recovery of 280,000,000 t (2 billion bbl). Principal production comes from Permian and Triassic strata in continental facies. Apart from marine Mid and Upper Carboniferous strata, source rocks occur mainly in fine-grained lacustrine detrital beds of the Permian, the Triassic, the Jurassic and the Tertiary. Several uplifts and downwarps elsewhere in the Junggar basin remain to be drilled comprehensively. Results from such drilling may enhance the very important position that the Junggar already has attained in the hierarchy of China's onshore basins.

  18. Quantifying mesoscale eddies in the Lofoten Basin

    Science.gov (United States)

    Raj, R. P.; Johannessen, J. A.; Eldevik, T.; Nilsen, J. E. Ø.; Halo, I.

    2016-07-01

    The Lofoten Basin is the most eddy rich region in the Norwegian Sea. In this paper, the characteristics of these eddies are investigated from a comprehensive database of nearly two decades of satellite altimeter data (1995-2013) together with Argo profiling floats and surface drifter data. An automated method identified 1695/1666 individual anticyclonic/cyclonic eddies in the Lofoten Basin from more than 10,000 altimeter-based eddy observations. The eddies are found to be predominantly generated and residing locally. The spatial distributions of lifetime, occurrence, generation sites, size, intensity, and drift of the eddies are studied in detail. The anticyclonic eddies in the Lofoten Basin are the most long-lived eddies (>60 days), especially in the western part of the basin. We reveal two hotspots of eddy occurrence on either side of the Lofoten Basin. Furthermore, we infer a cyclonic drift of eddies in the western Lofoten Basin. Barotropic energy conversion rates reveals energy transfer from the slope current to the eddies during winter. An automated colocation of surface drifters trapped inside the altimeter-based eddies are used to corroborate the orbital speed of the anticyclonic and cyclonic eddies. Moreover, the vertical structure of the altimeter-based eddies is examined using colocated Argo profiling float profiles. Combination of altimetry, Argo floats, and surface drifter data is therefore considered to be a promising observation-based approach for further studies of the role of eddies in transport of heat and biomass from the slope current to the Lofoten Basin.

  19. Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Law, B.E. [Law (B.E.), Lakewood, CO (United States); Ulmishek, G.F.; Clayton, J.L. [Geological Survey, Denver, CO (United States); Kabyshev, B.P. [Ukrainian State Geological Inst., Chernigov (Ukraine); Pashova, N.T.; Krivosheya, V.A. [Ukrainian State Geological Inst., Poltava (Ukraine)

    1998-11-23

    An evaluation of thermal maturity, pore pressures, source rocks, reservoir quality, present-day temperatures, and fluid recovery data indicates the presence of a large basin-centered gas accumulation in the Dnieper-Donets basin (DDB) and Donbas foldbelt (DF) of eastern Ukraine. This unconventional accumulation covers an area of at least 35,000 sq km and extends vertically through as much as 7,000 m of Carboniferous rocks. The gas accumulation is similar, in many respects, to some North American accumulations such as Elmworth in the Alberta basin of western Canada, the Greater Green River basin of southwestern Wyoming, and the Anadarko basin of Oklahoma. Even though rigorous assessments of the recoverable gas have not been conducted in the region, a comparison of the dimensions of the accumulation to similar accumulations in the US indicates gas resources in excess of 100 tcf in place. The paper describes the geology, the reservoirs, source rocks, seals, and recommendations for further study.

  20. Chicxulub impact basin: Gravity characteristics and implications for basin morphology and deep structure

    Science.gov (United States)

    Sharpton, Virgil L.; Burke, Kevin; Hall, Stuart A.; Lee, Scott; Marin, Luis E.; Suarez, Gerardo; Quezada-Muneton, Juan Manuel; Urrutia-Fucugauchi, Jaime

    1993-01-01

    The K-T-aged Chicxulub Impact Structure is buried beneath the Tertiary carbonate rocks of the Northern Yucatan Platform. Consequently its morphology and structure are poorly understood. Reprocessed Bouguer (onshore) and Free Air (offshore) gravity data over Northern Yucatan reveal that Chicxulub may be a 200-km-diameter multi-ring impact basin with at least three concentric basin rings. The positions of these rings follow the square root of 2 spacing rule derived empirically from analysis of multi-ring basins on other planets indicating that these rings probably correspond to now-buried topographic basin rings. A forward model of the gravity data along a radial transect from the southwest margin of the structure indicates that the Chicxulub gravity signature is compatible with this interpretation. We estimate the basin rim diameter to be 204 +/- 16 km and the central peak ring diameter (D) is 104 +/- 6 km.

  1. The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation.

    Science.gov (United States)

    Lucke, Terry; Nichols, Peter W B

    2015-12-01

    This study evaluated the pollution removal and hydrologic performance of five, 10-year old street-side bioretention systems. The bioretention basins were subjected to a series of simulated rainfall events using synthetic stormwater. Four different pollution concentrations were tested on three of the bioretention basins. The four concentrations tested were: A) no pollution; B) typical Australian urban pollutant loads; C) double the typical pollution loads, and; D) five times the typical pollution loads. Tests were also undertaken to determine the levels of contaminant and heavy metals build-up that occurred in the filter media over the 10 year operational life of the bioretention systems. Although highly variable, the overall hydrological performance of the basins was found to be positive, with all basins attenuating flows, reducing both peak flow rates and total outflow volumes. Total suspended solids removal performance was variable for all tests and no correlation was found between performance and dosage. Total nitrogen (TN) removal was positive for Tests B, C and D. However, the TN removal results for Test A were found to be negative. Total phosphorus (TP) was the only pollutant to be effectively removed from all basins for all four synthetic stormwater tests. The study bioretention basins were found to export pollutants during tests where no pollutants were added to the simulated inflow water (Test A). Heavy metal and hydrocarbon testing undertaken on the bioretention systems found that the pollution levels of the filter media were still within acceptable limits after 10 years in operation. This field study has shown bioretention basin pollution removal performance to be highly variable and dependant on a range of factors including inflow pollution concentrations, filter media, construction methods and environmental factors. Further research is required in order to fully understand the potential stormwater management benefits of these systems.

  2. Hydrodynamics of coalbed methane reservoirs in the Black Warrior Basin: Key to understanding reservoir performance and environmental issues

    Science.gov (United States)

    Pashin, J.C.

    2007-01-01

    The Black Warrior Basin of the southeastern United States hosts one of the world's most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na-HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na-Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases. Water produced from the fresh-water plumes may be disposed safely at the surface, whereas underground injection has been used locally to dispose of highly saline water. Wells in areas that had normal hydrostatic reservoir pressure prior to development tend to produce large volumes of water and may take up to 4 a to reach peak gas production. In contrast, wells drilled in naturally underpressured areas distal to the fresh-water plumes typically produce little water and achieve peak gas rates during the first year of production. Environmental debate has focused largely on issues associated with hydrologic communication between deep reservoir coal beds and shallow aquifers. In the coalbed methane fields of the Black Warrior Basin, a broad range of geologic evidence suggests that flow is effectively confined within coal and that the thick intervals of marine shale separating coal zones limit cross-formational flow. ?? 2007 Elsevier Ltd. All rights reserved.

  3. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  4. Potential Impacts of Climate Change on Water Resources in the Kunhar River Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood

    2016-01-01

    Full Text Available Pakistan is one of the most highly water-stressed countries in the world and its water resources are greatly vulnerable to changing climatic conditions. The present study investigates the possible impacts of climate change on the water resources of the Kunhar River basin, Pakistan, under A2 and B2 scenarios of HadCM3, a global climate model. After successful development of the hydrological modeling system (HEC-HMS for the basin, streamflow was simulated for three future periods (2011–2040, 2041–2070, and 2071–2099 and compared with the baseline period (1961–1990 to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both A2 and B2 scenarios. However, while summer and autumn showed a noticeable increase in streamflow, spring and winter showed decreased streamflow. High and median flows were predicted to increase, but low flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of flow is likely to be more in the future. It was also noted that peaks were predicted to shift from June to July in the future, and the center-of-volume date—the date at which half of the annual flow passes—will be delayed by about 9–17 days in the basin, under both A2 and B2 scenarios. On the whole, the Kunhar basin will face more floods and droughts in the future due to the projected increase in high flow and decrease in low flow and greater temporal and magnitudinal variations in peak flows. These results highlight how important it is to take cognizance of the impact of climate change on water resources in the basin and to formulate suitable policies for the proper utilization and management of these resources.

  5. Evolution of the central Walvis Basin / offshore NW Namibia - balancing onshore erosion and offshore sedimentation

    Science.gov (United States)

    Henk, A.; Kukulus, M.; Junker, R.

    2003-04-01

    Rifting and break-up of Gondwana in the Late Jurassic / Early Cretaceous led to formation of the South Atlantic. One of the associated passive margins, the Walvis Basin in NW Namibia, is used as a case study to investigate the mass and process balances which link uplift and erosion onshore to contemporaneous subsidence and sedimentation offshore. One of the main objectives of the project is to gain quantitative insights into the feedback mechanisms between surface processes and lithospheric processes during passive margin evolution. Modeling concentrates on a traverse across the central Walvis Basin and adjacent onshore areas. Mass balancing requires a reconstruction of the denudation history and the volumes eroded onshore as well as a quantification of the contemporaneous sedimentary record preserved offshore. In the offshore parts of the study area, seismic sections and well data are available to constrain the post-rift evolution of the Walvis basin. However, as none of the exploration wells has yet reached syn-rift deposits, the early margin evolution has to remain speculative. In the onshore part of the traverse, field evidence and published apatite fission track data are used to reconstruct the erosion history. Comparison of the eroded and deposited volumes and masses, respectively, reveals a misfit of about 50 %, i.e. only half of the sediments observed offshore can be attributed to nearby source areas onshore. This result is supported by provenance analysis on cuttings from an offshore well which indicate that a substantial part of the detritus was derived from sources to the south and transported to the central Walvis Basin by coast-parallel currents. Sediment supply rates derived from reconstruction of the onshore erosion history and subsidence rates based on lithospheric cooling models together with global sea level changes are then used to model quantitatively deposition and stratigraphic architectures of the post-rift succession in the central Walvis

  6. Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico

    Science.gov (United States)

    Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.

    2011-01-01

    This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.

  7. Cretaceous alkaline intra-plate magmatism in the Ecuadorian Oriente Basin: Geochemical, geochronological and tectonic evidence

    Science.gov (United States)

    Barragán, Roberto; Baby, Patrice; Duncan, Robert

    2005-08-01

    Small volumes of Cretaceous alkaline basaltic magmas have been identified in the sedimentary infill of the Ecuadorian Oriente foreland basin. They are characterized by a restricted range of compositional variation, low LILE/HFSE ratios and Sr-Nd isotope values within the range of oceanic island basalts (OIB). Reflection seismic data show that a pre-existing NNE-SSW Triassic and Jurassic rift controls the location and occurrence of these alkaline eruptive sites. Radiometric ages ( 40Ar- 39Ar, incremental heating method) and the biostratigraphic record of their surrounding sediments indicate a NNE-SSW systematic age variation for the emplacement of this alkaline volcanism: from Albian (110 ± 5.2 Ma) in the northern part of the Oriente Basin, to Campanian (82.2 ± 2.0 Ma) in the west-central part. The geochemical, geochronological and tectonic evidences suggest that asthenospheric mantle has upwelled and migrated to the SSW, into the region underlying the pre-existing Triassic and Jurassic rift (thin-spot?). We propose that subduction was abandoned, subsequent to the accretion of allochthonous terranes onto the Ecuadorian and Colombian margin in the latest Jurassic-earliest Cretaceous, causing the relict slab material, corresponding to the eastwards-directed leading plate, to roll-back. Unmodified asthenospheric mantle migrated into the region previously occupied by the slab. This resulted in partial melting and the release of magmatic material to the surface in the northern part of the Oriente Basin since at least Aptian times. Then, magmatism migrated along the SSW-trending Central Wrench Corridor of the Oriente Basin during the Upper Cretaceous, probably as a consequence of the lateral propagation of the transpressive inversion of the Triassic-Jurassic rift. Eventually, the Late Cretaceous east-dipping Andean subduction system was renewed farther west, and the development of the compressional retro-foreland Oriente Basin system halted the Cretaceous alkaline

  8. Basin-scale runoff prediction: An Ensemble Kalman Filter framework based on global hydrometeorological data sets

    Science.gov (United States)

    Kunstmann, Harald; Lorenz, Christof; Tourian, Mohammad; Devaraju, Balaji; Sneeuw, Nico

    2016-04-01

    In order to cope with the steady decline of the number of in situ gauges worldwide, there is a growing need for alternative methods to estimate runoff. We present an Ensemble Kalman Filter based approach that allows us to conclude on runoff for poorly or irregularly gauged basins. The approach focuses on the application of publicly available global hydrometeorological data sets for precipitation (GPCC, GPCP, CRU, UDEL), evapotranspiration (MODIS, FLUXNET, GLEAM, ERA interim, GLDAS), and water storage changes (GRACE, WGHM, GLDAS, MERRA LAND). Furthermore, runoff data from the GRDC and satellite altimetry derived estimates are used. We follow a least squares prediction that exploits the joint temporal and spatial auto- and cross-covariance structures of precipitation, evapotranspiration, water storage changes and runoff. We further consider time-dependent uncertainty estimates derived from all data sets. Our in-depth analysis comprises of 29 large river basins of different climate regions, with which runoff is predicted for a subset of 16 basins. Six configurations are analyzed: the Ensemble Kalman Filter (Smoother) and the hard (soft) Constrained Ensemble Kalman Filter (Smoother). Comparing the predictions to observed monthly runoff shows correlations larger than 0.5, percentage biases lower than ± 20%, and NSE-values larger than 0.5. A modified NSE-metric, stressing the difference to the mean annual cycle, shows an improvement of runoff predictions for 14 of the 16 basins. The proposed method is able to provide runoff estimates for nearly 100 poorly gauged basins covering an area of more than 11,500,000 km2 with a freshwater discharge, in volume, of more than 125,000 m3/s.

  9. Desert basins of the Southwest

    Science.gov (United States)

    Leake, Stanley A.; Konieczki, Alice D.; Rees, Julie A.H.

    2000-01-01

    Ground water is among the Nation’s most important natural resources. It provides drinking water to urban and rural communities, supports irrigation and industry, sustains the flow of streams and rivers, and maintains riparian and wetland ecosystems. In many areas of the Nation, the future sustainability of ground-water resources is at risk from overuse and contamination. Because ground-water systems typically respond slowly to human actions, a long-term perspective is needed to manage this valuable resource. This publication is one in a series of fact sheets that describe ground-water-resource issues across the United States, as well as some of the activities of the U.S. Geological Survey that provide information to help others develop, manage, and protect ground-water resources in a sustainable manner. Ground-water resources in the Southwest are among the most overused in the United States. Natural recharge to aquifers is low and pumping in many areas has resulted in lowering of water tables. The consequences of large-scale removal of water from storage are becoming increasingly evident. These consequences include land subsidence; loss of springs, streams, wetlands and associated habitat; and degradation of water quality. Water managers are now seeking better ways of managing ground-water resources while looking for supplemental sources of water. This fact sheet reviews basic information on ground water in the desert basins of the Southwest. Also described are some activities of the U.S. Geological Survey (USGS) that are providing scientific information for sustainable management of ground-water resources in the Southwest. Ground-water sustainability is defined as developing and using ground water in a way that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences.

  10. Finding related functional neuroimaging volumes

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2004-01-01

    We describe a content-based image retrieval technique for finding related functional neuroimaging experiments by voxelization of sets of stereotactic coordinates in Talairach space, comparing the volumes and reporting related volumes in a sorted list. Voxelization is accomplished by convolving each...... coordinate with a Gaussian kernel. The scheme allows us to compare experiments represented as either lists of coordinates or volumes, and we introduce alternative entrances to databases by image-based indices constructed via novelty measures and singular value decomposition....

  11. Impact melt of the lunar Crisium multiring basin

    Science.gov (United States)

    Spudis, P. D.; Sliz, M. U.

    2017-02-01

    New geological mapping of the Crisium basin on the Moon has revealed exposures of the basin impact melt sheet. The melt sheet has a feldspathic highland composition, somewhat more mafic than the melt sheet of the Orientale basin, but less mafic than comparable deposits around the Imbrium basin. These newly recognized deposits would be ideal locations to directly sample Crisium basin impact melt, material whose study would yield insight into the composition of the lunar crust, the time of formation of the basin, and the large impact process.

  12. Groundwater quality in the Northern Coast Ranges Basins, California

    Science.gov (United States)

    Mathany, Timothy M.; Belitz, Kenneth

    2015-01-01

    The Northern Coast Ranges (NOCO) study unit is 633 square miles and consists of 35 groundwater basins and subbasins (California Department of Water Resources, 2003; Mathany and Belitz, 2015). These basins and subbasins were grouped into two study areas based primarily on locality. The groundwater basins and subbasins located inland, not adjacent to the Pacific Ocean, were aggregated into the Interior Basins (NOCO-IN) study area. The groundwater basins and subbasins adjacent to the Pacific Ocean were aggregated into the Coastal Basins (NOCO-CO) study area (Mathany and others, 2011).

  13. Multiple nested basin boundaries in nonlinear driven oscillators☆

    Science.gov (United States)

    Zhang, Yongxiang; Xie, Xiangpeng; Luo, Guanwei

    2017-03-01

    A special type of basins of attraction for high-period coexisting attractors is investigated, which basin boundaries possess multiple nested structures in a driven oscillator. We analyze the global organization of basins and discuss the mechanism for the appearance of layered structures. The unstable periodic orbits and unstable limit cycle are also detected in the oscillator. The basin organization is governed by the ordering of regular saddles and the regular saddle connections are the interrupted by the unstable limit cycle. Wada basin boundary with different Wada number is discovered. Wada basin boundaries for the hidden and rare attractors are also verified.

  14. Cosmological Measures without Volume Weighting

    CERN Document Server

    Page, Don N

    2008-01-01

    Many cosmologists (myself included) have advocated volume weighting for the cosmological measure problem, weighting spatial hypersurfaces by their volume. However, this often leads to the Boltzmann brain problem, that almost all observations would be by momentary Boltzmann brains that arise very briefly as quantum fluctuations in the late universe when it has expanded to a huge size, so that our observations (too ordered for Boltzmann brains) would be highly atypical and unlikely. Here it is suggested that volume weighting may be a mistake. Volume averaging is advocated as an alternative. One consequence would be a loss of the argument for eternal inflation.

  15. Speculations on the formation of cratons and cratonic basins

    Science.gov (United States)

    McKenzie, Dan; Priestley, Keith

    2016-02-01

    Surface wave tomography using Rayleigh waves has shown that Tibet and the surrounding mountain ranges that are now being shortened are underlain by thick lithosphere, of similar thickness to that beneath cratons. Both their elevation and lithospheric thickness can result from pure shear shortening of normal thickness continental lithosphere by about a factor of two. The resulting thermal evolution of the crust and lithosphere is dominated by radioactive decay in the crust. It raises the temperature of the lower part of the crust and of the upper part of the lithosphere to above their solidus temperatures, generating granites and small volumes of mafic alkaline rocks from beneath the Moho, as well as generating high temperature metamorphic assemblages in the crust. Thermal models of this process show that it can match the P, T estimates determined from metamorphic xenoliths from Tibet and the Pamirs, and can also match the compositions of the alkaline rocks. The seismological properties of the upper part of the lithosphere beneath northern Tibet suggest that it has already been heated by the blanketing effect and radioactivity of the thick crust on top. If the crustal thickness is reduced by erosion alone to its normal value at low elevations, without any tectonic extension, over a time scale that is short compared to the thermal time constant of thick lithosphere, of ∼250 Ma, thermal subsidence will produce a basin underlain by thick lithosphere. Though this simple model accounts for the relevant observations, there is not yet sufficient information available to be able to model in detail the resulting thermal evolution of the sediments deposited in such cratonic basins.

  16. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  17. Turbulent Flow Measurement in Vortex Settling Basin

    Directory of Open Access Journals (Sweden)

    Jafar Chapokpour

    2011-12-01

    Full Text Available This paper presents the findings of an experimental study on the three-dimensional turbulent flow field in vortex settling basin. An ADV (Acoustic Doppler Velocity Meter were used to catch 3D velocitycomponents inside the basin. Detailed measurements of time-averaged velocity components, turbulent intensity components and turbulent kinetic energy were determined at different radial sections of chamber. Also the normalized time averaged absolute velocity of 3D components in contour type exhibition were conducted and it was found that the absolute velocity generally is influenced by u component of flow. It trends from high magnitude in basin center to the constant magnitude in basin side wall. The normalized turbulent intensity ofthree components was investigated individually. It was found that intensity of 3D components in vicinity of central air core is higher than other regions, decreasing by moving towards basin sidewall except for the sections that influenced directly by entrance flow jet and sidewall exiting overflow. The results of turbulence kinetic energy also had the same interpretation like turbulence intensity and affected by the same boundary conditions which cover turbulence intensity of 3 velocity components overly.

  18. A geological history of the Turkana Basin.

    Science.gov (United States)

    Feibel, Craig S

    2011-01-01

    The Turkana Basin preserves a long and detailed record of biotic evolution, cultural development, and rift valley geology in its sedimentary strata. Before the formation of the modern basin, Cretaceous fluvial systems, Paleogene lakes, and Oligo-Miocene volcano-sedimentary sequences left fossil-bearing strata in the region. These deposits were in part related to an early system of rift basins that stretched from Sudan to the Indian Ocean. The present-day basin has its origins in Pliocene tectonic developments of the modern rift, with subsidence making room for more than one kilometer of Plio-Pleistocene strata. Much of this sequence belongs to the Omo Group, richly fossiliferous sediments associated with the ancestral Omo River and its tributaries. Modern Lake Turkana has a record stretching back more than 200 thousand years, with earlier lake phases throughout the Plio-Pleistocene. The geologic history of the basin is one of dynamic landscapes responding to environmental influences, including tectonics, volcanic activity and climate.

  19. Potential of using WATCH forcing data to model a low land river basin of the upper Murray-Darling basin in Australia

    Science.gov (United States)

    Kundu, D.; Van Ogtrop, F. F.; Vervoort, R. W.

    2014-12-01

    Scattered station based climate data is often not sufficient to describe the dynamics of the catchment processes and efficiently manage the water resources. Therefore, a lot of focus has been to identify alternative distributed data sources, such as; remotely sensed data or global re-analysis data. Hence, this study uses the Water and Global Change (WATCH) forcing data, based on 40 years ECMWF Re-Analysis (ERA-40), to model a semi-arid low land flood plain river basin in a data sparse region. The semi-distributed Soil Water Assessment Tool (SWAT) was used to model the river basin (Warrego, 52140.6 square km) located in the upper Murray-Darling basin in Eastern Australia. Multi station model calibration was achieved using the Sequential Uncertainty Fitting -2 (SUFI-2) algorithm with the Nash Sutcliffe Efficiency (NSE) as the goal function against monthly observed flow data. Modelling of a low land river system is highly challenging, due to topographic heterogeneity, nonlinear climatic behavior and sparse observed flow data with extended periods of zero flows. Preliminary simulation results indicate a NSE of 0.26 to 0.86 for the calibration period and 0.04 to 0.47 for the validation period. Furthermore, the volume fraction explained by the model ranged from 0.69 to 2.71 in the validation period. While the unsatisfactory results may be attributed to the SWAT modelling framework, which struggles with modelling flow in flat flood plains, the study does reveal the potential to use remotely sensed data in low land river basins with little or no climate data.

  20. Heliophysics 3 Volume Set

    Science.gov (United States)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-11-01

    Volume 1: Preface; 1. Prologue Carolus J. Schrijver and George L. Siscoe; 2. Introduction to heliophysics Thomas J. Bogdan; 3. Creation and destruction of magnetic field Matthias Rempel; 4. Magnetic field topology Dana W. Longcope; 5. Magnetic reconnection Terry G. Forbes; 6. Structures of the magnetic field Mark B. Moldwin, George L. Siscoe and Carolus J. Schrijver; 7. Turbulence in space plasmas Charles W. Smith; 8. The solar atmosphere Viggo H. Hansteen; 9. Stellar winds and magnetic fields Viggo H. Hansteen; 10. Fundamentals of planetary magnetospheres Vytenis M. Vasyliūnas; 11. Solar-wind magnetosphere coupling: an MHD perspective Frank R. Toffoletto and George L. Siscoe; 12. On the ionosphere and chromosphere Tim Fuller-Rowell and Carolus J. Schrijver; 13. Comparative planetary environments Frances Bagenal; Bibliography; Index. Volume 2: Preface; 1. Perspective on heliophysics George L. Siscoe and Carolus J. Schrijver; 2. Introduction to space storms and radiation Sten Odenwald; 3. In-situ detection of energetic particles George Gloeckler; 4. Radiative signatures of energetic particles Tim Bastian; 5. Observations of solar and stellar eruptions, flares, and jets Hugh Hudson; 6. Models of coronal mass ejections and flares Terry Forbes; 7. Shocks in heliophysics Merav Opher; 8. Particle acceleration in shocks Dietmar Krauss-Varban; 9. Energetic particle transport Joe Giacalone; 10. Energy conversion in planetary magnetospheres Vytenis Vasyliūnas; 11. Energization of trapped particles Janet Green; 12. Flares, CMEs, and atmospheric responses Tim Fuller-Rowell and Stanley C. Solomon; 13. Energetic particles and manned spaceflight 358 Stephen Guetersloh and Neal Zapp; 14. Energetic particles and technology Alan Tribble; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index. Volume 3: Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun

  1. Volume and Surface-Enhanced Volume Negative Ion Sources

    CERN Document Server

    Stockli, M P

    2013-01-01

    H- volume sources and, especially, caesiated H- volume sources are important ion sources for generating high-intensity proton beams, which then in turn generate large quantities of other particles. This chapter discusses the physics and technology of the volume production and the caesium-enhanced (surface) production of H- ions. Starting with Bacal's discovery of the H- volume production, the chapter briefly recounts the development of some H- sources, which capitalized on this process to significantly increase the production of H- beams. Another significant increase was achieved in the 1990s by adding caesiated surfaces to supplement the volume-produced ions with surface-produced ions, as illustrated with other H- sources. Finally, the focus turns to some of the experience gained when such a source was successfully ramped up in H- output and in duty factor to support the generation of 1 MW proton beams for the Spallation Neutron Source.

  2. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

    Institute of Scientific and Technical Information of China (English)

    WANG XianBin; WANG LianSheng; LIU ChunXue; YAN Hong; LI LiWu; ZHOU XiaoFeng; WANG YongLi; YANG Hui; WANG Guang; GUO ZhanQian; TUO JinCai; GUO HongYan; LI ZhenXi; ZHUO ShengGuang; JIANG HongLiang; ZENG LongWei; ZHANG MingJie

    2009-01-01

    This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha-nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode-gradation of complex high-molecule sedimentary organic material can form microbial gas or ther-mogenic gas. The δ13C1 value ranges from -110‰ to -50‰ for microbial gases but from -51‰ to -35‰ (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δD values characterized by normal distribution, i.e. δ13C1 δ13C2> δ13C3> δ13C4 and δDCH4<δDC2H6< δDC3H8< δDC4H10. The δ13C values and δD values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted de-pressions in the Songliao Basin, China, show δ13C1 values ranging from -30.5‰. to -16.7‰, with a very narrow δD range between -203‰--196‰. These gases are characterized by a reverse distribution of δ13C values but a normal distribution of δD values, and a negative correlation between their δ13C and δD values, indicating an abiological origin. The present study has revealed that abiogenic hydrocar-bons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3, The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.

  3. Does Arctic sea ice reduction foster shelf-basin exchange?

    Science.gov (United States)

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  4. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3. The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.

  5. Estimation of Geologic Storage Capacity of Carbon Dioxide in the Bukpyeong Basin, Korea Using Integrated Three-Dimensional Geologic Formation Modeling and Thermo-Hydrological Numerical Modeling

    Science.gov (United States)

    Kim, J.; Kihm, J.; Park, S.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A conventional method, which was suggested by NETL (2007), has been widely used for estimating the geologic storage capacity of carbon dioxide in sedimentary basins. Because of its simple procedure, it has been straightforwardly applied to even spatially very complicate sedimentary basins. Thus, the results from the conventional method are often not accurate and reliable because it can not consider spatial distributions of fluid conditions and carbon dioxide properties, which are not uniform but variable within sedimentary basins. To overcome this limit of the conventional method, a new method, which can consider such spatially variable distributions of fluid conditions and carbon dioxide properties within sedimentary basins, is suggested and applied in this study. In this new method, a three-dimensional geologic formation model of a target sedimentary basin is first established and discretized into volume elements. The fluid conditions (i.e., pressure, temperature, and salt concentration) within each element are then obtained by performing thermo-hydrological numerical modeling. The carbon dioxide properties (i.e., phase, density, dynamic viscosity, and solubility to groundwater) within each element are then calculated from thermodynamic database under corresponding fluid conditions. Finally, the geologic storage capacity of carbon dioxide with in each element is estimated using the corresponding carbon dioxide properties as well as porosity and element volume, and that within the whole sedimentary basin is determined by summation over all elements. This new method is applied to the Bukpyeong Basin, which is one of the prospective offshore sedimentary basins for geologic storage of carbon dioxide in Korea. A three-dimensional geologic formation model of the Bukpyeong Basin is first established considering the elevation data of the boundaries between the geologic formations obtained from seismic survey and geologic maps at the sea floor surface. This geologic

  6. New Seismic Reflection Profiling Across the Northern Newark Basin USA: Data Acquisition and Preliminary Results

    Science.gov (United States)

    Tymchak, M.; Collins, D.; Brown, C.; Conrad, J.; Papadeas, P.; Coueslan, M. L.; Tamulonis, K.; Goldberg, D.; Olsen, P. E.

    2011-12-01

    Deep saline formations in basins underlying major population centers represent opportunities for carbon (CO2) sequestration, but intensive surface development in such settings can hinder field operations to acquire geologic and geophysical data critical to effective characterization. Seismic-reflection is a tool that can be used to characterize basins and their potential capacity for carbon storage. The northern part of the Triassic-Jurassic Newark Rift Basin represents a potential storage opportunity for carbon as a result of its proximity to large-scale CO2 emitters; however, a lack of deep geologic and seismic data from this area has precluded evaluation of this basin to date. As part of the Department of Energy's (DOE) National Energy Technology Labs (NETL) Carbon Sequestration programs portion of the American Recovery and Reinvestment Act (ARRA)- and NYSERDA-funded TriCarb Consortium for Carbon Sequestration basin characterization project, two new seismic-reflection profiles were acquired in the northern portion of the Newark Basin in Rockland County, NY and Bergen County NJ. This densely developed region, proximal to New York City, presents a variety of challenges for seismic surveys, including route selection and access, community acceptance, high traffic volumes and associated data noise, in addition to regulatory requirements and private property limitations. In spite of these challenges, two high-resolution, perpendicular lines were successfully surveyed in late March and early April, 2011; one dip line extending 21 km (13 mi) across most of the basin (east-west), and a shorter strike line extending 8 km (5 mi, north-south). The survey lines intersected near the location of a planned 8,000 ft stratigraphic borehole to be drilled by the TriCarb consortium. Three vibroseis trucks comprised the source array. Source points were spaced at 36.5 m (120-ft) intervals and geophone accelerometers collected data at a 3.05 m (10 ft) intervals. Seismic-reflection data

  7. Tectonomagmatic relationship between the Sierra Madre Occidental ignimbrite flare-up and the southern Basin and Range province

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Labarthe-Hernandez, G.

    2004-12-01

    The Sierra Madre Occidental (SMO) is a Mid-Tertiary, large-volume, ignimbrite province at least 1,200 km long and 200-500 km wide, extending continuously from the U.S.-Mexico border (31\\deg N) to its intersection with the Mexican Volcanic Belt (21\\deg N). Considering the average thickness of 1,000 m for the ignimbrite plateau, based on several measured sections along the province, and the average wide of the province of 300 km, a conservative estimate of the physical volume of the SMO ignimbrites is about 360,000 km3. The southern part of the Basin and Range province is in Mexico. This extensional province overlaps in space and time with the SMO ignimbrite flare-up and formed NW- to NE-trending normal faults that bound many large grabens, which are particularly long and deep in the southern SMO. Basin and Range faulting occurred between at least 32 Ma and 12 Ma with both limits probably extending until the Eocene and the Quaternary. Ignimbrite activity can be as old as 51 Ma and as young as 17-16 Ma, but most of the ignimbrite volume was erupted in the 38-23 Ma period. Thus, the ignimbrite flare-up can be defined as a period of intense explosive volcanic activity that produced enormous volumes of silicic ignimbrite sheets, which took place mainly between 38 and 23 Ma in Mexico. The ignimbrite flare-up coincided in time with peaks in Basin and Range faulting, and the ignimbrite activity apparently migrated from the east-northeast to the west-southwest, i.e., from central Chihuahua (38-27 Ma) to Durango-Tayoltita-Nazas (32-29 Ma) to Zacatecas-Tepic (24-23 Ma), finishing by 16 Ma at Jalisco-Nayarit, as deduced from the compilation of geologic works done in the SMO. It is unknown yet whether there was a west-southward migration of Basin and Range faulting and if the ignimbrite flare-up occurred episodically as peaks (38-27 Ma, 32-29 Ma, and 24-23 Ma) or was continuous. Nevertheless, by the time that the ignimbrite flare-up started, the Basin and Range extension was

  8. Subsurface Structure and the Stress State of the Utopia Basin, Mars

    Science.gov (United States)

    Searls, M. L.; Phillips, R. J.

    2005-12-01

    A great deal of work has been done in determining the resurfacing history of the northern lowlands; however, most of the previous research has focused on the depth and characteristics of the Hesperian and Amazonian plains units that cover an older, heavily cratered Noachian surface (e.g. Tanaka et. al. 2003). An analysis of the amount and density of fill within the Utopia Basin could provide valuable insight to the depositional environment of the northern lowlands during the earliest epoch of martian history. In the present study we use the topography and gravity data from recent Mars' missions to analyze the subsurface structure of the Utopia basin, focusing on the volume and density of fill that causes the shallowness of the basin. Using the assumption that the initial isostatic state of Utopia was similar to that of the Hellas basin allows us to construct a model for Utopia that facilitates investigation of its interior configuration. Based on the spherical harmonic, thin-shell elastic model of Banerdt (1986), we developed a system of equations that allows us to solve for the original basin shape, the amount of fill within Utopia basin, the amount of flexure due to the fill material, the total vertical load and the horizontal load potential. The presence of quasi-circular depressions within the Utopia basin (Frey 2004) indicates that the majority of the material within Utopia was deposited early in the Noachian when the elastic lithosphere of Mars was (presumably) relatively thin (15 km, with a corresponding lithospheric flexure/membrane deformation of >14 km. The high density obtained for the fill requires that it contain a large igneous component, the source of which is problematic. Relaxing the isostatic assumption to a reasonable degree perturbs the density bound only slightly. This thin-shell model also allows us to calculate the stress field due to the flexure/membrane strains. The stress results show that the circumferential and radial tectonic features

  9. Tectonics in the Northwestern West Philippine Basin

    Institute of Scientific and Technical Information of China (English)

    Ni Xianglong; Wu Shiguo; Shinjo Ryuichi

    2008-01-01

    The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagnma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).

  10. Spatial Preference Heterogeneity for Integrated River Basin Management: The Case of the Shiyang River Basin, China

    Directory of Open Access Journals (Sweden)

    Fanus Asefaw Aregay

    2016-09-01

    Full Text Available Integrated river basin management (IRBM programs have been launched in most parts of China to ease escalating environmental degradation. Meanwhile, little is known about the benefits from and the support for these programs. This paper presents a case study of the preference heterogeneity for IRBM in the Shiyang River Basin, China, as measured by the Willingness to Pay (WTP, for a set of major restoration attributes. A discrete choice analysis of relevant restoration attributes was conducted. The results based on a sample of 1012 households in the whole basin show that, on average, there is significant support for integrated ecological restoration as indicated by significant WTP for all ecological attributes. However, residential location induced preference heterogeneities are prevalent. Generally, compared to upper-basin residents, middle sub-basin residents have lower mean WTP while lower sub-basin residents express higher mean WTP. The disparity in utility is partially explained by the difference in ecological and socio-economic status of the residents. In conclusion, estimating welfare benefit of IRBM projects based on sample responses from a specific sub-section of the basin only may either understate or overstate the welfare estimate.

  11. Exploration Experience and Problem concerning Deep Basin Gas in the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    MaXinhua

    2004-01-01

    Deep basin gas (DBG) reservoirs, in view of the characteristics of their main parts containing gas, are a type of subtle stratigraphic lithologic traps. But they have different reservoir-forming principles, especially in the distribution of oil, gas and water. DBG is characterized by gas-water invertion, namely the water located above the gas; however, normal non-anticline subtle reservoirs have normal distribution of gas and water, namely the water located under the gas. The theory of DBG broke the conventional exploration idea that gas is usually found in the high part of reservoir and water is under the gas. So, it provided a wide field and a new idea for the exploration of natural gas. Recently Ben E. Law (2002), in his article entitled "Basin-centered Gas Systems", discussed global DBG systemically. He listed 72 basins or areas containing known or suspected DBG, covering North America, South America, Europe, Asia-Pacific, South Asia, Middle East and Africa. Ordos basin, the Sichuan basin and the Jungar basin in China are presented and assumed to be of very high possibility. In China more attention has been paid to the research and exploration of DBG in the past years. The symposiums on DBG were held twice, in Guangzhou in 1998 and in Xi'an in 2000 respectively. In 2002 in particular, the publication of the book named Deep Basin Gas in China by Professor Wangtao indicated that China has entered a new stage in the research on DBG. Meanwhile, it is more cheering that the exploration of DBG in the Ordos Basin has achieved remarkable success. Therefore, analyzing the exploration experiences and problems regarding the Ordos basin will promote the exploration and research of DBG in China.

  12. Palaeoclimatological perspective on river basin hydrometeorology: case of the Mekong Basin

    Science.gov (United States)

    Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.

    2013-05-01

    Globally, there have been many extreme weather events in recent decades. A challenge has been to determine whether these extreme weather events have increased in number and intensity compared to the past. This challenge is made more difficult due to the lack of long-term instrumental data, particularly in terms of river discharge, in many regions including Southeast Asia. Thus our main aim in this paper is to develop a river basin scale approach for assessing interannual hydrometeorological and discharge variability on long, palaeological, time scales. For the development of the basin-wide approach, we used the Mekong River basin as a case study area, although the approach is also intended to be applicable to other basins. Firstly, we derived a basin-wide Palmer Drought Severity Index (PDSI) from the Monsoon Asia Drought Atlas (MADA). Secondly, we compared the basin-wide PDSI with measured discharge to validate our approach. Thirdly, we used basin-wide PDSI to analyse the hydrometeorology and discharge of the case study area over the study period of 1300-2005. For the discharge-MADA comparison and hydrometeorological analyses, we used methods such as linear correlations, smoothing, moving window variances, Levene type tests for variances, and wavelet analyses. We found that the developed basin-wide approach based on MADA can be used for assessing long-term average conditions and interannual variability for river basin hydrometeorology and discharge. It provides a tool for studying interannual discharge variability on a palaeological time scale, and therefore the approach contributes to a better understanding of discharge variability during the most recent decades. Our case study revealed that the Mekong has experienced exceptional levels of interannual variability during the post-1950 period, which could not be observed in any other part of the study period. The increased variability was found to be at least partly associated with increased El Niño Southern

  13. Paleohydrogeology of the San Joaquin basin, California

    Science.gov (United States)

    Wilson, A.M.; Garven, G.; Boles, J.R.

    1999-01-01

    Mass transport can have a significant effect on chemical diagenetic processes in sedimentary basins. This paper presents results from the first part of a study that was designed to explore the role of an evolving hydrodynamic system in driving mass transport and chemical diagenesis, using the San Joaquin basin of California as a field area. We use coupled hydrogeologic models to establish the paleohydrogeology, thermal history, and behavior of nonreactive solutes in the basin. These models rely on extensive geological information and account for variable-density fluid flow, heat transport, solute transport, tectonic uplift, sediment compaction, and clay dehydration. In our numerical simulations, tectonic uplift and ocean regression led to large-scale changes in fluid flow and composition by strengthening topography-driven fluid flow and allowing deep influx of fresh ground water in the San Joaquin basin. Sediment compaction due to rapid deposition created moderate overpressures, leading to upward flow from depth. The unusual distribution of salinity in the basin reflects influx of fresh ground water to depths of as much as 2 km and dilution of saline fluids by dehydration reactions at depths greater than ???2.5 km. Simulations projecting the future salinity of the basin show marine salinities persisting for more than 10 m.y. after ocean regression. Results also show a change from topography-to compaction-driven flow in the Stevens Sandstone at ca. 5 Ma that coincides with an observed change in the diagenetic sequence. Results of this investigation provide a framework for future hydrologic research exploring the link between fluid flow and diagenesis.

  14. Geothermal structure of Australia's east coast basins

    Science.gov (United States)

    Danis, C. R.; O'Neill, C.

    2010-12-01

    The east coast sedimentary basins of Australia formed on an active margin of eastern Gondwana, and constitute an important hydrocarbon resource. The 1600km long Sydney-Gunnedah-Bowen Basin (SGBB) is largest east coast basin system, with thick Permian to Jurassic sedimentary successions overlying Palaeozoic basement rocks. The SGBB has been the focus of renewed geothermal exploration interest, however, the thermal state and geothermal potential of the system is largely unconstrained. Geothermal exploration programs require an accurate estimate of subsurface temperature information, in addition to favourable geology, to make informed decisions on potential targe developments. Primarily temperature information comes from downhole measurements, generally non-equilibrated, which are traditionally extrapolated to depth, however such extrapolation does not take into account variations in geological structure or thermal conductivity. Here we import deep 3D geological models into finite element conduction simulations, using the code Underworld, to calculate the deep thermal structure of the basin system. Underworld allows us to incorporate complex, detailed geological architecture models, incorporating different material properties for different layers, with variable temperature and depth-dependent properties. We adopt a fixed top boundary temperature on a variable topographic surface, and vary the bottom surface boundary condition, to converge of models which satisfy equilibrated downhole temperature measurement constraints. We find coal plays an important role in insulating sedimentary basins. Heat refracts around the coal interval and produces elevated temperatures beneath thick sediments, especially where thick coal intervals are present. This workflow has been formalized into an Underworld geothermal model library, enabling model centric computational workflows. Using the imported model architecture from the geology, data can be continuously updated and added to the

  15. Avian cholera in Nebraska's Rainwater Basin

    Science.gov (United States)

    Windingstad, R.M.; Hurt, J.J.; Trout, A.K.; Cary, J.

    1984-01-01

    The first report of avian cholera in North America occurred in northwestern Texas in winter 1944 (Quortrup et al. 1946). In 1975, mortality from avian cholera occurred for the first time in waterfowl in the Rainwater Basin of Nebraska when an estimated 25,000 birds died (Zinkl et al. 1977). Avian cholera has continued to cause mortality in wild birds in specific areas of the Basin each spring since. Losses of waterfowl from avian cholera continue to be much greater in some of the wetlands in the western part of the Basin than in the east. Several wetlands in the west have consistently higher mortality and are most often the wetlands where initial mortality is noticed each spring (Figure 1). The establishment of this disease in Nebraska is of considerable concern because of the importance of the Rainwater Basin as a spring staging area for waterfowl migrating to their breeding grounds. The wetlands in this area are on a major migration route used by an estimated 5 to 9 million ducks and several hundred thousand geese. A large portion of the western mid-continental greater white-fronted goose (Anser albifrons) population stage in the Basin each spring. Occasionally, whooping cranes (Grus americana) use these wetlands during migration, and lesser sandhill cranes (Grus canadensis) staging on the nearby Platte River sometimes use wetlands where avian cholera occurs (Anonymous 1981). Our objectives were to determine whether certain water quality variables in the Rainwater Basin differed between areas of high and low avian cholera incidence. These results would then be used for laboratory studies involving the survivability of Pasteurella multocida, the causative bacterium of avian cholera. Those studies will be reported elsewhere.

  16. Foundation Report on Stonewall Jackson Dam, West Fork River Basin, Weston, West Virginia. Volume 1.

    Science.gov (United States)

    1987-12-21

    versatile air operated double diaphragm type pump. The SENTRY I Surge Suppressor is truly unique. Con- structed of a specially compounded , glass reinforced...DEPTH OF HOLE 36. 7 Dave Nugen ELEVATION DEPTH LEGEND 0 CLASSIFICATION OF MATERIALS ~ OEBI RREMARKSREIMCO0V. ISAMPLE (DrIII,,, tAW. W Jos.. dEAh of

  17. Cultural Resources Literature Search and Records Review - Upper Mississippi River Basin. Volume 7. Pool 6.

    Science.gov (United States)

    1983-01-01

    topographic- ILocation of Collections: Wagner, Ken , (Trempealeau, WI) and Gallup Clark (L aCrosse, WI). L A 52 A I POOL 6 53 Map # 17 (14 4)State...Wi A ’S’ POOL 6 75 Map * 28(145) State Codification # TR-0057 County Trempealeau(WI) Site Name: Wilber Legal Description: Township & Range T18N R9W...Civil Township Trempeale Section Location: SW , SEI , SE% sec 17 Present Owner: Wilber , Elmer Address: Wilber Road , Trempealeau , Wi Recorded By: (name

  18. A Cultural Resources Inventory of the Pearl River Basin, Louisiana and Mississippi. Volume II.

    Science.gov (United States)

    1982-04-01

    collectively illustrate a wide range of architectural styles from Greek Revival through the Gothic , Jacobean and Neo-Classical revivals and including...Archeologist; Office of Program Development Jessica Kemm, Architectural Division of Archeology and Historic Historian; Preservation Phillip G. Rivet, Staff P. 0... Architectural Review P. 0. Box 1359 Vicksburg, Mississippi 39180 Choctaw Pioneer Historical Society 841 Pinehurst Place Jackson, Mississippi 39202 Civil War

  19. River Mileages and Drainage Areas for Illinois Streams. Volume 1. Illinois Except Illinois River Basin.

    Science.gov (United States)

    1979-12-01

    rOUNTY n.4 POAr, S2’.T IR IW IRVINGTON 0.7 MISSOUPI-ILLINUIS Rk IRVINGTON 1.4 ROAr) %34*TOIN.R0IW IRVIN (;TON 2.5 ROAn 535.T IN.k IW IRVINGTON 4.0 ROAn...536.T IN.R IW IRVINGTON ’..2 ILLINOIS CENTRAL RR IRVIN &TON 4.6 WASHINGTON-MARION CO LN IRVINGTON 4.6 US wWY 51 IRVINGTON 4.7 ROAn 531*T I’ ,k Iw... WELSH HOLLOW L ELIZABETH 32.3 ROAD S 3 T27N R 3E ELIZABETH 35.8 ROAD S23 T28N R 3E SCALES MOUND E 36.2 COON CR R SCALES MOUND E 36.8 ROAD S24 T28N R 3E

  20. A Cultural Resources Inventory of the Pearl River Basin, Louisiana and Mississippi. Volume I.

    Science.gov (United States)

    1982-04-01

    available. Small parties of women, young people, or adult men would spend 2 to 3 weeks at shellfish collecting, hunting, or gathering camps at various times...examples; that is, that the men were hunters and the gathering of plants could have been an activity of women, young chil-dren and aged persons. Most...illness (Ibid:335-336).. As his health improved, he began to explore Mr. Rumsey’s property. His decription of the island is presented below (Bartram

  1. Archaeological Investigations, Navigation Pool II, Upper Mississippi River Basin. Volume 1. Narrative

    Science.gov (United States)

    1985-03-01

    unable to identify the precise depth of the pre-settlement ( pie -1850) surface. As an example, at the Turkey River Public Use Area, post-settlement...r-constructions of Late Paleoindian lifeways have been ,1v,-loprd for this region and Quimby’s (1960) Aqua- Plano tradition and 74ason’s (1963) Late...explicit frame of reference, and Quimby has characterized them as dominated by the "Aqua- Plano " tradition (1960: 34- 42). For reasons propounded

  2. River Mileages and Drainage Areas for Illinois Streams. Volume 2. Illinois River Basin.

    Science.gov (United States)

    1979-12-01

    FOREST 50.2 MADISON STREET RIVER FOREST 50.5 IL PT 56 RIVER FOREST 51.0 C & NW RR RIVER FOREST 51.1 LAKE STREET RIVER FOREST 51.6 CHICAGO AVENUE RIVER ... FOREST 51.9 SILVER CREEK R RIVER FOREST 53.9 DAM S35v40NoRI2E RIVER FOREST 54.2 NORTH PUEBLO AVENUE RIVER FOREST 55.1 GRAND AVENUE RIVER FOREST 55.1...USGS GAGE 05530600 AT RIVER GROVE 451 415546 O75040 RIVER

  3. Cultural Resources Literature Search and Records Review - Upper Mississippi River Basin. Volume 12. Bibliography.

    Science.gov (United States)

    1983-01-01

    Minnesota Archaeology Symposium - 1976. A. R. Woolworth and M. A. Hall, eds. Minnesota His-torical Society, St. Paul. 1979 The Mississippian occupation of... WOOLWORTH , ALAN n.d. An Historical Study and a Cultural Resources Survey ot Indian Mounds Park (21 RA 10) Ramsey County, Minnon;ota. Listed in Minnesota...Survey File. -50- WOOLWORTH , ALAN and DOUGLAS GEORGE 1975 Archaeological Survey at Winona, Minnesota. Minnesota State Historical Society. WOOLWORTH

  4. Ellicott Creek Basin, New York. Water Resources Development. Phase 2. Volume 2. Appendices.

    Science.gov (United States)

    1973-08-01

    a H 0-’ 0) N~ %D0 C’ LA 0 ’.0 C D W. It I C’n 1* 00 LI9 C. 4 *4 4 94 9 9 9 %D C14 N OD m’ Ict N tn CD LA HJ r NN N Z N N N N N~ N r O) 0 4...N....ERI. BILLET R A LSC E N C~ O EL I OTT C EK BASI ELT N)3 2j 0 N I G E~j ssI 6 - . -.- (.d U- ~NOR T" TOfNAWANO Iq . . . . ... d d a.q *~ . .GE

  5. Cultural Resources Literature Search and Records Review - Upper Mississippi River Basin. Volume 1. Introduction and Narrative

    Science.gov (United States)

    1983-01-01

    discharged officers and enlisted men and their families, voyageurs , and Indian agents. It was the military that first surveyed the rivers and lakes...Mason, Park Naturalist, at Effigy Mounds National Monument in lowa, and by Norman Indall of the Winona Area Chamber of Commerce . Dr. Nancy 0. Lurie and

  6. Cell swelling and volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay

    1992-01-01

    The extracellular space in the brain is typically 20% of the tissue volume and is reduced to at least half its size under conditions of neural insult. Whether there is a minimum size to the extracellular space was discussed. A general model for cell volume regulation was presented, followed by a ...

  7. PDLE: Sustaining Professionalism. Volume 3

    Science.gov (United States)

    Byrd, Patricia, Ed.; Nelson, Gayle, Ed.

    2003-01-01

    This third volume looks at ways that seasoned professionals continue to develop throughout their careers. The text includes descriptive accounts of professionals seeking to enhance their careers while remaining inspired to continue to develop professionally. This volume reveals how personal and professional lives are entwined. It proves that TESOL…

  8. Glof Study in Tawang River Basin, Arunachal Pradesh, India

    Science.gov (United States)

    Panda, R.; Padhee, S. K.; Dutta, S.

    2014-11-01

    Glacial lake outburst flood (GLOF) is one of the major unexpected hazards in the high mountain regions susceptible to climate change. The Tawang river basin in Arunachal Pradesh is an unexplored region in the Eastern Himalayas, which is impending to produce several upcoming hydro-electric projects (HEP). The main source of the river system is the snow melt in the Eastern Himalayas, which is composed of several lakes located at the snout of the glacier dammed by the lateral or end moraine. These lakes might prove as potential threat to the future scenario as they have a tendency to produce flash flood with large quantity of sediment load during outbursts. This study provides a methodology to detect the potential lakes as a danger to the HEP sites in the basin, followed by quantification of volume of discharge from the potential lake and prediction of hydrograph at the lake site. The remote location of present lakes induced the use of remote sensing data, which was fulfilled by Landsat-8 satellite imagery with least cloud coverage. Suitable reflectance bands on the basis of spectral responses were used to produce informational layers (NDWI, Potential snow cover map, supervised classification map) in GIS environment for discriminating different land features. The product obtained from vector overlay operation of these layers; representing possible water area, was further utilized in combination with Google earth to identify the lakes within the watershed. Finally those identified lakes were detected as potentially dangerous lakes based on the criteria of elevation, area, proximity from streamline, slope and volume of water held. HEC-RAS simulation model was used with cross sections from Google Earth and field survey as input to simulate dam break like situation; hydrodynamic channel routing of the outburst hydrograph along river reach was carried out to get the GLOF hydrograph at the project sites. It was concluded from the results that, the assessed GLOF would be a

  9. Alluvial basin statistics of the Southwest Principal Aquifers (SWPA) study.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SWPA_alvbsn is a vector dataset of alluvial-fill basin statistics for the Southwest United States. Statistics for each basin include physical details such as area,...

  10. Three-phase tectonic evolution of the Andaman backarc basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A

    A three-phase evolutionary scheme since Late Oligocene for the Andaman backarc basin is proposed based on the multibeam swath bathymetry, magnetic and seismological data. A SW–NE trending spreading ridge bisects the basin. The tectonic evolution...

  11. Basin and Range Province, Western US, USGS Grids #5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  12. Basin and Range Province, Western US, USGS Grids #3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  13. Basin and Range Province, Western US, USGS Grids, #1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  14. Ferromanganese nodules from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.; Pattan, J.N.

    In order to delineate a mine site for ferromanganese nodules, extensive surveys were conducted in Central Indian Ocean Basin. Mapping of the basin by multibeam swath bathymetry (Hydrosweep) has revealed many new bottom relief features...

  15. Water resources of the Chad Basin Region

    Directory of Open Access Journals (Sweden)

    Franklyn R. Kaloko

    2013-07-01

    Full Text Available River basin development is seen as a very effective means of improving agricultural productivity. In the Chad Basin area of the Sahelian Zone of the West African Sub-Region, the water resources have been harnessed to ensure viable agricultural programmes for Nigeria. However,the resultant successes have met by many problems that range from physical to socio-economic and of which water losses have been the most threatening. The study has called for the use of Hexa.deconal (C1-OH film on the water surface of the Chad as a means of reducing evaporation.

  16. The classification of polynomial basins of infinity

    CERN Document Server

    DeMarco, Laura

    2011-01-01

    We consider the problem of classifying the dynamics of complex polynomials $f: \\mathbb{C} \\to \\mathbb{C}$ restricted to their basins of infinity. We synthesize existing combinatorial tools --- tableaux, trees, and laminations --- into a new invariant of basin dynamics we call the pictograph. For polynomials with all critical points escaping to infinity, we obtain a complete description of the set of topological conjugacy classes. We give an algorithm for constructing abstract pictographs, and we provide an inductive algorithm for counting topological conjugacy classes with a given pictograph.

  17. A global distributed basin morphometric dataset

    Science.gov (United States)

    Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang

    2017-01-01

    Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.

  18. Discretized Volumes in Numerical Methods

    CERN Document Server

    Antal, Miklós

    2007-01-01

    We present two techniques novel in numerical methods. The first technique compiles the domain of the numerical methods as a discretized volume. Congruent elements are glued together to compile the domain over which the solution of a boundary value problem is sought. We associate a group and a graph to that volume. When the group is symmetry of the boundary value problem under investigation, one can specify the structure of the solution, and find out if there are equispectral volumes of a given type. The second technique uses a complex mapping to transplant the solution from volume to volume and a correction function. Equation for the correction function is given. A simple example demonstrates the feasibility of the suggested method.

  19. Biochemical kinetics in changing volumes.

    Science.gov (United States)

    Pawłowski, Piotr H; Zielenkiewicz, Piotr

    2004-01-01

    The need of taking into account the change of compartment volume when developing chemical kinetics analysis inside the living cell is discussed. Literature models of a single enzymatic Michaelis-Menten process, glycolytic oscillations, and mitotic cyclin oscillations were tested with appropriate theoretical extension in the direction of volume modification allowance. Linear and exponential type of volume increase regimes were compared. Due to the above, in a growing cell damping of the amplitude, phase shift, and time pattern deformation of the metabolic rhythms considered were detected, depending on the volume change character. The performed computer simulations allow us to conclude that evolution of the cell volume can be an essential factor of the chemical kinetics in a growing cell. The phenomenon of additional metabolite oscillations caused by the periodic cell growth and division was theoretically predicted and mathematically described. Also, the hypothesis of the periodized state in the growing cell as the generalization of the steady-state was formulated.

  20. Tectonic differences between eastern and western sub-basins of the Qiongdongnan Basin and their dynamics

    Science.gov (United States)

    Liu, Jianbao; Sun, Zhen; Wang, Zhenfeng; Sun, Zhipeng; Zhao, Zhongxian; Wang, Zhangwen; Zhang, Cuimei; Qiu, Ning; Zhang, Jiangyang

    2015-03-01

    The central depression of the Qiongdongnan Basin can be divided into the eastern and western sub-basins by the Lingshui-Songnan paleo-uplift. To the northwest, the orientation of the faults turns from NE, to EW, and later to NW; In the southwest, the orientation of the faults turns from NE, to NNE, and then to NW, making the central depression much wider towards the west. In the eastern sub-basin, the NE-striking faults and the EW-striking faults made up an echelon, making the central depression turn wider towards the east. Fault activity rates indicate that faulting spreads gradually from both the east and west sides to the middle of the basin. Hence, extensional stress in the eastern sub-basin may be related to the South China Sea spreading system, whereas the western sub-basin was more under the effect of the activity of the Red River Fault. The extreme crustal stretching in the eastern sub-basin was probably related to magmatic setting. It seems that there are three periods of magmatic events that occurred in the eastern sub-basin. In the eastern part of the southern depression, the deformed strata indicate that the magma may have intruded into the strata along faults around T60 (23.3 Ma). The second magmatic event occurred earlier than 10.5 Ma, which induced the accelerated subsidence. The final magmatic event commenced later than 10 Ma, which led to today's high heat flow. As for the western sub-basin, the crust thickened southward, and there seemed to be a southeastward lower crustal flow, which happened during continental breakup which was possibly superimposed by a later lower crustal flow induced by the isostatic compensation of massive sedimentation caused by the right lateral slipping of the Red River Fault. Under the huge thick sediment, super pressure developed in the western sub-basin. In summary, the eastern sub-basin was mainly affected by the South China Sea spreading system and a magma setting, whereas the western sub-basin had a closer

  1. SimBasin: serious gaming for integrated decision-making in the Magdalena-Cauca basin

    Science.gov (United States)

    Craven, Joanne; Angarita, Hector; Corzo, Gerald

    2016-04-01

    The Magdalena-Cauca macrobasin covers 24% of the land area of Colombia, and provides more than half of the country's economic potential. The basin is also home a large proportion of Colombia's biodiversity. These conflicting demands have led to problems in the basin, including a dramatic fall in fish populations, additional flooding (such as the severe nationwide floods caused by the La Niña phenomenon in 2011), and habitat loss. It is generally believed that the solution to these conflicts is to manage the basin in a more integrated way, and bridge the gaps between decision-makers in different sectors and scientists. To this end, inter-ministerial agreements are being formulated and a decision support system is being developed by The Nature Conservancy Colombia. To engage stakeholders in this process SimBasin, a "serious game", has been developed. It is intended to act as a catalyst for bringing stakeholders together, an illustration of the uncertainties, relationships and feedbacks in the basin, and an accessible introduction to modelling and decision support for non-experts. During the game, groups of participants are led through a 30 year future development of the basin, during which they take decisions about the development of the basin and see the impacts on four different sectors: agriculture, hydropower, flood risk, and environment. These impacts are displayed through seven indicators, which players should try to maintain above critical thresholds. To communicate the effects of uncertainty and climate variability, players see the actual value of the indicator and also a band of possible values, so they can see if their decisions have actually reduced risk or if they just "got lucky". The game works as a layer on top of a WEAP water resources model of the basin, adapted from a basin-wide model already created, so the fictional game basin is conceptually similar to the Magdalena-Cauca basin. The game is freely available online, and new applications are being

  2. Morphometric analysis of Suketi river basin, Himachal Himalaya, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Umesh S Balpande

    2014-10-01

    Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order subbasins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the subsurface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the

  3. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Ranch Fire, Ventura and Los Angeles Counties, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  4. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  5. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    KAUST Repository

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  6. Seismic evidence of tectonic stresses; Implications for basin reconstruction

    NARCIS (Netherlands)

    Tigrek, S.

    2004-01-01

    Stress and strain are two important rheological parameters that have impacts on basin development and dynamics. The dynamic evolution of a basin depends on the spatial and temporal changes in the stresses. How to determine the reference state of stress within a sedimentary basin and the magnitude of

  7. Riddled Basins of Attraction for Synchronized Type-I Intermittency

    DEFF Research Database (Denmark)

    Mancher, Martin; Nordahn, Morten; Mosekilde, Erik;

    1998-01-01

    Chaotic mortion resticted to an invariant subspace of total phase space may be associated with basins of attraction that are riddled with holes belonging to the basin of another limiting state. We study the emergence of such basins of two coupled one-dimensional maps, each exhibiting type...

  8. Detailed bathymetric surveys in the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A.; Ramprasad, T.; George, P.; Jaisankar, S.

    Over 420,000 line kilometers of echo-sounding data was collected in the Central Indian Basin. This data was digitized, merged with navigation data and a detailed bathymetric map of the Basin was prepared. The Basin can be broadly classified...

  9. Notice of release of 'Trailhead II' basin wildrye

    Science.gov (United States)

    'Trailhead II' basin wildrye [Leymus cinereus (Scribn. & Merr.) A. Love] is a tetraploid basin wildrye release for use in re-vegetation efforts on rangelands of western North America. Trailhead II is the result of two cycles of recurrent selection within the basin wildrye cultivar 'Trailhead' for r...

  10. 75 FR 11000 - Security Zone; Freeport LNG Basin, Freeport, TX

    Science.gov (United States)

    2010-03-10

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Freeport LNG Basin, Freeport, TX AGENCY... in the Freeport LNG Basin. This security zone is needed to protect vessels, waterfront facilities... notice of proposed rulemaking (NPRM) entitled Security Zone; Freeport LNG Basin, Freeport, TX in...

  11. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  12. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  13. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-11-26

    ....20350010.REG0000, RR04084000] Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  14. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  15. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  16. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  17. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  18. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  19. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Science.gov (United States)

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  20. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-04-26

    The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

  1. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Robert [Univ. of Illinois, Champaign, IL (United States); Payne, William [Schlumberger Carbon Services, Houston, TX (United States); Kirksey, Jim [Univ. of Illinois, Champaign, IL (United States)

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  2. Evaluating elastic reserve of aquiferous basin of the XVI level in relation to its use as a reserve for underground gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Gimer, R.F.; Lipchuk, M.A.; Vasyuta, D.M.

    1984-01-01

    Results are given of evaluating the elastic reserve of an aquiferous basin of upper Cretaceous sandstones from the data of operating the XVI level of the Ugerskiy and Bilchye-Volitskiy fields and its aquiferous basin. The magnitude of current and final flooding is revealed and residual gas reserves are defined for the Ugerskiy field with regard for the detection of gas dissolved in the underlying water. It is recommended that residual gas-saturated volumes of pools be used to create UGR with cyclic operating mode.

  3. Evaluating DNAPL Source and Migration Zones: M-Area Settling Basin and the Western Sector of A/M Area, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.G.

    2001-09-11

    The objective of this investigation is to critically evaluate previous characterization and remediation data to determine the current extent and distribution of DNAPL associated with releases at the M-Area Basin within A/M Area. The primary objective of the effort is to develop an approximate recommendation for the target treatment location and volume near the M Area Settling Basin. Through this analysis the final objective is to identify those subsurface regions having specific geometry and character necessary to cost-effectively deploy DNAPL specific remediation alternatives.

  4. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  5. Klamath Basin Restoration Agreement Off-Project Water Program Sub-basin Analysis Flow Statistics

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — VERSION 5/15/2012 HYDROLOGICAL INFORMATION PRODUCTS FOR THE OFF-PROJECT WATER PROGRAM OF THE KLAMATH BASIN RESTORATION AGREEMENT By Daniel T. Snyder, John C. Risley,...

  6. Strain localisation during basin inversion in the North German basin and the Donbas Fold Belt

    Energy Technology Data Exchange (ETDEWEB)

    Maystrenko, Y.; Bayer, U. [GFZ Potsdam (Germany); Gajewski, D. [Hamburg Univ. (Germany). Inst. fuer Geophysik

    2007-09-13

    The DEKORP Basin'96 and the DOBREflection-200 lines provide two world wide exceptional examples of successfully performed deep seismic lines. This is especially true for the inversion of the two basins by representing probably two stages in the amount of shortening accompanied by strain localization causing decoupling of the sedimentary fill from the deeper crust within the North East German basin and the Donbas Fold Belt. High-velocity bodies are observed in the DEKORP Basin'96 and DOBREflection-2000 reflection seismic lines. These bodies may have been essential in localizing strain localisation by counteracting compressive forces and causing folding and finally failure and faulting of the deep crust. (orig.)

  7. Basin Subsegments from LDEQ source data, Geographic NAD83, LOSCO (2004) [basin_subsegments_LDEQ_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a polygon data set of watershed basin subsegments for Louisiana. The dataset was developed for the LDEQ Office of Water Resources' watershed assessment and...

  8. Minivoids in the Local Volume

    CERN Document Server

    Tikhonov, A V

    2006-01-01

    We consider a sphere of 7.5 Mpc radius, which contains 355 galaxies with accurately measured distances, to detect the nearest empty volumes. Using a simple void detection algorithm, we found six large (mini)voids in Aquila, Eridanus, Leo, Vela, Cepheus and Octans, each of more than 30 Mpc^3. Besides them, 24 middle-size "bubbles" of more than 5 Mpc^3 volume are detected, as well as 52 small "pores". The six largest minivoids occupy 58% of the considered volume. Addition of the bubbles and pores to them increases the total empty volume up to 75% and 81%, respectively. The detected local voids look like oblong potatoes with typical axial ratios b/a = 0.75 and c/a = 0.62 (in the triaxial ellipsoide approximation). Being arranged by the size of their volume, local voids follow power law of volumes-rankes dependence. A correlation Gamma-function of the Local Volume galaxies follows a power low with a formally calculated fractal dimension D = 1.5. We found that galaxies surrounding the local minivoids do not differ...

  9. 10 CFR 63.332 - Representative volume.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Representative volume. 63.332 Section 63.332 Energy... Protection Standards § 63.332 Representative volume. (a) The representative volume is the volume of ground... radionuclides released from the Yucca Mountain disposal system that will be in the representative volume....

  10. An integrated framework to assess adaptation options to climate change impacts in an irrigated basin in Central North Chile

    Science.gov (United States)

    Vicuna, S.; Melo, O.; Meza, F. J.; Alvarez, P.; Maureira, F.; Sanchez, A.; Tapia, A.; Cortes, M.; Dale, L. L.

    2013-12-01

    Future climate conditions could potentially affect water supply and demand on water basins throughout the world but especially on snowmelt-driven agriculture oriented basins that can be found throughout central Chile. Increasing temperature and reducing precipitation will affect both the magnitude and timing of water supply this part of the world. Different adaptation strategies could be implemented to reduce the impacts of such scenarios. Some could be incorporated as planned policies decided at the basin or Water Use Organization levels. Examples include changing large scale irrigation infrastructure (reservoirs and main channels) either physically or its operation. Complementing these strategies it is reasonable to think that at a disaggregated level, farmers would also react (adapt) to these new conditions using a mix of options to either modify their patterns of consumption (irrigation efficiency, crop mix, crop area reduction), increase their ability to access new sources of water (groundwater, water markets) or finally compensate their expected losses (insurance). We present a modeling framework developed to represent these issues using as a case study the Limarí basin located in Central Chile. This basin is a renowned example of how the development of reservoirs and irrigation infrastructure can reduce climate vulnerabilities allowing the economic development of a basin. Farmers in this basin tackle climate variability by adopting different strategies that depend first on the reservoir water volume allocation rule, on the type and size of investment they have at their farms and finally their potential access to water markets and other water supplies options. The framework developed can be used to study these strategies under current and future climate scenarios. The cornerstone of the framework is an hydrology and water resources model developed on the WEAP platform. This model is able to reproduce the large scale hydrologic features of the basin such as

  11. Klamath Basin Water Rights Place of Use

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hydrological Information Products for the Off-Project Water Program of the Klamath Basin Restoration Agreement U.S. Geological Survey Open-File Report 2012-1199 U.S....

  12. Basins of Attraction for Chimera States

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Panaggio, Mark; Abrams, Daniel

    2016-01-01

    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we...

  13. Stochastic basins of attraction for metastable states.

    Science.gov (United States)

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2016-07-01

    Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α=0.5) metastability is enhanced for both symmetric and asymmetric potentials.

  14. Ferrobasalts from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Mukhopadhyay, R.; Popko, D.C.

    The occurrence of ferrobasalts recovered from the Central Indian Ocean Basin crust generated at the Southeast Indian Ridge during a phase of moderate to fast spreading accretion (approx 110-190 mm/yr, full rate) is reported. FeO (13-19%), and Ti...

  15. SEA of river basin management plans

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone

    2009-01-01

    In, 2000 the European Parliament and the European Council passed the Water Framework Directive (WFD) to be implemented in all Member States. The consequence of the directive is that river basin management plans (RBMPs) shall be prepared which are legally subject to a strategic environmental...

  16. Alboran Basin, southern Spain - Part I: Geomorphology

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A. [Secretaria General de Pesca Maritima, Corazon de Maria, 8, 28002 Madrid (Spain); Ballesteros, M.; Rivera, J.; Acosta, J. [Instituto Espanol de Oceanografia, Corazon de Maria, 8, 28002 Madrid (Spain); Montoya, I. [Universidad Juan Carlos I, Campus de Mostoles, Madrid (Spain); Uchupi, E. [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2008-01-15

    Bathymetric, 3D relief and shaded relief maps created from multibeam echo-sounding data image the morphology of the Alboran Basin, a structural low along the east-west-trending Eurasian-African plates boundary. Topographic features in the basin are the consequence of volcanism associated with Miocene rifting, rift and post-rift sedimentation, and recent faulting resulting from the convergence of the African-Eurasian plates. Pleistiocene glacially induced regressions/transgressions when the sea level dropped to about 150 m below its present level gas seeps and bottom currents. Recent faulting and the Pleistocene transgressions/regressions led to mass-wasting, formation of turbidity currents and canyon erosion on the basin's slopes. Recent fault traces at the base of the northern basin slope have also served as passageways for thermogenic methane, the oxidation of which by bacteria led to the formation of carbonate mounds along the fault intercepts on the sea floor. Expulsion of thermogenic or biogenic gas has led to the formation of pockmarks; erosion by bottom currents has resulted in the formation of moats around seamounts and erosion of the seafloor of the Alboran Ridge and kept the southern edge of the 36 10'N high sediment free. (author)

  17. Water and Security in the Jordan Basin

    Science.gov (United States)

    1992-06-11

    political, and diplomatic strengths. For this reason alone, it serves as an excellent tool for working on the problems of the Jordan basin. 561...and Brdens:L R pr cm the West Bank and Gaza rip Ecnmi since 1967. New York: Carnegie Endowment, 1977. Weinbaum, Marvin G. F Devopment and Politing in

  18. Evidence for Himalayanremagnetization in TarimBasin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Himalayan remagnetization in the Tarim Basin was found to be widespread in Paleozoic, Mesozoic and Cenozoic rocks. Rock magnetism was performed to study the magnetic carriers. The authors believe that tectonic fluid in the Himalayan stage caused the rock remagnetization. The framboidal pyrites in bitumen and hydrocarbon-rich rocks may transform to framboidal magnetite in the later alkali environment, which leads to remagnetization.

  19. KE Basin underwater visual fuel survey

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1995-02-01

    Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

  20. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  1. The utilization of water resources and its variation tendency in Tarim River Basin

    Institute of Scientific and Technical Information of China (English)

    YE Mao; XU Hailiang; SONG Yudong

    2006-01-01

    Water resources efficient utilization is the key to ecological improvement and economic development in Tarim River Basin. It is necessary to analyze the water resources utilization and its variation tendency in the whole river basin. Based on the monitored data and formation at eight meteorological stations and fifteen hydrological stations, the method of time series, regression analysis are applied to analyzing the water resources utilization and variation trend in the headstreams and mainstream areas especially in recent 10 years. The quantitative results indicate that inflows of the headstream areas have an increasing trend to different extent in the past 40years. The runoff increasing trend is more significant from1994 to 2002, which show the water resources condition in the headstreams is at an advantage.However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10years, the mainstream water flowing from the headstreams has increased less than 0.9985×108 m3. In addition, the runoff at the different hydrologic stations along the Tarim River has a significant linear decreasing trend. It is shown that the degraded trend of ecological environment in the mainstream areas hardly changes even if the Tarim River Basin is in the special water period for ten consecutive years.

  2. Origin of hydrocarbons in the Slovak part of the Danube Basin

    Directory of Open Access Journals (Sweden)

    Milička Ján

    2015-12-01

    Full Text Available The Danube Basin is one of our largest Neogene basins in Slovakia with the highest volume of potential source rocks in active hydrocarbon generation zones. The source rocks, however, are quite poor with low hydrocarbon potential. In Blatné- and Rišňovce depressions at the northern part of the Danube Basin only early oil and oil generation window were reached below 2900 m during the Upper Miocene to Pliocene, due the lower temperature. In the southern Central Gabčíkovo Depression (CGD that is explored by drilling only to 2700 m, all generation zones up to dry gas zone have been reached according to modelling. While the oil generation zone was reached at approximately 2800 m, dry gas is expected below 4000 m. The natural gas molecular composition and methane carbon isotopes indicate small local natural hydrocarbon gas accumulations associated mostly with oil generation that migrated to present reservoirs and mixed with biogenic methane. The carbon dioxide and partly also nitrogen here are most likely related to volcanic activity. The gasoline hydrocarbon range indicates that non biodegraded gasoline oil from the FGČ1 Čilistov well in the CGD is thermally very mature, with its origin most likely in the deeper parts of the CGD below 3500 m. In contrast, the oil trace from Sereď5 (Se5 well is strongly biodegraded and according to the sterane correlations it could have originated in any examined Neogene source reaching the oil window.

  3. The Palouse Basin Participatory Model Pilot Project: A Participatory Approach to Bi-state Groundwater Management

    Science.gov (United States)

    Beall, A.; Fiedler, F.; Boll, J.; Cosens, B.; Harris, C.

    2008-12-01

    In March 2008, The University of Idaho Waters of the West, the Palouse Basin Aquifer Committee and its Citizen Advisory Group undertook a pilot project to explore the use of participatory modeling to assist with water resource management decisions. The Palouse basin supplies Moscow, Idaho, Pullman, Washington, and surrounding communities with high quality groundwater. However, water levels in the major aquifer systems have been declining since records have been kept. Solutions are complicated by jurisdictional considerations and limited alternatives for supply. We hope that by using a participatory approach major conflicts will be avoided. Group system dynamics modeling has been used for various environmental concerns such as air quality, biological management, water quality and quantity. These models create a nexus of science, policy, and economic and social concerns, which enhances discussion of issues surrounding the use of natural resources. Models may be developed into educational and or decision support tools which can be used to assist with planning processes. The long-term goal of the Palouse basin project is to develop such a model. The pilot project participants include hydrologists, facility operators, policy makers and local citizens. The model they have developed integrates issues such as scientific uncertainty, groundwater volumes, and potential conservation measures and costs. Preliminary results indicate that participants are satisfied with the approach and are looking to use the model for education and to help direct potential research. We will present the results of the pilot project, including the developed model and insights from the process.

  4. Aerial Gamma Ray and Magnetic Survey Raton Basin Project. Final Report Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-08-01

    The Flagstaff quadrangle in northern Arizona lies at the southwestern edge of the Colorado Plateau. Portions of the Black Mesa Basin and Mogollon Rim lie within the quadrangle. Mesozoic rocks cover 90% of the surface of the Black Mesa Basin, but Paleozoic rocks dominate the Mogollon Rim. Cenozoic instrusive and extrusive rocks of the San Francisco Volcanic Field and the Hopi Buttes are superimposed on the older sedimentary sequence. Magnetic data apparently show contributions from both deep and shallow sources. The San Francisco Volcanic Field is relatively well defined, but deeper-lying structural boundaries are largely masked by the younger igneous rocks in the area. The Flagstaff quadrangle has been relatively unproductive in terms of uranium mining. Some claims are present in the Black Mesa Basin, primarily in Triassic rocks. A total of 195 groups of sample responses in the uranium window qualify as anomalies as defined in Volume I. These anomalies primarily form two distinct groups, though others are scattered throughout the quadrangle. One group is associated with igneous rocks in the northern Hopi Buttes area, and the other, a larger and more indistinct group, is primarily associated with the Shinarump Member of the Triassic Chinle Formation in the northern Painted Desert area. None are directly associated with the locations of known claims.

  5. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  6. Geological Conditions Favourable for High-Wax Oil Enrichment in Damintun Depression,Bohai Bay Basin

    Institute of Scientific and Technical Information of China (English)

    Zhu Fangbing

    2009-01-01

    The Damintun (大民屯) depression,a small (about 800 km2 in area) subunit in the Bohai (渤海) Bay basin,hosts nearly 2×108t of high-wax oils with wax contents up to 60%. The high-wax oils have high consolidation temperatures and viscosities.The high-wax oils were generated from the fourth member of the Shahejie Formation (Es4),which is also important source rocks for oils in other subunits of the Bohai Bay basin.Yet high-wax oils have not been found in significant volumes elsewhere in the Bohai Bay basin.Geological conditions favourable for high-wax oil enrichment were studied.This study shows that the unusual concentrations of high-wax oils in the depression seem to result from at least three different factors: (1) the presence of organic-matter rich source rocks which were prone to generate wax-rich hydrocarbons; (2) the formation of early overpressures which increased the expulsion efficiency of waxy hydrocarbons; and (3) reductions in subsidence rate and basal heat flows,which minimized the thermal cracking of high molecular-weight (waxy) hydrocarbons,and therefore prevented the high-wax oils from being transformed into less waxy equivalents.

  7. Holocene mammalian change in the central Columbia Basin of eastern Washington state, USA

    Science.gov (United States)

    Lyman, R. Lee

    2016-08-01

    Predictions of changes in the Holocene mammalian fauna of the central Columbia Basin in eastern Washington (USA) based on environmental changes are largely met. Taxonomic richness is greatest during periods of cool-moist climate. Rates of input of faunal remains to the paleozoological record may suggest greater mammalian biomass during periods of greater moisture but are difficult to interpret without data on sampling intensity in the form of volume of sediment excavated. Abundances of leporids and grazing ungulates fluctuate in concert with abundance of grass. Several biogeographic records are tantalizing but require additional study and data before being accepted as valid. Records of red fox (Vulpes vulpes) indicate this species was present in the central basin during the Holocene contrary to historic records and recent suggestions modern foxes there are escapees from fur farms. Bison (Bison bison) and bighorn sheep (Ovis canadensis) underwent diminution of body size during the Holocene. Modern efforts to conserve the Columbia Basin ecosystem are advised to consider the Holocene record as indicative of what may happen to that ecosystem in the future.

  8. Integrated high-resolution stratigraphy: Relative contributions of tectonics, eustasy and climate on basin evolution (Vienna Basin, Austria)

    NARCIS (Netherlands)

    Paulissen, W.E.

    2011-01-01

    Sedimentary basins form in a range of large-scale tectonic settings involving extensional, compressional or lateral movements. The dynamics of the basin infill are controlled by driving mechanisms such as tectonics, climate and eustatic control. The created accommodation space in the basin is filled

  9. Evolution of Mesozoic Volcanic Basins and Red Basins in the Gan-Hang Tectonic-Volcanic Metallogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper mainly proposes six major regional geological events in the active continental-margin mantle uplift zone and discusses the oscillation nature of the evolution of Mesozoic volcanic basins and red basins, origin of erosion in the late stage of red basins and mechanism of volcanism.

  10. Classification of Complex Reservoirs in Superimposed Basins of Western China

    Institute of Scientific and Technical Information of China (English)

    PANG Xiongqi; ZHOU Xinyuan; LIN Changsong; HUO Zhipeng; LUO Xiaorong; PANG Hong

    2010-01-01

    Many of the sedimentary basins in western China were formed through the superposition and compounding of at least two previously developed sedimentary basins and in general they can be termed as complex superimposed basins.The distinct differences between these basins and monotype basins are their discontinuous stratigraphic sedimentation,stratigraphic structure and stratigraphic stress-strain action over geological history.Based on the correlation of chronological age on structural sections,superimposed basins can be divided into five types in this study:(1)continuous sedimentation type superimposed basins,(2)middle and late stratigraphic superimposed basins,(3)early and late stratigraphic superimposed basins,(4)early and middle stratigraphic superimposed basins,and(5)long-term exposed superimposed basins.Multiple source-reservoir-caprock assemblages have developed in such basins.In addition,multi-stage hydrocarbon generation and expulsion,multiple sources,polycyclic hydrocarbon accumulation and multiple-type hydrocarbon reservoirs adjustment,reformation and destruction have occurred in these basins.The complex reservoirs that have been discovered widely in the superimposed basins to date have remarkably different geologic features from primary reservoirs,and the root causes of this are folding,denudation and the fracture effect caused by multiphase tectonic events in the superimposed basins as well as associated seepage,diffusion,spilling,oxidation,degradation and cracking.Based on their genesis characteristics,complex reservoirs are divided into five categories:(1)primary reservoirs,(2)trap adjustment type reservoirs,(3)component variant reservoirs,(4)phase conversion type reservoirs and(5)scale-reformed reservoirs.

  11. JURASSIC PALEOGEOGRAPHY OF THE PIENINY AND OUTER CARPATHIAN BASINS

    Directory of Open Access Journals (Sweden)

    JAN GOLONKA

    2004-03-01

    Full Text Available The Jurassic history of the Pieniny/Outer Carpathian basins reflects the evolution of the Circum-Tethyan area, especially its Alpine Tethys part. The Alpine Tethys that is Ligurian, Penninic Oceans and Pieniny/Magura Basin constitute the extension of the Central Atlantic system. The synrift stage lasted in the Pieniny/Magura Basin from late Early Jurassic to Tithonian (the Magura Unit constitutes the southernmost part of the Outer Flysch Carpathians. The Pieniny rift opened during Pliensbachian – Aalenian. The central Atlantic and Alpine Tethys went into a drifting stage during the Middle Jurassic. The Late Jurassic (Oxfordian-Kimmeridgian history of the Pieniny/Magura Basin reflects strongest facial differentiation within sedimentary basin where mixed siliceous-carbonate sedimentation took place. Greatest deepening effect is indicated by widespread Oxfordian radiolarites, which occur in the all basinal successions, whereas the shallowest zone is completely devoid of siliceous intercalations at that time (sedimentation from Ammonitico Rosso facies up to coral reef limestone. The southern part of the North European Platform, north from the Pieniny/Magura realm, started to be rifted during Late Jurassic time and Silesian Basin in the Outer Western Carpathians and Sinaia Basin in the Eastern Carpathians, with black, mainly redeposited marls have been created. The outer sub-basins were differentiated during the latest (Hauterivian-Barremian phase of basinal development. The connection of Silesian Basin with Sinaia and Southern Carpathian Severin areas suggests the NW-SE direction of the basinal axis while the orientation of the Pieniny Klippen Belt/Magura Basin was SW-NE so, two Outer Carpathian perpendicular directions are possible within the basins. Major reorganization happened during the Tithonian-Berriasian time. It was reflected by both paleoceanographical and paleoclimatical changes. The Neo-Cimmerian tectonic events as well as main phase

  12. Umatilla Basin Natural Production Monitoring and Evaluation; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jesse D.M.; Contor, Craig C.; Hoverson, Eric (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2005-10-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). UBNPMEP is coordinated with two ODFW research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. Our project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 19000500, Umatilla Hatchery M & E) and smolt outmigration (project No. 198902401, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects comprehensively monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. Table 1 outlines relationships with other BPA supported projects. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan (ODFW and CTUIR 2004), the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (Schwartz & Cameron Under Revision). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPPC 2004). The need for monitoring the natural production of salmonids in the Umatilla River

  13. A review of stratigraphy and sedimentary environments of the Karoo Basin of South Africa

    Science.gov (United States)

    Smith, R. M. H.

    The Karoo Supergroup covers almost two thirds of the present land surface of southern Africa. Its strata record an almost continuous sequence of continental sedimentation that began in the Permo-Carboniferous (280 Ma) and terminated in the early Jurassic 100 million years later. The glacio-marine to terrestrial sequence accumulated in a variety of tectonically controlled depositories under progressively more arid climatic conditions. Numerous vertebrate fossils are preserved in these rocks, including fish, amphibians, primitive aquatic reptiles, primitive land reptiles, more advanced mammal-like reptiles, dinosaurs and even the earliest mammals. Palaeoenvironmental analysis of the major stratigraphic units of the Karoo sequence demonstrates the effects of more localised tectonic basins in influencing depositional style. These are superimposed on a basinwide trend of progressive aridification attributed to the gradual northward migration of southwestern Gondwanaland out of polar climes and accentuated by the meteoric drying effect of the surrounding land masses. Combined with progressive climatic drying was a gradual shrinking of the basin brought about by the northward migration of the subducting palaeo-Pacific margin to the south. Following deposition of the Cape Supergroup in the pre-Karoo basin there was a period of uplift and erosion. At the same time the southern part of Gondwana migrated over the South Pole resulting in a major ice-sheet over the early Karoo basin and surrounding highlands. Glacial sedimentation in both upland valley and shelf depositories resulted in the basal Karoo Dwyka Formation. After glaciation, an extensive shallow sea remained over the gently subsiding shelf fed by large volumes of meltwater. Black clays and muds accumulated under relatively cool climatic conditions (Lower Ecca) with perhaps a warmer "interglacial" during which the distinctive Mesosaurus-bearing, carbonaceous shales of the Whitehill Formation were deposited

  14. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Frandsen, Henrik Lund; Christensen, N J

    1991-01-01

    -induced hypoglycaemia with total autonomic blockade (alpha-adrenoceptor blockade combined with beta-adrenoceptor blockade and atropine); and insulin-induced hypoglycaemia without any autonomic blockade. In the experiments without autonomic blockade the peripheral venous hematocrit increased, plasma volume decreased......, intravascular albumin content decreased and the transcapillary escape rate of albumin increased. In both experiments with autonomic blockade the increase in venous haematocrit was abolished, yet plasma volume decreased, intravascular albumin content decreased and the transcapillary escape rate of albumin...... increased in these experiments. Thus, the changes in plasma volume and composition in response to hypoglycaemia are due to the combined actions of adrenaline and of insulin....

  15. Plasma volume changes during hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Bendtsen, F; Christensen, N J

    1990-01-01

    To investigate whether previously reported changes in venous blood volume and composition induced by acute hypoglycaemia in humans are representative for the entire body we measured erythrocyte 51Cr content, haematocrit, plasma volume, intravascular albumin content and transcapillary escape rate...... of albumin in arterial and venous blood in seven healthy subjects before and during insulin-induced hypoglycaemia. In both vascular sites blood 51Cr content and the haematocrit increased, plasma volume and intravascular albumin content decreased and the transcapillary escape rate of albumin increased during...

  16. Dictionary Based Segmentation in Volumes

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Jørgensen, Peter Stanley;

    2015-01-01

    We present a method for supervised volumetric segmentation based on a dictionary of small cubes composed of pairs of intensity and label cubes. Intensity cubes are small image volumes where each voxel contains an image intensity. Label cubes are volumes with voxelwise probabilities for a given...... label. The segmentation process is done by matching a cube from the volume, of the same size as the dictionary intensity cubes, to the most similar intensity dictionary cube, and from the associated label cube we get voxel-wise label probabilities. Probabilities from overlapping cubes are averaged...

  17. Modeling Nitrogen Losses under Rapid Infiltration Basins

    Science.gov (United States)

    Akhavan, M.; Imhoff, P. T.; Andres, A. S.; Finsterle, S.

    2011-12-01

    Rapid Infiltration Basin System (RIBS) is one of the major land treatment techniques used for wastewater treatment and reuse of recovered treated wastewater. In this system, wastewater that is treated using primary, secondary, or advanced treatment techniques is applied at high rates to shallow basins constructed in permeable deposits of soil or sand, with further treatment occurring in soil and the vadose zone before the water recharges groundwater. Because the influent wastewater is usually enriched in nitrogen (N) compounds, there is particular concern that RIBS may contaminant groundwater or nearby surface waters if not designed and operated properly. In most of the new sequenced batch reactor (SBR) wastewater treatment plants, N is found in the form of nitrate in the discharged wastewater, so denitrification (DNF) is the main reaction in N removal. The absence of molecular oxygen is one of the required conditions for DNF. During RIBS operation, application of wastewater is cyclic and typically consists of a flooding period followed by days or weeks of drying. Key operational parameters include the ratio of wetting to drying time and the hydraulic loading rate, which affect water saturation and air content in the vadose zone and as a result have an impact on DNF. Wastewater is typically distributed at a limited number of discharge points in RIBS and basins are not usually completely flooded which result in non-homogeneous distribution of wastewater and unusual surface water flow patterns. For this reason, we couple overland flow within RIBS with subsurface flow to investigate the influence of non-uniform application of wastewater on DNF. No modeling effort has been done for understanding this aspect of RIBS performance previously. TOUGH2/ iTOUGH2, a general-purpose numerical simulation program for multi-phase fluid flow in porous media, is used for modeling fluid movement. Water saturation is used as a surrogate parameter to evaluate oxygen limitations in the

  18. Bare-Hand Volume Cracker for Raw Volume Data Analysis

    Directory of Open Access Journals (Sweden)

    Bireswar Laha

    2016-09-01

    Full Text Available Analysis of raw volume data generated from different scanning technologies faces a variety of challenges, related to search, pattern recognition, spatial understanding, quantitative estimation, and shape description. In a previous study, we found that the Volume Cracker (VC 3D interaction (3DI technique mitigated some of these problems, but this result was from a tethered glove-based system with users analyzing simulated data. Here, we redesigned the VC by using untethered bare-hand interaction with real volume datasets, with a broader aim of adoption of this technique in research labs. We developed symmetric and asymmetric interfaces for the Bare-Hand Volume Cracker (BHVC through design iterations with a biomechanics scientist. We evaluated our asymmetric BHVC technique against standard 2D and widely used 3D interaction techniques with experts analyzing scanned beetle datasets. We found that our BHVC design significantly outperformed the other two techniques. This study contributes a practical 3DI design for scientists, documents lessons learned while redesigning for bare-hand trackers, and provides evidence suggesting that 3D interaction could improve volume data analysis for a variety of visual analysis tasks. Our contribution is in the realm of 3D user interfaces tightly integrated with visualization, for improving the effectiveness of visual analysis of volume datasets. Based on our experience, we also provide some insights into hardware-agnostic principles for design of effective interaction techniques.

  19. Magmatism in rifting and basin formation

    Science.gov (United States)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  20. Analysis of K west basin canister gas

    Energy Technology Data Exchange (ETDEWEB)

    Trimble, D.J., Fluor Daniel Hanford

    1997-03-06

    Gas and Liquid samples have been collected from a selection of the approximately 3,820 spent fuel storage canisters in the K West Basin. The samples were taken to characterize the contents of the gas and water in the canisters providing source term information for two subprojects of the Spent Nuclear Fuel Project (SNFP) (Fulton 1994): the K Basins Integrated Water Treatment System Subproject (Ball 1996) and the K Basins Fuel Retrieval System Subproject (Waymire 1996). The barrels of ten canisters were sampled for gas and liquid in 1995, and 50 canisters were sampled in a second campaign in 1996. The analysis results from the first campaign have been reported (Trimble 1995a, 1995b, 1996a, 1996b). The analysis results from the second campaign liquid samples have been documented (Trimble and Welsh 1997; Trimble 1997). This report documents the results for the gas samples from the second campaign and evaluates all gas data in terms of expected releases when opening the canisters for SNFP activities. The fuel storage canisters consist of two closed and sealed barrels, each with a gas trap. The barrels are attached at a trunion to make a canister, but are otherwise independent (Figure 1). Each barrel contains up to seven N Reactor fuel element assemblies. A gas space of nitrogen was established in the top 2.2 to 2.5 inches (5.6 to 6.4 cm) of each barrel. Many of the fuel elements were damaged allowing the metallic uranium fuel to be corroded by the canister water. The corrosion releases fission products and generates hydrogen gas. The released gas mixes with the gas-space gas and excess gas passes through the gas trap into the basin water. The canister design does not allow canister water to be exchanged with basin water.

  1. Okanogan Basin Spring Spawner Report for 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Colville Tribes, Department of Fish & Wildlife

    2007-09-01

    The Okanogan Basin Monitoring and Evaluation Program collected data related to spring spawning anadromous salmonid stocks across the entire Okanogan River basin. Data were collected using redd surveys, traps, underwater video, and PIT-tag technology then summarized and analyzed using simple estimate models. From these efforts we estimated that 1,266 summer steelhead spawned in the Okanogan River basin and constructed 552 redds;152 of these fish where of natural origin. Of these, 121 summer steelhead, including 29 of natural origin, created an estimated 70 redds in the Canadian portion of the Okanagan basin. We estimated summer steelhead spawner escapement into each sub-watershed along with the number from natural origin and the number and density of redds. We documented redd desiccation in Loup Loup Creek, habitat utilization in Salmon Creek as a result of a new water lease program, and 10 spring Chinook returning to Omak Creek. High water through most of the redd survey period resulted in development of new modeling techniques and allowed us to survey additional tributaries including the observation of summer steelhead spawning in Wanacut Creek. These 2007 data provide additional support that redd surveys conducted within the United States are well founded and provide essential information for tracking the recovery of listed summer steelhead. Conversely, redd surveys do not appear to be the best approach for enumerating steelhead spawners or there distribution within Canada. We also identified that spawning distributions within the Okanogan River basin vary widely and stocking location may play an over riding roll in this variability.

  2. Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone

    Directory of Open Access Journals (Sweden)

    B. Gems

    2013-07-01

    Full Text Available Mountain debris cones in the Alpine region often provide space for dense population and cultivation. Hence, a great number of buildings are exposed to torrential hazards. In order to protect the settlement areas against flooding and overbank sedimentation, torrent defence structures are implemented directly at the debris cones. In many cases, these protection measures include a deposition basin at the head of the debris cone and/or a confined channel that passes or tracks through the settlement. The work presented within this paper deals with the effect of specific outlet structure layouts, situated at the lower end of a selected deposition basin, on bed-load transport processes and flood protection. A case study analysis was accomplished comprising of a 3-D-numerical model (FLOW-3D and a physical scale model test (1:30. The subject of investigation was the deposition basin of the Larsennbach torrent in the Austrian Northern Limestone Alps. The basin is situated on a large debris cone and opens out into a paved channel. Since the basin is undersized and the accumulation of sediment in the outlet section reduces the available cross section during floods, adjoining settlements are considerably endangered of lateral overtopping of both clear water and sediment. Aiming for an upgrade in flood protection, certain layouts for a "closing-off structure" at the outlet were tested within this project. For the most efficient design layout, its effect on flood protection, a continuous bed-load output from the basin and the best possible use of the retention volume are pointed out. The simple design of the structure and the key aspects, that have to be taken into consideration for implementation, are highlighted.

  3. Petroleum systems of the Taoudeni Basin,West Africa

    Institute of Scientific and Technical Information of China (English)

    Huang Zhilong; Zhao Baoshun; Jiang Qingchun; Wang Songpo; Liu Bo

    2008-01-01

    The Taoudeni Basin is a typical steady intracratonic basin. Based on the distribution of effective source rocks in the Taoudeni Basin, combined with the structure characteristics of the basin and the distribution characteristics of reservoir beds, two petroleum systems are recognized in the basin:the infra-Cambrian petroleum system and the Silurian petroleum system. Structural uplift and timing of petroleum generation controlled the timing of petroleum charging and preservation of hydrocarbon accumulations. Maturity, evolution history, and distribution of effective source rocks controlled hydrocarbon richness. The geological key factors and geological processes controlled the type of hydrocarbon accumulations.

  4. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    Science.gov (United States)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  5. VOLUMNECT: measuring volumes with Kinect

    Science.gov (United States)

    Quintino Ferreira, Beatriz; Griné, Miguel; Gameiro, Duarte; Costeira, João. Paulo; Sousa Santos, Beatriz

    2014-03-01

    This article presents a solution to volume measurement object packing using 3D cameras (such as the Microsoft KinectTM). We target application scenarios, such as warehouses or distribution and logistics companies, where it is important to promptly compute package volumes, yet high accuracy is not pivotal. Our application auto- matically detects cuboid objects using the depth camera data and computes their volume and sorting it allowing space optimization. The proposed methodology applies to a point cloud simple computer vision and image processing methods, as connected components, morphological operations and Harris corner detector, producing encouraging results, namely an accuracy in volume measurement of 8mm. Aspects that can be further improved are identified; nevertheless, the current solution is already promising turning out to be cost effective for the envisaged scenarios.

  6. Volume inside old black holes

    Science.gov (United States)

    Christodoulou, Marios; De Lorenzo, Tommaso

    2016-11-01

    Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on the evolution of the interior geometry was recently shown to be provided by a generally covariant definition of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a 1 +1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for the information paradox and the remnant scenarios are discussed.

  7. Organ volume estimation using SPECT

    CERN Document Server

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  8. Volumetric measurement of tank volume

    Science.gov (United States)

    Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)

    1991-01-01

    A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.

  9. Anadromous fish inventory: Summary volume

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary volume, with discussion, on anadromous fish inventories, species lists, histories of fisheries, habitat, key spawning and rearing areas, runs/escapements,...

  10. Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin

    Indian Academy of Sciences (India)

    J N Pattan; M Shyam Prasad; E V S S K Babu

    2010-08-01

    We have identified an ash layer in association with Australasian microtektites of ∼0.77Ma old in two sediment cores which are ∼450 km apart in the central Indian Ocean Basin (CIOB). Morphology and chemical composition of glass shards and associated microtektites have been used to trace their provenance. In ODP site 758 from Ninetyeast Ridge, ash layer-D (13 cm thick, 0.73–0.75 Ma) and layer-E (5 cm thick, 0.77–0.78 Ma) were previously correlated to the oldest Toba Tuff (OTT) eruptions of the Toba caldera, Sumatra. In this investigation, we found tephra ∼3100 km to the southwest of Toba caldera that is chemically identical to layer D of ODP site 758 and ash in the South China Sea correlated to the OTT. Layer E is not present in the CIOB or other ocean basins. The occurrence of tephra correlating to layer D suggests a widespread distribution of OTT tephra (∼3.6 × 107 km2), an ash volume of at least ∼1800 km3, a total OTT volume of 2300 km3, and classification of the OTT eruption as a super-eruption.

  11. Temporal variations of geyser water chemistry in the Upper Geyser Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Hurwitz, Shaul; Hunt, Andrew G.; Evans, William C.

    2012-01-01

    Geysers are rare features that reflect a delicate balance between an abundant supply of water and heat and a unique geometry of fractures and porous rocks. Between April 2007 and September 2008, we sampled Old Faithful, Daisy, Grand, Oblong, and Aurum geysers in Yellowstone National Park's Upper Geyser Basin and characterized temporal variations in major element chemistry and water isotopes (δ18O, δD, 3H). We compare these temporal variations with temporal trends of Geyser Eruption Intervals (GEI). SiO2 concentrations and geothermometry indicate that the geysers are fed by waters ascending from a reservoir with temperatures of ∼190 to 210°C. The studied geysers display small and complex chemical and isotopic seasonal variations, and geysers with smaller volume display larger seasonal variations than geysers with larger volumes. Aurum and Oblong Geysers contain detectable tritium concentrations, suggesting that erupted water contains some modern meteoric water. We propose that seasonal GEI variations result from varying degrees of evaporation, meteoric water recharge, water table fluctuations, and possible hydraulic interaction with the adjacent Firehole River. We demonstrate that the concentrations of major dissolved species in Old Faithful Geyser have remained nearly constant since 1884 despite large changes in Old Faithful's eruption intervals, suggesting that no major changes have occurred in the hydrothermal system of the Upper Geyser Basin for >120 years. Our data set provides a baseline for monitoring future changes in geyser activity that might result from varying climate, earthquakes, and changes in heat flow from the underlying magmatic system.

  12. Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury

    Science.gov (United States)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.; Strom, Robert G.; Xiao, Zhiyong; Zuber, Maria T.

    2012-01-01

    The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.

  13. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    Science.gov (United States)

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  14. Volumes of Polytopes Without Triangulations

    CERN Document Server

    Enciso, Michael

    2014-01-01

    We introduce a new formalism for defining and computing the volumes of completely general polytopes in any dimension. The expressions that we obtain for these volumes are independent of any triangulation, and manifestly depend only on the vertices of the underlying polytope. As one application of this formalism, we obtain new expressions for tree-level, n-point NMHV amplitudes in N=4 Super Yang-Mills (SYM) theory.

  15. Disorders of Erythrocyte Volume Homeostasis

    OpenAIRE

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants ...

  16. Appalachian basin oil and natural gas: stratigraphic framework, total petroleum systems, and estimated ultimate recovery: Chapter C.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    Science.gov (United States)

    Ryder, Robert T.; Milici, Robert C.; Swezey, Christopher S.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The most recent U.S. Geological Survey (USGS) assessment of undiscovered oil and gas resources of the Appalachian basin was completed in 2002 (Milici and others, 2003). This assessment was based on the total petroleum system (TPS), a concept introduced by Magoon and Dow (1994) and developed during subsequent studies such as those by the U.S. Geological Survey World Energy Assessment Team (2000) and by Biteau and others (2003a,b). Each TPS is based on specific geologic elements that include source rocks, traps and seals, reservoir rocks, and the generation and migration of hydrocarbons. This chapter identifies the TPSs defined in the 2002 Appalachian basin oil and gas assessment and places them in the context of the stratigraphic framework associated with regional geologic cross sections D–D′ (Ryder and others, 2009, which was re-released in this volume, chap. E.4.1) and E–E′ (Ryder and others, 2008, which was re-released in this volume, chap. E.4.2). Furthermore, the chapter presents a recent estimate of the ultimate recoverable oil and natural gas in the basin.

  17. Tectonic setting of Cretaceous basins on the NE Tibetan Plateau: Insights from the Jungong basin

    Science.gov (United States)

    Craddock, W.H.; Kirby, E.; Dewen, Z.; Jianhui, L.

    2012-01-01

    Quantifying the Cenozoic growth of high topography in the Indo-Asian collision zone remains challenging, due in part to significant shortening that occurred within Eurasia before collision. A growing body of evidence suggests that regions far removed from the suture zone experienced deformation before and during the early phases of Himalayan orogenesis. In the present-day north-eastern Tibetan Plateau, widespread deposits of Cretaceous sediment attest to significant basin formation; however, the tectonic setting of these basins remains enigmatic. We present a study of a regionally extensive network of sedimentary basins that are spatially associated with a system of SE-vergent thrust faults and are now exposed in the high ranges of the north-eastern corner of the Tibetan Plateau. We focus on a particularly well-exposed basin, located ~20km north of the Kunlun fault in the Anyemaqen Shan. The basin is filled by ~900m of alluvial sediments that become finer-grained away from the basin-bounding fault. Additionally, beds in the proximal footwall of the basin-bounding fault exhibit progressive, up-section shallowing and several intraformational unconformities which can be traced into correlative conformities in the distal part of the basin. The observations show sediment accumulated in the basin during fault motion. Regional constraints on the timing of sediment deposition are provided by both fossil assemblages from the Early Cretaceous, and by K-Ar dating of volcanic rocks that floor and cross-cut sedimentary fill. We argue that during the Cretaceous, the interior NE Tibetan Plateau experienced NW-SE contractional deformation similar to that documented throughout the Qinling-Dabie orogen to the east. The Songpan-Ganzi terrane apparently marked the southern limit of this deformation, such that it may have been a relatively rigid block in the Tibetan lithosphere, separating regions experiencing deformation north of the convergent Tethyan margin from regions deforming

  18. Contrasting Permo - Carboniferous Evolution of Resita and Sirinia - Presacina Basins (South Carpathians, Romania); an overview.

    Science.gov (United States)

    Tatu, M.; Seghedi, I.; Nutu, L. M.; Nicolae, I.

    2009-04-01

    Two important Permo-Carboniferous molasses basins Resita and Sirinia - Presacina occur in Romanian Banat (south-western part of Carpathian chain), unconformable overlie the Getic and Danubian domains with different pre-Variscan and Variscan geodynamic history. They show differences in their lithology reflecting various geotectonic settings and evolutions. In the Resita domain the Upper Carboniferous deposits (Westphalian - Stephanian in age, according to the previous paleobotanic and palynological data) are important in volume and they contain terrigeneous siliciclastic rocks represented by sandy - conglomerate and argillaceous - sandy rocks variable in thickness with siltstone, carbonaceous shale and coal beds interlayering. There are not volcanic rocks present in Upper Carboniferous of Resita domain. In contrast with Resita in the Sirinia - Presacina basins the Upper Carboniferous deposits are volumetrically more restrictive. These deposits transgresively overlie pre-Sudetian formations and consist of continental - lacustrine terrigeneous formations, rarely associated with limnic carbonatic rocks. In this association the alternating conglomerate, siliceous sandstone, siltstone and clay with lens - like coal inter-layers prevails. In two small areas Dragosela - Tulinecea - Camenita (in the western part) and Baia Noua - Cucuiova (in the eastern part) the terrigeneous deposits are associated with basaltic andesite and andesite rocks with alkaline affinity. In both of these basins the Lower Permian deposits (according to the paleobotanic data) unconformably overlie the Upper Carboniferous formations and/or pre-Sudetian basements. The Lower Permian deposits in the Resita basin occur in two superposed formations (Nastaseanu, 1987): (1) Walchia Beds dominated by black argillaceous shales, slightly bituminous with rare sandy-conglomerate interlayers and (2) Red Beds composed by sandy-conglomerate deposits with some argillaceous intercalations, all red in color, with

  19. Quantifying the contribution of glacier runoff to streamflow in the upper Columbia River basin, Canada

    Directory of Open Access Journals (Sweden)

    G. Jost

    2011-05-01

    Full Text Available Glacier melt provides important contributions to streamflow in many mountainous regions. Hydrologic model calibration in glacier-fed catchments is difficult because errors in modelling snow accumulation can be offset by compensating errors in glacier melt. This problem is particularly severe in catchments with modest glacier cover, where goodness-of-fit statistics such as the Nash-Sutcliffe model efficiency may not be highly sensitive to the streamflow variance associated with glacier melt. While glacier mass balance measurements can be used to aid model calibration, they are absent for most catchments. We introduce the use of glacier volume change determined from repeated glacier mapping in a guided GLUE (generalized likelihood uncertainty estimation procedure to calibrate a hydrologic model. We also explicitly account for changes in glacier area through the calibration and test periods. The approach is applied to the Mica basin in the Canadian portion of the Columbia River basin using the HBV-EC hydrologic model. Use of glacier volume change in the calibration procedure effectively reduced parameter uncertainty and helped to ensure that the model was accurately predicting glacier mass balance as well as streamflow. The seasonal and interannual variations in glacier melt contributions were assessed by running the calibrated model with historic glacier cover and also after converting all glacierized areas to alpine land cover in the model setup. Although glaciers in the Mica basin only cover 5 % of the watershed, glacier ice melt contributes up to 25 % and 35 % of streamflow in August and September, respectively, and is particularly important during periods of warm, dry weather following winters with low accumulation and early snowpack depletion. The approach introduced in this study provides an effective and widely applicable approach for calibrating hydrologic models in glacier fed catchments, as well as for quantifying the magnitude and

  20. Analysis of Paleokarst Sinkholes in the Arkoma Basin using 3-D Seismic

    Science.gov (United States)

    Kumbalek, Michael

    Paleokarst features are important to understand, both with regards to research geologists and to the petroleum industry. In terms of geology, understanding paleokarst features can yield more information about the depositional and surface environments of past times, and how diagenetic alteration affected the environment during the formation of karst features. In the petroleum industry, paleokarst features can have positive or negative consequence resulting in a potential reservoir with enhanced porosity due to the paleokarst features, or as a geo-hazard to prepare for or avoid when drilling. Inspired by issues faced when drilling in the Ft. Worth basin, this study utilizes multiple 3-D seismic surveys and subsurface well control to map paleokarsts within the Viola Limestone in the Arkoma Basin. Calculated seismic attribute volumes used to identify paleokarst sinkholes within the Viola Group include coherency and curvature attributes. ImageJ software was used to aid in counting and measuring paleokarst sinkholes identified using seismic mapping, coherency, and curvature attribute volumes. In addition to mapping, a cumulative distribution plot was produced from the diameters of the seismically mapped paleokarst sinkholes, allowing for an estimate to be made as to what the total amount of paleokarst sinkholes are within the study area. The methods detailed in this study proved to be effective in mapping and analyzing paleokarst sinkholes within the Viola Group. The paleokarst sinkholes mapped were determined to have been formed on the outer edge of the Southern Oklahoma aulacogen, as a result of the Sylvan/Viola unconformity. In addition to this, it has been determined that these paleokarst sinkholes are linked in formation to visually similar paleokarst sinkholes located in the Ellenburger Group in the Fort Worth Basin.

  1. Basement faults and volcanic rock distributions in the Ordos Basin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Volcanic rocks in the Ordos Basin are of mainly two types: one in the basin and the other along the margin of the basin. Besides those along the margin, the marginal volcanic rocks also include the volcanic rocks in the Yinshanian orogenic belt north of the basin. Based on the latest collection of gravitational and aeromagnetic data, here we interpret basement faults in the Ordos Basin and its peripheral region, compare the faults derived from aeromagnetic data with those from seismic data, and identify the geological ages of the fault development. Two aeromagnetic anomaly zones exist in the NE-trending faults of the southern basin, and they are in the volcanic basement formed in pre-Paleozoic. These NE-trending faults are the channel of volcanic material upwelling in the early age (Archean-Neoproterozoic), where igneous rocks and sedimentary rocks stack successively on both sides of the continental nucleus. In the Cambrian, the basin interior is relatively stable, but in the Late Paleozoic and Mesozoic, the basin margin underwent a number of volcanic activities, accompanied by the formation of nearly north-south and east-west basement faults in the basin periphery and resulting in accumulation of great amount of volcanic materials. Volcanic tuff from the basin periphery is discovered in the central basin and volcanic materials are exposed in the margins of the basin. According to the source-reservoir-cap rock configuration, the basin peripheral igneous traps formed in the Indosinian-Early Yanshanian and Late Hercynian are favorable exploration objectives, and the volcanic rocks in the central basin are the future target of exploration.

  2. Assessment of Undiscovered Oil and Gas Resources of the West Siberian Basin Province, Russia, 2008

    Science.gov (United States)

    Schenk, Christopher J.; Bird, Kenneth J.; Charpentier, Ronald R.; Gautier, Donald L.; Houseknecht, David W.; Klett, Timothy R.; Moore, Thomas E.; Pawlewicz, Mark J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2008-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered oil and gas potential of the West Siberian Basin Province in Russia as part of the USGS Circum-Arctic Resource Appraisal program. This province is the largest petroleum basin in the world and has an areal extent of about 2.2 million square kilometers. It is a large rift-sag feature bounded to the west by the Ural fold belt, to the north by the Novaya Zemlya fold belt and North Siberian Sill, to the south by the Turgay Depression and Altay-Sayan fold belt, and to the east by the Yenisey Ridge, Turukhan-Igarka uplift, Yenisey-Khatanga Basin, and Taimyr High. The West Siberian Basin Province has a total discovered oil and gas volume of more than 360 billion barrels of oil equivalent (Ulmishek, 2000). Exploration has led to the discovery of tens of giant oil and gas fields, including the Urengoy gas field with more than 3500 trillion cubic feet of gas reserves and Samotlar oil field with reserves of nearly 28 billion barrels of oil (Ulmishek, 2003). This report summarizes the results of a reassessment of the undiscovered oil and gas potential of that part of the province north of the Arctic Circle; a previous assessment that included the entire province was completed in 2000 (Ulmishek, 2000). The total petroleum system (TPS) and assessment units (AU) defined by the USGS for the assessments in 2000 were adopted for this assessment. However, only those parts of the Aus lying wholly or partially north of the Arctic Circle were assessed for this study.

  3. The link between tectonics and sedimentation in back-arc basins : New genetic constraints from the analysis of the Pannonian Basin

    NARCIS (Netherlands)

    Balázs, A.; Matenco, L.; Magyar, I.; Horváth, F.; Cloetingh, S.

    2016-01-01

    The architecture of sedimentary basins reflects the relationship between accommodation space and sediment supply, their rates and localization being variable during basin evolution. The mechanisms driving the interplay between tectonics and sedimentation in extensional back-arc basins overlying rheo

  4. Classification of hydrogeologic areas and hydrogeologic flow systems in the basin and range physiographic province, southwestern United States

    Science.gov (United States)

    Anning, David W.; Konieczki, Alice D.

    2005-01-01

    The hydrogeology of the Basin and Range Physiographic Province in parts of Arizona, California, New Mexico, Utah, and most of Nevada was classified at basin and larger scales to facilitate information transfer and to provide a synthesis of results from many previous hydrologic investigations. A conceptual model for the spatial hierarchy of the hydrogeology was developed for the Basin and Range Physiographic Province and consists, in order of increasing spatial scale, of hydrogeologic components, hydrogeologic areas, hydrogeologic flow systems, and hydrogeologic regions. This hierarchy formed a framework for hydrogeologic classification. Hydrogeologic areas consist of coincident ground-water and surface-water basins and were delineated on the basis of existing sets of basin boundaries that were used in past investigations by State and Federal government agencies. Within the study area, 344 hydrogeologic areas were identified and delineated. This set of basins not only provides a framework for the classification developed in this report, but also has value for regional and subregional purposes of inventory, study, analysis, and planning throughout the Basin and Range Physiographic Province. The fact that nearly all of the province is delineated by the hydrogeologic areas makes this set well suited to support regional-scale investigations. Hydrogeologic areas are conceptualized as a control volume consisting of three hydrogeologic components: the soils and streams, basin fill, and consolidated rocks. The soils and streams hydrogeologic component consists of all surface-water bodies and soils extending to the bottom of the plant root zone. The basin-fill hydrogeologic component consists of unconsolidated and semiconsolidated sediment deposited in the structural basin. The consolidated-rocks hydrogeologic component consists of the crystalline and sedimentary rocks that form the mountain blocks and basement rock of the structural basin. Hydrogeologic areas were

  5. Radionuclides in the Great Lakes basin.

    Science.gov (United States)

    Ahier, B A; Tracy, B L

    1995-12-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  6. Hotspots within the Transboundary Selenga River Basin

    Science.gov (United States)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  7. 3-D palinspastic restoration of normal faults in the Inner Moray Firth: implications for extensional basin development

    Science.gov (United States)

    Barr, David

    1985-10-01

    Balanced cross-section techniques, and the construction of a restored section, permit 2-dimensional palinspastic restorations to be made in both compressional and extensional terraines. In 3 dimensions, an equivalent restoration can be made by assuming conservation of bedding-plane area and considering the volume of a stratigraphic interval rather than its cross-sectional area. Extensional basins displaying upper crustal listric normal faulting are particularly amenable to this approach. Computerised 3-D restorations have been made of the Inner Moray Firth basin, offshore Scotland. This basin is not isostatically compensated, and was produced by 7-8% post-Triassic extension, of which 2.5-3% is post-Jurassic, above a detachment surface at 20-25 km depth, close to the base of the crust. Limited lower crustal thinning (and lithospheric stretching) has affected the eastern part of the basin, but this can account for no more than half of the measured upper crustal extension. Some of this shallow extension is probably coupled by low-angle faults or shear zones into major zones of lithospheric stretching such as the North Sea grabens, where it may help account for discrepancies between estimates of lithospheric thinning and upper crustal extension.

  8. Insular volume reduction in schizophrenia.

    Science.gov (United States)

    Saze, Teruyasu; Hirao, Kazuyuki; Namiki, Chihiro; Fukuyama, Hidenao; Hayashi, Takuji; Murai, Toshiya

    2007-12-01

    Structural and functional abnormalities of the insular cortex have been reported in patients with schizophrenia. Most studies have shown that the insular volumes in schizophrenia patients are smaller than those of healthy people. As the insular cortex is functio-anatomically divided into anterior and posterior subdivisons, recent research is focused on uncovering a specific subdivisional abnormality of the insula in patients with schizophrenia. A recent ROI-based volumetric MRI study demonstrated specific left anterior insular volume reduction in chronic schizophrenia patients (Makris N, Goldstein J, Kennedy D, Hodge S, Caviness V, Faraone S, Tsuang M, Seidman L (2006) Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr Res 83:155-171). On the other hand, our VBM-based volumetric study revealed a reduction in right posterior insular volume (Yamada M, Hirao K, Namiki C, Hanakawa T, Fukuyama H, Hayashi T, Murai T (2007) Social cognition and frontal lobe pathology in schizophrenia: a voxel-based morphometric study. NeuroImage 35:292-298). In order to address these controversial results, ROI-based subdivisional volumetry was performed using the MRI images from the same population we analyzed in our previous VBM-study. The sample group comprised 20 schizophrenia patients and 20 matched healthy controls. Patients with schizophrenia showed a global reduction in insular gray matter volumes relative to healthy comparison subjects. In a simple comparison of the volumes of each subdivision between the groups, a statistically significant volume reduction in patients with schizophrenia was demonstrated only in the right posterior insula. This study suggests that insular abnormalities in schizophrenia would include anterior as well as posterior parts. Each subdivisional abnormality may impact on different aspects of the pathophysiology and psychopathology of schizophrenia; these relationships should be the focus of future research.

  9. The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

    2009-06-10

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho

  10. Hydrologic and water-quality characterization and modeling of the Chenoweth Run basin, Jefferson County, Kentucky

    Science.gov (United States)

    Martin, Gary R.; Zarriello, Phillip J.; Shipp, Allison A.

    2001-01-01

    downstream from the WWTP?s. HSPF, a hydrologic model capable of simulating mixed-land-use basins, includes land surface, subsurface, and instream waterquantity- and water-quality-modeling components. The HSPF model was used to represent several important hydrologic features of the Chenoweth Run Basin including (1) numerous small lakes and ponds, through which approximately 25 percent of the basin drains; (2) potential seasonal ground-waterseepage losses in stream channels; (3) contributions from WWTP effluents and bypass flows; and (4) the transport and transformations of sediments and nutrients. The HSPF model was calibrated and verified for flow simulation on the basis of measured total, annual, seasonal, monthly, daily, hourly, and 5-minute-interval storm discharge data. The occurrence of numerous storms during the study period permitted a splitsample procedure to be used for a model verification on the basis of storm volumes and peaks. Total simulated and observed discharge during the model calibration period differed by approximately -5.4 percent at the upper gaging station and 3.1 percent at the lower station. The model results for the total and annual water balances were classified as very good on the basis of the calibration criteria reported in other modeling studies. The model had correlation coefficients ranging from 0.89 to 0.98 for hourly to monthly mean flows, respectively. The coefficients of model-fit efficiency for daily and monthly discharge simulations were near the excellent range (exceeding 0.97). However, the model was calibrated for a comparatively short 24-month period during which flows were above normal. Increased model error might be expected during an extended period of nearnormal flows. The model was calibrated for simulation of sediment and TPO4 transport. The simulated mean-annual load (over 24 months) ranged from -33 to -28 percent of the estimated sediment load and within +/- 1 percent of the estimated TPO4 load at the two streamflow-gaging s

  11. Geomorphic assessment of the tectonic activity of Qiulitagh fold-belt, Kuqa foreland basin, Xinjiang, China

    Science.gov (United States)

    Saint Carlier, Dimitri; Graveleau, Fabien; Delcaillau, Bernard; Hurtrez, Jean-Emmanuel; Vendeville, Bruno

    2014-05-01

    significantly along-strike, which allows to divide the fold belt into several morphologic structures. These morphologic structures are suspected to be developing under variable uplift rates due to partitioning of deformation. In addition, the observation of very regular landscapes that become more complex along-strike allows investigating relief evolution mechanisms from transient to steady-state. Finally, our morphometric analysis suggests some new insights on the topographic growth of Qiulitagh folds in relation with the growth of sub-surface structures and the accommodation of convergence in Kuqa foreland basin. References : Chen, J., Heermance, R., Burbank, D. W., Scharer, K. M., Miao, J., and Wang, C., 2007, Quantification of growth and lateral propagation of the Kashi anticline, southwest Chinese Tian Shan: Journal of Geophysical Research, v. 112, no. B03S16, p. doi:10.1029/2006JB004345. Hubert-Ferrari, A., Suppe, J., Gonzalez-Mieres, R., and Wang, X., 2007, Mechanisms of active folding of the landscape (southern Tian Shan, China): Journal of Geophysical Research, v. 112, B03S09, doi:10.1029/2006JB004362. Li, S., Wang, X., and Suppe, J., 2012, Compressional salt tectonics and synkinematic strata of the western Kuqa foreland basin, southern Tian Shan, China: Basin Research, v. 23, p. 1-23. Wang, X., Suppe, J., Guan, S., Hubert-Ferrari, A., Gonzalez- Mieres, R., and Jia, C., 2011, Cenozoic structure and tectonic evolution of the Kuqa fold belt, southern Tianshan, China, in McClay, K., Shaw, J. H., and Suppe, J., eds., Thrust-Fault Related folding, Volume 94, American Association of Petroleum Geologists Memoir, p. 1-29.

  12. Mesozoic-Cenozoic Basin Features and Evolution of Southeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Late Triassic to Paleogene (T3-E) basin occupies an area of 143100 km2, being the sixth area of the whole of SE China; the total area of synchronous granitoid is about 127300 km2; it provides a key for understanding the tectonic evolution of South China. From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China, combined with analysis of geometrical and petrological features, some new insights of basin tectonics are obtained. Advances include petrotectonic assemblages,basin classification of geodynamics, geometric features, relations of basin and range. According to basin-forming geodynamical mechanisms, the Mesozoic-Cenozoic basin of SE China can be divided into three types, namely: 1) para-foreland basin formed from Late Triassic to Early Jurassic (T3-J1)under compressional conditions; 2) rift basins formed during the Middle Jurassic (J2) under a strongly extensional setting; and 3) a faulted depression formed during Early Cretaceous to Paleogene (K1-E)under back-arc extension action. From the rock assemblages of the basin, the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous (K1) and a red-bed type formed from Late Cretaceous to Paleogene (K2-E). Statistical data suggest that the area of all para-foreland basins (T3-J1) is 15120 km2, one of rift basins (J2) occupies 4640 km2, and all faulted depressions equal to 124330 km2 including the K2-E red-bed basins of 37850 km2. The Early Mesozoic(T3-J1) basin and granite were mostly co-generated under a post-collision compression background,while the basins from Middle Jurassic to Paleogene (J2-E) were mainly constrained by regional extensional tectonics. Three geological and geographical zones were surveyed, namely: 1) the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary; 2) the Middle Jurassic rift zone; and 3) the Ganjiang separating zone of Late Mesozoic volcanism. Three types of basin

  13. Strontium isotope stratigraphy of the Pelotas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Zerfass, Geise de Santana dos Anjos, E-mail: geise.zerfass@petrobras.com.br [Petroleo Brasileiro S.A. (PETROBRAS/CENPES/PDGEO/BPA), Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento Leopoldo Americo Miguez de Mello; Chemale Junior, Farid, E-mail: fchemale@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias; Moura, Candido Augusto Veloso, E-mail: candido@ufpa.br [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Centro de Geociencias. Dept. de Geoquimica e Petrologia; Costa, Karen Badaraco, E-mail: karen.costa@usp.br [Instituto Oceanografico, Sao Paulo, SP (Brazil); Kawashita, Koji, E-mail: koji@usp.br [Unversidade de Sao Paulo (USP), SP (Brazil). Centro de Pesquisas Geocronologicas

    2014-07-01

    Strontium isotope data were obtained from foraminifera shells of the Pelotas Basin Tertiary deposits to facilitate the refinement of the chronostratigraphic framework of this section. This represents the first approach to the acquisition of numerical ages for these strata. Strontium isotope stratigraphy allowed the identification of eight depositional hiatuses in the Eocene-Pliocene section, here classified as disconformities and a condensed section. The reconnaissance of depositional gaps based on confident age assignments represents an important advance considering the remarkably low chronostratigraphic resolution in the Cenozoic section of the Pelotas Basin. The recognition of hiatuses that match hiatuses is based on biostratigraphic data, as well as on global events. Furthermore, a substantial increase in the sedimentation rate of the upper Miocene section was identified. Paleotemperature and productivity trends were identified based on oxygen and carbon isotope data from the Oligocene-Miocene section, which are coherent with worldwide events, indicating the environmental conditions during sedimentation. (author)

  14. Strengthening river basin institutions: The Global Environment Facility and the Danube River Basin

    Science.gov (United States)

    Gerlak, Andrea K.

    2004-08-01

    Increased international attention to water resource management has resulted in the creation of new institutional arrangements and funding mechanisms as well as international initiatives designed to strengthen river basin institutions. The Global Environment Facility's (GEF) International Waters Program is at the heart of such novel collaborative regional approaches to the management of transboundary water resources. This paper assesses GEF-led efforts in the Danube River Basin, GEF's most mature and ambitious projects to date. It finds that GEF has been quite successful in building scientific knowledge and strengthening regional governance bodies. However, challenges of coordinating across expanding participants and demonstrating clear ecological improvements remain. GEF-led collaborative activities in the Danube River Basin reveal three critical lessons that can inform future river basin institution building and decision making, including the importance of appropriately creating and disseminating scientific data pertaining to the river system, the need for regional governance bodies for integrated river basin management, and the necessity to address coordination issues throughout project planning and implementation.

  15. Comparison of Kuqa foreland basin with Persian Gulf Basin in salt tectonics

    Institute of Scientific and Technical Information of China (English)

    Guimei WAN; Liangjie TANG; Wenzheng JIN

    2007-01-01

    Compared Kuqa foreland basin with Persian Gulf Basin in development of salt layers, salt tectonics, and the relation between salt tectonics and hydrocarbon, it is concluded that the salt diapirs are relative to hydrocarbon. Searching salt diapirs and related traps in Kuqa foreland basin is important. The forming mechanism of salt tectonic in Kuqa foreland basin is different from that of Hormuz Series, but similar to that of Lower Fars Series/Gachsaran Formation. Inspired by the role of salt tectonics of Lower Fars Series/Gachsaran Formation in hydrocarbon accumulation, the authors considered that the exploration below salt layer should be enforced, and the traps below salt layer in the southern part of the Kuqa foreland basin would be found where salt layer is thicker. On the contrary, the traps should be found both above and below the salt layer in front of the northern mountain where salt layer is thin. The Triassic and Jurassic source rocks are rich in this area with great exploration prospective.

  16. Hydrothermal circulation in an anisotropic sedimentary basin: Application to the Okinawa back arc basin

    Energy Technology Data Exchange (ETDEWEB)

    Genthon, P.; Rabinowicz, M. (Groupe de Recherches de Geodesie, Spatiale (France)); Foucher, J.P.; Sibuet, J.C. (Inst. Francais de Recherches pour l' Exploitation de la Mer, Plouzane (France))

    1990-11-10

    The authors explore the pattern of two-dimensional convection in an highly anisotropical porous medium. This physical situation is relevant to passive margin sedimentary basins consisting of interbedded coarse-grained pervious and shale matrix. They show that permeability anisotropies of the order of 10{sup 2}-10{sup 4} allow for long convective cells, of aspect ratio greater than 10, but that a combination of this parameter with a slight slope of the order of a few percent of the sedimentary layers is required to stabilize these long cells. As an example, they present the Okinawa basin, an active submarine back arc basin, with a sedimentary thickness of about 2 km and a heat flow profile across this basin, varying from 32 to 232 mWm{sup {minus}2} over a distance of 30 km. It is shown that this heat flow variation is difficult to explain with conductive mechanisms only but is well reproduced by different convective models relying on permeability anisotropy plus slope. Although the insufficient thermal and structural constraints did not allow them to build a unique model, the whole set of possible fits to the heat flow data may restrict the mean hydraulic parameters of the basin. A vertical permeability of a few tens of milidarcy and an anisotropy greater than 100 are required to produce the expected stable and active large-scale circulation. It is suggested in conclusion that this type of circulation might be active in oil- or oil-forming element migration.

  17. Integrated Basin Scale Hydropower and Environmental Opportunity Assessment in the Deschutes River Basin, Oregon

    Science.gov (United States)

    Voisin, N.; Geerlofs, S. H.; Vail, L. W.; Ham, K. D.; Tagestad, J. D.; Hanrahan, T. P.; Seiple, T. E.; Coleman, A. M.; Stewart, K.

    2012-04-01

    The Deschutes River Basin in Oregon, USA, is home to a number of diverse groups of stakeholders that rely upon the complex snowmelt and groundwater-dominated river system to support their needs, livelihoods, and interests. Basin system operations that vary across various temporal and spatial scales often must balance an array of competing demands including maintaining adequate municipal water supply, recreation, hydropower generation, regulations related to environmental flows, mitigation programs for salmon returns, and in-stream and storage rights for irrigation water supplied by surface water diversions and groundwater pumping. The U.S. Department of Energy's Integrated Basin-scale Opportunity Assessment initiative is taking a system-wide approach to identifying opportunities and actions to increase hydropower and enhance environmental conditions while sustaining reliable supply for other uses. Opportunity scenarios are analyzed in collaboration with stakeholders, through nested integrated modeling and visualization software to assess tradeoffs and system-scale effects. Opportunity assessments are not intended to produce decisional documents or substitute for basin planning processes; assessments are instead intended to provide tools, information, and a forum for catalyzing conversation about scenarios where both environmental and hydropower gains can be realized within a given basin. We present the results of the nested integrated modeling approach and the modeling scenarios in order to identify and explore opportunities for the system.

  18. Silurian to Devonian foreland basin in the south edge of Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the theory of plate tectonics, combining with the isotopic dating of ophiolite, igneous and volcanics, geochemical test, rare earth element analyze and seismic interpretation, this paper studies the pre-Carboniferous tectonics and sedimentary formation of the south edge of the Tarim Basin and proves that there exists the Kunlun Ocean under tensional tectonics during the Sinian and Cambrian in the south edge of the Tarim Plate. After that, due to the collision orogenesis, there formed the peripheral foreland basin in the south edge of Tarim. The Upper Silurian and Devonian molasses sedimentary system superposed on the Sinian and Middle Silurian passive margin flysch sedimentary system and formed the bivariate structure of the foreland basin. And at the same time, based on the field geology and seismic interpretation, we have identified that the formation of the Silurian and Devonian have the character of half deposit which shows thick in the south area and thin in the north, and the pre-Carboniferous thrust compression tectonics remained in the foreland thrust belt, which further demonstrates that there existed the Silurian and Devonian peripheral foreland basin on the south edge of the Tarim Basin.

  19. Effective Monitoring of Small River Basins

    Directory of Open Access Journals (Sweden)

    W. Symader

    2002-01-01

    Full Text Available As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  20. Effective Monitoring of Small River Basins

    OpenAIRE

    2002-01-01

    As the transport of many pollutants occurs during high floods monitoring programs must focus on these intermittent events. In small rivers the pollutants start their travel as short pulses often associated with fine particles, but disperse on their way downstreams. Therefore the chemical data of a flood event are only representative of a small part of the basin adjacent to the monitoring station. This is usually not taken into account by evaluating water quality data.

  1. Underworld and multi-basin heat flow

    Science.gov (United States)

    Quenette, S. M.; O'Neill, C.; Moresi, L. N.; Danis, C. R.; Mansour, J.

    2011-12-01

    We present an over arching method for non-linear heat flow assessments of large, multi-basin systems. Our example is the Sydney-, Gunnedah-, Bowen basins (Danis et al 2011), which covers an area of 800kms by 1900kms and depth of 5kms, on the east coast of Australia. It is used as a baseline towards further fluid and structural geodynamics oriented analysis. In contrast to reservoir scale geothermal models - basin, multi-basin and towards lithosphere scale models exhibit their own challenges in terms of physical/rheological behaviour and computational tractability. For instance we model a non-linear heat flow by means of temperature dependent conductivity, as indicated by Clauser and Huenges (1995), which allows crystalline basement rocks, such as granites, to show for example a significant decrease in conductivity from ambient temperature up to around 400C, dropping from around 3 mK**(units) to around 2. For this modelling, a specialisation of the geodynamics code 'Underworld' (Moresi et al 2007) called Underworld-GT is used. A toolbox is added to the otherwise un-touched Underworld code adding geothermal workflow and context to Underworld. A particular novel feature is the ability to load stratigraphic layers, and/or GoCAD or GeoModeller voxel sets as the constraining geological geometry, whilst allowing the heat assessment models to scale from 1 process to 1000s. Another is the ability to prescribe synthetic drill holes, and its use in stochastic-oriented assessments of model parameters. Following the Underworld platform's approach and its simple PDE abstraction layer, these model configurations from a baseline for further additions to the governing equations such as fluid flow and structure, enabling a bridge between reservoir and continental scale dynamics, albeit with their own computational challenges.

  2. K Basin sludge treatment process description

    Energy Technology Data Exchange (ETDEWEB)

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  3. Control volume based hydrocephalus research

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Wei, Timothy

    2008-11-01

    Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.

  4. Image plane sweep volume illumination.

    Science.gov (United States)

    Sundén, Erik; Ynnerman, Anders; Ropinski, Timo

    2011-12-01

    In recent years, many volumetric illumination models have been proposed, which have the potential to simulate advanced lighting effects and thus support improved image comprehension. Although volume ray-casting is widely accepted as the volume rendering technique which achieves the highest image quality, so far no volumetric illumination algorithm has been designed to be directly incorporated into the ray-casting process. In this paper we propose image plane sweep volume illumination (IPSVI), which allows the integration of advanced illumination effects into a GPU-based volume ray-caster by exploiting the plane sweep paradigm. Thus, we are able to reduce the problem complexity and achieve interactive frame rates, while supporting scattering as well as shadowing. Since all illumination computations are performed directly within a single rendering pass, IPSVI does not require any preprocessing nor does it need to store intermediate results within an illumination volume. It therefore has a significantly lower memory footprint than other techniques. This makes IPSVI directly applicable to large data sets. Furthermore, the integration into a GPU-based ray-caster allows for high image quality as well as improved rendering performance by exploiting early ray termination. This paper discusses the theory behind IPSVI, describes its implementation, demonstrates its visual results and provides performance measurements.

  5. Spatial and temporal issues in the validation of an erosion model in a small Mountain research basin.

    Science.gov (United States)

    Gallart, Francesc; Latron, Jérôme; Martínez-Carreras, Núria; Pérez-Gallego, Nuria; Catari, Gusman

    2013-04-01

    The Vallcebre research basins are located in a subhumid middle mountain area in the southern Pyrenees, Spain. Due to the physiographic and climatic characteristics as well as the land use history, most of the surface of these basins is covered by protective vegetation, with very low sediment yield rates. On the other hand, relatively small intensely eroded areas with badland landforms are the main sources of sediments. Observations carried out for over 20 years in these basins demonstrated that, at the small basin scale, the main source of runoff is overland flow on saturated areas and subsurface flow, whereas Hortonian overland flow from badlands and other impervious areas plays a small contribution relevant only during intense summer showers. Sediments are mainly eroded from badlands during these summer rainstorms that result in flashy runoff events with high sediment concentrations and major deposition of sediments on the stream beds. Large runoff events at the basin scale during wet periods carry most of the sediment loads taking advantage of the sediments stored in the stream network. Within this context, the KINEROS2 erosion model was implemented with the data obtained during 3 years in an elementary badland (0.124 ha) and used to estimate the sediment production from the badland areas in the Ca l'Isard (132 ha) basin during 15 years. The validation of the model results with the sediment load records at the Ca l'Isard gauging station provided some information on the functioning of the basin but raised several issues when sediment volumes were considered. Although the uncertainty of model predictions was rather high, on the long run it was compensated by the high inter-annual variability of both sediment production from badlands and sediment load at the basin scale, the first being smaller than the second. Yet, the assessment of the active badland areas connected to the drainage net and therefore contributing to sediment load, was also a relevant source of

  6. A review and assessment of gas hydrate potential in Çınarcık Basin, Sea of Marmara

    Science.gov (United States)

    Sile, Hande; Akin, Cansu; Ucarkus, Gulsen; Namik Cagatay, M.

    2016-04-01

    The Sea of Marmara (NW Turkey), an intracontinental sea between the Mediterranean and Black Seas, is located in a tectonically active region with the formation of shallow gas hydrates and free gas. It is widely known that, Sea of Marmara sediments are organic-rich and conducive to production of methane, which is released on the sea floor through active fault segments of the North Anatolian Fault (Geli et al., 2008). Here we study the gas hydrate potential of the Çınarcık Basin using published data and our core analyses together with gas hydrate stability relations. The gas sampled in the Çınarcık Basin is composed mainly of biogenic methane and trace amounts of heavier hydrocarbons (Bourry et al., 2009). The seafloor at 1273 m depth on the Çınarcık Basin with temperature of 14.5oC and hydrostatic pressure of 127.3 atm corresponds to the physical limit for gas hydrate formation with respect to phase behavior of gas hydrates in marine sediments (Ménot and Bard, 2010). In order to calculate the base of the gas hydrate stability zone in Çınarcık Basin, we plotted T (oC) calculated considering the geothermal gradient versus P (atm) on the phase boundary diagram. Below the seafloor, in addition to hydrostatic pressure (10 Mpa/km), we calculated lithostatic pressure due to sediment thickness considering the MSCL gamma ray density values (~1.7 gr/cm3). Our estimations show that, gas hydrate could be stable in the upper ~20 m of sedimentary succession in Çınarcık Basin. The amount of gas hydrate in the Çınarcık Basin can be determined using the basinal area below 1220 m depth (483 km2) and average thickness of the gas hydrate stability zone (20 m) and the sediment gas hydrate saturation (1.2 % used as Milkov, 2004 suggested). The calculations indicate the potential volume of gas hydrate in Çınarcık Basin as ~11.6x107 m3. Such estimates are helpful for the consideration of gas hydrates as a new energy resource, for assessment of geohazards or their

  7. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  8. DROUGHT ANALYSIS IN OZANA DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Marina IOSUB

    2016-03-01

    Full Text Available Ozana drainage basin is located at the contact between large landscape units (the Carpathian mountains, the Subcarpathian area, and the plateau region. This placement determines the existence of a complex climate in the region. Despite being small in size, and its extension on an W-E direction, differences can be observed, especially of the way extreme phenomena take place. In the case of droughts, it had different intensities in the mountains, compared to the plateau region. In order to emphasize the different distribution on the territory, several climatic indexes have been calculated, regarding dryness (De Martonne Index, Hellman criterion. The analysis of these indexes at the same monitoring stations (Pluton, Leghin and Dumbrava emphasizes the growth of the drought periods in the plateau region and the fact that they shorten in the mountain area. In the mountainous area, where the land is very well forested, the values of the De Martonne index can reach 45.4, and in the plateau regions, where the forest associations are sparse, the values dropped to 30.6. According to the Hellman criterion, several differences can be emphasized, at basin level. In the mountainous region, there is only one month that, at a multi-annual level, has stood up among the rest, as being excessively droughty, while in the median /central region of the basin, three months have been identified, that have such potential, as well as five months, at Dumbrava.

  9. Geothermal fluid genesis in the Great Basin

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.K.

    1990-01-01

    Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

  10. Petroleum Exploration of Craton Basins in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Craton basins are a significant petroliferous provenance. Having undergone multiple openclose tectonic cycles and strong reworking of the late Cenozoic tectonic movement, the craton basins in China are highly broken. This has resulted in multi-source and multiphase hydrocarbon generation and later hydrocarbon accumulation so that a complicated spatial assemblage of primary, paraprimary and secondary oil-gas pools has been formed. The primary factors controlling hydrocarbon accumulation include hydrocarbon-generating depressions, paleouplifts, paleoslopes, unconformity surfaces, paleo-karst, faults and fissure systems as well as the later conservation conditions. In consequence, the strategy of exploration for China's craton basins is to identify the effective source rocks, pay attention to the different effects of paleohighs and late reworking, enhance studies of the secondary storage space, attach importance to the exploration of lithologic oil-gas reservoirs and natural gas pools, and approach consciously from the secondary oil pools to the targets near the source rocks. At the same time, a complete system of technologies and techniques must be built up.

  11. Frost risks in the Mantaro river basin

    Directory of Open Access Journals (Sweden)

    G. Trasmonte

    2008-04-01

    Full Text Available As part of the study on the Mantaro river basin's (central Andes of Perú current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems tools, using minimum temperature – 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April, when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l., while the low (or null probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.. Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l., moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  12. A dynamic analysis of water footprint of Jinghe River basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water footprint in a region is defined as the volume of water needed for the production of goods and services consumed by the local people. Ecosystem services are a kind of important services, so ecological water use is one necessary component in water footprint. Water footprint is divided into green water footprint and blue water footprint but the former one is often ignored. In this paper water footprint includes blue water needed by agricultural irrigation, industrial and domestic water demand, and green water needed by crops, economic forests, livestock products, forestlands and grasslands. The study calculates the footprint of the Jinghe River basin in 1990,1995, 2000 and 2005 with quarto methods. Results of research show that water footprints reached 164.1 × 108m3, 175.69×108m3 and 178.45×108m3 respectively in 1990, 1995 and 2000 including that of ecological water use, but reached 77.68×108m3, 94.24×108m3, 92.92×108m3 and 111.36×108m3 respectively excluding that of ecological water use. Green water footprint is much more than blue water footprint: thereby, green water plays an important role in economic development and ecological construction. The dynamic change of water footprints stows that blue water use increases rapidly and that the ecological water use is occupied by economic and domestic water use. The change also shows that water use is transferred from primary industry to secondary industry. In primary industry, it is transferred from crops farming to forestry and animal agriculture. The factors impelling the change include development anticipation on economy, government policies, readjustment of the industrial structure, population growth, the raise of urbanization level, and structural change of consumption, low level of water-saving and poor ability of waste water treatment. With blue water use per unit, green water use per unit, blue water use structure and green water use structure, we analyzed the difference of the six ecological

  13. K West Basin Sand Filter Backwash Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will be used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present

  14. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    Science.gov (United States)

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson

  15. Inversion tectonics in the Neogene basins of Tuscany (Northern Apennines, Italy): Insights from the Pisa-Viareggio basin.

    Science.gov (United States)

    Argnani, A.; Rogledi, S.

    2012-04-01

    Several sedimentary basins are located in the internal portion of the Northern Apennines, bordering the eastern side of the Northern Tyrrhenian sea. These basins trend almost parallel to the Apennine range and are filled by Neogene sediments with thickness ranging between few 100's m to few km (Martini et al., 2001). Sediments belonging to these basins crop out extensively in western Tuscany, often appearing heavily deformed. Although classically interpreted as extensional basins (e.g., Martini and Sagri, 1993 and references therein), some papers call for an initial thrust-related origin (Finetti et al., 2001; Bonini and Sani, 2002), and the long-lasting debate about the origin of the Neogene basins of Tuscany is still ongoing (cfr. Brogi 2011 and Sani et al., 2004). This contribution aims at presenting the case of the Pisa-Viareggio basin, which is the northernmost one among the large basins of Tuscany (Pascucci et al., 2007). This basin straddles the coastline and has been investigated through the interpretation of a grid of industrial seismic profiles covering the Pisa plain and tied to exploration wells. In the Pisa-Viareggio basin seismic profiles show a west-dipping listric extensional fault that bounds the basin to the east, supporting an extensional origin. The basin is filled with up to 3 seconds of upper Messinian to Quaternary sediments, and extension mostly occurred during late Messinian-early Pliocene, although continuing with reduced intensity till the Quaternary. The southern part of this basin shows a superimposed contractional deformation (tectonic inversion), that progressively increases to the south, where the basin appears completely overturned and eroded in the Livorno Mountains. The basin-boundary fault trends roughly NNW-SSE and is buried in the Quaternary sediments of the Pisa plain, but it turns rather abruptly to N-S and NNE-SSW in the south, near Livorno. Inspection of detailed geological maps (Lazzarotto et al., 1990) suggests that the

  16. Assessment of undiscovered oil and gas resources of the Williston Basin Province of North Dakota, Montana, and South Dakota, 2010

    Science.gov (United States)

    ,

    2011-01-01

    Using a geology-based assessment method, the U.S. Geological Survey estimated mean undiscovered volumes of 3.8 billion barrels of undiscovered oil, 3.7 trillion cubic feet of associated/dissolved natural gas, and 0.2 billion barrels of undiscovered natural gas liquids in the Williston Basin Province, North Dakota, Montana, and South Dakota. The U.S. Geological Survey (USGS) recently completed a comprehensive oil and gas assessment of the Williston Basin, which encompasses more than 90 million acres in parts of North Dakota, eastern Montana, and northern South Dakota. The assessment is based on the geologic elements of each total petroleum system (TPS) defined in the province, including hydrocarbon source rocks (source-rock maturation, hydrocarbon generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined 11 TPS and 19 Assessment Units (AU).

  17. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China.

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng

    2016-03-01

    This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.

  18. The impact of climate change on hydrometeorological droughts at a basin scale

    Science.gov (United States)

    Vrochidou, A.-E. K.; Tsanis, I. K.; Grillakis, M. G.; Koutroulis, A. G.

    2013-01-01

    SummaryThree Global Climate Models (GCMs) output (precipitation and temperature), bias corrected with the WATCH Forcing Data (WFD), for the A2 and B1 scenarios, are used for drought assessment at a basin scale. At a first step, the hydrological model IHMS-HBV was calibrated using both local and large scale forcing data (precipitation and temperature) aiming to assess the suitability of large scale forcing data in a small basin, Platis, located in Crete, for the period 1974-1999. The second step includes the forcing of the WFD calibrated HBV model with the bias corrected GCM output from 2001 to 2100 (WATCH Driving Data). The produced hydrological variables, flow, soil moisture and lower groundwater reservoir volume were used for the hydrological regime assessment and drought identification with the aid of the threshold level method. A quantitative comparison with four future sub-periods was carried out addressing the drought events number, duration and deficit volume. Simulations of both emission scenarios indicate a significant decrease in all hydrological parameters. The relative change of drought characteristics for the future periods in terms of the three-model ensemble implied severe drought conditions. For A2 scenario, it was found that the number of drought events could increase up to 98%, 109% and 81% in flow, soil moisture and groundwater respectively. B1 scenario provided more conservative estimates, with an increase of drought events number up to 56%, 92% and 34% in flow, soil moisture and groundwater, respectively. The drought duration difference between scenarios reaches up to 33%, 89% and 34% for simulated flow, soil moisture and groundwater respectively till 2100. Moderate changes can be noticed in drought deficit volume with an estimated maximum increase of 19%, 33% and 22% in flow, soil moisture and groundwater involving A2 scenario, whereas B1 scenario projected 10%, 2% and 26% maximum increase for the former parameters. The evolution of the

  19. Plate tectonic setting and genetic types of gas (oil)-bearing basins in China

    Institute of Scientific and Technical Information of China (English)

    张一伟; 陈发景; 陆克政; 漆家福

    1997-01-01

    The plate tectonic setting and genetic types of the gas (oil)-bearing basins in China are studied. Based on the history of break-up and amalgamation of Pangea, the three tectonic evolutionary megastages can be divided and the sedimentary basins in China are classified as Palaeozoic and Meso-Cenozoic basins. The Palaeozoic gas(oil)-bearing basins are mainly located in intracratonic basins, on which different types of Meso-Cenozoic basins are superimposed, and located in cratonic marginal basins and aulacogens destroyed with a slight degree, (n contrast, the Mesozoic and Cenozoic gas (oil)-bearing basins mainly formed in extensional foreland and intracontmental shortening flexural basins.

  20. Thermodynamic volume of cosmological solitons

    Science.gov (United States)

    Mbarek, Saoussen; Mann, Robert B.

    2017-02-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter a, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass Mout satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring Mout to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  1. Thermodynamic Volume of Cosmological Solitons

    CERN Document Server

    Mbarek, Saoussen

    2016-01-01

    We present explicit expressions of the thermodynamic volume inside and outside the cosmological horizon of Eguchi-Hanson solitons in general odd dimensions. These quantities are calculable and well-defined regardless of whether or not the regularity condition for the soliton is imposed. For the inner case, we show that the reverse isoperimetric inequality is not satisfied for general values of the soliton parameter $a$, though a narrow range exists for which the inequality does hold. For the outer case, we find that the mass $M_{out}$ satisfies the maximal mass conjecture and the volume is positive. We also show that, by requiring $M_{out}$ to yield the mass of dS spacetime when the soliton parameter vanishes, the associated cosmological volume is always positive.

  2. Formation and evolution of the Chinese marine basins

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    There are plenty of petroleum resources in the Chinese marine basins, which will be the potential exploration regions of petroleum in the 21 st century. The formation and evolution of the Chinese marine basins have mainly undergone two major tectonic epochs and five tectonic evolution stages. The first major tectonic epoch is the early Paleozoic plate divergence and drifting epoch during which the marine basins were formed, and the second one is the late Paleozoic plate convergence and collision epoch during which the pre-existent marine basins were superimposed and modified. The five tectonic northward collage and convergence of continental plates and the development of the paralic sedimencollage and the superimposition of lacustrine basins controlled by the inland subsidence during Late erosion or breakage of marine basins influenced by the plate tectonic activities of Neo-Tethys Ocean sion and basin-range coupling in the margin of the marine basins caused by the collision between India and Eurasia Plates and its long-distance effect since Neocene. The process of the tectonic evolution has controlled the petroleum geologic characteristics of Chinese marine basins, and a material foundation for the formation of oil and gas reservoirs has been built up via the formation of Paleozoic marine basins, and the Mesozoic-Cenozoic tectonic superimposition and modification have controlled the key conditions of hydrocarbon accumulation and preservation. From the Late Proterozoic to the Early Paleozoic, the stratigraphic sequences of the deep-water shale and continental margin marine carbonate rocks in the ancient plate floating in the oceans have developed high-quality marine source rocks and reef-shoal reservoirs. In Late Paleozoic, the crustal plates converged and uplifted into continent and the paleouplifts in the intra-cratonic basins have become good reservoirs of hydrocarbon migration and accumulation, and paralic coal beds have formed regional cap rocks. The Mesozoic

  3. 40 CFR 791.48 - Production volume.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Production volume. 791.48 Section 791... (CONTINUED) DATA REIMBURSEMENT Basis for Proposed Order § 791.48 Production volume. (a) Production volume.... (b) For the purpose of determining fair reimbursement shares, production volume shall include...

  4. The relative volume growth of minimal submanifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, V.

    2002-01-01

    The volume growth of certain well-defined subsets of minimal submanifolds in riemannian spaces are compared with the volume growth of balls and spheres ill space forms of constant curvature.......The volume growth of certain well-defined subsets of minimal submanifolds in riemannian spaces are compared with the volume growth of balls and spheres ill space forms of constant curvature....

  5. Reduced central blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Sørensen, T I

    1989-01-01

    for measuring the central blood volume. We have developed a method that enables us to determine directly the central blood volume, i.e., the blood volume in the heart cavities, lungs, and central arterial tree. In 60 patients with cirrhosis and 16 control subjects the central blood volume was assessed according...

  6. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    Science.gov (United States)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  7. Digital spatial data as support for river basin management: The case of Sotla river basin

    Directory of Open Access Journals (Sweden)

    Prah Klemen

    2013-01-01

    Full Text Available Many real-world spatially related problems, including river-basin planning and management, give rise to geographical information system based decision making, since the performance of spatial policy alternatives were traditionally and are still often represented by thematic maps. Advanced technologies and approaches, such as geographical information systems (GIS, offer a unique opportunity to tackle spatial problems traditionally associated with more efficient and effective data collection, analysis, and alternative evaluation. This paper discusses the advantages and challenges of the use of digital spatial data and geographical information systems in river basis management. Spatial data on social, environmental and other spatial conditions for the study area of 451.77 km2, the Slovenian part of the Sotla river basin, are used to study the GIS capabilities of supporting spatial decisions in the framework of river basin management.

  8. Sedimentary basin analysis using airborne gravity data: a case study from the Bohai Bay Basin, China

    Science.gov (United States)

    Li, Wenyong; Liu, Yanxu; Zhou, Jianxin; Zhou, Xihua; Li, Bing

    2016-11-01

    In this paper, we discuss the application of an airborne gravity survey to sedimentary basin analysis. Using high-precision airborne gravity data constrained by drilling and seismic data from the Bohai Bay Basin in eastern China, we interpreted faults, structural elements, sedimentary thickness, structural styles and local structures (belts) in the central area of the Basin by the wavelet transform method. Subsequently, these data were subtracted from the Bouguer gravity to calculate the residual gravity anomalies. On this basis, the faults were interpreted mainly by linear zones of high gravity gradients and contour distortion, while the sedimentary thicknesses were computed by the Euler deconvolution. The structural styles were identified by the combination of gravity anomalies and the local structures interpreted by the first vertical derivative of the residual gravity. The results showed evidence for seven faults, one sag and ten new local structure belts.

  9. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    John Jackson; Katherine Jackson

    2008-09-30

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through

  10. Upper Paleozoic petroleum system, Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.M.; Zhao, B.Q.; Thu, Z.L.; Song, Z.G. [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wilkins, R.W.T. [CSIRO Petroleum, P.O. Box 136, North Ryde, NSW 2113 (Australia)

    2005-09-01

    The Ordos Basin is a typical lapped basin, including three sequences of strata: early Paleozoic, late Paleozoic and Mesozoic, with a total thickness of 4000-6000m. Impermeable sealing beds are well developed at the top and base of the upper Paleozoic sequence, separating it from the Mesozoic and the lower Paleozoic strata to form an independent petroleum system. In this petroleum system, the source rocks are widely distributed coals and dark mudstones occurring in the Carboniferous-lower Permian coal measures, with a thickness of 10-15 and 40-60m, respectively. The reservoirs are mainly early Permian tight sandstones, mostly with a porosity of 4-8% and a permeability of 0.1-1.0x10{sup -3}{mu}m{sup 2}. The regional cap rock is a 100-150m thick mudstone in the upper Permian strata. The structural framework of the basin is a huge asymmetric syncline, dipping gently toward the east and north, and steeply toward the south and west. Well data show that gas-saturated, gas-water transition and water-saturated zones are developed from the depositional center to the basin edges. The gas-saturated zone mainly lies in the gently dipping slope area of the Shanbei Slope. Toward eastern and northern up-dip directions the water-gas transitional zone occurs, and finally the water-saturated zone, presenting a reverse relation of water on top of gas. An abnormal negative strata pressure is developed in the gas-bearing area, with a pressure coefficient (C{sub p}) ranging from 0.83 to 0.95. Fluid inclusion data indicate that the upper Paleozoic gas pool began to develop around the Wuqi area at about 150Ma, and it extended toward the north and was largely formed at about 120Ma, showing there was a regional migration of the gas-water interface from south to north during the gas pool formation. These characteristics appear to show that the northern and eastern margins of the petroleum system are defined by a regional hydrodynamic regime. The critical moment of the petroleum system

  11. Scaling issues in sustainable river basin management

    Science.gov (United States)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  12. Gas volume contents within a container, smart volume instrument

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Van Buskirk, Paul D. (Inventor)

    2008-01-01

    A method for determining the volume of an incompressible gas in a system including incompressible substances in a zero-gravity environment. The method includes inducing a volumetric displacement within a container and measuring the resulting pressure change. From this data, the liquid level can be determined.

  13. Large volume cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Braggio, C. [Dipartimento di Fisica, Universita di Padova, via Marzolo 8, 35131 Padova (Italy); Boscardin, M. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy); Bressi, G. [INFN sez. di Pavia, via Bassi 6, 27100 Pavia (Italy); Carugno, G.; Corti, D. [INFN sez. di Padova, via Marzolo 8, 35131 Padova (Italy); Galeazzi, G. [INFN lab. naz. Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), via Sommarive 18, I-38100 Povo (Italy)

    2009-12-15

    We present preliminary measurements for the development of a large volume silicon detector to detect low energy and low rate energy depositions. The tested detector is a one cm-thick silicon PIN diode with an active volume of 31 cm{sup 3}, cooled to the liquid helium temperature to obtain depletion from thermally-generated free carriers. A thorough study has been done to show that effects of charge trapping during drift disappears at a bias field value of the order of 100V/cm.

  14. Foaming volume and foam stability

    Science.gov (United States)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  15. Disorders of erythrocyte volume homeostasis.

    Science.gov (United States)

    Glogowska, E; Gallagher, P G

    2015-05-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneities characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis.

  16. Neogene sedimentary history of the Inner Cilicia Basin, eastern Mediterranean: a contribution to the TopoEurope VAMP project

    Science.gov (United States)

    Walsh, Susan; Kurtboǧan, Bahar; Akhun, Selin; Aksu, Ali; Hall, Jeremy; Ćifçi, Günay

    2010-05-01

    Inner Cilicia and Adana basins allow us to tie our seismic interpretation to known stratigraphies. For example, we can confidently correlate our Units 1, 2 and 3 with Pliocene-Quaternary, Messinian and pre-Messinian Miocene successions. Linear extrapolations using constant rate of sedimentation in the deepest portion of the Inner Cilicia Basin allows a tentative chronology to be established for the major prograded delta successions. Subsidence of the Göksu River delta is recognised, and can be timed from, deeply-buried topset/foreset transitions. We correlate the Pliocene-Quaternary sequence across the basin to derive sediment volumes deposited through time. In the Inner Cilicia Basin, we have also to separate the contributions of the Göksu River from those of the Seyhan and Ceyhan Rivers. Initial estimates of the Göksu River contributions are given. Determining the Miocene depositional history is more challenging because of the impacts of superficial evaporite mobility, the complex basement-related compressional history and the consequent difficulty of imaging pre-Messinian sequences. Initial ideas on the Miocene story will be presented.

  17. Performance characterisation of a stormwater treatment bioretention basin.

    Science.gov (United States)

    Mangangka, Isri R; Liu, An; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2015-03-01

    Treatment performance of bioretention basins closely depends on hydrologic and hydraulic factors such as rainfall characteristics and inflow and outflow discharges. An in-depth understanding of the influence of these factors on water quality treatment performance can provide important guidance for effective bioretention basin design. In this paper, hydraulic and hydrologic factors impacting pollutant removal by a bioretention basin were assessed under field conditions. Outcomes of the study confirmed that the antecedent dry period plays an important role in influencing treatment performance. A relatively long antecedent dry period reduces nitrite and ammonium concentrations while increasing the nitrate concentration, which confirms that nitrification occurs within the bioretention basin. Additionally, pollutant leaching influences bioretention basin treatment performance, reducing the nutrients removal efficiency, which was lower for high rainfall events. These outcomes will contribute to a greater understanding of the treatment performance of bioretention basins, assisting in the design, operation and maintenance of these systems.

  18. Geologic Evolution of the Schiaparelli Impact Basin, Mars

    Science.gov (United States)

    Jaret, S. J.; Albin, E. F.

    2002-09-01

    Situated in the eastern Terra Meridiani region of the Martian cratered uplands is an ancient 470-km diameter basin called Schiaparelli. In this investigation, Viking Orbiter image mosaics were used as a base to create a detailed geologic map of this impact structure. High resolution Global Surveyor MOC and MOLA data provided information for the interpretation of individual map units. The basin rim (Br) separates distinct sets of interior and exterior units. Within the basin, the following units are found: a) [Im] interior mountain (inner peak ring), b) [Ih] interior hilly material (fallback ejecta), c) [Irp] interior ridged plains (lava flows), and d) [Isp] interior smooth plains (lacustrine deposits). The exterior basin units include: a) [Cu] cratered upland material (target material), b) [Em] exterior mountain (basin ring) c) [Cd] cratered dissected material (continuous ejecta), d) [Erp] exterior ridged plains (lava flows), and e) [Esp] exterior smooth plains (lacustrine deposits). These findings provide clues about the geologic history of Schiaparelli basin.

  19. Structures of the Bohai Petroliferous Area, Bohai Bay Basin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper, for the first time, deals with a more systematic study of the structures in the Bohai petroliferous area that covers nearly one third of the Bohai Bay basin. The study mainly involves the effects of pre-existing basement faults on the basin formation, the characteristics of basin geometry and kinetics, the modelling of the tectonic-thermal history, the polycyclicity and heterogeneity in the structural evolution and the natural seismic tomographic images of the crust and upper mantle. The authors analyze the features of the dynamic evolution of the basin in the paper and point out that the basin in the Bohai petroliferous area is an extensional pull-apart basin.

  20. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations