WorldWideScience

Sample records for basilar membrane

  1. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    Science.gov (United States)

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Effect of Scala Tympani Morphology on Basilar Membrane Contact With a Straight Electrode Array: A Human Temporal Bone Study.

    Science.gov (United States)

    Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen

    2017-01-01

    Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.

  3. An articulated predictive model for fluid-free artificial basilar membrane as broadband frequency sensor

    Science.gov (United States)

    Ahmed, Riaz; Banerjee, Sourav

    2018-02-01

    In this article, an extremely versatile predictive model for a newly developed Basilar meta-Membrane (BM2) sensors is reported with variable engineering parameters that contribute to it's frequency selection capabilities. The predictive model reported herein is for advancement over existing method by incorporating versatile and nonhomogeneous (e.g. functionally graded) model parameters that could not only exploit the possibilities of creating complex combinations of broadband frequency sensors but also explain the unique unexplained physical phenomenon that prevails in BM2, e.g. tailgating waves. In recent years, few notable attempts were made to fabricate the artificial basilar membrane, mimicking the mechanics of the human cochlea within a very short range of frequencies. To explain the operation of these sensors a few models were proposed. But, we fundamentally argue the "fabrication to explanation" approach and proposed the model driven predictive design process for the design any (BM2) as broadband sensors. Inspired by the physics of basilar membrane, frequency domain predictive model is proposed where both the material and geometrical parameters can be arbitrarily varied. Broadband frequency is applicable in many fields of science, engineering and technology, such as, sensors for chemical, biological and acoustic applications. With the proposed model, which is three times faster than its FEM counterpart, it is possible to alter the attributes of the selected length of the designed sensor using complex combinations of model parameters, based on target frequency applications. Finally, the tailgating wave peaks in the artificial basilar membranes that prevails in the previously reported experimental studies are also explained using the proposed model.

  4. Analysis of an impulse response measured at the basilar membrane of the chinchilla (L)

    NARCIS (Netherlands)

    Wit, Hero P.; Bell, Andrew

    In a recent paper [J. Acoust. Soc. Am. 133, 2224-2239 (2013)], Shera and Cooper report on the impulse response of the basilar membrane (BM) of a chinchilla, a waveform which shows repetitive bursts. They explain the bursts in terms of repeated coherent reflection at BM discontinuities and partial

  5. MEMS flexible artificial basilar membrane fabricated from piezoelectric aluminum nitride on an SU-8 substrate

    International Nuclear Information System (INIS)

    Jang, Jongmoon; Choi, Hongsoo; Jang, Jeong Hun

    2017-01-01

    In this paper, we present a flexible artificial basilar membrane (FABM) that mimics the passive mechanical frequency selectivity of the basilar membrane. The FABM is composed of a cantilever array made of piezoelectric aluminum nitride (AlN) on an SU-8 substrate. We analyzed the orientations of the AlN crystals using scanning electron microscopy and x-ray diffraction. The AIN crystals are oriented in the c -axis (0 0 2) plane and effective piezoelectric coefficient was measured as 3.52 pm V −1 . To characterize the frequency selectivity of the FABM, mechanical displacements were measured using a scanning laser Doppler vibrometer. When electrical and acoustic stimuli were applied, the measured resonance frequencies were in the ranges of 663.0–2369 Hz and 659.4–2375 Hz, respectively. These results demonstrate that the mechanical frequency selectivity of this piezoelectric FABM is close to the human communication frequency range (300–3000 Hz), which is a vital feature of potential auditory prostheses. (paper)

  6. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea

    NARCIS (Netherlands)

    Fridberger, A; vanMaarseveen, JTPW; Scarfone, E; Ulfendahl, M; Flock, B; Flock, A

    1997-01-01

    We have used the guinea pig isolated temporal bone preparation to investigate changes in the nonlinear properties of the tone-evoked cochlear potentials during reversible step displacements of the basilar membrane towards either the scala tympani or the scala vestibuli. The position shifts were

  7. Development of a Multi-Channel Piezoelectric Acoustic Sensor Based on an Artificial Basilar Membrane

    Directory of Open Access Journals (Sweden)

    Youngdo Jung

    2013-12-01

    Full Text Available In this research, we have developed a multi-channel piezoelectric acoustic sensor (McPAS that mimics the function of the natural basilar membrane capable of separating incoming acoustic signals mechanically by their frequency and generating corresponding electrical signals. The McPAS operates without an external energy source and signal processing unit with a vibrating piezoelectric thin film membrane. The shape of the vibrating membrane was chosen to be trapezoidal such that different locations of membrane have different local resonance frequencies. The length of the membrane is 28 mm and the width of the membrane varies from 1 mm to 8 mm. Multiphysics finite element analysis (FEA was carried out to predict and design the mechanical behaviors and piezoelectric response of the McPAS model. The designed McPAS was fabricated with a MEMS fabrication process based on the simulated results. The fabricated device was tested with a mouth simulator to measure its mechanical and piezoelectrical frequency response with a laser Doppler vibrometer and acoustic signal analyzer. The experimental results show that the as fabricated McPAS can successfully separate incoming acoustic signals within the 2.5 kHz–13.5 kHz range and the maximum electrical signal output upon acoustic signal input of 94 dBSPL was 6.33 mVpp. The performance of the fabricated McPAS coincided well with the designed parameters.

  8. Basilar membrane and reticular lamina motion in a multi-scale finite element model of the mouse cochlea

    Science.gov (United States)

    Soons, Joris; Dirckx, Joris; Steele, Charles; Puria, Sunil

    2015-12-01

    A multi-scale finite element (FE) model of the mouse cochlea, based on its anatomy and material properties is presented. The important feature in the model is a lattice of 400 Y-shaped structures in the longitudinal direction, each formed by Deiters cells, phalangeal processes and outer hair cells (OHC). OHC somatic motility is modeled by an expansion force proportional to the shear on the stereocilia, which in turn is proportional to the pressure difference between the scala vestibule and scala tympani. Basilar membrane (BM) and reticular lamina (RL) velocity compare qualitatively very well with recent in vivo measurements in guinea pig [2]. Compared to the BM, the RL is shown to have higher amplification and a shift to higher frequencies. This comes naturally from the realistic Y-shaped cell organization without tectorial membrane tuning.

  9. Imaging in acute basilar artery thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, M. (Dept. of Radiology, Univ. of North Carolina School of Medicine, Chapel Hill, NC (United States)); Falcone, S. (Dept. of Radiology, Univ. of Miami School of Medicine, Miami, FL (United States)); Naidich, T.P. (Dept. of Radiology, Univ. of Miami School of Medicine, Miami, FL (United States)); Bowen, B. (Dept. of Radiology, Univ. of Miami School of Medicine, Miami, FL (United States)); Quencer, R.M. (Dept. of Radiology, Univ. of Miami School of Medicine, Miami, FL (United States))

    1994-08-01

    The aim of this study was to review the imaging features in acute (< 24 h) basilar artery thrombosis. CT and MR studies in 11 patients with clinical diagnosis of acute basilar artery thrombosis were retrospectively reviewed. MR angiography was obtained in 4 patients. Correlation with clinical symptoms was performed. Multiple cranial nerve palsies and hemiparesis were the most common clinical symptoms at presentation. CT revealed hyperdense basilar arteries (n = 7) and hypodensities in the posterior circulation territory (n = 8). In one instance, the infarction was hemorrhagic. MR imaging showed absence of flow void within the basilar in 6 patients and MRA (using both PC and TOF techniques) confirmed absence of blood flow in 4 basilar arteries. One week after presentation, 5 patients died. Autopsy was obtained in 1 case and confirmed the diagnosis of basilar artery thrombosis. Basilar artery thrombosis has fairly typical imaging features by both CT and MR. MRA may be used to confirm the diagnosis. Prompt recognition may lead to early thrombolytic treatment and may improve survival. (orig.)

  10. Estimating the basilar-membrane input-output function in normal-hearing and hearing-impaired listeners

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve; Dau, Torsten

    To partly characterize the function of cochlear processing in humans, the basilar membrane (BM) input-output function can be estimated. In recent studies, forward masking has been used to estimate BM compression. If an on-frequency masker is processed compressively, while an off-frequency masker...... is transformed more linearly, the ratio between the slopes of growth of masking (GOM) functions provides an estimate of BM compression at the signal frequency. In this study, this paradigm is extended to also estimate the knee-point of the I/O-function between linear rocessing at low levels and compressive...... processing at medium levels. If a signal can be masked by a low-level on-frequency masker such that signal and masker fall in the linear region of the I/O-function, then a steeper GOM function is expected. The knee-point can then be estimated in the input level region where the GOM changes significantly...

  11. Delayed treatment of basilar thrombosis in a patient with a basilar aneurysm: a case report

    Directory of Open Access Journals (Sweden)

    Fakhouri T

    2008-11-01

    Full Text Available Abstract Introduction Acute occlusion of the basilar artery is a neurological emergency that has a high risk of severe disability and mortality. Delayed thrombolysis or endovascular therapy has been performed with some success in patients who present after 3 hours of symptom onset. Here we present the first case of delayed intra-arterial thrombolysis of a basilar artery thrombosis associated with a large saccular aneurysm. Case presentation A 73-year-old Caucasian man with a history of smoking and alcohol abuse presented to the Emergency Department complaining of diplopia and mild slurred speech and who progressed over 12 hours to coma and quadriparesis. He was found to have a large basilar tip aneurysm putting him at high risk for hemorrhage with lytic treatment. Conclusion The treatment options for basilar thrombosis are discussed. Aggressive treatment options should be considered despite long durations of clinical symptoms in basilar thrombosis, even in extremely high risk patients.

  12. Basilar migraine.

    Science.gov (United States)

    Kuhn, W F; Kuhn, S C; Daylida, L

    1997-03-01

    Basilar migraine is a complicated headache which the International Headache Society describes as 'migraine with aura symptoms clearly originating from the brainstem or from both occipital lobes'. For years this headache was thought to originate from a transient disturbance in the vertebrobasilar circulation, but more recent studies suggest that a central neuronal disorder may be the source of migraine. Basilar migraines may have certain symptoms which are similar to other neurologic, vascular, psychiatric and metabolic diseases, yet there are specific criteria which can help differentiate it from other diagnoses. It is characterized by a throbbing occipital headache which may be preceded by an aura. The unusual symptoms of basilar migraine, which may precede and continue throughout the duration of the headache and even after it, include bilateral visual symptoms, altered mental status, vertigo, gait ataxia, bilateral paresthesia, bilateral paralysis and dysarthria. We describe a 29-year-old black female whose husband brought her to the emergency department complaining of confusion, headache, and left-sided weakness for 2 h prior to arrival.

  13. Combination tones along the basilar membrane in a 3D finite element model of the cochlea with acoustic boundary layer attenuation

    Science.gov (United States)

    Böhnke, Frank; Scheunemann, Christian; Semmelbauer, Sebastian

    2018-05-01

    The propagation of traveling waves along the basilar membrane is studied in a 3D finite element model of the cochlea using single and two-tone stimulation. The advantage over former approaches is the consideration of viscous-thermal boundary layer damping which makes the usual but physically unjustified assumption of Rayleigh damping obsolete. The energy loss by viscous boundary layer damping is 70 dB lower than the actually assumed power generation by outer hair cells. The space-time course with two-tone stimulation shows the traveling waves and the periodicity of the beat frequency f2 - f1.

  14. Analysis of Surgical Freedom Variation Across the Basilar Artery Bifurcation: Towards a Deeper Insight Into Approach Selection for Basilar Apex Aneurysms.

    Science.gov (United States)

    Tayebi Meybodi, Ali; Benet, Arnau; Rodriguez Rubio, Roberto; Yousef, Sonia; Lawton, Michael T

    2018-03-03

    The orbitozygomatic approach is generally advocated over the pterional approach for basilar apex aneurysms. However, the impact of the extensions of the pterional approach on the obtained maneuverability over multiple vascular targets (relevant to basilar apex surgery) has not been studied before. To analyze the patterns of surgical freedom change across the basilar bifurcation between the pterional, orbitopterional, and orbitozygomatic approaches. Surgical freedom was assessed for 3 vascular targets important in basilar apex aneurysm surgery (ipsilateral and contralateral P1-P2 junctions, and basilar apex), and compared between the pterional, orbitopterional, and orbitozygomatic approaches in 10 cadaveric specimens. Transitioning from the pterional to orbitopterional approach, the surgical freedom increased significantly at all 3 targets (P < .05). However, the gain in surgical freedom declined progressively from the most superficial target (60% for ipsilateral P1-P2 junction) to the deepest target (35% for contralateral P1-P2 junction). Conversely, transitioning from the orbitopterional to the orbitozygomatic approach, the gain in surgical freedom was minimal for the ipsilateral P1-P2 and basilar apex (<4%), but increased dramatically to 19% at the contralateral P1-P2 junction. The orbitopterional approach provides a remarkable increase in surgical maneuverability compared to the pterional approach for the basilar apex target and the relevant adjacent arterial targets. However, compared to the orbitopterional, the orbitozygomatic approach adds little maneuverability except for the deepest target (ie, contralateral P1-P2 junction). Therefore, the orbitozygomatic approach may be most efficacious with larger basilar apex aneurysms limiting the control over of the contralateral P1 PCA.

  15. The Basilar Artery on Computed Tomography Angiography Prognostic Score for Basilar Artery Occlusion.

    Science.gov (United States)

    Alemseged, Fana; Shah, Darshan G; Diomedi, Marina; Sallustio, Fabrizio; Bivard, Andrew; Sharma, Gagan; Mitchell, Peter J; Dowling, Richard J; Bush, Steven; Yan, Bernard; Caltagirone, Carlo; Floris, Roberto; Parsons, Mark W; Levi, Christopher R; Davis, Stephen M; Campbell, Bruce C V

    2017-03-01

    Basilar artery occlusion is associated with high risk of disability and mortality. This study aimed to assess the prognostic value of a new radiological score: the Basilar Artery on Computed Tomography Angiography (BATMAN) score. A retrospective analysis of consecutive stroke patients with basilar artery occlusion diagnosed on computed tomographic angiography was performed. BATMAN score is a 10-point computed tomographic angiography-based grading system which incorporates thrombus burden and the presence of collaterals. Reliability was assessed with intraclass coefficient correlation. Good outcome was defined as modified Rankin Scale score of ≤3 at 3 months and successful reperfusion as thrombolysis in cerebral infarction 2b-3. BATMAN score was externally validated and compared with the Posterior Circulation Collateral score. The derivation cohort included 83 patients with 41 in the validation cohort. In receiver operating characteristic (ROC) analysis, BATMAN score had an area under receiver operating characteristic curve of 0.81 (95% confidence interval [CI], 0.7-0.9) in derivation cohort and an area under receiver operating characteristic curve of 0.74 (95% CI, 0.6-0.9) in validation cohort. In logistic regression adjusted for age and clinical severity, BATMAN score of BATMAN score of BATMAN score had greater accuracy compared with Posterior Circulation Collateral score ( P =0.04). The addition of collateral quality to clot burden in BATMAN score seems to improve prognostic accuracy in basilar artery occlusion patients. © 2017 American Heart Association, Inc.

  16. Management of basilar invagination: A historical perspective

    Directory of Open Access Journals (Sweden)

    Abhidha Shah

    2016-01-01

    Full Text Available For a long time the terms basilar invagination and platybasia were used interchangeably. Basilar invagination has been defined as a prolapse of the vertebral column into the spinal cord. Platybasia is defined as an abnormal obtuse angle between the anterior skull base and the clivus. The authors review the existing literature and summarize the historical and modern perspectives in the management of basilar invagination. From radiological curiosities, the subject of basilar invagination is now viewed as eminently treatable. The more pronounced understanding of the subject has taken place in the last three decades when on the basis of understanding of the biomechanical subtleties the treatment paradigm has remarkably altered. From surgery that involved decompression of the region, stabilization and realignment now form the basis of treatment.

  17. Simulation of mechano-electrical transduction in the cochlea considering basilar membrane vibration and the ionic current of the inner hair cells

    Science.gov (United States)

    Lee, Sinyoung; Koike, Takuji

    2018-05-01

    The inner hair cells (IHCs) in the cochlea transduce mechanical vibration of the basilar membrane (BM), caused by sound pressure, to electrical signals that are transported along the acoustic nerve to the brain. The mechanical vibration of the BM and the ionic behaviors of the IHCs have been investigated. However, consideration of the ionic behavior of the IHCs related to mechanical vibration is necessary to investigate the mechano-electrical transduction of the cochlea. In this study, a finite-element model of the BM, which takes into account the non-linear activities of the outer hair cells (OHCs), and an ionic current model of IHC were combined. The amplitudes and phases of the vibration at several points on the BM were obtained from the finite-element model by applying sound pressure. These values were fed into the ionic current model, and changes in membrane potential and calcium ion concentration of the IHCs were calculated. The membrane potential of the IHC at the maximum amplitude point (CF point) was higher than that at the non-CF points. The calcium ion concentration at the CF point was also higher than that at the non-CF points. These results suggest that the cochlea achieves its good frequency discrimination ability through mechano-electrical transduction.

  18. The pectinate zone is stiff and the arcuate zone determines passive basilar membrane mechanics in the gerbil

    Science.gov (United States)

    Xia, Hongyi; Steele, Charles R.; Puria, Sunil

    2018-05-01

    The gerbil basilar membrane (BM) differs from other mammalian BMs in that the lower collagen-fiber layer of the pectinate zone (PZ) forms an arch, the upper fiber layer is flat, and ground substance separates the two layers. The role of this arch has been unknown, but can be elucidated by models. In the standard simple beam model (SBM), the upper and lower collagen-fiber layers of the BM are represented as a single layer in both the PZ and the arcuate zone (AZ). In our new arch-beam model (ABM), the upper fiber layer is flat, the lower layer forms an arch in the PZ, and the two layers combine to form the flat portion of the BM in the AZ. This design is incorporated into a 3D finite-element tapered-box model of the cochlea with viscous fluid. We find in the model that the PZ rotates as a rigid body, so its specific properties have little influence, while the AZ thickness and collagen volume fraction primarily determine passive BM mechanics.

  19. Arterial occlusion to treat basilar artery dissecting aneurysm

    NARCIS (Netherlands)

    Cui, Qing Ke; Liu, Wei Dong; Liu, Peng; Li, Xue Yuan; Zhang, Lian Qun; Ma, Long Jia; Ren, Yun Fei; Wu, Ya Ping; Wang, Zhi Gang

    2015-01-01

    Object: To explore the clinical feasibility of employing occlusion to treat basilar artery dissecting aneurysm. Methods: One patient, male and 46 years old, suffered transient numbness and weakness on the right limbs. Cerebral angiography indicated basilar artery dissecting aneurysm. The patient

  20. Mechanical frequency selectivity of an artificial basilar membrane using a beam array with narrow supports

    International Nuclear Information System (INIS)

    Kim, Sangwon; Jang, Jongmoon; Choi, Hongsoo; Song, Won Joon; Jang, Jeong Hun

    2013-01-01

    The study presented in this paper assessed the frequency selectivity of an artificial basilar membrane (ABM) constructed using a piezoelectric beam array with narrow supports. Three ABM samples were constructed. Each ABM contained 16 beams with various lengths in a one-dimensional array. To experimentally assess the frequency selectivity of the ABM, mechanical vibration induced either by an electrical or an acoustic stimulus was measured with a scanning laser-Doppler vibrometer. The electro-mechanical and acousto-mechanical transfer functions were defined for the same purpose. The tonotopy of each beam array was visualized by post-processing the experimental results. Finite element analyses were conducted to numerically compute the resonance frequencies, identify the associated vibrational modes, and evaluate the harmonic responses of the beams. The influence of the residual stresses existing in the beams was reflected in the geometric models by introducing three different levels of arc-shaped lateral deformations in the beams. The harmonic analyses revealed that each beam of the ABM samples presented independent band-pass characteristics. The experiments and simulations commonly showed a frequency selectivity of the fabricated ABMs in the range of 2–20 kHz. Therefore, the device is suitable for development of a totally implantable artificial cochlea, implementing a mechanical frequency analyzer. This work is part of research to develop a prototype of a totally implantable artificial cochlea. (paper)

  1. Trigeminal neuralgia secondary to basilar impression: A case report

    Directory of Open Access Journals (Sweden)

    Maurus Marques de Almeida Holanda

    2015-01-01

    Full Text Available We report a rare case of trigeminal neuralgia. A 23-year-old woman with a history of 1 year of typical trigeminal neuralgia manifested the characteristics of basilar impression. Magnetic resonance imaging (MRI demonstrated basilar impression, deformity of the posterior fossa with asymmetry of petrous bone, and compression of medulla oblongata in the topography of the odontoid apophysis. The operation was performed through a suboccipital craniectomy. The neuralgia disappeared after surgery and remains completely resolved until today. This is the second reported case of trigeminal neuralgia in a patient with basilar impression in Brazil.

  2. successful occipitocervical fusion for basilar invagination in a rural ...

    African Journals Online (AJOL)

    His X-rays, CT scans and MRI revealed basilar invagination (8.5mm ... McRae. Opisthion. McGregor. Hard palate. Chamberlain. DISCUSSION. Although congenital, basilar invagination can remain asymptomatic and unrecognized until adulthood (1). ... the reducible type; this is similar to Goel et al's (3) patients, 82% of ...

  3. Computed tomography in basilar artery occlusion in childhood

    International Nuclear Information System (INIS)

    Mori, Koreaki; Miwa, Soichi; Handa, Hajime

    1978-01-01

    A case of basilar artery occlusion in a 13-year-old boy is presented. Eighteen other cases of such occlusion in childhood in the relevant literature were analyzed, and then all nineteen cases were compared to adult cases. In comparison with adult cases, the following points were clear: (1) In children as well as in adults, basilar artery occlusion is more common in males. (2) As is well known, arteriosclerosis is the commonest cause in adults. In children, however, idiopathic and/or congenital occlusion are more common causes. (3) The main clinical manifestations in childhood as well as in maturity are consciousness disturbance, hemiplegia or quadriplegia, and pupillary abnormalities. (4) An occlusion of the proximal third of the basilar artery is common in adults, whereas an occlusion of the middle third is common in childhood. (5) Diagnosis is based on clinical manifestations, cerebral angiography, and computed tomography. (6) In contrast to the poor prognosis in adults, the prognosis is fairly in children. (author)

  4. Basilar artery aneurysm case presented with neck pain

    Directory of Open Access Journals (Sweden)

    Uygar Utku

    2013-04-01

    Full Text Available Neck pain related with disorders of the brain and neck vascular structures is not rare but importance was attached to a condition that is often overlooked. Tension as a sudden onset, radiating to the nape, the neck pain becomes unbearable and within seconds the raging 51-year-old female patient with aneurysm at the distal end of basilar artery was found. Case, the only sign of neck pain with unruptured basilar artery aneurysm is presented in terms of raising awareness on the subject.

  5. Basilar artery angulation and vertigo due to the hemodynamic effect of dominant vertebral artery.

    Science.gov (United States)

    Cosar, Murat; Yaman, Mehmet; Eser, Olcay; Songur, Ahmet; Ozen, Oguz A

    2008-01-01

    Vertebral arteries form the basilar artery at the pontobulbar junction. The vertebral artery may have dominancy in one of them. The branches of basilar arteries supply blood for the vestibular nuclei and its connections. Vertigo is seen generally in the upper middle aged patients. Vertigo can be observed in dolichoectasia of basilar artery such as angulation and elongation, because of the diminished blood supply and changed hemodynamic factors of vestibular nuclei and its connections. We hypothesized that angulation or elongation of basilar artery can be estimated according to the unilateral vertebral artery dominant hypertensive patients. The basilar artery can angulate from the dominant side of vertebral artery to the recessive side. These angulation and elongation can effect the hemodynamic factors in absence of growing collateral arteries. So, the vertigo attacks may occur in these patients.

  6. Relaxation effect of abacavir on rat basilar arteries.

    Directory of Open Access Journals (Sweden)

    Rachel Wai Sum Li

    Full Text Available The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels.The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate.Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries.Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to

  7. Neurofibromatosis, stroke and basilar impression: case report Neurofibromatose, acidente vascular cerebral e impressão basilar: relato de caso

    Directory of Open Access Journals (Sweden)

    ELCIO JULIATO PIOVESAN

    1999-06-01

    Full Text Available Neurofibromatosis type 1 (NF1 can virtually affect any organ, presenting most frequently with "cafe au lait" spots and neurofibromas. Vasculopathy is a known complication of NF1, but cerebrovascular disease is rare. We report the case of a 51-year-old man admitted to the hospital with a history of stroke four months before admission. On physical examination, he presented various "cafe au lait" spots and cutaneous neurofibromas. Neurologic examination demonstrated right-sided facial paralysis, right-sided hemiplegia, and aphasia. Computed tomography scan of head showed hypodense areas in the basal ganglia and centrum semiovale. Radiographs of cranium and cervical spine showed basilar impression. Angiography revealed complete occlusion of both vertebral and left internal carotid arteries, and partial stenosis of the right internal carotid artery. A large network of collateral vessels was present (moyamoya syndrome. It is an uncommon case of occlusive cerebrovascular disease associated with NF1, since most cases described in the literature are in young people, and tend to spare the posterior cerebral circulation. Basilar impression associated with this case may be considered a pure coincidence, but rare cases of basilar impression and NF1 have been described.A neurofibromatose tipo 1 (NF1 pode acometer qualquer órgão mas as apresentações mais frequente são manchas café com leite e neurofibromas. O envolvimento de vasos é complicação conhecida da NF1, mas a doença cerebrovascular é rara. Relatamos o caso de paciente do sexo masculino de 51 anos com história de acidente vascular cerebral há quatro meses da admissão. Ao exame físico apresentava várias manchas café com leite e neurofibromas cutâneos. O exame neurológico demonstrou acometimento facial direito, hemiplegia direita e afasia. Tomografia computadorizada de crânio mostrou áreas hipodensas nos gânglios basais e centros semi-ovais. Radiografias do crânio e coluna cervical

  8. Basilar skull fracture in a Thoroughbred colt: Radiography or computed tomography?

    Directory of Open Access Journals (Sweden)

    Chee Kin Lim

    2013-04-01

    Full Text Available A two-year-old Thoroughbred colt was presented to the Equine Clinic, Onderstepoort Veterinary Academic Hospital for head trauma after rearing and falling backwards, hitting his head on the ground. Following medical therapy for acute onset neurological impairment secondary to a suspected basilar skull fracture, the horse was anaesthetised and computed tomography of the skull was performed. A diagnosis of a comminuted basilar skull fracture was made and skull radiographs were taken for comparison. The horse was subsequently euthanased owing to the poor prognosis; necropsy findings were compatible with imaging findings. The value and limitation of computed tomography versus radiography for the diagnosis of basilar skull fracture are discussed in this report. Introduction

  9. Basilar skull fracture in a Thoroughbred colt: Radiography or computed tomography?

    Directory of Open Access Journals (Sweden)

    Chee Kin Lim

    2013-04-01

    Full Text Available A two-year-old Thoroughbred colt was presented to the Equine Clinic, Onderstepoort Veterinary Academic Hospital for head trauma after rearing and falling backwards, hitting his head on the ground. Following medical therapy for acute onset neurological impairment secondary to a suspected basilar skull fracture, the horse was anaesthetised and computed tomography of the skull was performed. A diagnosis of a comminuted basilar skull fracture was made and skull radiographs were taken for comparison. The horse was subsequently euthanased owing to the poor prognosis; necropsy findings were compatible with imaging findings. The value and limitation of computed tomography versus radiography for the diagnosis of basilar skull fracture are discussed in this report.

  10. Anastomose carótido-basilar

    Directory of Open Access Journals (Sweden)

    Ricardo Reixach-Granés

    1965-09-01

    Full Text Available O autor relata um caso de anastomose carótido-basilar por persistência da artéria trigeminal, demonstrado angiogràficamente. O paciente apresentou hemiplegia súbita e era portador de transtornos mentais de tipo deficitário. A pneumencefalografia evidenciou atrofia do parênquima cerebral do lado da anomalia.

  11. Characterization of CGRP(1) receptors in the guinea pig basilar artery

    DEFF Research Database (Denmark)

    Jansen-Olesen, I; Kaarill, L; Edvinsson, L

    2001-01-01

    The purpose of the present study was to characterise receptors mediating calcitonin gene-related peptide (CGRP)-induced relaxation of guinea pig basilar artery. This was done by investigating vasomotor responses in vitro and performing autoradiographic binding studies. We also intended to study...... the importance of an intact endothelium. Agonist studies showed that peptides of the CGRP family induced relaxation of the guinea pig basilar artery with the following order of potency: human beta-CGRP=human alpha-CGRP>adrenomedullin=[acetamidomethyl-Cys(2,7)]alpha-human CGRP ([Cys(ACM)(2,7)]CGRP...... in the absence of human CGRP-(8-37). The study shows the presence of a relaxant CGRP(1) receptor on the smooth muscle cells of guinea pig basilar artery. Various endothelial factors did not influence relaxant responses....

  12. Mechanical thrombectomy in basilar artery thrombosis

    DEFF Research Database (Denmark)

    Fesl, Gunther; Holtmannspoetter, Markus; Patzig, Maximilian

    2014-01-01

    PURPOSE: Multiple endovascular devices have been used for mechanical thrombectomy (MT) in basilar artery occlusion (BAO) for >10 years. Based on a single-center experience during the course of one decade, we present data on safety and efficacy of previous MT devices compared with modern stent...

  13. Primary stenting as emergency therapy in acute basilar artery occlusion

    International Nuclear Information System (INIS)

    Spreer, Joachim; Arnold, Sebastian; Klisch, Joachim; Schumacher, Martin; Els, Thomas; Hetzel, Andreas; Huppertz, Hans-Juergen; Oehm, Eckhardt

    2002-01-01

    In three patients with acute occlusion of the basilar artery intra-arterial fibrinolysis resulted in only partial recanalization and revealed severe stenosis as the underlying cause. Application of micro-stents without previous dilatation resulted in vessel re-opening. Two patients had an excellent clinical outcome. One patient died 10 days after the stroke due to brainstem infarction. Emergency primary stent application may improve the outcome in acute basilar artery occlusion, if intra-arterial thrombolysis fails to re-establish a sufficient flow. (orig.)

  14. A microelectromechanical system artificial basilar membrane based on a piezoelectric cantilever array and its characterization using an animal model

    Science.gov (United States)

    Jang, Jongmoon; Lee, Jangwoo; Woo, Seongyong; Sly, David J.; Campbell, Luke J.; Cho, Jin-Ho; O'Leary, Stephen J.; Park, Min-Hyun; Han, Sungmin; Choi, Ji-Wong; Hun Jang, Jeong; Choi, Hongsoo

    2015-07-01

    We proposed a piezoelectric artificial basilar membrane (ABM) composed of a microelectromechanical system cantilever array. The ABM mimics the tonotopy of the cochlea: frequency selectivity and mechanoelectric transduction. The fabricated ABM exhibits a clear tonotopy in an audible frequency range (2.92-12.6 kHz). Also, an animal model was used to verify the characteristics of the ABM as a front end for potential cochlear implant applications. For this, a signal processor was used to convert the piezoelectric output from the ABM to an electrical stimulus for auditory neurons. The electrical stimulus for auditory neurons was delivered through an implanted intra-cochlear electrode array. The amplitude of the electrical stimulus was modulated in the range of 0.15 to 3.5 V with incoming sound pressure levels (SPL) of 70.1 to 94.8 dB SPL. The electrical stimulus was used to elicit an electrically evoked auditory brainstem response (EABR) from deafened guinea pigs. EABRs were successfully measured and their magnitude increased upon application of acoustic stimuli from 75 to 95 dB SPL. The frequency selectivity of the ABM was estimated by measuring the magnitude of EABRs while applying sound pressure at the resonance and off-resonance frequencies of the corresponding cantilever of the selected channel. In this study, we demonstrated a novel piezoelectric ABM and verified its characteristics by measuring EABRs.

  15. Basilar Artery Thrombosis in a Child Treated With Intravenous Tissue Plasminogen Activator and Endovascular Mechanical Thrombectomy

    DEFF Research Database (Denmark)

    Topsøe, Jakob Fink; Sonnenborg, Laura; Larsen, Line Lunde

    2013-01-01

    Basilar artery occlusion in children is rare. It has a high mortality and morbidity if recanalization is not achieved before extensive brainstem infarction has occurred. An 11-year-old boy presented with a clinical and radiological "top-of-the-basilar" syndrome. Intravenous tissue plasminogen act...... thrombolysis (4.5 hours), the present case suggests that bridging therapy in pediatric basilar artery occlusion can be safe and effective....

  16. Dissecting and fusiform aneurysms of vertebro-basilar systems

    International Nuclear Information System (INIS)

    Iwama, T.; Andoh, T.; Sakai, N.; Iwata, T.; Yamada, H.; Hirata, T.

    1990-01-01

    The magnetic resonance (MR) findings of three cases with vertebro-basilar dissecting aneurysms (DA) were compared with those of two cases with vertebro-basilar fusiform aneurysms (FA). No abnormal findings, excepting a dilatation of a signal-void area corresponding to the arterial blood flow, were shown on the MR images in the patients with a FA. In contrast to the FA cases, various abnormalities were detected by the MR studies in all three DA cases. An intimal flap and a double lumen were demonstrated in one case. An intra-mural hematoma was shown in one case. A hematoma neighboring the parent artery was demonstrated in two cases. MR imaging was thought to be useful for detecting intracranial vascular lesions, such as a DA, and for discriminating between a DA and a FA. (orig.)

  17. Nonaneurysmal subarachnoid hemorrhage in intramural hematoma of the basilar artery - a case report and literature review

    International Nuclear Information System (INIS)

    Nedevska, A.; Nakov, V.; Hristov, H.

    2012-01-01

    Pretruncal (perimesencephalic) nonaneurysmal subarachnoid hemorrhage (SAH) is a benign variant of SAH. Although angiography fails to show a source of the hemorrhage, mild basilar artery narrowing may be observed. The cause of pretruncal nonaneurysmal SAH has not been established. Recent imaging studies have demonstrated that the center of this type of SAH is not around the mesencephalon but is in the prepontine or interpeduncular cistern with the hemorrhage closely associated with the basilar artery. We review the possible sources of hemorrhage in these cisterns and hypothesize that pretruncal nonaneurysmal SAH is caused by a primary intramural hematoma of the basilar artery. Such an intramural hematoma would explain bleeding under low pressure, the location of the hemorrhage anterior to the brainstem, and the typical findings of hemorrhage adjacent to the basilar artery lumen on magnetic resonance imaging and mild basilar artery narrowing on angiography. Hemorrhage in such location is easily found in native computed tomography (CT) images. Crescent, hyperdense thickening of the basilar artery wall is also observed. We have presented this unusual case to highlight the possible mechanism of hematoma formation and underline the importance of MDCT examination in the diagnosis confirmation and also excluding other potentially serious underlying condition that could also lead to non traumatic SAH. (authors)

  18. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Edvinsson, Lars; Olesen, Jes

    2006-01-01

    , we studied the possible involvement of endothelial K(ATP) channels by pressurized arteriography after luminal administration of synthetic K(ATP) channel openers to rat basilar and middle cerebral arteries. Furthermore, we examined the mRNA and protein expression profile of K(ATP) channels to rat...... basilar and middle cerebral arteries using quantitative real-time PCR (Polymerase Chain Reaction) and Western blotting, respectively. In the perfusion system, we found no significant responses after luminal application of three K(ATP) channel openers to rat basilar and middle cerebral arteries...

  19. The tectopontine projection the the rat with comments on visual pathways to the basilar pons

    International Nuclear Information System (INIS)

    Burne, R.A.; Azizi, S.A.; Mihailoff, G.A.; Woodward, D.J.

    1981-01-01

    The projection from the superior and inferior colliculi to the basilar pons in the rat was studied with the technique of orthograde transport of labeled amino acids and autoradiography. Injections restricted to the medial or lateral regions of the superior colliculus gave rise to grain labeling representing terminal fields over the ipsilateral peduncular, dorsolateral, and ventrolateral regions of the caudal basilar pons and over the dorsomedial area of the contralateral nucleus reticularis tegmenti pontis (NRTP). The pontine projection from the superior colliculus to the lateral basilar pons is topographically organized; the medial superior colliculus projects primarily to the peduncular region, whereas the lateral superior colliculus terminates chiefly in ventrolateral pontine areas. A projection from the superior colliculus to the contralateral dorsomedial pontine and medial peduncular pontine regions, a previously undescribed finding, has also been shown. Descending fibers from the inferior colliculus do not appear to terminate extensively within the basilar pons but rather course adjacent to pontine cells of the dorsolateral region in the caudal pons. Pretectal nuclei project ipsilaterally to medial and lateral nuclei in the rostral and middle basilar pons, respectively. A rostrocaudal topography exists in the tectopontine projection; the pretectum projects to rostromiddle basilar pons, the superior colliculus to more caudal pontine regions, and the inferior colliculus (although sparsely) to further caudal areas. The pontine projection pattern from the colliculi and pretectum differs from the pontine afferents from the visual cortices

  20. Electromechanical coupling in rat basilar artery in response to morphine.

    Science.gov (United States)

    Waters, A; Harder, D R

    1983-12-01

    Force development, intracellular membrane potential (Em), and voltage vs. current curves were measured in rat basilar artery to help elucidate the mechanism of action of morphine sulfate and a synthetic narcotic, meperidine hydrochloride, on this preparation. Morphine sulfate caused a dose-dependent contraction of these vessels, which was reversible with naloxone. Electrical studies show that morphine may act upon this vascular smooth muscle preparation by decreasing potassium conductance (gk). This hypothesis is supported by the findings that morphine sulfate depolarized these cells and increased the input resistance (rin) determined by the application of rectangular hyperpolarizing and depolarizing current pulses through the microelectrode during impalement and recording of the associated voltage changes (delta V). Meperidine hydrochloride had significantly less effect on this preparation than morphine sulfate. Further studies show that the vehicular medium used for the commercially available preparation of naloxone (viz. the methyl and propyl esters of p-hydroxybenzoic acid in a ratio of 9:1) is, in vitro, a vasodilator of cerebral vascular smooth muscle.

  1. Hemifacial spasm in a patient with basilar artery dolichoectasia caused by uncontrolled hypertension

    Directory of Open Access Journals (Sweden)

    Gordon S. Crabtree

    2016-10-01

    Full Text Available A 47-year-old male presented with a 2-year history of hemifacial spasm. Magnetic resonance imaging performed showed his tortuous basilar artery with nerve compression, and the patient was treated conservatively with botulinum toxin injections with complete resolution of symptoms. This rare disease was caused by his long history of hypertension, which led to his major basilar artery dolichoectasia.

  2. Histomorphometric study of basilar artery in normal and suicide persons

    Directory of Open Access Journals (Sweden)

    Suresh Kumar Parmar

    2016-10-01

    Full Text Available Background: Depression in association with cerebro-vascular risk factors and white matter lesions is increasingly referred to as ‘vascular depression’. There are several brain areas known for playing a role in patho-physiology of depression which may lead to suicidal tendencies, are fed by basilar artery. Therefore, the arterial histoarchitecture was studied in the normal and suicide individuals to establish a relationship between the vascular structural changes and depression. Methods: 40 post-mortem samples (both sexes of basilar artery have been collected and were grouped into normal and suicide groups. Samples were measured for arterial, lumen diameter and the thickness of tunica intima, media and adventitia using H & E stained sections. While, Orcein stained sections were used to estimate the volume fraction of elastic fibres, and Van Gieson stained sections to estimate the volume fraction of collagen fibres. Results: The mean thickness of tunica media of basilar artery in suicide individuals (1.08 microns showed a statistically significant decrease when compared to normal person (1.33 microns. Further, volume fraction of collagen (0.06 mm3/mm3 and elastic fibres (0.06 mm3/mm3 in suicide persons showed a statistically significant decrease when compared to normal person (collagen fibres 0.08 mm3/mm3; elastic fibres 0.09 mm3/mm3. Conclusions: This study establishes a probable causative relationship between vascular structural abnormality and depression which may drive the individual to commit suicide. Keywords: Histomorphometry, Basilar artery, Suicide, Depression

  3. WDR1 Presence in the Songbird Basilar Papilla

    Science.gov (United States)

    Adler, Henry J.; Sanovich, Elena; Brittan-Powell, Elizabeth F.; Yan, Kai; Dooling, Robert J.

    2009-01-01

    WD40 repeat 1 protein (WDR1) was first reported in the acoustically injured chicken inner ear, and bioinformatics revealed that WDR1 has numerous WD40 repeats, important for protein-protein interactions. It has significant homology to actin interacting protein 1 (Aip1) in several lower species such as yeast, roundworm, fruitfly and frog. Several studies have shown that Aip1 binds cofilin/actin depolymerizing factor, and that these interactions are pivotal for actin disassembly via actin filament severing and actin monomer capping. However, the role of WDR1 in auditory function has yet to be determined. WDR1 is typically restricted to hair cells of the normal avian basilar papilla, but is redistributed towards supporting cells after acoustic overstimulation, suggesting that WDR1 may be involved in inner ear response to noise stress. One aim of the present study was to resolve the question as to whether stress factors, other than intense sound, could induce changes in WDR1 presence in the affected avian inner ear. Several techniques were used to assess WDR1 presence in the inner ears of songbird strains, including Belgian Waterslager (BW) canary, an avian strain with degenerative hearing loss thought to have a genetic basis. Reverse transcription, followed by polymerase chain reactions with WDR1-specific primers, confirmed WDR1 presence in the basilar papillae of adult BW, non-BW canaries, and zebra finches. Confocal microscopy examinations, following immunocytochemistry with anti-WDR1 antibody, localized WDR1 to the hair cell cytoplasm along the avian sensory epithelium. In addition, little, if any, staining by anti-WDR1 antibody was observed among supporting cells in the chicken or songbird ear. The present observations confirm and extend the early findings of WDR1 localization in hair cells, but not in supporting cells, in the normal avian basilar papilla. However, unlike supporting cells in the acoustically damaged chicken basilar papilla, the inner ear of the BW

  4. Ocorrência familiar de impressão basilar

    Directory of Open Access Journals (Sweden)

    José Alberto Gonçalves da Silva

    1978-09-01

    Full Text Available Os autores apresentaram os resultados clínicos e radiológicos de 9 membros de uma família, dos quais dois foram submetidos ao tratamento neurocirúrgico de impressão basilar e malformação de Arnold-Chiari.

  5. Hipnoticos corticales y basilares y acciones anticonvulsivantes

    Directory of Open Access Journals (Sweden)

    Carlos Gutiérrez-Noriega

    1943-06-01

    Full Text Available Se estudian las diferencias de los hipnóticos corticales y basilares desde el punto de vista de sus acciones anticonvulsivantes. Los resultados son los siguientes: 1. Los hipnóticos del grupo basilar (barbitúrico y uretano poseen un poder anticonvulsivante considerablemente mayor que los hipnóticos del grupo cortical (alcoholes, aldehidos, bromuros, éter, con excepción del sulfato de magnesia, clasificado en el grupo subcortical, que tiene muy poca acción anticonvulsivante. 2. Algunos hipnóticos del grupo cortical (cloralosa disminuyen notablemente a dosis narcótica el umbral para las convulsiones clónicas, producidas por el cardiazol, coramina y estricnina; pero aumentan el umbral para las convulsiones tónicas. Estos hipnóticos actúan paradójicamente, como anticonvulsivantes y como sinergistas de los convulsivantes. 3. El sinergismo de cardiazol y estricnina para producir convulsiones clónicas es mucho más notable durante la narcosis por cloralosa que en el animal no anestesiado. 4. Existen significativas diferencias cualitativas y cuantitativas entre las convulsiones del animal no anestesiado y las convulsiones del animal durante la narcosis por cloralosa. En este último caso no se produce la reacción tónica, las reacciones neurovegetativas son más débiles, pero la duración de las convulsiones clónicas es considerablemente mayer. 5. Las diferencias de actividad anticonvulsivante observadas entre los dos grupos de hipnóticos, no pueden ser tomadas como prueba de la clasificación topográfica (córtico-basilar. Al contrario, sugieren que algunos hipnóticos del grupo cortical deben su típica manera de actuar a una acción estimulante tanto sobre la corteza cerebral como sobre los centros subcorticales. Se discute la posibilidad de que el sistema internuncial sea el que principalmente se estimula. Así, mientras que en la narcosis de tipo barbitúrico disminuye la excitabilidad de todo el sistema nervioso de relaci

  6. Near field fluid coupling between internal motion of the organ of Corti and the basilar membrane

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Stephen J.; Ni, Guangjian [Institute of Sound and Vibration Research, University of Southampton, Southampton (United Kingdom)

    2015-12-31

    The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motion will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.

  7. Ultrasound assisted arthroscopic approach for removal of basilar sesamoid fragments of the proximal sesamoid bones in horses.

    Science.gov (United States)

    Barrett, Elizabeth J; Rodgerson, Dwayne H

    2014-08-01

    To describe an ultrasound assisted arthroscopic approach for removal of non-articular basilar sesamoid fragments in Thoroughbred yearlings. Thoroughbred yearlings (n = 7). Basilar sesamoid fragments identified during pre-sale radiographic examination were removed using a palmar/plantar arthroscopic approach to the fetlock joint and ultrasonographic guidance. Complete fragment removal was confirmed by ultrasonography and radiography. Basilar sesamoid fracture fragments were localized and removed successfully using rongeurs and a radiofrequency probe for soft tissue dissection of the fragment. Complete fragment removal was confirmed by ultrasonography and radiography. No intra- or postoperative complications occurred. At 6-8 months follow-up, no fragments or bony proliferation at the base of the sesamoid was observed. Ultrasonographic guidance can be used to facilitate localization, dissection, and confirmation of removal of basilar fragments of the proximal sesamoid bone. © Copyright 2014 by The American College of Veterinary Surgeons.

  8. Cranial Paget's disease - clinical case of symptomatic secondary basilar impression

    International Nuclear Information System (INIS)

    Gagov, E.; Gabrovsky, N.; Gabrovsky, S.

    2010-01-01

    A clinical case of 52 years old woman with history of periodic headaches for many years. The headache became more intensive and constant during the last 4-6 months. Instability by walking and stagger occurred as well as weakness in all 4 extremities, difficult swallowing and speech changes. Bulbar, quadripyramidal and archicerebellar symptoms were in hand. Pagets disease was ascertained engaging the skull with secondary basilar impression and compression of the cerebellum and the brain-stem leading to the above described clinical signs. Decompressive median suboccipital craniectomy was performed with laminectomy of C1. Occipital squama was thickened and highly vascularized.. Secondary basilar impression could occur in cranial Pagets disease with clinical symptoms resulting from the compression of the cerebellum and the brain-stem

  9. Hemiplegia cruzada associada a impressão basilar, malformação de Arnold-Chiari e siringomielia: relato de caso Cruciate hemiplegia associated with basilar impression, Arnold-Chiari malformation and syringomyelia: case report

    Directory of Open Access Journals (Sweden)

    José Alberto Gonçalves da Silva

    1996-12-01

    Full Text Available Os autores apresentam um caso de hemiplegia cruzada associada a impressão basilar, malformação de Arnold-Chiari e siringomielia. Discutem as propostas anatômicas e a fiopatogenia desta síndrome de ocorrência bastante rara.The authors report a case of cruciate hemiplegia associated with basilar impression, Chiari malformation and syringomyelia. The neuroanatomical controversy, the surgical treatment and the good outcome of the patient are discussed.

  10. Osteogenesis imperfecta in childhood: MR imaging of basilar impression

    NARCIS (Netherlands)

    Janus, G. J. M.; Engelbert, R. H. H.; Beek, E.; Gooskens, R. H. J. M.; Pruijs, J. E. H.

    2003-01-01

    To determine on radiographs the presence of Basilar Impression (BI) in children with Osteogenesis Imperfecta (OI). To confirm this sign and altered geometrical relationships of the craniocervical junction in course of time with magnetic resonance imaging (MRI). In a cohort study of 130 patients with

  11. Transient basilar artery occlusion monitored by transcranial color Doppler presenting with a spectacular shrinking deficit: a case report

    Directory of Open Access Journals (Sweden)

    Del Sette Massimo

    2010-01-01

    Full Text Available Abstract Introduction We describe the case of a 79-year-old Caucasian Italian woman with a transient basilar occlusion monitored by transcranial Doppler, with subsequent recanalization and clinical shrinking deficit. This is the first case of transient basilar occlusive disease diagnosed and monitored by transcranial Doppler. This case is important and needs to be reported because transient basilar occlusion may be easily diagnosed if transcranial Doppler is performed. Case presentation A 79-year-old woman affected by chronic atrial fibrillation and not treated with oral anticoagulants, cardioverted to sinus rhythm during a gastric endoscopy. She then showed a sudden-onset loss of consciousness, horizontal and vertical gaze palsy, tetraparesis and bilateral miosis and coma. Two hours later, the symptoms resolved quickly, leaving no residual neurologic deficits. Transcranial Doppler examination showed a dampened flow in the basilar artery in the emergency examination and a restored flow when the symptoms resolved. Conclusion This is the first case of transient basilar occlusive disease diagnosed and monitored by transcranial Doppler. We believe that transcranial Doppler should be performed in all cases of unexplained acute loss of consciousness, in particular, if associated with signs of brainstem dysfunctions.

  12. Extent of hypoattenuation on CT angiography source images in basilar artery occlusion: prognostic value in the Basilar Artery International Cooperation Study.

    Science.gov (United States)

    Puetz, Volker; Khomenko, Andrei; Hill, Michael D; Dzialowski, Imanuel; Michel, Patrik; Weimar, Christian; Wijman, Christine A C; Mattle, Heinrich P; Engelter, Stefan T; Muir, Keith W; Pfefferkorn, Thomas; Tanne, David; Szabo, Kristina; Kappelle, L Jaap; Algra, Ale; von Kummer, Ruediger; Demchuk, Andrew M; Schonewille, Wouter J

    2011-12-01

    The posterior circulation Acute Stroke Prognosis Early CT Score (pc-ASPECTS) quantifies the extent of early ischemic changes in the posterior circulation with a 10-point grading system. We hypothesized that pc-ASPECTS applied to CT angiography source images predicts functional outcome of patients in the Basilar Artery International Cooperation Study (BASICS). BASICS was a prospective, observational registry of consecutive patients with acute symptomatic basilar artery occlusion. Functional outcome was assessed at 1 month. We applied pc-ASPECTS to CT angiography source images of patients with CT angiography for confirmation of basilar artery occlusion. We calculated unadjusted and adjusted risk ratios (RRs) of pc-ASPECTS dichotomized at ≥8 versus <8. Primary outcome measure was favorable outcome (modified Rankin Scale scores 0-3). Secondary outcome measures were mortality and functional independence (modified Rankin Scale scores 0-2). Of 158 patients included, 78 patients had a CT angiography source images pc-ASPECTS≥8. Patients with a pc-ASPECTS≥8 more often had a favorable outcome than patients with a pc-ASPECTS<8 (crude RR, 1.7; 95% CI, 0.98-3.0). After adjustment for age, baseline National Institutes of Health Stroke Scale score, and thrombolysis, pc-ASPECTS≥8 was not related to favorable outcome (RR, 1.3; 95% CI, 0.8-2.2), but it was related to reduced mortality (RR, 0.7; 95% CI, 0.5-0.98) and functional independence (RR, 2.0; 95% CI, 1.1-3.8). In post hoc analysis, pc-ASPECTS dichotomized at ≥6 versus <6 predicted a favorable outcome (adjusted RR, 3.1; 95% CI, 1.2-7.5). pc-ASPECTS on CT angiography source images independently predicted death and functional independence at 1 month in the CT angiography subgroup of patients in the BASICS registry.

  13. Basilar artery thrombosis in the setting of antiphospholipid syndrome

    Science.gov (United States)

    Nickell, Larry T.; Heithaus, R. Evans; Shamim, Sadat A.; Opatowsky, Michael J.; Layton, Kennith F.

    2014-01-01

    Antiphospholipid syndrome is an autoimmune disorder characterized by arterial or venous thrombosis, recurrent first-trimester pregnancy loss, and multiple additional clinical manifestations. We describe a man with severe atherosclerotic basilar artery stenosis and superimposed in situ thrombus who was found to have antiphospholipid syndrome. PMID:24982561

  14. Method for Dissecting the Auditory Epithelium (Basilar Papilla) in Developing Chick Embryos.

    Science.gov (United States)

    Levic, Snezana; Yamoah, Ebenezer N

    2016-01-01

    Chickens are an invaluable model for exploring auditory physiology. Similar to humans, the chicken inner ear is morphologically and functionally close to maturity at the time of hatching. In contrast, chicks can regenerate hearing, an ability lost in all mammals, including humans. The extensive morphological, physiological, behavioral, and pharmacological data available, regarding normal development in the chicken auditory system, has driven the progress of the field. The basilar papilla is an attractive model system to study the developmental mechanisms of hearing. Here, we describe the dissection technique for isolating the basilar papilla in developing chick inner ear. We also provide detailed examples of physiological (patch clamping) experiments using this preparation.

  15. Surgical treatment of Chiari malformation complicated with basilar impression

    Directory of Open Access Journals (Sweden)

    Yuan MA

    2011-02-01

    Full Text Available Objective To evaluate the therapeutic effect of small craniotomic posterior fossa decompression combined with occipital-cervical bone graft fusion and internal fixation on Chiari malformation complicated with basilar impression.Methods The clinical data of 16 cases(7 males and 9 females,aged 17 to 65 years,mean 36.4 of Chiari malformation complicated with basilar impression from 2006 to 2010 were retrospectively analyzed.The diagnoses for all the patients were confirmed by radiology.Small craniotomic posterior fossa decompression was performed in all patients,cerebellar tonsils were resected,and then one-stage occipital-cervical bone graft fusion using autogenous iliac bone and internal wiring fixation were performed.Neck support was used for 3 months after surgery.Results Symptoms were significantly improved in all cases after surgical operation.No patient died or infected.Cerebrospinal fluid leakage was found at draining site in one case.Transient pain of scapular and chest was found in one case and disappeared spontaneously.A 6-months follow-up showed that 6 patients were cured,9 improved and 1 unchanged according to Symon and Lavender standard.Postoperative MRI showed the reconstructed cisterna magna was clear in all patients,no cerebellar ptosis was found,and the occipital-cervical graft bone was fused.Conclusion In patients with Chiari malformation complicated with basilar impression,small craniotomic posterior fossa decompression combined with one-stage occipital-cervical bone graft fusion and internal wiring fixation has a clear and definite effect,it can increase the volume of posterior fossa and alleviate the ventral brain stem compression simultaneously,and reconstruct the stability of cranio-cervical junction.

  16. Endoscopic transnasal odontoidectomy to treat basilar invagination with congenital osseous malformations

    Directory of Open Access Journals (Sweden)

    YU Yong

    2012-08-01

    Full Text Available Objective To introduce the surgical techniques of image-guided endoscopic transnasal odontoidectomy to treat basilar invagination with congenital osseous malformations and describe several advantages compared to the traditional transoral procedure. Methods From September 2009 to February 2010, two cases with basilar invagination, of which the etiology was congenital osseous malformations, underwent endoscopic transnasal odontoidectomy. Case 2 also received occipitocervical fixation and bone fusion during the same surgical episode to ensure stability. The clinical symptoms of the two cases were evaluated by using the Japanese Orthopaedic Association (JOA score for the evaluation of cervical myelopathy. Results Both patients were extubated after recovery from anesthesia and allowed oral food intake the next day. Cerebrospinal fluid rhinorrhea was found in the second case and cured by continuous lumber drainage of cerebrospinal fluid. No infection was noted. The average follow?up time was more than 24 months. Remarkable neurological recovery was observed at postoperation in both patients. The JOA scores elevated from preoperative 12 and 8 to postoperative 17 and 15. Conclusion The endoscopic transnasal odontoidectomy is a more minimally invasive approach for anterior decompression of cervicomedullary with basilar invagination. The advantages over the standard transoral odontoidectomy include visualization improvement, elimination of risk of tongue swelling and teeth damaging, alleviation of prolonged intubation, reduction of need for enteral tube feeding, and less risk of affecting phonation.

  17. Extreme fenestration of the basilar artery associated with cleft palate, nasopharyngeal mature teratoma, and hypophyseal duplication

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Sawada, A.; Takase, Y.; Kudo, S. [Department of Radiology, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501 (Japan); Fujita, I. [Department of Pediatrics, Saga Medical School, 5-1-1, Nabeshima, Saga 849-8501 (Japan)

    2002-08-01

    The authors present the case of a newborn girl with extreme fenestration of the basilar artery. This anomaly was found incidentally during MR imaging study for cleft palate and nasopharyngeal teratoma. Magnetic resonance angiography showed a totally duplicated basilar artery with connections at the proximal and distal ends of the artery, suggesting an extreme fenestration. Duplicated pituitary gland was also found on MR imaging. (orig.)

  18. Extreme fenestration of the basilar artery associated with cleft palate, nasopharyngeal mature teratoma, and hypophyseal duplication

    International Nuclear Information System (INIS)

    Uchino, A.; Sawada, A.; Takase, Y.; Kudo, S.; Fujita, I.

    2002-01-01

    The authors present the case of a newborn girl with extreme fenestration of the basilar artery. This anomaly was found incidentally during MR imaging study for cleft palate and nasopharyngeal teratoma. Magnetic resonance angiography showed a totally duplicated basilar artery with connections at the proximal and distal ends of the artery, suggesting an extreme fenestration. Duplicated pituitary gland was also found on MR imaging. (orig.)

  19. Reversed tonotopic map of the basilar papilla in Gekko gecko.

    Science.gov (United States)

    Manley, G A; Köppl, C; Sneary, M

    1999-05-01

    A published model of the frequency responses of different locations on the basilar papilla of the Tokay gecko Gekko gecko (Authier and Manley, 1995. Hear. Res. 82, 1-13) had implied that (a) unlike all other amniotes studied so far, the frequency map is reversed, with the low frequencies at the base and the high frequencies at the apex, and (b) the high-frequency area is split into two parallel-lying hair cell areas covering different frequency ranges. To test these hypotheses, the frequency representation along the basilar papilla of Gekko gecko was studied by recording from single auditory afferent nerve fibers and labelling them iontophoretically with horseradish peroxidase. Successfully labelled fibers covered a range of characteristic frequencies from 0.42 to 4.9 kHz, which extended from 78% to 9% of the total papillar length, as measured from the apex. The termination sites of labelled fibers within the basilar papilla correlated with their characteristic frequency, the lowest frequencies being represented basally, and the highest apically. This confirms the first prediction of the model. The map indicates, however, that one of the two high-frequency papillar regions (the postaxial segment) represents the full high-frequency range, from about 1 to 5 kHz. No functionally identified labelling was achieved in the preaxial segment. Thus the assumptions underlying the proposed model need revision. A good mathematical description of the frequency distribution was given by an exponential regression with a mapping constant in the living state of approximately 0.4 mm/octave.

  20. Clinical efficacy of intra-arterial thrombolsis for basilar artery occlusion

    International Nuclear Information System (INIS)

    Tao Hua; Li Shenmao; Zhu Fengshui; Zhao Huipin; Xu Yanjie

    2009-01-01

    Objective: To evaluate the efficacy and influence of intra-arterial thrombolysis for basilar artery occlusion. Methods: Thirty-three consecutive cases of basilar artery occlusion treated by intra-arterial thrombolysis were retrospectively reviewed. They were 25 males and 8 females aged from 28 to 71 years old (average: 56±11 years). The recovery was graded by Glasgow outcome scale, which 1 to 3 point is unfavorable and 4 to 5 is favorable. The short-term follow-up was performed referring to the medical record at the time of discharge and the long-term follow-up was performed by telephone. The differences between the favorable and unfavorable, including sex, age, time to thrombolysis, dizziness, nystagmus, coma, bilateral babinski syndrome, occlusive part, revascularization, angioplasty and its type, were compared by Fisher exact test where P<0.05 was significant. Results: The short-term follow-up was evaluated during the admission (2 to 63 days, 21±16 days). Eighteen eases were favorable and 15 cases were unfavorable and 3 cases died. Twenty one cases showed revascularization and 19 cases showed bilateral positive Babinski sign. The positive Babinski sign, revascularization and coma had significant difference between the favorable and unfavorable (P<0.05). The sex, age, time to thrombolysis between the favorable and unfavorable showed no statistical difference. The long-term follow-up were performed after 1 year and 9 cases missed. 15 of them were favorable and 6 were unfavorable (4 cases died). Conclusion: The intra-arterial thrombolysis could improved the prognosis of basilar artery occlusion. (authors)

  1. Basilar artery occlusion: Prognostic signs of severity on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Pierre-Alexandre, E-mail: pierre-alexandre.poletti@hcuge.ch [Service of Radiology, University Hospital of Geneva (Switzerland); Pereira, Vitor Mendes [Service of Neuroradiology, University Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211 Geneva (Switzerland); Department of Medical Imaging, University of Toronto (Canada); Department of Surgery, University of Toronto (Canada); Lovblad, Karl-Olof [Service of Neuroradiology, University Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211 Geneva (Switzerland); Canel, Lucie [Service of Radiology, University Hospital of Geneva (Switzerland); Sztajzel, Roman [Service of Neurology, University Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211 Geneva (Switzerland); Becker, Minerva [Service of Radiology, University Hospital of Geneva (Switzerland); Perneger, Thomas [Division of Clinical Epidemiology, University Hospital of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211 Geneva (Switzerland); Platon, Alexandra [Service of Radiology, University Hospital of Geneva (Switzerland)

    2015-07-15

    Highlights: • The main CT signs associated with basilar artery occlusion were analyzed. • CT sign of acute ischemic lesion is significantly associated with a bad outcome. • The site of the basilar artery occlusion is not associated to the patients’ outcome. - Abstract: Purpose: To determine the computed tomography (CT) signs that are predictive of the clinical outcome of basilar artery occlusion (BAO). Materials and methods: The study population consisted in 37 patients (14 women, 23 men, mean age: 63 years), admitted with onset of neurological deficit, starting 1–72 h prior to admission, who were diagnosed with BAO on the basis of a CT examination with intravenous contrast agent. The following signs were collected on CT scans performed on admission: clot density on noncontrast images, clot length, and clot location, as well as the presence of acute ischemic lesions. The results were compared against the modified Rankin Scale (mRS) score of patients at 3 months, favorable clinical outcome being defined as a mRS score ≤3. Results: The clinical outcome was favorable in 13 (35%) of the 37 patients and unfavorable in 24 (65%). Signs of acute ischemia were visible in 13 of the 24 patients with unfavorable outcome but in none of the 13 patients with favorable outcome (p < 0.001). None of the other CT signs analyzed were significantly correlated with clinical prognosis. Conclusion: Of all the CT signs analyzed, only the presence of signs of acute ischemia on the admission CT of patients with BAO was associated with poor prognosis.

  2. Histomorphometric study of basilar artery in normal and suicide persons.

    Science.gov (United States)

    Parmar, Suresh Kumar; Prasad, V Satya

    2016-10-01

    Depression in association with cerebro-vascular risk factors and white matter lesions is increasingly referred to as 'vascular depression'. There are several brain areas known for playing a role in patho-physiology of depression which may lead to suicidal tendencies, are fed by basilar artery. Therefore, the arterial histoarchitecture was studied in the normal and suicide individuals to establish a relationship between the vascular structural changes and depression. 40 post-mortem samples (both sexes) of basilar artery have been collected and were grouped into normal and suicide groups. Samples were measured for arterial, lumen diameter and the thickness of tunica intima, media and adventitia using H & E stained sections. While, Orcein stained sections were used to estimate the volume fraction of elastic fibres, and Van Gieson stained sections to estimate the volume fraction of collagen fibres. The mean thickness of tunica media of basilar artery in suicide individuals (1.08 microns) showed a statistically significant decrease when compared to normal person (1.33 microns). Further, volume fraction of collagen (0.06 mm 3 /mm 3 ) and elastic fibres (0.06 mm 3 /mm 3 ) in suicide persons showed a statistically significant decrease when compared to normal person (collagen fibres 0.08 mm 3 /mm 3 ; elastic fibres 0.09 mm 3 /mm 3 ). This study establishes a probable causative relationship between vascular structural abnormality and depression which may drive the individual to commit suicide. Copyright © 2016 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  3. Transcavernous Approach to the Basilar Apex: A Cadaveric Prosection

    Science.gov (United States)

    Sellin, Jonathan N; Navarro, Jovany C; Batjer, Hunt H; Van Loveren, Harry; Duckworth, Edward A

    2018-01-01

    The transcavernous approach to the basilar artery, as initially described by Dolenc, is one of the most common and elegant approaches to the region. It affords a generous working and viewing angle, but it can be technically challenging and requires attention to detail at each step. We investigate this approach in this report via a cadaveric prosection with a focus on the value of each of the component steps in improving surgical view and exposure. The transcavernous approach steps are divided into extradural stages: orbitozygomatic osteotomy (a modern adjunct to Dolenc’s original description), drilling of the lesser sphenoid wing, and anterior clinoidectomy; and intradural stages: wide splitting of the Sylvian fissure, unroofing of the oculomotor and trochlear nerves, and posterior clinoidectomy. The surgical windows afforded by each step in the approach are illustrated using microscopic images taken during the cadaveric prosection of a donor who happened to harbor a basilar apex aneurysm. An illustrative case and artist illustrations are used to emphasize the relative value of each step of the transcavernous exposure. PMID:29682431

  4. Megadolicho basilar artery as a cause of asymmetrical sensorineural hearing loss - case report

    Directory of Open Access Journals (Sweden)

    Melo, Antonio Antunes

    2011-07-01

    Full Text Available Introduction: At the differentiated diagnosis of asymmetrical sensorineural hearing losses, vascular disorders are present, one of which is megadolicho basilar artery. This disease is generally asymptomatic, and when symptoms are found, they can be caused by a compression or ischemia. Clinically, sensorineural hearing loss, tinnitus, headache, facial hypoesthesia, trigeminal neuralgia, vertigo, diplopia and facial palsy, among others, are likely to occur. The image examination of choice for its diagnosis is nuclear magnetic resonance. The megadolicho basilar artery therapy can be surgical or conservative, according to the associated findings. A multidisciplinary approach, including a neurologist, neurosurgeon and an otorhinolaryngologist is recommended for a proper administration of the case. Objective: Report the case of a patient with asymmetrical sensorineural hearing loss, diagnosed of megadolicho basilar artery. Case report: JBS, 57-year-old white male with a history of asymmetrical sensorineural hearing loss and bilateral whistle-like tinnitus for several years. The otorhinolaryngologic evaluation, including otoscopy, anterior rhinoscopy and oral pharynx, was normal. Final Comments: The treatment consisted in following up with the patient, controlling the tinnitus by drugs and using an individual sound amplification apparatus on the left ear.

  5. Persistência da anastomose carótido-basilar: a propósito de um caso revelado pela angiografia cerebral

    Directory of Open Access Journals (Sweden)

    José Zaclis

    1955-12-01

    Full Text Available Publicando êste caso, o autor eleva para 23 o total dos casos registrados de persistência da anastomose carótido-basilar. Trata-se de caso cujo paciente foi submetido a estudo angiográfico injetando o contraste sucessivamente em ambas as artérias carótidas e no sistema vértebro-basilar. Êste é o sétimo caso com demonstração angiográfica da persistência da comunicação entre a carótida e a basilar. A presença desta anomalia condiciona modificações na hemodinâmica intracraniana demonstradas neste caso.

  6. Utility of digital subtraction angiography-based collateral evaluation in medically treated acute symptomatic basilar artery stenosis.

    Science.gov (United States)

    Lee, W-J; Jung, K-H; Ryu, Y J; Kim, J-M; Lee, S-T; Chu, K; Kim, M; Lee, S K; Roh, J-K

    2017-09-01

    Although a stroke from atherosclerosis in the basilar artery (BA) often presents with mild initial stroke severity, it has heterogeneous clinical courses. We investigated the efficacy of digital subtraction angiography (DSA)-based collateral perfusion evaluation in association with long-term outcomes of medically treated symptomatic basilar artery stenosis. From a registry database of all consecutive patients with stroke, we included 98 medically treated patients (due to mild initial stroke severity) [National Institute of Health Stroke Scale (NIHSS) scores ≤ 4; symptomatic basilar artery stenosis, 70-99%] with available initial diagnostic DSA. Basilar collateral scoring was performed via the DSA, using a modified version of the American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology grading system in both the superior cerebellar artery and anterior/posterior-inferior cerebellar artery territories (score 0-8). The outcomes were designated as the 90-day modified Rankin Scale (mRS90) score (poor, 3-6). Student's t-test, chi-square test and logistic regression analyses were used to identify factors associated with a poor outcome. The median initial NIHSS score was 2 [interquartile range (IQR), 0-3], median posterior circulation Alberta Stroke Program Early CT Score was 8 (IQR, 7-10), median collateral score was 7 (IQR, 7-8) and 20 (20.4%) had poor mRS90 scores. In multivariate analysis, poorer collateral scores (P = 0.003), higher NIHSS scores (P = 0.005) and lower posterior circulation Alberta Stroke Program Early CT Score (P = 0.017) were independently associated with a poor mRS90 score. The DSA-based collateral scoring of the BA large branches might predict long-term outcome in medically treated symptomatic basilar artery stenosis with mild initial severity. Evaluation of BA collateral perfusion status might be useful to determine appropriate treatment strategies. © 2017 EAN.

  7. Complete Obliteration of a Basilar Artery Aneurysm after Insertion of a Self- Expandable Leo Stent into the Basilar Artery without Coil Embolization

    Energy Technology Data Exchange (ETDEWEB)

    Juszkat, Robert; Nowak, Stanis Aw; Wieloch, Micha; Zarzecka, Anna [Poznan University of Medical Sciences, Poznan (Poland)

    2008-08-15

    We report a case of a 45-year-old man who underwent endovascular treatment in the acute setting of a subarachnoid hemorrhage due to rupture of a widenecked basilar trunk aneurysm. The patient was treated with stent implantation without coiling. A control angiographic scan obtained immediately after the procedure revealed significantly decreased intraaneurysmal flow. Follow-up angiography performed after one month demonstrated total aneurysm occlusion.

  8. Delayed onset of fatal basilar thrombotic embolus after whiplash injury

    DEFF Research Database (Denmark)

    Viktrup, L; Knudsen, G M; Hansen, S H

    1995-01-01

    in a collision. CASE DESCRIPTION: After whiplash trauma in a car accident, a 50-year-old taxi driver suffered from headache and episodic visual disturbances. Two months after the accident he suddenly lost consciousness and was admitted to the hospital. A CT scan performed at that time was indicative of basilar...

  9. Merging flows in an arterial confluence : The vertebro-basilar junction

    NARCIS (Netherlands)

    Ravensbergen, J; Krijger, JKB; Hillen, B; Hoogstraten, HW

    1995-01-01

    The basilar artery is one of the three vessels providing the blood supply to the human brain. It arises from the confluence of the two vertebral arteries. In fact, it is the only artery of this size in the human body arising from a confluence instead of a bifurcation. Earlier work, concerning flow

  10. CT-angiography source images indicate less fatal outcome despite coma of patients in the Basilar Artery International Cooperation Study.

    Science.gov (United States)

    Pallesen, Lars P; Khomenko, Andrei; Dzialowski, Imanuel; Barlinn, Jessica; Barlinn, Kristian; Zerna, Charlotte; van der Hoeven, Erik Jrj; Algra, Ale; Kapelle, L Jaap; Michel, Patrik; Bodechtel, Ulf; Demchuk, Andrew M; Schonewille, Wouter; Puetz, Volker

    2017-02-01

    Background Coma is associated with poor outcome in patients with basilar artery occlusion. Aims We sought to assess whether the posterior circulation Acute Stroke Prognosis Early CT Score and the Pons-Midbrain Index applied to CT angiography source images predict the outcome of comatose patients in the Basilar Artery International Cooperation Study. Methods Basilar Artery International Cooperation Study was a prospective, observational registry of patients with acute basilar artery occlusion with 48 recruiting centers worldwide. We applied posterior circulation Acute Stroke Prognosis Early CT Score and Pons-Midbrain Index to CT angiography source images of Basilar Artery International Cooperation Study patients who presented with coma. We calculated adjusted risk ratios to assess the association of dichotomized posterior circulation Acute Stroke Prognosis Early CT Score (≥8 vs. International Cooperation Study registry, CT angiography source images were available for review in 158 patients. Among these, 78 patients (49%) presented with coma. Compared to non-comatose patients, comatose patients were more likely to die (risk ratios 2.34; CI 95% 1.56-3.52) and less likely to have a favourable outcome (risk ratios 0.44; CI 95% 0.24-0.80). Among comatose patients, a Pons-Midbrain Index < 3 was related to reduced mortality (adjusted RR 0.66; 95% CI 0.46-0.96), but not to favourable outcome (adjusted RR 1.19; 95% CI 0.39-3.62). Posterior circulation Acute Stroke Prognosis Early CT Score dichotomized at ≥ 8 vs. <8 was not significantly associated with death (adjusted RR 0.70; 95% CI 0.46-1.05). Conclusion In comatose patients with basilar artery occlusion, the extent of brainstem ischemia appears to be related to mortality but not to favourable outcome.

  11. Sensitivity of Hyperdense Basilar Artery Sign on Non-Enhanced Computed Tomography.

    Directory of Open Access Journals (Sweden)

    Marielle Ernst

    Full Text Available The hyperdense basilar artery sign (HBAS is an indicator of vessel occlusion on non contrast-enhanced computer tomography (NECT in acute stroke patients. Since basilar artery occlusion (BAO is associated with a high mortality and morbidity, its early detection is of great clinical value. We sought to analyze the influence of density measurement as well as a normalized ratio of Hounsfield unit/hematocrit (HU/Hct ratio on the detection of BAO on NECT in patients with suspected BAO.102 patients with clinically suspected BAO were examined with NECT followed immediately by Multidetector computed tomography Angiography. Two observers independently analyzed the images regarding the presence or absence of HBAS on NECT and performed HU measurements in the basilar artery. Receiver operating characteristic curve analysis was performed to determine the optimal density threshold for BAO using attenuation measurements or HU/Hct ratio.Sensitivity of visual detection of the HBAS on NECT was relatively low 81% (95%-CI, 54-95% while specificity was high 91% (95%-CI, 82-96%. The highest sensitivity was achieved by the combination of visual assessment and additional quantitative attenuation measurements applying a cut-off value of 46.5 HU with 94% sensitivity and 81% specificity for BAO. A HU/Hct ratio >1.32 revealed sensitivity of 88% (95%-CI, 60-98% and specificity of 84% (95%-CI, 74-90%.In patients with clinically suspected acute BAO the combination of visual assessment and additional attenuation measurement with a cut-off value of 46.5 HU is a reliable approach with high sensitivity in the detection of BAO on NECT.

  12. Subtemporal approach to basilar tip aneurysm with division of posterior communicating artery: Technical note

    Directory of Open Access Journals (Sweden)

    Shunsuke Kakino

    2008-08-01

    Full Text Available Shunsuke Kakino, Kuniaki Ogasawara, Yoshitaka Kubo, Hideaki Nishimoto, Akira OgawaDepartment of Neurosurgery, Iwate Medical University School of Medicine, Morioka, Iwate, JapanAbstract: The subtemporal approach with division of the posterior communicating artery (PcomA is described for treating aneurysms of the basilar tip. When the ipsilateral posterior cerebral artery (PCA interferes with visibility and manipulation around the aneurysm neck and the artery is tethered by the PcomA and not mobilized, the PcomA can be divided near the junction with the PCA. The procedure permits PCA mobilization and exposes the neck of the aneurysm. We applied this procedure to a patient with a ruptured aneurysm of the basilar tip. The postoperative course was uneventful except for transient left oculomotor nerve palsy. Postoperative cerebral angiography and magnetic resonance imaging confirmed the respective disappearance of the aneurysm and no new ischemic lesions. The subtemporal approach allows safer and easier division of the PcomA near the junction to the PCA compared with the pterional approach, and the present procedure is more suitable for the subtemporal approach.Keywords: basilar tip aneurysm, subtemporal approach, posterior communicating artery

  13. Quantative flow measurement of the vertebro-basilar circulation for positional vertigo by using 2D phase contrast technique

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, Satoru; Seo, Toru; Ishikura, Reiichi; Nakao, Norio [Hyogo Coll. of Medicine, Nishinomiya (Japan); Tabuchi, Yukiko

    1996-04-01

    Quantative measurements of blood flow in the vertebral and basilar arteries were obtained by the 2D phase contrast (2D PC) technique. In phantom study, flow velocity measured with 2D PC correlated well with actual flow velocity. Sixty-six patients were neurologically normal and 20 had positional vertigo due to vertebrobasilar insufficiency (VBI). Mean velocities (MV) were measured by using a transverse plane in the vertebral arteries at the level of C3 and in the basilar arteries at the level of the sella floor. Volume flow rates (VFR) were calculated as the product of MV and the area of the arteries whose diameters were measured on the basis of pixel counting in the histogram of the signal intensity profile. In the normal group, MV of the left vertebral artery and MV and VFR of the basilar artery showed significant declines as age progressed. In the vertigo group, MV and VFR of the basilar artery were significantly lower than in the normal group. It is concluded that 2D PC technique appears to be fast and easy to handle without cardiac gating to assess blood flow in vessels surrounded by bone tissues. (author).

  14. Quantative flow measurement of the vertebro-basilar circulation for positional vertigo by using 2D phase contrast technique

    International Nuclear Information System (INIS)

    Tominaga, Satoru; Seo, Toru; Ishikura, Reiichi; Nakao, Norio; Tabuchi, Yukiko.

    1996-01-01

    Quantative measurements of blood flow in the vertebral and basilar arteries were obtained by the 2D phase contrast (2D PC) technique. In phantom study, flow velocity measured with 2D PC correlated well with actual flow velocity. Sixty-six patients were neurologically normal and 20 had positional vertigo due to vertebrobasilar insufficiency (VBI). Mean velocities (MV) were measured by using a transverse plane in the vertebral arteries at the level of C3 and in the basilar arteries at the level of the sella floor. Volume flow rates (VFR) were calculated as the product of MV and the area of the arteries whose diameters were measured on the basis of pixel counting in the histogram of the signal intensity profile. In the normal group, MV of the left vertebral artery and MV and VFR of the basilar artery showed significant declines as age progressed. In the vertigo group, MV and VFR of the basilar artery were significantly lower than in the normal group. It is concluded that 2D PC technique appears to be fast and easy to handle without cardiac gating to assess blood flow in vessels surrounded by bone tissues. (author)

  15. The Basilar Artery on Computed Tomography Angiography Score for Acute Basilar Artery Occlusion Treated with Mechanical Thrombectomy.

    Science.gov (United States)

    Yang, Haihua; Ma, Ning; Liu, Lian; Gao, Feng; Mo, Dapeng; Miao, Zhongrong

    2018-06-01

    Recently, the Basilar Artery on Computed Tomography Angiography (BATMAN) score predicts clinical outcome of acute basilar artery occlusion (BAO), yet there is no extensive external validation. The purpose of this study was to validate the prognostic value of BATMAN scoring system for the prediction of clinical outcome in patients with acute BAO treated with endovascular mechanical thrombectomy by using cerebral digital subtraction angiography (DSA). We analyzed the clinical and angiographic data of consecutive patients with acute BAO from March 2012 to November 2016. The BATMAN scoring system was used to assess the collateral status and thrombus burden. Thrombolysis in Cerebral Infarction (TICI) score 2b-3 was defined as successful recanalization. Receiver operating characteristic (ROC) curve was used to determine the area under the curve (AUC) and the optimum cutoff value. Multivariate regression analysis was used to identify the predictor of clinical outcome. This study included 63 patients with acute BAO who underwent mechanical thrombectomy. Of these patients, 90.5% (57/63) achieved successful recanalization (TICI, 2b-3) and 34.9% (22/63) had a favorable outcome (modified Rankin Scale score 0-2). ROC analysis indicated that the AUC of the BATMAN score was .722 (95% confidence interval [CI], .594-.827), and the optimal cutoff value was 3 (sensitivity = 72.73, specificity = 63.41). In multivariate logistic regression analysis, the BATMAN score higher than 3 was associated with favorable outcome (odds ratio, 5.214; 95% CI, 1.47-18.483; P = .011). The BATMAN score on DSA seems to predict the functional outcome in patients of acute BAO treated with mechanical thrombectomy. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Safety and Outcome of Intra-Arterial Treatment for Basilar Artery Occlusion

    NARCIS (Netherlands)

    van Houwelingen, Reinier C.; Luijckx, Gert-Jan; Mazuri, Aryan; Bokkers, Reinoud P. H.; Eshghi, Omid S.; Uyttenboogaart, Maarten

    2016-01-01

    IMPORTANCE After the many positive results in thrombectomy trials in ischemic stroke of the anterior circulation, the question arises whether these positive results also apply to the patient with basilar artery occlusion (BAO). OBJECTIVE To report up-to-date outcome data of intra-arterial (IA)

  17. Single stage reduction and stabilization of basilar invagination after failed prior fusion surgery in children with Down's syndrome.

    Science.gov (United States)

    Hedequist, Daniel; Bekelis, Kimon; Emans, John; Proctor, Mark R

    2010-02-15

    We describe an innovative single-stage reduction and stabilization technique using modern cervical instrumentation. We hypothesis modern instrumentation has made more aggressive surgical corrections possible and has reduced the need for transoral resection of the odontoid and traction reduction in children with basilar invagination. Craniocervical junction abnormalities, including atlantoaxial instability and progressive basilar invagination, are relatively common phenomenon in Down's syndrome patients, and can lead to chronic progressive neurologic deficits, catastrophic injury, and death. This patient population also can be a difficult one in which to perform successful stabilization and fusion. We reviewed the records and films on 2 children with Down's syndrome and atlantoaxial instability who had undergone prior occipital-cervical fusion and then presented with symptomatic progressive basilar invagination due to atlantoaxial displacement. In both cases, the children had progressive symptoms of spinal cord and brain stem compression. Multiple approaches for surgical correction, including preoperative traction and transoral odontoid resection, were considered, but ultimately it was elected to perform a single stage posterior operation. In both patients, we performed fusion takedown, intraoperative realignment with reduction of the basilar invagination, and stabilization using modern occipito-cervical instrumentation. In both children, excellent cranio-cervical realignment was achieved; along with successful fusion and improvement in clinical symptoms. In this article we will discuss the clinical cases and review the background of craniocervical junction abnormalities in Down's syndrome patients. We hypothesis modern instrumentation has made more aggressive surgical corrections possible and has reduced the need for transoral resection of the odontoid and traction reduction in children with basilar invagination.

  18. CT scans of giant aneurysms in the vertebro-basilar artery

    International Nuclear Information System (INIS)

    Shishido, Toyofumi; Ohsugi, Tamotsu; Motozaki, Takahiko; Sakaki, Saburo; Matsuoka, Kenzo

    1980-01-01

    Clinical course and neurological and neuroradiological findings of giant aneurysms in the vertebro-basilar artery observed in two of our cases were discussed. The first case was a 66-year-old man. He complained of sensory disturbance over his left face and unstable gait for 2 years before admission. Neurological examinations on admission showed hypesthesia in the territory of the second branch of the left fifth cranial nerve, nystagmus, and a left cerebellar sign. No mental deterioration or pyramidal signs were noticed. Retrograde left brachial artery angiograms revealed a giant aneurysm with inferior pointing measuring 30 x 10 mm in diameter arising from the left superior cerebellar artery. Precontrast CT scans demonstrated a round, large, high-density area, cantaining a relatively low-density area within it, in the medioventral portion of the left cerebellum; a part of this high-density area was markedly enhanced in the postcontrast CT scan. No ventricular dilatations were noticed by CT scans. Direct surgery was abandoned due to the size and location of the aneurysm. No neurologically abnormal finding developed after discharge. The second case was a 61-year-old man. He complained of unstable gait for 2 years before admission. Neurological examinations on admission showed bilateral pyramidal sings (more pronounced on the left) and nystagmus. There were no cranial nerve palsy and no sensory disturbances. Precontrast CT scans showed a large, oval, high-density area in the medioventral portion of the right cerebellum, extending to the upper brainstem; a part of this high-density area was markedly enhanced in the postcontrast CT scans. Retrograde left brachial artery angiograms revealed that the fusiform aneurysm in the left vertebral, the basilar artery, and the dilated basilar artery ran 30 mm from the clivus, with a dorsal convex arch. (J.P.N.)

  19. Stereotactic gamma irradiation of basilar artery in cat. Preliminary experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A; Wennerstrand, J; Leksell, D; Backlund, E O [Uppsala Univ. (Sweden)

    1978-01-01

    Irradiation of the basilar artery of cats by stereotactic technique was performed with doses varying from 100 to 300 Gy in a gamma unit. Histologically, vascular lesions such as vacuolization, degeneration and desquamation of the endothelium and hyalinization and necrosis of the muscular coat predominated, whereas reparatory reactions were relatively sparse. Thrombosis was completely absent.

  20. Achados cirúrgicos em 260 casos de impressão basilar e/ou malformação de Arnold-Chiari

    Directory of Open Access Journals (Sweden)

    José Alberto Gonçalves da Silva

    1994-09-01

    Full Text Available A impressão basilar é malformação frequentemente observada no Nordeste do Brasil. No período de 1971 a 1992 foram operados, em nosso Serviço, 260 pacientes com malformações occipitocervicais, sendo 29 (11,1% casos de impressão basilar pura, 18 (6,9% com malformação de Arnold-Chiari e 213 (81,9% com impressão basilar associada à malformação de Arnold-Chiari. São relatados os achados cirúrgicos do plano ósseo, da dura-máter, do tecido nervoso e dos vasos da fossa posterior.

  1. Vertebral basilar artery dissections

    International Nuclear Information System (INIS)

    Zimmerman, R.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.; Atlas, S.W.

    1988-01-01

    Eleven patients (ten male, one female; range, 2-56 years) presented with posterior circulation ischemic symptoms and were evaluated with computed tomography (CT) (eta=11), arteriography (eta=11), and magnetic resonance (MR) imaging (eta=6). Angiography showed dissection of a vertebral artery (eta=8), a basilar artery (eta=1), or a combination of both (eta=2). On CT and/or MR images, infarctions were demonstrated in ten of 11 cases. Most frequently involved were the thalmus (eta=7), cerebellum (eta=6), occipital lobes (eta=4), and pons (eta=3). The site of infarction did not correlate with the side or site of angiographic abnormality. In six cases evaluated by all modalities, MR imaging showed more extensive and widespread infarction than did CT and also showed whether or not the infarcts were hemorrhagic. MR imaging was able to demonstrate the presence of intramural dissecting hematoma prior to angiography and to indicate whether or not flow was reconstituted on follow-up examination

  2. CNS fungal meningitis to the "Top of the basilar"

    Institute of Scientific and Technical Information of China (English)

    Logan CS; Kirschner RC; Simonds GR

    2013-01-01

    Central nervous system(CNS) infections are a rare complication of epidural steroid injections and without strong clinical suspicion, fungal organisms may be overlooked among the long differential of causes of meningitis.Rare sequela of fungal meningitis is the development of stroke.To our knowledge, we present the first case of post epidural steroid injection(ESI) fungal meningitis leading toa basilar artery stroke, otherwise known as“top of the basilar” syndrome.We present a49-year-old female with a history ofESIs who presented to the emergency department with headache, neck stiffness, and abdominal pain.She was discharged after her labs and symptoms were deemed inconsistent with meningitis.She was eventually admitted and twelve days after her originalED visit, she was diagnosed with meningitis and started on anti-fungal treatment.She was discharged88 days later but was readmitted due to left sided weakness and mental status changes.She quickly lost motor and bulbar functions.AnMRA showed diminished distal flow through the basilar artery, suggesting near complete occlusion.Although appropriate long term anti-fungal treatment was started, the patient still succumbed to a rare vascular event.Physicians who are treating patients forESI meningitis should be aware of the potential for vasculitic and encephalitic complications.

  3. Dissecção da artéria basilar: relato de caso

    Directory of Open Access Journals (Sweden)

    TOGNOLA WALDIR ANTONIO

    2000-01-01

    Full Text Available Relato de um caso de dissecção da artéria basilar, documentado com neuroimagem (tomografia computadorizada do crânio, ressonância magnética e angiografia digital com subtração de imagem.

  4. Outcomes of basilar artery occlusion in patients aged 75 years or older in the Basilar Artery International Cooperation Study.

    Science.gov (United States)

    Vergouwen, Mervyn D I; Compter, Annette; Tanne, David; Engelter, Stefan T; Audebert, Heinrich; Thijs, Vincent; de Freitas, Gabriel; Algra, Ale; Jaap Kappelle, L; Schonewille, Wouter J

    2012-11-01

    Patients with an acute basilar artery occlusion (BAO) have a high risk of long-lasting disability and death. Only limited data are available on functional outcome in elderly patients with BAO. Using data from the Basilar Artery International Cooperation Study, we aimed to determine outcomes in patients ≥75 years. Primary outcome measure was poor functional outcome (modified Rankin scale score 4-6). Secondary outcomes were death, insufficient vessel recanalization (defined as thrombolysis in myocardial infarction score 0-1) and symptomatic intracranial hemorrhage (SICH). Patients were divided into four age-groups, based on quartiles: 18-54, 55-64, 65-74, and ≥75 years. Outcomes were compared between patients ≥75 years and patients aged 18-54 years. Risk ratios with corresponding 95 % confidence intervals (CI) were calculated and Poisson regression analyses were performed to calculate adjusted risk ratios (aRR). We included 619 patients [18-54 years n = 153 (25 %), 55-64 years n = 133 (21 %), 65-74 years n = 171 (28 %), and ≥75 years n = 162 (26 %)]. Compared with patients aged 18-54 years, patients ≥75 years were at increased risk of poor functional outcome [aRR 1.33 (1.14-1.55)] and death [aRR 2.47 (1.75-3.51)]. Nevertheless, 35/162 (22 %, 95 % CI 15-28 %) of patients ≥75 years had good functional outcome. No significant differences between age groups were observed for recanalization rate and incidence of SICH. Although patients ≥75 years with BAO have an increased risk of poor outcome compared with younger patients, a substantial group of patients ≥75 years survives with a good functional outcome.

  5. Basilar impression and osteogenesis imperfecta in a three-year-old girl: CT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Rush, P.J.; Berbrayer, D.; Reilly, B.J.

    1989-01-01

    A 3-year-old girl with osteogenesis imperfecta developed symptomatic basilar impression. Her neurological symptoms were treated by foramen magnum decompression and laminectomy. This is an unusually young patient to have this condition.

  6. Different Imaging Strategies in Patients with Possible Basilar Artery Occlusion: Cost-Effectiveness Analysis

    NARCIS (Netherlands)

    S.E. Beyer (Sebastian E.); M.G.M. Hunink (Myriam); F. Schöberl (Florian); L. von Baumgarten; S.E. Petersen (Steffen); C. Kubisch (Christian); H. Janssen (Hendrik); B. Ertl-Wagner (Birgit); M.F. Reiser (Maximilian F.); W.H. Sommer (Wieland H.)

    2015-01-01

    textabstractBackground and Purpose-This study evaluated the cost-effectiveness of different noninvasive imaging strategies in patients with possible basilar artery occlusion. Methods-A Markov decision analytic model was used to evaluate long-term outcomes resulting from strategies using computed

  7. Age-Specific and Sexual Variability of Morphological and Biomechanical Parameters of the Basilar Artery of Adult People

    Directory of Open Access Journals (Sweden)

    V.N. Nicolenko

    2009-06-01

    Full Text Available For the purpose of studying of morphological and biomechanical parameters of the basilar artery in an experiment on monoaxonic distension by tensile-testing machine Tira Test 28005 (Germany with a loading cell — 100 N we determined general solidity, breaking point, maximum and relative deformation of the artery. Preliminary under a microscope on cross-section cuts we measured the external diameter of the artery, its wall thickness and calculated the diameter of the lumen. In total, 114 basilar arteries (66 — from corpses of men, 48 — from corpses of women have been investigated. They were received not later than 16 hours after autopsy of adult people, whose cause of death has not been connected with a sharp vascular cerebral pathology. The statistically authentic prevalence of the size of wall thickness and general solidity of the men’s artery wall was revealed. In age aspect the external diameter, the lumen diameter and the wall thickness of the basilar artery increase. At the same time the solidity of the wall decreases and its ability to prolongation increases.

  8. Basilar impression and osteogenesis imperfecta in a three-year-old girl: CT and MRI

    International Nuclear Information System (INIS)

    Rush, P.J.; Berbrayer, D.; Reilly, B.J.

    1989-01-01

    A 3-year-old girl with osteogenesis imperfecta developed symptomatic basilar impression. Her neurological symptoms were treated by foramen magnum decompression and laminectomy. This is an unusually young patient to have this condition. (orig.)

  9. Collateral flow predicts outcome after basilar artery occlusion : The posterior circulation collateral score

    NARCIS (Netherlands)

    van der Hoeven, Erik J R J; McVerry, Ferghal; Vos, Jan Albert; Algra, Ale; Puetz, Volker; Kappelle, L. Jaap; Schonewille, Wouter J.

    2016-01-01

    BACKGROUND AND AIM: Our aim was to assess the prognostic value of a semiquantitative computed tomography angiography-based grading system, for the prediction of outcome in patients with acute basilar artery occlusion, based on the presence of potential collateral pathways on computed tomography

  10. Specific entities affecting the craniocervical region: osteogenesis imperfecta and related osteochondrodysplasias: medical and surgical management of basilar impression.

    Science.gov (United States)

    Menezes, Arnold H

    2008-10-01

    Osteogenesis imperfecta (OI) is an inheritable disorder of bone development caused by defective collagen synthesis. The attendant basilar impression or secondary basilar invagination is uncommon but can be devastating. Fifty-two patients with osteochondrodysplasia (28 with OI, six with Hajdu-Cheney syndrome, six with Paget's disease, and 12 with spondyloepiphyseal dysplasia) with basilar impression were evaluated between 1985 and 2005. The male/female ratio in this cohort was 1:1. The mean age at presentation was 12.2 years. Symptoms and signs included headache, lower cranial nerve dysfunction, dysphagia, respiratory embarrassment, weakness, and ataxia. In the earlier part of the series (1985-1995), all patients with hydrocephalus were shunted and a ventral transoral decompression made for ventral compression of the pontomedullary junction followed by a dorsal occipitocervical fusion. As a result of this evaluation, it was felt that most patients would benefit by early bracing after the hydrocephalus was shunted if it existed. However, 20% of patients still required an anterior ventral decompression and the occipitocervical fusion. The results showed that the fusions were stable but over a period of time, there was progressive forward bending with osteogenesis imperfecta as well as with the Hajdu-Cheney syndrome. All patients with spondyloepiphyseal dysplasia had a good strong stable fusion which stood the test of time. In conclusion, we feel that early intervention with occipitocervical bracing can prevent the progressive march of significant basilar impression which leads to mortality.

  11. Punica granatum L. Juice Attenuates Experimental Cerebral Vasospasm in the Rabbit Subarachnoid Hemorrhage Model: A Basilar Artery Morphometric Study and Apoptosis.

    Science.gov (United States)

    Guvenc, Yahya; Demirci, Adnan; Billur, Deniz; Aydin, Sevim; Ozeren, Ersin; Bayram, Pinar; Dilli, Alper; Gokce, Emre Cemal; Yaman, Onur; Celik, Haydar; Karatay, Mete; Alagoz, Fatih; Kaptanoglu, Erkan

    2017-03-01

    Background This study investigated the effect of Punica granatum L. (pomegranate) juice on the rabbit basilar artery in an experimental subarachnoid hemorrhage (SAH) model. Methods  Eighteen adult male New Zealand white rabbits were randomly divided into three groups: a control group ( n  = 6), SAH group ( n  = 6), and SAH + treatment group ( n  = 6). Basilar artery diameter was measured with magnetic resonance angiography (MRA) in all groups at the beginning of the study. Experimental SAH was created by injecting autologous arterial blood into the cisterna magna. In the treatment group, the subjects were administered a daily dose of 30 ml/kg pomegranate juice via gastric gavage for 4 days after the SAH. The SAH group and SAH + treatment group underwent cerebral MRA after 72 hours. After a neurologic score assessment, all the animals were killed. The wall thickness and lumen area of the basilar artery were measured histometrically in all groups, and the apoptotic cell percentage in the artery was identified. The mean diameter of the basilar artery during MRA was measured. Results  Pomegranate improved neurologic functions compared with the SAH group ( p   0.05). The apoptotic cell rate in the SAH + treatment group was significantly lower than in the SAH group ( p   0.05). Discussion  Pomegranate was shown to have a vasospasm- attenuating effect on the basilar artery in the rabbit SAH model for the first time in our study. Georg Thieme Verlag KG Stuttgart · New York.

  12. RESULTS OF THE USE OF PEEK CAGES IN THE TREATMENT OF BASILAR INVAGINATION BY GOEL TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Luís Eduardo Carelli Teixeira da Silva

    2016-03-01

    Full Text Available ABSTRACT Objective: Analysis of the use of polyetheretherketone (PEEK cages for atlantoaxial facet realignment and distraction for treatment of basilar invagination by Goel technique. Method: Retrospective descriptive statistical analysis of the neurological status, pain, presence of subsidence and bone fusion with the use of PEEK cages in 8 atlantoaxial joints of 4 patients with basilar invagination. All patients were treated with atlantoaxial facet distraction and realignment and subsequent arthrodesis C1-C2 by the technique of Goel modified by the use of PEEK cage. Results: All patients showed improvement in Nurick neurological assessment scale and Visual Analogue Scale (VAS of pain. There were no cases of subsidence, migration, or damage to the vertebral artery during the insertion of the cage. All joints evolved with bone fusion, assessed by dynamic radiographs, and computed tomography. Two patients developed neuropathic pain in dermatome of C2 and one patient had unilateral vertebral artery injury during C2 instrumentation treated with insertion of pedicle screw to control the bleeding. Conclusion: The results of the treatment of basilar invagination by the Goel technique with the use of PEEK cages shown to be effective and safe although further studies are needed to confirm this use.

  13. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    Science.gov (United States)

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  14. Espasmo hemifacial e impressão basilar associados a malformação de arnold-chiari relato de caso

    Directory of Open Access Journals (Sweden)

    Manoel Baldoino Leal Filho

    1992-09-01

    Full Text Available Os autores relatam o caso de uma paciente com espasmo hemifacial e impressão basilar associados a malformação de Arnold-Chiari. Com a descompressão cirúrgica da fossa posterior, empregada no tratamento da impressão basilar, houve melhora do quadro clínico e o espasmo hemifacial se reduziu quanto à frequência, duração e intensidade. É enfatizada a necessidade do tratamento etiológico do espasmo hemifacial, antes de se recorrer à toxina botulínica.

  15. Collateral flow after extracorporeal membrane oxygenation

    International Nuclear Information System (INIS)

    Smith, A.S.; Wiznitzer, M.; Haacke, E.M.

    1990-01-01

    MR angiography was used to evaluate collateral flow after extracorporal membrane oxygenation (ECMO) in patients with permanent ligation of the right common carotid artery (RCCA). One year after ECMO, MR angiography of the cerebral circulation was performed in 11 survivors and MR angiography of the neck in seven. The diameters of the left common carotid (LCCA) and vertebral (Vert) arteries in the neck and of the basilar (Bas) and internal carotid arteries in the head were measured. Ratios of the artery diameters were compared with those of seven children (aged 6 months - 17 years) who had normal MR angiographic and brain MR imaging studies. Compared with carotid artery diameter, the ECMO population had proportionately larger vertebral (RVert/LCCA, -0.82 ± 0.12 vs 0.56 ± 0.20 [<.02], LVert/LCCA, -0.86 ± 0.15 vs 0.67 ± 0.05 [P < .02] and basilar artery diameters (LICA/Bas, -0.91 ± 0.15 vs 1.49 ± 0.48 [p < .003]) than did control subjects. Ratios in five children with enlarged RPComA after ECMO were not significantly different from those in controls. The RICA was present and smaller than the LICA in the ECMO population, but not in control subjects (RICA/LICA, -0.75 ± 0.06 vs 0.91 ± 0.23 [p < .05]). Increased vertebral and basilar artery flow is a response to RCCA ligation in the neonate and is independent of RPComA collateral flow. This suggests the presence of more extensive parenchymal collaterals from posterior cerebral arteries, from the vertebrobasilar circulation to the external carotid artery or other collaterals. Consequently, later abnormalities of vertebrobasilar flow might adversely affect right hemispheric function in this children

  16. Avoiding pitfalls in diagnosing basilar artery occlusive disease: clinical and imaging clues - case report

    Directory of Open Access Journals (Sweden)

    Adriana Bastos Conforto

    Full Text Available CONTEXT: The aim of this paper was to report on the characteristics that aid in establishing the diagnosis of basilar artery occlusive disease (BAOD among patients with hemiparesis and few or minor symptoms of vertebrobasilar disease. CASE REPORT: This report describes two cases in a public university hospital in São Paulo, Brazil. We present clinical and imaging findings from two patients with hemiparesis and severe BAOD, but without clinically relevant carotid artery disease (CAD. One patient presented transient ischemic attacks consisting of spells of right hemiparesis that became progressively more frequent, up to twice a week. The neurological examination revealed slight right hemiparesis and right homonymous hemianopsia. Magnetic resonance imaging (MRI revealed pontine and occipital infarcts. Magnetic resonance angiography and digital subtraction angiography revealed severe basilar artery stenosis. The other patient presented sudden left-side hemiparesis and hypoesthesia. One year earlier, she had reported sudden onset of vertigo that, at that time, was attributed to peripheral vestibulopathy and was not further investigated. MRI showed a right-side pontine infarct and an old infarct in the right cerebellar hemisphere. Basilar artery occlusion was diagnosed. Both patients presented their symptoms while receiving aspirin, and became asymptomatic after treatment with warfarin. CONCLUSIONS: Misdiagnosing asymptomatic CAD as the cause of symptoms in BAOD can have disastrous consequences, such as unnecessary carotid endarterectomy and exposure to this surgical risk while failing to offer the best available treatment for BAOD. Clinical and imaging features provided important clues for diagnosis in the cases presented.

  17. Basilar impression in osteogenesis imperfecta: can it be treated with halo traction and posterior fusion?

    NARCIS (Netherlands)

    Noske, D. P.; van Royen, B. J.; Bron, J. L.; Vandertop, W. P.

    2006-01-01

    Basilar impression (BI) and hydrocephalus complicating osteogenesis imperfecta (OI) is usually treated by anterior transoral decompression and posterior fixation. Nevertheless, it may be questioned if posterior fusion following axial halo traction is adequate in patients with symptomatic BI

  18. Revascularization Techniques for Acute Basilar Artery Occlusion : Technical Considerations and Outcome in the Setting of Severe Posterior Circulation Steno-Occlusive Disease.

    Science.gov (United States)

    Siebert, Eberhard; Bohner, Georg; Zweynert, Sarah; Maus, Volker; Mpotsaris, Anastasios; Liebig, Thomas; Kabbasch, Christoph

    2018-04-12

    To describe the clinical and radiological characteristics, frequency, technical aspects and outcome of endovascular treatment of acute basilar artery occlusion (ABO) in the setting of vertebrobasilar steno-occlusive disease. Retrospective analysis of databases of two universitary stroke centers including all consecutive patients from January 2013 until May 2017 undergoing thrombectomy for a) acute stroke due to basilar artery occlusion and either significant basilar artery stenosis or vertebral artery stenosis/occlusion as well as b) presumed embolic basilar artery occlusions. Demographics, stroke characteristics, time metrics, recanalization results and outcome were recorded. Interventional strategies were evaluated concerning the thrombectomy technique, additional angioplasty, type of approach with respect to lesion pattern (ipsilateral to steno-occlusive VA lesion: dirty road or contralateral: clean road) and sequence of actions. Out of 157 patients treated for ABO 38 (24.2%) had associated significant vertebrobasilar steno-occlusive lesions. An underlying significant basilar artery stenosis was present in 23.7% and additionally significant steno-occlusive vertebral lesions were present in 81.5%. Thrombectomy was performed with primary aspiration in 15.8% and with stent-retrievers in 84.2%. Successful revascularization (TICI 2b-3) was achieved in 86.8%. In 52.6% additional stent angioplasty was performed, in 7.9% balloon angioplasty only. The clean road approach was used in 22.5% of cases, the dirty road in 77.4%. Final modified Rankin scale (mRS) was 0-2 in 6 patients (15.8%) and 3-5 in 32 (84.2%). The in-hospital mortality was 36.8%. There were no statistically significant differences in outcome compared to presumed cases of embolisms. Endovascular treatment of ABO with underlying significant vertebrobasilar steno-occlusive lesions is effective and reasonably safe. Specific procedural strategies apply depending on individual patient pathology and anatomy

  19. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  20. A case with basilar artery thrombosis resulted in Locked-in syndrome in spite of endovascular treatment

    Directory of Open Access Journals (Sweden)

    Yusuf İnanç

    2015-04-01

    Full Text Available Locked-in Sendrome is a clinical picture consist of quadriplegia, lower cranial nerve paralysis, and mutism with preservation of only vertical gaze and upper eyelid movement. Consciousness remains intact and the patient is able to communicate intentionally using eye blinking. The most common cause underlying the locked-in syndrome is thrombosis of the basilar artery. In this study, we reported a 49-years-old male with past medical history for cerebrovascular disease presented with acute basilar artery thrombosis, manifesting as reduced level of consciousness, weakness in all extremity dominated on the right side, speech impairment, horizontal gaze disorder and for reaching us of the last munite of endovascular intervention threshold, so it can perform only mechanical and intra-arterial thrombosis treatment method as an endovascular treatment modalities of acute stroke.

  1. Endovascular therapy for acute basilar artery occlusion: Comparison between patients with and without underlying intracranial atherosclerotics stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gun Soo; Kim, Seul Kee; Baek, Byeong Hyeon; Lee, Youn Young; Yoon, Woong [Dept. of Radiology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju (Korea, Republic of)

    2017-04-15

    To compare the characteristics and outcomes of multimodal endovascular therapy (EVT) in patients with acute basilar artery occlusion (BAO) with and without underlying intracranial atherosclerotic stenosis (ICAS). We retrospectively analyzed the data from 50 patients with acute BAO who were treated with EVT. The baseline characteristics and outcomes of patients with and without ICAS were compared. Patients with ICAS underwent intracranial angioplasty or stenting after mechanical thrombectomy. Thirty percent of the patients (15/50) had underlying ICAS at the occlusion site. On pretreatment diffusion-weighted imaging (DWI), bilateral thalamic infarction was less frequently found in patients with ICAS (0% vs. 25.7%, p = 0.03). Occlusion in the proximal segment of the basilar artery was more common in patients with ICAS (60% vs. 5.7%, p < 0.001), whereas occlusion in the distal segment of the basilar artery was more common in patients without ICAS (26.7% vs. 91.4%, p < 0.001). There were no significant differences in the rates of successful revascularization, 3-month modified Rankin Scale scores of 0–2, symptomatic hemorrhage, and mortality between the two groups. ICAS was common in patients with acute stroke due to BAO. The occlusion site and the presence or absence of bilateral thalamic infarction on pretreatment DWI might help predict the underlying ICAS in patients with acute BAO.

  2. Endovascular therapy for acute basilar artery occlusion: Comparison between patients with and without underlying intracranial atherosclerotics stenosis

    International Nuclear Information System (INIS)

    Kim, Gun Soo; Kim, Seul Kee; Baek, Byeong Hyeon; Lee, Youn Young; Yoon, Woong

    2017-01-01

    To compare the characteristics and outcomes of multimodal endovascular therapy (EVT) in patients with acute basilar artery occlusion (BAO) with and without underlying intracranial atherosclerotic stenosis (ICAS). We retrospectively analyzed the data from 50 patients with acute BAO who were treated with EVT. The baseline characteristics and outcomes of patients with and without ICAS were compared. Patients with ICAS underwent intracranial angioplasty or stenting after mechanical thrombectomy. Thirty percent of the patients (15/50) had underlying ICAS at the occlusion site. On pretreatment diffusion-weighted imaging (DWI), bilateral thalamic infarction was less frequently found in patients with ICAS (0% vs. 25.7%, p = 0.03). Occlusion in the proximal segment of the basilar artery was more common in patients with ICAS (60% vs. 5.7%, p < 0.001), whereas occlusion in the distal segment of the basilar artery was more common in patients without ICAS (26.7% vs. 91.4%, p < 0.001). There were no significant differences in the rates of successful revascularization, 3-month modified Rankin Scale scores of 0–2, symptomatic hemorrhage, and mortality between the two groups. ICAS was common in patients with acute stroke due to BAO. The occlusion site and the presence or absence of bilateral thalamic infarction on pretreatment DWI might help predict the underlying ICAS in patients with acute BAO

  3. Posterior cerebral artery involvement in moyamoya disease: initial infarction and angle between PCA and basilar artery.

    Science.gov (United States)

    Lee, Ji Yeoun; Kim, Seung-Ki; Cheon, Jung-Eun; Choi, Jung Won; Phi, Ji Hoon; Kim, In-One; Cho, Byung-Kyu; Wang, Kyu-Chang

    2013-12-01

    Moyamoya disease (MMD) is a chronic cerebrovascular occlusive disease, and progressive involvement of the posterior cerebral artery (PCA) has been reported. However, majority of MMD articles are presenting classic anterior circulation related issues. This study investigates the preoperative factors related to the long-term outcome of posterior circulation in MMD. Retrospective review of 88 MMD patients (166 PCAs in either hemisphere) without symptomatic disease involvement of PCA at initial diagnosis was done. Data at initial diagnosis regarding age, presence of infarction, status of the PCA, type of posterior communicating artery, and the angle between PCA and basilar artery were reviewed. Progressive stenosis of PCA was evaluated by symptom or radiological imaging during follow up. During an average follow up of 8.3 years, 29 out of 166 (18 %) evaluated PCAs showed progressive disease involvement. The average time of progression from the initial operation was 4.9 years, with the latest onset at 10.8 years. The patients who showed progressive stenosis of the PCA tended to be younger, present with infarction, have smaller angle between PCA and basilar artery, and have asymptomatic stenosis of the PCA at initial presentation. However, multivariate analysis confirmed only the presence of initial infarction and a smaller angle between PCA and basilar artery to be significantly associated with progressive stenosis of PCA. Involvement of PCA in MMD may occur in a delayed fashion, years after the completion of revascularization of anterior circulation. Persistent long-term follow-up regarding the posterior circulation is recommended.

  4. Post traumatic vertebro basilar dissection: case report and review of literature

    Directory of Open Access Journals (Sweden)

    Karthikeyan Y.R.

    2017-09-01

    Full Text Available Posterior circulation territory stroke following mild head injury is a known entity although rarely seen. Numerous case reports appear in literature from time to time highlighting this complication. Blunt trauma to the head and neck possibly causes injury to the vertebrobasilar system in the form of angiorrhexis, subintimal, intramural and perivascular hemorrhage which causes secondary narrowing of the injured vessel. These processes can be complicated by progressive thrombosis & vascular occlusion. Here we are reporting a case of post traumatic vertebra-basilar dissection causing bilateral cerebellar and brainstem infarct.

  5. Development of the micro-architecture and mineralization of the basilar part of the pig occipital bone

    NARCIS (Netherlands)

    Sips, R.J.A.; Mulder, L.; Koolstra, J.H.; Eijden, van T.M.G.J.

    2008-01-01

    In this study, the development of the architecture and the degree and distribution of mineralization in the basilar part of the pig occipital bone, one of the contact points between the spine and skull base, was investigated. Multiple regions of the basiocciput of pig specimens of different

  6. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries

    International Nuclear Information System (INIS)

    Chen, Mei-Fang; Lai, Su-Yu; Kung, Po-Cheng; Lin, Yo-Cheng; Yang, Hui-I; Chen, Po-Yi; Liu, Ingrid Y.; Lua, Ahai Chang; Lee, Tony Jer-Fu

    2016-01-01

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O 2 demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp, and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic

  7. Inhibition by ketamine and amphetamine analogs of the neurogenic nitrergic vasodilations in porcine basilar arteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei-Fang [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Tzu Chi Center for Vascular Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Tzu Chi University of Science and Technology, Hualien, Taiwan (China); Lai, Su-Yu; Kung, Po-Cheng; Lin, Yo-Cheng [Department of Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan (China); Yang, Hui-I [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Chen, Po-Yi [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Department of Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan (China); Liu, Ingrid Y. [Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan (China); Lua, Ahai Chang [Department of Laboratory Medicine and Biotechnology & Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lee, Tony Jer-Fu, E-mail: tlee@mail.tcu.edu.tw [Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Tzu Chi Center for Vascular Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China); Department of Life Sciences, College of Life Sciences, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL (United States)

    2016-08-15

    The abuse of ketamine and amphetamine analogs is associated with incidence of hypertension and strokes involving activation of sympathetic activities. Large cerebral arteries at the base of the brain from several species receive dense sympathetic innervation which upon activation causes parasympathetic-nitrergic vasodilation with increased regional blood flow via axo-axonal interaction mechanism, serving as a protective mechanism to meet O{sub 2} demand in an acutely stressful situation. The present study was designed to examine effects of ketamine and amphetamine analogs on axo-axonal interaction-mediated neurogenic nitrergic vasodilation in porcine basilar arteries using techniques of blood-vessel myography, patch clamp and two-electrode voltage clamp, and calcium imaging. In U46619-contracted basilar arterial rings, nicotine (100 μM) and electrical depolarization of nitrergic nerves by transmural nerve stimulation (TNS, 8 Hz) elicited neurogenic nitrergic vasodilations. Ketamine and amphetamine analogs concentration-dependently inhibited nicotine-induced parasympathetic-nitrergic vasodilation without affecting that induced by TNS, nitroprusside or isoproterenol. Ketamine and amphetamine analogs also concentration-dependently blocked nicotine-induced inward currents in Xenopus oocytes expressing α3β2-nicotinic acetylcholine receptors (nAChRs), and nicotine-induced inward currents as well as calcium influxes in rat superior cervical ganglion neurons. The potency in inhibiting both inward-currents and calcium influxes is ketamine > methamphetamine > hydroxyamphetamine. These results indicate that ketamine and amphetamine analogs, by blocking nAChRs located on cerebral perivascular sympathetic nerves, reduce nicotine-induced, axo-axonal interaction mechanism-mediated neurogenic dilation of the basilar arteries. Chronic abuse of these drugs, therefore, may interfere with normal sympathetic-parasympathetic interaction mechanism resulting in diminished neurogenic

  8. Drug-eluting stent implantation for the percutaneous treatment of vertebro-basilar arterial stenosis

    International Nuclear Information System (INIS)

    Ma Rujun; Liu Jianmin; Huang Haiqing; Hong Bo; Xu Yi; Zhao Wenyuan; Zhao Rui; Chen Jun

    2006-01-01

    Objective: To evaluate the early results and mid-term outcomes following angioplasty of vertebro-basilar arterial stenosis with drug-eluting stents. Methods: All of the patients presented with recurrent TIA or ceretral infarction with >50% stenoses in vertebro-basilar arteries, and having failure in maximal medical therapy. All of the lesions were treated with primary stenting under local or general anesthesia and followed by continual anticoagulant therapy of clopidogrel and aspirin together with clinical follow-up and vascular imagings. Results: Of 28 stenoses (27 patients), 27 lesions were successfully treated with implantation of 24 Cypher stents, 2 Taxus stents and one Firebird stent. The mean stenotic severity reduced from (74 ± 6.7)% to (8.7 ± 4.4)%. Two patients had inchemic events relating to penetration vascular obstruction. During 2-14 months follow-up, the patients were clinically asymptomatic with no recurrent TIA/stoke. Angiographic follow-up was obtained in 14 patients at a mean of 7.2 months. Proximal restenosis (<50%) occurred in one patient (3.3%), and corrected with restenting, while others were free of intra-stent restenoses. Conclusion: Using DES in cerebrovascular stenosis is safe and effective with lowing the risk of intra-stent restenosis in comparison with bare stent. Further study for long term efficiency is still in need. (authors)

  9. The odontoid process invagination in normal subjects, Chiari malformation and Basilar invagination patients: Pathophysiologic correlations with angular craniometry.

    Science.gov (United States)

    Ferreira, Jânio A; Botelho, Ricardo V

    2015-01-01

    Craniometric studies have shown that both Chiari malformation (CM) and basilar invagination (BI) belong to a spectrum of malformations. A more precise method to differentiate between these types of CVJM is desirable. The Chamberlain's line violation (CLV) is the most common method to identify BI. The authors sought to clarify the real importance of CLV in the spectrum of craniovertebral junction malformations (CVJM) and to identify possible pathophysiological relationships. We evaluated the CLV in a sample of CVJM, BI, CM patients and a control group of normal subjects and correlated their data with craniocervical angular craniometry. A total of 97 subjects were studied: 32 normal subjects, 41 CM patients, 9 basilar invagination type 1 (BI1) patients, and 15 basilar invagination type 2 (BI2) patients. The mean CLV violation in the groups were: The control group, 0.16 ± 0.45 cm; the CM group, 0.32 ± 0.48 cm; the BI1 group, 1.35 ± 0.5 cm; and the BI2 group, 1.98 ± 0.18 cm. There was strong correlation between CLV and Boogard's angle (R = 0.82, P = 0.000) and the clivus canal angle (R = 0.7, P = 0.000). CM's CLV is discrete and similar to the normal subjects. BI1 and BI2 presented with at least of 0.95 cm CLV and these violations were strongly correlated with a primary cranial angulation (clivus horizontalization) and an acute clivus canal angle (a secondary craniocervical angle).

  10. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were......Large conductance calcium-activated potassium (BK(Ca)) channels are fundamental in the regulation of cerebral vascular basal tone. We investigated the expression of the mRNA transcripts for the BK(Ca) channel and its modulatory beta-subunits (beta1-beta4) in porcine basilar and middle cerebral...... visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BK(Ca) channel alpha-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for beta1-, beta2- and beta4-subunit were shown by RT...

  11. Prevalence of fenestrated basilar artery with magnetic resonance angiography: a transversal study.

    Science.gov (United States)

    Arráez-Aybar, L A; Villar-Martin, A; Poyatos-Ruiperez, C; Rodriguez-Boto, G; Arrazola-Garcia, J

    2013-08-01

    Fenestration of the basilar artery (BA) is a rare anatomical variation in comparison to those of the other intracranial arteries constituting the cerebral arterial circle. The incidence is difficult to ascertain and data vary according to type of series and modalities of detection. Basilar artery fenestration (BAF) has been reported in association with arteriovenous malformations, vascular variants, other developmental anomalies and neurovascular conflicts as a consequence of relations between the arterial branches of the BA and the nerves and other structures in the posterior cranial fossa. However, the real clinical interest of BAF is due to the possible formation of an aneurysm at the junction of the fenestrated segment and less frequently to the thrombosis of the vessels. With the aim to establish the prevalence of BAF in our population, we made a transversal pilot study of the first 200 MR angiographies performed on patients attending for the first time to control their base pathology (vascular or not). We have described three patients with this condition (representing a prevalence of 1.5 % on MR angiography) to shed additional light on this anomaly, two cases located at 1/3 proximal end (type 1-BAF) and one case located at joint 1/3 medium-1/3 distal end, locating distal to the anterior inferior cerebellar artery (type 4-BAF). In neither case was any other lesion found (i.e. aneurysm, infarctions, ischemia or thromboembolism). The pertinent clinical anatomy and embryological basis for this variation are reviewed, and the possible clinical implications and associated findings are discussed.

  12. Contribuição ao estudo das malformações occipito-cervical, particularmente da impressão basilar

    Directory of Open Access Journals (Sweden)

    Horacio M. Canelas

    1952-12-01

    Full Text Available The authors outline the development of the spine and skull, particularly of axis, atlas and occipital bone. As neuro-skeletal dysmorphisms, the occipito-cervical malformations belong to the neurodysplastic group. They are classified as skeletal anomalies, associated nervous malformations and meningeal reactions. Vertebralization of the occipital bone and occipitalization of atlas, subluxation of odontoid process, dysplasia of the occipital bone, dystrophia brevicollis and other anomalies are discussed. Special care is given to the study of basilar impression; its concept, history, incidence, clinical and neurological symptoms, radiological characterization (craniographic, perimyelographic and iodoventriculographic aspects and surgical treatment are reviewed. The authors report five cases of occipito-cervical malformations, which are the first references in Brazilian literature. In case 1 the anomalies (manifestation of occipital vertebra and Arnold-Chiari deformity were disclosed at an operation for cisticercosis of the posterior fossa. In the following four cases invagination of the basilar portion of the occipital bone (basilar impression could be radiologically demonstrated; in case 2 a suboccipital craniectomy and a laminectomy of atlas and axis were performed but the patient died a week later and the necroscopic examination confirmed the neuro-skeletal anomalies. In all cases there were several associated malformations. In case 2 there were occipitalization of the atlas, fusion of the first and second cervical vertebrae, supernumerary rib of the seventh cervical vertebra, supernumerary lumbar vertebra, and Arnold-Chiari deformity; at necropsy it was found a syringomyelic cyst on the cervical cord and a fibrous dural ring over the foramen magnum. Case 3 showed the syndrome of Klippel-Feil, besides supernumerary ribs of the seventh cervical and first dorsal vertebrae, Arnold-Chiari malfotmation and probable aplasia of cell groups in the

  13. Imaging basilar skull fractures in the horse: a review

    International Nuclear Information System (INIS)

    Ramirez, O. III; Jorgensen, J.S.; Thrall, D.E.

    1998-01-01

    Due to the complex nature of the anatomy of the equine head, superimposition of numerous structures, and poor soft tissue differentiation, radiography may be of limited value in the diagnosis of basilar skull fractures. However, in many horses radiographic changes such as soft tissue opacification of the guttural pouch region, irregular bone margination at the sphenooccipital line, attenuation of the nasopharynx, ventral displacement of the dorsal pharyngeal wall and the presence of irregularly shaped bone fragments in the region of the guttural pouches are suggestive of a fracture of the skull base. These findings in conjunction with physical examination findings and historical information may lead to a presumptive diagnosis of a fracture. When available and when the patient will accommodate the equipment, computed tomography may give a definitive diagnosis owing to its superior resolution and differentiation of soft tissue structures

  14. Effect of excitation direction on cochlear macro-mechanics during bone conduction stimulation

    Science.gov (United States)

    Kamieniecki, Konrad; Tudruj, Sylwester; Piechna, Janusz; Borkowski, Paweł

    2018-05-01

    In many instances of hearing loss, audiological improvement can be made via direct excitation of a temporal bone (i.e., bone conduction). In order to design better and more efficient devices, the macro-mechanics of the bone conduction hearing pathway must be better understood. Based on previous empirical work, numerical models are useful. In this work, we present results of a time-domain Fluid Structure Interaction model that describes stimulation of the bone conduction pathway. The cochlea was modelled as uncoiled and consisted of an oval window, a round window, a basilar membrane and a helicotrema. In order to monitor pressure waves in the perilymph, the fluid was considered compressible. The excitation, in form of sinusoidal velocity, was applied to the cochlea bony walls. The system was excited in three perpendicular directions: along the basilar membrane, perpendicularly to the membrane and transversely to the membrane. The numerical simulation examined which stimulation direction maximally excited the basilar membrane, the pressure distributions for each excitation direction, and the associated mechanics.

  15. Enhancing hippocampal blood flow after cerebral ischemia and vasodilating basilar arteries: in vivo and in vitro neuroprotective effect of antihypertensive DDPH

    Directory of Open Access Journals (Sweden)

    Li Sun

    2015-01-01

    Full Text Available 1-(2,6-Dimethylphenoxy-2-(3,4-dimethoxyphenylethylamino-propane hydrochloride (DDPH is a novel antihypertensive agent based on structural characteristics of mexiletine and verapamine. We investigated the effect of DDPH on vasodilatation and neuroprotection in a rat model of cerebral ischemia in vivo, and a rabbit model of isolated basilar arteries in vitro. Our results show that DDPH (10 mg/kg significantly increased hippocampal blood flow in vivo in cerebral ischemic rats, and exerted dose-dependent relaxation of isolated basilar arteries contracted by histamine or KCl in the in vitro rabbit model. DDPH (3 × 10 -5 M also inhibited histamine-stimulated extracellular calcium influx and intracellular calcium release. Our findings suggest that DDPH has a vasodilative effect both in vivo and in vitro, which mediates a neuroprotective effect on ischemic nerve tissue.

  16. Endovascular treatment of acute basilar artery occlusion: time to treatment is crucial

    International Nuclear Information System (INIS)

    Dorňák, T.; Herzig, R.; Kuliha, M.; Havlíček, R.; Školoudík, D.; Šaňák, D.; Köcher, M.; Procházka, V.; Lacman, J.; Charvát, F.; Krajina, A.

    2015-01-01

    Aim: To evaluate the safety and efficacy of multimodal endovascular treatment (EVT) of acute basilar artery occlusion (BAO), including bridging therapy [intravenous thrombolysis (IVT) with subsequent EVT], to compare particular EVT techniques and identify predictors of clinical outcome. Materials and methods: This retrospective, multi-centre study comprised 72 acute ischaemic stroke patients (51 males; mean age 59.1 ± 13.3 years) with radiologically confirmed BAO. The following data were collected: baseline characteristics, risk factors, pre-event antithrombotic treatment, neurological deficit at time of treatment, localization of occlusion, time to therapy, recanalization rate, post-treatment imaging findings. Thirty- and 90-day outcomes were evaluated using the modified Rankin scale with a good clinical outcome defined as 0–3 points. Results: Successful recanalization was achieved in 94.4% patients. Stepwise binary logistic regression analysis identified the presence of arterial hypertension (OR = 0.073 and OR = 0.067, respectively), National Institutes of Health Stroke Scale (NIHSS) at the time of treatment (OR = 0,829 and OR = 0.864, respectively), and time to treatment (OR = 0.556 and OR = 0.502, respectively) as significant independent predictors of 30- and 90-day clinical outcomes. Conclusion: Data from this multicentre study showed that multimodal EVT was an effective recanalization method in acute BAO. Bridging therapy shortens the time to treatment, which was identified as the only modifiable outcome predictor. - Highlights: • Various treatments are being used in recanalization of basilar artery occlusion. • Multimodal endovascular treatment is an effective recanalization method. • Time-to-treatment is the only modifiable outcome predictor. • Bridging therapy shortens time-to-treatment. • Arterial hypertension, neurologic deficit are associated with poor outcome

  17. Basilar artery occlusive disease in stroke survivors in a multiethnic population.

    Science.gov (United States)

    Ciríaco, Jovana Gobbi Marchesi; Leite, Claudia da Costa; dMartin, Maria a Graça Morais; Barros, Cristiano Venturim; Puglia, Paulo; Caldas, José Guilherme Pereira; Scaff, Milberto; Conforto, Adriana Bastos

    2010-04-01

    To describe clinical, radiological findings, and outcome in a multiethnic population of stroke survivors with basilar artery occlusive disease (BAOC). Forty patients with infarcts in the basilar artery (BA) territory, alive 30 days after the ictus, participated in the study. BA stenosis (>50%) or occlusion was shown by magnetic resonance or digital subtraction angiography in all patients. Demographical, clinical and radiological characteristics were described. Modified Rankin Scale (MRS) scores at 30 days and 6 months after the ischemic event were evaluated. Association between demographical, clinical, radiological features and outcome were analyzed with Chi-square and Fisher's exact tests. MRS scores at 30 days and 6 months were compared with the Wilcoxon test. Sixty percent of the patients were men, and 33% were Afro-Brazilian. Mean age was 55.8+/-12.9 years. Most (90%) had multiple vascular risk factors. Stroke was preceded by TIA in 48% of the patients, and 80% had a history of arterial hypertension. The most common neurological symptom was vertigo/dizziness (60%) and the sign, hemiparesis (60%). Most of the infarcts were located in the pons (85%) and the BA middle third was the most frequently affected segment (33%). BA occlusion occurred in 58% of the patients. More severe vascular occlusive lesions were present in Whites (p=0.002) and in patients with involvement of the middle third of the BA (p=0.021). Large-artery atherosclerosis was the most common stroke etiology (88%) and was more frequent in older patients (p<0.001). Most patients were treated with anticoagulation. MRS scores improved significantly at 6 months (p<0.001); at this time, 78% of the patients had MRS scores between 0 and 2. We observed different results compared with other series: greater proportion of Afro-descendents, higher frequency of atherosclerosis and BA occlusion. Rates of preceding TIAs and good outcome at 6 months were similar to previously published data. These results represent

  18. Different Imaging Strategies in Patients With Possible Basilar Artery Occlusion: Cost-Effectiveness Analysis.

    Science.gov (United States)

    Beyer, Sebastian E; Hunink, Myriam G; Schöberl, Florian; von Baumgarten, Louisa; Petersen, Steffen E; Dichgans, Martin; Janssen, Hendrik; Ertl-Wagner, Birgit; Reiser, Maximilian F; Sommer, Wieland H

    2015-07-01

    This study evaluated the cost-effectiveness of different noninvasive imaging strategies in patients with possible basilar artery occlusion. A Markov decision analytic model was used to evaluate long-term outcomes resulting from strategies using computed tomographic angiography (CTA), magnetic resonance imaging, nonenhanced CT, or duplex ultrasound with intravenous (IV) thrombolysis being administered after positive findings. The analysis was performed from the societal perspective based on US recommendations. Input parameters were derived from the literature. Costs were obtained from United States costing sources and published literature. Outcomes were lifetime costs, quality-adjusted life-years (QALYs), incremental cost-effectiveness ratios, and net monetary benefits, with a willingness-to-pay threshold of $80,000 per QALY. The strategy with the highest net monetary benefit was considered the most cost-effective. Extensive deterministic and probabilistic sensitivity analyses were performed to explore the effect of varying parameter values. In the reference case analysis, CTA dominated all other imaging strategies. CTA yielded 0.02 QALYs more than magnetic resonance imaging and 0.04 QALYs more than duplex ultrasound followed by CTA. At a willingness-to-pay threshold of $80,000 per QALY, CTA yielded the highest net monetary benefits. The probability that CTA is cost-effective was 96% at a willingness-to-pay threshold of $80,000/QALY. Sensitivity analyses showed that duplex ultrasound was cost-effective only for a prior probability of ≤0.02 and that these results were only minimally influenced by duplex ultrasound sensitivity and specificity. Nonenhanced CT and magnetic resonance imaging never became the most cost-effective strategy. Our results suggest that CTA in patients with possible basilar artery occlusion is cost-effective. © 2015 The Authors.

  19. Gain and frequency tuning within the mouse cochlear apex

    Energy Technology Data Exchange (ETDEWEB)

    Oghalai, John S.; Raphael, Patrick D. [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Gao, Simon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Bioengineering, Rice University, Houston, Texas (United States); Lee, Hee Yoon [Department of Otolaryngology, Stanford University School of Medicine, Stanford, California (United States); Department of Electrical Engineering, Stanford University, Stanford, California (United States); Groves, Andrew K. [Department of Neuroscience, Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas (United States); Zuo, Jian [Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  20. Gain and frequency tuning within the mouse cochlear apex

    International Nuclear Information System (INIS)

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon; Lee, Hee Yoon; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2015-01-01

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering

  1. Efficacy of ketamine hydrochloride administered as a basilar sesamoid nerve block in alleviating foot pain in horses caused by natural disease.

    Science.gov (United States)

    Schumacher, J; DeGraves, F; Cesar, F; Duran, S

    2014-09-01

    A local anaesthetic agent capable of temporarily resolving lameness after being administered perineurally would be helpful because rapid return of lameness would allow for other analgesic techniques to be performed within a short period of time. To determine if a 3% solution of ketamine hydrochloride (HCl), administered around the palmar nerves at the level of the base of the proximal sesamoid bones, can improve naturally occurring lameness that can be improved or abolished with a basilar sesamoid nerve block performed using lidocaine HCl and to compare the change in gait produced using lidocaine to the change in gait produced using ketamine by using objective lameness assessment. Experimental trial using research horses with naturally occurring lameness. Seven horses, chronically lame on a thoracic limb, were chosen for the study. A wireless, inertial, sensor-based, motion analysis system was used to evaluate lameness before and after administration of 2% lidocaine and later, before and after administration of 3% ketamine over the palmar digital nerves at the base of the proximal sesamoid bones (a basilar sesamoid nerve block) at 5 min intervals for 30 min. Lameness scores obtained before and after administration of lidocaine and ketamine HCl were compared using repeated measures analysis. Gait significantly improved after basilar sesamoid nerve blocks using 2% lidocaine, but gait did not significantly improve after performing the same nerve block using 3% ketamine HCl. Ketamine (3%) administered perineurally for regional anaesthesia of the digit does not desensitise the digit to the same extent as does lidocaine and thus 3% ketamine appears to have no value as a local anaesthetic agent for diagnostic regional anaesthesia. © 2013 EVJ Ltd.

  2. Endovascular treatment of basilar tip aneurysms associated with moyamoya disease

    International Nuclear Information System (INIS)

    Arita, K.; Kurisu, K.; Ohba, S.; Shibukawa, M.; Kiura, H.; Sakamoto, S.; Uozumi, T.; Nakahara, T.

    2003-01-01

    We report the efficacy and safety of endovascular treatment of basilar tip aneurysms (BTA) in five patients with moyamoya disease. The patients underwent intra-aneurysmal embolisation with detachable platinum coils. Three BTA presented with subarachnoid haemorrhage (SAH); the other two were asymptomatic. In four cases, one embolisation procedure produced >95% angiographic obliteration of the aneurysm. In the other patient, 80-90% obliteration was achieved initially, but due to growth of the residual aneurysm, the procedure was repeated 7 months later. Two patients experienced transient oculomotor paresis as a procedure-related complication. Mean follow-up was 43.6±34.0 months (range 8-92 months). One patient died of putaminal haemorrhage unrelated to the aneurysm 15 months after embolisation. The other four had no subsequent SAH and survived without sequelae. Endovascular embolisation using detachable platinum coils proved to be a safe and efficient treatment modality for BTA associated with moyamoya disease. (orig.)

  3. Y stenting assisted coiling using a new low profile visible intraluminal support device for wide necked basilar tip aneurysms: a technical report.

    Science.gov (United States)

    Conrad, Marcelo D; Brasiliense, Leonardo B C; Richie, Alexa N; Hanel, Ricardo A

    2014-05-01

    Many endovascular techniques have been described in recent years for the management of wide necked aneurysms. The Y stent assisted technique has been generally used for coil embolization of wide necked bifurcation aneurysms. This technique was first described for the treatment of basilar tip aneurysms in combination with several different devices, demonstrating encouraging results. We report the results of the first two cases of wide necked basilar tip aneurysms treated with Y stent assisted coil embolization using a new low profile visible intraluminal stent (LVIS Jr; MicroVention, Tustin, California, USA) delivered through a 0.017 inch microcatheter. We also reviewed the literature comparing other endovascular techniques (coiling alone, stent assisted coiling, and Y stent assisted coiling) for wide necked aneurysms. The LVIS Jr device offers a new option for the treatment of these challenging lesions, with clear advantages over currently available intracranial stents. Larger series and long term results are needed to confirm the applicability and durability of this technique/technology.

  4. Vertebral artery stenosis in the Basilar Artery International Cooperation Study (BASICS): prevalence and outcome.

    Science.gov (United States)

    Compter, Annette; van der Hoeven, Erik J R J; van der Worp, H Bart; Vos, Jan Albert; Weimar, Christian; Rueckert, Christina M; Kappelle, L Jaap; Algra, Ale; Schonewille, Wouter J

    2015-02-01

    We assessed the prevalence of vertebral artery (VA) stenosis or occlusion and its influence on outcome in patients with acute basilar artery occlusion (BAO). We studied 141 patients with acute BAO enrolled in the Basilar Artery International Cooperation Study (BASICS) registry of whom baseline CT angiography (CTA) of the intracranial VAs was available. In 72 patients an additional CTA of the extracranial VAs was available. Adjusted risk ratios (aRRs) for death and poor outcome, defined as a modified Rankin Scale score ≥4, were calculated with Poisson regression in relation to VA occlusion, VA occlusion or stenosis ≥50 %, and bilateral VA occlusion. Sixty-six of 141 (47 %) patients had uni- or bilateral intracranial VA occlusion or stenosis ≥50 %. Of the 72 patients with intra- and extracranial CTA, 46 (64 %) had uni- or bilateral VA occlusion or stenosis ≥50 % and 9 (12 %) had bilateral VA occlusion. Overall, VA occlusion or stenosis ≥50 % was not associated with the risk of poor outcome. Patients with intra- and extracranial CTA and bilateral VA occlusion had a higher risk of poor outcome than patients without bilateral VA occlusion (aRR, 1.23; 95 % CI 1.02-1.50). The risk of death did not depend on the presence of unilateral or bilateral VA occlusion or stenosis ≥50 %. In conclusion, in patients with acute BAO, unilateral VA occlusion or stenosis ≥50 % is frequent, but not associated with an increased risk of poor outcome or death. Patients with BAO and bilateral VA occlusion have a slightly increased risk of poor outcome.

  5. The odontoid process invagination in normal subjects, Chiari malformation and Basilar invagination patients: Pathophysiologic correlations with angular craniometry

    OpenAIRE

    Ferreira, J?nio A.; Botelho, Ricardo V.

    2015-01-01

    Background: Craniometric studies have shown that both Chiari malformation (CM) and basilar invagination (BI) belong to a spectrum of malformations. A more precise method to differentiate between these types of CVJM is desirable. The Chamberlain′s line violation (CLV) is the most common method to identify BI. The authors sought to clarify the real importance of CLV in the spectrum of craniovertebral junction malformations (CVJM) and to identify possible pathophysiological relationships. Me...

  6. Characterization of 5-hydroxytryptamine-induced contraction and acetylcholine-induced relaxation in isolated chicken basilar artery.

    Science.gov (United States)

    Matsumoto, F; Watanabe, Y; Obi, T; Islam, M Z; Yamazaki-Himeno, E; Shiraishi, M; Miyamoto, A

    2012-05-01

    The aim of the present study was to clarify the responsiveness of the chicken basilar artery to 5-hydroxytryptamine (5-HT) and acetylcholine (ACh) and to characterize the related receptor subtypes in vitro. Basilar arteries were obtained from freshly slaughtered broiler chickens. The 5-HT induced concentration-dependent contraction of the arteries. The concentration-response curves for 5-HT were shifted 30-fold to the right by methiothepin (a 5-HT(1) and 5-HT(2) receptor antagonist) and 3-fold to the right by ketanserin (a 5-HT(2) receptor antagonist). In the presence of ketanserin, the concentration-response curve for 5-HT was shifted 10-fold to the right by methiothepin. The pA(2) value for methiothepin was 8.26. The ACh induced concentration-dependent relaxation under conditions of precontraction by 5-HT. The concentration-response curve for ACh was shifted to the right by atropine [a nonselective muscarinic (M) receptor antagonist] and hexahydro-sila-difenidol hydrochloride, a p-fluoroanalog (pFHHSiD, an M(3) receptor antagonist), but not by pirenzepine (an M(1) receptor antagonist) or methoctramine (an M(2) receptor antagonist). The pA(2) value for pFHHSiD was 7.55. Nω-Nitro-l-arginine (a nitric oxide synthase inhibitor) inhibited ACh-induced relaxation by approximately 50%. These results suggest that 5-HT induces contraction via activation of 5-HT(1) and 5-HT(2) receptors and that ACh induces relaxation via activation of the M(3) receptor. The 5-HT(1) receptor might play a dominant role in 5-HT-induced contraction. One of the factors involved in ACh-induced relaxation is probably nitric oxide released from endothelial cells.

  7. Pontine infarction caused by medial branch injury of the basilar artery as a rare complication of cisternal drain placement

    OpenAIRE

    Horiuchi, Tetsuyoshi; Yamamoto, Yasunaga; Kuroiwa, Masafumi; Rahmah, Nunung Nur; Hongo, Kazuhiro

    2012-01-01

    We present a rare complication of cisternal drain placement during aneurysm surgery. A ruptured anterior communicating artery aneurysm was clipped through a right pterional approach. A cisternal drain was inserted from the retro-carotid to the prepontine cistern. Postoperatively, a left-sided paresis of the upper extremity had developed. A CT brain scan revealed that the drain was located between the pons and the basilar artery, resulting in a pontine infarction. Vascular neurosurgeons should...

  8. Consequences of Location-Dependent Organ of Corti Micro-Mechanics.

    Directory of Open Access Journals (Sweden)

    Yanju Liu

    Full Text Available The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell's somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell's somatic motility effectively interacts with the media of traveling waves-the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency location, but the amplitude ratio was reversed at the apical (low frequency location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location.

  9. Localization of the cochlear amplifier in living sensitive ears.

    Directory of Open Access Journals (Sweden)

    Tianying Ren

    Full Text Available BACKGROUND: To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. METHODOLOGY AND PRINCIPAL FINDINGS: Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases. CONCLUSIONS AND SIGNIFICANCE: We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range.

  10. Modelling three-dimensional cochlear micromechanics within the guinea pig organ of Corti

    Science.gov (United States)

    Ni, Guangjian; Elliott, Stephen J.

    2018-05-01

    The active amplification process in the mammalian cochlea depends on a complex interaction between cells within the organ of Corti. A three-dimensional (3D) model was developed using the finite element method based on anatomy for the apical end in the guinea pig cochlea, which is comprised of 3D discrete hair cells, 3D continuous membranes and fluid. The basilar membrane, tectorial membrane and the reticular lamina are modelled with orthotropic materials. The Y-shape structures formed by the outer hair cell (OHC), the Deiters' cell and Deiters' cell phalangeal process are also included to account for the structural longitudinal coupling. The motion within the organ of Corti was first simulated in response to a pressure difference loading on the basilar membrane, in order to calculate the passive vibration pattern. Then, the outer hair cells somatic electromotility was implemented by applying a voltage across the OHC walls to investigate its contribution to membranes motion.

  11. Randomized comparison of intra-arterial and intravenous thrombolysis in a canine model of acute basilar artery thrombosis

    International Nuclear Information System (INIS)

    Qureshi, A.I.; Yahia, A.M.; Boulos, A.S.; Hanel, R.A.; Suri, M.F.K.; Hopkins, L.N.; Alberico, R.A.

    2004-01-01

    We compared the rates of recanalization cerebral infarct and hemorrhage between intra-arterial (IA) reteplase and intravenous (IV) alteplase thrombolysis in a canine model of basilar artery thrombosis. Thrombosis was induced by injecting a clot in the basilar artery of 13 anesthetized dogs via superselective catheterization. The animals were randomized in a blinded fashion, 2 h after clot injection and verification of arterial occlusion, to receive IV alteplase 0.9 mg/kg over 60 min and IA placebo, or IA reteplase 0.09 units/kg over 20 min, equivalent to one-half the alteplase dose, and IV placebo. Recanalization was studied for 6 h after treatment with serial angiography; the images were later graded in a blinded fashion. Blinded interpretation of postmortem MRI was performed to assess the presence of brain infarcts and/or hemorrhage. At 3 h after initiation of treatment, partial or complete recanalization was observed in one of six dogs in the IV alteplase group and in five of seven in the IA reteplase group (P = 0.08). At 6 h, no significant difference in partial or complete recanalization was observed between the groups (two of six vs. five of seven; P = 0.20). Postmortem MRI revealed infarcts in four of six animals treated with IV alteplase and three of seven treated with IA reteplase (P = 0.4). Intracerebral hemorrhage was more common in the IV alteplase group (four of six vs. none of seven; P = 0.02). This study thus suggests that IA thrombolysis affords a recanalization rate similar to that of IV thrombolysis, but with a lower rate of intracerebral hemorrhage. (orig.)

  12. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    Science.gov (United States)

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  13. Endovascular treatment of basilar and ICA termination aneurysms: effects of the use of HydroCoils on treatment stability in a subgroup of patients prone to a higher recurrence rate

    International Nuclear Information System (INIS)

    Geyik, Serdar; Yavuz, Kivilcim; Cekirge, Saruhan; Saatci, Isil

    2007-01-01

    The aim of this study was to evaluate the stability of occlusion of terminal bifurcation aneurysms after embolization with hydrogel-coated coils. Of 35 bifurcation aneurysms, 34 were treated with hydrogel-coated coils in combination with platinum coils, and 1 was treated with hydrogel-coated coils only. Aneurysms were located at the basilar tip in 17 patients, and the internal carotid artery (ICA) bifurcation in 18 patients. The patient population consisted of 20 women and 15 men with ages ranging from 21 to 65 years. The aneurysm was found in 16 patients on presentation for subarachnoid hemorrhage, and in 19 patients the finding was incidental. Of the 35 aneurysms, 25 were small, 9 were large and 1 was giant. The giant aneurysm was located at the basilar tip and showed partial thrombosis. All except two basilar tip aneurysms were treated with balloon assistance. The remaining two basilar tip aneurysms were embolized with the assistance of an aneurysmal neck bridge device. The mean percentage occluded aneurysm volume for all devices was in the range 34-100%. Follow-up angiograms were obtained at 1 year in 6 patients, 2 years in 11 patients, and 3 years in 18 patients. Angiograms obtained immediately after embolization demonstrated a Raymond class 1 occlusion in 29 patients (82.9%) and a Raymond class 2 occlusion in 6 patients (17.1%). In four of these six patients follow-up angiograms demonstrated regrowth with resultant Raymond class 3 occlusion. In the other two patients, Raymond class 2 occlusion remained stable on follow-up angiograms. In patients who had a Raymond class 1 occlusion on the angiogram obtained immediately after embolization, no regrowth was seen on the follow-up angiograms. The overall recanalization rate was 11.4% (three large, one giant) at 6 months. Retreatment was not considered in three of these patients and they were to be followed; the other patient was retreated. Our initial procedural data demonstrate that higher volumetric occlusion was

  14. Endovascular treatment of basilar and ICA termination aneurysms: effects of the use of HydroCoils on treatment stability in a subgroup of patients prone to a higher recurrence rate

    Energy Technology Data Exchange (ETDEWEB)

    Geyik, Serdar; Yavuz, Kivilcim; Cekirge, Saruhan; Saatci, Isil [Hacettepe University Hospital, Interventional Neuroradiology Unit, Radiology Department, Ankara (Turkey)

    2007-12-15

    The aim of this study was to evaluate the stability of occlusion of terminal bifurcation aneurysms after embolization with hydrogel-coated coils. Of 35 bifurcation aneurysms, 34 were treated with hydrogel-coated coils in combination with platinum coils, and 1 was treated with hydrogel-coated coils only. Aneurysms were located at the basilar tip in 17 patients, and the internal carotid artery (ICA) bifurcation in 18 patients. The patient population consisted of 20 women and 15 men with ages ranging from 21 to 65 years. The aneurysm was found in 16 patients on presentation for subarachnoid hemorrhage, and in 19 patients the finding was incidental. Of the 35 aneurysms, 25 were small, 9 were large and 1 was giant. The giant aneurysm was located at the basilar tip and showed partial thrombosis. All except two basilar tip aneurysms were treated with balloon assistance. The remaining two basilar tip aneurysms were embolized with the assistance of an aneurysmal neck bridge device. The mean percentage occluded aneurysm volume for all devices was in the range 34-100%. Follow-up angiograms were obtained at 1 year in 6 patients, 2 years in 11 patients, and 3 years in 18 patients. Angiograms obtained immediately after embolization demonstrated a Raymond class 1 occlusion in 29 patients (82.9%) and a Raymond class 2 occlusion in 6 patients (17.1%). In four of these six patients follow-up angiograms demonstrated regrowth with resultant Raymond class 3 occlusion. In the other two patients, Raymond class 2 occlusion remained stable on follow-up angiograms. In patients who had a Raymond class 1 occlusion on the angiogram obtained immediately after embolization, no regrowth was seen on the follow-up angiograms. The overall recanalization rate was 11.4% (three large, one giant) at 6 months. Retreatment was not considered in three of these patients and they were to be followed; the other patient was retreated. Our initial procedural data demonstrate that higher volumetric occlusion was

  15. Unrecognized paraganglioma of the urinary bladder as a cause for basilar-type migraine.

    Science.gov (United States)

    Pichler, Renate; Heidegger, Isabel; Klinglmair, Gerald; Kroiss, Alexander; Uprimny, Christian; Gasser, Rudolf Wolfgang; Schäfer, Georg; Steiner, Hannes

    2014-01-01

    Extra-adrenal paraganglioma with isolated localization in the urinary bladder is a rare neuroendocrine tumor. Although the typical symptoms like headache, nausea, weight loss, flushing, heart palpitation or paroxysmal hypertension during micturition are well established, we present an unusual case of bladder paraganglioma, 'misdiagnosed' with basilar-type migraine due to headache for the past 8 years. As urologists linked the presence of a tumor (by CT) and symptoms connected with micturition, no cystoscopy and no transurethral resection of the bladder was performed prior to detailed diagnostic workup. After diagnosis of an extra-adrenal paraganglioma, the patient was scheduled for open partial cystectomy. In consideration of the fact that bladder paraganglioma is an infrequent genitourinary cancer, this case report clearly points out the importance of an exact anamnesis and clinical examination to minimize the probability of misdiagnosis with possible fatal consequences in any case with clinical suspicion of bladder paraganglioma. Copyright © 2013 S. Karger AG, Basel.

  16. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.

    Science.gov (United States)

    He, David Z Z; Jia, Shuping; Dallos, Peter

    2004-06-17

    Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.

  17. Finite element cochlea box model - Mechanical and electrical analysis of the cochlea

    Science.gov (United States)

    Nikolic, Milica; Teal, Paul D.; Isailovic, Velibor; Filipović, Nenad

    2015-12-01

    The primary role of the cochlea is to transform external sound stimuli into mechanical vibrations and then to neural impulses which are sent to the brain. A simplified cochlea box model was developed using the finite element method. Firstly, a mechanical model of the cochlea was analyzed. The box model consists of the basilar membrane and two fluid chambers - the scala vestibuli and scala tympani. The third chamber, the scala media, was neglected in the mechanical analysis. The best agreement with currently available analytical and experimental results was obtained when behavior of the fluid in the chambers was described using the wave acoustic equation and behavior of the basilar membrane was modeled with Newtonian dynamics. The obtained results show good frequency mapping. The second approach was to use an active model of the cochlea in which the Organ of Corti was included. The operation of the Organ of Corti involves the generation of current, caused by mechanical vibration. This current in turn causes a force applied to the basilar membrane, creating in this way an active feedback mechanism. A state space representation of the electro-mechanical model from existing literature was implemented and a first comparison with the finite element method is presented.

  18. Endovascular Mechanical Thrombectomy in Basilar Artery Occlusion: Initial Experience

    Science.gov (United States)

    Park, Bum-Soo; Kwon, Hyon-Jo; Choi, Seung-Won; Kim, Seon-Hwan; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun

    2013-01-01

    Objective This study was conducted to assess the efficacy and safety of endovascular mechanical thrombectomy (EMT) for patients diagnosed with basilar artery (BA) occlusion. Materials and Methods We retrospectively analyzed clinical and imaging data of 16 patients diagnosed with BA occlusion who were treated with endovascular intervention from July 2012 to February 2013. Direct suction using the Penumbra system and thrombus retrieval by the Solitaire stent were the main endovascular techniques used to restore BA flow. The outcomes were evaluated based on rate of angiographic recanalization, rate of improvement of National Institutes of Health Stroke Scale (NIHSS) score, rate of modified Rankin Scale (mRS) at discharge and after 3 months, and rate of cerebral hemorrhagic complications. Successful recanalization was defined as achieving Thrombolysis In Cerebral Infarction (TICI) of II or III. Results Sixteen patients received thrombectomy. The mean age was 67.8 ± 11 years and the mean NIHSS score was 12.3 ± 8.2. Eight patients treated within 6 hours of symptom onset were grouped as A and the other 8 patients treated beyond 6 hours (range, 6-120) were grouped as B. Successful recanalization was met in six patients (75%) for group A and 7 (87.5%) for group B. Favorable outcome occurred in 4 patients (50%) for group A and 5 (62.5%) for group B. Conclusion Our study supports the effectiveness and safety of endovascular mechanical thrombectomy in treating BA occlusion even 6 hours after symptom onset. PMID:24167791

  19. Incidence of basilar invagination in patients with tonsillar herniation ? a case control craniometrical study

    Directory of Open Access Journals (Sweden)

    Andrei F Joaquim

    2014-09-01

    Full Text Available A retrospective case-control study based on craniometrical evaluation was performed to evaluate the incidence of basilar invagination (BI. Patients with symptomatic tonsillar herniation treated surgically had craniometrical parameters evaluated based on CT scan reconstructions before surgery. BI was diagnosed when the tip of the odontoid trespassed the Chamberlain’s line in three different thresholds found in the literature: 2, 5 or 6.6 mm. In the surgical group (SU, the mean distance of the tip of the odontoid process above the Chamberlain’s line was 12 mm versus 1.2 mm in the control (CO group (p<0.0001. The number of patients with BI according to the threshold used (2, 5 or 6.6 mm in the SU group was respectively 19 (95%, 16 (80% and 15 (75% and in the CO group it was 15 (37%, 4 (10% and 2 (5%.

  20. Swept source optical coherence tomography for in vivo imaging and vibrometry in the apex of the mouse cochlea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Yoon [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Raphael, Patrick D.; Oghalai, John S. [Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Ellerbee, Audrey K. [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane, tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.

  1. Management of acute basilar artery occlusion: should any treatment strategy prevail?

    Science.gov (United States)

    Dornak, Tomas; Herzig, Roman; Sanak, Daniel; Skoloudik, David

    2014-12-01

    Acute basilar artery occlusion (BAO) is relatively infrequent form of acute ischemic stroke associated with severe and persisting neurological deficit and high mortality rate (to 86%). Early recanalization is essential for good clinical outcome but the most effective treatment approach remains unestablished. Several treatment strategies are currently available but their safety and efficacy have only been tested in retrospective/prospective case series. Randomized controlled trials (RCTs) are lacking. We searched the PubMed database for assessments of recanalization rate and clinical outcome in BAO patients treated with various treatment methods. The results show that antithrombotics are least effective while specific reperfusion therapies including intravenous thrombolysis (IVT) and various types of intra-arterial therapy (IAT) are more so. Less than half of BAO patients reach independent outcome following IVT with a recanalization rate 52-78%. Even though IAT recanalizes BAO more frequently (in up to 100%), the higher recanalization rate is not necessarily associated with better outcome. Good clinical outcome is strongly dependent on recanalization time. Thus, the concept of bridging therapy, combining widely available IVT with IAT, was introduced and is usually considered a rescue strategy in non-responders to IV alteplase. A trend to better outcome in patients treated with bridging therapy in some studies, has to be confirmed by large RCTs.

  2. Fatal Mycotic Aneurysm of the Basilar Artery Caused by Aspergillus fumigatus in a Patient with Pituitary Adenoma and Meningitis

    Directory of Open Access Journals (Sweden)

    Martin Winterholler

    2017-07-01

    Full Text Available Fungal infections of the central nervous system (CNS frequently occur in immunosuppressed patients. Here, we describe the case of an immunocompetent 64-year-old man who presented with diplopia, right-sided hemiparesis, and a mild headache after cleaning and replacing nesting boxes of wild birds during the preceding months. Lumbar puncture revealed pleocytosis, elevated protein, and lactate levels in the cerebrospinal fluid (CSF. Initial imaging showed ischemia in the left thalamus and an enlargement of the sellar region. Antibiotic treatment and corticosteroids led to an initial improvement but was followed by rapid deterioration. Antibiotic treatment was modified and antifungal therapy was added. Eighteen days after admission, the patient died from a subarachnoid hemorrhage resulting from the rupture of a fusiform aneurysm of the basilar artery. Microbiological culture of CSF was negative, but a positive galactomannan assay suggested fungal infection which was corroborated by detection of Aspergillus fumigatus DNA in pan-fungal PCR and sequencing. The presence of septated hyphae in the wall of the basilar artery confirmed the diagnosis of a mycotic aneurysm caused by hyphomycetal infection. In addition, brain autopsy revealed the presence of an invasive adrenocorticotrophic hormone-producing pituitary adenoma with arrosion of the sellar bone. This process and its invasiveness likely facilitated the spread of the fungal pathogen from the sphenoid sinus to the dura mater and finally led to cerebral angioinvasion. Our case demonstrates the challenge to timely diagnose and effectively treat aspergillosis as a cause of CNS infection also in apparently immunocompetent patients. The potential of assays detecting fungal antigens and of PCR to facilitate a timely diagnosis is discussed.

  3. Development of micro-electromechanical system (MEMS) cochlear biomodel

    Energy Technology Data Exchange (ETDEWEB)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira [Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  4. Development of micro-electromechanical system (MEMS) cochlear biomodel

    International Nuclear Information System (INIS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-01-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane

  5. Effect of ST36 Acupuncture on Hyperventilation-Induced CO2 Reactivity of the Basilar and Middle Cerebral Arteries and Heart Rate Variability in Normal Subjects

    Directory of Open Access Journals (Sweden)

    Sang-Ho Hyun

    2014-01-01

    Full Text Available This study was conducted to verify the effect of acupuncture on cerebral haemodynamics to provide evidence for the use of acupuncture treatment as a complementary therapy for the high-risk stroke population. The effect of ST36 acupuncture treatment on the hyperventilation-induced CO2 reactivity of the basilar and middle cerebral arteries was studied in 10 healthy male volunteers (mean age, 25.2 ± 1.5 years using a transcranial Doppler sonography with an interval of 1 week between measurements, and a portable ECG monitoring system was used to obtain ECG data simultaneously. The CO2 reactivity of the basilar and middle cerebral arteries increased significantly after ST36 acupuncture treatment, whereas the mean arterial blood pressure and pulse rate did not change significantly. The high-frequency power significantly increased after ST36 acupuncture treatment, and the percentage increase of high-frequency power correlated significantly with the percentage increase in the CO2 reactivity of the contralateral middle cerebral artery. These data suggest that ST36 acupuncture treatment increases CO2 reactivity, indicating improvement of vasodilatory potential of the cerebral vasculature to compensate for fluctuations caused by changes in external conditions. The increase in parasympathetic tone by ST36 acupuncture treatment is responsible for this therapeutic effect.

  6. Brain Stem Infarction Due to Basilar Artery Dissection in a Patient with Moyamoya Disease Four Years after Successful Bilateral Revascularization Surgeries.

    Science.gov (United States)

    Abe, Takatsugu; Fujimura, Miki; Mugikura, Shunji; Endo, Hidenori; Tominaga, Teiji

    2016-06-01

    Moyamoya disease (MMD) is a rare cerebrovascular disease with an unknown etiology and is characterized by intrinsic fragility in the intracranial vascular walls such as the affected internal elastic lamina and thinning medial layer. The association of MMD with intracranial arterial dissection is extremely rare, whereas that with basilar artery dissection (BAD) has not been reported previously. A 46-year-old woman developed brain stem infarction due to BAD 4 years after successful bilateral superficial temporal artery-middle cerebral artery anastomosis with indirect pial synangiosis for ischemic-onset MMD. She presented with sudden occipitalgia and subsequently developed transient dysarthria and mild hemiparesis. Although a transient ischemic attack was initially suspected, her condition deteriorated in a manner that was consistent with left hemiplegia with severe dysarthria. Magnetic resonance (MR) imaging revealed brain stem infarction, and MR angiography delineated a double-lumen sign in the basilar artery, indicating BAD. She was treated conservatively and brain stem infarction did not expand. One year after the onset of brain stem infarction, her activity of daily living is still dependent (modified Rankin Scale of 4), and there were no morphological changes associated with BAD or recurrent cerebrovascular events during the follow-up period. The association of MMD with BAD is extremely rare. While considering the common underlying pathology such as an affected internal elastic lamina and fragile medial layer, the occurrence of BAD in a patient with MMD in a stable hemodynamic state is apparently unique. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. SIMULATION OF A COCHLEA OF AN INTERIOR EAR OF THE HUMAN

    Directory of Open Access Journals (Sweden)

    S. A. Naida

    2012-12-01

    Full Text Available There was conducted the simulations of a cochlea of an interior ear of the human by means of a long line. The following regularities of operation of a cochlea were determined: without the count of flexibilities Reissner's and basilar membranes swing pressure on walls of a cochlear course does not exceed 3,6 % from pressure in the field of an oval window; allocation of a differential of sound pressure fluctuates in a time with frequency; taking into account the slenderness of a membrane and dependence of a standing of resonances from f are spotted by non-uniformity of a basilar membrane; the differential travelling wave exists only near to a resonance on each  frequency where the amplitude buildup of oscillations to a maximum happens for many continuances of resonance frequency. Small relative meaning of range of pressure of travelling wave could become the parent of that Peterson's and Bogert's work has not had the further evolution.

  8. Emission of sound from the mammalian inner ear

    Science.gov (United States)

    Reichenbach, Tobias; Stefanovic, Aleksandra; Nin, Fumiaki; Hudspeth, A. J.

    2013-03-01

    The mammalian inner ear, or cochlea, not only acts as a detector of sound but can also produce tones itself. These otoacoustic emissions are a striking manifestation of the mechanical active process that sensitizes the cochlea and sharpens its frequency discrimination. It remains uncertain how these signals propagate back to the middle ear, from which they are emitted as sound. Although reverse propagation might occur through waves on the cochlear basilar membrane, experiments suggest the existence of a second component in otoacoustic emissions. We have combined theoretical and experimental studies to show that mechanical signals can also be transmitted by waves on Reissner's membrane, a second elastic structure within the cochea. We have developed a theoretical description of wave propagation on the parallel Reissner's and basilar membranes and its role in the emission of distortion products. By scanning laser interferometry we have measured traveling waves on Reissner's membrane in the gerbil, guinea pig, and chinchilla. The results accord with the theory and thus support a role for Reissner's membrane in otoacoustic emission. T. R. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund; A. J. H. is an Investigator of Howard Hughes Medical Institute.

  9. Dose rate to cellular systems of the inner ear during Moessbauer experiments

    International Nuclear Information System (INIS)

    Kliauga, P.; Khanna, S.

    1982-01-01

    In the Moessbauer technique for vibration measurements a small radioactive source is placed on the basilar membrane. This source produces gamma rays of precise frequencies. When sound is applied to the ear the source vibrates with the basilar membrane. These vibrations produce a Doppler shift in the frequency of the emitted γ rays. Although the method provides a sensitive means of measuring small vibrations it requires placement of a radioactive material in close proximity to sensitive receptor cells. The purpose of this paper is to investigate whether radiation from the Moessbauer source itself can produce sufficient radiation damage to the tissue to alter its physiological response. The absorbed dose delivered to the organ of Corti under typical experimental conditions is calculated. Possible implications for the Moessbauer experiments are discussed

  10. A Model for the representation of Speech Signals in Normal and Impaired Ears

    DEFF Research Database (Denmark)

    Christiansen, Thomas Ulrich

    2004-01-01

    hearing was modelled as a combination of outer- and inner hair cell loss. The percentage of dead inner hair cells was calculated based on a new computational method relating auditory nerve fibre thresholds to behavioural thresholds. Finally, a model of the entire auditory nerve fibre population......A model of human auditory periphery, ranging from the outer ear to the auditory nerve, was developed. The model consists of the following components: outer ear transfer function, middle ear transfer function, basilar membrane velocity, inner hair cell receptor potential, inner hair cell probability...... of neurotransmitter release and auditory nerve fibre refractoriness. The model builds on previously published models, however, parameters for basilar membrane velocity and inner hair cell probability of neurotransmitter release were successfully fitted to model data from psychophysical and physiological data...

  11. Pulmonary artery dissection following balloon valvuloplasty in a dog with pulmonic stenosis.

    Science.gov (United States)

    Grint, K A; Kellihan, H B

    2017-04-01

    A 3-month-old, 9.9 kg, male pit bull cross was referred for evaluation of collapse. A left basilar systolic heart murmur graded V/VI and a grade IV/VI right basilar systolic heart murmur were ausculted. Echocardiography showed severe pulmonic stenosis characterized by annular hypoplasia, leaflet thickening, and leaflet fusion. After 1 month of atenolol therapy, a pulmonic valve balloon valvuloplasty procedure was performed, and the intra-operative right ventricular pressure was reduced by 43%. Echocardiography, performed the following day, showed apparent rupture of a pulmonary valve leaflet and a membranous structure within the pulmonary artery consistent with a dissecting membrane. Short-term follow-up has shown no apparent progression of the pulmonary artery dissection and the patient remains free of clinical signs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The physics of hearing: fluid mechanics and the active process of the inner ear.

    Science.gov (United States)

    Reichenbach, Tobias; Hudspeth, A J

    2014-07-01

    Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise because the

  13. The physics of hearing: fluid mechanics and the active process of the inner ear

    International Nuclear Information System (INIS)

    Reichenbach, Tobias; Hudspeth, A J

    2014-01-01

    Most sounds of interest consist of complex, time-dependent admixtures of tones of diverse frequencies and variable amplitudes. To detect and process these signals, the ear employs a highly nonlinear, adaptive, real-time spectral analyzer: the cochlea. Sound excites vibration of the eardrum and the three miniscule bones of the middle ear, the last of which acts as a piston to initiate oscillatory pressure changes within the liquid-filled chambers of the cochlea. The basilar membrane, an elastic band spiraling along the cochlea between two of these chambers, responds to these pressures by conducting a largely independent traveling wave for each frequency component of the input. Because the basilar membrane is graded in mass and stiffness along its length, however, each traveling wave grows in magnitude and decreases in wavelength until it peaks at a specific, frequency-dependent position: low frequencies propagate to the cochlear apex, whereas high frequencies culminate at the base. The oscillations of the basilar membrane deflect hair bundles, the mechanically sensitive organelles of the ear's sensory receptors, the hair cells. As mechanically sensitive ion channels open and close, each hair cell responds with an electrical signal that is chemically transmitted to an afferent nerve fiber and thence into the brain. In addition to transducing mechanical inputs, hair cells amplify them by two means. Channel gating endows a hair bundle with negative stiffness, an instability that interacts with the motor protein myosin-1c to produce a mechanical amplifier and oscillator. Acting through the piezoelectric membrane protein prestin, electrical responses also cause outer hair cells to elongate and shorten, thus pumping energy into the basilar membrane's movements. The two forms of motility constitute an active process that amplifies mechanical inputs, sharpens frequency discrimination, and confers a compressive nonlinearity on responsiveness. These features arise

  14. Basilar expansion of the human sphenoidal sinus: an integrated anatomical and computerized tomography study

    International Nuclear Information System (INIS)

    Haetinger, Rainer G.; Navarro, Joao A.C.; Liberti, Edson A.

    2006-01-01

    Basilar expansion of the sphenoidal sinus (BESS) was studied in order to demonstrate its critical relevance in endoscopic or microscopic endonasal surgical interventions, including access to the sphenoidal sinus itself or in transsphenoidal pituitary approaches. Direct evaluation of anatomical specimens (25 dry skulls and 25 formalin-fixed hemi heads) and the use of computerized tomography (CT) (50 dry skulls and 750 patients) showed a high BESS frequency (69%). The authors considered BESS to be critical when the posterior wall of the clivus was 2-mm thick and found a high incidence of this important anatomical variation (44%). This study also evaluated the relationship between the sinonasal septa, the clivus, and the internal carotid arteries, and a considerable regularity in the location of these structures was seen. The septa were anatomically related to the internal carotid arteries in 55% and to the clivus in 33% of the cases. In conclusion, the high frequency of critical BESS here described is relevant to endoscopic or microscopic endonasal surgical interventions, including access to the sphenoidal sinus itself or in transsphenoidal pituitary approaches. (orig.)

  15. Persistent Neutrophilic Meningitis in an Immunocompetent Patient after Basilar Skull Fracture: Case Report

    Directory of Open Access Journals (Sweden)

    Uslan Daniel Z

    2011-05-01

    Full Text Available Abstract Background Persistent neutrophilic meningitis is an unusual form of chronic meningitis that is defined as clinical meningitis with a neutrophilic pleocytosis that persists for greater than 7 days despite empiric antimicrobial therapy. Although numerous disease processes can cause this syndrome, the majority of cases are due to opportunistic pathogens infecting immunocompromised hosts. Case Presentation A 47 year-old female presented after basilar skull fracture with persistent neutrophilic meningitis unresponsive to empiric broad-spectrum antibiotics. After more than weeks of intensive therapy, 4 hospitalizations and 3 relapses, Nocardia cyriacigeorgica was identified from cerebral spinal fluid. Induction therapy was begun with Ceftriaxone and trimethoprim-sulfamethoxazole (TMP-SMX for 6 weeks followed by therapy with TMP-SMX and doxycycline for one year. The patient made a complete recovery without sequelae. Conclusions Due to the difficulty in obtaining a microbiologic diagnosis, appropriate treatment in cases of persistent neutrophilic meningitis is often delayed leading to morbidity, This case highlights a number of the unique features of Nocardia meningitis and the importance of considering Nocardia infection as a cause of persistent neutrophilic meningitis even in immunocompetent patients.

  16. Complicações pós-operatórias em 139 casos de impressão basilar e/ou malformação de Arnold-Chiari

    Directory of Open Access Journals (Sweden)

    José Alberto Gonçalves da Silva

    1981-09-01

    Full Text Available No presente trabalho, foram analisadas as complicações pós-operatórias observadas em 139 casos de impressão basilar e/ou malformação de Arnold-Chiari. Os autores chamam a atenção para a menor ocorrência de complicações e de mortalidade verificadas nos pacientes que foram submetidos à plástica da dura-mater da fossa posterior.

  17. Design of a new electrode array for cochlear implants

    International Nuclear Information System (INIS)

    Kha, H.; Chen, B.

    2010-01-01

    Full text: This study aims to design a new electrode array which can be precisely located beneath the basilar membrane within the cochlear scala tympani. This placement of the electrode array is beneficial for increasing the effectiveness of the electrical stimulation of the audi tory nerves and maximising the growth factors delivered into the cochlea for regenerating the progressively lost auditory neurons, thereby significantly improving performance of the cochlear implant systems. Methods The design process involved two steps. First, the biocom patible nitinol-based shape memory alloy, of which mechanical deformation can be controlled using electrical cUTents/fields act vated by body temperature, was selected. Second, five different designs of the electrode array with embedded nitinol actuators were studied (Table I). The finite element method was employed to predict final positions of these electrode arrays. Results The electrode array with three 6 mm actuators at 2-8, 8-J4 and 14-20 mm from the tip (Fig. I) was found to be located most closely to the basilar membrane, compared with those in the other four cases. Conclusions A new nitinol cochlear implant electrode array with three embedded nitinol actuators has been designed. This electrode array is expected to be located beneath the basilar membrane for maximising the delivery of growth factors. Future research will involve the manufacturing of a prototype of this electrode array for use in insertion experiments and neurotrophin release tests.

  18. The effect of compression on tuning estimates in a simple nonlinear auditory filter model

    DEFF Research Database (Denmark)

    Marschall, Marton; MacDonald, Ewen; Dau, Torsten

    2013-01-01

    Behavioral experiments using auditory masking have been used to characterize frequency selectivity, one of the basic properties of the auditory system. However, due to the nonlinear response of the basilar membrane, the interpretation of these experiments may not be straightforward. Specifically,...

  19. [Exploratory study of 3D printing technique in the treatment of basilar invagination and atlantoaxial dislocation].

    Science.gov (United States)

    Yin, Yiheng; Yu, Xinguang; Tong, Huaiyu; Xu, Tao; Wang, Peng; Qiao, Guangyu

    2015-10-06

    To investigate the clinical application value of the 3D printing technique in the treatment of basilar invagination and atlantoaxial dislocation. From January 2013 to September 2013, 10 patients with basilar invagination and atlantoaxial dislocation needing posterior fixation undertook 3D printing modes at the Department of Neurosurgery in PLA General Hospital. The 1:1 size models were established from skull base to C4 level with different colors between bone structures and vertebral arteries. The simulation of screw insertion was made to investigate the fixation plan and ideal entry point to avoid vertebral artery injury. After obtaining the individual screw insertion data in 3D printing modes, the according surgical operations were performed. The actual clinical results and virtual screw data in 3D printing mode were compared with each other. The 3D printing modes revealed that all the 10 patients had the dysplasia or occipitalized C1 posterior arch indicating C1 posterior arch screw implantation was not suitable. C1 lateral masses were chosen as the screws entry points. C2 screws were designed individually based on the 3D printing modes as follows: 3 patients with aberrant vertebral artery or narrow C2 pedicle less than 3.5 mm were not suitable for pedicle screw implantation. Among the 3 patients, 1 was fixed with C2 laminar screw, and 1 with C2-3 transarticular screw and 1 with C3 pedicle screw (also combined with congenital C2-3 vertebral fusion). Two patients with narrow C2 pedicle between 3.5 and 4mm were designed to choose pedicle screw fixation after 3D printing mode evaluation. One patient with C1 lateral mass vertically dislocated axis was planned with C1-2 transarticular screw fixation. All the other patients were planned with C2 pedicle screws. All the 10 patients had operation designed as the 3D printing modes schemes. The follow-up ranged from 12 to 18 months and all the patients recovered from the clinical symptoms and the bony fusion attained to

  20. Impact of posterior communicating artery on basilar artery steno-occlusive disease.

    Science.gov (United States)

    Hong, J M; Choi, J Y; Lee, J H; Yong, S W; Bang, O Y; Joo, I S; Huh, K

    2009-12-01

    Acute brainstem infarction with basilar artery (BA) occlusive disease is the most fatal type of all ischaemic strokes. This report investigates the prognostic impact of the posterior communicating artery (PcoA) and whether its anatomy is a safeguard or not. Consecutive patients who had acute brainstem infarction with at least 50% stenosis of BA upon CT angiography (CTA) were studied. The configuration of PcoA was divided into two groups upon CTA: "textbook" group (invisible PcoA with good P1 and P2 segment) and "fetal-variant of PcoA" group (only visible PcoA with absent P1 segment). Baseline demographics, radiological findings and stroke mechanisms were analysed. A multiple regression analysis was performed to predict clinical outcome at 30 days (modified Rankin disability Scale (mRSPcoA (26 bilateral, 18 unilateral). By multiple logistic regression analysis, the atherosclerotic mechanism (OR 18.0; 95% CI 3.0 to 107.0) and presence of fetal-variant PcoA (OR 5.1; 95% CI 1.4 to 18.8) were independent predictors for good prognosis and initial NIH stroke scale score (OR 1.24 per one-point increase; 95% CI 1.1 to 1.4) for poor prognosis. Fetal-variant PcoA appears to act as a safeguard against ischaemic insult in acute stroke victims involving the brainstem with BA occlusive disease. This result can be explained by the fact that patients with fetal-variant PcoA have a smaller area of posterior circulation and a possibility of retrograde filling into the upper brainstem through the fetal-variant PcoA.

  1. Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea.

    Directory of Open Access Journals (Sweden)

    Mark E Warchol

    Full Text Available Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.

  2. Membrane voltage changes in passive dendritic trees: a tapering equivalent cylinder model.

    Science.gov (United States)

    Poznański, R R

    1988-01-01

    An exponentially tapering equivalent cylinder model is employed in order to approximate the loss of the dendritic trunk parameter observed from anatomical data on apical and basilar dendrites of CA1 and CA3 hippocampal pyramidal neurons. This model allows dendritic trees with a relative paucity of branching to be treated. In particular, terminal branches are not required to end at the same electrotonic distance. The Laplace transform method is used to obtain analytic expressions for the Green's function corresponding to an instantaneous pulse of current injected at a single point along a tapering equivalent cylinder with sealed ends. The time course of the voltage in response to an arbitrary input is computed using the Green's function in a convolution integral. Examples of current input considered are (1) an infinitesimally brief (Dirac delta function) pulse and (2) a step pulse. It is demonstrated that inputs located on a tapering equivalent cylinder are more effective at the soma than identically placed inputs on a nontapering equivalent cylinder. Asymptotic solutions are derived to enable the voltage response behaviour over both relatively short and long time periods to be analysed. Semilogarithmic plots of these solutions provide a basis for estimating the membrane time constant tau m from experimental transients. Transient voltage decrement from a clamped soma reveals that tapering tends to reduce the error associated with inadequate voltage clamping of the dendritic membrane. A formula is derived which shows that tapering tends to increase the estimate of the electrotonic length parameter L.

  3. Modulation of cochlear tuning by low-frequency sound

    NARCIS (Netherlands)

    Klis, J.F.L.; Prijs, V.F.; Latour, J.B.; Smoorenburg, G.F.

    1988-01-01

    An intense, low-frequency tone (about 30 Hz) modulates the sensitivity of the inner ear to high-frequency stimulation. This modulation is correlated with the displacement of the basilar membrane. The findings suggest that the modulation may also affect cochlear tuning. We have investigated

  4. Osteogenesis imperfecta in childhood: MR imaging of basilar impression

    Energy Technology Data Exchange (ETDEWEB)

    Janus, G.J.M. E-mail: janus@knmg.nl; Engelbert, R.H.H.; Beek, E.; Gooskens, R.H.J.M.; Pruijs, J.E.H

    2003-07-01

    Objective: To determine on radiographs the presence of Basilar Impression (BI) in children with Osteogenesis Imperfecta (OI). To confirm this sign and altered geometrical relationships of the craniocervical junction in course of time with magnetic resonance imaging (MRI). Methods and patients: In a cohort study of 130 patients with OI (OI type I: 85; OI type III: 21; OI type IV: 24) lateral radiographs of the skull and cervical spine were made in a standardised way. MRI scans were performed when BI was suspected based upon protrusion of the odontoid above Chamberlain's line. Intracranial abnormalities as well as the basal angle were described. Neurological examination was performed in patients with conclusive BI at MRI-scan. Results and discussion: In eight patients BI could be confirmed by MRI-scan. None of the children had or developed in time neurological symptoms or signs. Follow up of BI by MRI scans was done in seven patients (mean: 5 years; range: 2-6 years). No alteration of intracranial findings were seen at subsequent investigation, although in one child Chamberlain's line increased from 8 (first MRI) to 15 mm (last MRI). BI can be diagnosed by radiographs but in the extreme osteoporotic bone and altered anatomy of the craniocervical junction of children with OI MRI is preferable. As intracranial pathology can be demonstrated by MRI, also a relation can be laid to possible neurological symptoms and signs at clinical examination. Conclusion: In our cohort study no alteration of the intracranial contents was seen at subsequent MRI scans. Although anatomic deformations exist in BI, no neurological symptoms or signs were present in our study and no operative reconstruction had to be performed. Periodical MRI-scan has not been of influence on the clinical decision making process. At the moment we perform a MRI-scan if BI is suspected at lateral skull radiographs. The MRI images serve as reference findings to anticipate on possible future symptoms and

  5. Osteogenesis imperfecta in childhood: MR imaging of basilar impression

    International Nuclear Information System (INIS)

    Janus, G.J.M.; Engelbert, R.H.H.; Beek, E.; Gooskens, R.H.J.M.; Pruijs, J.E.H.

    2003-01-01

    Objective: To determine on radiographs the presence of Basilar Impression (BI) in children with Osteogenesis Imperfecta (OI). To confirm this sign and altered geometrical relationships of the craniocervical junction in course of time with magnetic resonance imaging (MRI). Methods and patients: In a cohort study of 130 patients with OI (OI type I: 85; OI type III: 21; OI type IV: 24) lateral radiographs of the skull and cervical spine were made in a standardised way. MRI scans were performed when BI was suspected based upon protrusion of the odontoid above Chamberlain's line. Intracranial abnormalities as well as the basal angle were described. Neurological examination was performed in patients with conclusive BI at MRI-scan. Results and discussion: In eight patients BI could be confirmed by MRI-scan. None of the children had or developed in time neurological symptoms or signs. Follow up of BI by MRI scans was done in seven patients (mean: 5 years; range: 2-6 years). No alteration of intracranial findings were seen at subsequent investigation, although in one child Chamberlain's line increased from 8 (first MRI) to 15 mm (last MRI). BI can be diagnosed by radiographs but in the extreme osteoporotic bone and altered anatomy of the craniocervical junction of children with OI MRI is preferable. As intracranial pathology can be demonstrated by MRI, also a relation can be laid to possible neurological symptoms and signs at clinical examination. Conclusion: In our cohort study no alteration of the intracranial contents was seen at subsequent MRI scans. Although anatomic deformations exist in BI, no neurological symptoms or signs were present in our study and no operative reconstruction had to be performed. Periodical MRI-scan has not been of influence on the clinical decision making process. At the moment we perform a MRI-scan if BI is suspected at lateral skull radiographs. The MRI images serve as reference findings to anticipate on possible future symptoms and signs of

  6. Basilar-membrane modularity and the growth of forward masking

    NARCIS (Netherlands)

    Plack, C.J.; Oxenham, A.J.

    1998-01-01

    Forward masking growth functions were measured for pure-tone maskers and signals at 2 and 6 kHz as a function of the silent interval between the masker and signal. The inclusion of conditions involving short signals and short masker-signal intervals ensured that a wide range of signal thresholds

  7. Impressão basilar e malformação de Arnold-Chiari: considerações técnico-cirúrgicas a propósito de 13 casos

    Directory of Open Access Journals (Sweden)

    José A. Gonçalves da Silva

    1978-03-01

    Full Text Available Os autores empregaram detalhes técnicos pessoais para descompressão da fossa posterior em casos de impressão basilar e/ou maliormação de Arnold-Chiari, consistente em intuoação endotraqueal sem retroflexão da cabeça do paciente, sendo o mesmo operado em posição sentada e com a cabeça ereta. Foi realizada plástica da paquimeninge da fossa posterior com dura-mater de cadáver conservada em glicerina.

  8. Cochlear anatomy shapes sensitivity to low-frequency sounds

    DEFF Research Database (Denmark)

    Marquardt, Torsten; Pedersen, Christian Sejer

    2010-01-01

    changes rather sharply by 6 dB per octave. These transfer characteristics of the pressure in the ear canal to the differential pressure across the basilar membrane are presumably caused by the shunting effect of the helicotrema - a small connection between scala vestibule and scala tympani at the apical...

  9. The Influence of the Helicotrema on Low-Frequency Hearing

    DEFF Research Database (Denmark)

    Marquardt, Torsten; Pedersen, Christian Sejer

    2010-01-01

    Below a certain stimulus frequency, the travelling wave reaches the apical end of the cochlea and differential pressure across the basilar membrane (BM) is shunted by the helicotrema. The effect on the forward-middle-ear-transfer function (fMETF) could be measured on both ears of five human...

  10. Pontine infarction induced by injury of the perforating branch of the basilar artery after blunt head impact: case report.

    Science.gov (United States)

    Yanagawa, Youichi; Iwamoto, Shin-ichiro; Nishi, Kouichirou

    2008-08-01

    A 77-year-old male pedestrian was hit by a car. On admission, he had disturbance of consciousness and left hemiplegia. Computed tomography (CT) indicated only left frontal subcutaneous hematoma and minor hemorrhage in the left frontal lobe, suggesting axonal injury. CT on hospital day 2 revealed a low density area in the right paramedian pons, but CT angiography showed no dissection or occlusion of the vertebrobasilar artery. The diagnosis was pontine infarction resulting from shearing force injury to the paramedian branch of the basilar artery. He was transferred to another hospital for rehabilitation without improvement of symptoms on hospital day 51. Paramedian pontine infarction tends to occur in patients with risk factors for arteriosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, or smoking. The present elderly patient had hypertension and hyperlipidemia, so arteriosclerosis in the paramedian branch may have contributed to his susceptibility to such injury.

  11. Modeling DPOAE input/output function compression: comparisons with hearing thresholds.

    Science.gov (United States)

    Bhagat, Shaum P

    2014-09-01

    Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Normal-hearing adults (n = 16) aged 22-42 yr were recruited. DPOAE I/O functions (L₂ = 45-70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1-2 kHz frequency range. American Academy of Audiology.

  12. Clustering of Cochlear Oscillations in Frequency Plateaus as a Tool to Investigate SOAE Generation

    DEFF Research Database (Denmark)

    Epp, Bastian; Wit, Hero; van Dijk, Pim

    2016-01-01

    of coupled oscillators (OAM) [7] are also found in a transmission line model (TLM) which is able to generate realistic SOAEs [2] and if these frequency plateaus can be used to explain the formation of SOAEs. The simulations showed a clustering of oscillators along the simulated basilar membrane Both, the OAM...

  13. Searching for the optimal stimulus eliciting auditory brainstem responses in humans

    DEFF Research Database (Denmark)

    Fobel, Oliver; Dau, Torsten

    2004-01-01

    -chirp, was based on estimates of human basilar membrane (BM) group delays derived from stimulus-frequency otoacoustic emissions (SFOAE) at a sound pressure level of 40 dB [Shera and Guinan, in Recent Developments in Auditory Mechanics (2000)]. The other chirp, referred to as the A-chirp, was derived from latency...

  14. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  15. Cochlear spike synchronization and neuron coincidence detection model

    Science.gov (United States)

    Bader, Rolf

    2018-02-01

    Coincidence detection of a spike pattern fed from the cochlea into a single neuron is investigated using a physical Finite-Difference model of the cochlea and a physiologically motivated neuron model. Previous studies have shown experimental evidence of increased spike synchronization in the nucleus cochlearis and the trapezoid body [Joris et al., J. Neurophysiol. 71(3), 1022-1036 and 1037-1051 (1994)] and models show tone partial phase synchronization at the transition from mechanical waves on the basilar membrane into spike patterns [Ch. F. Babbs, J. Biophys. 2011, 435135]. Still the traveling speed of waves on the basilar membrane cause a frequency-dependent time delay of simultaneously incoming sound wavefronts up to 10 ms. The present model shows nearly perfect synchronization of multiple spike inputs as neuron outputs with interspike intervals (ISI) at the periodicity of the incoming sound for frequencies from about 30 to 300 Hz for two different amounts of afferent nerve fiber neuron inputs. Coincidence detection serves here as a fusion of multiple inputs into one single event enhancing pitch periodicity detection for low frequencies, impulse detection, or increased sound or speech intelligibility due to dereverberation.

  16. Hyperdense basilar artery sign diagnoses acute posterior circulation stroke and predicts short-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoping [Affiliated Hospital of China Medical University at Shenyang, Department of Neurology, Shengjing Hospital, Shenyang (China); Guo, Yang [Shengjing Hospital, Department of Neurology, Shenyang (China)

    2010-12-15

    It is well established that the hyperdense middle cerebral artery sign is a specific marker for early ischemia in anterior circulation. However, little is known about the hyperdense basilar artery sign (HDBA) in posterior circulation. Our aim was to determine whether the HDBA sign has utility in early diagnosis of acute posterior circulation stroke and prediction of short-term outcome. Three-blinded readers examined unenhanced computed tomography scans for the HDBA sign, and materials were classified into two groups according to this sign. Vascular risk factors, admission and discharge National Institute of Health Stroke Scale (NIHSS) scores, short-term outcome, and radiological findings between the two groups were compared. One hundred and twenty-six cases of acute posterior circulation stroke (PCS) were included in the study. No statistically significant differences were found in risk factors of ischemic stroke, except atrial fibrillation (P = 0.025). Admission and discharge NIHSS scores for the positive HDBA group were significantly higher than scores for the negative HDBA group (P = 0.001, 0.002, respectively). The infarction territory for the positive HDBA group was mainly multi-region in nature (51.6%, P < 0.001), while the negative HDBA group showed mainly middle territory infarction. Significant independent predictors of short-term outcome included the HDBA sign (P < 0.001) and admission NIHSS scores (P < 0.001). Approximately half of the HDBA patients showed multi-region infarction and a serious neurological symptom. Based on our results, this sign might not only be helpful in early diagnosis of acute PCS but also be able to correlate with a poor short-term outcome. (orig.)

  17. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  18. Incremental Value of Plaque Enhancement in Patients with Moderate or Severe Basilar Artery Stenosis: 3.0 T High-Resolution Magnetic Resonance Study.

    Science.gov (United States)

    Wang, Wanqian; Yang, Qi; Li, Debiao; Fan, Zhaoyang; Bi, Xiaoming; Du, Xiangying; Wu, Fang; Wu, Ye; Li, Kuncheng

    2017-01-01

    To investigate the clinical relevance of plaque's morphological characteristics and distribution pattern using 3.0 T high-resolution magnetic resonance imaging (HRMRI) in patients with moderate or severe basilar artery (BA) atherosclerosis stenosis. Fifty-seven patients (33 symptomatic patients and 24 asymptomatic patients) were recruited for 3.0 T HRMRI scan; all of them had >50% stenosis on the BA. The intraplaque hemorrhage (IPH), contrast-enhancement pattern, and distribution of BA plaques were compared between the symptomatic and asymptomatic groups. Factors potentially associated with posterior ischemic stroke were calculated by multivariate analyses. Enhancement of BA plaque was more frequently observed in symptomatic than in asymptomatic patients (27/33, 81.8% versus 11/24, 45.8%; p 50%. Plaques were mainly distributed at the ventral site (39.3%) or involved more than two arcs (21.2%) in the symptomatic group but were mainly distributed at left (33.3%) and right (25.0%) sites in the asymptomatic group.

  19. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  20. Stanford Center for Military Photomedicine

    Science.gov (United States)

    2014-09-08

    minimally invasive insertion into the scala tympani of a ‘needle-like’ 500-µm- or 1000-µm-diameter microendoscope. These probes are composed of gradient...micropipette infused fluorescent dye into the scala media, the fluid bathing the hair cells (labeled green), via a pinhole cochleostomy that was later...sealed. The microendoscope entered via a cochleostomy in the scala tympani and was situated beneath, but did not contact, the basilar membrane during

  1. Representation and Processing of Acoustic Information in a Biomimetic Neural Network

    Science.gov (United States)

    1992-01-01

    stiffness and size of the basilar membrane. According to part of the trial each frequency bin was set to a small tis equation, th. iuwirn ate...Incorporation of Moore (Eds.), Animal Sonar: Processes and even a small portion of their capabilities in aitificial systems performance (pp. 753-768...Processes, 16, 85-95. Tonempfindungen alsphysiologische Grundlage Thompson, R. K. R. & Herman, L M. (1975) Underwater fur die Theorie der Musik . frequency

  2. Association between an aplastic basilar artery, unaccompanied by a primitive carotid-vertebrobasilar anastomosis, and multiple aneurysms on the dominant posterior communicating artery.

    Science.gov (United States)

    Behari, Sanjay; Krishna, Himanshu; Kumar, Marakani V Kiran; Sawlani, Vijay; Phadke, Rajendra V; Jain, Vijendra K

    2004-05-01

    Basilar artery (BA) aplasia when unaccompanied by a primitive carotid-vertebrobasilar anastomosis is exceedingly rare. The association of BA aplasia with two aneurysms on the dominant posterior communicating artery (PCoA) has not been previously reported. This 40-year-old man presented in a state of drowsiness and responded to simple commands only after being coaxed. He had complete left cranial third nerve palsy, right hemiparesis, and persisting signs of meningeal irritation. A computerized tomography (CT) scan revealed subarachnoid and intraventricular hemorrhage. An angiogram revealed BA aplasia. The right PCoA followed a sinuous course with multiple loops and provided the dominant supply to the posterior circulation. This vessel harbored two aneurysms, one at the origin of the PCoA from the internal carotid artery and the other at the looping segment just proximal to the brainstem. The left PCoA was extremely thin. The pterional transsylvian approach was used to clip the two aneurysms on the PCoA. The hemodynamic changes produced by the BA aplasia may have produced alterations in the cerebral vasculature leading to aneurysm formation and consequent subarachnoid hemorrhage.

  3. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  4. Hypercapnic vasodilatation in isolated rat basilar arteries is exerted via low pH and does not involve nitric oxide synthase stimulation or cyclic GMP production

    DEFF Research Database (Denmark)

    You, J P; Wang, Qian; Zhang, W

    1994-01-01

    this relaxation by 54% and 70%, respectively. The effect of L-NOARG was completely reversed by L-arginine. Blockade of nerve excitation with tetrodotoxin (TTX) had no affect on the 15% CO2 elicited vasodilatation. Measurements of cGMP in vessel segments showed no significant increase in cGMP content in response...... to hypercapnia. L-NOARG and MB, but not TTX, significantly reduced the basal cGMP content in cerebral vessels. Adding 1.5% halothane to the incubation medium did not result in a significant increase in cGMP content. Lowering the pH by cumulative application of 0.12 M HCl resulted in relaxation identical...... elicits vasodilatation of isolated rat basilar arteries by a mechanism independent of nitric oxide synthase (NOS) activity. The markedly reduced basal cGMP levels in cerebral vessels by L-NOARG and MB suggest that there exists a basal NO formation in the cerebral vessel wall....

  5. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.; Choi, Seung Hak

    2012-01-01

    . The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane

  6. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  7. Long term effects of BAPTA in scala media on cochlear function.

    Science.gov (United States)

    Sellick, Peter M

    2007-09-01

    BAPTA was iontophoresed or allowed to diffuse into the scala media of the first turn of the guinea pig cochlea via pipettes inserted through the round window and basilar membrane. Cochlear action potential (CAP) thresholds for basal turn frequencies were elevated, scala media cochlear microphonic in response to a 207Hz tone were drastically reduced and the distortion products 2f1-f2 and f2-f2 in response to primaries set at 18 and 21.6kHz were eliminated or severely reduced. The animals were recovered and the above measurements repeated between 24 and 240h after the application of BAPTA. In all animals thresholds for basal turn frequencies remained elevated, and the distortion components were severely reduced. The endolymphatic potential (EP), measured through the basilar membrane on recovery, was not significantly different from the values measured before BAPTA was applied. If the effect of BAPTA, in lowering endolymphatic Ca(2+) concentration, is restricted to the destruction of tip links, as has been shown in many other preparations, then these results suggest that this effect has permanent consequences, either because the tip links failed to regenerate or because their destruction precipitated the degeneration of OHCs. These results may have a bearing on the mechanisms behind permanent threshold shift.

  8. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): Pore blocking model and membrane cleaning.

    Science.gov (United States)

    Zheng, Yi; Zhang, Wenxiang; Tang, Bing; Ding, Jie; Zheng, Yi; Zhang, Zhien

    2018-02-01

    Biofilm membrane bioreactor (BF-MBR) is considered as an important wastewater treatment technology that incorporates advantages of both biofilm and MBR process, as well as can alleviate membrane fouling, with respect to the conventional activated sludge MBR. But, to be efficient, it necessitates the establishment of proper methods for the assessment of membrane fouling. Four Hermia membrane blocking models were adopted to quantify and evaluate the membrane fouling of BF-MBR. The experiments were conducted with various operational conditions, including membrane types, agitation speeds and transmembrane pressure (TMP). Good agreement between cake formation model and experimental data was found, confirming the validity of the Hermia models for assessing the membrane fouling of BF-MBR and that cake layer deposits on membrane. Moreover, the influences of membrane types, agitation speeds and transmembrane pressure on the Hermia pore blocking coefficient of cake layer were investigated. In addition, the permeability recovery after membrane cleaning at various operational conditions was studied. This work confirms that, unlike conventional activated sludge MBR, BF-MBR possesses a low degree of membrane fouling and a higher membrane permeability recovery after cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Insertion characteristics and placement of the Mid-Scala electrode array in human temporal bones using detailed cone beam computed tomography.

    Science.gov (United States)

    Dietz, Aarno; Gazibegovic, Dzemal; Tervaniemi, Jyrki; Vartiainen, Veli-Matti; Löppönen, Heikki

    2016-12-01

    The aim of this study was to evaluate the insertion results and placement of the new Advanced Bionics HiFocus Mid-Scala (HFms) electrode array, inserted through the round window membrane, in eight fresh human temporal bones using cone beam computed tomography (CBCT). Pre- and post-insertion CBCT scans were registered to create a 3D reconstruction of the cochlea with the array inserted. With an image fusion technique both the bony edges of the cochlea and the electrode array in situ could accurately be determined, thus enabling to identify the exact position of the electrode array within the scala tympani. Vertical and horizontal scalar location was measured at four points along the cochlea base at an angular insertion depth of 90°, 180° and 270° and at electrode 16, the most basal electrode. Smooth insertion through the round window membrane was possible in all temporal bones. The imaging results showed that there were no dislocations from the scala tympani into the scala vestibule. The HFms electrode was positioned in the middle of the scala along the whole electrode array in three out of the eight bones and in 62 % of the individual locations measured along the base of the cochlea. In only one cochlea a close proximity of the electrode with the basilar membrane was observed, indicating possible contact with the basilar membrane. The results and assessments presented in this study appear to be highly accurate. Although a further validation including histopathology is needed, the image fusion technique described in this study represents currently the most accurate method for intracochlear electrode assessment obtainable with CBCT.

  10. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  11. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  13. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  14. Gel layer formation on membranes in Membrane Bioreactors

    NARCIS (Netherlands)

    Van den Brink, P.F.H.

    2014-01-01

    The widespread application of membrane bioreactors (MBRs) for municipal wastewater treatment is hampered by membrane fouling. Fouling increases energy demand, reduces process performance and creates the need for more frequent (chemical) membrane cleaning or replacement. Membrane fouling in MBRs is

  15. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  16. Flux Enhancement in Membrane Distillation Using Nanofiber Membranes

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2016-01-01

    Full Text Available Membrane distillation (MD is an emerging separation technology, whose largest application potential lies in the desalination of highly concentrated solutions, which are out of the scope of reverse osmosis. Despite many attractive features, this technology is still awaiting large industrial application. The main reason is the lack of commercially available membranes with fluxes comparable to reverse osmosis. MD is a thermal separation process driven by a partial vapour pressure difference. Flux, distillate purity, and thermal efficiency are always in conflict, all three being strictly connected with pore size, membrane hydrophobicity, and thickness. The world has not seen the ideal membrane yet, but nanofibers may offer a solution to these contradictory requirements. Membranes of electrospun PVDF were tested under various conditions on a direct contact (DCMD unit, in order to determine the optimum conditions for maximum flux. In addition, their performance was compared to commonly available PTFE, PE, and PES membranes. It was confirmed that thinner membranes have higher fluxes and a lower distillate purity and also higher energy losses via conduction across the membrane. As both mass and heat transfer are connected, it is best to develop new membranes with a target application in mind, for the specific membrane module and operational conditions.

  17. Evaluation of the Effects of Sildenafil Citrate (Viagra) on Vertebral Artery Blood Flow in Patients with Vertebro-Basilar Insufficiency

    International Nuclear Information System (INIS)

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Ogur, Erkin; Tekatas, Aslan

    2008-01-01

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 ± 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm 2 to 10.80 cm 2 at 45 minutes and 10.81 cm 2 at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs

  18. Evaluation of the effects of sildenafil citrate (viagra) on vertebral artery blood flow in patients with vertebro-basilar insufficiency.

    Science.gov (United States)

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Tekatas, Aslan; Ogur, Erkin

    2008-01-01

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 +/- 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm(2) to 10.80 cm(2) at 45 minutes and 10.81 cm(2) at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs.

  19. Evaluation of the Effects of Sildenafil Citrate (Viagra) on Vertebral Artery Blood Flow in Patients with Vertebro-Basilar Insufficiency

    Energy Technology Data Exchange (ETDEWEB)

    Bozgeyik, Zulkif; Berilgen, Sait; Ozdemir, Huseyin; Ogur, Erkin [Firat University School of Medicine, Elazig(Turkmenistan); Tekatas, Aslan [Elazig Government Hospital, Elazig (Turkmenistan)

    2008-12-15

    To investigate the effects of sildenafil citrate (Viagra) on the vertebral artery blood flow of patients with vertebro-basilar insufficiency (VBI) using color duplex sonography (CDS). The study included 21 patients with VBI (aged 31-76; mean 61.0 +- 10.5 yrs). We administered a 50 mg oral dose of sildenafil citrate to all patients. Next, we measured the peak systolic velocity (Vmax), end diastolic velocity (Vmin), resistive index (RI), pulsatility index (PI), diameter, area, and flow volume (FV) of vertebral arteries using CDS before the administration of sildenafil citrate; 45 minutes after, and 75 minutes after administration. Statistical testing was performed using SPSS for windows version 11.0. The statistical test used to determine the outcome of the analysis was the repeated measures analysis of variance (ANOVA) test. Compared to the baseline values, the vertebral artery diameter, area, and FV increased significantly following the administration of sildenafil citrate. The diameter, area and FV increased from 3.39 mm at 45 minutes to 3.64 mm at 75 minutes, 9.43 cm{sup 2} to 10.80 cm{sup 2} at 45 minutes and 10.81 cm{sup 2} at 75 minutes, as well as from 0.07 L/min at baseline to 0.09 L/min at 45 minutes and unchanged at 75 minutes, respectively. Sildenafil citrate elicited a significant effect on vertebral artery diameter, area and FVs

  20. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  1. Alternative energy efficient membrane bioreactor using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, J; Smith, S; Roh, H K

    2014-01-01

    A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m(2)/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m(3) permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m(3)). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.

  2. Diagnostic and Prognostic Impact of pc-ASPECTS Applied to Perfusion CT in the Basilar Artery International Cooperation Study.

    Science.gov (United States)

    Pallesen, Lars-Peder; Gerber, Johannes; Dzialowski, Imanuel; van der Hoeven, Erik J R J; Michel, Patrik; Pfefferkorn, Thomas; Ozdoba, Christoph; Kappelle, L Jaap; Wiedemann, Baerbel; Khomenko, Andrei; Algra, Ale; Hill, Michael D; von Kummer, Ruediger; Demchuk, Andrew M; Schonewille, Wouter J; Puetz, Volker

    2015-01-01

    The posterior circulation Acute Stroke Prognosis Early CT Score (pc-APECTS) applied to CT angiography source images (CTA-SI) predicts the functional outcome of patients in the Basilar Artery International Cooperation Study (BASICS). We assessed the diagnostic and prognostic impact of pc-ASPECTS applied to perfusion CT (CTP) in the BASICS registry population. We applied pc-ASPECTS to CTA-SI and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) parameter maps of BASICS patients with CTA and CTP studies performed. Hypoattenuation on CTA-SI, relative reduction in CBV or CBF, or relative increase in MTT were rated as abnormal. CTA and CTP were available in 27/592 BASICS patients (4.6%). The proportion of patients with any perfusion abnormality was highest for MTT (93%; 95% confidence interval [CI], 76%-99%), compared with 78% (58%-91%) for CTA-SI and CBF, and 46% (27%-67%) for CBV (P < .001). All 3 patients with a CBV pc-ASPECTS < 8 compared to 6/23 patients with a CBV pc-ASPECTS ≥ 8 had died at 1 month (RR 3.8; 95% CI, 1.9-7.6). CTP was performed in a minority of the BASICS registry population. Perfusion disturbances in the posterior circulation were most pronounced on MTT parameter maps. CBV pc-ASPECTS < 8 may indicate patients with high case fatality. Copyright © 2014 by the American Society of Neuroimaging.

  3. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  4. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission

    DEFF Research Database (Denmark)

    Verhulst, Sarah; Dau, Torsten; Shera, Christopher A.

    2012-01-01

    This paper describes the implementation and performance of a nonlinear time-domain model of the cochlea for transient stimulation and human otoacoustic emission generation. The nonlinearity simulates compressive growth of measured basilar-membrane impulse responses. The model accounts...... for reflection and distortion-source otoacoustic emissions (OAEs) and simulates spontaneous OAEs through manipulation of the middle-ear reflectance. The model was calibrated using human psychoacoustical and otoacoustic tuning parameters. It can be used to investigate time-dependent properties of cochlear...

  5. Giant plasma membrane vesicles: models for understanding membrane organization.

    Science.gov (United States)

    Levental, Kandice R; Levental, Ilya

    2015-01-01

    The organization of eukaryotic membranes into functional domains continues to fascinate and puzzle cell biologists and biophysicists. The lipid raft hypothesis proposes that collective lipid interactions compartmentalize the membrane into coexisting liquid domains that are central to membrane physiology. This hypothesis has proven controversial because such structures cannot be directly visualized in live cells by light microscopy. The recent observations of liquid-liquid phase separation in biological membranes are an important validation of the raft hypothesis and enable application of the experimental toolbox of membrane physics to a biologically complex phase-separated membrane. This review addresses the role of giant plasma membrane vesicles (GPMVs) in refining the raft hypothesis and expands on the application of GPMVs as an experimental model to answer some of key outstanding problems in membrane biology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  7. Piezoelectric materials mimic the function of the cochlear sensory epithelium.

    Science.gov (United States)

    Inaoka, Takatoshi; Shintaku, Hirofumi; Nakagawa, Takayuki; Kawano, Satoyuki; Ogita, Hideaki; Sakamoto, Tatsunori; Hamanishi, Shinji; Wada, Hiroshi; Ito, Juichi

    2011-11-08

    Cochlear hair cells convert sound vibration into electrical potential, and loss of these cells diminishes auditory function. In response to mechanical stimuli, piezoelectric materials generate electricity, suggesting that they could be used in place of hair cells to create an artificial cochlear epithelium. Here, we report that a piezoelectric membrane generated electrical potentials in response to sound stimuli that were able to induce auditory brainstem responses in deafened guinea pigs, indicating its capacity to mimic basilar membrane function. In addition, sound stimuli were transmitted through the external auditory canal to a piezoelectric membrane implanted in the cochlea, inducing it to vibrate. The application of sound to the middle ear ossicle induced voltage output from the implanted piezoelectric membrane. These findings establish the fundamental principles for the development of hearing devices using piezoelectric materials, although there are many problems to be overcome before practical application.

  8. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    Directory of Open Access Journals (Sweden)

    T. Jiříček

    2017-01-01

    Full Text Available Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest flux was achieved with the thinnest membranes and the best energy efficiency was achieved with the thickest membranes. All membranes had salt retention above 99%. Nanotechnology offers the potential to find modern solutions for desalination of waste waters, by introducing new materials with revolutionary properties, but new membranes must be developed according to the target application.

  9. Precise localization of dysfunctional areas in vertebro-basilar infarction by FDG- and 0-15-H2O-PET using standardized image analysis and image registration to 3-D MR

    International Nuclear Information System (INIS)

    Juengling, F.D.; Moser, E.; Nitzsche, E.U.; Kassubek, J.

    1999-01-01

    The advantages of standardized multimodal image analysis are demonstrated in a case of symptomatic tremor after basilar thrombosis. Functionally and structurally lesioned areas were mapped in Talairach space using 3-D MRI, cerebral FDG-PET and O-15-H 2 O-PET. Structural lesions were found in the left midbrain, thalamus, putamen and cerebellar areas. Voxel-based statistics in comparison to a normal data base revealed hypometabolism in the left thalamus, left red nucleus, left cerebellar hemisphere including dentate nucleus and in the left interior olivary nucleus. The O-15-H 2 O-PET investigation revealed metabolic uncoupling along the rubroolivocerebellar loop. Given the delicate anatomy of the structures involved, image registration and standardized image analysis techniques are essential for a synoptic multimodality analysis of morphological and functional pathology and should generally be used for cerebral PET investigations. (orig.) [de

  10. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  11. Flow and fouling in membrane filters: Effects of membrane morphology

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  12. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  13. Fundamentals of membrane bioreactors materials, systems and membrane fouling

    CERN Document Server

    Ladewig, Bradley

    2017-01-01

    This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.

  14. Y-configuration double-stent-assisted coiling using two closed-cell stents for wide-neck basilar tip aneurysms.

    Science.gov (United States)

    Jeon, Pyoung; Kim, Byung Moon; Kim, Dong Joon; Kim, Dong I K; Park, Keun Young

    2014-09-01

    This study aimed to evaluate clinical and angiographic outcomes of Y-configuration double-stent-assisted (Y-stent) coiling using two closed-cell stents for wide-necked basilar tip aneurysm (BTA). A total of 25 patients underwent Y-stent coiling using two closed-cell stents as a first-time treatment in 18 (3 ruptured) BTAs, retreatment in 2 BTAs and as a third treatment in 5 wide-necked BTAs. Clinical and angiographic outcomes were evaluated retrospectively. Treatment-related complications were three (12.0 %) thromboembolic infarctions due to two acute in-stent thromboses and one embolism. Twenty-two (88 %) patients had favorable outcomes (modified Rankin scale score [mRS], 0-2) during the follow-up period (mean, 30 months; range, 6-54 months). Two patients died: one from initial subarachnoid hemorrhage and the other from intracerebral hemorrhage due to underlying Moyamoya disease. Post-treatment angiograms showed complete occlusion in nine aneurysms, residual neck in 11 aneurysms and residual sac in five aneurysms. Follow-up angiograms were available at least once between 5 to 34 months (mean, 16 months) in 21 patients. Nineteen patients showed improved or stable states (complete occlusion, n = 17; residual neck, n = 2). Major recurrences occurred in two BTAs (9.5 %). Those two major recurrent aneurysms had been large-sized aneurysms at the initial coiling procedure. Both showed not only coil compaction but also progressive growth to giant-sized aneurysms and intra-aneurysmal thrombus formation at the Y-stent coiling as a third-time treatment. Y-stent coiling using two closed-cell stents is a safe and durable treatment option for wide-necked BTA, but may have limited efficacy for large/giant sized and thrombosed aneurysms.

  15. Adaptive silicone-membrane lenses: planar vs. shaped membrane

    CSIR Research Space (South Africa)

    Schneider, F

    2009-08-01

    Full Text Available Engineering, Georges-Koehler-Allee 102, Freiburg 79110, Germany florian.schneider@imtek.uni-freiburg.de ABSTRACT We compare the performance and optical quality of two types of adaptive fluidic silicone-membrane lenses. The membranes feature either a...-membrane lenses: planar vs. shaped membrane Florian Schneider1,2, Philipp Waibel2 and Ulrike Wallrabe2 1 CSIR, Materials Science and Manufacturing, PO Box 395, Pretoria 0001, South Africa 2 University of Freiburg – IMTEK, Department of Microsystems...

  16. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  17. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  18. Introducing Membrane Charge and Membrane Potential to T Cell Signaling

    Directory of Open Access Journals (Sweden)

    Yuanqing Ma

    2017-11-01

    Full Text Available While membrane models now include the heterogeneous distribution of lipids, the impact of membrane charges on regulating the association of proteins with the plasma membrane is often overlooked. Charged lipids are asymmetrically distributed between the two leaflets of the plasma membrane, resulting in the inner leaflet being negatively charged and a surface potential that attracts and binds positively charged ions, proteins, and peptide motifs. These interactions not only create a transmembrane potential but they can also facilitate the formation of charged membrane domains. Here, we reference fields outside of immunology in which consequences of membrane charge are better characterized to highlight important mechanisms. We then focus on T cell receptor (TCR signaling, reviewing the evidence that membrane charges and membrane-associated calcium regulate phosphorylation of the TCR–CD3 complex and discuss how the immunological synapse exhibits distinct patterns of membrane charge distribution. We propose that charged lipids, ions in solution, and transient protein interactions form a dynamic equilibrium during T cell activation.

  19. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul; Alsaadi, Ahmad Salem; Francis, Lijo; Livazovic, Sara; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira

    2013-01-01

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  20. Polyazole hollow fiber membranes for direct contact membrane distillation

    KAUST Repository

    Maab, Husnul

    2013-08-07

    Porous hollow fiber membranes were fabricated from fluorinated polyoxadiazole and polytriazole by a dry-wet spinning method for application in desalination of Red Sea water by direct contact membrane distillation (DCMD). The data were compared with commercially available hollow fiber MD membranes prepared from poly(vinylidene fluoride). The membranes were characterized by electron microscopy, liquid entry pressure (LEP), and pore diameter measurements. Finally, the hollow fiber membranes were tested for DCMD. Salt selectivity as high as 99.95% and water fluxes as high as 35 and 41 L m -2 h-1 were demonstrated, respectively, for polyoxadiazole and polytriazole hollow fiber membranes, operating at 80 C feed temperature and 20 C permeate. © 2013 American Chemical Society.

  1. Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve; Dau, Torsten

    2011-01-01

    –438 (2008)] was used as a framework. The parameters of the cochlear processing stage of the model were adjusted to account for behaviorally estimated individual basilar-membrane inputoutput functions and the audiogram, from which the amounts of inner hair-cell and outer hair-cell losses were estimated......This study considered consequences of sensorineural hearing loss in ten listeners. The characterization of individual hearing loss was based on psychoacoustic data addressing audiometric pure-tone sensitivity, cochlear compression, frequency selectivity, temporal resolution, and intensity...

  2. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  3. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    Science.gov (United States)

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  4. Liver plasma membranes: an effective method to analyze membrane proteome.

    Science.gov (United States)

    Cao, Rui; Liang, Songping

    2012-01-01

    Plasma membrane proteins are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of plasma membrane proteins make them difficult to analyze. The protocols given here are the efficient isolation/digestion procedures for liver plasma membrane proteomic analysis. Both protocol for the isolation of plasma membranes and protocol for the in-gel digestion of gel-embedded plasma membrane proteins are presented. The later method allows the use of a high detergent concentration to achieve efficient solubilization of hydrophobic plasma membrane proteins while avoiding interference with the subsequent LC-MS/MS analysis.

  5. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  6. Polyurethane Nanofiber Membranes for Waste Water Treatment by Membrane Distillation

    OpenAIRE

    Jiříček, T.; Komárek, M.; Lederer, T.

    2017-01-01

    Self-sustained electrospun polyurethane nanofiber membranes were manufactured and tested on a direct-contact membrane distillation unit in an effort to find the optimum membrane thickness to maximize flux rate and minimize heat losses across the membrane. Also salt retention and flux at high salinities up to 100 g kg−1 were evaluated. Even though the complex structure of nanofiber layers has extreme specific surface and porosity, membrane performance was surprisingly predictable; the highest ...

  7. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  8. Impact of sludge flocs on membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Niessen, Wolfgang; Jørgensen, Mads Koustrup

    Membrane bioreactors (MBR) are widely used for wastewater treatment, but membrane fouling reduces membrane performance and thereby increases the cost for membranes and fouling control. Large variation in filtration properties measured as flux decline was observed for the different types of sludges....... Further, the flux could partly be reestablished after the relaxation period depending on the sludge composition. The results underline that sludge properties are important for membrane fouling and that control of floc properties, as determined by the composition of the microbial communities...... and the physico-chemical properties, is an efficient method to reduce membrane fouling in the MBR. High concentration of suspended extracellular substances (EPS) and small particles (up to 10 µm) resulted in pronounced fouling propensity. The membrane fouling resistance was reduced at high concentration...

  9. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Science.gov (United States)

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V

    2017-09-01

    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (H II ) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi 1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi 1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Huaqiang Chu

    2013-09-01

    Full Text Available The application of low pressure membranes (microfiltration/ultrafiltration has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM. This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.. Perspectives of further research are also discussed.

  11. Recent developments on ion-exchange membranes and electro-membrane processes.

    Science.gov (United States)

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  12. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  13. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  14. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  15. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  16. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    Science.gov (United States)

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  17. Parametric model of the scala tympani for haptic-rendered cochlear implantation.

    Science.gov (United States)

    Todd, Catherine; Naghdy, Fazel

    2005-01-01

    A parametric model of the human scala tympani has been designed for use in a haptic-rendered computer simulation of cochlear implant surgery. It will be the first surgical simulator of this kind. A geometric model of the Scala Tympani has been derived from measured data for this purpose. The model is compared with two existing descriptions of the cochlear spiral. A first approximation of the basilar membrane is also produced. The structures are imported into a force-rendering software application for system development.

  18. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  19. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  20. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    Science.gov (United States)

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  1. Metal–Organic Framework-Functionalized Alumina Membranes for Vacuum Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2016-12-01

    Full Text Available Nature-mimetic hydrophobic membranes with high wetting resistance have been designed for seawater desalination via vacuum membrane distillation (VMD in this study. This is achieved through molecular engineering of metal–organic framework (MOF-functionalized alumina surfaces. A two-step synthetic strategy was invented to design the hydrophobic membranes: (1 to intergrow MOF crystals on the alumina tube substrate and (2 to introduce perfluoro molecules onto the MOF functionalized membrane surface. With the first step, the surface morphology, especially the hierarchical roughness, can be controlled by tuning the MOF crystal structure. After the second step, the perfluoro molecules function as an ultrathin layer of hydrophobic floss, which lowers the surface energy. Therefore, the resultant membranes do not only possess the intrinsic advantages of alumina supports such as high stability and high water permeability, but also have a hydrophobic surface formed by MOF functionalization. The membrane prepared under an optimum condition achieved a good VMD flux of 32.3 L/m2-h at 60 °C. This study may open up a totally new approach for design of next-generation high performance membrane distillation membranes for seawater desalination.

  2. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    NARCIS (Netherlands)

    Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

  3. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins.

    Science.gov (United States)

    Sun, Bingyun; Hood, Leroy

    2014-06-06

    The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed.

  4. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  5. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  6. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    Science.gov (United States)

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the

  7. Eggshell membrane-templated porous gold membranes using nanoparticles as building blocks

    International Nuclear Information System (INIS)

    Ashraf, S.; Khalid, Z. M.; Hussain, I.

    2013-01-01

    Highly porous gold membrane-like structures are formed using eggshell membrane, as such and heat denatured, as a template and gold nanoparticles as building blocks. Gold nanoparticles were produced in-situ on the eggshell membranes without using additional reducing agents. The morphology and loading of gold nanoparticles can easily be controlled by adjusting the pH and thus the redox potential of eggshell membranes. Lower pH favored the formation of irregularly-shaped but dense gold macro/ nanocrystals whereas higher pH(8-9) favored the formation of fairly uniform but less dense gold nanoparticles onto the eggshell membranes. Heat treatment of eggshell membrane-gold nanoparticle composites formed at pH 8-9 led to the formation of highly porous membrane like gold while mimicking the original structure of eggshell membrane. All these materials have been thoroughly characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and inductively coupled plasma - atomic emission spectroscopy (ISP-AES). These highly porous membrane-like gold materials may have potential applications in catalysis, biosensors, electrode materials, optically selective coatings, heat dissipation and biofiltration. (author)

  8. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  9. Polymeric and Lipid Membranes-From Spheres to Flat Membranes and vice versa.

    Science.gov (United States)

    Saveleva, Mariia S; Lengert, Ekaterina V; Gorin, Dmitry A; Parakhonskiy, Bogdan V; Skirtach, Andre G

    2017-08-15

    Membranes are important components in a number of systems, where separation and control of the flow of molecules is desirable. Controllable membranes represent an even more coveted and desirable entity and their development is considered to be the next step of development. Typically, membranes are considered on flat surfaces, but spherical capsules possess a perfect "infinite" or fully suspended membranes. Similarities and transitions between spherical and flat membranes are discussed, while applications of membranes are also emphasized.

  10. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  11. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  12. Energy Flux in the Cochlea: Evidence Against Power Amplification of the Traveling Wave.

    Science.gov (United States)

    van der Heijden, Marcel; Versteegh, Corstiaen P C

    2015-10-01

    Traveling waves in the inner ear exhibit an amplitude peak that shifts with frequency. The peaking is commonly believed to rely on motile processes that amplify the wave by inserting energy. We recorded the vibrations at adjacent positions on the basilar membrane in sensitive gerbil cochleae and tested the putative power amplification in two ways. First, we determined the energy flux of the traveling wave at its peak and compared it to the acoustic power entering the ear, thereby obtaining the net cochlear power gain. For soft sounds, the energy flux at the peak was 1 ± 0.6 dB less than the middle ear input power. For more intense sounds, increasingly smaller fractions of the acoustic power actually reached the peak region. Thus, we found no net power amplification of soft sounds and a strong net attenuation of intense sounds. Second, we analyzed local wave propagation on the basilar membrane. We found that the waves slowed down abruptly when approaching their peak, causing an energy densification that quantitatively matched the amplitude peaking, similar to the growth of sea waves approaching the beach. Thus, we found no local power amplification of soft sounds and strong local attenuation of intense sounds. The most parsimonious interpretation of these findings is that cochlear sensitivity is not realized by amplifying acoustic energy, but by spatially focusing it, and that dynamic compression is realized by adjusting the amount of dissipation to sound intensity.

  13. Recent advances on membranes and membrane reactors for hydrogen production

    NARCIS (Netherlands)

    Gallucci, F.; Fernandez Gesalaga, E.; Corengia, P.; Sint Annaland, van M.

    2013-01-01

    Membranes and membrane reactors for pure hydrogen production are widely investigated not only because of the important application areas of hydrogen, but especially because mechanically and chemically stable membranes with high perm-selectivity towards hydrogen are available and are continuously

  14. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  15. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  16. Improving Nanofiber Membrane Characteristics and Membrane Distillation Performance of Heat-Pressed Membranes via Annealing Post-Treatment

    Directory of Open Access Journals (Sweden)

    Minwei Yao

    2017-01-01

    Full Text Available Electrospun membranes are gaining interest for use in membrane distillation (MD due to their high porosity and interconnected pore structure; however, they are still susceptible to wetting during MD operation because of their relatively low liquid entry pressure (LEP. In this study, post-treatment had been applied to improve the LEP, as well as its permeation and salt rejection efficiency. The post-treatment included two continuous procedures: heat-pressing and annealing. In this study, annealing was applied on the membranes that had been heat-pressed. It was found that annealing improved the MD performance as the average flux reached 35 L/m2·h or LMH (>10% improvement of the ones without annealing while still maintaining 99.99% salt rejection. Further tests on LEP, contact angle, and pore size distribution explain the improvement due to annealing well. Fourier transform infrared spectroscopy and X-ray diffraction analyses of the membranes showed that there was an increase in the crystallinity of the polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP membrane; also, peaks indicating the α phase of polyvinylidene fluoride (PVDF became noticeable after annealing, indicating some β and amorphous states of polymer were converted into the α phase. The changes were favorable for membrane distillation as the non-polar α phase of PVDF reduces the dipolar attraction force between the membrane and water molecules, and the increase in crystallinity would result in higher thermal stability. The present results indicate the positive effect of the heat-press followed by an annealing post-treatment on the membrane characteristics and MD performance.

  17. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  18. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  19. Influence of membrane properties on fouling in submerged membrane bioreactors

    NARCIS (Netherlands)

    van der Marel, P.; Zwijnenburg, A.; Kemperman, Antonius J.B.; Wessling, Matthias; Temmink, Hardy; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    Polymeric flat-sheet membranes with different properties were used in filtration experiments with activated sludge from a pilot-scale MBR to investigate the influence of membrane pore size, surface porosity, pore morphology, and hydrophobicity on membrane fouling. An improved flux-step method was

  20. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian; Bonyadi, Sina; Chung, Neal Tai-Shung

    2015-01-01

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  1. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian

    2015-09-26

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  2. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  3. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping

    2015-01-01

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  4. Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes

    KAUST Repository

    Wang, Xianbin

    2015-01-22

    Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.

  5. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  6. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  7. A forced-flow membrane reactor for transfructosylation using ceramic membrane.

    Science.gov (United States)

    Nishizawa, K; Nakajima, M; Nabetani, H

    2000-04-05

    A forced-flow membrane reactor system for transfructosylation was investigated using several ceramic membranes having different pore sizes. beta-Fructofuranosidase from Aspergillus niger ATCC 20611 was immobilized chemically to the inner surface of a ceramic membrane activated by a silane-coupling reagent. Sucrose solution was forced through the ceramic membrane by crossflow filtration while transfructosylation took place. The saccharide composition of the product, which was a mixture of fructooligosaccharides (FOS), was a function of the permeate flux, which was easily controlled by pressure. Using 0.2 micrometer pore size of symmetric ceramic membrane, the volumetric productivity obtained was 3.87 kg m(-3) s(-1), which was 560 times higher than that in a reported batch system, with a short residence time of 11 s. The half-life of the immobilized enzyme in the membrane was estimated to be 35 days by a long-term operation. Copyright 2000 John Wiley & Sons, Inc.

  8. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi.

    Science.gov (United States)

    Malinsky, Jan; Opekarová, Miroslava; Grossmann, Guido; Tanner, Widmar

    2013-01-01

    The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.

  9. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  10. Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Lies Eykens

    2017-06-01

    Full Text Available Membrane distillation is a thermal separation technique using a microporous hydrophobic membrane. One of the concerns with respect to the industrialization of the technique is the development of novel membranes. In this paper, a commercially available hydrophilic polyethersulfone membrane with a suitable structure for membrane distillation was modified using available hydrophobic coatings using ORMOCER® technology to obtain a hydrophobic membrane that can be applied in membrane distillation. The surface modification was performed using a selection of different components, concentrations, and application methods. The resulting membranes can have two hydrophobic surfaces or a hydrophobic and hydrophilic surface depending on the application method. An extensive characterization procedure confirmed the suitability of the coating technique and the obtained membranes for membrane distillation. The surface contact angle of water could be increased from 27° up to 110°, and fluxes comparable to membranes commonly used for membrane distillation were achieved under similar process conditions. A 100 h test demonstrated the stability of the coating and the importance of using sufficiently stable base membranes.

  11. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima; Sutisna, Burhannudin; Sougrat, Rachid; Nunes, Suzana Pereira

    2016-01-01

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane's water flux and solute retention. © 2016 The Royal Society of Chemistry.

  12. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    Science.gov (United States)

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  13. Distinctive tomographic abnormalities of the craniocervical region in a patient with osteogenesis imperfecta type IV B

    International Nuclear Information System (INIS)

    Kaissi, Ali Al; Klaushofer, Klaus; Grill, Franz

    2010-01-01

    Osteogenesis imperfecta is a clinically and genetically heterogeneous group of heritable disorders of connective tissue characterized by reduced bone mass (osteopenia) with associated bone fragility. The resulting skeletal manifestations are due to a generalized deficiency in the development of both membranous and endochondral bone and include markedly thin calvarium with delayed closure of the fontanelles and the sutures and excessive Wormian bone formation. Sillence et al. developed a classification system of OI subtypes: OI type I, which is characterised by blue sclerae; perinatal lethal OI type II, also known as congenital OI; OI type III, a progressively deforming subtype with normal sclera; and OI type IV, which is characterized by a normal sclera. Levin et al. have suggested that OI subtypes could be further divided into type A and B based on the absence or presence of dentinogenesis imperfecta. Basilar impression involves the upward (vertical) migration of the odontoid process into the foramen magnum with a depression in the cranium. Basilar impression is a developmental defect and refers to the infolding of the occipital condyles, an elevation of the clivus, and the posterior cranial fossa of the skull. The soft bones of the skull base allow for progressive infolding of the dysplastic clivus and translocation of the odontoid into the posterior fossa. The combination of platybasia and basilar impression can lead to severe distortion of the spinal cord and the anterior brain stem. The specific structures that can be involved include the upper cervical cord, medulla, pons, mid-brain, cerebellum, as well as the vertebrobasilar system. (author)

  14. Distinctive tomographic abnormalities of the craniocervical region in a patient with osteogenesis imperfecta type IV B

    Energy Technology Data Exchange (ETDEWEB)

    Kaissi, Ali Al; Klaushofer, Klaus, E-mail: ali.alkaissi@osteologie.a [Ludwig Boltzmann Institute of Osteology, Vienna (Austria); Grill, Franz [Orthopaedic Hospital of Speising, Vienna (Austria). Paediatric Dept.

    2010-07-01

    Osteogenesis imperfecta is a clinically and genetically heterogeneous group of heritable disorders of connective tissue characterized by reduced bone mass (osteopenia) with associated bone fragility. The resulting skeletal manifestations are due to a generalized deficiency in the development of both membranous and endochondral bone and include markedly thin calvarium with delayed closure of the fontanelles and the sutures and excessive Wormian bone formation. Sillence et al. developed a classification system of OI subtypes: OI type I, which is characterised by blue sclerae; perinatal lethal OI type II, also known as congenital OI; OI type III, a progressively deforming subtype with normal sclera; and OI type IV, which is characterized by a normal sclera. Levin et al. have suggested that OI subtypes could be further divided into type A and B based on the absence or presence of dentinogenesis imperfecta. Basilar impression involves the upward (vertical) migration of the odontoid process into the foramen magnum with a depression in the cranium. Basilar impression is a developmental defect and refers to the infolding of the occipital condyles, an elevation of the clivus, and the posterior cranial fossa of the skull. The soft bones of the skull base allow for progressive infolding of the dysplastic clivus and translocation of the odontoid into the posterior fossa. The combination of platybasia and basilar impression can lead to severe distortion of the spinal cord and the anterior brain stem. The specific structures that can be involved include the upper cervical cord, medulla, pons, mid-brain, cerebellum, as well as the vertebrobasilar system. (author)

  15. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  16. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  17. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair.

    Science.gov (United States)

    Soni, Shelly; Moldenhauer, Julie S; Spinner, Susan S; Rendon, Norma; Khalek, Nahla; Martinez-Poyer, Juan; Johnson, Mark P; Adzick, N Scott

    2016-05-01

    Since the results of the Management of Myelomeningocele Study were published, maternal-fetal surgery for the in utero treatment of spina bifida has become accepted as a standard of care alternative. Despite promise with fetal management of myelomeningocele repair, there are significant complications to consider. Chorioamniotic membrane separation and preterm premature rupture of membranes are known complications of invasive fetal procedures. Despite their relative frequency associated with fetal procedures, few data exist regarding risk factors that may be attributed to their occurrence or the natural history of pregnancies that are affected with chorionic membrane separation or preterm premature rupture of membranes related to the procedure. The objective of this study was to review chorioamniotic membrane separation and preterm premature rupture of membranes in a cohort of patients undergoing fetal management of myelomeningocele repair including identification of risk factors and outcomes. This was a retrospective review of patients undergoing fetal management of myelomeningocele repair and subsequent delivery from January 2011 through December 2013 at 1 institution. Patients were identified through the institutional fetal management of myelomeningocele repair database and chart review was performed. Perioperative factors and outcomes among patients with chorioamniotic membrane separation and preterm premature rupture of membranes were compared to those without. Risk factors associated with the development of chorioamniotic membrane separation and preterm premature rupture of membranes were determined. A total of 88 patients underwent fetal management of myelomeningocele repair and subsequently delivered during the study period. In all, 21 patients (23.9%) were diagnosed with chorioamniotic membrane separation by ultrasound and preterm premature rupture of membranes occurred in 27 (30.7%). Among the chorioamniotic membrane separation patients, 10 (47.6%) were

  18. Pilot demonstration of energy-efficient membrane bioreactor (MBR) using reciprocating submerged membrane.

    Science.gov (United States)

    Ho, Jaeho; Smith, Shaleena; Patamasank, Jaren; Tontcheva, Petia; Kim, Gyu Dong; Roh, Hyung Keun

    2015-03-01

    Membrane bioreactor (MBR) is becoming popular for advanced wastewater treatment and water reuse. Air scouring to "shake" the membrane fibers is most suitable and applicable to maintain filtration without severe and rapidfouling. However, membrane fouling mitigating technologies are energy intensive. The goal of this research is to develop an alternative energy-saving MBR system to reduce energy consumption; a revolutionary system that will directly compete with air scouring technologies currently in the membrane water reuse market. The innovative MBR system, called reciprocation MBR (rMBR), prevents membrane fouling without the use of air scouring blowers. The mechanism featured is a mechanical reciprocating membrane frame that uses inertia to prevent fouling. Direct strong agitation of the fiber is also beneficial for the constant removal of solids built up on the membrane surface. The rMBR pilot consumes less energy than conventional coarse air scouring MBR systems. Specific energy consumption for membrane reciprocation for the pilot rMBR system was 0.072 kWh/m3 permeate produced at 40 LMH, which is 75% less than the conventional air scouring in an MBR system (0.29 kWh/m3). Reciprocation of the hollow-fiber membrane can overcome the hydrodynamic limitations of air scouring or cross-flow membrane systems with less energy consumption and/or higher energy efficiency.

  19. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  20. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  1. Distraction, Compression, Extension, and Reduction Combined With Joint Remodeling and Extra-articular Distraction: Description of 2 New Modifications for Its Application in Basilar Invagination and Atlantoaxial Dislocation: Prospective Study in 79 Cases.

    Science.gov (United States)

    Chandra, P Sarat; Prabhu, Manik; Goyal, Nishant; Garg, Ajay; Chauhan, Avnish; Sharma, Bhawani Shankar

    2015-07-01

    Recent strategies for treatment of basilar invagination (BI) and atlantoaxial dislocation (AAD) are based on simultaneous posterior reduction and fixation. To describe new modifications of the procedure distraction, compression, extension, and reduction (DCER), ie, joint remodeling (JRM) and extra-articular distraction (EAD) in patients with "vertical" joints, and to quantify the improvement in joint indices, ie, sagittal inclination (SI), craniocervical tilt (CCT), and coronal inclination. Prospective study (May 2010 to September 2014). Joint indices measured included (normal values): SI (87.15 ± 5.65°), CCT (60.2 ± 9.2°), and coronal inclination (110.3 ± 4.23°). Surgical procedures included DCER alone (performed in SI joints (SI >160°, group III). Seventy-nine patients were selected (mean, 22.5 years of age). All conventional indices improved significantly (P 100°). Joint indices provide useful information for surgical strategy and planning.

  2. Solid-state membrane module

    Science.gov (United States)

    Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  3. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    Science.gov (United States)

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  4. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  5. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  6. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  7. Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes; TOPICAL

    International Nuclear Information System (INIS)

    EVANS, LINDSEY; MILLER, JAMES E.

    2002-01-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods of purifying freshwater, and desalting seawater are required to contend with this destabilizing trend. Membrane distillation (MD) is an emerging technology for separations that are traditionally accomplished via conventional distillation or reverse osmosis. As applied to desalination, MD involves the transport of water vapor from a saline solution through the pores of a hydrophobic membrane. In sweeping gas MD, a flowing gas stream is used to flush the water vapor from the permeate side of the membrane, thereby maintaining the vapor pressure gradient necessary for mass transfer. Since liquid does not penetrate the hydrophobic membrane, dissolved ions are completely rejected by the membrane. MD has a number of potential advantages over conventional desalination including low temperature and pressure operation, reduced membrane strength requirements, compact size, and 100% rejection of non-volatiles. The present work evaluated the suitability of commercially available technology for sweeping gas membrane desalination. Evaluations were conducted with Celgard Liqui-Cel(reg s ign) Extra-Flow 2.5X8 membrane contactors with X-30 and X-40 hydrophobic hollow fiber membranes. Our results show that sweeping gas membrane desalination systems are capable of producing low total dissolved solids (TDS) water, typically 10 ppm or less, from seawater, using low grade heat. However, there are several barriers that currently prevent sweeping gas MD from being a viable desalination technology. The primary problem is that large air flows are required to achieve significant water yields, and the costs associated with transporting this air are prohibitive. To

  8. Polymalic Acid Tritryptophan Copolymer Interacts with Lipid Membrane Resulting in Membrane Solubilization

    Directory of Open Access Journals (Sweden)

    Hui Ding

    2017-01-01

    Full Text Available Anionic polymers with membrane permeation functionalities are highly desirable for secure cytoplasmic drug delivery. We have developed tritryptophan containing copolymer (P/WWW of polymalic acid (PMLA that permeates membranes by a mechanism different from previously described PMLA copolymers of trileucine (P/LLL and leucine ethyl ester (P/LOEt that use the “barrel stave” and “carpet” mechanism, respectively. The novel mechanism leads to solubilization of membranes by forming copolymer “belts” around planar membrane “packages.” The formation of such packages is supported by results obtained from studies including size-exclusion chromatography, confocal microscopy, and fluorescence energy transfer. According to this “belt” mechanism, it is hypothesized that P/WWW first attaches to the membrane surface. Subsequently the hydrophobic tryptophan side chains translocate into the periphery and insert into the lipid bilayer thereby cutting the membrane into packages. The reaction is driven by the high affinity between the tryptophan residues and lipid side chains resulting in a stable configuration. The formation of the membrane packages requires physical agitation suggesting that the success of the translocation depends on the fluidity of the membrane. It is emphasized that the “belt” mechanism could specifically function in the recognition of abnormal cells with high membrane fluidity and in response to hyperthermia.

  9. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  10. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  11. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  12. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jü rgen; Khashab, Niveen M.; Zaher, Amir

    2013-01-01

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  13. Chapter 6: cubic membranes the missing dimension of cell membrane organization.

    Science.gov (United States)

    Almsherqi, Zakaria A; Landh, Tomas; Kohlwein, Sepp D; Deng, Yuru

    2009-01-01

    Biological membranes are among the most fascinating assemblies of biomolecules: a bilayer less than 10 nm thick, composed of rather small lipid molecules that are held together simply by noncovalent forces, defines the cell and discriminates between "inside" and "outside", survival, and death. Intracellular compartmentalization-governed by biomembranes as well-is a characteristic feature of eukaryotic cells, which allows them to fulfill multiple and highly specialized anabolic and catabolic functions in strictly controlled environments. Although cellular membranes are generally visualized as flat sheets or closely folded isolated objects, multiple observations also demonstrate that membranes may fold into "unusual", highly organized structures with 2D or 3D periodicity. The obvious correlation of highly convoluted membrane organizations with pathological cellular states, for example, as a consequence of viral infection, deserves close consideration. However, knowledge about formation and function of these highly organized 3D periodic membrane structures is scarce, primarily due to the lack of appropriate techniques for their analysis in vivo. Currently, the only direct way to characterize cellular membrane architecture is by transmission electron microscopy (TEM). However, deciphering the spatial architecture solely based on two-dimensionally projected TEM images is a challenging task and prone to artifacts. In this review, we will provide an update on the current progress in identifying and analyzing 3D membrane architectures in biological systems, with a special focus on membranes with cubic symmetry, and their potential role in physiological and pathophysiological conditions. Proteomics and lipidomics approaches in defined experimental cell systems may prove instrumental to understand formation and function of 3D membrane morphologies.

  14. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  15. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  17. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  18. Radiation-induced damage of membranes

    International Nuclear Information System (INIS)

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  19. Studies on membrane for redox flow battery. 9. Crosslinking of the membrane by the electron radiation and durability of the membrane

    International Nuclear Information System (INIS)

    Ohya, Haruhiko; Minamihira, Kazunori; Hwang, Gab-Jin; Kawahara, Takashi; Aihara, Masahiko; Negishi, Youichi; Kang, An-Soo.

    1995-01-01

    Chlorosulfonated homogeneous and asymmetric cation exchange membranes were tested as separators for the all-vanadium redox flow battery. The membrane was prepared by chlorosulfonation of the polyethylene film in vapour phase. In the case of the polyethylene film of 20 μm thickness used for the homogeneous membrane, area resistivity of 0.5 Ω · cm 2 in 2M KCl aq. solution was reached at 120 min. chlorosulfonation time. In the case of heat laminated 20 μm thick PE film on a neutral porous polyolefin film of 200 μm thickness used for the asymmetric membrane, a minimum area resistivity of 1 Ω · cm 2 in 2M KCl was achieved at 120 min. chlorosulfonation time. The performance evaluation of the membranes as separators in the all-vanadium redox flow battery was also measured. The area resistivity of the membranes in the measuring-cell using charge-discharge current density 63.7 mA/cm 2 was 1.4 Ω · cm 2 and 2.2 Ω · cm 2 for charge and discharge respectively for the homogeneous membrane, and 3.6 Ω · cm 2 and 4.3 Ω · cm 2 for charge discharge cycles respectively for the asymmetric membrane. The chlorosulfonated homogeneous cation exchange membrane was cross-linked by the electron radiation to improve durability of the membrane. The crosslinked membrane which has the high degree of cross-linking, did not shown the mechanical breakage by swelling or shrinking in the acidic vanadium solution, but its area resistivity in the all-vanadium redox flow battery was increased. (author)

  20. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  1. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  2. Segmentation and reconstruction of the 3D geometry of the middle and inner ear

    Directory of Open Access Journals (Sweden)

    Lu Yanfei

    2017-01-01

    Full Text Available The anatomical model of the ear is of great importance in the design of ossicular prosthesis, cochlear implant electrodes, as well as for the preoperative planning and navigation of surgery. By means of micro-computed tomography (micro-CT and technology of 3D reconstruction, an anatomical model of the middle and inner ear was built. Region of interest includes the ossicular chain (malleus, incus, and stapes, cochlea (scala vestibule-ST, scala tympani-ST, basilar membrane-BM, spiral ligament-SL and osseous spiral lamina-OSL, tympanic membrane-TM, oval window membrane-OWM, round window membrane-OWM and stapedial annular ligament-SAL. The micro-CT images of a cadaver’s temporal bone were acquired by “SkyScan 1076” (Kontich, Belgium, www.skyscan.be and then reconstructed to cross-section images by SkyScan NRecon™ (v1.6.10.4. The image processing and 3D geometry reconstruction of temporal bone were performed by software Mimics® (v14.0, Materialise NV, Leuven, Belgium. The obtained structures are measured and validated against literature data and the results are in good agreement.

  3. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan

    2018-01-31

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  4. Vacuum membrane distillation of liquid desiccants Utilizing Hollow Fiber Membranes

    KAUST Repository

    Lefers, Ryan; Srivatsa Bettahalli, N.M.; Fedoroff, Nina V.; Nunes, Suzana Pereira; Leiknes, TorOve

    2018-01-01

    This paper documents the testing of a vacuum membrane distillation system intended for use with liquid desiccants. Liquid desiccants offer the possibility for low-energy, ambient temperature dehumidification. Effective desalination and purification of diluted desiccants outputs two important products: a concentrated desiccant for reuse in dehumidification and fresh water. In this study, vacuum membrane distillation was used in the laboratory to purify diluted liquid desiccants. Calcium chloride and magnesium chloride were the desiccants selected for testing. Desiccant solutions were pumped through the lumens of poly(vinylidene fluoride) (PVDF) hollow fiber membranes at varying feed inlet temperatures, solution velocity rates and vacuum set points during membrane distillation. An average flux of 8 kg m-2 h-1 was obtained using 30 wt% magnesium chloride solution at a temperature of 50 °C while applying vacuum to achieve 25 mbar absolute pressure on the air side of the membrane. The results are promising for the development of a full-scale vacuum membrane distillation process for desiccant solution regeneration and fresh water recovery. In addition, the recovered condensate was of sufficient quality for use in agricultural irrigation or drinking water.

  5. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  6. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  7. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  8. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo; Maab, Husnul; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Ghaffour, NorEddine; Amy, Gary L.

    2013-01-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission

  9. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    Science.gov (United States)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  10. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  11. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    Science.gov (United States)

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  12. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  13. Improving Hemocompatibility of Membranes for Extracorporeal Membrane Oxygenators by Grafting Nonthrombogenic Polymer Brushes.

    Science.gov (United States)

    Obstals, Fabian; Vorobii, Mariia; Riedel, Tomáš; de Los Santos Pereira, Andres; Bruns, Michael; Singh, Smriti; Rodriguez-Emmenegger, Cesar

    2018-03-01

    Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianhua, E-mail: jhli_2005@163.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Zhang Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China) and Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192 (China)

    2012-06-15

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  15. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    International Nuclear Information System (INIS)

    Li Jianhua; Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng; Zhang Qiqing

    2012-01-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  16. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  17. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    Science.gov (United States)

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  18. Techno-economical evaluation of membrane based biogas upgrading system: A comparison between polymeric membrane and carbon membrane technology

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2016-10-01

    Full Text Available A shift to renewable energy sources will reduce emissions of greenhouse gases and secure future energy supplies. In this context, utilization of biogas will play a prominent role. Focus of this work is upgrading of biogas to fuel quality by membrane separation using a carbon hollow fibre (CHF membrane and compare with a commercially available polymeric membrane (polyimide through economical assessment. CHF membrane modules were prepared for pilot plant testing and performance measured using CO2, O2, N2. The CHF membrane was modified through oxidation, chemical vapour deposition (CVD and reduction process thus tailoring pores for separation and increased performance. The post oxidized and reduced carbon hollow fibres (PORCHFs significantly exceeded CHF performance showing higher CO2 permeance (0.021 m3(STP/m2 h bar and CO2/CH4 selectivity of 246 (5 bar feed vs 50 mbar permeate pressure. The highest performance recorded through experiments (CHF and PORCHF was used as simulation basis. A membrane simulation model was used and interfaced to 8.6 V Aspen HYSYS. A 300 Nm3/h mixture of CO2/CH4 containing 30–50% CO2 at feed pressures 6, 8 and 10 bar, was simulated and process designed to recover 99.5% CH4 with 97.5% purity. Net present value (NPV was calculated for base case and optimal pressure (50 bar for CHF and PORCHF. The results indicated that recycle ratio (recycle/feed ranged from 0.2 to 10, specific energy from 0.15 to 0.8 (kW/Nm3feed and specific membrane area from 45 to 4700 (m2/Nm3feed. The high recycle ratio can create problems during start-up, as it would take long to adjust volumetric flow ratio towards 10. The best membrane separation system employs a three-stage system with polyimide at 10 bar, and a two-stage membrane system with PORCHF membranes at 50 bar with recycle. Considering biomethane price of 0.78 $/Nm3 and a lifetime of 15 years, the techno-economic analysis showed that payback time for

  19. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    International Nuclear Information System (INIS)

    Haylett, T.; Thilo, L.

    1986-01-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D 1 , was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from 4 PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only ∼1% of internalized membrane is recycled via a membrane pool of secondary lysosomes

  20. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  1. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)

    2009-07-15

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  2. Cholesteatoma behind an intact tympanic membrane: histopathologic evidence for a tympanic membrane origin.

    Science.gov (United States)

    Sudhoff, H; Linthicum, F H

    2001-07-01

    Several theories have been proposed with respect to the origin and pathogenesis of cholesteatoma behind an intact tympanic membrane. The authors describe a case of cholesteatoma behind an intact tympanic membrane in a 71-year-old man with a history of tympanic membrane retraction fixed to the incus without evidence of a perforation. The membrane eventually became detached, and remnants of keratinizing squamous epithelium were found on the incus. Mechanisms such as metaplasia, ectopic epidermis rests, or ingrowth of meatal epidermis have been proposed to explain the pathogenesis of cholesteatoma behind an intact tympanic membrane. These findings, based on temporal bone histopathology, support the role of an acquired epidermal rest. This case report provides evidence that cholesteatoma behind an intact tympanic membrane can be established from a resolved retraction of the pars tensa of the tympanic membrane.

  3. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  4. A case of basilar artery aneurysm rupture from 1836: lessons in clinical observation and the natural history of the disease.

    Science.gov (United States)

    Demetriades, Andreas K; Horiguchi, Takashi; Goodrich, James T; Kawase, Takeshi

    2014-11-01

    Although credit is given to Sir William Gull for highlighting the clinical picture of subarachnoid hemorrhage in 1859, we discuss a case presented by Mr. Egerton A. Jennings, Fellow of the Linnaean Society, published 23 years earlier in the 1836 edition of the Transactions of the Provincial Medical and Surgical Association. This case, probably the first reported in the English language of a basilar aneurysm rupture, is of medico-historical interest. Jennings provided a remarkably accurate and detailed description of the patient, who experienced coma as a result of the severity of subarachnoid hemorrhage. The detailed clinical observations on initial assessment and the description of the patient's deterioration to the time of death are a succinct representation of the natural history of this disease. The author's discussion provides evidence of a philosophy committed to medical education and progress at the time based on principles of rational observation, meticulous clinical acumen, insight into experimental physiology, and the awareness of ethical boundaries. In provincial 1836 England, similar to most of Europe, cerebral localization was elementary. Nonetheless, this case report highlights the attempt at linking structure to function by means of observation on the effects of lesioning. It provides evidence of an established thought process already in progress in England in the 19th century. It is characteristic that this thought process came from a surgical practitioner. The cultivation of practical observation in British surgical culture would allow the late 19th century surgeon scientists to match the contributions of British neurologists with landmark steps in the development and establishment of neurosurgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Posterior communicating and vertebral artery configuration and outcome in endovascular treatment of acute basilar artery occlusion.

    Science.gov (United States)

    Haussen, Diogo C; Dharmadhikari, Sushrut S; Snelling, Brian; Lioutas, Vasileios-Arsenios; Thomas, Ajith; Peterson, Eric C; Elhammady, Mohamed Samy; Aziz-Sultan, Mohammad Ali; Yavagal, Dileep R

    2015-12-01

    We aimed to evaluate if vertebrobasilar anatomic variations impact reperfusion and outcome in intra-arterial therapy (IAT) for basilar artery occlusion (BAO). Consecutive BAO patients with symptom onset PCoA) diameters were measured (CT angiography or MR angiography). The presence of PCoA atresia, VA hypoplasia, VAs that end in the posterior inferior cerebellar artery (PICA), and extracranial VA occlusion was recorded. 38 BAO patients were included. Mean age was 63±15 years; 52% were men. Baseline National Institutes of Health Stroke Scale score was 21±9, and mean/median time from symptom onset to IAT were 10/7 h. First generation thrombectomy devices were mostly used. Overall Treatment in Cerebral Ischemia 2b-3 reperfusion was 68.4%. Good outcome (modified Rankin Scale score ≤2) was observed in 17.8% and mortality in 64.3% of cases at 90 days. 55% of patients had an atretic PCoA while 47% had a hypoplastic VA. The mean sum of the bilateral PCoA and VA diameters were 2.3±1.2 and 5.2±5.2 mm, respectively. VAs that end in the PICA was noted in 23% of patients, and extracranial VA occlusion in 42%. BAO was proximal/mid/distal in 36%/29%/34%. Multivariate linear regression analysis indicated hypertensive disease (β=2.97; 95% CI 1.15 to 4.79; p<0.01) and reperfusion rate (β=-0.40; 95% CI -0.74 to -0.70; p=0.02) independently associated with outcome. Multivariate analysis for predictors of reperfusion failed to identify other associations. A trend for better reperfusion with stent retrievers was noted (β=1.82; 95% CI -0.24 to 3.88; p=0.08). Reperfusion emerged as a predictor of good outcome in patients that underwent IAT for BAO. Angioarchitectural variations of the posterior circulation were not found to impact reperfusion or clinical outcome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  7. Development of the mouse cochlea database (MCD).

    Science.gov (United States)

    Santi, Peter A; Rapson, Ian; Voie, Arne

    2008-09-01

    The mouse cochlea database (MCD) provides an interactive, image database of the mouse cochlea for learning its anatomy and data mining of its resources. The MCD website is hosted on a centrally maintained, high-speed server at the following URL: (http://mousecochlea.umn.edu). The MCD contains two types of image resources, serial 2D image stacks and 3D reconstructions of cochlear structures. Complete image stacks of the cochlea from two different mouse strains were obtained using orthogonal plane fluorescence optical microscopy (OPFOS). 2D images of the cochlea are presented on the MCD website as: viewable images within a stack, 2D atlas of the cochlea, orthogonal sections, and direct volume renderings combined with isosurface reconstructions. In order to assess cochlear structures quantitatively, "true" cross-sections of the scala media along the length of the basilar membrane were generated by virtual resectioning of a cochlea orthogonal to a cochlear structure, such as the centroid of the basilar membrane or the scala media. 3D images are presented on the MCD website as: direct volume renderings, movies, interactive QuickTime VRs, flythrough, and isosurface 3D reconstructions of different cochlear structures. 3D computer models can also be used for solid model fabrication by rapid prototyping and models from different cochleas can be combined to produce an average 3D model. The MCD is the first comprehensive image resource on the mouse cochlea and is a new paradigm for understanding the anatomy of the cochlea, and establishing morphometric parameters of cochlear structures in normal and mutant mice.

  8. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian; Chung, Neal Tai-Shung

    2016-01-01

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young's Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  9. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian

    2016-05-12

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young\\'s Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  10. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Wang, Rong; Fane, Anthony G

    2014-06-03

    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.

  11. Effect of Plasma Membrane Semipermeability in Making the Membrane Electric Double Layer Capacitances Significant.

    Science.gov (United States)

    Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha

    2018-01-30

    Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.

  12. Isolation of plasma membrane-associated membranes from rat liver.

    Science.gov (United States)

    Suski, Jan M; Lebiedzinska, Magdalena; Wojtala, Aleksandra; Duszynski, Jerzy; Giorgi, Carlotta; Pinton, Paolo; Wieckowski, Mariusz R

    2014-02-01

    Dynamic interplay between intracellular organelles requires a particular functional apposition of membrane structures. The organelles involved come into close contact, but do not fuse, thereby giving rise to notable microdomains; these microdomains allow rapid communication between the organelles. Plasma membrane-associated membranes (PAMs), which are microdomains of the plasma membrane (PM) interacting with the endoplasmic reticulum (ER) and mitochondria, are dynamic structures that mediate transport of proteins, lipids, ions and metabolites. These structures have gained much interest lately owing to their roles in many crucial cellular processes. Here we provide an optimized protocol for the isolation of PAM, PM and ER fractions from rat liver that is based on a series of differential centrifugations, followed by the fractionation of crude PM on a discontinuous sucrose gradient. The procedure requires ∼8-10 h, and it can be easily modified and adapted to other tissues and cell types.

  13. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  14. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling.

    Science.gov (United States)

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-06-15

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  15. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m......A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1......W cm–2 using oxygen and air, respectively, at 175 °C....

  16. Membrane fusion and exocytosis.

    Science.gov (United States)

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  17. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  18. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  19. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Amy, Gary L.

    2013-01-01

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  20. PVDF hollow fiber and nanofiber membranes for fresh water reclamation using membrane distillation

    KAUST Repository

    Francis, Lijo

    2013-11-26

    Polyvinylidene fluoride hollow fiber and nanofibrous membranes are engineered and successfully fabricated using dry-jet wet spinning and electrospinning techniques, respectively. Fabricated membranes are characterized for their morphology, average pore size, pore size distribution, nanofiber diameter distribution, thickness, and water contact angle. Direct contact membrane distillation (DCMD) performances of the fabricated membranes have been investigated using a locally designed and fabricated, fully automated MD bench scale unit and DCMD module. Electrospun nanofibrous membranes showed a water flux as high as 36 L m-2 h-1 whereas hollow fiber membranes showed a water flux of 31.6 L m-2 h-1, at a feed inlet temperature of 80 °C and at a permeate inlet temperature of 20 °C.

  1. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  2. Fatty acid profiles from the plasma membrane and detergent resistant membranes of two plant species.

    Science.gov (United States)

    Carmona-Salazar, Laura; El Hafidi, Mohammed; Gutiérrez-Nájera, Nora; Noyola-Martínez, Liliana; González-Solís, Ariadna; Gavilanes-Ruíz, Marina

    2015-01-01

    It is essential to establish the composition of the plant plasma membrane in order to understand its organization and behavior under continually changing environments. Knowledge of the lipid phase, in particular the fatty acid (FA) complex repertoire, is important since FAs determine many of the physical-chemical membrane properties. FAs are constituents of the membrane glycerolipid and sphingolipid backbones and can also be linked to some sterols. In addition, FAs are components of complex lipids that can constitute membrane micro-domains, and the use of detergent-resistant membranes is a common approach to study their composition. The diversity and cellular allocation of the membrane lipids containing FAs are very diverse and the approaches to analyze them provide only general information. In this work, a detailed FA analysis was performed using highly purified plasma membranes from bean leaves and germinating maize embryos and their respective detergent-resistant membrane preparations. The analyses showed the presence of a significant amount of very long chain FAs (containing 28C, 30C and 32C), in both plasma membrane preparations from bean and maize, that have not been previously reported. Herein is demonstrated that a significant enrichment of very long chain saturated FAs and saturated FAs can occur in detergent-resistant membrane preparations, as compared to the plasma membranes from both plant species. Considering that a thorough analysis of FAs is rarely performed in purified plasma membranes and detergent-resistant membranes, this work provides qualitative and quantitative evidence on the contributions of the length and saturation of FAs to the organization of the plant plasma membrane and detergent-resistant membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    Science.gov (United States)

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  4. Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Sørensen, Thomas Lykke-Møller; Nissen, Poul

    2006-01-01

    A database has been assembled of heavy-atom derivatives used in the structure determination of membrane proteins. The database can serve as a guide to the design of experiments in the search for heavy-atom derivatives of new membrane-protein crystals. The database pinpoints organomercurials...

  5. Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach.

    Science.gov (United States)

    Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing

    2018-02-20

    Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.

  6. Sweep gas membrane distillation in a membrane contactor with metallic hollow fibers

    NARCIS (Netherlands)

    Shukla, Sushumna; Benes, Nieck Edwin; Vankelecom, I.F.J.; Mericq, J.P.; Belleville, M.P.; Hengl, N.; Sanchez Marcano, Jose

    2015-01-01

    This work revolves around the use of porous metal hollow fibers in membrane distillation. Various stages are covered, starting from membrane synthesis up to the testing of a pilot scale membrane module. Mechanically stable metal hollow fibers have been synthesized by phase inversion of a stainless

  7. Flavonoid-membrane Interactions: A Protective Role of Flavonoids at the Membrane Surface?

    Directory of Open Access Journals (Sweden)

    Patricia I. Oteiza

    2005-01-01

    Full Text Available Flavonoids can exert beneficial health effects through multiple mechanisms. In this paper, we address the important, although not fully understood, capacity of flavonoids to interact with cell membranes. The interactions of polyphenols with bilayers include: (a the partition of the more non-polar compounds in the hydrophobic interior of the membrane, and (b the formation of hydrogen bonds between the polar head groups of lipids and the more hydrophilic flavonoids at the membrane interface. The consequences of these interactions are discussed. The induction of changes in membrane physical properties can affect the rates of membrane lipid and protein oxidation. The partition of certain flavonoids in the hydrophobic core can result in a chain breaking antioxidant activity. We suggest that interactions of polyphenols at the surface of bilayers through hydrogen bonding, can act to reduce the access of deleterious molecules (i.e. oxidants, thus protecting the structure and function of membranes.

  8. Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane

    OpenAIRE

    Doudová, Lenka

    2017-01-01

    Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane Yeast plasma membrane is divided into several different compartments. Membrane compartment of Can1 is specific for its protein and lipid composition, furthermore it creates furrow-like invaginations on the plasma membrane. These invaginations are made by multiprotein complexes called eisosomes, which are located in the cytosolic side of MCCs. It was established that this domain plays an importa...

  9. Radio-chemical applications of functionalized membranes

    International Nuclear Information System (INIS)

    Pandey, Ashok K.

    2011-01-01

    Functionalized polymer membranes have many potential applications as they are task specific. We have developed many functionalized membranes like polymer inclusion membranes, pore-filled membranes and nano-membranes. Radiotracers and other methods have been used to understand the diffusional-transport properties of the Nafion-117 membrane as well as home-made membranes. These membranes have been used to develop novel analytical and separation methods for toxic metal ions and radionuclides. In this talk, an overview of our work on functionalized membrane is presented. (author)

  10. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  11. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  12. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes.

    Science.gov (United States)

    Rana, Sidra; Nazar, Umair; Ali, Jafar; Ali, Qurat Ul Ain; Ahmad, Nasir M; Sarwar, Fiza; Waseem, Hassan; Jamil, Syed Umair Ullah

    2018-06-01

    A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 6  CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.

  13. Membrane adsorber for endotoxin removal

    Directory of Open Access Journals (Sweden)

    Karina Moita de Almeida

    Full Text Available ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months.

  14. Investigating time-efficiency of forward masking paradigms for estimating basilar membrane input-output characteristics

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Jepsen, Morten Løve; Dau, Torsten

    2017-01-01

    -output (I/O) function have been proposed. However, such measures are very time consuming. The present study investigated possible modifications of the temporal masking curve (TMC) paradigm to improve time and measurement efficiency. In experiment 1, estimates of knee point (KP) and compression ratio (CR......”, was tested. In contrast to the standard TMC paradigm, the maker level was kept fixed and the “gap threshold” was obtained, such that the masker just masks a low-level (12 dB sensation level) signal. It is argued that this modification allows for better control of the tested stimulus level range, which...

  15. Drug-model membrane interactions

    International Nuclear Information System (INIS)

    Deniz, Usha K.

    1994-01-01

    In the present day world, drugs play a very important role in medicine and it is necessary to understand their mode of action at the molecular level, in order to optimise their use. Studies of drug-biomembrane interactions are essential for gaining such as understanding. However, it would be prohibitively difficult to carry out such studies, since biomembranes are highly complex systems. Hence, model membranes (made up of these lipids which are important components of biomembranes) of varying degrees of complexity are used to investigate drug-membrane interactions. Bio- as well as model-membranes undergo a chain melting transition when heated, the chains being in a disordered state above the transition point, T CM . This transition is of physiological importance since biomembranes select their components such that T CM is less than the ambient temperature but not very much so, so that membrane flexibility is ensured and porosity, avoided. The influence of drugs on the transition gives valuable clues about various parameters such as the location of the drug in the membrane. Deep insights into drug-membrane interactions are obtained by observing the effect of drugs on membrane structure and the mobilities of the various groups in lipids, near T CM . Investigation of such changes have been carried out with several drugs, using techniques such as DSC, XRD and NMR. The results indicate that the drug-membrane interaction not only depends on the nature of drug and lipids but also on the form of the model membrane - stacked bilayer or vesicles. The light that these results shed on the nature of drug-membrane interactions is discussed. (author). 13 refs., 13 figs., 1 tab

  16. Neuroimaging features of Cornelia de Lange syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Matthew T. [Department of Radiology, Washington, DC (United States); Nagaraj, Usha D. [Department of Radiology, Washington, DC (United States); Cincinnati Children' s Hospital, Department of Radiology, Cincinnati, OH (United States); Pearl, Phillip L. [Department of Radiology, Washington, DC (United States); Boston Children' s Hospital, Department of Neurology, Boston, MA (United States)

    2015-08-15

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms ''Cornelia'', ''Brachmann'' and ''de Lange.'' The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present. (orig.)

  17. Neuroimaging features of Cornelia de Lange syndrome

    International Nuclear Information System (INIS)

    Whitehead, Matthew T.; Nagaraj, Usha D.; Pearl, Phillip L.

    2015-01-01

    Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. The CT/MR database at a single academic children's hospital was searched for the terms ''Cornelia'', ''Brachmann'' and ''de Lange.'' The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present. (orig.)

  18. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  19. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  20. Fetal membrane healing after spontaneous and iatrogenic membrane rupture: A review of current evidence

    OpenAIRE

    Devlieger, R.; Millar, L. K.; Bryant-Greenwood, G.; Lewi, L.; Deprest, J. A.

    2006-01-01

    In view of the important protective role of the fetal membranes, wound sealing, tissue regeneration, or wound healing could be life saving in cases of preterm premature rupture of the membranes. Although many investigators are studying the causes of preterm premature rupture of membranes, the emphasis has not been on the wound healing capacity of the fetal membranes. In this review, the relevant literature on the pathophysiologic condition that leads to preterm premature rupture of membranes ...

  1. Lipopolysaccharide Membranes and Membrane Proteins of Pseudomonas aeruginosa Studied by Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Straatsma, TP

    2006-12-01

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is also a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid

  2. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  3. Membrane Bioreactor (MBR Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Oliver Terna Iorhemen

    2016-06-01

    Full Text Available The membrane bioreactor (MBR has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  4. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  5. Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes

    International Nuclear Information System (INIS)

    Yang, Jingshuai; Xu, Yixin; Liu, Peipei; Gao, Liping; Che, Quantong; He, Ronghuan

    2015-01-01

    Covalently cross-linked hexafluoropropylidene polybenzimidazole (F 6 PBI) was prepared and used to fabricate high temperature proton exchange membranes with enhanced mechanical strength against thermoplastic distortion. Three different epoxides, i.e. bisphenol A diglycidyl ether (R 1 ), bisphenol A propoxylate diglycidyl ether (R 2 ) and poly(ethylene glycol) diglycidyl ether (R 3 ), were chosen as the cross-linkers to investigate the influence of their structures on the properties of the cross-linked F 6 PBI membranes. All the cross-linked F 6 PBI membranes displayed excellent stability towards the radical oxidation. Comparing with the pure F 6 PBI membrane, the cross-linked F 6 PBI membranes showed high acid doping level but less swelling after doping phosphoric acid at elevated temperatures. The mechanical strength at 130 °C was improved from 0.4 MPa for F 6 PBI membrane to a range of 0.8–2.0 MPa for the cross-linked F 6 PBI membranes with an acid doping level as high as around 14, especially for that crosslinking with the epoxide (R 3 ), which has a long linear structure of alkyl ether. The proton conductivity of the cross-linked membranes was increased accordingly due to the high acid doping levels. Fuel cell tests demonstrated the technical feasibility of the acid doped cross-linked F 6 PBI membranes for high temperature proton exchange membrane fuel cells

  6. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    Science.gov (United States)

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  8. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  9. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH 2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mechanics of Lipid Bilayer Membranes

    Science.gov (United States)

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  11. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  12. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation.

    Science.gov (United States)

    Pedram, Sara; Mortaheb, Hamid Reza; Arefi-Khonsari, Farzaneh

    2018-01-01

    In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH 3 )-rich thin layer. While the pristine PES membrane was not applicable in the MD process, the modified PES membrane could be applied for the first time in an air gap membrane distillation setup for the removal of benzene as a volatile organic compound from water. The experimental design using central composite design and response surface methodology was applied to study the effects of feed temperature, concentration, and flow rate as well as their binary interactions on the overall permeate flux and separation factor. The separation factor and permeation flux of the modified PES membrane at optimum conditions were comparable with those of commercial polytetrafluoroethylene membrane.

  13. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  14. Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

    KAUST Repository

    Alsaery, Salim A.

    2017-05-01

    With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature

  15. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  16. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin.

    Science.gov (United States)

    Wang, Wenwen; Zhang, Hao; Zhang, Zhifeng; Luo, Mengying; Wang, Yuedan; Liu, Qiongzhen; Chen, Yuanli; Li, Mufang; Wang, Dong

    2017-02-01

    In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized. Furthermore, the effects of temperature, initial concentration of bilirubin, NaCl concentration and BSA concentration on the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane were studied. Results indicated that the adsorption capacity for bilirubin of diethylenetriamine-functionalized nanofibrous membrane could reach 85mg/g membrane when the initial bilirubin concentration was 200mg/L while the adsorption capacity could be increased to 110mg/g membrane if the initial bilirubin concentration was more than 400mg/L. The dynamic adsorption of diethylenetriamine-functionalized nanofibrous membrane showed that the ligands of amine groups on the membrane surface could be used as far as possible by recirculating the plasma with certain flow rates. Therefore, the diethylenetriamine-functionalized PVA-co-PE nanofibrous membrane possessed high adsorption capacity for bilirubin and it can be candidate as affinity membrane for bilirubin removal. Copyright © 2016. Published by Elsevier B.V.

  17. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  18. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  19. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  20. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  1. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  2. Review on Development of Ceramic Membrane From Sol-Gel Route: Parameters Affecting Characteristics of the Membrane

    Directory of Open Access Journals (Sweden)

    M. R. Othman and H. Mukhtar

    2012-08-01

    Full Text Available The importance of laboratory scale ceramic membrane preparation using sol-gel technique with pore sizes in the range of 1-10nm is reviewed. Parameters affecting the characteristics of membrane during membrane development are highlighted and discussed in detail. Experimental results from literatures have shown that the correct amount of acid, water, PVA, appropriate membrane thickness, proper control of drying rate, and appropriate temperature profile selection during sintering process are necessary in order to acquire sufficient strength and reduce the formation of crack in the membrane. The different temperature setting during sintering process also influences the size of pore formed.Key Words: Sol-Gel, Inorganic Membrane, Ceramic Membrane, Gas Permeation, Sintering, Sol Properties, Membrane Morphologies, Pore Size Distribution.

  3. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  4. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  5. Microfabricated hydrogen sensitive membranes

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, A.; Kraetz, L. [Lehrstuhl fuer Thermische Verfahrenstechnik, Technische Universitaet Kaiserslautern (Germany); Detemple, P.; Schmitt, S.; Hessel, V. [Institut fuer Mikrotechnik Mainz GmbH, Mainz (Germany); Faqir, N. [University of Jordan, Amman (Jordan); Bart, H.J.

    2009-01-15

    Thin, defect-free palladium, palladium/copper and palladium/silver hydrogen absorbing membranes were microfabricated. A dual sputtering technique was used to deposit the palladium alloy membranes of only 1 {mu}m thickness on a nonporous silicon substrate. Advanced silicon etching (ASE) was applied on the backside to create a mechanically stable support structure for the thin films. Performance evaluation was carried out for different gases in a temperature range of 20 C to 298 C at a constant differential pressure of 110 kPa at the two sides of the membrane. The composite membranes show an excellent permeation rate of hydrogen, which appears to be 0.05 Pa m{sup 3} s{sup -1} and 0.01.10{sup -3} Pa m{sup 3} s{sup -1} at 20 C for the microfabricated 23 % silver and the 53 % copper composite membranes, respectively. The selectivity to hydrogen over a gas mixture containing, in addition to hydrogen, carbon monoxide, carbon dioxide and nitrogen was measured. The mass spectrometer did not detect any CO{sub 2} or CO, showing that the membrane is completely hydrogen selective. The microfabricated membranes exhibit both high mechanical strength (they easily withstand pressures up to 4 bar) and high thermal stability (up to 650 C). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Characterising antimicrobial protein-membrane complexes

    International Nuclear Information System (INIS)

    Xun, Gloria; Dingley, Andrew; Tremouilhac, Pierre

    2009-01-01

    Full text: Antimicrobial proteins (AMPs) are host defence molecules that protect organisms from microbial infection. A number of hypotheses for AMP activity have been proposed which involve protein membrane interactions. However, there is a paucity of information describing AMP-membrane complexes in detail. The aim of this project is to characterise the interactions of amoebapore-A (APA-1) with membrane models using primarily solution-state NMR spectroscopy. APA-1 is an AMP which is regulated by a pH-dependent dimerisation event. Based on the atomic resolution solution structure of monomeric APA-1, it is proposed that this dimerisation is a prerequisite for ring-like hexameric pore formation. Due to the cytotoxicity of APA-1, we have developed a cell-free system to produce this protein. To facilitate our studies, we have adapted the cell-free system to isotope label APA-1. 13 C /15 N -enriched APA-1 sample was achieved and we have begun characterising APA-1 dimerisation and membrane interactions using NMR spectroscopy and other biochemical/biophysical methods. Neutron reflectometry is a surface-sensitive technique and therefore represents an ideal technique to probe how APA-1 interacts with membranes at the molecular level under different physiological conditions. Using Platypus, the pH-induced APA-1-membrane interactions should be detectable as an increase of the amount of protein adsorbed at the membrane surface and changes in the membrane properties. Specifically, detailed information of the structure and dimensions of the protein-membrane complex, the position and amount of the protein in the membrane, and the perturbation of the membrane phospholipids on protein incorporation can be extracted from the neutron reflectometry measurement. Such information will enable critical assessment of current proposed mechanisms of AMP activity in bacterial membranes and complement our NMR studies

  7. Performance Improvement of Membrane Stress Measurement Equipment through Evaluation of Added Mass of Membrane and Error Correction

    Directory of Open Access Journals (Sweden)

    Sang-Wook Jin

    2017-01-01

    Full Text Available One of the most important issues in keeping membrane structures in stable condition is to maintain the proper stress distribution over the membrane. However, it is difficult to determine the quantitative real stress level in the membrane after the completion of the structure. The stress relaxation phenomenon of the membrane and the fluttering effect due to strong wind or ponding caused by precipitation may cause severe damage to the membrane structure itself. Therefore, it is very important to know the magnitude of the existing stress in membrane structures for their maintenance. The authors have proposed a new method for separately estimating the membrane stress in two different directions using sound waves instead of directly measuring the membrane stress. The new method utilizes the resonance phenomenon of the membrane, which is induced by sound excitations given through an audio speaker. During such experiment, the effect of the surrounding air on the vibrating membrane cannot be overlooked in order to assure high measurement precision. In this paper, an evaluation scheme for the added mass of membrane with the effect of air on the vibrating membrane and the correction of measurement error is discussed. In addition, three types of membrane materials are used in the experiment in order to verify the expandability and accuracy of the membrane measurement equipment.

  8. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    . Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... the surface-immobilization of LeuT by exchanging the detergent with natural phosphatidylcholine (PC) lipids. Various surface sensitive techniques, including neutron reflectometry (NR), are employed and finally enabled us to confirm the gross structure of LeuT in a lipid environment as predicted by molecular...... dynamic simulations. In a second study, the co-localization of three toxic plant-derived diterpene resin acids (RAs) within DPPC membranes was investigated. These compounds are reported to disrupt the membrane and increase its fluidity. The RAs used in this study vary in their toxicity while...

  9. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  10. Novicidin interactions with phospholipid membranes

    DEFF Research Database (Denmark)

    Balakrishnan, Vijay Shankar

    Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting with lipos......Antimicrobial peptides target bacterial cell membranes and are considered as potential antibiotics. Their interactions with cell membranes are studied using different approaches. This thesis comprises of the biophysical investigations on the antimicrobial peptide Novicidin, interacting...... with liposomes. The lipid-induced changes in the peptide due to membrane binding, and the peptide-induced changes in the membrane properties were investigated using various spectroscopic and calorimetric methods, and the structural and thermodynamic aspects of peptide-lipid interactions are discussed. This helps...

  11. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  12. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  13. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  14. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  15. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  16. Role of plasma membrane surface charges in dictating the feasibility of membrane-nanoparticle interactions

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2017-12-01

    Receptor-ligand (R-L) binding mediated interactions between the plasma membrane (PM) and a nanoparticle (NP) require the ligand-functionalized NPs to come to a distance of separation (DOS) of at least dRL (length of the R-L complex) from the receptor-bearing membranes. In this letter, we establish that the membrane surface charges and the surrounding ionic environment dictate whether or not the attainment of such a critical DOS is possible. The negatively charged membrane invariably induces a negative electrostatic potential at the NP surface, repelling the NP from the membrane. This is countered by the attractive influences of the thermal fluctuations and van der Waals (vdw) interactions that drive the NP close to the membrane. For a NP approaching the membrane from a distance, the ratio of the repulsive (electrostatic) and attractive (thermal and vdW) effects balances at a critical NP-membrane DOS of dg,c. For a given set of parameters, there can be two possible values of dg,c, namely, dg,c,1 and dg,c,2 with dg,c,1 ≫ dg,c,2. We establish that any R-L mediated NP-membrane interaction is possible only if dRL > dg,c,1. Therefore, our study proposes a design criterion for engineering ligands for a NP that will ensure the appropriate length of the R-L complex in order to ensure the successful membrane-NP interaction in the presence of a given electrostatic environment. Finally, we discuss the manner in which our theory can help designing ligand-grafted NPs for targeted drug delivery, design biomimetics NPs, and also explain various experimental results.

  17. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation

    Science.gov (United States)

    Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy

    2012-01-01

    Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931

  18. Membranes for Environmentally Friendly Energy Processes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2012-10-01

    Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.

  19. Membranes for Environmentally Friendly Energy Processes

    Science.gov (United States)

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  20. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  1. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  2. Current-Induced Membrane Discharge

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; van Soestbergen, M.; Mani, A.

    2012-01-01

    . Salt depletion leads to a large electric field resulting in a local pH shift within the membrane with the effect that the membrane discharges and loses its ion selectivity. Since salt co-ions, H+ ions, and OH- ions contribute to OLC, CIMD interferes with electrodialysis (salt counterion removal...... neglects chemical effects and remains to be quantitatively tested. Here, we show that charge regulation and water self-ionization can lead to OLC by "current-induced membrane discharge'' (CIMD), even in the absence of fluid flow, in ion-exchange membranes much thicker than the local Debye screening length...

  3. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  4. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  5. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  6. Preparation of thermo-responsive membranes. II.

    Science.gov (United States)

    Nozawa, I; Suzuki, Y; Sato, S; Sugibayashi, K; Morimoto, Y

    1991-05-01

    Two types of liquid crystal (LC)-immobilized membranes were prepared by a soaking method and sandwich method to control the permeation of indomethacin, as a model drug, in response to local and systemic fever. Monooxyethylene trimethylolpropane tristearate (MTTS) was used as a model LC because it has a gel-liquid crystal phase transition temperature near the body temperature, 39-40 degrees C in phosphate buffered saline (pH 7.4). Two porous polypropylene (PP) membranes were soaked into 20% MTTS chloroform solution in the soaking method, and two PP membranes were poured with the melted MTTS and pressed in the sandwich method. Thermo-response efficacy of the soaked membrane was dependent upon the content of MTTS in MTTS membrane, and the MTTS content above the void volume of PP membrane (38%) was needed for high efficacy. On the other hand, the sandwich membrane exhibited higher thermo-response efficacy than the soaked membrane, because more LC was embedded in the pores of sandwich membrane than that of the soaked membrane. The sandwich membrane permeation of indomethacin was sharply controlled by temperature changes between 32 and 38 degrees C.

  7. Organic fluid permeation through fluoropolymer membranes

    Science.gov (United States)

    Nemser, Stuart M.; Kosaraju, Praveen; Bowser, John

    2015-07-14

    Separation of the components of liquid mixtures is achieved by contacting a liquid mixture with a nonporous membrane having a fluoropolymer selectively permeable layer and imposing a pressure gradient across the membrane from feed side to permeate side. Unusually high transmembrane flux is obtained when the membrane is subjected to one or more process conditions prior to separation. These include (a) leaving some residual amount of membrane casting solvent in the membrane, and (b) contacting the membrane with a component of the mixture to be separated for a duration effective to saturate the membrane with the component.

  8. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori

    2012-06-01

    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  9. FAS grafted superhydrophobic ceramic membrane

    Science.gov (United States)

    Lu, Jun; Yu, Yun; Zhou, Jianer; Song, Lixin; Hu, Xingfang; Larbot, Andre

    2009-08-01

    The hydrophobic properties of γ-Al 2O 3 membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 °C) of the fluoroalkylsilane grafted on Al 2O 3 powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and γ-Al 2O 3 membrane surface as well as the formed surface morphology.

  10. Role for chlamydial inclusion membrane proteins in inclusion membrane structure and biogenesis.

    Directory of Open Access Journals (Sweden)

    Jeffrey Mital

    Full Text Available The chlamydial inclusion membrane is extensively modified by the insertion of type III secreted effector proteins. These inclusion membrane proteins (Incs are exposed to the cytosol and share a common structural feature of a long, bi-lobed hydrophobic domain but little or no primary amino acid sequence similarity. Based upon secondary structural predictions, over 50 putative inclusion membrane proteins have been identified in Chlamydia trachomatis. Only a limited number of biological functions have been defined and these are not shared between chlamydial species. Here we have ectopically expressed several C. trachomatis Incs in HeLa cells and find that they induce the formation of morphologically distinct membranous vesicular compartments. Formation of these vesicles requires the bi-lobed hydrophobic domain as a minimum. No markers for various cellular organelles were observed in association with these vesicles. Lipid probes were incorporated by the Inc-induced vesicles although the lipids incorporated were dependent upon the specific Inc expressed. Co-expression of Inc pairs indicated that some colocalized in the same vesicle, others partially overlapped, and others did not associate at all. Overall, it appears that Incs may have an intrinsic ability to induce membrane formation and that individual Incs can induce membranous structures with unique properties.

  11. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  12. [Research on ultrasonic permeability of low intensity pulsed ultrasound through PTFE membrane and Bio-Gide collagen membrane].

    Science.gov (United States)

    Chai, Zhaowu; Zhao, Chunliang; Song, Jinlin; Deng, Feng; Yang, Ji; Gao, Xiang; Liu, Minyi

    2013-12-01

    The aim of the present study was to detect the transmission rate of ultrasonic low intensity pulsed ultrasound (LIPUS) through polytetrafluoroethylene (PTFE) membrane (Thickness: 0.01 mm) and Bio-Gide collagen membrane, and to provide the basis for the barrier membrane selection on the study of LIPUS combined with guided tissue regeneration (GTR). The ultrasonic (LIPUS, frequency 1.5 MHz, pulse width 200 micros, repetition rate 1.0 kHz) transmission coefficient of the two kinds of barrier membrane were detected respectively through setting ten groups from 10 to 100mW/cm2 every other 10 mW/cm2. We found in the study that the ultrasonic transmission coefficient through 0.01 mm PTFE membrane was 78.1% to 92.%, and the ultrasonic transmission coefficient through Bio-Gide collagen membrane was 43.9% to 55.8%. The ultrasonic transmission coefficient through PTFE membrane was obviously higher than that through Bio-Gide collagen membrane. The transmission coefficient of the same barrier membrane of the ultrasonic ion was statistically different under different powers (P PTFE membrane and Bio-Gide collagen membrane were relatively high. We should select barrier membranes based on different experimental needs, and exercise ultrasonic transmission coefficient experiments to ensure effective power.

  13. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  14. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  15. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  16. Membrane capacitive deionization

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Wal, van der A.

    2010-01-01

    Membrane capacitive deionization (MCDI) is an ion-removal process based on applying an electrical potential difference across an aqueous solution which flows in between oppositely placed porous electrodes, in front of which ion-exchange membranes are positioned. Due to the applied potential, ions

  17. Membrane Lipid Oscillation: An Emerging System of Molecular Dynamics in the Plant Membrane.

    Science.gov (United States)

    Nakamura, Yuki

    2018-03-01

    Biological rhythm represents a major biological process of living organisms. However, rhythmic oscillation of membrane lipid content is poorly described in plants. The development of lipidomic technology has led to the illustration of precise molecular profiles of membrane lipids under various growth conditions. Compared with conventional lipid signaling, which produces unpredictable lipid changes in response to ever-changing environmental conditions, lipid oscillation generates a fairly predictable lipid profile, adding a new layer of biological function to the membrane system and possible cross-talk with the other chronobiological processes. This mini review covers recent studies elucidating membrane lipid oscillation in plants.

  18. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  19. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane

    OpenAIRE

    1990-01-01

    The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrupted the association of the membrane skeleton with membrane glycoproteins. The consequences of this c...

  20. Membrane shape modulates transmembrane protein distribution.

    Science.gov (United States)

    Aimon, Sophie; Callan-Jones, Andrew; Berthaud, Alice; Pinot, Mathieu; Toombes, Gilman E S; Bassereau, Patricia

    2014-01-27

    Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  2. Neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules

    International Nuclear Information System (INIS)

    Stevenson, K.B.; Nauseef, W.M.; Clark, R.A.

    1987-01-01

    The glucoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3 H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody. Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove adsorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils

  3. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  4. Anti-glomerular basement membrane disease superimposed on membranous nephropathy: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Nivera Noel

    2010-08-01

    Full Text Available Abstract Introduction Anti-glomerular basement membrane disease is a rare autoimmune disorder characterized by pulmonary hemorrhage, crescentic glomerulonephritis and the presence of circulating anti-glomerular basement membrane antibodies. The simultaneous occurrence of both anti-glomerular basement membrane disease and membranous nephropathy is rare. Case presentation A 59-year-old Hispanic man presented with acute onset of nausea and vomiting and was found to have renal insufficiency. Work-up included a kidney biopsy, which revealed anti-glomerular basement membrane disease with underlying membranous nephropathy. He was treated with emergent hemodialysis, intravenous corticosteroids, plasmapheresis, and cyclophosphamide without improvement in his renal function. Conclusion Simultaneous anti-glomerular basement membrane disease and membranous nephropathy is very rare. There have been 16 previous case reports in the English language literature that have been associated with a high mortality and morbidity, and a very high rate of renal failure resulting in hemodialysis. Co-existence of membranous nephropathy and anti-glomerular basement membrane disease may be immune-mediated, although the exact mechanism is not clear.

  5. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  6. Axionic membranes

    International Nuclear Information System (INIS)

    Aurilia, A.; Spallucci, E.

    1992-01-01

    A metal ring removed from a soap-water solution encloses a film of soap which can be mathematically described as a minimal surface having the ring as its only boundary. This is known to everybody. In this letter we suggest a relativistic extension of the above fluidodynamic system where the soap film is replaced by a Kalb-Ramand gauge potential B μν (x) and the ring by a closed string. The interaction between the B μν field and the string current excites a new configuration of the system consisting of a relativistic membrane bounded by the string. We call such a classical solution of the equation of motion an axionic membrane. As a dynamical system, the axionic membrane admits a Hamilton-Jacobi formulation which is an extension of the HJ theory of electromagnetic strings. (orig.)

  7. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  8. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei; Cheng, Wei; Zhang, Tao; Lu, Xinglin; Liu, Qianliang; Jiang, Jin; Ma, Jun

    2016-01-01

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  9. Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion

    KAUST Repository

    Lu, Dongwei

    2016-03-17

    Oil/water (O/W) emulsion is daily produced and difficult to be treated effectively. Ceramic membrane ultrafiltration is one of reliable processes for the treatment of O/W emulsion, yet still hindered by membrane fouling. In this study, two types of Fe2O3 dynamic membranes (i.e., pre-coated dynamic membrane and self-forming dynamic membrane) were prepared to mitigate the fouling of support ceramic membrane in O/W emulsion treatment. Pre-coated dynamic membrane (DM) significantly reduced the fouling of ceramic membrane (i.e., 10% increase of flux recovery rate), while self-forming dynamic membrane aggravated ceramic membrane fouling (i.e., 8.6% decrease of flux recovery rate) after four filtration cycles. A possible fouling mechanism was proposed to explain this phenomenon, which was then confirmed by optical images of fouled membranes and the analysis of COD rejection. In addition, the cleaning efficiency of composite membranes (i.e., Fe2O3 dynamic membrane and support ceramic membrane) was enhanced by substitution of alkalescent water backwash for deionized water backwash. The possible reason for this enhancement was also explained. Our result suggests that pre-coated Fe2O3 dynamic membrane with alkalescent water backwash can be a promising technology to reduce the fouling of ceramic membrane and enhance membrane cleaning efficiency in the treatment of oily wastewater.

  10. STUDI MEMBRAN KITOSAN DARI KULIT LOBSTER BAMBU SEBAGAI MEMBRAN FILTRASI

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Putri Windari

    2016-02-01

    Full Text Available The study of the extraction and characterization of chitosan from skin waste of Bamboo Lobster (Panulirus versicolor has been done. Chitosan is extracted using conventional method, namely the initial process: cleaning and drying (pretreatment, demineralization, deproteination, and deacetylation. The chitosan obtained has been used to prepare chitosan membrane 2% with acetic acid 1% as solvent. The membrane prepared by phase inversion method withprecipitation through solvent evaporation. The prepared membranes were characterized by FTIR spectrophotometer, Nova 1200e by BJH method and filtration method. The results obtained that degree of deacetylation (DD of chitosan is 70.016%. The thickness of the membrane is 0.361 mm. The FTIR spectra show that functional groups obtained are -NH, -CH, C=O, C-O and -CN. From BJH method obtained that the pore radius is 1.69 nm and pore density is 8.95 x 105pores/m3. From the filtration method obtained that at each pressure, 80-85 kPa and 90-100 kPa, the PWF values are 381.232 and 454.545 L/m2.h, respectively.

  11. Operation of staged membrane oxidation reactor systems

    Science.gov (United States)

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  12. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  13. Pulse radiolysis studies of model membranes

    International Nuclear Information System (INIS)

    Heijman, M.G.J.

    1984-01-01

    In this thesis the influence of the structure of membranes on the processes in cell membranes were examined. Different models of the membranes were evaluated. Pulse radiolysis was used as the technique to examine the membranes. (R.B.)

  14. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  15. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  16. Permeability testing of biomaterial membranes

    International Nuclear Information System (INIS)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B; Ahlers, M

    2008-01-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation

  17. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Jamaluddin Zainol; Hasim Mohammad

    1999-01-01

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  18. FAS grafted superhydrophobic ceramic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jun [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Yu Yun, E-mail: yunyush@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Zhou Jianer [School of Material Science and Engineering, Jingdezhen Ceramic Institute, 333001 Jingdezhen (China); Song Lixin; Hu Xingfang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, CAS, 1295 DingXi Road, Shanghai 200050 (China); Larbot, Andre [Institut Europeen des Membranes, UMR 5635-CNRS, ENSCM, UMII, 1919 Route de Mende 34293, Montpellier Cedex 5 (France)

    2009-08-30

    The hydrophobic properties of {gamma}-Al{sub 2}O{sub 3} membrane have been obtained by grafting fluoroalkylsilane (FAS) on the surface of the membrane. The following grafting parameters were studied: the eroding time of the original membrane, the grafting time, the concentration of FAS solution and the multiplicity of grafting. Hydrophobicity of the membranes was characterized by contact angle (CA) measurement. The thermogravimetric analysis (TGA) was used to investigate the weight loss process (25-800 deg. C) of the fluoroalkylsilane grafted on Al{sub 2}O{sub 3} powders under different grafting conditions. The morphologies of the membranes modified under different parameters were examined by field emission scanning electron microscopy (FE-SEM) and the surface roughness (Ra) was measured using white light interferometers. A needle-like structure was observed on the membrane surface after modification, which causes the change of Ra. On the results above, we speculated a model to describe the reaction between FAS and {gamma}-Al{sub 2}O{sub 3} membrane surface as well as the formed surface morphology.

  19. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries. (orig.)

  20. Radiation effects on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Koeteles, G.J.

    1982-11-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries.

  1. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  2. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  3. Polypropilene nuclear track membranes - a new type of membranes for cleaning and analysis of agressive media

    International Nuclear Information System (INIS)

    Apel', P.Yu.; Shirkova, V.V.; Soboleva, T.I.; Kuznetsov, V.I.; Shestakov, V.D.

    1988-01-01

    The brief description of the polypropylene nuclear track membranes is given. The membranes are obtained from biaxially oriented polypropylene films 10μm thick by means of irradiation with accelerated heavy ions and following chemical etching. The data on pore shape, pore size dispersion, the permeability of membranes and on the content of impurities in membrane matrix are given. It is noted that the polypropylene membranes can be used for cleaning and analysis of agressive chemical species. 9 refs.; 2 figs

  4. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  5. CO2 Acquisition Membrane (CAM)

    Science.gov (United States)

    Mason, Larry W.; Way, J. Douglas; Vlasse, Marcus

    2003-01-01

    The objective of CAM is to develop, test, and analyze thin film membrane materials for separation and purification of carbon dioxide (CO2) from mixtures of gases, such as those found in the Martian atmosphere. The membranes are targeted toward In Situ Resource Utilization (ISRU) applications that will operate in extraterrestrial environments and support future unmanned and human space missions. A primary application is the Sabatier Electrolysis process that uses Mars atmosphere CO2 as raw material for producing water, oxygen, and methane for rocket fuel and habitat support. Other applications include use as an inlet filter to collect and concentrate Mars atmospheric argon and nitrogen gases for habitat pressurization, and to remove CO2 from breathing gases in Closed Environment Life Support Systems (CELSS). CAM membrane materials include crystalline faujasite (FAU) zeolite and rubbery polymers such as silicone rubber (PDMS) that have been shown in the literature and via molecular simulation to favor adsorption and permeation of CO2 over nitrogen and argon. Pure gas permeation tests using commercial PDMS membranes have shown that both CO2 permeance and the separation factor relative to other gases increase as the temperature decreases, and low (Delta)P(Sub CO2) favors higher separation factors. The ideal CO2/N2 separation factor increases from 7.5 to 17.5 as temperature decreases from 22 C to -30 C. For gas mixtures containing CO2, N2, and Ar, plasticization decreased the separation factors from 4.5 to 6 over the same temperature range. We currently synthesize and test our own Na(+) FAU zeolite membranes using standard formulations and secondary growth methods on porous alumina. Preliminary tests with a Na(+) FAU membrane at 22 C show a He/SF6 ideal separation factor of 62, exceeding the Knudsen diffusion selectivity by an order of magnitude. This shows that the membrane is relatively free from large defects and associated non-selective (viscous flow) transport

  6. Long term testing of PSI-membranes

    Energy Technology Data Exchange (ETDEWEB)

    Huslage, J; Brack, H P; Geiger, F; Buechi, F N; Tsukada, A; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Long term tests of PSI membranes based on radiation-grafted FEP and ETFE films were carried out and FEP-based membranes were evaluated by monitoring the in-situ membrane area resistance measured by a current pulse method. By modifying our irradiation procedure and using the double crosslinking concept we obtain reproducible membrane cell lifetimes (in term of in-situ membrane resistance) of greater than 5000 hours at 60-65{sup o}C. Preliminary tests at 80-85{sup o}C with lifetimes of greater than 2500 demonstrate the potential long term stability of PSI proton exchange membranes based on FEP over the whole operating temperature range of low-temperature polymer electrolyte fuel cells. Radiation grafted PSI membranes based on ETFE have better mechanical properties than those of the FEP membranes. Mechanical properties are particularly important in large area cells and fuel cell stacks. ETFE membranes have been tested successfully for approximately 1000 h in a 2-cell stack (100 cm{sup 2} active area each cell). (author) 4 figs., 4 refs.

  7. Modeling microstructure of incudostapedial joint and the effect on cochlear input

    Science.gov (United States)

    Gan, Rong Z.; Wang, Xuelin

    2015-12-01

    The incudostapedial joint (ISJ) connects the incus to stapes in human ear and plays an important role for sound transmission from the tympanic membrane (TM) to cochlea. ISJ is a synovial joint composed of articular cartilage on the lenticular process and stapes head with the synovial fluid between them. However, there is no study on how the synovial ISJ affects the middle ear and cochlear functions. Recently, we have developed a 3-dimensinal finite element (FE) model of synovial ISJ and connected the model to our comprehensive FE model of the human ear. The motions of TM, stapes footplate, and basilar membrane and the pressures in scala vestibule and scala tympani were derived over frequencies and compared with experimental measurements. Results show that the synovial ISJ affects sound transmission into cochlea and the frequency-dependent viscoelastic behavior of ISJ provides protection for cochlea from high intensity sound.

  8. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  9. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  10. Biogenesis and Membrane Targeting of Lipoproteins.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.

  11. Characterization of biofoulants illustrates different membrane fouling mechanisms for aerobic and anaerobic membrane bioreactors

    KAUST Repository

    Xiong, Yanghui

    2015-11-17

    This study compares the membrane fouling mechanisms of aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR) of the same reactor configuration at similar operating conditions. Although both the AeMBR and AnMBR achieved more than 90% COD removal efficiency, the fouling mechanisms were different. Molecular weight (MW) fingerprint profiles showed that a majority of fragments in anaerobic soluble microbial products (SMP) were retained by the membrane and some fragments were present in both SMP and in soluble extracellular polymeric substances (EPS), suggesting that the physical retention of SMP components contributed to the AnMBR membrane fouling. One of the dominant fragments was comprised of glycoliproprotein (size 630-640 kD) and correlated in abundance in AnMBR-EPS with the extent of anaerobic membrane fouling. In contrast, all detected AeMBR-SMP fragments permeated through the membrane. Aerobic SMP and soluble EPS also showed very different fingerprinting profiles. A large amount of adenosine triphosphate was present in the AeMBR-EPS, suggesting that microbial activity arising from certain bacterial populations, such as unclassified Comamonadaceae and unclassified Chitinophagaceae, may play a role in aerobic membrane fouling. This study underlines the differences in fouling mechanisms between AeMBR and AnMBR systems and can be applied to facilitate the development of appropriate fouling control strategies.

  12. Mesoporous and microporous titania membranes

    NARCIS (Netherlands)

    Sekulic, J.

    2004-01-01

    The research described in this thesis deals with the synthesis and properties of ceramic oxide membrane materials. Since most of the currently available inorganic membranes with required separation properties have limited reliability and long-term stability, membranes made of new oxide materials

  13. Conditions that allow for effective transfer of membrane proteins onto nitrocellulose membrane in Western blots.

    Science.gov (United States)

    Abeyrathne, Priyanka D; Lam, Joseph S

    2007-04-01

    A major hurdle in characterizing bacterial membrane proteins by Western blotting is the ineffectiveness of transferring these proteins from sodium dodecyl sulfate -- polyacrylamide gel electrophoresis (SDS-PAGE) gel onto nitrocellulose membrane, using standard Western blot buffers and electrophoretic conditions. In this study, we compared a number of modified Western blotting buffers and arrived at a composition designated as the SDS-PAGE-Urea Lysis buffer. The use of this buffer and specific conditions allowed the reproducible transfer of highly hydrophobic bacterial membrane proteins with 2-12 transmembrane-spanning segments as well as soluble proteins onto nitrocellulose membranes. This method should be broadly applicable for immunochemical studies of other membrane proteins.

  14. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper

    2000-01-01

    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...... is found to stabilize the inflated polymer membrane....

  15. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping; Huang, Kuo-Wei; Chen, Wei

    2016-01-01

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  16. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping

    2016-01-21

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  17. Preparation of novel poly(vinylidene fluoride)/TiO2 photocatalysis membranes for use in direct contact membrane distillation

    Science.gov (United States)

    Li, Yukun; Dong, Shuying; Zhu, Liang

    2018-03-01

    Immobilization of TiO2 is a potential approach to obtain photocatalytic membranes that could eliminate concentration polarization in sewage disposal for direct contact membrane distillation (DCMD) process. A simple non-solvent-induced phase separation (NIPS) method was proposed to prepare poly(vinylidene fluoride) (PVDF) membrane, and the double-coating technology was further used to prepare the self-cleaning membranes with different TiO2 content. The effects of TiO2 nano-particles on membrane crystal form, morphology, porosity, pore size, pore size distribution, hydrophobicity, permeation, and photocatalytic efficiency were investigated, respectively. The flux of the prepared membranes is higher than the membrane (MS) provided by Membrane Solutions, LLC, in DCMD process. The contact angle between water and membrane could be increased 22° by introducing photocatalytic layer containing TiO2. During the photocatalytic test, 65.78-96.31% degrading rate of 15 mg/L Rhodamine B (RhB) was achieved. The relative flux of the membrane T-3 can be recovered to 0.96 in photocatalysis-membrane reactor for 8 h UV radiation. The fabricated membrane has great potential in high-salty dyeing wastewater treatment due to its high hydrophobicity and photocatalytic capability. [Figure not available: see fulltext.

  18. Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level

    Science.gov (United States)

    Belyavskaya, N. A.

    The changes of [Ca^2+]_i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station ``Salyut 6'' /1/. These results: 1) indicate that observed Ca^2+-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca^2+ influx through membranes. In model presented, I propose that Ca^2+-activated channels in plasma membrane in response to microgravity allow the movement of Ca^2+ into the root cells, causing a rise in cytoplasmic free Ca^2+ levels. The latter, in its turn, may induce the inhibition of a Ca^2+ efflux by Ca^2+-activated ATPases and through a Ca^2+/H^+ antiport. It is possible that increased cytosolic levels of Ca^2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca^2+]_i. Plant cell can response to such a Ca^2+ rise by an enhancement of membranous Ca^2+-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca^2+-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca^2+ to plant cell.

  19. Membranes suited for immobilizing biomolecules

    NARCIS (Netherlands)

    2009-01-01

    The present invention relates to flow-through membranes suitable for the immobilization of biomols., methods for the prepn. of such membranes and the use of such membranes for the immobilization of biomols. and subsequent detection of immobilized biomols. The invention concerns a flow-through

  20. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  1. Hydrogen purifier module with membrane support

    Science.gov (United States)

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

    2012-07-24

    A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.

  2. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  3. Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system

    Institute of Scientific and Technical Information of China (English)

    Jingmei Sun; Jiangxiu Rong; Lifeng Dai; Baoshan Liu; Wenting Zhu

    2011-01-01

    Membrane fouling limits the effects of long-term stable operation of membrane bioreactor (MBR).Control of membrane foulin can extend the membrane life and reduce water treatment cost effectively.A pilot scale anoxic/aerobic-membrane bioreactor (A/O MBR,40 L/hr) was used to treat the hyperhaline municipal sewage from a processing zone of Tianjin,China.Impact factors including mixed liquid sludge suspension (MLSS),sludge viscosity (μ),microorganisms,extracellular polymeric substances (EPS),aeration intensity and suction/suspended time on membrane fouling and pollution control were studied.The relationships among various factors associated with membrane fouling were analyzed.Results showed that there was a positive correlation among MLSS,sludge viscosity and trans-membrane pressure (TMP).Considering water treatment efficiency and stable operation of the membrane module,MLSS of 5 g/L was suggested for the process.There was a same trend among EPS,sludge viscosity and TMP.Numbers and species of microorganisms affected membrane fouling.Either too high or too low aeration intensity was not conducive to membrane fouling control.Aeration intensity of 1.0 m3/hr (gas/water ratio of 25:1) is suggested for the process.A long suction time caused a rapid increase in membrane resistance.However,long suspended time cannot prevent the increase of membrane resistance effectively even though a suspended time was necessary for scale off particles from the membrane surface.The suction/suspended time of 12 min/3 min was selected for the process.The interaction of various environmental factors and operation conditions must be considered synthetically.

  4. Enhanced performance of PVDF nanocomposite membrane by nanofiber coating: A membrane for sustainable desalination through MD.

    Science.gov (United States)

    Efome, Johnson E; Rana, Dipak; Matsuura, Takeshi; Lan, Christopher Q

    2016-02-01

    Membrane distillation (MD) is a promising separation technique capable of being used in the desalination of marine and brackish water. Poly(vinylidene fluoride) (PVDF) flat sheet nano-composite membranes were surface modified by coating with electro-spun PVDF nano-fibres to increase the surface hydrophobicity. For this purpose, the nano-composite membrane containing 7 wt.% superhydrophobic SiO2 nano-particles, which showed the highest flux in our previous work, was first subjected to pore size augmentation by increasing the concentration of the pore forming agent (Di-ionized water). Then, the prepared flat sheet membranes were subjected to nanofibres coating by electro-spinning. The uncoated and coated composite fabricated membranes were characterized using contact angle, liquid entry pressure of water, and scanning electron microscopy. The membranes were further tested for 6 h desalination by direct contact membrane distillation (DCMD) and vacuum membrane distillation (VMD), with a 3.5 wt.% synthetic NaClaq as the feed. In DCMD the feed liquid and permeate side temperature were maintained at 27.5 °C and 15 °C, respectively. For VMD, the feed liquid temperature was 27 °C and a vacuum of 94.8 kPa was applied on the permeate side. The maximum permeate flux achieved was 3.2 kg/m(2).h for VMD and 6.5 kg/m(2).h for DCMD. The salt rejection obtained was higher than 99.98%. The coated membranes showed a more stable flux than the uncoated membranes indicating that the double layered membranes have great potential in solving the pore wetting problem in MD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  6. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli; Salazar Moya, Octavio Ruben; Nunes, Suzana Pereira

    2016-01-01

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  7. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  8. Membrane filtration device for studying compression of fouling layers in membrane bioreactors.

    Directory of Open Access Journals (Sweden)

    Mads Koustrup Jørgensen

    Full Text Available A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology's ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation.

  9. Bioinspired Multifunctional Membrane for Aquatic Micropollutants Removal

    DEFF Research Database (Denmark)

    Cao, Xiaotong; Luo, Jianquan; Woodley, John

    2016-01-01

    Micropollutants present in water have many detrimental effects on the ecosystem. Membrane technology plays an important role in the removal of micropollutants, but there remain significant challenges such as concentration polarization, membrane fouling, and variable permeate quality. The work...... reported here uses a multifunctional membrane with rejection, adsorption, and catalysis functions to solve these problems. On the basis of mussel-inspired chemistry and biological membrane properties, a multifunctional membrane was prepared by applying "reverse filtration" of a laccase solution...... and subsequent "dopamine coating" on a nanofiltration (NF) membrane support, which was tested on bisphenol A (BPA) removal. Three NF membranes were chosen for the preparation of the multifunctional membranes on the basis of the membrane properties and enzyme immobilization efficiency. Compared with the pristine...

  10. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan

    2016-12-30

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  11. Crosslinked polytriazole membranes for organophilic filtration

    KAUST Repository

    Chisca, Stefan; Falca, Gheorghe; Musteata, Valentina-Elena; Boi, Cristiana; Nunes, Suzana Pereira

    2016-01-01

    We report the preparation of crosslinked membranes for organophilic filtration, by reacting a new polytriazole with free OH groups, using non-toxic poly (ethylene glycol) diglycidyl ether (PEGDE). The OH-functionalized polymer was obtained by converting the oxadiazole to triazole rings with high yield (98%). The maximum degree of crosslinking is achieved after 6 h of reaction. The crosslinked polytriazole membranes are stable in a wide range of organic solvents and show high creep recovery, indicating the robustness of crosslinked membranes. The influence of different casting solutions and different crosslinking time on the membrane morphology and membrane performance was investigated. The membranes performance was studied in dimethylformamide (DMF) and (tetrahydrofuran) THF. We achieved a permeance for THF of 49 L m−2 h−1 bar−1 for membranes with molecular weight cut off (MWCO) of 7 kg mol−1 and a permeance for THF of 17.5 L m−2 h−1 bar−1 for membranes with MWCO of 3 kg mol−1. Our data indicate that by using the new polytriazole is possible to adjust the pore dimensions of the membranes to have a MWCO, which covers ultra- and nanofiltration range.

  12. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  13. Membrane Disordering is not Sufficient for Membrane Permeabilization by Islet Amyloidogenic Polypeptide: Studies of IAPP(20-29) Fragments

    Science.gov (United States)

    Brender, Jeffrey R.; Heyl, Deborah L.; Samisetti, Shyamprasad; Kotler, Samuel A.; Osborne, Joshua M.; Pesaru, Ranadheer R.; Ramamoorthy, Ayyalusamy

    2013-01-01

    A key factor in the development of type II diabetes is the loss of insulin-producing beta-cells. Human islet amyloid polypeptide protein (human-IAPP) is believed to play a crucial role in this process by forming small aggregates that exhibit toxicity by disrupting the cell membrane. The actual mechanism of membrane disruption is complex and appears to involve an early component before fiber formation and later component associated with fiber formation on the membrane. By comparing the peptide-lipid interactions derived from solid-state NMR experiments of two IAPP fragments that bind the membrane and cause membrane disordering to IAPP derived peptides known to cause significant early membrane permeabilization, we show here that membrane disordering is not likely to be sufficient by itself to cause the early membrane permeabilization observed by IAPP, and may play a lesser role in IAPP membrane disruption than expected. PMID:23493863

  14. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors

    DEFF Research Database (Denmark)

    Jang, D.; Hwang, Yuhoon; Shin, H.

    2013-01-01

    This study investigated the effects of high salinity on the performance and membrane fouling of membrane bioreactor (MBR) with saline wastewater. Synthetic wastewaters containing 5-20g/L salts (NaCl) were treated in identical lab-scale (7L) MBRs monitoring removals of dissolved organic carbon (DOC......; and the changes in microbial composition in turn have affected the performance of the MBRs. Membrane fouling was accelerated by the increased pore blocking resistance at higher salt concentrations. Analysis results of physicochemical and biological characteristics of biomass (EPS, floc size, zeta potential......) verified the impacts of high salinity on the increased membrane fouling....

  15. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  17. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  18. Silica incorporated membrane for wastewater based filtration

    Science.gov (United States)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  19. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lizhi, E-mail: zhaolizhi_phd@163.com [State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Li, Min; Liu, Manman; Zhang, Yuecong [State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Wu, Chenglin [School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 317000, Zhejiang Province (China); Zhang, Yuzhong, E-mail: zhangyz2004cn@163.com [State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2016-01-15

    Highlights: • An optical sensor membrane is prepared by TMPyP and PNaSS-grafted PSF membrane. • The optical sensor membrane shows enhanced sorption for cadmium(II). • Visual and spectrophotometric detection can be achieved. • The functional membrane exhibits good stability and reusability. - Abstract: In this study, an optical sensor membrane was prepared for sorption and detection of cadmium(II) (Cd(II)) in aqueous solution. A polyanion, poly(sodium 4-styrenesulfonate) (PNaSS), was grafted onto the chloromethylated polysulfone (CMPSF) microporous membrane via surface-initiated ATRP. 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin p-toluenesulfonate (TMPyP) was immobilized onto the PNaSS-grafted polysulfone (PSF-PNaSS) membrane through electrostatic interaction. The TMPyP-functionalized membrane exhibited an enhanced sorption for, and distinct color and spectral response to cadmium(II) (Cd(II)) in aqueous solution. Larger immobilization capacity of TMPyP on the membrane led to stronger sorption for Cd(II), and smaller one made the optical sensor have a faster (in minutes) and more sensitive response to the ion. The detection limit study indicated that the functional membrane with proper amount of TMPyP (<0.5 mg/g) could still have color and spectral response to Cd(II) solutions at an extreme low concentration (10{sup −4} mg/L). The optical sensor membrane exhibited good stability and reusability which made it efficient for various sorptive removal and detection applications.

  20. Measuring shape fluctuations in biological membranes

    International Nuclear Information System (INIS)

    Monzel, C; Sengupta, K

    2016-01-01

    Shape fluctuations of lipid membranes have intrigued cell biologists and physicists alike. In the cellular context, their origin—thermal or active—and their physiological significance are open questions. These small incessant displacements, also called membrane undulations, have mostly been studied in model membranes and membranes of simple cells like erythrocytes. Thermal fluctuations of such membranes have been very well described both theoretically and experimentally; active fluctuations are a topic of current interest. Experimentally, membrane fluctuations are not easy to measure, the main challenge being to develop techniques which are capable of measuring very small displacements at very high speed, and preferably over a large area and long time. Scattering techniques have given access to fluctuations in membrane stacks and a variety of optical microscopy based techniques have been devised to study membrane fluctuations of unilamellar vesicles, erythrocytes and other cells. Among them are flicker spectroscopy, dynamic light scattering, diffraction phase microscopy and reflection interference contrast microscopy. Each of these techniques has its advantages and limitations. Here we review the basic principles of the major experimental techniques used to measure bending or shape fluctuations of biomembranes. We report seminal results obtained with each technique and highlight how these studies furthered our understanding of physical properties of membranes and their interactions. We also discuss suggested role of membrane fluctuations in different biological processes. (topical review)

  1. Ballistic impact response of lipid membranes.

    Science.gov (United States)

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  2. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  3. Ceramic membrane development in NGK

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kiyoshi; Sakai, Hitoshi, E-mail: kinsakai@ngk.co.jp [Corporate R and D, NGK Insulators, Ltd., Nagoya 467-8530 (Japan)

    2011-05-15

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R and D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  4. Ceramic membrane development in NGK

    Science.gov (United States)

    Araki, Kiyoshi; Sakai, Hitoshi

    2011-05-01

    NGK Insulators, Ltd. was established in 1919 to manufacture the electric porcelain insulators for power transmission lines. Since then, our business has grown as one of the world-leading ceramics manufacturing companies and currently supply with the various environmentally-benign ceramic products to worldwide. In this paper, ceramic membrane development in NGK is described in detail. We have been selling ceramic microfiltration (MF) membranes and ultra-filtration (UF) membranes for many years to be used for solid/liquid separation in various fields such as pharmaceutical, chemical, food and semiconductor industries. In Corporate R&D, new ceramic membranes with sub-nanometer sized pores, which are fabricated on top of the membrane filters as support, are under development for gas and liquid/liquid separation processes.

  5. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  6. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  7. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  8. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Science.gov (United States)

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Zeolite-filled silicone rubber membranes : Part 1. Membrane preparation and pervaporation results

    NARCIS (Netherlands)

    te Hennepe, H.J.C.; Bargeman, D.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Amongst the alternative fuels obtained from renewable resources alcohol from fermentation may become one of the most important. The combination of fermentation with pervaporation in a membrane bioreactor offers the advantage of continuous processing. In this membrane bioreactor alcohol-selective

  10. Far Western: probing membranes.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONThe far-Western technique described in this protocol is fundamentally similar to Western blotting. In Western blots, an antibody is used to detect a query protein on a membrane. In contrast, in a far-Western blot (also known as an overlay assay) the antibody is replaced by a recombinant GST fusion protein (produced and purified from bacteria), and the assay detects the interaction of this protein with target proteins on a membrane. The membranes are washed and blocked, incubated with probe protein, washed again, and subjected to autoradiography. The GST fusion (probe) proteins are often labeled with (32)P; alternatively, the membrane can be probed with unlabeled GST fusion protein, followed by detection using commercially available GST antibodies. The nonradioactive approach is substantially more expensive (due to the purchase of antibody and detection reagents) than using radioactively labeled proteins. In addition, care must be taken to control for nonspecific interactions with GST alone and a signal resulting from antibody cross-reactivity. In some instances, proteins on the membrane are not able to interact after transfer. This may be due to improper folding, particularly in the case of proteins expressed from a phage expression library. This protocol describes a way to overcome this by washing the membrane in denaturation buffer, which is then serially diluted to permit slow renaturation of the proteins.

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Membrane-on-a-Chip : Microstructured Silicon/Silicon-Dioxide Chips for High-Throughput Screening of Membrane Transport and Viral Membrane Fusion

    NARCIS (Netherlands)

    Kusters, Ilja; van Oijen, Antoine M.; Driessen, Arnold J. M.

    Screening of transport processes across biological membranes is hindered by the challenge to establish fragile supported lipid bilayers and the difficulty to determine at which side of the membrane reactants reside. Here, we present a method for the generation of suspended lipid bilayers with

  13. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  14. Lignin-based membranes for electrolyte transference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao; Garcia-Valls, Ricard [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona (Spain); Benavente, Juana [Department of Applied Fisics, Faculty of Science, University of Malaga, Malaga (Spain)

    2005-08-18

    Homogeneous PSf-LS membranes are formed by incorporating Lignosulfonate (LS) into the Polysulfone (PSf) network. LS obtained from sulfite pulping process contains sulfonic acid groups that will act as proton transport media. PSf-LS membranes were characterized by reflectance Infrared and scanning electron microscopy. LS showed significant influence on membrane morphology. Higher LS concentration caused a decrease in macrovoid formation and induced larger pores. Precipitation temperature was investigated as influencing parameter. Proton fluxes through PSf-LS membranes were measured by transport experiments. Impedance analysis confirmed that PSf-LS membranes possess ion conductivity. The selected PSf-LS membranes exhibited high selectivity for proton over methanol, which indicates their potential applicability in direct methanol fuel cell (DMFC). (author)

  15. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  16. Membrane resistance : The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A. H.; Vermaas, D. A.; Veerman, J.; Saakes, M.; Rijnaarts, H. H. M.; Post, J. W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  17. Membrane resistance: The effect of salinity gradients over a cation exchange membrane

    NARCIS (Netherlands)

    Galama, A.H.; Vermaas, D.A.; Veerman, J.; Saakes, M.; Rijnaarts, H.; Post, J.W.; Nijmeijer, K.

    2014-01-01

    Ion exchange membranes (IEMs) are used for selective transport of ions between two solutions. These solutions are often different in concentration or composition. The membrane resistance (R-M) is an important parameter affecting power consumption or power production in electrodialytic processes. In

  18. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  19. Realization of asymmetrical microporous membranes by double irradiation and membranes obtained

    International Nuclear Information System (INIS)

    Balanzat, E.; Bieth, C.

    1988-01-01

    The membrane is irradiated twice, especially with heavy ions, once with an energy to low to pass through, then with enough energy. Molecular defects created by irradiation are preferentially attached by chemicals. Two pore networks are obtained: blind large diameter pores and fine pores through the membrane which can be used in filtration [fr

  20. Investigating Membranes: Using Artificial Membranes to Convey Chemistry and Biology Concepts

    Science.gov (United States)

    Zrelak, Yoshi; McCallister, Gary

    2009-01-01

    While not organic in nature, quick-"growing" artificial membranes can be a profound visual aid when teaching students about cellular processes and the chemical nature of membranes. Students are often intrigued when they see biological and chemical concepts come to life before their eyes. In this article, the authors share their approach to growing…