WorldWideScience

Sample records for basidiomycota

  1. Biocatalytic portfolio of Basidiomycota.

    Science.gov (United States)

    Schmidt-Dannert, Claudia

    2016-04-01

    Basidiomycota fungi have received little attention for applications in biocatalysis and biotechnology and remain greatly understudied despite their importance for carbon recycling, ecosystem functioning and medicinal properties. The steady influx of genome data has facilitated detailed studies aimed at understanding the evolution and function of fungal lignocellulose degradation. These studies and recent explorations into the secondary metabolomes have uncovered large portfolios of enzymes useful for biocatalysis and biosynthesis. This review will provide an overview of the biocatalytic repertoires of Basidiomycota characterized to date with the hope of motivation more research into the chemical toolkits of this diverse group of fungi.

  2. Annotated checklist of fungi in Cyprus Island. 1. Larger Basidiomycota

    Directory of Open Access Journals (Sweden)

    Miguel Torrejón

    2014-06-01

    Full Text Available An annotated checklist of wild fungi living in Cyprus Island has been compiled broughting together all the information collected from the different works dealing with fungi in this area throughout the three centuries of mycology in Cyprus. This part contains 363 taxa of macroscopic Basidiomycota.

  3. New records of Aphyllophorales (Basidiomycota in the Atlantic Rain Forest in Northeast Brazil Novos registros de Aphyllophorales (Basidiomycota em Mata Atlântica no Nordeste brasileiro

    Directory of Open Access Journals (Sweden)

    Tatiana Baptista Gibertoni

    2004-12-01

    Full Text Available Non-poroid Aphyllophorales (Basidiomycota in areas of the Atlantic Rain Forest in Northeast Brazil are reported. Auriscalpium villipes (Lloyd Snell & E.A. Dick, Climacodon pulcherrimus (Berk. & M.A. Curtis Nikol., Gloeodontia discolor (Berk. & M.A. Curtis Boidin, Irpex lacteus (Fr.: Fr. Fr. and Scytinostroma duriusculum (Berk. & Broome Donk are new records to Northeast Brazil.Aphyllophorales (Basidiomycota não poróides foram registrados em áreas de Mata Atlântica do Nordeste brasileiro. Auriscalpium villipes (Lloyd Snell & E.A. Dick, Climacodon pulcherrimus (Berk. & M.A. Curtis Nikol., Gloeodontia discolor (Berk. & M.A. Curtis Boidin, Irpex lacteus (Fr.: Fr. Fr. e Scytinostroma duriusculum (Berk. & Broome Donk são novas ocorrências para o Nordeste do Brasil.

  4. A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus

    NARCIS (Netherlands)

    Crop, de E.; Nuytinck, J.; Putte, van de K.; Wisitrassameewong, K.; Hackel, J.; Stubbe, D.; Hyde, K.D.; Roy, M.; Halling, R.E.; Moreau, P.-A.; Eberhardt, U.; Verbeken, A.

    2017-01-01

    Infrageneric relations of the genetically diverse milkcap genus Lactifluus (Russulales, Basidiomycota) are poorly known. Currently used classification systems still largely reflect the traditional, mainly morphological, characters used for infrageneric delimitations of milkcaps. Increased sampling,

  5. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota

    Institute of Scientific and Technical Information of China (English)

    Lumbsch; H.; THORSTEN

    2010-01-01

    Differences in rates of nucleotide or amino acid substitutions among major groups of organisms are repeatedly found and well documented. A growing body of evidence suggests a link between the rate of neutral molecular change within populations and the evolution of species diversity. More than 98% of terrestrial fungi belong to the phyla Ascomycota or Basidiomycota. The former is considerably richer in number of species than the latter. We obtained DNA sequences of 21 protein-coding genes from the lichenized fungus Rhizoplaca chrysoleuca and used them together with sequences from GenBank for subsequent analyses. Three datasets were used to test rate discrepancies between Ascomycota and Basidiomycota and that within Ascomycota: (i) 13 taxa including 105 protein-coding genes, (ii) nine taxa including 21 protein-coding genes, and (iii) nuclear LSU rDNA of 299 fungal species. Based on analyses of the 105 protein-coding genes and nuclear LSU rDNA datasets, we found that the evolutionary rate was higher in Ascomycota than in Basidiomycota. The differences in substitution rates between Ascomycota and Basidiomycota were significant. Within Ascomycota, the species-rich Sordariomycetes has the fastest evolutionary rate, while Leotiomycetes has the slowest. Our results indicate that the main contribution to the higher substitution rates in Ascomycota does not come from mutualism, ecological conditions, sterility, metabolic rate or shorter generation time, but is possibly caused by the founder effect. This is another example of the correlation between species number and evolutionary rates, which is consistent with the hypothesis that the founder effect is responsible for accelerated substitution rates in diverse clades.

  6. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    Science.gov (United States)

    Bercu, V.; Negut, C. D.; Duliu, O. G.

    2010-12-01

    The suitability of the EPR spectroscopy for detection of γ-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel— Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom— Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle— Cantharellus cibarius Fr., as well as oyster mushroom— Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  7. EPR investigation of some desiccated Ascomycota and Basidiomycota gamma-irradiated mushrooms

    Energy Technology Data Exchange (ETDEWEB)

    Bercu, V., E-mail: vbercu@gmail.co [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania); Negut, C.D., E-mail: dnegut@nipne.r [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Ilfov) (Romania); Duliu, O.G., E-mail: duliu@b.astral.r [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele (Ilfov) (Romania)

    2010-12-15

    The suitability of the EPR spectroscopy for detection of {gamma}-irradiation in five species of dried mushroom, currently used in gastronomy: yellow morel-Morchella esculenta, (L.) Pers. (Phylum Ascomycota), button mushroom-Agaricus bisporus (J.E.Lange), Agaricus haemorrhoidarius Fr., golden chantarelle-Cantharellus cibarius Fr., as well as oyster mushroom-Pleurotus ostreatus (Jacq. ex Fr.) (Phylum Basidiomycota) is presented and discussed. Although after irradiation at doses up to 11 kGy, all specimens presented well defined EPR spectra, only A. bisporus EPR signal was enough stable to make detection possible after 18 months.

  8. Basidiomicetes (Basidiomycota, fungi) lignolíticos em Mondaí, Santa Catarina, Brasil

    OpenAIRE

    Santana, Marisa de Campos

    2009-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas. Programa de Pós-Graduação em Biologia Vegetal. O levantamento dos basidiomicetes (Basidiomycota, Fungi) lignolíticos no município de Mondaí, Santa Catarina, Brasil, resultou na identificação de 45 espécies distribuídas nas famílias Dacrymycetaceae J. Schröt. (1), Gloeophylaceae Jülich (1), Hymenochaetaceae Imazeki & Toki (14), Schizophylaceae Jülich (1), Schizoporaceae Quél. (2), Ganodermataceae...

  9. Transmission electron microscopy of Tuberculina species (Helicobasidiales) reveals an unique mode of conidiogenesis within Basidiomycota.

    Science.gov (United States)

    Aghayeva, Dilzara N; Lutz, Matthias; Piątek, Marcin

    2016-08-01

    Tuberculina species represent the asexual life stage of the plant-parasitic sexual genus Helicobasidium. Tuberculina species are distributed all over the world, living in antagonistic symbiosis with over 150 rust species from at least 15 genera. Within the Basidiomycota, besides the spermogonia of rust fungi, only Tuberculina species develop distinct fructifications in the haplophase. However, the knowledge of conidiogenesis in Tuberculina is meagre. Therefore, conidial development in Tuberculina maxima, Tuberculina persicina, and Tuberculina sbrozzii was studied using transmission electron microscopy, and compared to each other as well as to spermatia formation in rust fungi. Significant ultrastructural characteristics such as the movement of nuclei in the process of conidium formation, and formation of the initial and late stages of conidiogenesis are documented. The mode of conidiogenesis of Tuberculina species is unique within the Basidiomycota in that (1) it is realized by haploid fructifications, (2) it is holoblastic, without annellidic proliferation, (3) the nucleus of the conidiogenous cell moves towards the forming conidium, divides, and no daughter nucleus remains inside the conidiogenous cell, and (4) the conidiogenous cell retains only cytoplasmic residues after the development of a single conidium, and a successive conidium is not produced.

  10. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps.

    Science.gov (United States)

    Cabrera-Ponce, José L; León-Ramírez, Claudia G; Verver-Vargas, Aurora; Palma-Tirado, Lourdes; Ruiz-Herrera, José

    2012-10-01

    Ustilago maydis (DC) Cda., a phytopathogenic Basidiomycota, is the causal agent of corn smut. During its life cycle U. maydis alternates between a yeast-like, haploid nonpathogenic stage, and a filamentous, dikaryotic pathogenic form that invades the plant and induces tumor formation. As all the members of the Subphylum Ustilaginomycotina, U. maydis is unable to form basidiocarps, instead it produces teliospores within the tumors that germinate forming a septate basidium (phragmobasidium). We have now established conditions allowing a completely different developmental program of U. maydis when grown on solid medium containing auxins in dual cultures with maize embryogenic calli. Under these conditions U. maydis forms large hemi-spheroidal structures with all the morphological and structural characteristics of gastroid-type basidiocarps. These basidiocarps are made of three distinct hyphal layers, the most internal of which (hymenium) contains non-septate basidia (holobasidia) from which four basidiospores develop. In basidiocarps meiosis and genetic recombination occur, and meiotic products (basidiospores) segregate in a Mendelian fashion. These results are evidence of sexual cycle completion of an Ustilaginomycotina in vitro, and the demonstration that, besides its quasi-obligate biotrophic pathogenic mode of life, U. maydis possesses the genetic program to form basidiocarps as occurs in saprophytic Basidiomycota species.

  11. Comparative analysis of DNA methyltransferase gene family in fungi: a focus on Basidiomycota

    Directory of Open Access Journals (Sweden)

    Ruirui Huang

    2016-10-01

    Full Text Available DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes.

  12. Comparative Analysis of DNA Methyltransferase Gene Family in Fungi: A Focus on Basidiomycota

    Science.gov (United States)

    Huang, Ruirui; Ding, Qiangqiang; Xiang, Yanan; Gu, Tingting; Li, Yi

    2016-01-01

    DNA methylation plays a crucial role in the regulation of gene expression in eukaryotes. Mushrooms belonging to the phylum Basidiomycota are highly valued for both nutritional and pharmaceutical uses. A growing number of studies have demonstrated the significance of DNA methylation in the development of plants and animals. However, our understanding of DNA methylation in mushrooms is limited. In this study, we identified and conducted comprehensive analyses on DNA methyltransferases (DNMtases) in representative species from Basidiomycota and Ascomycota, and obtained new insights into their classification and characterization in fungi. Our results revealed that DNMtases in basidiomycetes can be divided into two classes, the Dnmt1 class and the newly defined Rad8 class. We also demonstrated that the fusion event between the characteristic domains of the DNMtases family and Snf2 family in the Rad8 class is fungi-specific, possibly indicating a functional novelty of Rad8 DNMtases in fungi. Additionally, expression profiles of DNMtases in the edible mushroom Pleurotus ostreatus revealed diverse expression patterns in various organs and developmental stages. For example, DNMtase genes displayed higher expression levels in dikaryons than in monokaryons. Consistent with the expression profiles, we found that dikaryons are more susceptible to the DNA methyltransferase inhibitor 5-azacytidine. Taken together, our findings pinpoint an important role of DNA methylation during the growth of mushrooms and provide a foundation for understanding of DNMtases in basidiomycetes. PMID:27818666

  13. Escherichia coli as a production host for novel enzymes from basidiomycota.

    Science.gov (United States)

    Zelena, Katerina; Eisele, Nadine; Berger, Ralf G

    2014-12-01

    Many enzymes from basidiomycota have been identified and more recently characterized on the molecular level. This report summarizes the potential biotechnological applications of these enzymes and evaluates recent advances in their heterologous expression in Escherichia coli. Being one of the most widely used hosts for the production of recombinant proteins, there are, however, recurrent problems of recovering substantial yields of correctly folded and active enzymes. Various strategies for the efficient production of recombinant proteins from basidiomycetous fungi are reviewed including the current knowledge on vectors and expression strains, as well as methods for enhancing the solubility of target expression products and their purification. Research efforts towards the refolding of recombinant oxidoreductases and hydrolases are presented to illustrate successful production strategies.

  14. Analysis of indole compounds in fruiting bodies and in mycelia from in vitro cultures of Calocera viscosa (Basidiomycota)

    OpenAIRE

    Bożena Muszyńska; Katarzyna Sułkowska-Ziajda

    2013-01-01

    Calocera viscosa (Pers.: Fr.) Fr. (Basidiomycota) from Dacrymycetaceae family is a widespread species of mushroom in Poland. The aim of this study was to investigate the content of indole compounds in fruiting bodies and in mycelium cultured in vitro on solid and liquid medium of this species. Fruiting bodies of Calocera viscosa were collected in coniferous forests in south Poland and were used to derive in vitro cultures. The optimal medium composition for cultures was determined. Fresh mate...

  15. High concentration of basidiolichens in a single family of agaricoid mushrooms (Basidiomycota: Agaricales: Hygrophoraceae).

    Science.gov (United States)

    Lawrey, James D; Lücking, Robert; Sipman, Harrie J M; Chaves, José L; Redhead, Scott A; Bungartz, Frank; Sikaroodi, Masoumeh; Gillevet, Patrick M

    2009-10-01

    The Agaricales is the largest and most diverse order of mushroom-forming Basidiomycota, with over 100 natural groups recognized in recent Fungal Tree of Life studies. Most agarics are either saprotrophic or ectomycorrhizal fungi, but the family Hygrophoraceae is in part characterized by a unique and remarkable diversity of lichenized forms. The most familiar of these is the chlorolichen genus Lichenomphalia, whose phylogenetic position in the Agaricales has been established. Recent limited evidence suggested that Hygrophoraceae also contains cyanolichens in the genus Dictyonema, which indicates a remarkable concentration and diversity of lichen-formers in a single family of agarics. To demonstrate the relationships of lichen-formers to other fungi in the family, we assembled ribosomal sequences from 52 species representing recognized groups within the Hygrophoraceae, among them new sequences representing Acantholichen and most species and forms of Dictyonema. The molecular data were evaluated using parsimony, likelihood, Bayesian, and distance analyses, including coding of ambiguous regions by means of INAASE and ARC, all of which indicate that Dictyonema and Acantholichen form a monophyletic clade derived from the primarily bryophilous genus Arrhenia and sister to the enigmatic Athelia pyriformis, a species unrelated to the Atheliales for which we are proposing a new genus name Eonema. The chlorolichen genus Lichenomphalia may be polyphyletic. Fungi in the Dictyonema-Acantholichen clade are typically tropical, entirely lichenized, and associate with cyanobacterial photobionts. Our data indicate a transition from agaricoid-omphalinoid basidiomes observed in Arrhenia to stereoid-corticioid forms in Dictyonema, and also support a previous suggestion of a connection between loss of clamp connections and lichenization. The diverse basidiome and thallus morphologies and nutritional ecologies of these fungi indicate a remarkable evolutionary flexibility that appears to

  16. Indoleamine 2,3-dioxygenases with very low catalytic activity are well conserved across kingdoms: IDOs of Basidiomycota.

    Science.gov (United States)

    Yuasa, Hajime J; Ball, Helen J

    2013-07-01

    Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme and is found in animals, fungi and bacteria. In fungi, its primary role is to supply nicotinamide adenine dinucleotide (NAD(+)) via the kynurenine pathway. A number of organisms possess more than one IDO gene, for example, mammals have IDO1 and IDO2 genes. We previously reported that the Pezizomycotina fungi commonly possess three types of IDO genes, IDOα, IDOβ and IDOγ. In this study, we surveyed the nature of IDO genes from Basidiomycota fungi, which are categorized into three subphyla (Agaricomycotina, Pucciniomycotina and Ustilaginomycotina). The Agaricomycotina fungi generally have three types of IDO genes (IDOa, IDOb and IDOc), which are distinct from Pezizomycotina three isozymes. Pucciniomycotina and Ustilaginomycotina species possess two types of IDO; one forms a monophyletic clade with Agaricomycotina IDOs in the phylogenetic tree, these IDOs are referred to as "typical Basidiomycota IDOs". The other is IDOγ, which showed more than 40% identity with Pezizomycotina and ciliate IDOγ. We previously demonstrated that IDO2 in mammals and IDOγ in Perzizomycotina fungi have much lower catalytic efficiencies in an in vitro assay, compared with the other IDO isoforms found in the respective species. We have developed a functional assay to determine whether particular IDO enzymes have sufficient enzymatic activity to rescue a yeast strain where IDO-deletion has rendered it auxotrophic for nicotinic acid. IDOα and IDOβ showed comparable catalytic efficiency, both of them could function in the Pezizomycotina fungal L-Trp metabolism. The catalytic efficiency and functional capacity of the Basidiomycota IDOa and IDOb were similar to Pezizomycotina IDOα/IDOβ. We found that Basidiomycota IDOc could not rescue the nicotinic acid auxotroph, similar to other IDO enzymes with low catalytic efficiency (mammalian IDO2 and most fungal IDOγ). Our study suggests that some fungal IDO enzymes function in

  17. Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota

    Directory of Open Access Journals (Sweden)

    Jacobsson Stig

    2008-02-01

    Full Text Available Abstract Background The lack of reference sequences from well-identified mycorrhizal fungi often poses a challenge to the inference of taxonomic affiliation of sequences from environmental samples, and many environmental sequences are thus left unidentified. Such unidentified sequences belonging to the widely distributed ectomycorrhizal fungal genus Inocybe (Basidiomycota were retrieved from GenBank and divided into species that were identified in a phylogenetic context using a reference dataset from an ongoing study of the genus. The sequence metadata of the unidentified Inocybe sequences stored in GenBank, as well as data from the corresponding original papers, were compiled and used to explore the ecology and distribution of the genus. In addition, the relative occurrence of Inocybe was contrasted to that of other mycorrhizal genera. Results Most species of Inocybe were found to have less than 3% intraspecific variability in the ITS2 region of the nuclear ribosomal DNA. This cut-off value was used jointly with phylogenetic analysis to delimit and identify unidentified Inocybe sequences to species level. A total of 177 unidentified Inocybe ITS sequences corresponding to 98 species were recovered, 32% of which were successfully identified to species level in this study. These sequences account for an unexpectedly large proportion of the publicly available unidentified fungal ITS sequences when compared with other mycorrhizal genera. Eight Inocybe species were reported from multiple hosts and some even from hosts forming arbutoid or orchid mycorrhizae. Furthermore, Inocybe sequences have been reported from four continents and in climate zones ranging from cold temperate to equatorial climate. Out of the 19 species found in more than one study, six were found in both Europe and North America and one was found in both Europe and Japan, indicating that at least many north temperate species have a wide distribution. Conclusion Although DNA

  18. Analysis of indole compounds in fruiting bodies and in mycelia from in vitro cultures of Calocera viscosa (Basidiomycota

    Directory of Open Access Journals (Sweden)

    Bożena Muszyńska

    2013-12-01

    Full Text Available Calocera viscosa (Pers.: Fr. Fr. (Basidiomycota from Dacrymycetaceae family is a widespread species of mushroom in Poland. The aim of this study was to investigate the content of indole compounds in fruiting bodies and in mycelium cultured in vitro on solid and liquid medium of this species. Fruiting bodies of Calocera viscosa were collected in coniferous forests in south Poland and were used to derive in vitro cultures. The optimal medium composition for cultures was determined. Fresh material: fruiting bodies and mycelium from culture in vitro was frozen and then dried by lyophilization. The crushed dry biomass was extracted with petroleum ether to remove oil fraction, material was dried and extracted with methanol. Analysis of indole compounds was performed in methanol extracts using chromatographic methods: TLC, UV Vis, EIMS and HPLC. This analysis presented in all three extracts the following indole compounds: L-tryptophan, 5-hydroxytryptophan, 5-methyltryptophan, melatonin and indole (contents fluctuated in the range: 0.37 to 11.88 mg/100 g d.w.. 5-hydroxytryptophan contents in all extracts were significant and amounted to 11.88 mg/100 g d.w. in fruiting bodies, and 11.42 in mycelium from liquid cultures and and 10.59 in mycelium from solid cultures. In addition, the fruiting bodies and mycelium from cultures on liquid medium revealed the presence of serotonin (0.39 and 3.19 mg/100 g d.w. respectively.

  19. 鸡油菌属的研究概况与展望%Research Status and Prospect of the Genus Cantharellus Adans.ex Fr.(Cantharellaceae,Basidiomycota)

    Institute of Scientific and Technical Information of China (English)

    田霄飞; 刘培贵; 邵士成

    2009-01-01

    鸡油菌属Cantharellus Adans.ex Fr.在担子菌中是一个具有独立演化路线的类群,隶属于担子菌门,同担子菌纲,鸡油菌目,鸡油菌科.该属全球分布广泛,目前有65种,中国曾记载9种.本文回顾了该属的研究历史,结合自己的研究成果,着重对本属各分类单元的划分和命名,相近种的区分,鸡油菌C.cibarius Fr.和管形鸡油菌C.tubaeformis Fr.:Fr.复合群以及生态保护和仿生栽培等方面研究中存在的疑问和纷争进行了论述.最后,作者对我国鸡油菌属的生物多样性研究和资源的持续利用提出了针对性的建议.%Cantharellus Adans. ex Fr., a member of the Cantharellaceae, Cantharellales, Homobasidio-mycetes, Basidiomycota, is a widely distributed macro-fungal genus with an independent evolutionary lineage. It currently includes 65 species, of which 9 were recorded in China. In this article, research history of the genus was briefly reviewed and some controversial conclusions, especially the demarcation and naming of some taxa, discrimination among similar species, problems on C. cibarius Fr. and C. tubaeformis Fr.: Fr. complex, as well as their ecological conservation and bionic cultivation, are discussed based on the authors' findings. Proposals for further research on biodiversities and sustainable utilizations were put forward at last.

  20. Studies of Mevalonate Pathway Influence on Biosynthesis of Terpenoids in Basidiomycota%担子菌中甲羟戊酸途径影响萜类物质合成的研究

    Institute of Scientific and Technical Information of China (English)

    李亮; 尚晓冬; 谭琦

    2014-01-01

    There are numerous active terpenoids in Basidiomycota cellular.These active substances have important influence on human nutrition and health.Mevalonate pathway,which can govern biosynthesis of some kinds of terpenoids,is an essential path in regulating secondary metabolism in Basidiomycota cells.However,the production of terpenoids in the cell is very low,and the chemical and biological synthesis methods of active terpenoids are with low efficiency and high cost.Therefore,in order to increase the output of terpenoids substances,this paper introduced some key substances,Acetyl-CoA,HMG-CoA,MVK,and their influences on biosynthesis of terpenoids,aiming at improving target terpenoids production by adjusting and controlling these substances.%担子菌中具有多种萜类活性物质,这些活性物质对人类的营养和健康有着很重要的影响.甲羟戊酸途径是担子菌合成萜类物质的一条主要途径,萜类物质的含量水平受到甲羟戊酸途径的控制,但是生物细胞内萜类物质的产量很低,并且目前活性萜类物质的化学以及生物合成方法效率低、成本高,因此为了能够更好的增加萜类物质在担子菌细胞内的产量,介绍了担子菌甲羟戊酸途径中乙酰辅酶A、HMG-CoA、甲羟戊酸激酶影响萜类物质的合成作用,旨在通过调控这些物质来增加目标萜类物质的产量.

  1. Some interesting Gasteromycetes (Basidiomycota) in dry areas from northeastern Brazil

    OpenAIRE

    Baseia, Iuri Goulart; Galvão,Tereza Cristina de O.

    2002-01-01

    Some xerophyles gasteroid fungi from 'caatinga' vegetation are joined here. Several specimens belonging to four species were identified: Astraeus hygrometricus (Pers.: Pers.) Morg., Myriostoma coliforme (With.: Pers.) Corda, Podaxis pistillaris (L.: Pers.) Fr. emend. Morse and Tulostoma exasperatum Mont. All of these species, except P. pistillaris, represent first records from the caatinga region. Descriptions of macro and microscopic features are given including taxonomic and ecological cons...

  2. Octaviania asterosperma (hypogeous Basidiomycota. Recent data to ecology and distribution

    Directory of Open Access Journals (Sweden)

    Piotr Mleczko

    2013-12-01

    Full Text Available Phylogenetic analyses place Octaviania asterosperma in the Boletales, with Leccinum being the closest relative. Results of the structural investigation of O. asterosperma ectomycorrhiza with Fagus sylvatica confirm this systematic position. In Europe the species is an ectomycorrhizal partner of broad-leaved trees, such as Carpinus, Corylus, Fagus, Quercus and Tilia. This paper aims at presenting the new data to the distribution of O. asterosperma in Central Europe. The description of the basidiocarps discovered in Poland in the recent years is also given, together with evidence for the parasitic relationship of Sepedonium laevigatum with O. asterosperma. We also present the information concerning all known localities of the species in Poland and its distribution map. Data on the ecologz, distribution and status O. asterosperma in Europe, and some structural aspects of basidiocarps and spores, are also summarized.

  3. Catálogo de hongos gasteroides (Basidiomycota de Catamarca, Argentina Catalogue of gasteroid fungi (Basidiomycota from Catamarca, Argentina

    Directory of Open Access Journals (Sweden)

    María Marta Dios

    2011-06-01

    Full Text Available Se realiza un listado de los hongos gasteroides de la provincia de Catamarca (Argentina basado en la bibliografía hasta abril de 2010. En total aparecen citadas 43 especies distribuidas en 2 órdenes, 4 familias y 13 géneros. El número de especies catalogadas es relativamente baja pero este número probablemente se incremente cuando se estudien las zonas aún no muestreadas como son las regiones fitogeográfícas de la Puna y las Yungas.A compiled check list of gasteroid fungi of Catamarca Province (Argentina was made. It was based on literature records, available until April 2010. There were 43 species of fungi distributed in 2 orders, 4 families and 13 genera. The number of species recorded in this area was relatively poor but it is likely to increase with the study of unexplored areas not yet surveyed as the phytogeographical regions of the Puna and Yungas.

  4. Some interesting Gasteromycetes (Basidiomycota) in dry areas from northeastern Brazil Alguns Gasteromycetes (Basidiomycota) interessantes em áreas secas do nordeste brasileiro

    OpenAIRE

    Iuri Goulart Baseia; Galvão,Tereza Cristina de O.

    2002-01-01

    Some xerophyles gasteroid fungi from 'caatinga' vegetation are joined here. Several specimens belonging to four species were identified: Astraeus hygrometricus (Pers.: Pers.) Morg., Myriostoma coliforme (With.: Pers.) Corda, Podaxis pistillaris (L.: Pers.) Fr. emend. Morse and Tulostoma exasperatum Mont. All of these species, except P. pistillaris, represent first records from the caatinga region. Descriptions of macro and microscopic features are given including taxonomic and ecological cons...

  5. Some interesting Gasteromycetes (Basidiomycota in dry areas from northeastern Brazil Alguns Gasteromycetes (Basidiomycota interessantes em áreas secas do nordeste brasileiro

    Directory of Open Access Journals (Sweden)

    Iuri Goulart Baseia

    2002-01-01

    Full Text Available Some xerophyles gasteroid fungi from 'caatinga' vegetation are joined here. Several specimens belonging to four species were identified: Astraeus hygrometricus (Pers.: Pers. Morg., Myriostoma coliforme (With.: Pers. Corda, Podaxis pistillaris (L.: Pers. Fr. emend. Morse and Tulostoma exasperatum Mont. All of these species, except P. pistillaris, represent first records from the caatinga region. Descriptions of macro and microscopic features are given including taxonomic and ecological considerations.Diversos gasteromicetos xerófilos em vegetação de caatinga pertencentes a quatro espécies foram identificados: Astraeus hygrometricus (Pers.: Pers. Morg., Myriostoma coliforme (With.: Pers. Corda, Podaxis pistillaris (L.: Pers. Fr. emend. Morse and Tulostoma exasperatum Mont. Com exceção P. pistillaris, as demais espécies representam primeiros registros para regiões de caatinga. São fornecidas descrições das características macro e microscópicas, incluindo considerações taxonômicas e ecológicas.

  6. GENERALIDADES DE LOS UREDINALES(Fungi: Basidiomycota Y DE SUS RELACIONES FILOGENÉTICAS Fundamentals Of Rust Fungi (Fungi: BasidiomycotaAnd Their Phylogentic Relationships

    Directory of Open Access Journals (Sweden)

    CATALINA MARÍA ZULUAGA

    Full Text Available Los hongos-roya (Uredinales, Basidiomycetes representan uno de los grupos de microorganismos fitoparásitos más diversos y con mayor importancia económica mundial en la producción agrícola y forestal. Se caracterizan por ser patógenos obligados y por presentar una estrecha coevolución con sus hospedantes vegetales. Su taxonomía se ha basado fundamentalmente en el estudio de caracteres morfológicos, resultando en muchos casos en la formación de taxones polifiléticos. Sin embargo, en los últimos años se han tratado de incorporar herramientas moleculares que conduzcan a la generación de sistemas de clasificación basados en afinidades evolutivas. En esta revisión se ofrece una mirada general a las características de los uredinales, enfatizando en el surgimiento reciente de estudios filogenéticos que plantean la necesidad de establecer una profunda revisión de la taxonomía de este grupo. Finalmente se alerta sobre la necesidad de que en dichos estudios taxonómicos se incluya un alto número de especies de royas neotropicales, pues esta zona es reconocida no sólo por su alta diversidad de hongos-royas, sino también por las características únicas de sus ciclos de vida.Rust fungi (Uredinales, Basidiomycetes are one of the most diverse and economically important plant pathogens of crops world-wide. They are obligated parasites and have a close evolutionary relationship with their plant hosts. Taxonomy of this group has been based on morphological treats, resulting in generation of polyphyletic taxa. Recently, different studies have incorporated molecular techniques addressed to establishing evolutionary affinities between these fungi. This review presents a general view of the biological characteristics of rust fungi, with a detailed discussion on the phylogenetic studies regarding the group. Finally, the review proposes the necessity to establish phylogenetic studies on rust fungi from the neotropics, where these fungi present a very high diversity and unique life cycles.

  7. Hongos comestibles silvestres: especies exóticas de Suillus (Boletales, Basidiomycota y Lactarius (Russulales, Basidiomycota asociados a cultivos de Pinus elliottii del nordeste argentino

    Directory of Open Access Journals (Sweden)

    Nicolás Niveiro

    2009-01-01

    Full Text Available Los hongos silvestres comestibles son un recurso económico importante que permite obtenerun producto deshidratado que puede comercializarse fácilmente. En el presente trabajo, y conel objeto de dar a conocer este recurso, se ilustran y describen dos especies de hongosmicorrícicos asociadas a cultivos de Pinus elliottii en el nordeste argentino que no han sidomencionadas anteriormente para la región: Lactarius deliciosus para la provincia de Misionesy Suillus granulatus para las provincias de Corrientes y Misiones

  8. Dos especies nuevas del género Phellinus (Hymenochaetales, Basidiomycota en México Two new species of the genus Phellinus ((Hymenochaetales, Basidiomycota from México

    Directory of Open Access Journals (Sweden)

    Tania Raymundo

    2008-12-01

    Full Text Available Se describen por primera vez para la ciencia, los caracteres morfológicos macroscópicos y microscópicos de 2 especies resupinadas del género Phellinus encontradas en vegetación tropical de México: Phellinus guzmanii y Phellinus herrerae. La primera se registra en la Reserva de la Biosfera de la Sierra Gorda en el estado de Querétaro y presenta esporas subglobosas a elipsoides, amarillentas y setas hifales en el margen del basidioma; la segunda se recolectó en la Reserva de la Biosfera de Calakmul en el estado de Campeche y se caracteriza por presentar esporas oblongo-elipsoides, amarillo-doradas a café amarillentas y grandes. Los ejemplares estudiados están depositados en los Herbarios ENCB con duplicados en FCME, MEXU y XAL.The macroscopic and microscopic morphological characters of 2 resupinate species of the genus Phellinus collected in tropical vegetation from Mexico are described for the first time, Phellinus guzmanii and Phellinus herrerae. The first species was collected from Sierra Gorda Biosphere Reserve in Querétaro State and has subglobose to ellipsoid and yellowish spores and hyphal setae on the margin of the basidiomata; the latter species was collected in the Calakmul Biosphere Reserve in Campeche State and is characterized by its large oblong-ellipsoid golden yellow to yellowish brown spores. The studied specimens were deposited in the ENCB herbarium with duplicates in FCME, MEXU, and XAL.

  9. Dos especies nuevas del género Phellinus (Hymenochaetales, Basidiomycota) en México Two new species of the genus Phellinus ((Hymenochaetales, Basidiomycota) from México

    OpenAIRE

    Tania Raymundo; Ricardo Valenzuela; Joaquín Cifuentes

    2008-01-01

    Se describen por primera vez para la ciencia, los caracteres morfológicos macroscópicos y microscópicos de 2 especies resupinadas del género Phellinus encontradas en vegetación tropical de México: Phellinus guzmanii y Phellinus herrerae. La primera se registra en la Reserva de la Biosfera de la Sierra Gorda en el estado de Querétaro y presenta esporas subglobosas a elipsoides, amarillentas y setas hifales en el margen del basidioma; la segunda se recolectó en la Reserva de la Biosfera de Cala...

  10. Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes

    Directory of Open Access Journals (Sweden)

    Oberwinkler Franz

    2006-04-01

    Full Text Available Abstract Background Anther smuts of the basidiomycetous genus Microbotryum on Caryophyllaceae are important model organisms for many biological disciplines. Members of Microbotryum are most commonly found parasitizing the anthers of host plants in the family Caryophyllaceae, however they can also be found on the anthers of members of the Dipsacaceae, Lamiaceae, Lentibulariaceae, and Portulacaceae. Additionally, some members of Microbotryum can be found infecting other organs of mainly Polygonaceae hosts. Based on ITS nrDNA sequences of members of almost all genera in Microbotryaceae, this study aims to resolve the phylogeny of the anther smuts and their relationship to the other members of the family of plant parasites. A multiple analysis strategy was used to correct for the effects of different equally possible ITS sequence alignments on the phylogenetic outcome, which appears to have been neglected in previous studies. Results The genera of Microbotryaceae were not clearly resolved, but alignment-independent moderate bootstrap support was achieved for a clade containing the majority of the Microbotryum species. The anther parasites appeared in two different well-supported lineages whose interrelationship remained unresolved. Whereas bootstrap support values for some clades were highly vulnerable to alignment conditions, other clades were more robustly supported. The differences in support between the different alignments were much larger than between the phylogenetic optimality criteria applied (maximum parsimony and maximum likelihood. Conclusion The study confirmed, based on a larger dataset than previous work, that the anther smuts on Caryophyllaceae are monophyletic and that there exists a native North American group that diverged from the European clade before the radiation of the European species. Also a second group of anther smuts was revealed, containing parasites on Dipsacaceae, Lamiaceae, and Lentibulariaceae. At least the majority of the parasites of Asteraceae appeared as a monophylum, but delimitations of some species in this group should be reconsidered. Parasitism on Polygonaceae is likely to be the ancestral state for the Microbotryaceae on Eudicot hosts.

  11. GENERALIDADES DE LOS UREDINALES (Fungi: Basidiomycota) Y DE SUS RELACIONES FILOGENÉTICAS

    OpenAIRE

    CATALINA MARÍA ZULUAGA; PABLO BURITICÁ CÉSPEDES; MAURICIO MARÍN-MONTOYA

    2009-01-01

    Los hongos-roya (Uredinales, Basidiomycetes) representan uno de los grupos de microor- ganismos fitoparásitos más diversos y con mayor importancia económica mundial en la producción agrícola y forestal. Se caracterizan por ser patógenos obligados y por presentar una estrecha coevolución con sus hospedantes vegetales. Su taxonomía se ha basado fundamentalmente en el estudio de caracteres morfológicos, resultando en muchos casos en la formación de taxones polifiléticos. Sin embargo, en los últi...

  12. In vitro wood decay of teak (Tectona grandis by Rigidoporus cf. microporus (Meripiliaceae, Polyporales, Basidiomycota

    Directory of Open Access Journals (Sweden)

    E. Sarmiento S

    2016-03-01

    Full Text Available The use of exotic species like teak for industry demands has increased over the last decades in Central America, however its vulnerability to decay by saprophytic fungi has not been well studied. Among these fungi, Rigidoporus spp. have been described as white rotters of dead hardwoods and conifers worldwide. In Costa Rica, R. microporus has been found growing on teak stumps. The aim of this study was to determine the effects of this white rot fungus on the chemical, mechanical and physical properties of teak wood from trees of different ages. Six and ten year old sapwood and heartwood samples were used in the assays. Severe anatomical damage and the highest weight and resistance losses were observed on 6 yr. old sapwood samples. There was an increase in the quantity of soluble materials in 1% NaOH (relative values and lignin content in all the samples analyzed, after 3 months exposure and up to the end of the experiment. Mass loss reduction and increased resistance of wood to compressive strength parallel to the grain were related to both the type of wood and the age of the tree. Knowledge of the potential damage that this fungus can cause to teak wood might help in a better selection of wood and developing more effective protection measures against decay in the field or in construction wood.

  13. Integrative taxonomy reveals an unexpected diversity in Geastrum section Geastrum (Geastrales, Basidiomycota)

    NARCIS (Netherlands)

    Zamora, J.C.; Calonge, F.D.; Martín, M.P.

    2015-01-01

    A revision of the classification of Geastrum sect. Geastrum is presented on the basis of an integrative taxonomic approach, which involves the study of morphological, molecular, ecological, and chorological data. Four DNA regions are analysed: the ITS and LSU nrDNA, rpb1, and atp6. Phylogenetic reco

  14. Cyphobasidium gen. nov., a new lichen-inhabiting lineage in the Cystobasidiomycetes (Pucciniomycotina, Basidiomycota, Fungi).

    Science.gov (United States)

    Millanes, Ana M; Diederich, Paul; Wedin, Mats

    2016-11-01

    Pucciniomycotina is a highly diverse group of fungi, showing a remarkably wide range of lifestyles and ecologies. However, lichen-inhabiting fungi are only represented by a few species included in the genera Chionosphaera and Cystobasidium, and their phylogenetic position has never been investigated. Phylogenetic analyses using the nuclear SSU, ITS, and LSU ribosomal DNA markers reveal that the lichenicolous members of Cystobasidium (C. hypogymniicola, C. usneicola) form a monophyletic group distinct from Cystobasidium and outside the Cystobasidiales. The new genus Cyphobasidium is consequently described to accommodate these lichen-inhabiting species. Cyphobasidium is characterized by producing conspicuous galls on the host lichen thalli, by having distinctive basidia that arise from a thick-walled, cup-like structure, the probasidium, that persists after the senescence of the actual basidium (meiosporangium), and by its lichenicolous occurrence on species of Hypogymnia and Usnea. Cyphobasidium is one of the few representatives of the Cystobasidiomycetes in which the sexual stage predominates in nature, whereas most species in the group are known only from an asexual yeast phase. This is the first time the position of lichen-inhabiting taxa within the Pucciniomycotina is investigated using molecular data.

  15. Neomensularia duplicata gen. et sp. nov. (Hymenochaetales, Basidiomycota) and two new combinations.

    Science.gov (United States)

    Wu, Fang; Zhou, Li-Wei; Dai, Yu-Cheng

    2016-09-01

    Neomensularia (Hymenochaetaceae) is a new genus introduced for N. duplicata sp. nov. (generic type), N. crocitincta and N. kanehirae combs. nov., based on a combination of distinct morphological characters and phylogenetic analyses inferred from nuc rDNA partial 28S and ITS datasets. The new genus is characterized by annual, pileate, brown to fuscous basidiocarps, duplex context, dimitic hyphal structure, ventricose, and hooked hymenial setae, golden yellow, thick-walled, smooth basidiospores that are negative in both Melzer's reagent and Cotton Blue and a growth habit in tropical forests. Neomensularia duplicata closely resembles Mensularia radiata by hooked hymenial setae, but M. radiata has a homogenous context, larger pores (5-7 per mm), monomitic hyphal structure, hyphoid setae, larger cyanophilic basidiospores and occurs in temperate forests. Central American specimens labeled as Inonotus crocitinctus and Asian specimens identified as Fulvifomes kanehirae were re-examined. The duplex context, hooked hymenial setae and colored basidiospores are similar to N. duplicata Phylogenetic inferences based on 28S and ITS sequence data confirm their affinities with N. duplicata and result in the proposal of new combinations, Neomensularia crocitincta and N. kanehirae.

  16. GENERALIDADES DE LOS UREDINALES(Fungi: Basidiomycota Y DE SUS RELACIONES FILOGENÉTICAS

    Directory of Open Access Journals (Sweden)

    ZULUAGA CATALINA MARÍA

    2009-04-01

    Full Text Available

    RESUMEN

    Los hongos-roya (Uredinales, Basidiomycetes representan uno de los grupos de microorganismos fitoparásitos más diversos y con mayor importancia económica mundial en la producción agrícola y forestal. Se caracterizan por ser patógenos obligados y por presentar una estrecha coevolución con sus hospedantes vegetales. Su taxonomía se ha basado fundamentalmente en el estudio de caracteres morfológicos, resultando en muchos casos en la formación de taxones polifiléticos. Sin embargo, en los últimos años se han tratado de incorporar herramientas moleculares que conduzcan a la generación de sistemas de clasificación basados en afinidades evolutivas. En esta revisión se ofrece una mirada general a las características de los uredinales, enfatizando en el surgimiento reciente de estudios filogenéticos que plantean la necesidad de establecer una profunda revisión de la taxonomía de este grupo. Finalmente se alerta sobre la necesidad de que en dichos estudios taxonómicos se incluya un alto número de especies de royas neotropicales, pues esta zona es reconocida no sólo por su alta diversidad de hongos-royas, sino también por las características únicas de sus ciclos de vida.

    Palabras clave: filogenia, hongos-roya, Puccinia, secuenciación, teliosporas.


    ABSTRACT

    Rust fungi (Uredinales, Basidiomycetes are one of the most diverse and economically important plant pathogens of crops world-wide. They are obligated parasites and have a close evolutionary relationship with their plant hosts. Taxonomy of this group has been based on morphological treats, resulting in generation of polyphyletic taxa. Recently, different studies have incorporated molecular techniques addressed to establishing evolutionary affinities between these fungi. This review presents a general view of the biological characteristics of rust fungi, with a detailed discussion on the phylogenetic studies regarding the group. Finally, the review proposes the necessity to establish phylogenetic studies on rust fungi from the neotropics, where these fungi present a very high diversity and unique life cycles.

    Key words: phylogeny, Puccinia, rust fungi, sequencing, teliospores.

  17. Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota, Agaricales) in Europe

    DEFF Research Database (Denmark)

    Frøslev, Tobias Guldberg; Jeppesen, Thomas Stjernegaard; Laessøe, Thomas;

    2007-01-01

    Cortinarius is the most species rich genus of mushroom forming fungi with an estimated 2000 spp. worldwide. However, species delimitation within the genus is often controversial. This is particularly true in the section Calochroi (incl. section Fulvi), where the number of accepted taxa in Europe...

  18. Edible wild mushrooms: exotic species of Suillus (Boletales, Basidiomycota and Lactarius (Russulales, Basidiomycota associated to culture of Pinus elliottii in northeastern Argentina HONGOS COMESTIBLES SILVESTRES: ESPECIES EXÓTICAS DE SUILLUS (BOLETALES, BASIDIOMYCOTA Y LACTARIUS (RUSSULALES, BASIDIOMYCOTA ASOCIADAS A CULTIVOS DE PINUS ELLIOTTII DEL NORDESTE ARGENTINO

    Directory of Open Access Journals (Sweden)

    Nicolás Niveiro

    2010-07-01

    Full Text Available Wild edible mushrooms are a promising economic resource, since they are easily commercialized as a dehydrated product. In the present work, two species of mycorrhizal fungus associated to Pinus elliottii, cultivated in the NE of Argentina, are described and illustrated. Lactarius deliciosus is a new record from Misiones province whereas Suillus granulatus is a new record from provinces of Corrientes and Misiones

    Los hongos silvestres comestibles son un recurso económico importante que permite obtener
    un producto deshidratado que puede comercializarse fácilmente. En el presente trabajo, y con
    el objeto de dar a conocer este recurso, se ilustran y describen dos especies de hongos
    micorrícicos asociadas a cultivos de Pinus elliottii en el nordeste argentino que no han sido
    mencionadas anteriormente para la región: Lactarius deliciosus para la provincia de Misiones
    y Suillus granulatus para las provincias de Corrientes y Misiones

  19. Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota).

    Science.gov (United States)

    Bellanger, J-M; Moreau, P-A; Corriol, G; Bidaud, A; Chalange, R; Dudova, Z; Richard, F

    2015-04-01

    During the last two decades, the unprecedented development of molecular phylogenetic tools has propelled an opportunity to revisit the fungal kingdom under an evolutionary perspective. Mycology has been profoundly changed but a sustained effort to elucidate large sections of the astonishing fungal diversity is still needed. Here we fill this gap in the case of Lyophyllaceae, a species-rich and ecologically diversified family of mushrooms. Assembly and genealogical concordance multigene phylogenetic analysis of a large dataset that includes original, vouchered material from expert field mycologists reveal the phylogenetic topology of the family, from higher (generic) to lower (species) levels. A comparative analysis of the most widely used phylogenetic markers in Fungi indicates that the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) and portions of the genes for RNA polymerase II second largest subunit (RPB2) is the most performing combination to resolve the broadest range of taxa within Lyophyllaceae. Eleven distinct evolutionary lineages are identified, that display partial overlap with traditional genera as well as with the phylogenetic framework previously proposed for the family. Eighty phylogenetic species are delineated, which shed light on a large number of morphological concepts, including rare and poorly documented ones. Probing these novel phylogenetic species to the barcoding method of species limit delineation, indicates that the latter method fully resolves Lyophyllaceae species, except in one clade. This case study provides the first comprehensive phylogenetic overview of Lyophyllaceae, a necessary step towards a taxonomical, ecological and nomenclatural revision of this family of mushrooms. It also proposes a set of methodological guidelines that may be of relevance for future taxonomic works in other groups of Fungi.

  20. Susceptibility of the ant-cultivated fungus Leucoagaricus gongylophorus (Agaricales: Basidiomycota) towards microfungi.

    Science.gov (United States)

    Silva, A; Rodrigues, A; Bacci, M; Pagnocca, F C; Bueno, O C

    2006-08-01

    The aim of this study was to select virulent strains of microfungi against Leucoagaricus gongylophorus, a symbiotic fungus cultivated by leaf-cutting ants. The results from in vitro assays showed that microfungal strains had a variable and significant impact on the colony development of L. gongylophorus. Specifically, Trichoderma harzianum, Escovopsis weberi CBS 810.71 and E. weberi A088 were more effective, inhibiting the L. gongylophorus colonies by 75, 68 and 67%, respectively (P < 0.05) after 15 days. Strain E. weberi A086 and Acremonium kiliense were less effective: 43 and 26%, respectively (P < 0.05). In spite of the current negative perspective of a microbiological control approach for these ants, the present work discusses the possibility of using mycopathogenic fungi for the control of these insects, and points out the importance of encouraging more studies in this area.

  1. Multilocus mutation scanning for the analysis of genetic variation within Malassezia (Basidiomycota: Malasseziales).

    Science.gov (United States)

    Cafarchia, Claudia; Otranto, Domenico; Campbell, Bronwyn E; Latrofa, Maria Stefania; Guillot, Jacques; Gasser, Robin B

    2007-04-01

    Members of the genus Malassezia are budding yeasts, characterized by a thick cell wall. Recently, these yeasts have received attention as emerging pathogens. They are common commensals on the skin of animals and can become pathogenic under the influence of various predisposing factors. Central to studying their taxonomy, systematics, and ecology and to diagnosis is the accurate identification of species or operational taxonomic units. To overcome the limitations of current phenotypic and biochemical methods of identification, a PCR-coupled SSCP approach, utilizing sequence variation (0.4-33.5%) in short regions (approximately 250-270 bp) of the first internal transcribed spacer (ITS-1) of nuclear ribosomal DNA and the chitin synthase-2 gene (chs-2), was assessed for the identification and differentiation of different species/genotypes of Malassezia, characterized previously by DNA sequencing. Genomic DNA samples (n = 30) from Malassezia isolates cultured from canine skin scrapings were assessed by SSCP analysis of the two different genetic loci, and unequivocal delineation between genotypes and species was achieved. This SSCP approach is considered to provide a practical tool for the rapid and reliable genetic characterization of Malassezia genotypes/species from dogs and for investigating their population genetics and ecology. It will also provide a powerful tool for studies of Malassezia isolates from other animal species.

  2. GENERALIDADES DE LOS UREDINALES (Fungi: Basidiomycota Y DE SUS RELACIONES FILOGENÉTICAS

    Directory of Open Access Journals (Sweden)

    CATALINA MARÍA ZULUAGA

    2009-01-01

    Full Text Available Los hongos-roya (Uredinales, Basidiomycetes representan uno de los grupos de microor- ganismos fitoparásitos más diversos y con mayor importancia económica mundial en la producción agrícola y forestal. Se caracterizan por ser patógenos obligados y por presentar una estrecha coevolución con sus hospedantes vegetales. Su taxonomía se ha basado fundamentalmente en el estudio de caracteres morfológicos, resultando en muchos casos en la formación de taxones polifiléticos. Sin embargo, en los últimos años se han tratado de incorporar herramientas moleculares que conduzcan a la generación de sistemas de clasificación basados en afinidades evolutivas. En esta revisión se ofrece una mirada general a las características de los uredinales, enfatizando en el surgimiento reciente de estudios filogenéticos que plantean la necesidad de establecer una profunda revisión de la taxonomía de este grupo. Finalmente se alerta sobre la necesidad de que en dichos estudios taxonómicos se incluya un alto número de especies de royas neo- tropicales, pues esta zona es reconocida no sólo por su alta diversidad de hongos-royas, sino también por las características únicas de sus ciclos de vida.

  3. Dos especies nuevas del género Phellinus (Hymenochaetales, Basidiomycota) en México

    OpenAIRE

    Tania Raymundo; Ricardo Valenzuela; Joaquín Cifuentes

    2008-01-01

    Se describen por primera vez para la ciencia, los caracteres morfológicos macroscópicos y microscópicos de 2 especies resupinadas del género Phellinus encontradas en vegetación tropical de México: Phellinus guzmanii y Phellinus herrerae. La primera se registra en la Reserva de la Biosfera de la Sierra Gorda en el estado de Querétaro y presenta esporas subglobosas a elipsoides, amarillentas y setas hifales en el margen del basidioma; la segunda se recolectó en la Reserva de la Biosfera de Cala...

  4. Taxonomy and phylogeny of Phellinidium (Hymenochaetales, Basidiomycota): A redefinition and the segregation of Coniferiporia gen. nov. for forest pathogens.

    Science.gov (United States)

    Zhou, Li-Wei; Vlasák, Josef; Dai, Yu-Cheng

    2016-08-01

    Phellinidium, including 13 accepted polypore species mostly with resupinate basidiocarps, is one of the most aggressive forest pathogenic genera. This genus is characterized by the combination of a monomitic hyphal structure, abundant hyphoid setae in the context and trama, and hyaline and thin-walled basidiospores. To explore the relationships among the species of Phellinidium, especially those between forest pathogens and saprophytes, we examined 29 specimens representing all 13 previously known species from Asia, Europe and America from morphological and phylogenetic perspectives. A new genus, Coniferiporia, was found to segregate from Phellinidium for three aggressive forest pathogens, and three new combinations, viz. Coniferiporia qilianensis (the generic type), Coniferiporia weirii and Coniferiporia sulphurascens, were proposed. Phellinidium cryptocystidiatum was treated as a synonym of C. sulphurascens. The circumscription of Phellinidium was delimited to accommodate Phellinidium asiaticum, Phellinidium ferrugineofuscum (the generic type), Phellinidium fragrans and Phellinidium pouzarii. Accordingly, the concept of Phellinidium was emended to accommodate resupinate species bearing cylindrical to oblong-ellipsoid or allantoid basidiospores. No species of Phellinidium under the new circumscription has been reported to be a forest pathogen. Phellinidium noxium and Phellinidium rufitinctum were excluded from Phellinidium, while the taxonomical positions of Phellinidium aciferum, Phellinidium lamaënse, and Phellinidium orientale are still uncertain.

  5. Community structure and functional diversity of polypores (Basidiomycota in the Atlantic Forest of Santa Catarina State, Brazil

    Directory of Open Access Journals (Sweden)

    Marco A. Borba-Silva

    2015-02-01

    Full Text Available Ecological studies have suggested that different groups of polypore species, acting as parasites and/or saprophytes, degrade different types of woody substrates. These functional groups have different decay capabilities and hence different roles in ecosystems. The aim of this study was to describe the community (species composition and their functionality inferred on the basis of substrate preference of wood-decaying polypores in the Atlantic Forest of Parque Nacional da Serra do Itajaí, in Santa Catarina State, Brazil. The polypore specimens and data on the substrates were sampled in two plots (100×50 m. Among 152 specimens collected, 58 species were identified. Three main dominant groups were identified. The first group comprised three dominant species, the second group five subordinate species and the third 50 rare species. The species were ordered using cluster correspondence analysis based on relative frequency of the species in the different types of substrates and the mean size of the substrate where basidiomes were found. Five functional groups were recognized: two of them were formed by Phylloporia species (P. spathulata on living roots in the ground and P. chrysita on living trunk; and three others consisted of different species of different genera, each of them characterized by the presence of one dominant, few subordinate and several rare species.

  6. SPATIAL DISTRIBUTION OF SOME ECTOMYCORRHIZAL FUNGI (RUSSULACEAE, FUNGI, BASIDIOMYCOTA IN FOREST HABITATS FROM THE NORTH-EAST REGION (ROMANIA

    Directory of Open Access Journals (Sweden)

    Ovidiu COPOT

    2016-12-01

    Full Text Available Ectomycorrhizal macromycetes are, generally, an important ecological component for forest habitats, and a valuable resource in the context of sustainable development of rural communities in the North-East Region of Romania. The woody species distribution is an extremely important factor for the ECM macromycetes presence. The purpose of this study was to elaborate maps of potential distribution for some ECM edible macromycetes from Russula and Lactarius genera, based on chorological information, ICAS Forest Types Map, vegetation tables and bibliographical sources. These information allowed the elaboration of 15 potential maps of distribution for 15 edible species of Russula and Lactarius. The study was based entirely on the plant – fungal associations. The results highlighted that in the North-East Region of Romania there is a noteworthy potential for Russulaceae species. As expected, there is a large amplitude of species presence in the field depending on the fungal specificity for tree host and tree species distribution.

  7. Proposal to conserve the name Olivea tectonae (T.S. Ramakr. & K. Ramakr.) R.L. Mulder against Olivea tectonae (Racib.) Thirum (Basidiomycota)

    Science.gov (United States)

    Teak rust is a problematic disease of Tectona grandis L.f., teak (Lamiaceae), that has its most devastating effects on nursery plants and young plantations where it may cause severe growth stunting due to defoliation. The teak rust fungus is considered to be a threat to forest, horticultural, and a...

  8. Postia alni Niemelä & Vampola (Basidiomycota, Polyporales – member of the problematic Postia caesia complex – has been found for the first time in Hungary

    Directory of Open Access Journals (Sweden)

    Viktor Papp

    2014-01-01

    Full Text Available Due to their bluish basidiocarps the Postia caesia (syn. Oligoporus caesius complex forms a distinctive morphological group within the polypore genus Postia Fr., 1874. Five species of this group occur in Europe: P. alni Niemelä & Vampola, P. caesia (Schrad. P. Karst., P. luteocaesia (A. David Jülich, P. mediterraneocaesia M. Pierre & B. Rivoire and P. subcaesia (A. David Jülich. In this study P. alni is reported for the first time from Hungary. The dichotomous key of the species of the European Postia caesia complex was prepared as well.

  9. HONGOS APHYLLOPHORALES (BASIDIOMYCOTA LIGNÍCOLAS DEL BOSQUE ALTO ANDINO “SANTA CLARA”. UNA GUÍA ILUSTRADA PARA EL ESTUDIO DE MACROHONGOS

    Directory of Open Access Journals (Sweden)

    César Augusto Pinzón Osorio

    2014-12-01

    Esta investigación surge de la necesidad de registrar los macrohongos Aphyllophorales de estos ecosistemas, conocidos por estar altamente impactados por la agricultura (Van der Hammen, 2003. Es fundamental el diseño de un material didáctico que ofrezca un panorama integral sobre la biología de los Aphyllophorales, teniendo en cuenta que las guías demacrohongos para el país, no se orientan directamente a su enseñanza

  10. Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario.

    Science.gov (United States)

    Porter, Teresita M; Skillman, Jane E; Moncalvo, Jean-Marc

    2008-07-01

    This is the first study to assess the diversity and community structure of the Agaricomycotina in an ectotrophic forest using above-ground fruiting body surveys as well as soil rDNA sampling. We recovered 132 molecular operational taxonomic units, or 'species', from fruiting bodies and 66 from soil, with little overlap. Fruiting body sampling primarily recovered fungi from the Agaricales, Russulales, Boletales and Cantharellales. Many of these species are ectomycorrhizal and form large fruiting bodies. Soil rDNA sampling recovered fungi from these groups in addition to taxa overlooked during the fruiting body survey from the Atheliales, Trechisporales and Sebacinales. Species from these groups form inconspicuous, resupinate and corticioid fruiting bodies. Soil sampling also detected fungi from the Hysterangiales that form fruiting bodies underground. Generally, fruiting body and soil rDNA samples recover a largely different assemblage of fungi at the species level; however, both methods identify the same dominant fungi at the genus-order level and ectomycorrhizal fungi as the prevailing type. Richness, abundance, and phylogenetic diversity (PD) identify the Agaricales as the dominant fungal group above- and below-ground; however, we find that molecularly highly divergent lineages may account for a greater proportion of total diversity using the PD measure compared with richness and abundance. Unless an exhaustive inventory is required, the rapidity and versatility of DNA-based sampling may be sufficient for a first assessment of the dominant taxonomic and ecological groups of fungi in forest soil.

  11. Amanita muscaria (Basidiomycota y su asociación micorríca con Cedrus Deodara (Pinaceae en las Sierras de Córdoba, Argentina Amanita muscaria (Basidiomycota and its mycorrhizal association with Cedrus deodara (Pinaceae in the Sierras de Córdoba, Argentina

    Directory of Open Access Journals (Sweden)

    Graciela Daniele

    2005-07-01

    Full Text Available En este trabajo se cita por primera vez para el centro de Argentina, la presencia de fructificaciones de Amanita muscaria (L. ex Fr. Hooker asociadas con Cedrus deodara (Roxb Loud. Se describen los esporocarpos hallados y se caracteriza morfo-anatómicamente la ectomicorriza con C. deodara. La ectomicorriza presenta ramificaciones simples a dicotómicas, escasas hifas emanantes y un manto blanco con abundantes partículas de suelo adheridas, constituido por tres capas, la externa plectenquimática con hifas formando un arreglo en forma de anillo.This is the first record of A. muscaria (L. ex Fr. Hooker basidiocarps in the center of Argentina in association with Cedrus deodara (Roxb Loud. Morphological and anatomical characteristics of the mycorrhizal association between A. muscaria and C. deodara are described and illustrated for the first time. The ectomycorrhizae is characterized by the presence of simple to dichotomous branches, few emanating hyphae and a white mantle with abundant soil particles with three layers, the plectenquimatic outer layer characterized by a ring-like arrangement.

  12. 中国产丝齿菌属一新记录种——冷杉产丝齿菌%Hyphodontia abieticola (Basidiomycota,Corticiaceae),a New Corticioid Fungus to China

    Institute of Scientific and Technical Information of China (English)

    熊红霞; 戴玉成

    2008-01-01

    采自吉林省长白山自然保护区的冷杉产丝齿菌 (Hyphodontia abieticola) 是中国新记录种,一般生于针叶树上.该种特征为子实体平伏,子实层体表面深赭色,具有长管状的囊状体和圆柱形至近腊肠形的担孢子.根据采集的材料对该种进行了详细的描述和显微结构绘图.%A corticioid fungus,Hyphodontia abieticola(Bourdot & Galzin)J.Erikss.,was newly recorded from China,and it grows on fallen gymnosperm trunk in Changbaishan Nature Reserve,Jilin province.It is characterized by effused basidiocarps,dark ochraceous hymenophore,long and tubular cystidia and cylindrical to suballantoid basidiospores.An illustrated description of the species is given based on the Chinese material.

  13. 鸡油菌属值得关注的2个中国新记录种%Two notable species of the genus Cantharellus Adans. (Cantharellales, Basidiomycota) new to China

    Institute of Scientific and Technical Information of China (English)

    田霄飞; 邵士诚; 刘培贵

    2009-01-01

    在对中国西南地区鸡油菌属真菌的分类研究中,发现了我国2个新记录种,即弗瑞斯鸡油菌和鸡油菌双色变种.对这2个种进行了详细地描述、鉴别和讨论,并附有线条图.%During the studies of the genus Cantharellus in Southwestern China, two worth recordable species have been found which are new to China, i.e. Cantharellus cibarius var. bicolor and C. friesii. The paper provides the detail descriptions and il-lustrations of the two species with brief and diagnostic discussions.

  14. Anatomical changes in Willow Wood Decayed by the brown rot fungus Coriolellus malicola (Basidiomycota Modificaciones anatómicas en madera de sauce por acción Coriolellus malicola (Aphyllophorales agente de pudrición castaña

    Directory of Open Access Journals (Sweden)

    Mónica A. Murace

    2006-12-01

    Full Text Available In Argentina, Salix wood is employed mainly in pulp and paper industry. In this country, the brown rotter C oriolellus malicola was found in association with willow plantations. The purpose of this work was to study the anatomical changes caused by C. malicola in willow wood in order to provide information on the effects of brown rot decay in the yield and quality of pulp. Two willow clones were employed: Salix nigra 4 and Salix babylonica x Salix alba cv I 131-25 . Two exposure times were used: 75 and 150 days. The percentages of weight loss produced by this fungus in both clones was ca. 30% at 75 days and ca. 60% at 150 days of decay. C. malicola degraded mainly fibre walls. Microscopically, the loss of cell shape, the presence of transwall fractures and the loss of birefringence were the main anatomical modifications observed. According to our observations decayed Salix wood by C. malicola seems to be inadequate for pulp industry.En la República Argentina la madera de Salix es empleada principalmente en la industria papelera. En este país el hongo de pudrición castaña C oriolellus malicola se encontró asociado a plantaciones comerciales de sauce. El objetivo de este trabajo fue estudiar las modificaciones anatómicas causada por C. malicola en la madera de sauce con el fin de aportar información sobre los efectos de la pudrición castaña en los rendimientos y calidad de la pulpa para papel. Se emplearon dos clones: Salix nigra 4 y Salix babylonica x Salix alba cv I. 131-25 . Se trabajó con dos tiempos de exposición: 75 y 150 días. Las pérdidas de peso producidas por esta cepa en ambos clones fueron de ca. del 30% a los 75 días y de ca. del 60% a los 150 días de incubación. C. malicola degradó principalmente las paredes de las fibras. Microscópicamente, las principales modificaciones anatómicas observadas fueron: deformación del tejido, presencia de fracturas transversales en las paredes celulares y pérdida de birrefringencia. De acuerdo con nuestras observaciones la madera de Salix degradada por C. malicola sería inadecuada para la industria del pulpado.

  15. Diversity of microorganisms in decaying maize stalks revealed by a molecular method.

    Science.gov (United States)

    Yang, Ming-Xia; Zhang, Han-Bo

    2007-08-01

    Microbial diversity in decaying maize stalk was characterized by constructing and analyzing rRNA gene clone library. Total 47 OTUs were obtained from 82 bacterial clones, including Proteobacteria (64.6%), Actinobacteria (30.5%), Bacteroidetes (2.4%) and Firmicutes (2.4%). Most proteobacterial clones were members of Rhizobium, Pseudomonas and Stenotrophomonas. Eighty-four percent of Actinobacteria was related to Microbacterium. Only 14 OTUs were identified from 124 fungal clones, including Ascomycota (88%) and Basidiomycota (12%). Sixty percent of Ascomycota were members of Eupenicillium and Paecilomyces but all Basidiomycota were close to Kurtzmanomyces nectairei.

  16. Fungal diversity in the rhizosphere of endemic plant species of Tenerife (Canary Islands): relationship to vegetation zones and environmental factors

    DEFF Research Database (Denmark)

    Zachow, Christin; Berg, Christian; Müller, Henry

    2008-01-01

    , molecular analysis of fungal communities was determined by single-strand conformation polymorphism (SSCP) analysis using universal and specific primers for Trichoderma. The highly diverse fungal communities were mainly characterized by ectomycorrhiza-forming Basidiomycota and a high proportion of yet...

  17. Fungal endophyte diversity in Sarracenia

    Science.gov (United States)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  18. Examining new phylogenetic markers to uncover the evolutionary history of early-diverging fungi: comparing MCM7, TSR1 and rRNA genes for single- and multi-gene analyses of the Kickxellomycotina

    NARCIS (Netherlands)

    Tretter, E.D.; Johnson, E.M.; Wang, Y.; Kandel, P.; White, M.M.

    2013-01-01

    The recently recognised protein-coding genes MCM7 and TSR1 have shown significant promise for phylogenetic resolution within the Ascomycota and Basidiomycota, but have remained unexamined within other fungal groups (except for Mucorales). We designed and tested primers to amplify these genes across

  19. The MycoKey 3.1 DVD. Included in Knudsen, H. & Vesterholt, J. (eds.). Funga Nordica

    DEFF Research Database (Denmark)

    Læssøe, Thomas; Petersen, Jens H.

    2008-01-01

    MycoKey enables the user to identify fungal genera (fruitbody forming Basidiomycota and discomycetes) by means of a digital, synoptical key. This key offers a very different way of choosing between genera than the traditional analytical key and the the two approaches complete each other nicely. I...

  20. Sarcodon in the Neotropics II : four new species from Colombia and a key to the regional species

    NARCIS (Netherlands)

    Grupe, Arthur; Vasco-Palacios, Aida Marcela; Smith, Matthew E; Boekhout, Teun; Henkel, Terry W

    2016-01-01

    This work reports on four species of the ectomycorrhizal (ECM) tooth fungus genusSarcodon(Bankeraceae, Thelephorales, Basidiomycota) recently discovered in the Colombian Amazon.Sarcodon colombiensissp. nov.,Sarcodon rufobrunneussp. nov.,Sarcodon pallidogriseussp. nov. andSarcodon bairdiisp. nov. are

  1. The lichen genus Multiclavula R.H.Petersen in China%中国棒瑚菌属地衣的研究

    Institute of Scientific and Technical Information of China (English)

    贾泽峰; 任强; 赵遵田

    2008-01-01

    @@ 1 INTRODUCTION The genus Multiclavula R.H.Petersen is a member of the family Clavariaceae belonging to Agaricales in Basidiomycota.The Multiclavula was erected by Petersen(1967),who segregated it from Lentaria based on unbranched basidiomata of small size usually lichenized with algae.

  2. Septal Pore Caps in Basidiomycetes, Composition and Ultrastructure

    NARCIS (Netherlands)

    Driel, K.G.A. van

    2007-01-01

    Filamentous fungi, including Ascomycota and Basidiomycota, form mycelia that consist of a network of apical growing hyphae. These hyphae are separated into cellular compartments by septa that have pores of about 70 to 500 nm in diameter. The cytoplasm within the mycelium is thus continuous (coenocyt

  3. Mating and Progeny Isolation in The Corn Smut Fungus Ustilago maydis

    Science.gov (United States)

    The corn smut pathogen, Ustilago maydis (U. maydis) (DC.) Corda, is a semi-obligate plant pathogenic fungus in the phylum Basidiomycota (Alexopoulos, Mims and Blackwell, 1996). The fungus can be easily cultured in its haploid yeast phase on common laboratory media. However, to complete its sexual cy...

  4. Biochemical and functional characterization of recombinant fungal immunomodulatory proteins (rFIPs)

    NARCIS (Netherlands)

    Bastiaan-Net, S.; Chanput, W.; Hertz, A.; Zwittink, R.D.; Mes, J.J.; Wichers, H.J.

    2013-01-01

    In this study two novel FIPs have been identified and characterized. The first is FIP-nha, identified in the ascomycete Nectria haematococca, and as such, FIP-nha would be the first FIP to be identified outside the order of Basidiomycota. The second is LZ-9, an LZ-8 like protein identified in Ganode

  5. The rust genus Frommeëlla revisited: a later synonym of Phragmidium after all

    Science.gov (United States)

    Frommeëlla (Phragmidiaceae, Pucciniales, Basidiomycota) causes rust on members of tribe Potentilleae (Rosaceae). This genus currently includes two species and is typified by F. tormentillae. It has been distinguished from Phragmidium on the basis of having only one germ pore per cell of the teliospo...

  6. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology

    OpenAIRE

    2016-01-01

    In this study, 51 fungal strains were isolated from decaying wood samples collected from forests located in the Northwest of Tunisia in the vicinity of Bousalem, Ain Draham and Kef. Phylogenetic analysis based on the sequences of the internal transcribed spacers of the ribosomal DNA showed a high diversity among the 51 fungal isolates collection. Representatives of 25 genera and 29 species were identified, most of which were members of one of the following phyla (Ascomycota, Basidiomycota and...

  7. Assessment of fungal diversity in a water-damaged office building.

    Science.gov (United States)

    Green, Brett J; Lemons, Angela R; Park, Yeonmi; Cox-Ganser, Jean M; Park, Ju-Hyeong

    2017-04-01

    Recent studies have described fungal communities in indoor environments using gene sequencing-based approaches. In this study, dust-borne fungal communities were elucidated from a water-damaged office building located in the northeastern region of the United States using internal transcribed spacer (ITS) rRNA gene sequencing. Genomic DNA was extracted from 5 mg of floor dust derived from 22 samples collected from either the lower floors (n = 8) or a top floor (n = 14) of the office building. ITS gene sequencing resolved a total of 933 ITS sequences and was clustered into 216 fungal operational taxonomic units (OTUs). Analysis of fungal OTUs at the 97% similarity threshold showed a difference between the lower and top floors that was marginally significant (p = 0.049). Species richness and diversity indices were reduced in the lower floor samples compared to the top floor samples and there was a high degree of compositional dissimilarity within and between the two different areas within the building. Fungal OTUs were placed in the phyla Ascomycota (55%), Basidiomycota (41%), Zygomycota (3%), Glomeromycota (0.4%), Chytridiomycota (0.3%), and unassigned fungi (0.5%). The Ascomycota classes with the highest relative abundances included the Dothideomycetes (30%) and Eurotiomycetes (16%). The Basidiomycota consisted of the classes Ustilaginomycetes (14%), Tremellomycetes (11%), and Agaricomycetes (8%). Sequence reads derived from the plant pathogen Ustilago syntherismae were the most abundant in the analysis as were obligate Basidiomycota yeast species that accounted for 12% and 11% of fungal ITS sequences, respectively. ITS gene sequencing provides additional insight into the diversity of fungal OTUs. These data further highlight the contribution of fungi placed in the phylum Basidiomycota, obligate yeasts, as well as xerophilic species that are typically not resolved using traditional culture methods.

  8. .

    OpenAIRE

    Loguercio-Leite, Clarice; Groposo, Claudia; Dreschler-Santos, Elisandro Ricardo; Nívea de F. Figueiredo, Nívea de F. Figueiredo; da S. Godinho, Péricles; Abrão, Rosana Leon

    2006-01-01

    The particularity of being a fungus – I. Cellular components. Morphological and reproductive characteristics have been used to define the four phyla (Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota) that make up the Kingdom Fungi. However, fungal organelles and extracellular components have been studied in few species, and knowledge about them is restricted. In spite of the fact that fungi share some organelles with other eukaryotic organisms, they often show changes, but others are...

  9. DNA analysis of outdoor air reveals a high degree of fungal diversity, temporal variability, and genera not seen by spore morphology.

    Science.gov (United States)

    Pashley, Catherine H; Fairs, Abbie; Free, Robert C; Wardlaw, Andrew J

    2012-02-01

    Fungi are ubiquitous with many capable of causing disease by direct infection, toxicoses, or allergy. Fungal spores are present in outdoor air throughout the year, yet airborne diversity is poorly characterised. Airborne fungal spores are routinely counted by microscopy, enabling identification to genera at best. We generated traditional microscopic counts over a year, then used environmental sequencing techniques to assess and compare 3 d selected from the main fungal spore season. The days selected corresponded to one with a high quantity of spores unidentifiable by microscopy, and two representing dry and wet summer periods. Over 86 % of genera detected by sequencing were not routinely identifiable by microscopy. A high degree of temporal variability was detected, with the percentage of clones attributed to Basidiomycota or Ascomycota, and composition of genera within each phylum varying greatly between days. Throughout the year Basidiomycota spores were found at higher levels than Ascomycota, but levels fluctuated daily with Ascomycota comprising 11-84 % of total spores and Basidiomycota 7-81 %. No significant difference was found between the proportion of clones attributed to each morphological group detected by sequencing to that counted by microscopy (P = 0.477, 0.985, and 0.561). The majority of abundant genera detected by DNA analysis are not routinely identified by microscopy (>75 %). Of those, several are known human and plant pathogens, and may represent unrecognised aeroallergens.

  10. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction

    Energy Technology Data Exchange (ETDEWEB)

    Mahajabeen, Padamsee; Kumas, T. K. Arun; Riley, Robert; Binder, Manfred; Boyd, Alex; Calvo, Ann M.; Furukawa, Kentaro; Hesse, Cedar; Hohmann, Stefan; James, Tim Y.; LaButti, Kurt; Lapidus, Alla; Lindquist, Erika; Lucas, Susan; Miller, Kari; Shantappa, Sourabha; Grigoriev, Igor V.; Hibbett, David S.; McLaughlin, David J.; Spatafora, Joseph W.; Aime, Mary C.

    2011-09-03

    Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identied 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebito colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is conrmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were idented although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic

  11. Infecção disseminada por Rhodotorula em um modelo experimental em ratos

    OpenAIRE

    Fernanda Wirth

    2011-01-01

    Os genus Rhodotorula foi descrito por F.C. Harrison, em 1927. Rhodotorula spp. são leveduras cor-de-rosa, que pertencem ao reino Fungi, filo Basidiomycota, classe Urediniomicetos, ordem Sporidiales, família Cryptococcaceae e subfamília Rhodotorulalodeae. Até o passado recente, Rhodotorula era considerado saprófita não virulento como também um frequente contaminante. No entanto, membros de genus Rhodotorula emergiram como patógenos em humanos devido à imunossupressão e à tecnologia de implanta...

  12. Amino and Fatty Acids of Wild Edible Mushrooms of the Genus Boletus

    Directory of Open Access Journals (Sweden)

    Dmitri O. Levitsky

    2010-10-01

    Full Text Available A comparative study on the free amino acids of 15 wild edible mushroom species belonging to the genus Boletus (phylum Basidiomycota was developed. The major amino acids in the fruit bodies were arginine , alanine, glutamine, and glutamic acid. The most abundant fatty acids were oleic ( 9- 18:1, linoleic acid (9,12-18:2 , and palmitic acid (16:0, but a great variation of the ester composition from one to another one was found. Chemical constituents were characterized by GC-MS, and other chemical methods.

  13. Advances in the phylogenesis of Agaricales and its higher ranks and strategies for establishing phylogenetic hypotheses

    Institute of Scientific and Technical Information of China (English)

    Rui-lin ZHAO; Dennis E. DESJARDIN; Kasem SOYTONG; Kevin D. HYDE

    2008-01-01

    We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of taxonomic systems in these taxa. Establishing phylogenetic hypotheses using DNA sequences, from which an understanding of the natural evolutionary relationships amongst clades may be derived, requires a robust dataset. It has been recognized that single-gene phylogenies may not truly represent organismal phylogenies, but the concordant phylogenetic genealogies from multiple-gene datasets can resolve this problem. The genes commonly used in mushroom phylogenetic research are summarized.

  14. Caracterização química e propriedades antioxidantes de amostras de lepista nuda (Bull.) obtidas por cultura in vitro e in vivo em diferentes habitats

    OpenAIRE

    2012-01-01

    O macrofungo Lepista nuda (Bull), também conhecido como Clitocybe nuda, pertence ao filo Basidiomycota, à classe Basidiomycetes, à ordem Agaricales, à família Tricholomataceae e ao género Lepista, e tem como nome comum “pé-azul”. Trata-se de um fungo comestível saprófita/decompositor com muito interesse comercial devido, não só, ao seu valor nutricional, mas também ao seu aroma intenso e característico. O objetivo do presente trabalho foi comparar a composição química e o potencial antioxi...

  15. Imobilização de lacase e seu uso no tratamento de efluentes de indústrias papeleiras

    OpenAIRE

    2006-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Programa de Pós-graduação em Biotecnologia Os efluentes das indústrias papeleiras são constituídos de vários compostos fenólicos tóxicos. Dentre esses compostos, alguns de elevadas massas molares (MM) são biotransformados apenas por alguns organismos como fungos da classe Basidiomycota. Diversos estudos demonstram que a biotransformação da madeira por estes fungos depende principalmente de sua capacidade de produzir enzimas l...

  16. The particularity of being a fungus – I. Cellular components

    Directory of Open Access Journals (Sweden)

    Rosana Leon Abrão

    2006-06-01

    Full Text Available Morphological and reproductive characteristics have been used to define the four phyla (Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota that make up the Kingdom Fungi. However, fungal organelles and extracellular components have been studied in few species, and knowledge about them is restricted. In spite of the fact that fungi share some organelles with other eukaryotic organisms, they often show changes, but others are only found in Fungi. Compilation and divulgation of information about such fungal characteristics is the subject of this review.

  17. Diversity and Distribution of Aquatic Fungal Communities in the Ny-Ålesund Region, Svalbard (High Arctic): Aquatic Fungi in the Arctic.

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-04-01

    We assessed the diversity and distribution of fungi in 13 water samples collected from four aquatic environments (stream, pond, melting ice water, and estuary) in the Ny-Ålesund Region, Svalbard (High Arctic) using 454 pyrosequencing with fungi-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Aquatic fungal communities in this region showed high diversity, with a total of 43,061 reads belonging to 641 operational taxonomic units (OTUs) being found. Of these OTUs, 200 belonged to Ascomycota, 196 to Chytridiomycota, 120 to Basidiomycota, 13 to Glomeromycota, and 10 to early diverging fungal lineages (traditional Zygomycota), whereas 102 belonged to unknown fungi. The major orders were Helotiales, Eurotiales, and Pleosporales in Ascomycota; Chytridiales and Rhizophydiales in Chytridiomycota; and Leucosporidiales and Sporidiobolales in Basidiomycota. The common fungal genera Penicillium, Rhodotorula, Epicoccum, Glaciozyma, Holtermanniella, Betamyces, and Phoma were identified. Interestingly, the four aquatic environments in this region harbored different aquatic fungal communities. Salinity, conductivity, and temperature were important factors in determining the aquatic fungal diversity and community composition. The results suggest the presence of diverse fungal communities and a considerable number of potentially novel fungal species in Arctic aquatic environments, which can provide reliable data for studying the ecological and evolutionary responses of fungi to climate change in the Arctic ecosystem.

  18. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques.

    Science.gov (United States)

    de Souza Leite, Tiago; Cnossen-Fassoni, Andréia; Pereira, Olinto Liparini; Mizubuti, Eduardo Seiti Gomide; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2013-02-01

    Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques - fragment plating and the innovative dilution-to-extinction culturing - to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill's index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies.

  19. Communities of fungi in decomposed wood of oak and pine

    Directory of Open Access Journals (Sweden)

    Kwaśna Hanna

    2016-09-01

    Full Text Available The abundance and diversity of wood decomposing fungi were investigated by isolating and cultivating filamentous fungi from wood and by detection of fruit bodies of ascomycetous and basidiomycetous fungi. The objective was to study the impact of forest management on fungi in 100-year-old oak and 87-year-old Scots pine forests in Northern Poland. Fungi were found on coarse woody debris of decayed stumps and fallen logs, boughs and branches in each of the three (managed and unmanaged examined stands. In total, 226 species of Oomycota and fungi were recorded. Oak wood was colonized by one species of Oomycota and 141 species of fungi including Zygomycota (19 species, Ascomycota (103 species and Basidiomycota (19 species. Scots pine wood was also colonized by one species of Oomycota and 138 species of fungi including Zygomycota (19 species, Ascomycota (90 species and Basidiomycota (29 species. In the first, second and third stages of decomposition, the oak wood was colonized by 101, 89 and 56 species of fungi respectively and pine wood was colonized by 82, 103 and 47 species respectively. Eighty three of the observed species (37% occurred on both types of wood, while the other species displayed nutritional preferences. A decrease in the number of species with advancing decay indicates the necessity for a continuous supply of dead wood to the forest ecosystem.

  20. Genome of Diaporthe sp. provides insights into the potential inter-phylum transfer of a fungal sesquiterpenoid biosynthetic pathway.

    Science.gov (United States)

    de Sena Filho, Jose Guedes; Quin, Maureen B; Spakowicz, Daniel J; Shaw, Jeffrey J; Kucera, Kaury; Dunican, Brian; Strobel, Scott A; Schmidt-Dannert, Claudia

    2016-08-01

    Fungi have highly active secondary metabolic pathways which enable them to produce a wealth of sesquiterpenoids that are bioactive. One example is Δ6-protoilludene, the precursor to the cytotoxic illudins, which are pharmaceutically relevant as anticancer therapeutics. To date, this valuable sesquiterpene has only been identified in members of the fungal division Basidiomycota. To explore the untapped potential of fungi belonging to the division Ascomycota in producing Δ6-protoilludene, we isolated a fungal endophyte Diaporthe sp. BR109 and show that it produces a diversity of terpenoids including Δ6-protoilludene. Using a genome sequencing and mining approach 17 putative novel sesquiterpene synthases were identified in Diaporthe sp. BR109. A phylogenetic approach was used to predict which gene encodes Δ6-protoilludene synthase, which was then confirmed experimentally. These analyses reveal that the sesquiterpene synthase and its putative sesquiterpene scaffold modifying cytochrome P450(s) may have been acquired by inter-phylum horizontal gene transfer from Basidiomycota to Ascomycota. Bioinformatic analyses indicate that inter-phylum transfer of these minimal sequiterpenoid secondary metabolic pathways may have occurred in other fungi. This work provides insights into the evolution of fungal sesquiterpenoid secondary metabolic pathways in the production of pharmaceutically relevant bioactive natural products.

  1. Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest

    Directory of Open Access Journals (Sweden)

    A. M. Womack

    2015-05-01

    Full Text Available Fungi are ubiquitous in the atmosphere and may play an important role in atmospheric processes. We investigated the composition and diversity of fungal communities over the Amazon rainforest canopy and compared these communities to fungal communities found in terrestrial environments. We characterized the total fungal community and the metabolically active portion of the community using high-throughout DNA and RNA sequencing and compared these data to predictions generated by a mass-balance model. We found that the total community was primarily comprised of fungi from the phylum Basidiomycota. In contrast, the active community was primarily composed of members of the phylum Ascomycota and included a high relative abundance of lichen fungi, which were not detected in the total community. The relative abundance of Basidiomycota and Ascomycota in the total and active communities was consistent with our model predictions, suggesting that this result was driven by the relative size and number of spores produced by these groups. When compared to other environments, fungal communities in the atmosphere were most similar to communities found in tropical soils and leaf surfaces, suggesting that inputs of fungi to the atmosphere are from local, rather than distant, sources. Our results demonstrate that there are significant differences in the composition of the total and active fungal communities in the atmosphere, and that lichen fungi, which have been shown to be efficient ice nucleators, may be abundant members of active atmospheric fungal communities over the forest canopy.

  2. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    Science.gov (United States)

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  3. Application of ATR-FTIR Spectroscopy to Compare the Cell Materials of Wood Decay Fungi with Wood Mould Fungi

    Directory of Open Access Journals (Sweden)

    Barun Shankar Gupta

    2015-01-01

    Full Text Available Wood fungi create vast damage among standing trees and all types of wood materials. The objectives of this study are to (a characterize the cell materials of two major wood decay fungi (Basidiomycota, namely, Trametes versicolor and Postia placenta, and (b compare the cell materials of decay fungi with four wood mould fungi (Ascomycota, namely, Aureobasidium pullulans, Alternaria alternata, Cladosporium cladosporioides, and Ulocladium atrum. Fourier transform infrared (FTIR spectroscopy is used to characterize the microbial cellular materials. The results showed that the IR bands for the fatty acid at ∼2900 cm−1 were different for the two-decay-fungi genre. Postia placenta shows more absorbance peaks at the fatty acid region. Band ratio indices for amide I and amide II from protein amino acids were higher for the mould fungi (Ascomycota than the decay fungi (Basidiomycota. Similarly, the band ratio index calculated for the protein end methyl group was found to be higher for the mould fungi than the decay fungi. Mould fungi along with the decay fungi demonstrated a positive correlation (R2=0.75 between amide I and amide II indices. The three-component multivariate, principal component analysis showed a strong correlation of amide and protein band indices.

  4. Response of Soil Fungi Community Structure to Salt Vegetation Succession in the Yellow River Delta.

    Science.gov (United States)

    Wang, Yan-Yun; Guo, Du-Fa

    2016-10-01

    High-throughput sequencing technology was used to reveal the composition and distribution of fungal community structure in the Yellow River Delta under bare land and four kinds of halophyte vegetation (saline seepweed, Angiospermae, Imperata and Apocynum venetum [A. venetum]). The results showed that the soil quality continuously improved with the succession of salt vegetation types. The soil fungi richness of mild-salt communities (Imperata and A. venetum) was relatively higher, with Shannon index values of 5.21 and 5.84, respectively. The soil fungi richness of severe-salt-tolerant communities (saline seepweed, Angiospermae) was relatively lower, with Shannon index values of 4.64 and 4.66, respectively. The UniFrac metric values ranged from 0.48 to 0.67 when the vegetation was in different succession stages. A total of 60,174 valid sequences were obtained for the five vegetation types, and they were classified into Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota and Mucoromycotina. Ascomycota had the greatest advantage among plant communities of Imperata and A. venetum, as indicated by relative abundances of 2.69 and 69.97 %, respectively. Basidiomycota had the greatest advantage among mild-salt communities of saline seepweed and Angiospermae, with relative abundances of 9.43 and 6.64 %, respectively. Soil physical and chemical properties were correlated with the distribution of the fungi, and Mucor was significantly correlated with soil moisture (r = 0.985; P fungi were influenced by each other.

  5. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity.

  6. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  7. Comparative Metagenomics Reveal Phylum Level Temporal and Spatial Changes in Mycobiome of Belowground Parts of Crocus sativus

    Science.gov (United States)

    Ambardar, Sheetal; Singh, Heikham Russiachand; Gowda, Malali; Vakhlu, Jyoti

    2016-01-01

    Plant-fungal associations have been explored by routine cultivation based approaches and cultivation based approaches cannot catalogue more than 5% of fungal diversity associated with any niche. In the present study, an attempt has been made to catalogue fungal diversity associated with belowground parts i.e. rhizosphere and cormosphere, of Crocus sativus (an economically important herb) during two growth stages, using cultivation independent ITS gene targeted approach, taking bulk soil as reference. The 454 pyrosequencing sequence data analysis suggests that the fungal diversity was niche and growth stage specific. Fungi diversity, in the present case, was not only different between the two organs (roots and corm) but the dominance pattern varies between the cormosphere during two growth stages. Zygomycota was dominant fungal phylum in the rhizosphere whereas Basidiomycota was dominant in cormosphere during flowering stage. However in cormosphere though Basidiomycota was dominant phylum during flowering stage but Zygomycota was dominant during dormant stage. Interestingly, in cormosphere, the phyla which was dominant at dormant stage was rare at flowering stage and vice-versa (Basidiomycota: Flowering = 93.2% Dormant = 0.05% and Zygomycota: Flowering = 0.8% Dormant = 99.7%). At genus level, Rhizopus was dominant in dormant stage but was rare in flowering stage (Rhizopus: Dormant = 99.7% Flowering = 0.55%). This dynamics is not followed by the bulk soil fungi which was dominated by Ascomycota during both stages under study. The genus Fusarium, whose species F. oxysporum causes corm rot in C. sativus, was present during both stages with slightly higher abundance in roots. Interestingly, the abundance of Rhizopus varied a great deal in two stages in cormosphere but the abundance of Fusarium was comparable in two growth stages (Bulk soil Flowering = 0.05%, Rhizosphere Flowering = 1.4%, Cormosphere Flowering = 0.06%, Bulk soil Dormant = 2.47% and cormosphere dormant

  8. Plant or fungal sequences? An alternative optimized PCR protocol to avoid ITS (nrDNA misamplification

    Directory of Open Access Journals (Sweden)

    Vitor Fernandes Oliveira de Miranda

    2010-02-01

    Full Text Available The nuclear ribosomal DNA internal transcribed spacers (ITS1 and ITS2 from leaves of Drosera (Droseraceae were amplified using "universal" primers. The analysis of the products demonstrated most samples were a molecular mixture as a result of unsuccessful and non-specific amplifications. Among the obtained sequences, two were from Basidiomycota fungi. Homologous sequences of Basidiomycota were obtained from GenBank database and added to a data set with sequences from Drosera leaves. Parsimony analysis demonstrated that one sequence was amplified from an Ustilaginomycetes fungus, and another from a Heterobasidiomycetes. Possibly these fungi were associated to leaves of Drosera, and not because of samples contamination. In order to provide optimization and a better specificity of PCR (polymerase chain reaction, a very successful method was demonstrated using dimethyl sulfoxide (DMSO and bovine serum albumin (BSA in reactions.Os espaçadores internos transcritos do DNA nuclear ribossomal (ITS1 e ITS2 de folhas de Drosera (Droseraceae foram amplificados com o emprego de iniciadores "universais". A análise demonstrou que a maior parte das amostras continha uma mistura resultante de amplificações não-específicas. Dentre as sequências de DNA obtidas, duas delas foram de fungos basidiomicetos. Sequências homólogas foram obtidas do GenBank e analisadas junto às sequências obtidas de folhas de Drosera. Através das análises filogenéticas de máxima parcimônia foi possível identificar uma seqüência como sendo de um Ustilaginomycetes e outra de Heterobasidiomycetes (Basidiomycota. Possivelmente esses organismos estavam associados às folhas de Drosera e assim não sejam resultantes de contaminação. Com o objetivo de otimizar e buscar uma melhor especificidade das reações de PCR, um protocolo bem sucedido foi demonstrado com o uso de dimetilsulfóxido (DMSO e soroalbumina bovina (BSA.

  9. Genome size analyses of Pucciniales reveal the largest fungal genomes

    Directory of Open Access Journals (Sweden)

    Silvia eTavares

    2014-08-01

    Full Text Available Rust fungi (Basidiomycota, Pucciniales are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 151.5 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi. In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1,800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp. Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94 %. The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7,000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  10. Parasitic fungi of ornamental plants and herbs of Szczecin

    Directory of Open Access Journals (Sweden)

    Iwona Adamska

    2013-12-01

    Full Text Available In the years 2000-2001, the occurrence of fungi parasitizing on ornamental plants and herbs cultivated in the Vegetative Hall of the Agricultural University in Szczecin was investigated. The plants represented ca. 200 species. Disease and etiological symptoms were found in 37% of plant species. Most diseased plants came from the family Asteraceae. The plant species most frequently affected was Melisa officinalis. In the laboratory, 35 fungal species were recognized. Most fungi came from the phylum Ascomycota (13 species, and least from the phylum Oomycota (3 species. The phylum Ascomycota was represented only by species of the order Erysiphales. Other relatively frequently found fungi also were members of the phylum Basidiomycota (11 species. Of the fungi recognized, 31 species were earlier frequently recorded in Poland, and three rarely. Erysiphe flexuosa parasitizing Aesculus hippocastanum was not recorded in Poland to date; in Europe this fungus was recognized only in Germany and Switzerland.

  11. Four New Species of Amanita in Inje County, Korea.

    Science.gov (United States)

    Cho, Hae Jin; Park, Myung Soo; Lee, Hyun; Oh, Seung-Yoon; Jang, Yeongseon; Fong, Jonathan J; Lim, Young Woon

    2015-12-01

    Amanita (Agaricales, Basidiomycota) is one of the most well-known genera composed of poisonous mushrooms. This genus of almost 500 species is distributed worldwide. Approximately 240 macrofungi were collected through an ongoing survey of indigenous fungi of Mt. Jeombong in Inje County, Korea in 2014. Among these specimens, 25 were identified as members of Amanita using macroscopic features. Specimens were identified to the species level by microscopic features and molecular sequence analyses of the internal transcribed spacer and large subunit of nuclear ribosomal RNA. We molecularly identified 13 Amanita species, with seven species matching previously recorded species, four species (A. caesareoides, A. griseoturcosa, A. imazekii, and A. sepiacea) new to Korea, and two unknown species.

  12. Co-evolution of enzyme function in the attine ant-fungus symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    Introduction: Fungus-growing ants cultivate specialized fungi in the tribe Leucocoprineae (Lepiotaceae: Basidiomycota) inside their nests. The conspicuous leaf-cutting ants in the genus Atta build huge nests displacing several cubic meters of soil, whereas lower attine genera such as Cyphomyrmex...... have small nests with a fungus garden the size of a table-tennis ball. Only the leaf-cutting ants are specialized on using fresh leaves as substrate for their fungus gardens, whereas the more basal attine genera use substrates such as dry plant material (leaf litter and small twigs) and also insect...... feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide or different efficiencies of enzyme function. Methods: (1.) We made a literature survey...

  13. Characterisation of seven Inocybe ectomycorrhizal morphotypes from a semiarid woody steppe.

    Science.gov (United States)

    Seress, Diána; Dima, Bálint; Kovács, Gábor M

    2016-04-01

    Ectomycorrhizas (ECM) of Inocybe species (Inocybaceae, Basidiomycota) formed by three host plant species (Populus alba, Salix rosmarinifolia and Pinus nigra) in a semiarid woody steppe of Hungary were studied. To identify the fungal partners, we performed phylogenetic analyses of nucleotide sequences for the internal transcribed spacer region of nuclear DNA (nrDNA ITS) together with sequences gained from public databases. Seven Inocybe ectomycorrhiza morphotypes were morpho-anatomically characterised. Five morphotypes were identified (I. phaeoleuca, I. psammophila, I. semifulva, I. splendens and I. subporospora), whereas two morphotypes represented unidentified Inocybe species. Differences were discernible among the morphotypes, and they showed general anatomical characteristics of Inocybe ECM, such as the slightly organised plectenchymatic mantle (types A, B and E and the gelatinous C). The ECM of I. subporospora and I. phaeoleuca were detected from the introduced Pinus nigra. These two fungi are probably native to the area but capable of forming a novel ectomycorrhizal association with the invasive host.

  14. Biogeography in the air: fungal diversity over land and oceans

    Directory of Open Access Journals (Sweden)

    J. Fröhlich-Nowoisky

    2012-03-01

    Full Text Available Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  15. Biogeography in the air: fungal diversity over land and oceans

    Directory of Open Access Journals (Sweden)

    J. Fröhlich-Nowoisky

    2011-07-01

    Full Text Available Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  16. The gut mycobiome of elderly danes

    DEFF Research Database (Denmark)

    Bin Ahmad, Hajar Fauzan; Castro Mejia, Josue Leonardo; Kot, Witold;

    mycobiome on health and disease in elderly remain sparsely investigated. Consequently, the aim of this study was to characterise the feacal mycobiota in relation to host health parameters.Feacal samples from 99 healthy individuals ranging from 65 to 81 years old were collected, and fungal composition...... categories associated with the clinical features among individuals.The elderly gut is home to three main phyla Ascomycota, Basidiomycota and Zygomycota, with genera Penicillium, Candida, and Aspergillus being particularly common. Based on HbA1c-levels, the individuals could be clustered into 3 groups, High...... glucose level.Collectively, these findings suggest that the presences of specific gut mycobiome member is associated with glycemic behaviours among the healthy individuals of the elderly Danes population....

  17. Shooting Mechanisms in Nature: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Aimée Sakes

    Full Text Available In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill.We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting.Shooting mechanisms were identified with projectile masses ranging from 1·10-9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi, or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals, or water evaporation from the system (reaching up to -197 atmospheres; observed in plants and fungi. The generated energy is stored as elastic (potential energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1 in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum by compression of the spore and droplets and (2 in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5,413,000g in

  18. New sequestrate fungi from Guyana: Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. (Boletaceae, Boletales).

    Science.gov (United States)

    Smith, Matthew E; Amses, Kevin R; Elliott, Todd F; Obase, Keisuke; Aime, M Catherine; Henkel, Terry W

    2015-12-01

    Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera.

  19. New Boletaceae taxa from Guyana: Binderoboletus segoi gen. and sp. nov., Guyanaporus albipodus gen. and sp. nov., Singerocomus rubriflavus gen. and sp. nov., and a new combination for Xerocomus inundabilis.

    Science.gov (United States)

    Henkel, Terry W; Obase, Keisuke; Husbands, Dillon; Uehling, Jessie K; Bonito, Gregory; Aime, M Catherine; Smith, Matthew E

    2016-01-01

    Binderoboletus segoi gen. and sp. nov., Guyanaporus albipodus gen. and sp. nov. and Singerocomus rubriflavus gen. and sp. nov. (Boletaceae, Boletales, Basidiomycota) are described from the Pakaraima Mountains and adjacent lowlands of Guyana. Xerocomus inundabilis, originally described from the central Brazilian Amazon and based solely on the type collection, is redescribed from numerous collections from Guyana and transferred into Singerocomus. These boletes occur in Neotropical forests dominated by ectomycorrhizal trees in the genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae) and Pakaraimaea (Dipterocarpaceae). Three of the species were repeatedly found in a multiyear sporocarp survey in Dicymbe corymbosa-monodominant forest. Macromorphological, micromorphological, habitat and multilocus DNA sequence data are provided for each species. A molecular phylogenetic analysis based on a large taxon set across the Boletaceae justifies erection of the new genera.

  20. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: a comparison between natural desert and urban-fringe aerosols

    Science.gov (United States)

    Boreson, Justin; Dillner, Ann M.; Peccia, Jordan

    2004-11-01

    Seasonal allergies and microbial mediated respiratory diseases, can coincide with elevated particulate matter concentrations, often when dry desert soils are disturbed. In addition to effects from the allergens, allergic and asthmatic responses may be enhanced when chemical and biological constituents of particulate matter (PM) are combined together. Because of these associations and also the recent regulatory and health-related interests of monitoring PM2.5, separately from total PM10, the biological loading between the fine (dpairborne eukaryotic (non-bacterial) microorganisms existing in ambient PM for the urban fringe and natural desert. Both sites contained allergenic organisms. Some groups of eukaryotic species were exclusive to only one of the sites. The natural desert contained more species of Basidiomycota fungi and the urban fringe contained more species of green plants, suggesting that the biological loading at each site was different due to local influences.

  1. Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov.

    Science.gov (United States)

    Turchetti, Benedetta; Thomas Hall, Skye R; Connell, Laurie B; Branda, Eva; Buzzini, Pietro; Theelen, Bart; Müller, Wally H; Boekhout, Teun

    2011-09-01

    Field campaigns in Antarctica, Greenland and the Italian glaciers aiming to explore the biodiversity of these disappearing environments identified several undescribed yeast strains unable to grow at temperature above 20°C and belonging to unknown species. Fourteen of these strains were selected and grouped based on their morphological and physiological characteristics. Sequences of the D1/D2 and ITS regions of the ribosomal RNA demonstrated that the strains belong to unknown species related to Leucosporidium antarcticum. The new genus Glaciozyma is proposed and two new species are described, namely Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Additionally, re-classification of Leucosporidium antarcticum as Glaciozyma antarctica is proposed. Strains of Glaciozyma form a monophyletic clade and a well separated lineage within class Microbotryomycetes (Pucciniomycotina, Basidiomycota). The description of Glaciozyma genus and the re-classification of L. antarcticum reduce the polyphyletic nature of the genus Leucosporidium.

  2. Cryopreservation of filamentous micromycetes and yeasts using perlite.

    Science.gov (United States)

    Homolka, L; Lisá, L; Kubatová, A; Valqová, M; Janderová, B; Nerud, F

    2007-01-01

    The viability, growth and morphology of 48 strains of Ascomycota (including 17 yeasts) and 20 strains of Zygomycota were determined after a 2-d and then after 1-year storage in liquid nitrogen using a new cryopreservation method with perlite as a particulate solid carrier. In case of Ascomycota, 45 strains (94 %) out of 48 survived both 2-d and 1-year storage in liquid nitrogen, respectively. In case of Zygomycota, all 20 strains survived both storage. In addition, 3 strains of Basidiomycota counted among yeasts were tested and all survived the 1 year storage. In all surviving cultures no negative effects of cryopreservation by this method have been observed after 1-year of storage in liquid nitrogen. The results indicate that the perlite protocol can be successfully used for cryopreservation of taxonomically different groups of fungi and also for fungi which failed to survive other routinely used preservation procedures.

  3. Comparative Genome Analysis of Basidiomycete Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Morin, Emmanuelle; Nagy, Laszlo; Manning, Gerard; Baker, Scott; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Hibbett, David; Martin, Francis; Grigoriev, Igor

    2012-03-19

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, symbionts, and plant and animal pathogens. To better understand the diversity of phenotypes in basidiomycetes, we performed a comparative analysis of 35 basidiomycete fungi spanning the diversity of the phylum. Phylogenetic patterns of lignocellulose degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay. Patterns of secondary metabolic enzymes give additional insight into the broad array of phenotypes found in the basidiomycetes. We suggest that the profile of an organism in lignocellulose-targeting genes can be used to predict its nutritional mode, and predict Dacryopinax sp. as a brown rot; Botryobasidium botryosum and Jaapia argillacea as white rots.

  4. Phylogeny and comparative genome analysis of a Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert W.; Salamov, Asaf; Grigoriev, Igor; Hibbett, David

    2011-03-14

    Fungi of the phylum Basidiomycota, make up some 37percent of the described fungi, and are important from the perspectives of forestry, agriculture, medicine, and bioenergy. This diverse phylum includes the mushrooms, wood rots, plant pathogenic rusts and smuts, and some human pathogens. To better understand these important fungi, we have undertaken a comparative genomic analysis of the Basidiomycetes with available sequenced genomes. We report a phylogeny that sheds light on previously unclear evolutionary relationships among the Basidiomycetes. We also define a `core proteome? based on protein families conserved in all Basidiomycetes. We identify key expansions and contractions in protein families that may be responsible for the degradation of plant biomass such as cellulose, hemicellulose, and lignin. Finally, we speculate as to the genomic changes that drove such expansions and contractions.

  5. Pairwise transcriptomic analysis of the interactions between the ectomycorrhizal fungus Laccaria bicolor S238N and three beneficial, neutral and antagonistic soil bacteria.

    Science.gov (United States)

    Deveau, Aurélie; Barret, Matthieu; Diedhiou, Abdala G; Leveau, Johan; de Boer, Wietse; Martin, Francis; Sarniguet, Alain; Frey-Klett, Pascale

    2015-01-01

    Ectomycorrhizal fungi are surrounded by bacterial communities with which they interact physically and metabolically during their life cycle. These bacteria can have positive or negative effects on the formation and the functioning of ectomycorrhizae. However, relatively little is known about the mechanisms by which ectomycorrhizal fungi and associated bacteria interact. To understand how ectomycorrhizal fungi perceive their biotic environment and the mechanisms supporting interactions between ectomycorrhizal fungi and soil bacteria, we analysed the pairwise transcriptomic responses of the ectomycorrhizal fungus Laccaria bicolor (Basidiomycota: Agaricales) when confronted with beneficial, neutral or detrimental soil bacteria. Comparative analyses of the three transcriptomes indicated that the fungus reacted differently to each bacterial strain. Similarly, each bacterial strain produced a specific and distinct response to the presence of the fungus. Despite these differences in responses observed at the gene level, we found common classes of genes linked to cell-cell interaction, stress response and metabolic processes to be involved in the interaction of the four microorganisms.

  6. Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica.

    Science.gov (United States)

    Santiago, Iara F; Soares, Marco Aurélio; Rosa, Carlos A; Rosa, Luiz H

    2015-11-01

    We surveyed the diversity, distribution and ecology of non-lichenised fungal communities associated with the Antarctic lichens Usnea antarctica and Usnea aurantiaco-atra across Antarctica. The phylogenetic study of the 438 fungi isolates identified 74 taxa from 21 genera of Ascomycota, Basidiomycota and Zygomycota. The most abundant taxa were Pseudogymnoascus sp., Thelebolus sp., Antarctomyces psychrotrophicus and Cryptococcus victoriae, which are considered endemic and/or highly adapted to Antarctica. Thirty-five fungi may represent new and/or endemic species. The fungal communities displayed high diversity, richness and dominance indices; however, the similarity among the communities was variable. After discovering rich and diverse fungal communities composed of symbionts, decomposers, parasites and endemic and cold-adapted cosmopolitan taxa, we introduced the term "lichensphere". We hypothesised that the lichensphere may represent a protected natural microhabitat with favourable conditions able to help non-lichenised fungi and other Antarctic life forms survive and disperse in the extreme environments of Antarctica.

  7. Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system.

    Science.gov (United States)

    Wibberg, Daniel; Rupp, Oliver; Jelonek, Lukas; Kröber, Magdalena; Verwaaijen, Bart; Blom, Jochen; Winkler, Anika; Goesmann, Alexander; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2015-06-10

    The phytopathogenic fungus Rhizoctonia solani AG1-IB of the phylum Basidiomycota affects various economically important crops comprising bean, rice, soybean, figs, cabbage and lettuce. The R. solani isolate 7/3/14 of the anastomosis group AG1-IB was deeply resequenced on the Illumina MiSeq system applying the mate-pair mode to improve its genome sequence. Assembly of obtained sequence reads significantly reduced the amount of scaffolds and improved the genome sequence of the isolate compared to the previous sequencing approach. The genome sequence of the AG1-IB isolate 7/3/14 now provides an up-graded basis to analyze genome features predicted to play a role in pathogenesis and for the development of strategies to antagonize the pathogenic impact of this fungus.

  8. Genome-based proteomic analysis of Lignosus rhinocerotis (Cooke) Ryvarden sclerotium.

    Science.gov (United States)

    Yap, Hui-Yeng Yeannie; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.

  9. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland.

    Science.gov (United States)

    Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja

    2015-01-01

    The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

  10. Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland

    Directory of Open Access Journals (Sweden)

    Elina eSohlberg

    2015-06-01

    Full Text Available The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 m to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

  11. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica.

    Directory of Open Access Journals (Sweden)

    Alga Zuccaro

    2011-10-01

    Full Text Available Recent sequencing projects have provided deep insight into fungal lifestyle-associated genomic adaptations. Here we report on the 25 Mb genome of the mutualistic root symbiont Piriformospora indica (Sebacinales, Basidiomycota and provide a global characterization of fungal transcriptional responses associated with the colonization of living and dead barley roots. Extensive comparative analysis of the P. indica genome with other Basidiomycota and Ascomycota fungi that have diverse lifestyle strategies identified features typically associated with both, biotrophism and saprotrophism. The tightly controlled expression of the lifestyle-associated gene sets during the onset of the symbiosis, revealed by microarray analysis, argues for a biphasic root colonization strategy of P. indica. This is supported by a cytological study that shows an early biotrophic growth followed by a cell death-associated phase. About 10% of the fungal genes induced during the biotrophic colonization encoded putative small secreted proteins (SSP, including several lectin-like proteins and members of a P. indica-specific gene family (DELD with a conserved novel seven-amino acids motif at the C-terminus. Similar to effectors found in other filamentous organisms, the occurrence of the DELDs correlated with the presence of transposable elements in gene-poor repeat-rich regions of the genome. This is the first in depth genomic study describing a mutualistic symbiont with a biphasic lifestyle. Our findings provide a significant advance in understanding development of biotrophic plant symbionts and suggest a series of incremental shifts along the continuum from saprotrophy towards biotrophy in the evolution of mycorrhizal association from decomposer fungi.

  12. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples.

    Science.gov (United States)

    Duarte, A W F; Dayo-Owoyemi, I; Nobre, F S; Pagnocca, F C; Chaud, L C S; Pessoa, A; Felipe, M G A; Sette, L D

    2013-11-01

    The aim of the present study was to investigate the taxonomic identity of yeasts isolated from the Antarctic continent and to evaluate their ability to produce enzymes (lipase, protease and xylanase) at low and moderate temperatures. A total of 97 yeast strains were recovered from marine and terrestrial samples collected in the Antarctica. The highest amount of yeast strains was obtained from marine sediments, followed by lichens, ornithogenic soils, sea stars, Salpa sp., algae, sea urchin, sea squirt, stone with lichens, Nacella concinna, sea sponge, sea isopod and sea snail. Data from polyphasic taxonomy revealed the presence of 21 yeast species, distributed in the phylum Ascomycota (n = 8) and Basidiomycota (n = 13). Representatives of encapsulated yeasts, belonging to genera Rhodotorula and Cryptococcus were recovered from 7 different Antarctic samples. Moreover, Candida glaebosa, Cryptococcus victoriae, Meyerozyma (Pichia) guilliermondii, Rhodotorula mucilaginosa and R. laryngis were the most abundant yeast species recovered. This is the first report of the occurrence of some species of yeasts recovered from Antarctic marine invertebrates. Additionally, results from enzymes production at low/moderate temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which could be considered as a target for biotechnological applications. Among the evaluated yeasts in the present study 46.39, 37.11 and 14.43 % were able to produce lipase (at 15 °C), xylanase (at 15 °C) and protease (at 25 °C), respectively. The majority of lipolytic, proteolytic and xylanolytic strains were distributed in the phylum Basidiomycota and were mainly recovered from sea stars, lichens, sea urchin and marine sediments.

  13. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.

    Science.gov (United States)

    Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

    2014-06-01

    Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01).

  14. Adiciones a la Biota de Uredinales (fungi de Colombia Addictions to the Uredinales Biota (fungi in Colombia

    Directory of Open Access Journals (Sweden)

    Katherin Maritza Vanegas Berrouet

    2011-12-01

    Full Text Available Colecciones de plantas con síntomas de hongos royas (Uredinales, Basidiomycota realizadas en los últimos años en los departamentos de Amazonas, Antioquia, Caldas, Cundinamarca, Tolima y Valle del Cauca han sido estudiadas y depositadas en el Museo Micológico de la Universidad Nacional de Colombia, Sede Medellín (MMUNM. Entre las novedades encontradas, se registran por primera vez para Colombia las royas: Puccinia investita, Sphenospora pallida, Crossopsora piperis, Uredo psychotriicola y Pucciniosira solani. Se adiciona la familia botánica Dioscoreaceae para la Biota de Uredinales colombianos. Se hace la corrección del nombre anamórfico Uredo parthenii publicado para Colombia en 2003, por el nombre teliomorfico válido Puccinia schileana. Son registrados seis nuevos hospedantes parasitados por royas en Colombia, entre estos reviste importancia la colección sobre Origanum vulgare L. una planta aromática y medicinal cultivada mundialmente.Plant collections with symptoms of rusts fungi (Uredinales, Basidiomycota made during recent years in provinces of Amazonas, Antioquia, Caldas, Cundinamarca, Tolima and Valle del Cauca have been studied and deposited in Museo Micológico of Universidad Nacional de Colombia, Sede Medellín (MMUNM. The rusts species Puccinia investita, Sphenospora pallida, Crossopsora piperis, Uredo psychotriicola and Pucciniosira solani are new records for Colombia. A first record for this country of rust fungi in plants of family Dioscoreaceae has been also made. The anamorphic name Uredo parthenii published in 2003 in Colombia, has been corrected by the valid teleomorph Puccinia schileana. Finally, six new hosts parasitized by rusts are recorded, including Origanum vulgare L. a world-wide important aromatic and medicinal plant.

  15. A deviation from the bipolar-tetrapolar mating paradigm in an early diverged basidiomycete.

    Directory of Open Access Journals (Sweden)

    Marco A Coelho

    2010-08-01

    Full Text Available In fungi, sexual identity is determined by specialized genomic regions called MAT loci which are the equivalent to sex chromosomes in some animals and plants. Usually, only two sexes or mating types exist, which are determined by two alternate sets of genes (or alleles at the MAT locus (bipolar system. However, in the phylum Basidiomycota, a unique tetrapolar system emerged in which four different mating types are generated per meiosis. This occurs because two functionally distinct molecular recognition systems, each encoded by one MAT region, constrain the selection of sexual partners. Heterozygosity at both MAT regions is a pre-requisite for mating in both bipolar and tetrapolar basidiomycetes. Tetrapolar mating behaviour results from the absence of genetic linkage between the two regions bringing forth up to thousands of mating types. The subphylum Pucciniomycotina, an early diverged lineage of basidiomycetes encompassing important plant pathogens such as the rusts and saprobes like Rhodosporidium and Sporidiobolus, has been so far poorly explored concerning the content and organization of MAT loci. Here we show that the red yeast Sporidiobolus salmonicolor has a mating system unlike any previously described because occasional disruptions of the genetic cohesion of the bipolar MAT locus originate new mating types. We confirmed that mating is normally bipolar and that heterozygosity at both MAT regions is required for mating. However, a laboratory cross showed that meiotic recombination may occur within the bipolar MAT locus, explaining tetrapolar features like increased allele number and evolution rates of some MAT genes. This pseudo-bipolar system deviates from the classical bipolar-tetrapolar paradigm and, to our knowledge, has never been observed before. We propose a model for MAT evolution in the Basidiomycota in which the pseudo-bipolar system may represent a hitherto unforeseen gradual form of transition from an ancestral tetrapolar

  16. Las micorrizas: una relación planta-hongo que dura más de 400 millones de años

    Directory of Open Access Journals (Sweden)

    Honrubia, Mario

    2009-12-01

    Full Text Available The concept of mycorrhiza is considered in a wide sense, as a not necessarily mutualistic symbiosis, covering the trophic relations of mycorrhizal fungi with “inferior” and achlorophyllics plants. A bibliographical review of the origin and diversification of mycorrhizae is made. The pioneering characteristics of the arbuscular mycorrhiza formed by Glomeromycota are discussed, emphasizing its importance during the terrestrialization processes. The chronological appearance of the other types of mycorrhizas is discussed. The independent and recurrent evolution of the ectomycorrhizas formed by Basidiomycota and Ascomycota is discussed; their saprobiont or parasite origin points to the versatile nutritional strategy of these fungi, in adaptative response to environmental changes, as does the origin of the singular ericoid, arbutoid and helianthemoid mycorrhizas. The particular trophic relation between achlorophyllic plants, such as Monotropa and orchids, in their heterotrophic phases, with their “mycorrhizal” fungi is also described. Finally, the recent evolution of the non mycotrophic root systems is commented on.

    Se define el concepto de micorriza en un sentido amplio, como una simbiosis no necesariamente mutualística, para incluir las relaciones tróficas de hongos micorrícicos con plantas “inferiores” y plantas aclorofílicas. Se realiza una revisión bibliográfica sobre el origen y diversificación de las micorrizas. Se evidencia el carácter pionero de la micorriza arbuscular formada por los Glomeromycota y se resalta su importancia en el proceso de ‘terrestrialización’. Se comenta la formación cronológica de los restantes tipos de micorrizas. Se denota la evolución independiente y recurrente de las ectomicorrizas, formadas por Basidiomycota y Ascomycota inicialmente saprófitos, que sugiere una versatilidad en las estrategias nutricionales de estos hongos, como respuesta

  17. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    Science.gov (United States)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    It is agreed that soil microbial communities are responsible for the cycling of carbon and nutrients in ecosystems; however, the response of these microbial communities to climate change has not been clearly understood. In this study, we measured the direct and interactive effects of climate change drivers on soil bacterial and fungal communities (abundance and composition) in an open-field multifactor climate change experiment. The experimental treatment system was established with two-year-old Pinus densiflora seedlings at Korea University in April 2013, and consisted of six different treatments with three replicates: two levels of air temperature warming (control and +3° C) were crossed with three levels of precipitation manipulation (control, -30% and +30%). After 2.5 years of treatments, in August, 2015, soil samples were collected from the topsoil (0-15cm) of all plots (n=18). High-throughput sequencing technology was used to assess the abundance and composition of soil bacterial and fungal community. Analysis of variance for a blocked split-plot design was used to detect the effects of climate change drivers and their interaction on the abundance and composition of soil bacterial and fungal community. Our results showed that 1) only the significant effect of warming on fungal community abundance was observed (P <0.05); 2) on average, warming decreased both bacterial and fungal community abundance by 20.90% and 32.30%, 6.69% and 45.89%, 14.71% and 19.56% in control, decreased, and increased precipitation plots, respectively; 3) however, warming increased the relative bacterium/fungus ratio on average by 14.03%, 37.03% and 14.31% in control, decreased, and increased precipitation plots, respectively; 4) the phylogenetic distribution of bacterial and fungal groups and their relative abundance varied among treatments; 5) treatments altered the relative abundance of Ascomycota and Basidiomycota, where Ascomycota decreased with a concomitant increase in the

  18. Contribución a la identificación de esporas del Reino Fungi en la atmósfera de La Plata, Argentina

    Directory of Open Access Journals (Sweden)

    Daniela S. Nitiu

    2010-12-01

    Full Text Available A partir del análisis del registro aeromicológico de la ciudad de La Plata se propone la definición de Grupos Morfológicos de esporas del Reino Fungi. Este estudio constituye un aporte metodológico a la identificación y recuento de una fracción de la micobiota atmosférica. Para la definición de los grupos, se han tenido en cuenta los criterios de Saccardo (1886 y reformulado los agrupamientos de Díaz et al. (1998 y Aira et al. (2005. Se han creando 4 nuevos grupos y se han incorporando otros tipos esporales a las clasificaciones previas. Cada grupo, incluye entre 2 y 6 tipos de esporas pertenecientes a los Phylum Zygomycota, Basidiomycota y Ascomycota y sus anamorfos, que han sido asignados a nivel genérico. Los caracteres que definen dichas asociaciones son: Grupo Absidia, amerosporas hialinas; Grupo Cortinarius, amerosporas pigmentadas amigdaliformes; Grupo Didymella, didimosporas hialinas o levemente coloreadas; Grupo Didymosphaeria, didimosporas y didimoconidios pigmentados; Grupo Lepthosphaeria, fragmosporas septadas hialinas a pigmentadas y Grupo Helminthosporium, fragmosporas distoseptadas hialinas a pigmentadas. Esta investigación aspira a proporcionar una herramienta que facilite el procesamiento de datos y aporte nuevos elementos cualitativos a las clasificaciones previas, contribuyendo en la compleja problemática de identificación de las esporas fúngicas.Based on the aeromycological analysis of La Plata city, artificial Morphological Groups of fungal spores were defined. This study is a methodological contribution to the identification and counting of a fraction of the atmospheric micobiota. For the definition of groups, the criteria of Saccardo (1886 were taken into account and the groupings created by Díaz et al. (1998 and Aira et al. (2005 have been reformulated. Four new groups have been created and other sporal types have been incorporated to previous classifications. Each of them includes 2 to 6 spore types

  19. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Directory of Open Access Journals (Sweden)

    Venturi Maria L

    2004-01-01

    Full Text Available Abstract Background The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. Results Our phylogenetic analyses revealed that (i animals are more closely related to fungi than to plants, (ii red algae are closer to plants than to animals or fungi, (iii choanoflagellates are closer to animals than to fungi or plants, (iv diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v diplomonads are basal to other eukaryotes (including alveolates and euglenozoans. Divergence times were estimated from global and local clock methods using 20–188 proteins per node, with data treated separately (multigene and concatenated (supergene. Different time estimation methods yielded similar results (within 5%: vertebrate-arthropod (964 million years ago, Ma, Cnidaria-Bilateria (1,298 Ma, Porifera-Eumetozoa (1,351 Ma, Pyrenomycetes-Plectomycetes (551 Ma, Candida-Saccharomyces (723 Ma, Hemiascomycetes-filamentous Ascomycota (982 Ma, Basidiomycota-Ascomycota (968 Ma, Mucorales-Basidiomycota (947 Ma, Fungi-Animalia (1,513 Ma, mosses-vascular plants (707 Ma, Chlorophyta-Tracheophyta (968 Ma, Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma, Plantae-Animalia (1,609 Ma, Alveolata-plants+animals+fungi (1,973 Ma, Euglenozoa-plants+animals+fungi (1,961 Ma, and Giardia-plants+animals+fungi (2,309 Ma. By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to ~10

  20. A molecular timescale of eukaryote evolution and the rise of complex multicellular life

    Science.gov (United States)

    Hedges, S. Blair; Blair, Jaime E.; Venturi, Maria L.; Shoe, Jason L.

    2004-01-01

    BACKGROUND: The pattern and timing of the rise in complex multicellular life during Earth's history has not been established. Great disparity persists between the pattern suggested by the fossil record and that estimated by molecular clocks, especially for plants, animals, fungi, and the deepest branches of the eukaryote tree. Here, we used all available protein sequence data and molecular clock methods to place constraints on the increase in complexity through time. RESULTS: Our phylogenetic analyses revealed that (i) animals are more closely related to fungi than to plants, (ii) red algae are closer to plants than to animals or fungi, (iii) choanoflagellates are closer to animals than to fungi or plants, (iv) diplomonads, euglenozoans, and alveolates each are basal to plants+animals+fungi, and (v) diplomonads are basal to other eukaryotes (including alveolates and euglenozoans). Divergence times were estimated from global and local clock methods using 20-188 proteins per node, with data treated separately (multigene) and concatenated (supergene). Different time estimation methods yielded similar results (within 5%): vertebrate-arthropod (964 million years ago, Ma), Cnidaria-Bilateria (1,298 Ma), Porifera-Eumetozoa (1,351 Ma), Pyrenomycetes-Plectomycetes (551 Ma), Candida-Saccharomyces (723 Ma), Hemiascomycetes-filamentous Ascomycota (982 Ma), Basidiomycota-Ascomycota (968 Ma), Mucorales-Basidiomycota (947 Ma), Fungi-Animalia (1,513 Ma), mosses-vascular plants (707 Ma), Chlorophyta-Tracheophyta (968 Ma), Rhodophyta-Chlorophyta+Embryophyta (1,428 Ma), Plantae-Animalia (1,609 Ma), Alveolata-plants+animals+fungi (1,973 Ma), Euglenozoa-plants+animals+fungi (1,961 Ma), and Giardia-plants+animals+fungi (2,309 Ma). By extrapolation, mitochondria arose approximately 2300-1800 Ma and plastids arose 1600-1500 Ma. Estimates of the maximum number of cell types of common ancestors, combined with divergence times, showed an increase from two cell types at 2500 Ma to

  1. Ice nucleation and its effect on the atmospheric transport of fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes

    Science.gov (United States)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-02-01

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric transport and

  2. Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the atmospheric transport of these spores

    Science.gov (United States)

    Haga, D. I.; Burrows, S. M.; Iannone, R.; Wheeler, M. J.; Mason, R. H.; Chen, J.; Polishchuk, E. A.; Pöschl, U.; Bertram, A. K.

    2014-08-01

    We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are widely distributed over the globe. Ustilaginomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes because they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated contained some fraction of spores that serve as ice nuclei at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -31.5 °C. On average, the order of ice nucleating ability for these spores is Ustilaginomycetes > Agaricomycetes ≃ Eurotiomycetes. The freezing data also suggests that, at temperatures ranging from -20 °C to -25 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98% of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota), there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the transport and global distributions of these spores in

  3. Ice Nucleation of Fungal Spores from the Classes Agaricomycetes, Ustilaginomycetes, and Eurotiomycetes, and the effect on the Atmospheric Transport of these Spores

    Energy Technology Data Exchange (ETDEWEB)

    Haga, D. I.; Burrows, Susannah M.; Iannone, R.; Wheeler, M. J.; Mason, R.; Chen, J.; Polishchuk, E. A.; Poschl, U.; Bertram, Allan K.

    2014-08-26

    Ice nucleation on fungal spores may affect the frequency and properties of ice and mixed-phase clouds. We studied the ice nucleation properties of 12 different species of fungal spores chosen from three classes: Agaricomycetes, Ustilagomycetes, and Eurotiomycetes. Agaricomycetes include many types of mushroom species and are cosmopolitan all over the globe. Ustilagomycetes are agricultural pathogens and have caused widespread damage to crops. Eurotiomycetes are found on all types of decaying material and include important human allergens. We focused on these classes since they are thought to be abundant in the atmosphere and because there is very little information on the ice nucleation ability of these classes of spores in the literature. All of the fungal spores investigated were found to cause freezing of water droplets at temperatures warmer than homogeneous freezing. The cumulative number of ice nuclei per spore was 0.001 at temperatures between -19 °C and -29 °C, 0.01 between -25.5 °C and -31 °C, and 0.1 between -26 °C and -36 °C. On average, the order of ice nucleating ability for these spores is Ustilagomycetes > Agaricomycetes ≅ Eurotiomycetes. We show that at temperatures below -20 °C, all of the fungal spores studied here are less efficient ice nuclei compared to Asian mineral dust on a per surface area basis. We used our new freezing results together with data in the literature to compare the freezing temperatures of spores from the phyla Basidiomycota and Ascomycota, which together make up 98 % of known fungal species found on Earth. The data show that within both phyla (Ascomycota and Basidiomycota) there is a wide range of freezing properties, and also that the variation within a phylum is greater than the variation between the average freezing properties of the phyla. Using a global chemistry-climate transport model, we investigated whether ice nucleation on the studied spores, followed by precipitation, can influence the atmospheric

  4. A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins

    Directory of Open Access Journals (Sweden)

    Bonfante Paola

    2006-03-01

    Full Text Available Abstract Background The expressed sequence tag M6G10 was originally isolated from a screening for differentially expressed transcripts during the reproductive stage of the white truffle Tuber borchii. mRNA levels for M6G10 increased dramatically during fruiting body maturation compared to the vegetative mycelial stage. Results Bioinformatics tools, phylogenetic analysis and expression studies were used to support the hypothesis that this sequence, named TbDHN1, is the first dehydrin (DHN-like coding gene isolated in fungi. Homologs of this gene, all defined as "coding for hypothetical proteins" in public databases, were exclusively found in ascomycetous fungi and in plants. Although complete (or almost complete fungal genomes and EST collections of some Basidiomycota and Glomeromycota are already available, DHN-like proteins appear to be represented only in Ascomycota. A new and previously uncharacterized conserved signature pattern was identified and proposed to Uniprot database as the main distinguishing feature of this new group of DHNs. Expression studies provide experimental evidence of a transcript induction of TbDHN1 during cellular dehydration. Conclusion Expression pattern and sequence similarities to known plant DHNs indicate that TbDHN1 is the first characterized DHN-like protein in fungi. The high similarity of TbDHN1 with homolog coding sequences implies the existence of a novel fungal/plant group of LEA Class II proteins characterized by a previously undescribed signature pattern.

  5. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah.

    Science.gov (United States)

    Vieira, Mariana L A; Johann, Susana; Hughes, Frederic M; Rosa, Carlos A; Rosa, Luiz H

    2014-12-01

    The fungal endophyte community associated with Baccharis trimera, a Brazilian medicinal plant, was characterized and screened for its ability to present antimicrobial activity. By using molecular methods, we identified and classified the endophytic fungi obtained into 25 different taxa from the phyla Ascomycota and Basidiomycota. The most abundant species were closely related to Diaporthe phaseolorum, Pestalotiopsis sp. 1, and Preussia pseudominima. The differences observed in endophytic assemblages from different B. trimera specimens might be associated with their crude extract activities. Plants that had higher α-biodiversity were also those that contributed more to the regional (γ) diversity. All fungal isolates were cultured and their crude extracts screened to examine the antimicrobial activities. Twenty-three extracts (12.8%) displayed antimicrobial activities against at least one target microorganism. Among these extracts, those obtained from Epicoccum sp., Pestalotiopsis sp. 1, Cochliobolus lunatus, and Nigrospora sp. presented the best minimum inhibitory concentration values. Our results show that the endophytic fungal community associated with the medicinal plant B. trimera included few dominant bioactive taxa, which may represent sources of compounds with antifungal activity. Additionally, the discovery of these bioactive fungi in association with B. trimera suggests that Brazilian plants used as folk medicine may shelter a rich fungal diversity as well as taxa able to produce bioactive metabolites with antimicrobial activities.

  6. Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China.

    Science.gov (United States)

    Jin, Hui; Yan, Zhiqiang; Liu, Quan; Yang, Xiaoyan; Chen, Jixiang; Qin, Bo

    2013-12-01

    This study was conducted to explore fungal endophyte communities inhabiting a toxic weed (Stellera chamaejasme L.) from meadows of northwestern China. The effects of plant tissue and growth stage on endophyte assemblages were characterized. Endophytes were recovered from 50 % of the samples, with a total of 714 isolates. 41 operational taxonomical units (OTUs) were identified, consisting of 40 OTUs belonging primarily to Ascomycota and 1 OTU belonging to Basidiomycota. Pleosporales and Hypocreales were the orders contributing the most species to the endophytic assemblages. The total colonization frequency and species richness of endophytic fungi were higher in roots than in leaves and stems. In addition, for the plant tissues, the structure of fungal communities differed significantly by growth stages of leaf emergence and dormancy; for the plant growth stages, the structure of fungal communities differed significantly by plant tissues. This study demonstrates that S. chamaejasme serves as a reservoir for a wide variety of fungal endophytes that can be isolated from various plant tissues.

  7. Assessment of the fungal diversity and succession of ligninolytic endophytes in Camellia japonica leaves using clone library analysis.

    Science.gov (United States)

    Hirose, Dai; Matsuoka, Shunsuke; Osono, Takashi

    2013-01-01

    Fungal assemblages in live, newly shed and partly decomposed leaves of Camellia japonica were investigated with a clone library analysis to assess the fungal diversity and succession in a subtropical forest in southern Japan. Partly decomposed leaves were divided into bleached and adjacent nonbleached portions to estimate the fungi functionally associated with lignin decomposition in the bleached portions, with an emphasis on Coccomyces sinensis (Rhytismataceae, Ascomycota). From 144 cloned 28S ribosomal DNA (rDNA) sequences, 48 operational taxonomic units (OTUs) were defined based on a sequence similarity threshold of 98%. Forty-one (85%) of the 48 OTUs belonged to the Ascomycota and seven OTUs (15%) to the Basidiomycota. Twenty-six OTUs (54%) were detected only once (singletons). The number of OTUs and the diversity indices of the fungal assemblages in the different leaves were in this order: live leaves > newly shed leaves > bleached portions > nonbleached portions of partly decomposed leaves. The fungal assemblages were similar in newly shed leaves and the bleached portions of partly decomposed leaves. Ligninolytic fungi of the genera Coccomyces, Lophodermium and Xylaria were frequently detected in the bleached portions. OTU3, identified as Coccomyces sinensis, was detected in live and newly shed leaves and the bleached portions of partly decomposed leaves, suggesting that this fungus latently infects live leaves, persists after leaf fall and takes part in lignin decomposition.

  8. Phylogenic diversity and tissue specificity of fungal endophytes associated with the pharmaceutical plant, Stellera chamaejasme L. revealed by a cultivation-independent approach.

    Science.gov (United States)

    Jin, Hui; Yang, Xiaoyan; Lu, Dengxue; Li, Chunjie; Yan, Zhiqiang; Li, Xiuzhuang; Zeng, Liming; Qin, Bo

    2015-10-01

    The fungal endophytes associated with medicinal plants have been demonstrated as a reservoir with novel natural products useful in medicine and agriculture. It is desirable to explore the species composition, diversity and tissue specificity of endophytic fungi that inhabit in different tissues of medicinal plants. In this study, a culture-independent survey of fungal diversity in the rhizosphere, leaves, stems and roots of a toxic medicinal plant, Stellera chamaejasme L., was conducted by sequence analysis of clone libraries of the partial internal transcribed spacer region. Altogether, 145 fungal OTUs (operational taxonomic units), represented by 464 sequences, were found in four samples, of these 109 OTUs (75.2 %) belonging to Ascomycota, 20 (13.8 %) to Basidiomycota, 14 (9.7 %) to Zygomycota, 1 (0.7 %) to Chytridiomycota, and 1 (0.7 %) to Glomeromycota. The richness and diversity of fungal communities were strongly influenced by plant tissue environments, and the roots are associated with a surprisingly rich endophyte community. The endophyte assemblages associated with S. chamaejasme were strongly shaped by plant tissue environments, and exhibited a certain degree of tissue specificity. Our results suggested that a wide variety of fungal assemblages inhabit in S. chamaejasme, and plant tissue environments conspicuously influence endophyte community structure.

  9. A preliminary checklist of macrofungi of Guatemala, with notes on edibility and traditional knowledge

    Directory of Open Access Journals (Sweden)

    Flores Arzú R

    2012-01-01

    Full Text Available Despite its biological wealth, current knowledge on the macromycetes inhabiting Guatemala is scant, in part because of the prolonged civil war that has prevented exploration of many ecological niches. We provide a preliminary literature–based checklist of the macrofungi occuring in the various ecological regions of Guatemala, supplemented with original observations reported here for the first time. Three hundred and fifty species, 163 genera, and 20 orders in the Ascomycota and Basidiomycota have been reported from Guatemala. Many of the entries pertain to ectomycorrhizal fungal species that live in symbiosis with the several Pinus and Quercus species that form the extensive pine and mixed forests of the highlands (up to 3600 m a.s.l.. As part of an ongoing study of the ethnomycology of the Maya populations in the Guatemalan highlands, we also report on the traditional knowledge about macrofungi and their uses among native people. These preliminary data confirm the impression that Guatemala hosts a macrofungal diversity that is by no means smaller than that recorded in better studied neighboring Mesoamerican areas, such as Mexico and Costa Rica.

  10. Diversity and Plant Growth Promoting Capacity of Endophytic Fungi Associated with Halophytic Plants from the West Coast of Korea.

    Science.gov (United States)

    Khalmuratova, Irina; Kim, Hyun; Nam, Yoon-Jong; Oh, Yoosun; Jeong, Min-Ji; Choi, Hye-Rim; You, Young-Hyun; Choo, Yeon-Sik; Lee, In-Jung; Shin, Jae-Ho; Yoon, Hyeokjun; Kim, Jong-Guk

    2015-12-01

    Five halophytic plant species, Suaeda maritima, Limonium tetragonum, Suaeda australis, Phragmites australis, and Suaeda glauca Bunge, which are native to the Muan salt marsh of South Korea, were examined for fungal endophytes by sequencing the internal transcribed spacer (ITS) region containing ITS1, 5.8S rRNA, and ITS2. In total, 160 endophytic fungal strains were isolated and identified from the roots of the 5 plant species. Taxonomically, all 160 strains belonged to the phyla Ascomycota, Basidiomycota, and Zygomycota. The most dominant genus was Fusarium, followed by the genera Penicillium and Alternaria. Subsequently, using 5 statistical methods, the diversity indices of the endophytes were determined at genus level. Among these halophytic plants, P. australis was found to host the greatest diversity of endophytic fungi. Culture filtrates of endophytic fungi were treated to Waito-C rice seedlings for plant growth-promoting effects. The fungal strain Su-3-4-3 isolated from S. glauca Bunge provide the maximum plant length (20.1 cm) in comparison with wild-type Gibberella fujikuroi (19.6 cm). Consequently, chromatographic analysis of the culture filtrate of Su-3-4-3 showed the presence of physiologically active gibberellins, GA1 (0.465 ng/mL), GA3 (1.808 ng/mL) along with other physiologically inactive GA9 (0.054 ng/mL) and GA24 (0.044 ng/mL). The fungal isolate Su-3-4-3 was identified as Talaromyces pinophilus.

  11. Ethanol Production from Various Sugars and Cellulosic Biomass by White Rot Fungus Lenzites betulinus.

    Science.gov (United States)

    Im, Kyung Hoan; Nguyen, Trung Kien; Choi, Jaehyuk; Lee, Tae Soo

    2016-03-01

    Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.

  12. Bullera vrieseae sp. nov., a tremellaceous yeast species isolated from bromeliads.

    Science.gov (United States)

    Landell, Melissa Fontes; Brandão, Luciana R; Safar, Silvana V B; Gomes, Fatima C O; Félix, Ciro R; Santos, Ana Raquel O; Pagani, Danielle M; Ramos, Jesus P; Broetto, Leonardo; Mott, Tamí; Vainstein, Marilene H; Valente, Patricia; Rosa, Carlos A

    2015-08-01

    Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).

  13. Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus.

    Science.gov (United States)

    Alenezi, Faizah N; Rekik, Imen; Bełka, Marta; Ibrahim, Abrar F; Luptakova, Lenka; Jaspars, Marcel; Woodward, Steve; Belbahri, Lassaad

    2016-01-01

    Aneurinibacillus migulanus strains Nagano and NCTC 7096 show potential in biocontrol against fungal and fungus-like plant pathogens, including a wide range of Ascomycota, Basidiomycota, and Oomycetes. Differences in terms of the range of pathogens that each strain inhibits, however, suggested that production of a single antibiotic cyclic peptide, gramicidin S (GS), by the two strains, is not the sole mechanism of inhibition. The availability of four sequenced genomes of Aneurinibacillus prompted us to apply genome mining techniques to identify the bioactive potential of A. migulanus and to provide insights into the secondary metabolite arsenal of the genus Aneurinibacillus. Up to eleven secondary metabolite biosynthetic gene clusters were present in the three Aneurinibacillus species. Biosynthetic gene clusters specifying bacteriocins, microcins, non-ribosomal peptides, polyketides, terpenes, phosphonates, lasso peptides and linaridins were identified. Chitinolytic potential and iron metabolism regulation were also investigated. With increasing numbers of biocontrol bacterial genomes being sequenced and mined, the use of approaches similar to those described in this paper will lead to an increase in the numbers of environmentally friendly natural products available to use against plant diseases.

  14. Superimposed Pristine Limestone Aquifers with Marked Hydrochemical Differences Exhibit Distinct Fungal Communities

    Science.gov (United States)

    Nawaz, Ali; Purahong, Witoon; Lehmann, Robert; Herrmann, Martina; Küsel, Kirsten; Totsche, Kai U.; Buscot, François; Wubet, Tesfaye

    2016-01-01

    Fungi are one important group of eukaryotic microorganisms in a diverse range of ecosystems, but their diversity in groundwater ecosystems is largely unknown. We used DNA-based pyro-tag sequencing of the fungal internal transcribed spacer (ITS) rDNA gene to investigate the presence and community structure of fungi at different sampling sites of two superimposed limestone aquifers ranging from 8.5 to 84 m depth in the newly established Hainich Critical Zone Exploratory (Hainich CZE). We detected a diversity of fungal OTUs in groundwater samples of all sampling sites. The relative percentage abundance of Basidiomycota was higher in the upper aquifer assemblage, whilst Ascomycota dominated the lower one. In parallel to differences in the hydrochemistry we found distinct fungal communities at all sampling sites. Classification into functional groups revealed an overwhelming majority of saprotrophs. Finding taxa common to all analyzed groundwater sites, point to a groundwater specific fungal microbiome. The presence of different functional groups and, in particular plant and cattle pathogens that are not typical of subsurface habitats, suggests links between the surface and subsurface biogeosphere due to rapid transportation across the fracture networks typical of karstic regions during recharge episodes. However, further studies including sampling series extended in both time and space are necessary to confirm this hypothesis. PMID:27242696

  15. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    Science.gov (United States)

    Urbano, R.; Palenik, B.; Gaston, C. J.; Prather, K. A.

    2011-02-01

    Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms can impact atmospheric chemistry through metabolic reactions and can potentially influence physical processes by participating in ice nucleation and cloud droplet formation. Microbial roles in atmospheric processes are thought to be species-specific and potentially dependent on cell viability. Using a coastal pier monitoring site as a sampling platform, culture-dependent (i.e. agar plates) and culture-independent (i.e. DNA clone libraries from filters) approaches were combined with 18S rRNA and 16S rRNA gene targeting to obtain insight into the local atmospheric microbial composition. From 13 microbial isolates and 42 DNA library clones, a total of 55 sequences were obtained representing four independent sampling events. Sequence analysis revealed that in these coastal samples two fungal phyla, Ascomycota and Basidiomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture-dependent study verifies the viability of microbes from all four phyla detected through our culture-independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not typically found. The abundance of terrestrial and marine sediment-associated microorganisms suggests a potential importance for bioaerosols derived from beaches and/or coastal erosion processes.

  16. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.

    Science.gov (United States)

    He, Liming; Liu, Fang; Karuppiah, Valliappan; Ren, Yi; Li, Zhiyong

    2014-05-01

    To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

  17. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    Science.gov (United States)

    Young, Darcy; Rice, James; Martin, Rachael; Lindquist, Erika; Lipzen, Anna; Grigoriev, Igor; Hibbett, David

    2015-01-01

    Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes). Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold) greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.

  18. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    Science.gov (United States)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  19. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  20. Fungal community analysis in the deep-sea sediments of the Pacific Ocean assessed by comparison of ITS, 18S and 28S ribosomal DNA regions

    Science.gov (United States)

    Xu, Wei; Luo, Zhu-Hua; Guo, Shuangshuang; Pang, Ka-Lai

    2016-03-01

    We investigated the diversity of fungal communities in 6 different deep-sea sediment samples of the Pacific Ocean based on three different types of clone libraries, including internal transcribed spacer (ITS), 18S rDNA, and 28S rDNA regions. A total of 1978 clones were generated from 18 environmental clone libraries, resulting in 140 fungal operational taxonomic units (OTUs), including 18 OTUs from ITS, 44 OTUs from 18S rDNA, and 78 OTUs from 28S rDNA gene primer sets. The majority of the recovered sequences belonged to diverse phylotypes of the Ascomycota and Basidiomycota. Additionally, our study revealed a total of 46 novel fungal phylotypes, which showed low similarities (<97%) with available fungal sequences in the GenBank, including a novel Zygomycete lineage, suggesting possible new fungal taxa occurring in the deep-sea sediments. The results suggested that 28S rDNA is an efficient target gene to describe fungal community in deep-sea environment.

  1. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  2. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    Directory of Open Access Journals (Sweden)

    R. Urbano

    2010-08-01

    Full Text Available Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms in the atmosphere have great potential to impact chemical and physical processes that influence global climateby participating in both ice nucleation and cloud droplet formation. The role of microorganisms in atmospheric processes is thought to be species-specific and, potentially, dependent on the viability of the cell; however, few simultaneous measurements of both parameters exist. Using a coastal pier monitoring site as a sampling platform to investigate the exchange of airborne microorganisms at the air-sea interface, culture independent (i.e. DNA clone libraries from filters and culture dependent approaches (i.e. agar plates were combined with 18S rRNA and 16S rRNA gene targeting to determine the microbial diversity. The results indicate that in these coastal air samples two fungal phyla, Basidiomycota and Ascomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture dependent study verifies the viability of microbes from all four phyla detected through our culture independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not abundantly found in our air samples indicating the potential importance of bioaerosols derived from beaches and/or coastal erosion processes.

  3. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi.

    Directory of Open Access Journals (Sweden)

    Wanping Chen

    Full Text Available Fungal amylolytic enzymes, including α-amylase, gluocoamylase and α-glucosidase, have been extensively exploited in diverse industrial applications such as high fructose syrup production, paper making, food processing and ethanol production. In this paper, amylolytic genes of 85 strains of fungi from the phyla Ascomycota, Basidiomycota, Chytridiomycota and Zygomycota were annotated on the genomic scale according to the classification of glycoside hydrolase (GH from the Carbohydrate-Active enZymes (CAZy Database. Comparisons of gene abundance in the fungi suggested that the repertoire of amylolytic genes adapted to their respective lifestyles. Amylolytic enzymes in family GH13 were divided into four distinct clades identified as heterologous α-amylases, eukaryotic α-amylases, bacterial and fungal α-amylases and GH13 α-glucosidases. Family GH15 had two branches, one for gluocoamylases, and the other with currently unknown function. GH31 α-glucosidases showed diverse branches consisting of neutral α-glucosidases, lysosomal acid α-glucosidases and a new clade phylogenetically related to the bacterial counterparts. Distribution of starch-binding domains in above fungal amylolytic enzymes was related to the enzyme source and phylogeny. Finally, likely scenarios for the evolution of amylolytic enzymes in fungi based on phylogenetic analyses were proposed. Our results provide new insights into evolutionary relationships among subgroups of fungal amylolytic enzymes and fungal evolutionary adaptation to ecological conditions.

  4. Specialized proteinine rove beetles shed light on insect-fungal associations in the Cretaceous.

    Science.gov (United States)

    Cai, Chenyang; Newton, Alfred F; Thayer, Margaret K; Leschen, Richard A B; Huang, Diying

    2016-12-28

    Insects and fungi have a long history of association in shared habitats. Fungus-feeding, or mycophagy, is remarkably widespread in beetles (Coleoptera) and appears to be a primitive feeding habit that preceded feeding on plant tissues. Numerous Mesozoic beetles belonging to extant fungus-associated families are known, but direct fossil evidence elucidating mycophagy in insects has remained elusive. Here, we report a remarkable genus and species, Vetuproteinus cretaceus gen. et sp. nov., belonging to a new tribe (Vetuproteinini trib. nov.) of the extant rove beetle subfamily Proteininae (Staphylinidae) in Mid-Cretaceous Burmese amber. The mouthparts of this beetle have a markedly enlarged protruding galea bearing an apparent spore brush, a specialized structure we infer was used to scrape spores off surfaces and direct them into the mouth, as in multiple modern spore-feeding beetles. Considering the long evolutionary history of Fungi, the Mid-Cretaceous beetles likely fed on ancient Basidiomycota and/or Ascomycota fungi or spore-producing organisms such as slime moulds (Myxomycetes). The discovery of the first Mesozoic proteinine illustrates the antiquity of the subfamily, and suggests that ancestral Proteininae were already diverse and widespread in Pangaea before the supercontinent broke up.

  5. Atractiellomycetes belonging to the 'rust' lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids.

    Science.gov (United States)

    Kottke, Ingrid; Suárez, Juan Pablo; Herrera, Paulo; Cruz, Dario; Bauer, Robert; Haug, Ingeborg; Garnica, Sigisfredo

    2010-04-22

    Distinctive groups of fungi are involved in the diverse mycorrhizal associations of land plants. All previously known mycorrhiza-forming Basidiomycota associated with trees, ericads, liverworts or orchids are hosted in Agaricomycetes, Agaricomycotina. Here we demonstrate for the first time that Atractiellomycetes, members of the 'rust' lineage (Pucciniomycotina), are mycobionts of orchids. The mycobionts of 103 terrestrial and epiphytic orchid individuals, sampled in the tropical mountain rainforest of Southern Ecuador, were identified by sequencing the whole ITS1-5.8S-ITS2 region and part of 28S rDNA. Mycorrhizae of 13 orchid individuals were investigated by transmission electron microscopy. Simple septal pores and symplechosomes in the hyphal coils of mycorrhizae from four orchid individuals indicated members of Atractiellomycetes. Molecular phylogeny of sequences from mycobionts of 32 orchid individuals out of 103 samples confirmed Atractiellomycetes and the placement in Pucciniomycotina, previously known to comprise only parasitic and saprophytic fungi. Thus, our finding reveals these fungi, frequently associated to neotropical orchids, as the most basal living basidiomycetes involved in mycorrhizal associations of land plants.

  6. 13C pulse-labeling assessment of the community structure of active fungi in the rhizosphere of a genetically starch-modified potato (Solanum tuberosum) cultivar and its parental isoline.

    Science.gov (United States)

    Hannula, S E; Boschker, H T S; de Boer, W; van Veen, J A

    2012-05-01

    • The aim of this study was to gain understanding of the carbon flow from the roots of a genetically modified (GM) amylopectin-accumulating potato (Solanum tuberosum) cultivar and its parental isoline to the soil fungal community using stable isotope probing (SIP). • The microbes receiving (13)C from the plant were assessed through RNA/phospholipid fatty acid analysis with stable isotope probing (PLFA-SIP) at three time-points (1, 5 and 12 d after the start of labeling). The communities of Ascomycota, Basidiomycota and Glomeromycota were analysed separately with RT-qPCR and terminal restriction fragment length polymorphism (T-RFLP). • Ascomycetes and glomeromycetes received carbon from the plant as early as 1 and 5 d after labeling, while basidiomycetes were slower in accumulating the labeled carbon. The rate of carbon allocation in the GM variety differed from that in its parental variety, thereby affecting soil fungal communities. • We conclude that both saprotrophic and mycorrhizal fungi rapidly metabolize organic substrates flowing from the root into the rhizosphere, that there are large differences in utilization of root-derived compounds at a lower phylogenetic level within investigated fungal phyla, and that active communities in the rhizosphere differ between the GM plant and its parental cultivar through effects of differential carbon flow from the plant.

  7. The link between morphotype transition and virulence in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Linqi Wang

    Full Text Available Cryptococcus neoformans is a ubiquitous human fungal pathogen. This pathogen can undergo morphotype transition between the yeast and the filamentous form and such morphological transition has been implicated in virulence for decades. Morphotype transition is typically observed during mating, which is governed by pheromone signaling. Paradoxically, components specific to the pheromone signaling pathways play no or minimal direct roles in virulence. Thus, the link between morphotype transition and virulence and the underlying molecular mechanism remain elusive. Here, we demonstrate that filamentation can occur independent of pheromone signaling and mating, and both mating-dependent and mating-independent morphotype transition require the transcription factor Znf2. High expression of Znf2 is necessary and sufficient to initiate and maintain sex-independent filamentous growth under host-relevant conditions in vitro and during infection. Importantly, ZNF2 overexpression abolishes fungal virulence in murine models of cryptococcosis. Thus, Znf2 bridges the sex-independent morphotype transition and fungal pathogenicity. The impacts of Znf2 on morphological switch and pathogenicity are at least partly mediated through its effects on cell adhesion property. Cfl1, a Znf2 downstream factor, regulates morphogenesis, cell adhesion, biofilm formation, and virulence. Cfl1 is the first adhesin discovered in the phylum Basidiomycota of the Kingdom Fungi. Together with previous findings in other eukaryotic pathogens, our findings support a convergent evolution of plasticity in morphology and its impact on cell adhesion as a critical adaptive trait for pathogenesis.

  8. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests.

    Science.gov (United States)

    Saravesi, Karita; Aikio, Sami; Wäli, Piippa R; Ruotsalainen, Anna Liisa; Kaukonen, Maarit; Huusko, Karoliina; Suokas, Marko; Brown, Shawn P; Jumpponen, Ari; Tuomi, Juha; Markkola, Annamari

    2015-05-01

    Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale.

  9. Unravelling the diversity of grapevine microbiome.

    Science.gov (United States)

    Pinto, Cátia; Pinho, Diogo; Sousa, Susana; Pinheiro, Miguel; Egas, Conceição; Gomes, Ana C

    2014-01-01

    Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines.

  10. Unravelling the diversity of grapevine microbiome.

    Directory of Open Access Journals (Sweden)

    Cátia Pinto

    Full Text Available Vitis vinifera is one of the most widely cultivated fruit crops with a great economic impact on the global industry. As a plant, it is naturally colonised by a wide variety of both prokaryotic and eukaryotic microorganisms that interact with grapevine, having either beneficial or phytopathogenic effects, who play a major role in fruit yield, grape quality and, ultimately, in the evolution of grape fermentation and wine production. Therefore, the objective of this study was to extensively characterize the natural microbiome of grapevine. Considering that the majority of microorganisms are uncultivable, we have deeply studied the microflora of grapevine leaves using massive parallel rDNA sequencing, along its vegetative cycle. Among eukaryotic population the most abundant microorganisms belonged to the early diverging fungi lineages and Ascomycota phylum, whereas the Basidiomycota were the least abundant. Regarding prokaryotes, a high diversity of Proteobacteria, Firmicutes and Actinobacteria was unveiled. Indeed, the microbial communities present in the vineyard during its vegetative cycle were shown to be highly structured and dynamic. In all cases, the major abundant microorganisms were the yeast-like fungus Aureobasidium and the prokaryotic Enterobacteriaceae. Herein, we report the first complete microbiome landscape of the vineyard, through a metagenomic approach, and highlight the analysis of the microbial interactions within the vineyard and its importance for the equilibrium of the microecosystem of grapevines.

  11. Characterization of the fungal microbiota (mycobiome in healthy and dandruff-afflicted human scalps.

    Directory of Open Access Journals (Sweden)

    Hee Kuk Park

    Full Text Available The human scalp harbors a vast community of microbial mutualists, the composition of which is difficult to elucidate as many of the microorganisms are not culturable using current culture techniques. Dandruff, a common scalp disorder, is known as a causative factor of a mild seborrheic dermatitis as well as pityriasis versicolor, seborrheic dermatitis, and atopic dermatitis. Lipophilic yeast Malassezia is widely accepted to play a role in dandruff, but relatively few comprehensive studies have been reported. In order to investigate fungal biota and genetic resources of dandruff, we amplified the 26S rRNA gene from samples of healthy scalps and dandruff-afflicted scalps. The sequences were analyzed by a high throughput method using a GS-FLX 454 pyrosequencer. Of the 74,811 total sequence reads, Basidiomycota (Filobasidium spp. was the most common phylum associated with dandruff. In contrast, Ascomycota (Acremonium spp. was common in the healthy scalps. Our results elucidate the distribution of fungal communities associated with dandruff and provide new avenues for the potential prevention and treatment of dandruff.

  12. Surprising spectra of root-associated fungi in submerged aquatic plants.

    Science.gov (United States)

    Kohout, Petr; Sýkorová, Zuzana; Ctvrtlíková, Martina; Rydlová, Jana; Suda, Jan; Vohník, Martin; Sudová, Radka

    2012-04-01

    Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment.

  13. Characterization of the Fungal Microbiome (Mycobiome in Fecal Samples from Dogs

    Directory of Open Access Journals (Sweden)

    M. Lauren Foster

    2013-01-01

    Full Text Available The prevalence and phylogenetic description of fungal organisms and their role as part of the intestinal ecosystem have not yet been studied extensively in dogs. This study evaluated the fungal microbiome of 19 dogs (12 healthy dogs and 7 dogs with acute diarrhea using fungal tag-encoded FLX-Titanium amplicon pyrosequencing. Five distinct fungal phyla were identified, with Ascomycota (medians: 97.9% of obtained sequences in healthy dogs and 98.2% in diseased dogs and Basidiomycota (median 1.0% in healthy dogs and median 0.5% in diseased dogs being the most abundant fungal phyla. A total of 219 fungal genera were identified across all 19 dogs with a median (range of 28 (4–69 genera per sample. Candida was the most abundant genus found in both the diseased dogs (median: 1.9%, range: 0.2%–38.5% of sequences and healthy dogs (median: 5.2%, range: 0.0%–63.1% of sequences. Candida natalensis was the most frequently identified species. No significant differences were observed in the relative proportions of fungal communities between healthy and diseased dogs. In conclusion, fecal samples of healthy dogs and dogs with acute diarrhea harbor various fungal genera, and their role in gastrointestinal health and disease warrants further studies.

  14. Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques

    Directory of Open Access Journals (Sweden)

    R. Urbano

    2011-02-01

    Full Text Available Bioaerosols are emerging as important yet poorly understood players in atmospheric processes. Microorganisms can impact atmospheric chemistry through metabolic reactions and can potentially influence physical processes by participating in ice nucleation and cloud droplet formation. Microbial roles in atmospheric processes are thought to be species-specific and potentially dependent on cell viability. Using a coastal pier monitoring site as a sampling platform, culture-dependent (i.e. agar plates and culture-independent (i.e. DNA clone libraries from filters approaches were combined with 18S rRNA and 16S rRNA gene targeting to obtain insight into the local atmospheric microbial composition. From 13 microbial isolates and 42 DNA library clones, a total of 55 sequences were obtained representing four independent sampling events. Sequence analysis revealed that in these coastal samples two fungal phyla, Ascomycota and Basidiomycota, predominate among eukaryotes while Firmicutes and Proteobacteria predominate among bacteria. Furthermore, our culture-dependent study verifies the viability of microbes from all four phyla detected through our culture-independent study. Contrary to our expectations and despite oceanic air mass sources, common marine planktonic bacteria and phytoplankton were not typically found. The abundance of terrestrial and marine sediment-associated microorganisms suggests a potential importance for bioaerosols derived from beaches and/or coastal erosion processes.

  15. Rhodotorula glutinis meningitis: a case report and review of literature.

    Science.gov (United States)

    Menon, Sarala; Gupta, H R; Sequeira, R; Chavan, Shazia; Gholape, D; Amandeep, S; Bhilave, N; Chowdhary, A S

    2014-07-01

    Rhodotorula is ubiquitous saprophytic yeast belonging to phylum Basidiomycota. These encapsulated basidiomycetes are being increasingly recognised as important emerging human pathogens. There are scanty reports of meningitis caused by Rhodurorula spp in HIV infected patients. We present one such case of meningitis by Rhodutorula glutinis in HIV-infected patient. The patient also had a past history of abdominal tuberculosis. The diagnosis of Rhodotorula was confirmed by Gram staining and culture of the cerebrospinal fluid (CSF). Contamination was ruled out by repeated culturing of CSF from the same patient. Therapy with Amphotericin B showed good results. Patient was discharged from the hospital. However, in the seventh month of follow-up patient was readmitted with complaints of fever, breathlessness, altered sensorium, vomiting and succumbed to his illness. This time the CSF cultures remained negative for Rhodotorula, acid fast bacilli and other pyogenic organisms. Our last 11-year retrospective analysis of 8197 specimens received for mycological work-up showed that this is the first report of R. glutinis isolation from our institute.

  16. Degradation of Bunker C Fuel Oil by White-Rot Fungi in Sawdust Cultures Suggests Potential Applications in Bioremediation.

    Directory of Open Access Journals (Sweden)

    Darcy Young

    Full Text Available Fungal lignocellulolytic enzymes are promising agents for oxidizing pollutants. This study investigated degradation of Number 6 "Bunker C" fuel oil compounds by the white-rot fungi Irpex lacteus, Trichaptum biforme, Phlebia radiata, Trametes versicolor, and Pleurotus ostreatus (Basidiomycota, Agaricomycetes. Averaging across all studied species, 98.1%, 48.6%, and 76.4% of the initial Bunker C C10 alkane, C14 alkane, and phenanthrene, respectively were degraded after 180 days of fungal growth on pine media. This study also investigated whether Bunker C oil induces changes in gene expression in the white-rot fungus Punctularia strigosozonata, for which a complete reference genome is available. After 20 days of growth, a monokaryon P. strigosozonata strain degraded 99% of the initial C10 alkane in both pine and aspen media but did not affect the amounts of the C14 alkane or phenanthrene. Differential gene expression analysis identified 119 genes with ≥ log2(2-fold greater expression in one or more treatment comparisons. Six genes were significantly upregulated in media containing oil; these genes included three enzymes with potential roles in xenobiotic biotransformation. Carbohydrate metabolism genes showing differential expression significantly accumulated transcripts on aspen vs. pine substrates, perhaps reflecting white-rot adaptations to growth on hardwood substrates. The mechanisms by which P. strigosozonata may degrade complex oil compounds remain obscure, but degradation results of the 180-day cultures suggest that diverse white-rot fungi have promise for bioremediation of petroleum fuels.

  17. Algal and fungal diversity in Antarctic lichens.

    Science.gov (United States)

    Park, Chae Haeng; Kim, Kyung Mo; Elvebakk, Arve; Kim, Ok-Sun; Jeong, Gajin; Hong, Soon Gyu

    2015-01-01

    The composition of lichen ecosystems except mycobiont and photobiont has not been evaluated intensively. In addition, recent studies to identify algal genotypes have raised questions about the specific relationship between mycobiont and photobiont. In the current study, we analyzed algal and fungal community structures in lichen species from King George Island, Antarctica, by pyrosequencing of eukaryotic large subunit (LSU) and algal internal transcribed spacer (ITS) domains of the nuclear rRNA gene. The sequencing results of LSU and ITS regions indicated that each lichen thallus contained diverse algal species. The major algal operational taxonomic unit (OTU) defined at a 99% similarity cutoff of LSU sequences accounted for 78.7-100% of the total algal community in each sample. In several cases, the major OTUs defined by LSU sequences were represented by two closely related OTUs defined by 98% sequence similarity of ITS domain. The results of LSU sequences indicated that lichen-associated fungi belonged to the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes, Leotiomycetes, and Sordariomycetes of the Ascomycota, and Tremellomycetes and Cystobasidiomycetes of the Basidiomycota. The composition of major photobiont species and lichen-associated fungal community were mostly related to the mycobiont species. The contribution of growth forms or substrates on composition of photobiont and lichen-associated fungi was not evident.

  18. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters.

    Directory of Open Access Journals (Sweden)

    Nikos Andreakis

    Full Text Available Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290 of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS. Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs by the automatic barcode gap finder (ABGD method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters.

  19. Diversity of Marine-Derived Fungal Cultures Exposed by DNA Barcodes: The Algorithm Matters.

    Science.gov (United States)

    Andreakis, Nikos; Høj, Lone; Kearns, Philip; Hall, Michael R; Ericson, Gavin; Cobb, Rose E; Gordon, Benjamin R; Evans-Illidge, Elizabeth

    2015-01-01

    Marine fungi are an understudied group of eukaryotic microorganisms characterized by unresolved genealogies and unstable classification. Whereas DNA barcoding via the nuclear ribosomal internal transcribed spacer (ITS) provides a robust and rapid tool for fungal species delineation, accurate classification of fungi is often arduous given the large number of partial or unknown barcodes and misidentified isolates deposited in public databases. This situation is perpetuated by a paucity of cultivable fungal strains available for phylogenetic research linked to these data sets. We analyze ITS barcodes produced from a subsample (290) of 1781 cultured isolates of marine-derived fungi in the Bioresources Library located at the Australian Institute of Marine Science (AIMS). Our analysis revealed high levels of under-explored fungal diversity. The majority of isolates were ascomycetes including representatives of the subclasses Eurotiomycetidae, Hypocreomycetidae, Sordariomycetidae, Pleosporomycetidae, Dothideomycetidae, Xylariomycetidae and Saccharomycetidae. The phylum Basidiomycota was represented by isolates affiliated with the genera Tritirachium and Tilletiopsis. BLAST searches revealed 26 unknown OTUs and 50 isolates corresponding to previously uncultured, unidentified fungal clones. This study makes a significant addition to the availability of barcoded, culturable marine-derived fungi for detailed future genomic and physiological studies. We also demonstrate the influence of commonly used alignment algorithms and genetic distance measures on the accuracy and comparability of estimating Operational Taxonomic Units (OTUs) by the automatic barcode gap finder (ABGD) method. Large scale biodiversity screening programs that combine datasets using algorithmic OTU delineation pipelines need to ensure compatible algorithms have been used because the algorithm matters.

  20. Estudio micológico de El Canal y Los Tiles (La Palma, Islas Canarias. V. Datos adicionales

    Directory of Open Access Journals (Sweden)

    Leal, Julio

    2009-12-01

    Full Text Available An annotated catalogue of 66 taxa, collected in the early MAB Reserve El Canal y Los Tiles is presented. Among these taxa, 11 species are new for La Palma island and 5 are recorded for the first time in the Canary Islands. Taxonomic comments on some critical species and information about the distribution in the Macaronesian bioregion of all the studied taxa are given. Based on our previous publications, global data on biodiversity, substrates and distribution of the mycobiota in the different plant communities present in the sampled area are analyzed.

    Se presenta un estudio sobre 66 especies, pertenecientes a las divisiones Myxomycota (21, Ascomycota (29 y Basidiomycota (16, encontradas en la antigua Reserva de la Biosfera El Canal y Los Tiles. De ellas 11 se citan por primera vez para la isla de La Palma, siendo 5 de éstas nuevas para Canarias. Se hacen comentarios taxonómicos sobre algunos táxones conflictivos, además de amplia información sobre su distribución en la Región Macaronésica. En base a publicaciones propias anteriores, se aportan datos globales sobre biodiversidad, sustratos y distribución de la micobiota en las diferentes unidades ambientales presentes en el área de estudio.

  1. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Wuttichai Mhuantong

    Full Text Available The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.

  2. Survey of Microbial Diversity in Flood Areas during Thailand 2011 Flood Crisis Using High-Throughput Tagged Amplicon Pyrosequencing.

    Science.gov (United States)

    Mhuantong, Wuttichai; Wongwilaiwalin, Sarunyou; Laothanachareon, Thanaporn; Eurwilaichitr, Lily; Tangphatsornruang, Sithichoke; Boonchayaanant, Benjaporn; Limpiyakorn, Tawan; Pattaragulwanit, Kobchai; Punmatharith, Thantip; McEvoy, John; Khan, Eakalak; Rachakornkij, Manaskorn; Champreda, Verawat

    2015-01-01

    The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.

  3. Bioluminescence patterns among North American Armillaria species.

    Science.gov (United States)

    Mihail, Jeanne D

    2015-06-01

    Bioluminescence is widely recognized among white-spored species of Basidiomycota. Most reports of fungal bioluminescence are based upon visual light perception. When instruments such as photomultipliers have been used to measure fungal luminescence, more taxa have been discovered to produce light, albeit at a range of magnitudes. The present studies were undertaken to determine the prevalence of bioluminescence among North American Armillaria species. Consistent, constitutive bioluminescence was detected for the first time for mycelia of Armillaria calvescens, Armillaria cepistipes, Armillaria gemina, Armillaria nabsnona, and Armillaria sinapina and confirmed for mycelia of Armillaria gallica, Armillaria mellea, Armillaria ostoyae, and Armillaria tabescens. Emission spectra of mycelia representing all species had maximum intensity in the range 515-525 nm confirming that emitted light was the result of bioluminescence rather than chemiluminescence. Time series analysis of 1000 consecutive luminescence measurements revealed a highly significant departure from random variation. Mycelial luminescence of eight species exhibited significant, stable shifts in magnitude in response to a series of mechanical disturbance treatments, providing one mechanism for generating observed luminescence variation.

  4. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  5. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704

    Directory of Open Access Journals (Sweden)

    Trina Ekawati Tallei

    2015-10-01

    Full Text Available Mitochondria of Paramecium caudatum stock GT704 has a set of four kinds of linear plasmids with sizes of 8.2, 4.1, 2.8 and 1.4 kb. The plasmids of 8.2 and 2.8 kb exist as dimers consisting of 4.1- and 1.4-kb monomers, respectively. The plasmid 2.8 kb, designated as pGT704-2.8, contains an open reading frame encodes for putative DNA-dependent RNA polymerase (RNAP. This study reveals that this RNAP belongs to superfamily of DNA/RNA polymerase and family of T7/T3 single chain RNA polymerase and those of mitochondrial plasmid of fungi belonging to Basidiomycota and Ascomycota. It is suggested that RNAP of pGT704-2.8 can perform transcription without transcription factor as promoter recognition. Given that only two motifs were found, it could not be ascertained whether this RNAP has a full function independently or integrated with mtDNA in carrying out its function.

  6. Diversity of ectomycorrhizal Thelephoraceae in Tuber melanosporum-cultivated orchards of Northern Spain.

    Science.gov (United States)

    De Miguel, Ana María; Águeda, Beatriz; Sáez, Raimundo; Sánchez, Sergio; Parladé, Javier

    2016-04-01

    Truffles are edible hypogeous ascomycetes highly appreciated worldwide, especially the black truffle (Tuber melanosporum Vittad.). In recent decades, the cultivation of the black truffle has expanded across the Mediterranean climate regions in and outside its native range. Members of the Thelephoraceae (Thelephorales, Agaricomycetes, Basidiomycota) are commonly found in truffle plantations, but their co-occurrence with Tuber species and other members of the fungal community has been scarcely reported. Thelephoraceae is one of the most represented families of the ectomycorrhizal fungal community in boreal and Mediterranean forests. To reveal the diversity of these fungi in T. melanosporum-cultivated plantations, ten orchards located in the Navarra region (Northern Spain) were surveyed for 2 years. Morphological and molecular approaches were used to detect and identify the Thelephoraceae ectomycorrhizas present in those plantations. Ten different mycorrhizal types were detected and described. Four of them were morphologically identified as Tomentella galzinii, Quercirhiza cumulosa, Q. squamosa, and T39 Thelephoraceae type. Molecular analyses revealed 4-6 operational taxonomic units (OTUs), depending on the nucleotide database used, but similarities remained under 95 % and no clear species assignments could be done. The results confirm the diversity and abundance of this fungal family in the ectomycorrhizal community of black truffle plantations, generally established in Mediterranean areas. The occurrence and relative abundance of Thelephoraceae ectomycorrhizas is discussed in relation to their possible influence on truffle production.

  7. Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica

    Science.gov (United States)

    Desai, Nikhilesh S.; Wilson, Andrew W.; Powers, Jennifer S.; Mueller, Gregory M.; Egerton-Warburton, Louise M.

    2016-12-01

    Most conservation efforts in seasonally dry tropical forests have overlooked less obvious targets for conservation, such as mycorrhizal fungi, that are critical to plant growth and ecosystem structure. We documented the diversity of ectomycorrhizal (EMF) and arbuscular mycorrhizal (AMF) fungal communities in Quercus oleoides (Fagaceae) in Guanacaste province, Costa Rica. Soil cores and sporocarps were collected from regenerating Q. oleoides plots differing in stand age (early vs late regeneration) during the wet season. Sequencing of the nuclear ribosomal ITS region in EMF root tips and sporocarps identified 37 taxa in the Basidiomycota; EMF Ascomycota were uncommon. The EMF community was dominated by one species (Thelephora sp. 1; 70% of soil cores), more than half of all EMF species were found only once in an individual soil core, and there were few conspecific taxa. Most EMF taxa were also restricted to either Early or Late plots. Levels of EMF species richness and diversity, and AMF root colonization were similar between plots. Our results highlight the need for comprehensive spatiotemporal samplings of EMF communities in Q. oleoides to identify and prioritize rare EMF for conservation, and document their genetic and functional diversity.

  8. Rust fungi on Annonaceae II: the genus Dasyspora Berk. & M.A. Curtis.

    Science.gov (United States)

    Beenken, Ludwig; Zoller, Stefan; Berndt, Reinhard

    2012-01-01

    Dasyspora gregaria, the single species of the allegedly monotypic rust genus Dasyspora (Basidiomycota, Pucciniales), was investigated by light microscopy and DNA sequencing (ITS1-5.8S-ITS2 region, partial LSU and SSU of the nuclear rDNA, mt cytochrome oxidase subunit 3). Both methods indicated that D. gregaria is not a single species but can be split in 11 distinct taxa, each of which appear confined to a single Xylopia species (Annonaceae) host. Herein nine of these are described as new. Both the phylogenetic analyses and morphology show that the species are grouped into two main clades designated Dasyspora gregaria and D. winteri. The first comprises D. gregaria, the type species of the genus, which is restricted to X. cayennensis, two new species on X. aromatica, D. segregaria from northern South America and D. echinata from Brazil. The second clade is formed by D. winteri, recombined from Puccinia winteri on X. sericea, and the new species D. amazonica on X. amazonica, D. emarginatae on X. emarginata, D. frutescentis on X. frutescens, D. ferrugineae on X. frutescens var. ferruginea, D. guianensis on X. benthamii, D. mesoamericana on X. frutescens, and D. nitidae on X. nitida. Dasyspora frutescentis and D. mesoamericana were not clearly distinguishable by their morphology and host associations but differed from another in their sequences and geographic distributions. They are considered cryptic species. An identification key and the distributions are given for all recognized species. Along with molecular data we discuss the systematic position of Dasyspora in the Pucciniales.

  9. The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences.

    Science.gov (United States)

    Férandon, Cyril; Xu, Jianping; Barroso, Gérard

    2013-06-01

    At 135,005 nt, the mitochondrial genome in Agaricus bisporus represents the largest fungal mitochondrial genome sequenced to date. Its large size is mainly due to the presence of mobile genetic elements, including a total of 43 group I introns, three group II introns, and five DNA fragments that show sequence similarity to linear invertron-like plasmids. The introns are distributed in eight of the 15 protein coding genes. These introns contain a total of 61,092 nt (∼45.3% of the whole mitochondrial genome) and include representatives of most of the group I introns so far found in mitochondrial genomes of Basidiomycota. The plasmid-like sequences include 6730 nt total representing 5.0% of the genome. These sequences showed high-level similarities to two different mitochondrial plasmids reported for basidiomycete mushrooms: the autonomously replicating pEM in Agaricus bitorquis and the integrated linear plasmid sequences in Agrocybe aegerita and Moniliophthora perniciosa. Moreover, the plasmid-related sequences are located within or adjacent to two large (4559 nt) inverted repeats containing also two sets of mitochondrial tRNA genes. Our analyses are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution of the A. bisporus mitochondrial genome.

  10. 利用变性梯度凝胶电泳分析正红菇菌根围土壤真菌群落多样性%Analysis of Fungal Diversity of Russula griseocarnosa Mycorrhizosphere Soil with Denaturing Gradient Gel Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    肖冬来; 陈丽华; 陈宇航; 杨菁; 黄小菁

    2013-01-01

    以正红菇(Russula griseocarnosa)菌根围土壤为研究对象,通过提取土壤基因组DNA,以通用引物扩增真菌18S rRNA基因V1+V2区,将PCR产物进行变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis),获得土壤微生物群落的DNA特征指纹图谱,并对图谱中的优势条带回收测序,通过Blast进行同源性比对并构建系统发育树,进而分析正红菇菌根围真菌群落组成及多样性.同源性比对结果表明,在回收测序的19条DGGE条带中,4条为非真菌真核生物序列,系统发育分析显示全部序列可以分为4类菌群,Group Ⅰ主要为担子菌门(Basidiomycota)真菌,GroupⅡ主要为子囊菌门(Ascomycota)真菌,GroupⅢ为未知真菌,GroupⅣ主要为节肢动物门生物(Arthropoda).

  11. Comparative Cold Shock Expression and Characterization of Fungal Dye-Decolorizing Peroxidases.

    Science.gov (United States)

    Behrens, Christoph J; Zelena, Kateryna; Berger, Ralf G

    2016-08-01

    Dye-decolorizing peroxidases (DyPs) from Auricularia auricula-judae, Bjerkandera adusta, Pleurotus ostreatus and Marasmius scorodonius (Basidiomycota) were expressed in Escherichia coli using the cold shock-inducible expression system pCOLD I DNA. Functional expression was achieved without the addition of hemin or the co-expression of any chaperones. The presence or absence of the native signal sequence had a strong impact on the success of the expression, but the effect was not consistent for the different DyPs. While BaDyP and AajDyP were stable at 50 °C, the more thermolabile MsP2 and PoDyp, upon catalytic intervention, lend themselves to more rapid thermal inactivation. The bleaching of norbixin (E 160b) using MsP2 was most efficient at pH 4.0, while BaDyP and AajDypP worked best in the weakly acidic to neutral range, indicating a choice of DyPs for a broad field of applications in different food matrices.

  12. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization

    Science.gov (United States)

    Hao, Da Cheng; Song, Si Meng; Mu, Jun; Hu, Wen Li; Xiao, Pei Gen

    2016-04-01

    The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere.

  13. Cantharellaceae of Guyana I: new species, combinations and distribution records of Craterellus and a synopsis of known taxa.

    Science.gov (United States)

    Wilson, Andrew W; Aime, M Catherine; Dierks, Janina; Mueller, Gregory M; Henkel, Terry W

    2012-01-01

    Members of the Cantharellaceae (Cantharellales, Basidiomycota) are common ectomycorrhizal associates of the leguminous genus Dicymbe in the Pakaraima Mountains of Guyana. Eight distinct species or morphospecies currently are recognized in Craterellus Pers. or Cantharellus Adans. ex Fr. from Guyanese Dicymbe-dominated forests. We evaluated the systematics of these taxa with phylogenetic analyses of DNA sequence data from the nuclear ribosomal regions of the internal transcribed spacer (ITS) and 28S large subunit (LSU). The results of these analyses along with careful assessment of morphology let us described two new species, Craterellus atratoides sp. nov. and Craterellus strigosus sp. nov., redescribe Craterellus atratus (Corner) Yomyart et al. based on new material from Guyana, and propose a new combination in Craterellus for Cantharellus pleurotoides T.W. Henkel, Aime & S.L. Mill. Macroscopic illustrations are provided for two additional cantharelloid morphospecies confirmed in Craterellus, as well as the regionally endemic Cantharellus guyanensis Mont. Macromorphological, micromorphological and habitat data are provided for C. atratoides, C. strigosus and C. atratus, and ITS and LSU sequence data are provided for each of the eight known Guyanese taxa.

  14. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    Science.gov (United States)

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.

  15. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH.

    Science.gov (United States)

    Martínez-Soto, Domingo; Ruiz-Herrera, José

    2013-01-01

    Dimorphism is the property of fungi to grow as budding yeasts or mycelium, depending on the environmental conditions. This phenomenon is important as a model of differentiation in eukaryotic organisms, and since a large number of fungal diseases are caused by dimorphic fungi, its study is important for practical reasons. In this work, we examined the transcriptome during the dimorphic transition of the basidiomycota phytopathogenic fungus Ustilago maydis using microarrays, utilizing yeast and mycelium monomorphic mutants as controls. This way, we thereby identified 154 genes of the fungus that are specifically involved in the dimorphic transition induced by a pH change. Of these, 82 genes were up-regulated, and 72 were down-regulated. Differential categorization of these genes revealed that they mostly belonged to the classes of metabolism, cell cycle and DNA processing, transcription and protein fate, transport and cellular communication, stress, cell differentiation and biogenesis of cellular components, while a significant number of them corresponded to unclassified proteins. The data reported in this work are important for our understanding of the molecular bases of dimorphism in U. maydis, and possibly of other fungi.

  16. Conserved and Distinct Functions of the “Stunted” (StuA)-Homolog Ust1 During Cell Differentiation in the Corn Smut Fungus Ustilago maydis.

    Science.gov (United States)

    Baeza-Montañez, Lourdes; Gold, Scott E; Espeso, Eduardo A; García-Pedrajas, María D

    2015-01-01

    Ustilago maydis, causal agent of corn smut, can proliferate saprobically in a yeast form but its infectious filamentous form is an obligate parasite. Previously, we showed that Ust1, the first APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) transcription factor functionally characterized in the phylum Basidiomycota, controlled morphogenesis and virulence in this species. Here, we further analyzed Ust1 function using multiple experimental approaches and determined that i) Ust1 activity was able to partially reverse stuA− conidiophore defects in Aspergillus nidulans; ii) in U. maydis, normal development and virulence were strongly dependent on precise induction or repression of Ust1 activity; iii) consistent with its role as a transcription factor regulating multiple processes, Ust1 accumulated in the nucleus at various stages of the life cycle; iv) however, it was undetectable at specific stages of pathogenic growth, indicating that Ust1 repression is part of normal development in planta; v) StuA response elements upstream of the ust1 open reading frame exhibited affinity for U. maydis DNA-binding proteins; vi) however, loss of regulated ust1 transcription had minor phenotypic effects; and vii) Ust1 was subject to post-translational phosphorylation but is not a target of cAMP signaling. Thus, the broad functional conservation between Ust1 and Ascomycota APSES proteins does not extend to the mechanisms regulating their activity.

  17. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes.

    Science.gov (United States)

    Martínez-Salgado, José L; León-Ramírez, Claudia G; Pacheco, Alberto Barrera; Ruiz-Herrera, José; de la Rosa, Ana P Barba

    2013-02-21

    Ustilago maydis is a dimorphic corn pathogenic basidiomycota whose haploid cells grow in yeast form at pH7, while at pH3 they grow in the mycelial form. Two-dimensional gel electrophoresis (2-DE) coupled with LC-ESI/MS-MS was used to analyze the differential accumulation of proteins in yeast against mycelial morphologies. 2-DE maps were obtained in the pH range of 5-8 and 404 total protein spots were separated. From these, 43 were differentially accumulated when comparing strains FB2wt, constitutive yeast CL211, and constitutive mycelial GP25 growing at pH7 against pH3. Differentially accumulated proteins in response to pH are related with defense against reactive oxygen species or toxic compounds. Up-accumulation of CipC and down-accumulation of Hmp1 were specifically related with mycelial growth. Changes in proteins that were affected by mutation in the gene encoding the adaptor of a MAPK pathway (CL211 strain) were UM521* and transcription factors Btf3, Sol1 and Sti1. Mutation of GCN5 (GP25 strain) affected the accumulation of Rps19-ribosomal protein, Mge1-heath shock protein, and Lpd1-dihydrolipoamide dehydrogenase. Our results complement the information about the genes and proteins related with the dimorphic transition in U. maydis and changes in proteins affected by mutations in a MAPK pathway and GCN5 gene.

  18. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis.

    Science.gov (United States)

    Kretschmer, Matthias; Klose, Jana; Kronstad, James W

    2012-08-01

    An understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogen Ustilago maydis. However, mfe2 mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in the had1 gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog, had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of an mfe2Δ mutant. We also show that short-chain fatty acids induce cell death in U. maydis and that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms by U. maydis that includes potential metabolic contributions to proliferation in planta and an effect on virulence-related morphogenesis.

  19. Brh2 and Rad51 promote telomere maintenance in Ustilago maydis, a new model system of DNA repair proteins at telomeres.

    Science.gov (United States)

    Yu, Eun Young; Kojic, Milorad; Holloman, William K; Lue, Neal F

    2013-07-01

    Recent studies implicate a number of DNA repair proteins in mammalian telomere maintenance. However, because several key repair proteins in mammals are missing from the well-studied budding and fission yeast, their roles at telomeres cannot be modeled in standard fungi. In this report, we explored the dimorphic fungus Ustilago maydis as an alternative model for telomere research. This fungus, which belongs to the phylum Basidiomycota, has a telomere repeat unit that is identical to the mammalian repeat, as well as a constellation of DNA repair proteins that more closely mimic the mammalian collection. We showed that the two core components of homology-directed repair (HDR) in U. maydis, namely Brh2 and Rad51, both promote telomere maintenance in telomerase positive cells, just like in mammals. In addition, we found that Brh2 is localized to telomeres in vivo, suggesting that it acts directly at chromosome ends. We surveyed a series of mutants with DNA repair defects, and found many of them to have short telomeres. Our results indicate that factors involved in DNA repair are probably also needed for optimal telomere maintenance in U. maydis, and that this fungus is a useful alternative model system for telomere research.

  20. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2013-02-01

    The cell wall is the structure that provides the shape to fungal cells and protects them from the difference in osmotic pressure existing between the cytosol and the external medium. Accordingly, changes in structure and composition of the fungal wall must occur during cell differentiation, including the dimorphic transition of fungi. We analyzed, by use of microarrays, the transcriptional regulation of the 639 genes identified to be involved in cell wall synthesis and structure plus the secretome of the Basidiomycota species Ustilago maydis during its dimorphic transition induced by a change in pH. Of these, 189 were differentially expressed during the process, and using as control two monomorphic mutants, one yeast like and the other mycelium constitutive, 66 genes specific of dimorphism were identified. Most of these genes were up-regulated in the mycelial phase. These included CHS genes, genes involved in β-1,6-glucan synthesis, N-glycosylation, and proteins containing a residue of glycosylphosphatidylinositol, and a number of genes from the secretome. The possible significance of these data on cell wall plasticity is discussed.

  1. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-01-01

    Full Text Available Abstract Background Rhizopus oryzae is a zygomycete filamentous fungus, well-known as a saprobe ubiquitous in soil and as a pathogenic/spoilage fungus, causing Rhizopus rot and mucomycoses. Results Carbohydrate Active enzyme (CAZy annotation of the R. oryzae identified, in contrast to other filamentous fungi, a low number of glycoside hydrolases (GHs and a high number of glycosyl transferases (GTs and carbohydrate esterases (CEs. A detailed analysis of CAZy families, supported by growth data, demonstrates highly specialized plant and fungal cell wall degrading abilities distinct from ascomycetes and basidiomycetes. The specific genomic and growth features for degradation of easily digestible plant cell wall mono- and polysaccharides (starch, galactomannan, unbranched pectin, hexose sugars, chitin, chitosan, β-1,3-glucan and fungal cell wall fractions suggest specific adaptations of R. oryzae to its environment. Conclusions CAZy analyses of the genome of the zygomycete fungus R. oryzae and comparison to ascomycetes and basidiomycete species revealed how evolution has shaped its genetic content with respect to carbohydrate degradation, after divergence from the Ascomycota and Basidiomycota.

  2. Glycolytic Activities in the Larval Digestive Tract of Trypoxylus dichotomus (Coleoptera: Scarabaeidae

    Directory of Open Access Journals (Sweden)

    Noriko Wada

    2014-05-01

    Full Text Available The larvae of the Japanese horned beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae: Dynastinae, are an example of a saprophage insect. Generally, Scarabaeid larvae, such as T. dichotomus, eat dead plant matter that has been broken down by fungi, such as Basidiomycota. It is thought that β-1,3-glucan, a constituent polysaccharide in microbes, is abundant in decayed plant matter. Studies of the degradation mechanism of β-1,3-glucan under these circumstances are lacking. In the current study, we sought to clarify the relationship between the capacity to degrade polysaccharides and the food habits of the larvae. The total activities and optimum pH levels of several polysaccharide-degrading enzymes from the larvae were investigated. The foregut, midgut and hindgut of final instar larvae were used. Enzymatic activities were detected against five polysaccharides (soluble starch, β-1,4-xylan, β-1,3-glucan, pectin and carboxymethyl cellulose and four glycosides (p-nitrophenyl (PNP-β-N-acetylglucosaminide, PNP-β-mannoside, PNP-β-glucoside and PNP-β-xyloside. Our results indicate that the digestive tract of the larvae is equipped with a full enzymatic system for degrading β-1,3-glucan and β-1,4-xylan to monomers. This finding elucidates the role of the polysaccharide-digesting enzymes in the larvae, and it is suggested that the larvae use these enzymes to enact their decomposition ability in the forest environment.

  3. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Directory of Open Access Journals (Sweden)

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  4. Microbial hitchhikers on intercontinental dust: catching a lift in Chad

    Science.gov (United States)

    Favet, Jocelyne; Lapanje, Ales; Giongo, Adriana; Kennedy, Suzanne; Aung, Yin-Yin; Cattaneo, Arlette; Davis-Richardson, Austin G; Brown, Christopher T; Kort, Renate; Brumsack, Hans-Jürgen; Schnetger, Bernhard; Chappell, Adrian; Kroijenga, Jaap; Beck, Andreas; Schwibbert, Karin; Mohamed, Ahmed H; Kirchner, Timothy; de Quadros, Patricia Dorr; Triplett, Eric W; Broughton, William J; Gorbushina, Anna A

    2013-01-01

    Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. PMID:23254516

  5. Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas.

    Science.gov (United States)

    Luan, Chunguang; Xie, Lingling; Yang, Xi; Miao, Huifang; Lv, Na; Zhang, Ruifen; Xiao, Xue; Hu, Yongfei; Liu, Yulan; Wu, Na; Zhu, Yuanmin; Zhu, Baoli

    2015-01-23

    The fungal microbiota is an important component of the human gut microbiome and may be linked to gastrointestinal disease. In this study, the fungal microbiota of biopsy samples from adenomas and adjacent tissues was characterized by deep sequencing. Ascomycota, Glomeromycota and Basidiomycota were identified as the dominant phyla in both adenomas and adjacent tissues from all subjects. Among the 60 genera identified, the opportunist pathogens Phoma and Candida represented an average of 45% of the fungal microbiota. When analyzed at the operational taxonomic unit (OTU) level, however, a decreased diversity in adenomas was observed, and three OTUs differed significantly from the adjacent tissues. Principal Component Analysis (PCA) revealed that the core OTUs formed separate clusters for advanced and non-advanced adenomas for which the abundance of four OTUs differed significantly. Moreover, the size of adenomas and the disease stage were closely related to changes in the fungal microbiota in subjects with adenomas. This study characterized the fungal microbiota profile of subjects with adenomas and identified potential diagnostic biomarkers closely related to different stages of adenomas.

  6. Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family

    Science.gov (United States)

    Vasina, Daria V.; Moiseenko, Konstantin V.; Fedorova, Tatiana V.; Tyazhelova, Tatiana V.

    2017-01-01

    Ligninolytic heme peroxidases comprise an extensive family of enzymes, which production is characteristic for white-rot Basidiomycota. The majority of fungal heme peroxidases are encoded by multigene families that differentially express closely related proteins. Currently, there were very few attempts to characterize the complete multigene family of heme peroxidases in a single fungus. Here we are focusing on identification and characterization of peroxidase genes, which are transcribed and secreted by basidiomycete Trametes hirsuta 072, an efficient lignin degrader. The T. hirsuta genome contains 18 ligninolytic peroxidase genes encoding 9 putative lignin peroxidases (LiP), 7 putative short manganese peroxidases (MnP) and 2 putative versatile peroxidases (VP). Using ddPCR method we have quantified the absolute expression of the 18 peroxidase genes under different culture conditions and on different growth stages of basidiomycete. It was shown that only two genes (one MnP and one VP) were prevalently expressed as well as secreted into cultural broth under all conditions investigated. However their transcriptome and protein profiles differed in time depending on the effector used. The expression of other peroxidase genes revealed a significant variability, so one can propose the specific roles of these enzymes in fungal development and lifestyle. PMID:28301519

  7. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi.

    Science.gov (United States)

    Godoy, Patricia; Reina, Rocío; Calderón, Andrea; Wittich, Regina-Michaela; García-Romera, Inmaculada; Aranda, Elisabet

    2016-10-01

    The aim of this study was to find polycyclic aromatic hydrocarbon (PAH)-degrading fungi adapted to polluted environments for further application in bioremediation processes. In this study, a total of 23 fungal species were isolated from a historically pyrogenic PAH-polluted soil in Spain and taxonomically identified. The dominant groups in these samples were the ones associated with fungi belonging to the Ascomycota phylum and two isolates belonging to the Mucoromycotina subphylum and Basiodiomycota phylum. We tested their ability to convert the three-ring PAH anthracene in a 42-day time course and analysed their ability to secrete extracellular oxidoreductase enzymes. Among the 23 fungal species screened, 12 were able to oxidize anthracene, leading to the formation of 9,10-anthraquinone as the main metabolite, a less toxic one than the parent compound. The complete removal of anthracene was achieved by three fungal species. In the case of Scopulariopsis brevicaulis, extracellular enzyme independent degradation of the initial 100 μM anthracene occurred, whilst in the case of the ligninolytic fungus Fomes (Basidiomycota), the same result was obtained with extracellular enzyme-dependent transformation. The yield of accumulated 9,10-anthraquinone was 80 and 91 %, respectively, and Fomes sp. could slowly deplete it from the growth medium when offered alone. These results are indicative for the effectiveness of these fungi for pollutant removal. Graphical abstract ᅟ.

  8. Diversity and biotransformative potential of endophytic fungi associated with the medicinal plant Kadsura angustifolia.

    Science.gov (United States)

    Huang, Qian; An, Hongmei; Song, Hongchuan; Mao, Hongqiang; Shen, Weiyun; Dong, Jinyan

    2015-01-01

    This study investigated the diversity and host component-transforming activity of endophytic fungi in medicinal plant Kadsura angustifolia. A total of 426 isolates obtained were grouped into 42 taxa belonging to Fungi Imperfecti (65.96%), Ascomycota (27.00%), Zygomycota (1.64%), Basidiomycota (0.47%) and Mycelia Sterilia (4.93%). The abundance, richness, and species composition of endophytic assemblages were significantly dependent on the tissue and the sampling site. Many phytopathogenic species associated with healthy K. angustifolia were found prevalent. Among them, Verticillium dahliae was dominant with 16.43% abundance. From 134 morphospecies selected, 39 showed remarkable biocatalytic activity and were further identified as species belonging to the genera Colletotrichum, Eupenicillium, Fusarium, Hypoxylon, Penicillium, Phomopsis, Trametes, Trichoderma, Umbelopsis, Verticillium and Xylaria on the basis of the sequence analysis of the internal transcribed spacer (ITS1-5.8S-ITS2). The results obtained in this work show that K. angustifolia is an interesting reservoir of pathogenic fungal species, and could be a community model for further ecological and evolutionary studies. Additionally, the converting potency screening of some endophytic fungi from this specific medicinal plant may provide an interesting niche on the search for novel biocatalysts.

  9. The link between morphotype transition and virulence in Cryptococcus neoformans.

    Science.gov (United States)

    Wang, Linqi; Zhai, Bing; Lin, Xiaorong

    2012-01-01

    Cryptococcus neoformans is a ubiquitous human fungal pathogen. This pathogen can undergo morphotype transition between the yeast and the filamentous form and such morphological transition has been implicated in virulence for decades. Morphotype transition is typically observed during mating, which is governed by pheromone signaling. Paradoxically, components specific to the pheromone signaling pathways play no or minimal direct roles in virulence. Thus, the link between morphotype transition and virulence and the underlying molecular mechanism remain elusive. Here, we demonstrate that filamentation can occur independent of pheromone signaling and mating, and both mating-dependent and mating-independent morphotype transition require the transcription factor Znf2. High expression of Znf2 is necessary and sufficient to initiate and maintain sex-independent filamentous growth under host-relevant conditions in vitro and during infection. Importantly, ZNF2 overexpression abolishes fungal virulence in murine models of cryptococcosis. Thus, Znf2 bridges the sex-independent morphotype transition and fungal pathogenicity. The impacts of Znf2 on morphological switch and pathogenicity are at least partly mediated through its effects on cell adhesion property. Cfl1, a Znf2 downstream factor, regulates morphogenesis, cell adhesion, biofilm formation, and virulence. Cfl1 is the first adhesin discovered in the phylum Basidiomycota of the Kingdom Fungi. Together with previous findings in other eukaryotic pathogens, our findings support a convergent evolution of plasticity in morphology and its impact on cell adhesion as a critical adaptive trait for pathogenesis.

  10. Xerophilic fungal genus Wallemia: Bioactive inhabitants of marine solar salterns and salty food

    Directory of Open Access Journals (Sweden)

    Zajc Janja

    2011-01-01

    Full Text Available Wallemia is a genus of cosmopolitan xerophilic fungi, frequently involved in food spoilage of particularly sweet, salty, and dried food. Until recently, only a single species, Wallemia sebi, was recognized in the genus. When a large group of strains globally collected in salterns and other different ecological niches was analyzed on the level of physiological, morphological and molecular characteristics, a new basidiomycetous class, Wallemiomycetes, covering an order of Wallemiales was proposed and three Wallemia species were recognized: W. ichthyophaga, W. sebi and W. muriae. Wallemia ichthyophaga was recognized as the most halophilic eukaryote known, thus representing an appropriate eukaryotic model for in depth studies of adaptation to hypersaline conditions. Our preliminary studies indicated that all three Wallemia species synthesized a yet undescribed haemolytic compound under, surprisingly, low water activity conditions. Due to the taxonomic status w hich was unrevealed only recently, there were so far no reports on the production of any bioactive compounds by the three newly described species. The article aims to present the taxonomy, ecology, physiology and so far described molecular mechanisms of adaptations to life at low water activity, as well as bioactive potential of the genus Wallemia, a phylogenetically ancient taxon and a taxonomic maverick within Basidiomycota.

  11. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    Science.gov (United States)

    Halary, Sébastien; Daubois, Laurence; Terrat, Yves; Ellenberger, Sabrina; Wöstemeyer, Johannes; Hijri, Mohamed

    2013-01-01

    The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF) of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP) kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG) transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT) and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  12. Phylogeny of the Zygomycota based on nuclear ribosomal sequence data.

    Science.gov (United States)

    White, Merlin M; James, Timothy Y; O'Donnell, Kerry; Cafaro, Matías J; Tanabe, Yuuhiko; Sugiyama, Junta

    2006-01-01

    The Zygomycota is an ecologically heterogenous assemblage of nonzoosporic fungi comprising two classes, Zygomycetes and Trichomycetes. Phylogenetic analyses have suggested that the phylum is polyphyletic; two of four orders of Trichomycetes are related to the Mesomycetozoa (protists) that diverged near the fungal/animal split. Current circumscription of the Zygomycota includes only orders with representatives that produce zygospores. We present a molecular-based phylogeny including recognized representatives of the Zygomycetes and Trichomycetes with a combined dataset for nuclear rRNA 18S (SSU), 5.8S and 28S (LSU) genes. Tree reconstruction by Bayesian analyses suggests the Zygomycota is paraphyletic. Although 12 clades were identified only some of these correspond to the nine orders of Zygomycota currently recognized. A large superordinal clade, comprising the Dimargaritales, Harpellales, Kickxellales and Zoopagales, grouping together many symbiotic fungi, also is identified in part by a unique septal structure. Although Harpellales and Kickxellales are not monophyletic, these lineages are distinct from the Mucorales, Endogonales and Mortierellales, which appear more closely related to the Ascomycota + Basidiomycota + Glomeromycota. The final major group, the insect-associated Entomophthorales, appears to be polyphyletic. In the present analyses Basidiobolus and Neozygites group within Zygomycota but not with the Entomophthorales. Clades are discussed with special reference to traditional classifications, mapping morphological characters and ecology, where possible, as a snapshot of our current phylogenetic perspective of the Zygomycota.

  13. BasicS oli Physicochemical Properties and Soil Fungal Diversti y under Different Forest Ty pes of Urban Forest%城市森林不同林型下土壤基本理化特性及土壤真菌多样性1)

    Institute of Scientific and Technical Information of China (English)

    高微微; 康颖; 卢宏; 王秋玉

    2016-01-01

    .mongolica, Pinus tabulaeformis var.mukdensis, Picea koraiensis, and forest edge grassland as control to de-termine the main soil physicochemical properties including soil pH , relative water content and electrical conductivity , and detected the soil fungal metagenomics diversity .There were significant variation among different soil samples in three soil basic properties, such as 4.597-7.393 for pH value,4.11%-10.90%for relative water content, 953.000-3 443.333μs· cm-1 for soil electrical conductivity .The pH value and soil electrical conductivity were highest for soil of Juglans mandshu-rica plantation, and the lowest for Larix gmelinii plantation.There were great difference in soil fungal metagenomics among eight soil samples.Total of 362 species, 211 genera, 124 families, 63 orders and 24 classes, 8 eumycota were in all soil samples.There were clear changes in the level of Eumycophyta and Eumycetes , including Ascomycota , Basidiomycota, Chytridiomycota , Zygomycota , and Glomeromycota .An ancient mycorrhizal fungi of Ascomycota newly discovered in recent years was found in the forest soil of Pinus tabulaeformis var.Mukdensis, while Agaricostibomycete fungi of pucciniomycoti-na, Basidiomycota were detected in the control samples and Glomeromycota fungi in the forest soil of Juglans mandshurica and Fraxinus mandshurica, Exobasidiomycete fungi of Ustilaginomycotina Basidiomycota were only detected in the forest soil of Picea koraiensis and control. The dominant species were the fungi of Ascomycota phylum in the forest soil of Juglans mandshurica, Fraxinus mandshurica, Larix gmelinii, Pinus sylvestris var.mongolica, and Basidiomycota fungi in the forest soil of Betula platyphylla, Pinus tabulaeformis var.Mukdensis, Picea koraiensis in Eumycophyta level .The dominate spe-cies in Eumycetes level were mainly Agaricomycetes fungi , in which sordariomycetes fungi of Pezizomycotina , Ascomycota as the dominate species were only found in the soil sample of Fraxinus mandshurica.

  14. Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers.

    Science.gov (United States)

    Redecker, Dirk; Raab, Philipp

    2006-01-01

    The fungal symbionts of arbuscular mycorrhiza form a monophyletic group in the true Fungi, the phylum Glomeromycota. Fewer than 200 described species currently are included in this group. The only member of this clade known to form a different type of symbiosis is Geosiphon pyriformis, which associates with cyanobacteria. Because none of these fungi has been cultivated without their plant hosts or cyanobacterial partners, progress in obtaining multigene phylogenies has been slow and the nuclear-encoded ribosomal RNA genes have remained the only widely accessible molecular markers. rDNA phylogenies have revealed considerable polyphyly of some glomeromycotan genera that has been used to reassess taxonomic concepts. Environmental studies using phylogenetic methods for molecular identification have recovered an amazing diversity of unknown phylotypes, suggesting considerable cryptic species diversity. Protein gene sequences that have become available recently have challenged the rDNA-supported sister group relationship of the Glomeromycota with Asco/Basidiomycota. However the number of taxa analyzed with these new markers is still too small to provide a comprehensive picture of intraphylum relationships. We use nuclear-encoded rDNA and rpb1 protein gene sequences to reassess the phylogeny of the Glomeromycota and discuss possible implications.

  15. Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont.

    Directory of Open Access Journals (Sweden)

    Sébastien Halary

    Full Text Available The fungal kingdom displays a fascinating diversity of sex-determination systems. Recent advances in genomics provide insights into the molecular mechanisms of sex, mating type determination, and evolution of sexual reproduction in many fungal species in both ancient and modern phylogenetic lineages. All major fungal groups have evolved sexual differentiation and recombination pathways. However, sexuality is unknown in arbuscular mycorrhizal fungi (AMF of the phylum Glomeromycota, an ecologically vital group of obligate plant root symbionts. AMF are commonly considered an ancient asexual lineage dating back to the Ordovician, approximately 460 M years ago. In this study, we used genomic and transcriptomic surveys of several AMF species to demonstrate the presence of conserved putative sex pheromone-sensing mitogen-activated protein (MAP kinases, comparable to those described in Ascomycota and Basidiomycota. We also find genes for high mobility group (HMG transcription factors, homologous to SexM and SexP genes in the Mucorales. The SexM genes show a remarkable sequence diversity among multiple copies in the genome, while only a single SexP sequence was detected in some isolates of Rhizophagus irregularis. In the Mucorales and Microsporidia, the sexM gene is flanked by genes for a triosephosphate transporter (TPT and a RNA helicase, but we find no evidence for synteny in the vicinity of the Sex locus in AMF. Nonetheless, our results, together with previous observations on meiotic machinery, suggest that AMF could undergo a complete sexual reproduction cycle.

  16. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.

    Science.gov (United States)

    Handl, Stefanie; Dowd, Scot E; Garcia-Mazcorro, Jose F; Steiner, Jörg M; Suchodolski, Jan S

    2011-05-01

    This study evaluated the fecal microbiota of 12 healthy pet dogs and 12 pet cats using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing. A total of 120,406 pyrosequencing reads for bacteria (mean 5017) and 5359 sequences (one pool each for dogs and cats) for fungi were analyzed. Additionally, group-specific 16S rRNA gene clone libraries for Bifidobacterium spp. and lactic acid-producing bacteria (LAB) were constructed. The most abundant bacterial phylum was Firmicutes, followed by Bacteroidetes in dogs and Actinobacteria in cats. The most prevalent bacterial class in dogs and cats was Clostridia, dominated by the genera Clostridium (clusters XIVa and XI) and Ruminococcus. At the genus level, 85 operational taxonomic units (OTUs) were identified in dogs and 113 OTUs in cats. Seventeen LAB and eight Bifidobacterium spp. were detected in canine feces. Ascomycota was the only fungal phylum detected in cats, while Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota were identified in dogs. Nacaseomyces was the most abundant fungal genus in dogs; Saccharomyces and Aspergillus were predominant in cats. At the genus level, 33 different fungal OTUs were observed in dogs and 17 OTUs in cats. In conclusion, this study revealed a highly diverse bacterial and fungal microbiota in canine and feline feces.

  17. CULTURE DESCRIPTION OF SOME SPONTANEOUS LIGNICOLOUS MACROMYCETES SPECIES

    Directory of Open Access Journals (Sweden)

    BALAEŞ TIBERIUS

    2012-12-01

    Full Text Available 24 species of lignicolous macromycetes from 4 taxonomic families and 2 orders, Class Agaricomycetes, Phyllum Basidiomycota, have been analyzed. The cultural characters of these isolates had been observed, some of them being little studied till now. The dikaryotic mycelium from the trama of the sporoms was used for the isolation purpose. The fungal isolates were cultivated onto malt extract-agar media (malt extract 20g l-1 and incubated at 25 °C, in the dark, for 6 weeks. The cultures were observed directly and using a Nikon stereomicroscope in order to measure the growth rhythm and to observe the changes of the colonies: edge, surface, reverse, shape, colour, smell, presence or absence of the exudates. After 6 weeks from the inoculation, microscopic slides were made in order to investigate the types of hyphae, the colour and the structure of the mycelium and to note the presence of particular elements: cuticle, chlamydospors, arthrospores, conidia, and basidia. We noticed that the analyzed species present similar characters but also significant differences between them.

  18. Fungal life in the dead sea.

    Science.gov (United States)

    Oren, Aharon; Gunde-Cimerman, Nina

    2012-01-01

    The waters of the Dead Sea currently contain about 348 g/l salts (2 M Mg(2+), 0.5 M Ca(2+), 1.5 M Na(+), 0.2 M K(+), 6.5 M Cl(-), 0.1 M Br(-)). The pH is about 6.0. After rainy winters the surface waters become diluted, triggering development of microbial blooms. The 1980 and 1992 blooms were dominated by the unicellular green alga Dunaliella and red Archaea. At least 70 species (in 26 genera) of Oomycota (Chromista), Mucoromycotina, Ascomycota, and Basidiomycota (Fungi) were isolated from near-shore localities and offshore stations, including from deep waters. Aspergillus and Eurotium were most often recovered. Aspergillus terreus, A. sydowii, A. versicolor, Eurotium herbariorum, Penicillium westlingii, Cladosporium cladosporioides, C. sphaerospermum, C. ramnotellum, and C. halotolerans probably form the stable core of the community. The species Gymnascella marismortui may be endemic. Mycelia of Dead Sea isolates of A. versicolor and Chaetomium globosum remained viable for up to 8 weeks in Dead Sea water; mycelia of other species survived for many weeks in 50% Dead Sea water. Many isolates showed a very high tolerance to magnesium salts. There is no direct proof that fungi contribute to the heterotrophic activity in the Dead Sea, but fungi may be present at least locally and temporarily, and their enzymatic activities such as amylase, protease, and cellulase may play a role in the lake's ecosystem.

  19. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    Science.gov (United States)

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment.

  20. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  1. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys

    Directory of Open Access Journals (Sweden)

    Lisa L. Dreesens

    2014-07-01

    Full Text Available Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important heterotrophic component of the ecosystem.

  2. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    Science.gov (United States)

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys.

  3. Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil.

    Science.gov (United States)

    Landell, Melissa Fontes; Brandão, Luciana R; Barbosa, Anne C; Ramos, Jesus P; Safar, Silvana V B; Gomes, Fatima C O; Sousa, Francisca M P; Morais, Paula B; Broetto, Leonardo; Leoncini, Orílio; Ribeiro, José Roberto; Fungsin, Bundit; Takashima, Masako; Nakase, Takashi; Lee, Ching-Fu; Vainstein, Marilene H; Fell, Jack W; Scorzetti, Gloria; Vishniac, Helen S; Rosa, Carlos A; Valente, Patricia

    2014-06-01

    Several independent surveys of yeasts associated with different plant materials and soil led to the proposal of a novel yeast species belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences of the D1/D2 domains and internal transcribed spacer region of the large subunit of the rRNA gene suggested affinity to a phylogenetic lineage that includes Hannaella coprosmaensis, Hannaella oryzae and Hannaella sinensis. Thirty-two isolates were obtained from different sources, including bromeliads, nectar of Heliconia psittacorum (Heliconiaceae), flowers of Pimenta dioica (Myrtaceae), roots and leaves of sugar cane (Saccharum spp.) in Brazil, leaves of Cratoxylum maingayi, Arundinaria pusilla and Vitis vinifera in Thailand, soil samples in Taiwan, and prairie soil in the USA. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from Hannaella coprosmaensis and Hannaella oryzae by 36 and 46 nt substitutions, respectively. A novel species is suggested to accommodate these isolates, for which the name Hannaella pagnoccae sp. nov. is proposed. The type strain is BI118(T) ( = CBS 11142(T) = ATCC MYA-4530(T)).

  4. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    2016-02-01

    Full Text Available Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM, coarse particulate organic matter. Mechanical and biological processing converts this into fine particulate organic matter (FPOM. Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU, of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina, Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems.

  5. Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus.

    Science.gov (United States)

    Ntougias, Spyridon; Baldrian, Petr; Ehaliotis, Constantinos; Nerud, Frantisek; Antoniou, Theodoros; Merhautová, Věra; Zervakis, Georgios I

    2012-07-01

    Thirty-nine white-rot fungi belonging to nine species of Agaricomycotina (Basidiomycota) were initially screened for their ability to decrease olive-mill wastewater (OMW) phenolics. Four strains of Ganoderma australe, Ganoderma carnosum, Pleurotus eryngii and Pleurotus ostreatus, were selected and further examined for key-aspects of the OMW biodegradation process. Fungal growth in OMW-containing batch cultures resulted in significant decolorization (by 40-46% and 60-65% for Ganoderma and Pleurotus spp. respectively) and reduction of phenolics (by 64-67% and 74-81% for Ganoderma and Pleurotus spp. respectively). COD decrease was less pronounced (12-29%). Cress-seeds germination increased by 30-40% when OMW was treated by Pleurotus strains. Toxicity expressed as inhibition of Aliivibrio fischeri luminescence was reduced in fungal-treated OMW samples by approximately 5-15 times compared to the control. As regards the pertinent enzyme activities, laccase and Mn-independent peroxidase were detected for Ganoderma spp. during the entire incubation period. In contrast, Pleurotus spp. did not exhibit any enzyme activities at early growth stages; instead, high laccase (five times greater than those of Ganoderma spp.) and Mn peroxidases activities were determined at the end of treatment. OMW decolorization by Ganoderma strains was strongly correlated to the reduction of phenolics, whereas P. eryngii laccase activity was correlated with the effluent's decolorization.

  6. Molecular diversity of fungal phylotypes co-amplified alongside nematodes from coastal and deep-sea marine environments.

    Directory of Open Access Journals (Sweden)

    Punyasloke Bhadury

    Full Text Available Nematodes and fungi are both ubiquitous in marine environments, yet few studies have investigated relationships between these two groups. Microbial species share many well-documented interactions with both free-living and parasitic nematode species, and limited data from previous studies have suggested ecological associations between fungi and nematodes in benthic marine habitats. This study aimed to further document the taxonomy and distribution of fungal taxa often co-amplified from nematode specimens. A total of 15 fungal 18S rRNA phylotypes were isolated from nematode specimens representing both deep-sea and shallow water habitats; all fungal isolates displayed high pairwise sequence identities with published data in Genbank (99-100% and unpublished high-throughput 454 environmental datasets (>95%. BLAST matches indicate marine fungal sequences amplified in this study broadly represent taxa within the phyla Ascomycota and Basidiomycota, and several phylotypes showed robust groupings with known taxa in phylogenetic topologies. In addition, some fungal phylotypes appeared to be present in disparate geographic habitats, suggesting cosmopolitan distributions or closely related species complexes in at least some marine fungi. The present study was only able to isolate fungal DNA from a restricted set of nematode taxa; further work is needed to fully investigate the taxonomic scope and function of nematode-fungal interactions.

  7. Molecular Detection of Verticillium albo-atrum by PCR Based on Its Sequences

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We developed one species-specific PCR assays for rapid and accurate detection of the pathogenic fungi Verticilliumalbo-atrum in diseased plant tissues and soil. Based on differences in internal transcribed spacer (ITS) sequences ofVerticilliun spp., a pair of species-specific primers, Vaa1/Vaa2, was synthesized. After screening 17 isolates of V. albo-atrum, 121 isolates from the Ascomycota, Basidiomycota, Deuteromycota, and Oomycota, the Vaa1/Vaa2 primers amplifiedonly a single PCR band of approximately 330 bp from V. albo-atrum. The detection sensitivity with primers Vaa1/Vaa2 was10 fg of genomic DNA. Using ITS1/ITS4 as the first-round primers, combined with Vaa1/Vaa2, the nested PCR procedureswere developed, and the detection sensitivity increased 1 000-fold to 10 ag. The detection sensitivity for the soil pathogenswas 100-conidiag-1 soil. The PCR-based methods developed here could simplify both plant disease diagnosis and pathogen monitoring as well as guide plant disease management.

  8. U12 type introns were lost at multiple occasions during evolution

    Directory of Open Access Journals (Sweden)

    Bartschat Sebastian

    2010-02-01

    Full Text Available Abstract Background Two categories of introns are known, a common U2 type and a rare U12 type. These two types of introns are removed by distinct spliceosomes. The phylogenetic distribution of spliceosomal RNAs that are characteristic of the U12 spliceosome, i.e. the U11, U12, U4atac and U6atac RNAs, suggest that U12 spliceosomes were lost in many phylogenetic groups. We have now examined the distribution of U2 and U12 introns in many of these groups. Results U2 and U12 introns were predicted by making use of available EST and genomic sequences. The results show that in species or branches where U12 spliceosomal components are missing, also U12 type of introns are lacking. Examples are the choanoflagellate Monosiga brevicollis, Entamoeba histolytica, green algae, diatoms, and the fungal lineage Basidiomycota. Furthermore, whereas U12 splicing does not occur in Caenorhabditis elegans, U12 introns as well as U12 snRNAs are present in Trichinella spiralis, which is deeply branching in the nematode tree. A comparison of homologous genes in T. spiralis and C. elegans revealed different mechanisms whereby U12 introns were lost. Conclusions The phylogenetic distribution of U12 introns and spliceosomal RNAs give further support to an early origin of U12 dependent splicing. In addition, this distribution identifies a large number of instances during eukaryotic evolution where such splicing was lost.

  9. On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes.

    Directory of Open Access Journals (Sweden)

    Kai Riess

    Full Text Available The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilensis (Ustilaginomycotina, smut fungi associated with Araucaria araucana were analysed. DNA sequences from multiple gene regions and morphology were analysed and compared to other members of the Basidiomycota to determine the phylogenetic placement of smut fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal orders diversified during the Triassic-Jurassic period. However, the origin and relationships of several orders remain uncertain. The most recent common ancestor between Uleiella chilensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons of divergence time estimates between smut fungi and host plants lead to the hypothesis that the early Ustilaginomycotina had a saprobic lifestyle. As there are only two extant species of Araucaria in South America, each hosting a unique Uleiella species, we suggest that either coevolution or a host shift followed by allopatric speciation are the most likely explanations for the current geographic restriction of Uleiella and its low diversity. Phylogenetic and age estimation analyses, ecology, the unusual life-cycle and the peculiar combination of septal and haustorial characteristics support Uleiella chilensis as a distinct lineage among the Ustilaginomycotina. Here, we describe a new ustilaginomycetous order, the Uleiellales to accommodate Uleiella. Within the Ustilaginomycetes, Uleiellales are sister taxon to the Violaceomycetales.

  10. Impact of Amazon land use on the community of soil fungi

    Directory of Open Access Journals (Sweden)

    Giselle G. M. Fracetto

    2013-04-01

    Full Text Available Considered as one of the most biodiverse biomes, the Amazon has a featured role in the discovery of new species of plants, animals and microorganisms, which may be important for the functionality of different ecosystems. However, studies on the impacts resulted from changes in the Amazon land use on microbial communities and their functions are still limited. In this context, the soil fungal diversity can act as an important indicator of environmental stress caused by land use of the Amazon. This study describes changes in soil fungal communities caused by different systems of land use (primary forest, secondary forest, agroforestry, agriculture and pasture. Communities were observed in each of the areas using denaturing gradient gel electrophoresis (DGGE of 18S rRNA gene combined with the non-metric multidimensional scaling (NMDS. Unique bands indicated the dominance of particular fungal groups in each of the specific treatments, mainly in areas converted to pasture, which differed greatly from samples of other systems of land use (SLU. The analysis of partial sequence of the 18S rRNA gene of fungi in soils under primary forest, agriculture and pasture showed differences (p = 0.001, evidencing the fungal community response to such changes. Most abundant phyla were the Zygomycota in the soil under primary forest and agricultural land, and Basidiomycota in the soil under pasture. The results show that the Amazon soil is an ecosystem susceptible to environmental changes in regarding the fungi community inhabiting this niche.

  11. Metagenomic Analysis of Fungal Diversity on Strawberry Plants and the Effect of Management Practices on the Fungal Community Structure of Aerial Organs

    Science.gov (United States)

    Abdelfattah, Ahmed; Wisniewski, Michael; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga

    2016-01-01

    An amplicon metagenomic approach based on the ITS2 region of fungal rDNA was used to identify the composition of fungal communities associated with different strawberry organs (leaves, flowers, immature and mature fruits), grown on a farm using management practices that entailed the routine use of various chemical pesticides. ITS2 sequences clustered into 316 OTUs and Ascomycota was the dominant phyla (95.6%) followed by Basidiomycota (3.9%). Strawberry plants supported a high diversity of microbial organisms, but two genera, Botrytis and Cladosporium, were the most abundant, representing 70–99% of the relative abundance (RA) of all detected sequences. According to alpha and beta diversity analyses, strawberry organs displayed significantly different fungal communities with leaves having the most diverse fungal community, followed by flowers, and fruit. The interruption of chemical treatments for one month resulted in a significant modification in the structure of the fungal community of leaves and flowers while immature and mature fruit were not significantly affected. Several plant pathogens of other plant species, that would not be intuitively expected to be present on strawberry plants such as Erysiphe, were detected, while some common strawberry pathogens, such as Rhizoctonia, were less evident or absent. PMID:27490110

  12. Heterologous production of the stain solving peptidase PPP1 from Pleurotus pulmonarius.

    Science.gov (United States)

    Leonhardt, Robin-Hagen; Krings, Ulrich; Berger, Ralf G; Linke, Diana

    2016-05-01

    A novel stain solving subtilisin-like peptidase (PPP1) was identified from the culture supernatant of the agaricomycete Pleurotus pulmonarius. It was purified to homogeneity using a sequence of preparative isoelectric focusing, anion exchange and size exclusion chromatography. Peptides were identified by ab initio sequencing (nLC-ESI-QTOF-MS/MS), characterizing the enzyme as a member of the subtilase family (EC 3.4.21.X). An expression system was established featuring the pPIC9K vector, an alternative Kozak sequence, the codon optimized gene ppp1 gene without the native signal sequence with C-terminal hexa-histidine tag, and Pichia pastoris GS115 as expression host. Intracellular active enzyme was obtained from cultivations in shake flasks and in a five liter bioreactor. With reaction optima of 40 °C and a pH > 8.5, considerable bleaching of pre-stained fabrics (blood, milk and India ink), and the possibility of larger-scale production, the heterologous enzyme is well suitable for detergent applications, especially at lower temperatures as part of a more energy- and cost-efficient washing process. Showing little sequence similarity to other subtilases, this unique peptidase is the first subtilisin-like peptidase from Basidiomycota, which has been functionally produced in Pichia pastoris.

  13. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China.

    Science.gov (United States)

    Tang, Yuan; Lian, Bin

    2012-06-01

    The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis.

  14. Analysis of the community compositions of rhizosphere fungi in soybeans continuous cropping fields.

    Science.gov (United States)

    Bai, Li; Cui, Jiaqi; Jie, Weiguang; Cai, Baiyan

    2015-11-01

    We used rhizosphere soil sampled from one field during zero year and two years of continuous cropping of high-protein soybean to analyze the taxonomic community compositions of fungi during periods of high-incidence of root rot. Our objectives were to identify the dominant pathogens in order to provide a theoretical basis for the study of pathogenesis as well as control tactics for soybean root rot induced by continuous cropping. A total of 17,801 modified internal transcribed spacer (ITS) sequences were obtained from three different soybean rhizosphere soil samples after zero year and 1 or 2 years of continuous cropping using 454 high-throughput sequencing. The dominant eumycote fungal were identified to be Ascomycota and Basidiomycota in the three soil samples. Continuous cropping of soybean affected the diversity of fungi in rhizosphere soils and increased the abundance of Thelebolus and Mortierellales significantly. Thanatephorus, Fusarium, and Alternaria were identified to be the dominant pathogenic fungal genera in rhizosphere soil from continuously cropped soybean fields.

  15. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils.

    Science.gov (United States)

    Bastida, Felipe; Torres, Irene F; Moreno, José L; Baldrian, Petr; Ondoño, Sara; Ruiz-Navarro, Antonio; Hernández, Teresa; Richnow, Hans H; Starke, Robert; García, Carlos; Jehmlich, Nico

    2016-09-01

    Biogeochemical processes and ecosystemic functions are mostly driven by soil microbial communities. However, most methods focus on evaluating the total microbial community and fail to discriminate its active fraction which is linked to soil functionality. Precisely, the activity of the microbial community is strongly limited by the availability of organic carbon (C) in soils under arid and semi-arid climate. Here, we provide a complementary genomic and metaproteomic approach to investigate the relationships between the diversity of the total community, the active diversity and ecosystem functionality across a dissolved organic carbon (DOC) gradient in southeast Spain. DOC correlated with the ecosystem multifunctionality index composed by soil respiration, enzyme activities (urease, alkaline phosphatase and β-glucosidase) and microbial biomass (phospholipid fatty acids, PLFA). This study highlights that the active diversity (determined by metaprotoemics) but not the diversity of the whole microbial community (evaluated by amplicon gene sequencing) is related to the availability of organic C and it is also connected to the ecosystem multifunctionality index. We reveal that DOC shapes the activities of bacterial and fungal populations in Mediterranean semi-arid soils and determines the compartmentalization of functional niches. For instance, Rhizobales thrived at high-DOC sites probably fuelled by metabolism of one-C compounds. Moreover, the analysis of proteins involved in the transport and metabolism of carbohydrates revealed that Ascomycota and Basidiomycota occupied different nutritional niches. The functional mechanisms for niche specialization were not constant across the DOC gradient.

  16. On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes.

    Science.gov (United States)

    Riess, Kai; Schön, Max E; Lutz, Matthias; Butin, Heinz; Oberwinkler, Franz; Garnica, Sigisfredo

    2016-01-01

    The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilensis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. DNA sequences from multiple gene regions and morphology were analysed and compared to other members of the Basidiomycota to determine the phylogenetic placement of smut fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal orders diversified during the Triassic-Jurassic period. However, the origin and relationships of several orders remain uncertain. The most recent common ancestor between Uleiella chilensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons of divergence time estimates between smut fungi and host plants lead to the hypothesis that the early Ustilaginomycotina had a saprobic lifestyle. As there are only two extant species of Araucaria in South America, each hosting a unique Uleiella species, we suggest that either coevolution or a host shift followed by allopatric speciation are the most likely explanations for the current geographic restriction of Uleiella and its low diversity. Phylogenetic and age estimation analyses, ecology, the unusual life-cycle and the peculiar combination of septal and haustorial characteristics support Uleiella chilensis as a distinct lineage among the Ustilaginomycotina. Here, we describe a new ustilaginomycetous order, the Uleiellales to accommodate Uleiella. Within the Ustilaginomycetes, Uleiellales are sister taxon to the Violaceomycetales.

  17. Isolation of a natural solopathogenic strain of Sporisorium reilianum f.sp. zeae (Ustilaginaceae, Basidiomycetes).

    Science.gov (United States)

    Sabbagh, S K; Naudan, M; Roux, C

    2008-01-01

    Sporisorium reilianum f.sp. zeae (Kühn) Langdon and Fullerton (Basidiomycota, Ustilaginaceae) is the causal agent of head smut of maize and sorghum. The parasitism is initiated by the fusion of two compatible sporidia which give rise to the formation of dikaryotic pathogen hyphae. However, in Ustilaginaceae, some fuzzy diploid strains could also be formed. These strains are solopathogen as they can infect a host in absence of crossing with a compatible haploid sporidia. A solopathogenic strain of S. refilianum was obtained using an original protocol. Sporidia were isolated from germinated teliospores and spread on solid medium to identify stable fuzzy solopathogenic strain. Confocal observations of the solopathogenic strain (SRZS1) after nucleus staining with propidium iodide indicates that they are formed by rounded shape cells which are monokaryotic. A CAPS approach was used to analysis the matb gene of S. reilianum. The presence of two matb loci in SRZS1 showed that this monocaryotic strain is diploid. The pathogenicity of SRZS1 was investigated by maize infection. Our results confirmed that SRZS1 is infectious, induces some typical symptoms in maize but could not sporulate and form sori.

  18. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    Directory of Open Access Journals (Sweden)

    Caio T C C Rachid

    Full Text Available Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  19. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Jasrotia, Puja [Florida State University, Tallahassee; Green, Stefan [University of Illinois, Chicago; Canion, Andy [Florida State University, Tallahassee; Overholt, Will [Florida State University, Tallahassee; Prakash, Om [Florida State University, Tallahassee; Wafula, Dennis [Georgia Institute of Technology, Atlanta; Hubbard, Daniela [Florida State University, Tallahassee; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, [Georgia Institute of Technology, Atlanta

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  20. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica.

    Science.gov (United States)

    Zhang, Tao; Zhang, Yu-Qin; Liu, Hong-Yu; Wei, Yu-Zhen; Li, Hai-Long; Su, Jing; Zhao, Li-Xun; Yu, Li-Yan

    2013-04-01

    Endophytic fungi associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica, that is, the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata, were studied by culture-dependent method. A total of 128 endophytic fungi were isolated from 1329 tissue segments of 14 samples. The colonization rate of endophytic fungi in three bryophytes species were 12.3%, 12.1%, and 8.7%, respectively. These isolates were identified to 21 taxa, with 15 Ascomycota, 5 Basidiomycota, and 1 unidentified fungus, based on morphological characteristics and sequence analyses of ITS region and D1/D2 domain. The dominant fungal endophyte was Hyaloscyphaceae sp. in B. hatcheri, Rhizoscyphus sp. in C. aciphyllum, and one unidentified fungus in S. uncinata; and their relative frequencies were 33.3%, 32.1%, and 80.0%, respectively. Furthermore, different Shannon-Weiner diversity indices (0.91-1.99) for endophytic fungi and low endophytic fungal composition similarities (0.19-0.40) were found in three bryophyte species. Growth temperature tests indicated that 21 taxa belong to psychrophiles (9), psychrotrophs (11), and mesophile (1). The results herein demonstrate that the Antarctic bryophytes are an interesting source of fungal endophytes and the endophytic fungal composition is different among the bryophyte species, and suggest that these fungal endophytes are adapted to cold stress in Antarctica.

  1. Tracking fungal community responses to maize plants by DNA- and RNA-based pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Eiko E Kuramae

    Full Text Available We assessed soil fungal diversity and community structure at two sampling times (t1 = 47 days and t2 = 104 days of plant age in pots associated with four maize cultivars, including two genetically modified (GM cultivars by high-throughput pyrosequencing of the 18S rRNA gene using DNA and RNA templates. We detected no significant differences in soil fungal diversity and community structure associated with different plant cultivars. However, DNA-based analyses yielded lower fungal OTU richness as compared to RNA-based analyses. Clear differences in fungal community structure were also observed in relation to sampling time and the nucleic acid pool targeted (DNA versus RNA. The most abundant soil fungi, as recovered by DNA-based methods, did not necessary represent the most "active" fungi (as recovered via RNA. Interestingly, RNA-derived community compositions at t1 were highly similar to DNA-derived communities at t2, based on presence/absence measures of OTUs. We recovered large proportions of fungal sequences belonging to arbuscular mycorrhizal fungi and Basidiomycota, especially at the RNA level, suggesting that these important and potentially beneficial fungi are not affected by the plant cultivars nor by GM traits (Bt toxin production. Our results suggest that even though DNA- and RNA-derived soil fungal communities can be very different at a given time, RNA composition may have a predictive power of fungal community development through time.

  2. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Science.gov (United States)

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  3. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Directory of Open Access Journals (Sweden)

    Pei-Feng Sun

    Full Text Available Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  4. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  5. Comparative genome analysis of Basidiomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Henrissat, Bernard; Nagy, Laszlo; Brown, Daren; Held, Benjamin; Baker, Scott; Blanchette, Robert; Boussau, Bastien; Doty, Sharon L.; Fagnan, Kirsten; Floudas, Dimitris; Levasseur, Anthony; Manning, Gerard; Martin, Francis; Morin, Emmanuelle; Otillar, Robert; Pisabarro, Antonio; Walton, Jonathan; Wolfe, Ken; Hibbett, David; Grigoriev, Igor

    2013-08-07

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprotrophs including the majority of wood decaying and ectomycorrhizal species. To better understand the genetic diversity of this phylum we compared the genomes of 35 basidiomycetes including 6 newly sequenced genomes. These genomes span extremes of genome size, gene number, and repeat content. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) found in only one organism. Correlations between lifestyle and certain gene families are evident. Phylogenetic patterns of plant biomass-degrading genes in Agaricomycotina suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. Based on phylogenetically-informed PCA analysis of wood decay genes, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has typical ligninolytic class II fungal peroxidases (PODs). This prediction is supported by growth assays in which both fungi exhibit wood decay with white rot-like characteristics. Based on this, we suggest that the white/brown rot dichotomy may be inadequate to describe the full range of wood decaying fungi. Analysis of the rate of discovery of proteins with no or few homologs suggests the value of continued sequencing of basidiomycete fungi.

  6. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans

    KAUST Repository

    Pernice, Massimo C.

    2015-10-09

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8–20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

    The ISME Journal advance online publication, 9 October 2015; doi:10.1038/ismej.2015.170

  7. Dynein Heavy Chain, Encoded by Two Genes in Agaricomycetes, Is Required for Nuclear Migration in Schizophyllum commune.

    Directory of Open Access Journals (Sweden)

    Melanie Brunsch

    Full Text Available The white-rot fungus Schizophyllum commune (Agaricomycetes was used to study the cell biology of microtubular trafficking during mating interactions, when the two partners exchange nuclei, which are transported along microtubule tracks. For this transport activity, the motor protein dynein is required. In S. commune, the dynein heavy chain is encoded in two parts by two separate genes, dhc1 and dhc2. The N-terminal protein Dhc1 supplies the dimerization domain, while Dhc2 encodes the motor machinery and the microtubule binding domain. This split motor protein is unique to Basidiomycota, where three different sequence patterns suggest independent split events during evolution. To investigate the function of the dynein heavy chain, the gene dhc1 and the motor domain in dhc2 were deleted. Both resulting mutants were viable, but revealed phenotypes in hyphal growth morphology and mating behavior as well as in sexual development. Viability of strain Δdhc2 is due to the higher expression of kinesin-2 and kinesin-14, which was proven via RNA sequencing.

  8. Bacterial, archaeal and fungal succession in the forefield of a receding glacier.

    Science.gov (United States)

    Zumsteg, Anita; Luster, Jörg; Göransson, Hans; Smittenberg, Rienk H; Brunner, Ivano; Bernasconi, Stefano M; Zeyer, Josef; Frey, Beat

    2012-04-01

    Glacier forefield chronosequences, initially composed of barren substrate after glacier retreat, are ideal locations to study primary microbial colonization and succession in a natural environment. We characterized the structure and composition of bacterial, archaeal and fungal communities in exposed rock substrates along the Damma glacier forefield in central Switzerland. Soil samples were taken along the forefield from sites ranging from fine granite sand devoid of vegetation near the glacier terminus to well-developed soils covered with vegetation. The microbial communities were studied with genetic profiling (T-RFLP) and sequencing of clone libraries. According to the T-RFLP profiles, bacteria showed a high Shannon diversity index (H) (ranging from 2.3 to 3.4) with no trend along the forefield. The major bacterial lineages were Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Cyanobacteria. An interesting finding was that Euryarchaeota were predominantly colonizing young soils and Crenarchaeota mainly mature soils. Fungi shifted from an Ascomycota-dominated community in young soils to a more Basidiomycota-dominated community in old soils. Redundancy analysis indicated that base saturation, pH, soil C and N contents and plant coverage, all related to soil age, correlated with the microbial succession along the forefield.

  9. Proteomics Shows New Faces for the Old Penicillin Producer Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Carlos Barreiro

    2012-01-01

    Full Text Available Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi, the Basidiomycota (mushrooms or higher fungi, and the Zygomycota and Chytridiomycota (basal or lower fungi that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude. The new “omics” era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.

  10. Proteomics shows new faces for the old penicillin producer Penicillium chrysogenum.

    Science.gov (United States)

    Barreiro, Carlos; Martín, Juan F; García-Estrada, Carlos

    2012-01-01

    Fungi comprise a vast group of microorganisms including the Ascomycota (majority of all described fungi), the Basidiomycota (mushrooms or higher fungi), and the Zygomycota and Chytridiomycota (basal or lower fungi) that produce industrially interesting secondary metabolites, such as β-lactam antibiotics. These compounds are one of the most commonly prescribed drugs world-wide. Since Fleming's initial discovery of Penicillium notatum 80 years ago, the role of Penicillium as an antimicrobial source became patent. After the isolation of Penicillium chrysogenum NRRL 1951 six decades ago, classical mutagenesis and screening programs led to the development of industrial strains with increased productivity (at least three orders of magnitude). The new "omics" era has provided the key to understand the underlying mechanisms of the industrial strain improvement process. The review of different proteomics methods applied to P. chrysogenum has revealed that industrial modification of this microorganism was a consequence of a careful rebalancing of several metabolic pathways. In addition, the secretome analysis of P. chrysogenum has opened the door to new industrial applications for this versatile filamentous fungus.

  11. Identification of two fungal endophytes associated with the endangered orchid Orchis militaris L.

    Science.gov (United States)

    Vendramin, Elena; Gastaldo, Andrea; Tondello, Alessandra; Baldan, Barbara; Villani, Mariacristina; Squartini, Andrea

    2010-03-01

    A survey of the endangered orchid Orchis militaris populations was carried out in north-eastern Italy. The occurrence of fungal root endophytes was investigated by light and electron microscopies and molecular techniques. Two main sites of presence were individuated in the Euganean Hills, differing as to the percentage of flowering individuals and of capsules completing maturity. Fluorescence microscopy revealed an intracellular cortical colonization by hyphal pelotons. Two ITS PCR products co-amplified. Sequencing revealed for the former an identity and a high similarity (99%) with a Tulasnellaceae (Basidiomycota) fungus found within tissues of the same host in independent studies in Hungary and Estonia, suggesting an interesting case of tight specificity throughout the Eurosiberian home range. The second amplicon had 99% similarity with Tetracladium species (Ascomycota) recently demonstrated as potential endophytes. TEM revealed two different hyphal structures. Double fungal colonization appears to occur in Orchis militaris and the possible requirement of a specific fungal partner throws light on the causes of this plant's rarity and threatened status.

  12. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil

    Science.gov (United States)

    Kramer, Susanne; Dibbern, Dörte; Moll, Julia; Huenninghaus, Maike; Koller, Robert; Krueger, Dirk; Marhan, Sven; Urich, Tim; Wubet, Tesfaye; Bonkowski, Michael; Buscot, François; Lueders, Tillmann; Kandeler, Ellen

    2016-01-01

    The flow of plant-derived carbon in soil is a key component of global carbon cycling. Conceptual models of trophic carbon fluxes in soil have assumed separate bacterial and fungal energy channels in the detritusphere, controlled by both substrate complexity and recalcitrance. However, detailed understanding of the key populations involved and niche-partitioning between them is limited. Here, a microcosm experiment was performed to trace the flow of detritusphere C from substrate analogs (glucose, cellulose) and plant biomass amendments (maize leaves, roots) in an agricultural soil. Carbon flow was traced by rRNA stable isotope probing and amplicon sequencing across three microbial kingdoms. Distinct lineages within the Actinobacteria, Bacteroidetes, Gammaproteobacteria, Basidiomycota, Ascomycota as well as Peronosporomycetes were identified as important primary substrate consumers. A dynamic succession of primary consumers was observed especially in the cellulose treatments, but also in plant amendments over time. While intra-kingdom niche partitioning was clearly observed, distinct bacterial and fungal energy channels were not apparent. Furthermore, while the diversity of primary substrate consumers did not notably increase with substrate complexity, consumer succession and secondary trophic links to bacterivorous and fungivorous microbes resulted in increased food web complexity in the more recalcitrant substrates. This suggests that rather than substrate-defined energy channels, consumer succession as well as intra- and inter-kingdom cross-feeding should be considered as mechanisms supporting food web complexity in the detritusphere. PMID:27725815

  13. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing.

    Science.gov (United States)

    Xiong, Wu; Zhao, Qingyun; Zhao, Jun; Xun, Weibing; Li, Rong; Zhang, Ruifu; Wu, Huasong; Shen, Qirong

    2015-07-01

    In the present study, soil bacterial and fungal communities across vanilla continuous cropping time-series fields were assessed through deep pyrosequencing of 16S ribosomal RNA (rRNA) genes and internal transcribed spacer (ITS) regions. The results demonstrated that the long-term monoculture of vanilla significantly altered soil microbial communities. Soil fungal diversity index increased with consecutive cropping years, whereas soil bacterial diversity was relatively stable. Bray-Curtis dissimilarity cluster and UniFrac-weighted principal coordinate analysis (PCoA) revealed that monoculture time was the major determinant for fungal community structure, but not for bacterial community structure. The relative abundances (RAs) of the Firmicutes, Actinobacteria, Bacteroidetes, and Basidiomycota phyla were depleted along the years of vanilla monoculture. Pearson correlations at the phyla level demonstrated that Actinobacteria, Armatimonadetes, Bacteroidetes, Verrucomicrobia, and Firmicutes had significant negative correlations with vanilla disease index (DI), while no significant correlation for fungal phyla was observed. In addition, the amount of the pathogen Fusarium oxysporum accumulated with increasing years and was significantly positively correlated with vanilla DI. By contrast, the abundance of beneficial bacteria, including Bradyrhizobium and Bacillus, significantly decreased over time. In sum, soil weakness and vanilla stem wilt disease after long-term continuous cropping can be attributed to the alteration of the soil microbial community membership and structure, i.e., the reduction of the beneficial microbes and the accumulation of the fungal pathogen.

  14. Characteristics of the eukaryotic community structure in acid mine drainage lake in Anhui Province, China%安徽某铁矿酸性矿山废水中真核生物的群落结构特征

    Institute of Scientific and Technical Information of China (English)

    张丽娜; 郝春博; 王丽华; 李思远; 冯传平

    2012-01-01

    [目的]研究酸性矿山废水中真核生物的群落结构特征以及群落结构与环境因子之间的关系.[方法]利用分子生物学方法,通过构建18S rRNA基因克隆文库进行系统发育分析;利用典范对应分析(CCA)方法解析环境因子对真核生物群落结构的影响.[结果]系统发育分析表明:子囊菌门(Ascomycota)普遍存在于4个样品中,并在样品1和样品3中占统治地位,而绿藻门(Chlorophyta)和担子菌门(Basidiomycota)分别为样品2和样品4的优势类群.该酸性矿山废水中的克隆与许多已知的耐酸耐重金属真核生物亲缘关系较近,如Sarcinomyces petricola、Penicillium janthinellum、Coniochaeta velutina、Trichoderma viride、Chlorella protothecoides var.acidicola、Ochromonas sp.等.此外,样品中还存在大量的已知人类病原菌,如Lecythophora hoffmannii、Cryptococcus neoformans.CCA分析表明:TN、SO24-、Fe2+、Eh是影响真核生物群落空间分布的主要因素.[结论]所研究的酸性矿山废水中真核生物的群落结构在时间和空间上均有较大差异,这可能与水体的理化性质有关;高含量人类致病菌的存在是之前研究所未发现的;酸性环境中真核生物的生态学研究有助于开发高效处理酸性矿山废水的方法.%[Objective] We characterized eukaryotic community structure and the relationship between the community structure and environmental factors in acidic mine drainage (AMD) lake of a sulfide mine in Anhui Province, China. [Methods] The 18S rRNA gene clone libraries were constructed by using molecular biology techniques to analyze the eukaryotic phylogenetic relationships, and the canonical correspondence analysis (CCA) was used to analyze the relationship between the community structure and environmental factors. [Results] The phylogenetic analysis shows that Ascomycota is widespread in the four samples and dominated in the AMD-1 and AMD-3 clone libraries, whereas Chlorophyta and

  15. Macromicetos del Parque Educativo Laguna Bélgica, municipio de Ocozocoautla de Espinosa, Chiapas, México Macrofungi from Parque Educativo Laguna Bélgica, Municipality of Ocozocoautla de Espinosa, Chiapas, Mexico

    Directory of Open Access Journals (Sweden)

    Freddy Chanona-Gómez

    2007-12-01

    Full Text Available El presente estudio tuvo como objetivos contribuir al conocimiento de los macromicetos que crecen en el Parque Educativo Laguna Bélgica (PELB, en Ocozocoautla de Espinosa, Chiapas y determinar el índice de diversidad de Simpson y similitud de Sorensen de la micobiota existente en los diferentes tipos de vegetación. Se realizaron 24 exploraciones micológicas durante un año, encontrándose 144 especies (24 Ascomycota y 120 Basidiomycota. El índice de diversidad, mostró que la vegetación con la micobiota más diversa fue la del bosque de Quercus elliptica (D= 0.9678 la cual presentó mayor similitud con el bosque de Liquidambar stracyflua (Is= 83 %. El sustrato más frecuente fue la madera en descomposición (57.63 %. Se determinaron las especies de macromicetos potencialmente utilizables para el consumo humano (22 especies, lo que determinó el valor micológico del área de estudio en 15.27 %. Del total de especies determinadas 22 son nuevos registros para el estado de Chiapas; 4 Ascomicetos Scutellinia scutellata, Xylaria amphitele, X. persicaria, Chlorociboria aeruginosa, y 18 Basidiomicetos Amanita pantherina, Geastrum striatum, Hydnum repandum, Hygrocybe miniata, Scleroderma verrucosum, Cotylidia diaphana, Lactarius indigo, Phlogiotis helvelloides, Hydnochaete olivaceae, Phellinus ferruginosus, P. contiguus, P.rufitinctus, Thelephora terrestris, T. cervicornis, Perenniporia ohiensis, Diplomitoporus lenis, Schizopora paradoxa y Tremella fuciformis.The objectives of this study were to contribute to the knowledge of macro fungi growing in the "Parque Educativo Laguna Belgica" (PELB, in Chiapas, Mexico and to determine the diversity and similarity indexes for its mycobiota in each type of vegetation. Twenty four mycological explorations were made during a year, resulting in the identification of 144 species (24 Ascomycota and 120 Basidiomycota. The diversity of fungal species was determined through the index of Simpson and the similarity

  16. Variaciones en la estacionalidad de polen y esporas fúngicas en la atmósfera de la ciudad de La Plata (Argentina Seasonal variation of pollen and fungal spores in the atmosphere of Plata city (Argentina

    Directory of Open Access Journals (Sweden)

    Daniela S Nitiu

    2011-12-01

    Full Text Available Se presentan los primeros datos sobre variaciones estacionales de polen y esporas fúngicas en su conjunto en la atmósfera de la ciudad de La Plata durante julio 2000 / junio 2001. El total de bioaerosoles fue de 201889.15 de los cuales el 15% correspondió a 54 tipos polínicos y el 85% a 79 tipos esporales. El Índice Polínico estuvo dado en un 74% por Polen Arbóreo (PA y en un 26% por Polen Herbáceo (PNA. La máxima concentración de PA tuvo lugar en septiembre con granos provenientes de Platanus y Fraxinus. El PNA presentó dos picos, el primero en diciembre procedente de Poaceae y el segundo en marzo debido a Ambrosia. Con respecto al componente fúngico, se identificaron esporas de Oomycota, Zygomycota, Myxomycota, Ascomycota y Basidiomycota. Estos bioaerosoles estuvieron presentes durante todo el año y en altas concentraciones siendo más abundantes en verano - otoño Las mitosporas de Hongos Imperfectos dominan la nube superando el 44% del total del Índice Esporal. El máximo aporte se registró en febrero dado por las esporas de Cladosporium. Se identificaron dos períodos estacionales en los cuales se hallan simultáneamente altas concentraciones de polen y esporas fúngicas. El primero se desarrolla en primavera y está integrado por Platanus, Fraxinus y Aspergillus / Penicillium y el segundo es estival e involucra a Ambrosia, Alternaria y Cladosporium.We present the first data on representativeness and seasonal variation of pollen and fungal spores as a whole in the atmosphere of the city of La Plata during july 2000 / june 2001. Total was 201889.15 bioaerosols, 15% of which was contributed by 54 pollen types and 85% by 79 spore types. The Pollinic Index came from arboreal pollen (PA in 74% and herbaceous pollen (PNA in 26%. The PA maximum concentration took place in september due to Platanus and Fraxinus. The PNA presented two peaks, one in december due to Poaceae, and the other one in march from Ambrosia. In regard to the

  17. Fungal Community Structure and Ligninolytic Enzyme Activities during Decomposition of Soil Black Carbon in A Water-level-fluctuating Zone%消落带土壤黑碳降解过程中真菌群落结构及酶活特征

    Institute of Scientific and Technical Information of China (English)

    郝蓉; 康杰; 伍玉鹏; 胡荣桂; 宋艳暾

    2016-01-01

    Black carbon (BC) is a general term used to describe products derived from incomplete combustion of vegetation and fossil fuels. BC may play an important role in the global C budget. Despite the relative recalcitrance of BC, recent laboratory and field studies indicated that BC can be degraded. Saprophytic fungi and ligninolytic enzyme may be important to soil BC degradation processes. Based on sequencing of the fungal 18S rDNA fragments and the measurements of soil enzyme activities, the main fungal populations and ligninolytic enzyme activities in the water-level-fluctuating zone of Danjiangkou were investigated. The results showed that the majority of the recovered sequences in the area belonged to diverse phylotypes of Ascomycota and Basidiomycota. Sordariomycetes,Eurotiomycetes and Dothideomycetesamong Ascomycota was dominant, Agaricomycetes among Basidiomycota was dominant. Main ligninolytic enzyme had been detected in our study area. MnP activities are lower compared to LiP and Lac activities. The authors also propose the effects of water regimes on black carbon degradation process and mechanism require further investigations, further environmental effects could not be ignored. The study may be useful for BC biogeochemical cycles and will hopefully elicit more research in this field.%黑碳是生物质或化石燃料不完全燃烧或岩石风化形成的一种富含芳香族基团的产物,普遍存在于环境中,在全球碳循环中占有重要的位置。早期黑碳被认为是不可降解的,近年来许多证据表明黑碳是可降解的。腐生真菌降解是其降解的重要途径,该过程需要木质素降解酶的参与。然而,目前对降解黑碳的真菌群落结构和酶的种类和活性认识十分有限。选取消落带的典型土壤为研究对象,采用18S rDNA基因测序法,解析了消落带土壤黑碳降解过程中真菌群落结构,测定了木质素降解酶活性。结果表明,(1)该区土壤真

  18. Microorganismos asociados a la rizosfera de jitomate en un agroecosistema del valle de Guasave, Sinaloa, México Rhizosphere microorganisms associated to tomato in an agroecosystem from Guasave Valley, Sinaloa, Mexico

    Directory of Open Access Journals (Sweden)

    Jesús Damián Cordero-Ramírez

    2012-09-01

    Full Text Available La diversidad de los microorganismos asociados a la rizosfera de diferentes especies vegetales en los suelos, en México se ha estudiado poco y se ha abordado de manera convencional, con técnicas microbiológicas limitadas debido al elevado porcentaje de microorganismos no-cultivables (95-99%. En el presente trabajo se empleó el análisis por secuenciación del ADN ribosomal (ADNr para evitar esa limitante y explorar mejor la diversidad de los microorganismos cultivables y no-cultivables asociados al jitomate (Solanum lycopersicum L. en un agroecosistema en Sinaloa. Se empleó ADN genómico extraído del suelo rizosférico para amplificar una región hipervariable en el ADNr empleando oligonucleótidos universales para ADNr procariota y eucariota. El an��lisis de 194 y 384 secuencias de ADNr de origen procariota y eucariota, respectivamente, mostró que los phyla eucariotes más abundantes fueron Ascomycota (59%, Chlorophyta (21% y Basidiomycota (12%, y los más abundantes de origen procariote fueron Firmicutes (45%, Proteobacteria (14.7% y Gemmatimonadetes (13.1%. El presente trabajo representa a la fecha la caracterización más completa de la diversidad de microorganismos de la rizosfera del jitomate. Se discute el papel que especies identificadas en este trabajo, pertenecientes a géneros procariotas (Bacillus y Paenibacillus y eucariotas (Alternaría, pudieran desempeñar en la rizosfera del jitomate y en el control biológico de fitopatogénos en esta especie.Rhizosphere microorganism diversity associated to different plant species in Mexican soils has been understudied. Most of those studies have been done using conventional microbiological techniques, which present an important limitation due to their incapacity to detect unculturable microorganisms, which represent 95-99% of the total microorganisms in soils. The present work employs ribosomal DNA (rDNA sequencing to overcome this limitation and to improve exploration of the

  19. Edible Macrofungi of Çorum Province

    Directory of Open Access Journals (Sweden)

    Sinan Alkan

    2016-03-01

    Full Text Available According to the scientists, the world's population by 2050 is estimated to exceed 9 billion, in order to meet the nutritional needs of people, it is expected that in the future to need more food production than today. Therefore in the world, food organizations, institutions and communities various action plans provide in the reports published. In these plans, diversification of the production, fast, quick and easy way to produce food, less harmful farming practices to the nature and the environment, and etc. topics are included. In line these plans with last years, the greater the number of species used as food and with ease of cultivation, mushrooms and mushroom cultivations are gaining importance. For this purpose, the determination of the diversity of edible mushrooms in nature and investigation that how can be taken to culture, it will also provide support to the production of different species of mushrooms. In the field studies performed between 2011 and 2013, after taking pictures on their habitats mushroom samples, collected within the Çorum province limits, were brought to the laboratory wrapped in aluminum foil properly. After measuring and studying on special structures under a microscope in the laboratory, they were identified according to the literature. Fungarium tag were prepared for identified mushrooms. These mushrooms, made into the Fungarium materials, were stored in Fungarium of the Directorate of Mushroom Application and Research Centre of Selçuk University. In conclusion, according to the literature four taxa belong to Ascomycota and 52 taxa belong to Basidiomycota, in totally of 56 taxa were found to be edible feature. These 56 taxa were represented by two divisio, four ordo and 14 families. The localities of identified species in the provincial boundaries are given. The names of species known among people with ethno mycological research, done during field studies, also were detected.

  20. Fungal diversity from deep marine subsurface sediments (IODP 317, Canterbury Basin, New Zealand)

    Science.gov (United States)

    Redou, V.; Arzur, D.; Burgaud, G.; Barbier, G.

    2012-12-01

    Recent years have seen a growing interest regarding micro-eukaryotic communities in extreme environments as a third microbial domain after Bacteria and Archaea. However, knowledge is still scarce and the diversity of micro-eukaryotes in such environments remains hidden and their ecological role unknown. Our research program is based on the deep sedimentary layers of the Canterbury Basin in New Zealand (IODP 317) from the subsurface to the record depth of 1884 meters below seafloor. The objectives of our study are (i) to assess the genetic diversity of fungi in deep-sea sediments and (ii) identify the functional part in order to better understand the origin and the ecological role of fungal communities in this extreme ecosystem. Fingerprinting-based methods using capillary electrophoresis single-strand conformation polymorphism and denaturing high-performance liquid chromatography were used as a first step to raise our objectives. Molecular fungal diversity was assessed using amplification of ITS1 (Internal Transcribed Spacer 1) as a biomarker on 11 samples sediments from 3.76 to 1884 meters below seafloor. Fungal molecular signatures were detected throughout the sediment core. The phyla Ascomycota and Basidiomycota were revealed with DNA as well as cDNA. Most of the phylotypes are affiliated to environmental sequences and some to common fungal cultured species. The discovery of a present and metabolically active fungal component in this unique ecosystem allows some interesting first hypotheses that will be further combined to culture-based methods and deeper molecular methods (454 pyrosequencing) to highlight essential informations regarding physiology and ecological role of fungal communities in deep marine sediments.

  1. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Shen

    Full Text Available Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0% and Basidiomycota (2.0%, including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp., B34 (Curvularia sp., B35 (undefined genus 1, B38 (Penicillium sp. and zzz816 (Shiraia sp. displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816 could produce hypocrellin A at high yield, which

  2. Composted versus Raw Olive Mill Waste as Substrates for the Production of Medicinal Mushrooms: An Assessment of Selected Cultivation and Quality Parameters

    Directory of Open Access Journals (Sweden)

    Georgios I. Zervakis

    2013-01-01

    Full Text Available Two-phase olive mill waste (TPOMW, “alperujo” is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota, that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120–135% for Pleurotus spp. and 125% for A. cylindracea and productivity in subsequent cultivation experiments on substrates supplemented with 20–40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium. Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  3. Composted versus raw olive mill waste as substrates for the production of medicinal mushrooms: an assessment of selected cultivation and quality parameters.

    Science.gov (United States)

    Zervakis, Georgios I; Koutrotsios, Georgios; Katsaris, Panagiotis

    2013-01-01

    Two-phase olive mill waste (TPOMW, "alperujo") is a highly biotoxic sludge-like effluent of the olive-oil milling process with a huge seasonal production. One of the treatment approaches that has so far received little attention is the use of TPOMW as substrate for the cultivation of edible mushrooms. Fifteen fungal strains belonging to five species (Basidiomycota), that is, Agrocybe cylindracea, Pleurotus cystidiosus, P. eryngii, P. ostreatus, and P. pulmonarius, were evaluated for their efficacy to colonize media composed of TPOMW, which was used either raw or composted in mixtures with wheat straw in various ratios. Qualified strains exhibited high values of biological efficiency (e.g., 120-135% for Pleurotus spp. and 125% for A. cylindracea) and productivity in subsequent cultivation experiments on substrates supplemented with 20-40% composted TPOMW or 20% raw TPOMW. Only when supplementation exceeded 60% for raw TPOMW, a negative impact was noted on mushroom yields which could be attributed to the effluent's toxicity (otherwise alleviated in the respective composted TPOMW medium). Earliness and mushroom size as well as quality parameters such as total phenolic content and antioxidant activity did not demonstrate significant differences versus the control wheat-straw substrate. The substrates hemicellulose content was negatively correlated with mycelium growth rates and yields and positively with earliness; in addition, cellulose: lignin ratio presented a positive correlation with mycelium growth and mushroom weight for A. cylindracea and with earliness for all species examined. TPOMW-based media revealed a great potential for the substitution of traditional cultivation substrates by valorizing environmentally hazardous agricultural waste.

  4. Illumina sequencing of fungi associated with manganese oxide deposits in cave systems

    Science.gov (United States)

    Zorn, B. T.; Santelli, C. M.; Carmichael, S. K.; Pepe-Ranney, C. P.; Roble, L.; Carmichael, M.; Bräuer, S.

    2013-12-01

    The environmental cycling of manganese (Mn) remains relatively poorly characterized when compared with other metals such as iron. However, fungi have been observed to produce Mn(III/IV) oxides resembling buserite, birnessite, and todorokite on the periphery of vegetative hyphae, hyphal branching points and at the base of fruiting bodies. Recent studies indicate that some of these oxides may be generated by a two-stage reaction with soluble Mn(II) and biogenic reactive oxygen species for some groups of fungi, in particular the Ascomycota. These oxides can provide a versatile protective barrier or aid in the capture of trace metals in the environment, although the exact evolutionary function and trigger is unclear. In this study, two caves in the southern Appalachians, a pristine cave and an anthropogenically impacted cave, were compared by analyzing fungal community assemblages in manganese oxide rich deposits. Quantitative PCR data indicated that fungi are present in a low abundance (18S rDNA clone library, over 88% were representative of the phylum Basidiomycota (predominantly Agaricomycetes), 2.74% of Ascomycota, 2.28% of Blastocladiomycota and Chytridiomycota, 0.46% of Zygomycota, and 3.65% of Eukarya or Fungi incertae sedis. Using Illumina's MiSeq to sequence amplicons of the fungal ITS1 gene has yielded roughly 100,000-200,000 paired-end reads per sample. These data are currently being analyzed to compare fungal communities before and after induced Mn oxidation in the field. In addition, sites within the pristine cave are being compared with analogous sites in the impacted cave. Culturing efforts have thus far yielded Mn oxide producing members of the orders Glomerales and Pleosporales as well as two Genus incertae sedis (Fungal sp. YECT1, and Fungal sp. YECT3, growing on discarded electrical tape) that do not appear to be closely related to any other known Mn oxidizing fungi.

  5. Microbial Response to Soil Liming of Damaged Ecosystems Revealed by Pyrosequencing and Phospholipid Fatty Acid Analyses

    Science.gov (United States)

    Narendrula-Kotha, Ramya; Nkongolo, Kabwe K.

    2017-01-01

    Aims To assess the effects of dolomitic limestone applications on soil microbial communities’ dynamics and bacterial and fungal biomass, relative abundance, and diversity in metal reclaimed regions. Methods and Results The study was conducted in reclaimed mining sites and metal uncontaminated areas. The limestone applications were performed over 35 years ago. Total microbial biomass was determined by Phospholipid fatty acids. Bacterial and fungal relative abundance and diversity were assessed using 454 pyrosequencing. There was a significant increase of total microbial biomass in limed sites (342 ng/g) compared to unlimed areas (149 ng/g). Chao1 estimates followed the same trend. But the total number of OTUs (Operational Taxonomic Units) in limed (463 OTUs) and unlimed (473 OTUs) soil samples for bacteria were similar. For fungi, OTUs were 96 and 81 for limed and unlimed soil samples, respectively. Likewise, Simpson and Shannon diversity indices revealed no significant differences between limed and unlimed sites. Bacterial and fungal groups specific to either limed or unlimed sites were identified. Five major bacterial phyla including Actinobacteria, Acidobacteria, Chloroflexi, Firmicutes, and Proteobacteria were found. The latter was the most prevalent phylum in all the samples with a relative abundance of 50%. Bradyrhizobiaceae family with 12 genera including the nitrogen fixing Bradirhizobium genus was more abundant in limed sites compared to unlimed areas. For fungi, Ascomycota was the most predominant phylum in unlimed soils (46%) while Basidiomycota phylum represented 86% of all fungi in the limed areas. Conclusion Detailed analysis of the data revealed that although soil liming increases significantly the amount of microbial biomass, the level of species diversity remain statistically unchanged even though the microbial compositions of the damaged and restored sites are different. Significance and Impact of the study Soil liming still have a significant

  6. Identification and functional analysis of the erh1(+ gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Marek K Krzyzanowski

    Full Text Available The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S.japonicus, but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1(+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1(+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1(+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol, inhibiting DNA replication (hydroxyurea, and destabilizing the plasma membrane (SDS; this hypersensitivity can be abolished by expression of S. pombe erh1(+ and, to a lesser extent, S. japonicus erh1(+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1(+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation.

  7. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea--A Metagenomic Approach.

    Science.gov (United States)

    Simões, Marta Filipa; Antunes, André; Ottoni, Cristiane A; Amini, Mohammad Shoaib; Alam, Intikhab; Alzubaidy, Hanin; Mokhtar, Noor-Azlin; Archer, John A C; Bajic, Vladimir B

    2015-10-01

    Covering a quarter of the world's tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%-85%), while Basidiomycota was less abundant (14%-24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  8. Bleaching of leaf litter and associated microfungi in subboreal and subalpine forests.

    Science.gov (United States)

    Hagiwara, Yusuke; Matsuoka, Shunsuke; Hobara, Satoru; Mori, Akira S; Hirose, Dai; Osono, Takashi

    2015-10-01

    Fungal decomposition of lignin leads to the whitening, or bleaching, of leaf litter, especially in temperate and tropical forests, but less is known about such bleaching in forests of cooler regions, such as boreal and subalpine forests. The purposes of the present study were to examine the extent of bleached area on the surface of leaf litter and its variation with environmental conditions in subboreal and subalpine forests in Japan and to examine the microfungi associated with the bleaching of leaf litter by isolating fungi from the bleached portions of the litter. Bleached area accounted for 21.7%-32.7% and 2.0%-10.0% of total leaf area of Quercus crispula and Betula ermanii, respectively, in subboreal forests, and for 6.3% and 18.6% of total leaf area of B. ermanii and Picea jezoensis var. hondoensis, respectively, in a subalpine forest. In subboreal forests, elevation, C/N ratio and pH of the FH layer, and slope aspect were selected as predictor variables for the bleached leaf area. Leaf mass per area and lignin content were consistently lower in the bleached area than in the nonbleached area of the same leaves, indicating that the selective decomposition of acid unhydrolyzable residue (recalcitrant compounds such as lignin, tannins, and cutins) enhanced the mass loss of leaf tissues in the bleached portions. Isolates of a total of 11 fungal species (6 species of Ascomycota and 5 of Basidiomycota) exhibited leaf-litter-bleaching activity under pure culture conditions. Two fungal species (Coccomyces sp. and Mycena sp.) occurred in both subboreal and subalpine forests, which were separated from each other by approximately 1100 km.

  9. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina from the Red Sea — A Metagenomic Approach

    Directory of Open Access Journals (Sweden)

    Marta Filipa Simões

    2015-10-01

    Full Text Available Covering a quarter of the world’s tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray mangroves (Avicennia marina remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%, while Basidiomycota was less abundant (14%–24%, yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  10. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  11. Ice nucleation activity in the widespread soil fungus Mortierella alpina

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Yordanova, Petya; Franc, Gary D.; Pöschl, Ulrich

    2015-04-01

    Biological residues in soil dust are a potentially strong source of atmospheric ice nucleators (IN). However, the sources and characteristics of biological - in particular, fungal - IN in soil dust have not been characterized. By analysis of the culturable fungi in topsoils, from a range of different land use and ecosystem types in south-east Wyoming, we found ice nucleation active (INA, i.e., inducing ice formation in the probed range of temperature and concentration) fungi to be both widespread and abundant, particularly in soils with recent inputs of decomposable organic matter. For example, in harvested and ploughed sugar beet and potato fields, and in the organic horizon beneath Lodgepole pine forest, their relative abundances and concentrations among the cultivable fungi were 25% (8 x 103 CFU g-1), 17% (4.8 x 103 CFU g-1) and 17% (4 x 103 CFU g-1), respectively. Across all investigated soils, 8% (2.9 x 103 CFU g-1) of fungal isolates were INA. All INA isolates initiated freezing at -5° C to -6° C and all belonged to a single zygomycotic species, Mortierella alpina (Mortierellales, Mortierellomycotina). By contrast, the handful of fungal species so far reported as INA all belong within the Ascomycota or Basidiomycota phyla. Mortierella alpina is known to be saprobic (utilizing non-living organic matter), widespread in soil and present in air and rain. Sequencing of the ITS region and the gene for γ-linolenic elongase revealed four distinct clades, affiliated to different soil types. The IN produced by M. alpina seem to be extracellular proteins of 100-300 kDa in size which are not anchored in the fungal cell wall. Ice nucleating fungal mycelium will ramify topsoils and probably also release cell-free IN into it. If these IN survive decomposition or are adsorbed onto mineral surfaces, these small cell-free IN might contribute to the as yet uncharacterized pool of atmospheric IN released by soils as dusts.

  12. Study of primary biological aerosols to characterize their diversity in particulate matter over the Indian tropical region: assessment for climatic and health impact

    Science.gov (United States)

    Priyamvada R, H.; Muthalagu, A.; R, R.; Verma, R. S.; Philip, L.; Desprès, V.; Poeschl, U.; Gunthe, S. S.

    2015-12-01

    Primary Biological Aerosol Particles (PBAPs) are ubiquitous in the Earth's atmosphere and can influence the biosphere, climate, and public health (Després et al., 2012).To study the importance of the PBAPs, it is important to have an understanding about their origin, seasonal abundance and diversity. The study of PBAPs over the Indian tropical region becomes important as it hosts ~ 18% of the world population and has a distinct climate with a systematic and cyclic monsoon season which is different from the continental climates in Europe and America. In this study, the PBAPs were characterized by the application of molecular genetic techniques involving DNA extraction, PCR amplifications, cloning and DNA sequencing. In addition, characterization of the fungal source emissions was performed to better understand the diversity, abundance, and relative contribution of the fungal aerosols. For the present study, DNA analysis was performed on a one-year air filter set of PM10 (particulate matter ≤10 mm) covering three distinct meteorological seasons, i.e. summer, monsoon, and winter. The results from DNA analysis revealed the presence of bacteria and fungi in the filter samples. The fungal source characterization performed by the DNA analysis revealed the ratio of Basidiomycota to Ascomycota to be 96:4, which is consistent with previously reported studies from airborne fungal communities in the European continental boundary layer air (Fröhlich-Nowoisky et al., 2009). In the study region, the highest species richness was found to be present in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.81%). Agaricaceae, Polyporaceae and Psathyrellaceae were dominant families in the study region and the families like Clavariaceae, Nectriaceae, Phanerochaetachae, Pleurotaceae and Strophariaceae were found to be rare. The results will next be compared with the diversity and types of the fungi found in ambient PM10. More details will be presented.

  13. Investigating migration inhibition and apoptotic effects of Fomitopsis pinicola chloroform extract on human colorectal cancer SW-480 cells.

    Directory of Open Access Journals (Sweden)

    Yaqin Wang

    Full Text Available BACKGROUND: Fomitopsis pinicola (Sw. Ex Fr.m Karst (FPK which belongs to the Basidiomycota fungal class is one of the most popular medical fungi in China. It has been used for many diseases: cancer, heart diseases, diabetes and so on. However, little study on the pro-apoptotic effect and migration inhibition of FPK chloroform extract (FPKc has been reported and the possible involved mechanism has not been illuminated. METHODOLOGY/PRINCIPAL FINDINGS: Chemical analysis was performed by HPLC which showed ergosterol (ES concentration was 105 µg/mg. MTT assay revealed that FPKc could selectively inhibit SW-480 cells viability with the IC50 of 190.28 µg/ml. Wound healing and transwell assay indicated that FPKc could inhibit the migration of SW-480 cells obviously, FPKc could also dramatically decreased the matrix metalloproteinases-2, 9 (MMP-2 and MMP-9 expression. Annexin V-FITC/PI staining, nuclear Hoechst 33342 staining and DNA fragmentation analysis revealed that FPKc and ES could induce SW-480 cells apoptosis. The apoptosis process closely involved in ROS accumulation and depletion of GSH, activation of caspase 3, poly (ADP-ribose polymerase (PARP degradation. FPKc could also up-regulate P53 expression and thus lead to G1 phase arrest. When SW-480 cells were pretreated with N-acetylcysteine (NAC, the ROS generation, cell viability and apoptotic ratio were partially declined, which indicated that ROS was vertical in the pro-apoptosis process induced by FPKc. Moreover, in the whole process, ES which has been previously found in FPKc had the similar effect to FPKc. Thus we could conclude that ES, as one of the highest abundant components in FPKc, might also be one of the active constituents. CONCLUSION/SIGNIFICANCE: FPKc could inhibit the migration of SW-480 cells, induce SW-480 cells G1 phase arrest and cause ROS-mediated apoptosis effect. And ES might be one of the effective constituents in the whole process.

  14. Metaproteome analysis of the microbial community during leaf litter decomposition - the impact of stoichiometry and temperature perturbations

    Science.gov (United States)

    Keiblinger, K. M.; Schneider, T.; Leitner, S.; Hämmerle, I.; Riedel, K.; Zechmeister-Boltenstern, S.

    2012-04-01

    Leaf litter decomposition is the breakdown of dead plant material, a terrestrial ecosystem process of paramount importance. Nutrients released during decomposition play a key role for microbial growth and plant productivity. These processes are controlled by abiotic factors, such as climate, and by biotic factors, such as litter nutrient concentration and stoichiometry (carbon:nutrient ratio) and activity of soil organisms. Future climate change scenarios predict temperature perturbations, therefore following changes of microbial community composition and possible feedbacks on ecosystem processes are of key interest; especially as our knowledge about the microbial regulation of these processes is still scarce. Our aim was to elucidate how temperature perturbations and leaf litter stoichiometry affect the composition of the microbial decomposer community. To this end a terrestrial microcosm experiment using beech (Fagus sylvatica) litter with different stoichiometry was conducted. In a semi-quantitative metaproteomics approach (1D-SDS PAGE combined with liquid chromatography and tandem mass spectrometry; unique spectral counting) we used the intrinsic metabolic function of proteins to relate specific microbial activities to their phylogenetic origin in multispecies communities. Decomposer communities varied on litter with different stoichiometry so that microbial decomposers (fungi and bacteria) were favoured in litter with narrow C:nutrient ratios. The fungal community was dominated by Ascomycota (Eurotiomycetes, Sordariomycetes) and Basidiomycota (Agaricomycetes) and the bacterial community was dominated by Proteobacteria, Actinobacteria and Firmicutes. The extracellular enzymes we detected belonged mainly to classes of xylanases, pectinases, cellulases and proteases and were almost exclusively of fungal origin (particularly Ascomycota). Temperature stress (heat and frost) evoked strong changes in community composition, enzyme activities, dissolved organic

  15. The effects of high-tannin leaf litter from transgenic poplars on microbial communities in microcosm soils.

    Directory of Open Access Journals (Sweden)

    Richard S. Winder

    2013-09-01

    Full Text Available The impacts of leaf litter from genetically-modified hybrid poplar accumulating high levels of condensed tannins (proanthocyanidins were examined in soil microcosms consisting of moss growing on sieved soil. Moss preferentially proliferated in microcosms with lower tannin content; DGGE detected increased fungal diversity in microcosms with low-tannin litter. The proportion of cloned rDNA sequences from Actinobacteria decreased with litter addition while Bacteroidetes, Chloroflexi, Cyanobacteria, and α-Proteobacteria significantly increased. β–Proteobacteria were proportionally more numerous at high tannin levels. Tannins had no significant impact on overall diversity of bacterial communities analyzed with various estimators. There was an increased proportion of N-fixing bacteria corresponding to the addition of litter with low tannin levels. The addition of litter increased the proportion of Ascomycota/Basidiomycota. Dothideomycetes, Pucciniomycetes, and Tremellomycetes also increased and Agaricomycetes decreased. Agaricomycetes and Sordariomycetes were significantly more abundant in controls, whereas Pucciniomycetes increased in soil with litter from transformed trees (P = 0.051. Richness estimators and diversity indices revealed no significant difference in the composition of fungal communities; PCoA partitioned the fungal communities into three groups: (i those with higher amounts of added tannin from both transformed and untransformed treatments, (ii those corresponding to soils without litter, and (iii those corresponding to microcosms with litter added from trees transformed only with a β-glucuronidase (GUS control vector. While the litter from transformed poplars had significant effects on soil microbe communities, the observed impacts reflected known impacts on soil processes associated with tannins, and were similar to changes that would be expected from natural variation in tannin levels.

  16. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic).

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4 (+)-N), silicate silicon (SiO4 (2-)-Si), nitrite nitrogen (NO2 (-)-N), phosphate phosphorus (PO4 (3-)-P), and nitrate nitrogen (NO3 (-)-N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soils of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

  17. Colonization history, host distribution, anthropogenic influence and landscape features shape populations of white pine blister rust, an invasive alien tree pathogen.

    Directory of Open Access Journals (Sweden)

    Simren Brar

    Full Text Available White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales. This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur.

  18. Colonization History, Host Distribution, Anthropogenic Influence and Landscape Features Shape Populations of White Pine Blister Rust, an Invasive Alien Tree Pathogen

    Science.gov (United States)

    Brar, Simren; Tsui, Clement K. M.; Dhillon, Braham; Bergeron, Marie-Josée; Joly, David L.; Zambino, P. J.; El-Kassaby, Yousry A.; Hamelin, Richard C.

    2015-01-01

    White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur. PMID:26010250

  19. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment.

    Directory of Open Access Journals (Sweden)

    José A Siles

    Full Text Available The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR, a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR and C. floccosa-transformed DOR (CORDOR on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR.

  20. Exploring the Antibacterial and Antifungal Potential of Jellyfish-Associated Marine Fungi by Cultivation-Dependent Approaches.

    Science.gov (United States)

    Yue, Yang; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2015-01-01

    Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis) from two phyla (Ascomycota and Basidiomycota) by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC) equipped with a photodiode array (PDA) detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 μg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation-dependent approaches

  1. Characterization of an Nmr homolog that modulates GATA factor-mediated nitrogen metabolite repression in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    I Russel Lee

    Full Text Available Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis.

  2. Arctic root-associated fungal community composition reflects environmental filtering.

    Science.gov (United States)

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized.

  3. Diversity, molecular phylogeny, and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana).

    Science.gov (United States)

    Qadri, Masroor; Rajput, Roopali; Abdin, Malik Z; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

    2014-05-01

    In this study, we investigated the diversity of fungal endophytes associated with Pinus wallichiana from the Western Himalayas, with emphasis on comparison of endophytic communities harbored by the stem and needle tissues of the host and their antimicrobial potential. A total number of 130 isolates, comprising of 38 different genera, were recovered from 210 fragments of the plant. Among the isolated fungi, only a single isolate, Tritirachium oryzae, belonged to the Phylum Basidiomycota whereas the rest belonged to Ascomycota. Dothideomycetes was the dominant class with the highest isolation frequency of 49.2 %. The most frequent colonizers of the host were Alternaria spp., Pestalotiopsis spp., Preussia spp., and Sclerostagonospora spp. The diversity and species richness were higher in needle tissues than in the stems. Antimicrobial activities were displayed by extracts from a total number of 22 endophytes against one or more pathogens. Endophytes designated as P1N13 (Coniothyrium carteri), P2N8 (Thielavia subthermophila), P4S6b (Truncatella betulae), P7N10 (Cochliobolus australiensis), and P8S4 (Tritirachium oryzae) were highly active against Candida albicans. Broad spectrum antimicrobial activities were obtained with the extracts of P8-S4 (Tritirachium oryzae) and P5-N26 (Coniochaeta gigantospora) that were potentially active against the Gram-positive and Gram-negative bacteria as well as the fungal pathogen, Candida albicans. The most prominent antagonistic activity against fungal pathogens was shown by P8-S4 (Tritirachium oryzae), P5-N31a (Truncatella spadicea), and P5-N20 (Fusarium larvarum). Our findings indicate that Pinus wallichiana harbors a rich endophytic fungal community with potential antimicrobial activities. Further studies are needed to understand the ecology and evolutionary context of the associations between the Himalayan pine and its endophytes.

  4. Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations.

    Directory of Open Access Journals (Sweden)

    Nina Gouba

    Full Text Available BACKGROUND: Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient. METHODOLOGY/PRINCIPAL FINDINGS: A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp. species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta. Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda are used as medicinal plants. CONCLUSIONS/SIGNIFICANCE: Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.

  5. Rapid strain classification and taxa delimitation within the edible mushroom genus Pleurotus through the use of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy.

    Science.gov (United States)

    Zervakis, Georgios I; Bekiaris, Georgios; Tarantilis, Petros Α; Pappas, Christos S

    2012-06-01

    Fourier transform infrared (FT-IR) spectroscopy has been successfully applied for the identification of bacteria and yeasts, but only to a limited extent for discriminating specific groups of filamentous fungi. In the frame of this study, 73 strains - from different associated hosts/substrates and geographic regions - representing 16 taxa of the edible mushroom genus Pleurotus (Basidiomycota, Agaricales) were examined through the use of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. A binary matrix, elaborated on the basis of presence/absence of specific absorbance peaks combined with cluster analysis, demonstrated that the spectral region 1800-600 cm(-1) permitted clear delimitation of individual strains into Pleurotus species. In addition, closely related species (e.g., Pleurotus ostreatus and Pleurotus pulmonarius) or taxa of the subgenus Coremiopleurotus demonstrated high similarity in their absorbance patterns, whereas genetically distinct entities such as Pleurotus dryinus, Pleurotus djamor, and Pleurotus eryngii provided spectra with noteworthy differences. When specific regions (1800-1700, 1360-1285, 1125-1068, and 950-650 cm(-1)) were evaluated in respect to the absorbance values demonstrated by individual strains, it was evidenced that this methodology could be eventually exploited for the identification of unknown Pleurotus specimens with a stepwise process and with the aid of a dichotomous key developed for this purpose. Moreover, it was shown that the nature of original fungal material examined (mycelium, basidiomata, and basidiospores) had an effect on the outcome of such analyses, and so did the use of different mycelium growth substrates. In conclusion, application of FT-IR spectroscopy provided a fast, reliable, and cost-efficient solution for the classification of pure cultures from closely related mushroom species.

  6. Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient.

    Science.gov (United States)

    Maciá-Vicente, Jose G; Ferraro, Valeria; Burruano, Santella; Lopez-Llorca, Luis V

    2012-10-01

    Structure of fungal communities is known to be influenced by host plants and environmental conditions. However, in most cases, the dynamics of these variation patterns are poorly understood. In this work, we compared richness, diversity, and composition between assemblages of endophytic and rhizospheric fungi associated to roots of two plants with different lifestyles: the halophyte Inula crithmoides and the non-halophyte I. viscosa (syn. Dittrichia viscosa L.), along a spatially short salinity gradient. Roots and rhizospheric soil from these plants were collected at three points between a salt marsh and a sand dune, and fungi were isolated and characterized by ITS rDNA sequencing. Isolates were classified in a total of 90 operational taxonomic units (OTUs), belonging to 17 fungal orders within Ascomycota and Basidiomycota. Species composition of endophytic and soil communities significantly differed across samples. Endophyte communities of I. crithmoides and I. viscosa were only similar in the intermediate zone between the salt marsh and the dune, and while the latter displayed a single, generalist association of endophytes, I. crithmoides harbored different assemblages along the gradient, adapted to the specific soil conditions. In the lower salt marsh, root assemblages were strongly dominated by a single dark septate sterile fungus, also prevalent in other neighboring salt marshes. Interestingly, although its occurrence was positively correlated to soil salinity, in vitro assays revealed a strong inhibition of its growth by salts. Our results suggest that host lifestyle and soil characteristics have a strong effect on endophytic fungi and that environmental stress may entail tight plant-fungus relationships for adaptation to unfavorable conditions.

  7. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Directory of Open Access Journals (Sweden)

    Dorsaf Kerfahi

    Full Text Available Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  8. Soil and Rhizosphere Associated Fungi in Gray Mangroves (Avicennia marina) from the Red Sea-A Metagenomic Approach

    Institute of Scientific and Technical Information of China (English)

    Marta Filipa Simoes; Andre Antunes; Cristiane A Ottoni; Mohammad Shoaib Amini; Intikhab Alam; Hanin Alzubaidy; Noor-Azlin Mokhtar; John AC Archer; Vladimir B Bajic

    2015-01-01

    Covering a quarter of the world’s tropical coastlines and being one of the most threat-ened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea gray man-groves (Avicennia marina) remain poorly characterized, and understanding of their fungal commu-nities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from gray mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%), while Basidiomycota was less abundant (14%–24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the gray mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  9. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    Science.gov (United States)

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

  10. Characterization of fungal spores in ambient particulate matter: A study from the Himalayan region

    Science.gov (United States)

    Kumar, Ajay; Attri, Arun K.

    2016-10-01

    Fungal spores as a constituent of ambient particulate matter (PM) is of concern; they not only display the physical traits of a particle, but are also potential allergens and health risk. An investigation over fourteen month was undertaken at a rural site located in the Western Himalayan region, to evaluate the PM associated fungal spores' concentration and diversity. The season-wise change in the fungal spores concentration in the Coarse Particulate Matter (CPM) fraction (aerodynamic diameter > 10 μm) varied from 500 to 3899 spores m-3. Their average concentration over 14 months was 1517 spores m-3. Significant diversity of fungal spores in the CPM samples was observed; 27 individual genera of fungal spores were identified, of which many were known allergens. Presence of Ascomycota and Basidiomycota fungal spores was dominant in the samples; ∼20% of the spores were un-characterized. The season-wise variability in fungal spores showed a statistically significant high correlation with CPM load. Maximum number concentration of the spores in CPM was recorded in the summer, while minimum in the winter. The high diversity of spores occurred during monsoon and post monsoon months. The meteorological factors played an important role in the fungal spores' distribution profile. The temporal profile of the spores showed significant correlation with the ambient temperature (T), relative humidity (RH), wind speed (WS) and planetary boundary layer (PBL) height. Strong correlation of WS with fungal spores and CPM, and wind back trajectories suggest that re-suspension and wind assisted transport of PM contributes to ambient CPM associated fungal spores.

  11. 基于454焦磷酸测序法的典型草原土壤真核生物多样性%Eukaryote diversity of typical grassland soil based on 454 pyrosequencing

    Institute of Scientific and Technical Information of China (English)

    井赵斌; 程积民; 张宝泉; 李红红

    2013-01-01

    利用454焦磷酸测序法对黄土区不同封育时期典型草地土壤真核生物多样性进行了研究.结果表明,选择的V4区引物可以扩增出土壤真核生物中的微生物、动物和植物,其中真菌群落主要由子囊菌门(Ascomycota)、壶菌门(Chyt ridiomycota)、担子菌门(Basidiomycota)、绿藻门(Chlorophyta)、球囊菌门(Glomeromycota)和变形菌门(Proteobacteria)组成;动物群落区系主要包括脊椎动物门(Craniata)、节足动物门(Arthropoda)、线虫门(Nematoda)和环节动物门(Annelida);植物群落包括陆生植物(Embryophyta)和单子叶植物纲(百合纲)(Liliopsida).在不同分类学水平,不同封育时期草地真菌群落组成具有各自的优势菌群;动物群落组成仅在种水平存在差异.草地管理实践中可以结合土壤微生物和土壤养分恢复时间的阈值对封育草地进行合理利用.454焦磷酸测序法可以用于土壤中未知动物、植物和微生物区系的研究.

  12. 酸性矿山废水区域废矿石中真核生物多样性分析%Microeukaryotic Biodiversity in the Waste Ore Samples Surrounding an Acid Mine Drainage Lake

    Institute of Scientific and Technical Information of China (English)

    李思远; 郝春博; 王丽华; 吕铮; 张丽娜; 刘莹; 冯传平

    2013-01-01

    采集安徽某铁矿酸性矿山废水库周边的废矿石样品,分析了样品的主要物化参数,进而利用分子生物学方法,构建真核生物18S rDNA克隆文库,对样品中的真核生物多样性和群落结构进行了研究.结果表明,该区域呈现强酸性,pH均在3以下,Fe、SO2-、P、NO3--N含量都显示同一个趋势,即裸露的废矿石样品PD和1M的含量高于有植被覆盖的样品LW和XC.4个样品含有子囊菌门(Ascomyeota)、担子菌门(Basidiomycota)、球囊菌门(Glomeromycota)和节肢动物门(Arthropoda)这4类真核生物.其中球囊菌门可以与植物形成绝对共生关系,是早期植物适应陆地环境的关键.包含球囊菌门的样品LW和XC,有植被保护,其生物多样性比裸露的废矿石样品PD和1M的生物多样性更丰富.此外,还发现样品中存在很多对极低pH、重金属有耐受力的菌种,如Penicillium purpurogenum、Chaetothyriales sp.、Staninwardia suttonii等.

  13. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days.

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.

  14. Metabarcoding Analysis of Fungal Diversity in the Phyllosphere and Carposphere of Olive (Olea europaea).

    Science.gov (United States)

    Abdelfattah, Ahmed; Li Destri Nicosia, Maria Giulia; Cacciola, Santa Olga; Droby, Samir; Schena, Leonardo

    2015-01-01

    The fungal diversity associated with leaves, flowers and fruits of olive (Olea europaea) was investigated in different phenological stages (May, June, October and December) using an implemented metabarcoding approach. It consisted of the 454 pyrosequencing of the fungal ITS2 region and the subsequent phylogenetic analysis of relevant genera along with validated reference sequences. Most sequences were identified up to the species level or were associated with a restricted number of related taxa enabling supported speculations regarding their biological role. Analyses revealed a rich fungal community with 195 different OTUs. Ascomycota was the dominating phyla representing 93.6% of the total number of detected sequences followed by unidentified fungi (3.6%) and Basidiomycota (2.8%). A higher level of diversity was revealed for leaves compared to flowers and fruits. Among plant pathogens the genus Colletotrichum represented by three species (C. godetiae syn. C. clavatum, C. acutatum s.s and C. karstii) was the most abundant on ripe fruits but it was also detected in other organs. Pseudocercospora cladosporioides was detected with a high frequency in all leaf samples and to a less extent in ripe fruits. A much lower relative frequency was revealed for Spilocaea oleagina and for other putative pathogens including Fusarium spp., Neofusicoccum spp., and Alternaria spp. Among non-pathogen taxa, Aureobasidium pullulans, the species complex of Cladosporium cladosporioides and Devriesia spp. were the most represented. This study highlights the existence of a complex fungal consortium including both phytopathogenic and potentially antagonistic microorganisms that can have a significant impact on olive productions.

  15. Evidence for biological shaping of hair ice

    Directory of Open Access Journals (Sweden)

    D. Hofmann

    2015-04-01

    Full Text Available An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918 by reproducing hair ice on wood samples. Treatment by heat and fungicide, respectively, suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice carrying wood. One species, Exidiopsis effusa (Ee, has been present on all investigated samples. Both hair-ice producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity and that ice segregation is the common mechanism of ice growth at the wood surface. The fungus plays the role of shaping the ice hairs and to prevent them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S-compounds similar to fulvic acids in dissolved organic matter (DOM. The evaluation reveals decomposed lignin as the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

  16. Evidence for biological shaping of hair ice

    Science.gov (United States)

    Hofmann, D.; Preuss, G.; Mätzler, C.

    2015-07-01

    An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918) by reproducing hair ice on wood samples. Treatment by heat and fungicide suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice-carrying wood. One species, Exidiopsis effusa (Ee), was present on all investigated samples. Both hair-ice-producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity, and that ice segregation is the common mechanism of ice growth on the wood surface. The fungus plays the role of shaping the ice hairs and preventing them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S) compounds similar to fulvic acids in dissolved organic matter (DOM). The evaluation reveals decomposed lignin as being the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

  17. Fungal communities respond to long-term CO2 elevation by community reassembly.

    Science.gov (United States)

    Tu, Qichao; Yuan, Mengting; He, Zhili; Deng, Ye; Xue, Kai; Wu, Liyou; Hobbie, Sarah E; Reich, Peter B; Zhou, Jizhong

    2015-04-01

    Fungal communities play a major role as decomposers in the Earth's ecosystems. Their community-level responses to elevated CO2 (eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ∼27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2 were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2 increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2 network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4 (+) availability. This study provided novel insights into how eCO2 shapes soil fungal communities in grassland ecosystems.

  18. Terrestrial Macrofungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology

    Science.gov (United States)

    Priyamvada, Hema; Akila, M.; Singh, Raj Kamal; Ravikrishna, R.; Verma, R. S.; Philip, Ligy; Marathe, R. R.; Sahu, L. K.; Sudheer, K. P.; Gunthe, S. S.

    2017-01-01

    Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols. PMID:28072853

  19. Biodiversity of Mushrooms in Conservative Forest in Dansai District of Loei Province, Thailand

    Science.gov (United States)

    Benchawattananon, Rachadaporn

    2016-01-01

    Dansai District is located in Loei Province, Northeast Thailand, rich in natural resources and composes of many kinds of forests, such as evergreen forests and mixed-deciduous forests. The objectives of the study are to determine the diversity of mushrooms and investigate the values of the forest influencing the community way of life and exploration of problems and guidelines for developing the forest along with sufficiency economy theory. The study includes compilation of data from past studies, semi-structured interview with the local communities and discussion with focus group. The survey was done once a month during the rainy season from May to August in 2012 and 2013. The results of the survey revealed 56 species belonging to 26 families, 38 genera. A total of 52 mushroom species belong to Basidiomycota, while 4 species belong to Ascomycota. The community forest remains fertile due to the conservation effort by the community leaders and a group of villagers. A community forestry board were set up to conserve the forest and proposed to the government at Dansai Vocational Community College to officially declare the forest as a formal community forest. The conservation management relied upon the kinship relations, seniority, and religious belief along with the enforcing authorities. If an encroacher is found, he would be fined according to the regulations and defamed publicly. However, encroachment still exists. In general, community forest is valuable and directly affected the villagers’ ways of life in which they could generate income from the forest, particularly reducing the daily expenses and promoting their socio-cultural perspective. PMID:27965747

  20. Soil and Rhizosphere Associated Fungi in Grey Mangroves (Avicennia marina) from the Red Sea - A Metagenomic Approach

    KAUST Repository

    Simões, Marta Filipa

    2015-11-05

    Covering a quarter of the world’s tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea grey mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from grey mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%–85%), while Basidiomycota was less abundant (14%–24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the grey mangroves of the Red Sea, and show that they are significantly richer than previously reported.

  1. Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats

    Science.gov (United States)

    Soares, Marcos Antonio; Li, Hai-Yan; Kowalski, Kurt P.; Bergen, Marshall; Torres, Monica S.; White, James F.

    2016-01-01

    Non-native Phragmites australis decreases biodiversity and produces dense stands in North America. We surveyed the endophyte communities in the stems, leaves and roots of collections of P. australis obtained from two sites with a low and high salt concentration to determine differences in endophyte composition and assess differences in functional roles of microbes in plants from both sites. We found differences in the abundance, richness and diversity of endophytes between the low saline collections (18 species distributed in phyla Ascomycota, Basidiomycota and Stramenopiles (Oomycota); from orders Dothideales, Pleosporales, Hypocreales, Eurotiales, Cantharellales and Pythiales; Shannon H = 2.639; Fisher alpha = 7.335) and high saline collections (15 species from phylum Ascomycota; belonging to orders Pleosporales, Hypocreales, Diaporthales, Xylariales and Dothideales; Shannon H = 2.289; Fisher alpha = 4.181). Peyronellaea glomerata, Phoma macrostoma and Alternaria tenuissima were species obtained from both sites. The high salt endophyte community showed higher resistance to zinc, mercury and salt stress compared to fungal species from the low salt site. These endophytes also showed a greater propensity for growth promotion of rice seedlings (a model species) under salt stress. The results of this study are consistent with the ‘habitat-adapted symbiosis hypothesis’ that holds that endophytic microbes may help plants adapt to extreme habitats. The capacity of P. australis to establish symbiotic relationships with diverse endophytic microbes that enhance its tolerance to abiotic stresses could be a factor that contributes to its invasiveness in saline environments. Targeting the symbiotic associates of P. australis could lead to more sustainable control of non-native P. australis.

  2. Chemical and microbiological characterization of an aged PCB-contaminated soil.

    Science.gov (United States)

    Stella, T; Covino, S; Burianová, E; Filipová, A; Křesinová, Z; Voříšková, J; Větrovský, T; Baldrian, P; Cajthaml, T

    2015-11-15

    This study was aimed at complex characterization of three soil samples (bulk soil, topsoil and rhizosphere soil) from a site historically contaminated with polychlorinated biphenyls (PCB). The bulk soil was the most highly contaminated, with a PCB concentration of 705.95 mg kg(-1), while the rhizosphere soil was the least contaminated (169.36 mg kg(-1)). PCB degradation intermediates, namely chlorobenzoic acids (CBAs), were detected in all the soil samples, suggesting the occurrence of microbial transformation processes over time. The higher content of organic carbon in the topsoil and rhizosphere soil than in the bulk soil could be linked to the reduced bioaccessibility (bioavailability) of these chlorinated pollutants. However, different proportions of the PCB congener contents and different bioaccessibility of the PCB homologues indicate microbial biotransformation of the compounds. The higher content of organic carbon probably also promoted the growth of microorganisms, as revealed by phospholipid fatty acid (PFLA) quantification. Tag-encoded pyrosequencing analysis showed that the bacterial community structure was significantly similar among the three soils and was predominated by Proteobacteria (44-48%) in all cases. Moreover, analysis at lower taxonomic levels pointed to the presence of genera (Sphingomonas, Bulkholderia, Arthrobacter, Bacillus) including members with reported PCB removal abilities. The fungal community was mostly represented by Basidiomycota and Ascomycota, which accounted for >80% of all the sequences detected in the three soils. Fungal taxa with biodegradation potential (Paxillus, Cryptococcus, Phoma, Mortierella) were also found. These results highlight the potential of the indigenous consortia present at the site as a starting point for PCB bioremediation processes.

  3. DIRS and Ngaro Retrotransposons in Fungi.

    Directory of Open Access Journals (Sweden)

    Anna Muszewska

    Full Text Available Retrotransposons with a tyrosine recombinase (YR have been discovered recently and lack thorough annotation in fungi. YR retrotransposons are divided into 3 groups: DIRS, Ngaro and VIPER (known only from kinetoplastida. We used comparative genomics to investigate the evolutionary patterns of retrotransposons in the fungal kingdom. The identification of both functional and remnant elements provides a unique view on both recent and past transposition activity. Our searches covering a wide range of fungal genomes allowed us to identify 2241 YR retrotransposons. Based on CLANS clustering of concatenated sequences of the reverse transcriptase (RT, RNase H (RH, DNA N-6-adenine-methyltransferase (MT and YR protein domains we propose a revised classification of YR elements expanded by two new categories of Ngaro elements. A phylogenetic analysis of 477 representatives supports this observation and additionally demonstrates that DIRS and Ngaro abundance changed independently in Basidiomycota and Blastocladiomycota/Mucoromycotina/Kixellomycotina. Interestingly, a single remnant Ngaro element could be identified in an Ascomycota genome. Our analysis revealed also that 3 Pucciniomycotina taxa, known for their overall mobile element abundance and big genome size, encode an elevated number of Ngaro retrotransposons. Considering the presence of DIRS elements in all analyzed Mucoromycotina, Kickxellomycotina and Blastocladiomycota genomes one might assume a common origin of fungal DIRS retrotransposons with a loss in Dicarya. Ngaro elements described to date from Opisthokonta, seem to have invaded the common ancestor of Agaricomycotina and Pucciniomycotina after Ustilagomycotina divergence. Yet, most of analyzed genomes are devoid of YR elements and most identified retrotransposons are incomplete.

  4. Morphological characteristics of bioaerosols from contrasting locations in southern tropical India - A case study

    Science.gov (United States)

    Valsan, Aswathy E.; Priyamvada, Hema; Ravikrishna, R.; Després, Viviane R.; Biju, C. V.; Sahu, Lokesh K.; Kumar, Ashwini; Verma, R. S.; Philip, L.; Gunthe, Sachin S.

    2015-12-01

    Bioaerosols, which are ubiquitous in the earth's atmosphere, are poorly characterized in terms of their physical and chemical properties. Improved knowledge of their physical and chemical properties is essential to have a better understanding of their dispersion and long-range transport in the atmosphere and at the same time to assess their role as potential Ice Nuclei (IN). In the present work, possibly for the first time we report the morphological characteristics of bioaerosols from marine urban and high altitude continental regions in Southern India. The samples were collected using polycarbonate filter paper and analyzed using Scanning Electron Microscope (SEM) coupled with Energy-dispersive Spectra Detector (EDX/EDS). The observed bioaerosols exhibited great variability in their morphological features over this region of the world. At these contrasting environments, we found that fungal spores constituted the major fraction of the total observed bioaerosols. Pollen grains, plant and insect fragments, and lot of other non-identified bio-particles were also observed constituting the remaining fraction. Further, the classification of fungal spores exhibited strong variability over this region. For example, fungal spores of both Ascomycota and Basidiomycota class were seen in abundance in marine environment, while Ascomycota especially Cladosporium were seen in abundance in high altitude continental environment. Our findings also suggest that increase in diversity of bioaerosol particles at marine site appeared to coincide with precipitation. It appears that vast diversity in the morphological features of bioaerosols exists over this region, which should further be studied using advanced online techniques for better quantification under contrasting environments. However, the diversity observed in morphological characteristics of bioaerosols at these two contrasting locations is limited and restricted to these two sites and season of the year, and should therefore

  5. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase

    Science.gov (United States)

    Abdelfattah, Ahmed; Wisniewski, Michael; Droby, Samir; Schena, Leonardo

    2016-01-01

    The fungal diversity in harvested apples from organic or conventional management practices was analyzed in different fruit locations (stem end, calyx end, peel, and wounded flesh) shortly after fruit purchase (T1) and after 2 weeks of storage (T5). A total of 5,760,162 high-quality fungal sequences were recovered and assigned to 8,504 Operational Taxonomic Units. Members of the phylum Ascomycota were dominant in all samples and accounted for 91.6% of the total number of detected sequences. This was followed by Basidiomycota (8%), Chytridiomycota (0.1%), and unidentified fungi (0.3%). Alpha and beta diversity analyses revealed the presence of significantly different fungal populations in the investigated fruit parts. Among detected fungi, the genus Penicillium prevailed in the peel and in the wounded flesh while Alternaria spp. prevailed in the calyx and stem end samples that included apple core tissues. Several taxonomic units that appear to be closely related to pathogenic fungi associated with secondary human infections were present in peel and wounds. Moreover, significantly different populations were revealed in organic and conventional apples and this result was consistent in all investigated fruit parts (calyx end, peel, stem end, and wounded flesh). Several unique taxa were exclusively detected in organic apples suggesting that management practices may have been a contributing factor in determining the taxa present. In contrast, little differences were revealed in the two assessment times (T1 and T5). Results of the present study represent an advancement of the current knowledge on the fungal microbiota in collected fruit tissues of apple. PMID:27766161

  6. Exploring the Antibacterial and Antifungal Potential of Jellyfish-Associated Marine Fungi by Cultivation-Dependent Approaches.

    Directory of Open Access Journals (Sweden)

    Yang Yue

    Full Text Available Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis from two phyla (Ascomycota and Basidiomycota by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC equipped with a photodiode array (PDA detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 μg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation

  7. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis.

    Directory of Open Access Journals (Sweden)

    Jin-Long Cui

    Full Text Available Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%, all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%, Basidiomycota (2.78%, Zygomycota (1.11%, and Glomeromycota (0.56%, which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33% were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57 were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2-•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products.

  8. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis.

    Science.gov (United States)

    Cui, Jin-Long; Guo, Ting-Ting; Ren, Zhen-Xing; Zhang, Na-Sha; Wang, Meng-Liang

    2015-01-01

    Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol) are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%), all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%), Basidiomycota (2.78%), Zygomycota (1.11%), and Glomeromycota (0.56%), which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33%) were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57) were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2-•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products.

  9. Microbial Biodiversity in Rhizosphere ofLycium bararumL. Relative to Cultivation History%不同种植年限宁夏枸杞根际微生物多样性变化

    Institute of Scientific and Technical Information of China (English)

    纳小凡; 郑国琦; 彭励; 雷川怡; 杨红艳; 马玉; 赵强; 石硕矾

    2016-01-01

    Nanliang,Ningxia,China,for analysis of physic-chemical properties,such as pH,electrical conductivity,SOM,total salt,total and readily available N,P and K,etc. Results showed that pH remained unchanged in all the fields,while total salt content,total and readily available phosphorus and electrical conductivity in the soil increased significantly with the age of cultivation. Total genomic DNA was isolated from the rhizosphere soil using a Power Soil DNA Isolation Kit for sequence analysis of V4 sections of 16S rDNA as indicator of bacterial diversity and ITS2 sections of 18S rDNA gene as indicator of fungal diversity,with the aid of the Illumina MiSeq system. Results of the sequencing were assembled and clustered with the FLASH,QIIME,and UPARSE pipeline software packages. In the end,is was found that the α diversity of the rhizosphere bacteria community did not vary much between the fields different in cultivation history,but fungal diversity did, and decreased with the cultivation going on from 5 a to 10 a(p<0.05). For analysis of changes in microbial community structure at the phyla and genus levels,the software of RDA Classifier to denote each OUT by species. It was found thatProteobacteria(22.2%),Crenarchaeota(15.1%),Bacteroidetes(13.9%), Acidobacteria(12.4%),Chloroflexi(10.3%),Gemmatimonadetes(4.8%),Actinobacteria (4.7%),Planctomycetes(4.0%)andVerrucomicrobia(2.0%)were the dominate bacterial groups and Ascomycota(29.5%)andBasidiomycota(11.7%)were the dominant fungal group in the rhizosphere of the plant. However,about 55.8% of the fungi found in the rhizosphere were still unknown in the taxonomy. Besides,the sequencing further demonstrated that soil microbial community structure in the rhizosphere varied sharply between the fields different in cultivation history and stood out uniquely in each field from the others. The variation between fields different in cultivation history was particularly significant in terms of the ratio of

  10. Microbial monitoring in treated stone at the Royal Chapel of Granada

    Science.gov (United States)

    Jroundi, Fadwa; Pinar, Guadalupe; González-Muñoz, Maria Theresa; Sterflinger, Katja

    2014-05-01

    Biomineralization processes have been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). In few years, this conservation treatment has gained worth attention as environmentally friendly methodology for protection and consolidation of limestone because of the compatibilities shown between the new calcium carbonate cement and the original stone substrate. Moreover, the success of this approach may be related to the diversity of the microbiota inhabiting the stone and activated upon the biotreatment application and throughout the time. González-Muñoz et al. (2008) proposed a nutritional solution that activate among the bacteria inhabiting the stone those with carbonatogenic activity. In this study, a long-term (one, two and three years) monitoring of the microbiota present on the treated and untreated stones was done using a molecular strategy, including total DNA extraction, PCR amplification of 16S rRNA sequences, construction of clone libraries and fingerprinting by DGGE (Denaturing Gradient Gel Electrophoresis) analysis. Sequencing of the 16S rDNA revealed the dominant occurrence of members of Actinobacteria (44.20%), Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) after one year of the biotreatment. Whereas after two years, members of Cyanobacteria (22.10%) appeared and three years after, the microbiota consisted of only Actinobacteria and Cyanobacteria with approximately the same percentage in comparison with the untreated stones, dominated exclusively by Actinobacteria (100%). Fungal diversity followed the same dynamic as bacterial diversity being Ascomicota the predominant order before treatment. After one year, members of Basidiomycota and Viridiplantae appeared on the stone while two years after, the Viridiplantae dominated with a percentage of 84.77%. Finally, three years after the treatment, fungi population started to stabilize again and Ascomicota predominated next to 16.67% of

  11. Molecular evolution of urea amidolyase and urea carboxylase in fungi

    Directory of Open Access Journals (Sweden)

    Harris Steven D

    2011-03-01

    Full Text Available Abstract Background Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms. Results Among the 64 fungal species we examined, only those in two Ascomycota classes (Sordariomycetes and Saccharomycetes had the urea amidolyase sequences. Urea carboxylase was found in many but not all of the species in the phylum Basidiomycota and in the subphylum Pezizomycotina (phylum Ascomycota. It was completely absent from the class Saccharomycetes (phylum Ascomycota; subphylum Saccharomycotina. Four Sordariomycetes species we examined had both the urea carboxylase and the urea amidolyase sequences. Phylogenetic analysis showed that these two enzymes appeared to have gone through independent evolution since their bacterial origin. The amidase domain and the urea carboxylase domain sequences from fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase sequences, respectively, from a small number of beta- and gammaproteobacteria. On the other hand, fungal urea carboxylase proteins clustered together with another copy of urea carboxylases distributed broadly among bacteria. The urease proteins were found in all the fungal species examined except for those of the subphylum Saccharomycotina. Conclusions We conclude that the urea amidolyase genes currently found only in fungi are the results of a horizontal

  12. Identification and analysis of candidate fungal tRNA 3'-end processing endonucleases tRNase Zs, homologs of the putative prostate cancer susceptibility protein ELAC2

    Directory of Open Access Journals (Sweden)

    Zhao Wei

    2010-09-01

    Full Text Available Abstract Background tRNase Z is the endonuclease that is responsible for the 3'-end processing of tRNA precursors, a process essential for tRNA 3'-CCA addition and subsequent tRNA aminoacylation. Based on their sizes, tRNase Zs can be divided into the long (tRNase ZL and short (tRNase ZS forms. tRNase ZL is thought to have arisen from a tandem gene duplication of tRNase ZS with further sequence divergence. The species distribution of tRNase Z is complex. Fungi represent an evolutionarily diverse group of eukaryotes. The recent proliferation of fungal genome sequences provides an opportunity to explore the structural and functional diversity of eukaryotic tRNase Zs. Results We report a survey and analysis of candidate tRNase Zs in 84 completed fungal genomes, spanning a broad diversity of fungi. We find that tRNase ZL is present in all fungi we have examined, whereas tRNase ZS exists only in the fungal phyla Basidiomycota, Chytridiomycota and Zygomycota. Furthermore, we find that unlike the Pezizomycotina and Saccharomycotina, which contain a single tRNase ZL, Schizosaccharomyces fission yeasts (Taphrinomycotina contain two tRNase ZLs encoded by two different tRNase ZL genes. These two tRNase ZLs are most likely localized to the nucleus and mitochondria, respectively, suggesting partitioning of tRNase Z function between two different tRNase ZLs in fission yeasts. The fungal tRNase Z phylogeny suggests that tRNase ZSs are ancestral to tRNase ZLs. Additionally, the evolutionary relationship of fungal tRNase ZLs is generally consistent with known phylogenetic relationships among the fungal species and supports tRNase ZL gene duplication in certain fungal taxa, including Schizosaccharomyces fission yeasts. Analysis of tRNase Z protein sequences reveals putative atypical substrate binding domains in most fungal tRNase ZSs and in a subset of fungal tRNase ZLs. Finally, we demonstrate the presence of pseudo-substrate recognition and catalytic motifs at

  13. Nitrogen Additions Increase the Diversity of Carbon Compounds Degraded by Fungi in Boreal Forests

    Science.gov (United States)

    Gartner, T. B.; Turner, K. M.; Treseder, K. K.

    2004-12-01

    Boreal forest soils in North America harbor a large reservoir of organic C, and this region is increasingly exposed to long-range atmospheric N transport from Eurasia. By examining the responses of decomposers to N deposition in these forests, we hope to improve predictions of the fate of boreal carbon pools under global change. We tested the hypothesis that the functional diversity of decomposer fungi would increase under N fertilization in boreal forests where fungal growth was otherwise N-limited, owing to a reduction in competitive exclusion of fungal groups. We collected soil and leaf litter from three Alaskan sites that represent different successional stages at 5, 17, or 80 years following severe forest fire. Each site had been exposed for two years to nitrogen and phosphorus fertilization in a factorial design, with four plots per treatment. Nutrient limitation of fungal growth varied depending on successional stage. The standing hyphal length of decomposer fungi in soil (i.e. Ascomycota and Basidiomycota) responded to neither N nor P in the 5-year old site, increased under N fertilization in the 17-year old site, and increased where N and P was added simultaneously in the 80-year old site (site x N x P interaction: P = 0.001). We used BIOLOG microplates for filamentous fungi to obtain an index of the diversity of carbon use by decomposer fungi; each of 95 wells of these plates contains a different carbon-based compound, as well as a dye that changes color upon metabolism of the compound. Saline leaf litter extracts were mixed with fungal growth medium and then added to the microplates. The number of wells displaying metabolic activity was counted following incubation for five days. We found that N fertilization raised the average number of positive wells per plate from 14 to 27 (P = 0.012), with no significant differences in responses among sites. Phosphorus additions did not alter functional diversity of fungi in any site. Since increases in functional

  14. Microfungal oasis in an oligotrophic desert: diversity patterns and community structure in three freshwater systems of Cuatro Ciénegas, Mexico

    Directory of Open Access Journals (Sweden)

    Patricia Velez

    2016-06-01

    Full Text Available The Cuatro Ciénegas Basin (CCB comprises several oligotrophic aquatic ecosystems limited by phosphorus. These aquatic systems are dominated by a high prokaryotic diversity, shaped by the stress of low nutrient supplies and interspecific competition. Although fungi constitute a diverse and important component of microbial diversity, the microfungal diversity in the CCB remains to be unveiled. With the aim to explore microfungal diversity and ecological patterns in this area, we present the first investigation analyzing cultivable taxa from sediment and water, as well as lignocellulolytic taxa obtained from incubated submerged plant debris, and wood panels in three contrasting freshwater systems in the CCB: Churince, Becerra and Pozas Rojas. We chose a culture-based approach to analyze sediment and water samples in order to obtain fungal cultures, providing opportunities for a posteriori studies, and the possibility of ex situ preservation of the diversity. We evaluated sequence data from the nuclear ribosomal internal transcribed spacer including the 5.8 rDNA region for 126 isolates, revealing 37 OTUs. These OTUs were phylogenetically affiliated to several genera in the fungal phyla: Zygomycota, Basidiomycota, and Ascomycota. We recorded two OTUs with saline affinity, agreeing with previous findings on the prokaryotic communities with ancestral marine resemblances. All the studied systems showed moderate diversity levels, however discrepancies among the diversity indexes were observed, due to the occurrence of abundant taxa in the samples. Our results indicated that lignocellulolytic microfungal communities are dominated by transient fungal taxa, as resident species were not recorded perhaps as a result of the long-term strong competition with the highly adapted prokaryotic community. Moreover, the obtained microfungal taxa occurred mostly on the resident plant debris, rather than submerged wood panels, perhaps as a result of the high adaptation

  15. Possible role of Rhodotorula sp. in the formation of jarosite in the AMD environment of Muskau Arch, Poland

    Science.gov (United States)

    Jakus, Natalia; Chlebicki, Andrzej; Bożęcki, Piotr; Manecki, Maciej

    2016-04-01

    The Muskau Arch is situated in the west of Poland and in the east of Germany. This region is a belt formed by push and frontal moraines during the Middle-Polish (Riss) glaciation, especially during the Wartanian glaciation. The occurrence of glacier caused folding and forming the glacitectonic type of lignit deposits which were mined for over 150 years. Both open pit and underground mining methods has exposed metal sulfides (mainly pyrite) to air and water causing bio-oxidation. Due to this process the acidity of many reservoirs have increased significantly (pH values between 2 and 4). As a consequence of changes in the environment, new mineral phases precipitated from highly acid waters rich in, among others, various forms of Fe and S. Precipitation of ochreous minerals such as schwertmannite, goethite and jarosite was partly catalyzed by many various acidophilic and acid-tolerant microorganisms: bacteria, archaea and probably yeasts. Jarosite KFe33+(OH)6(SO4)2 can be precipitated both in abiotic conditions and as a by-product of the activity of living organisms. The example of biomineralization induced by fungi Purpureocillium lilacinum in similar AMD environment of Rio Tinto is reported (Oggerin et al, 2014). Recently, jarosite is also considered as a possible biosignature of life on Mars. The assessment of microbial participation in formation of jarosite is an elementary step in geomicrobiological and astrobiological research. Isolated by us Rhodotorula sp. is an unicellular pigmented yeast. Fungi from the genus Rhodotorula F.C. Harrison belong to Sporidiobolalas part of phylum Basidiomycota. They are common environmental inhabitants. Some species, known from Rio Tinto, can live in extreme acidic soils at pH of about 2 (Lopez-Archila et al, 2004). For the first time, authors isolated strain Rhodotorula sp. from surface precipitates in Ł ęknica region (Muskau Arch). This ochreous precipitate contains jarosite. The yeast might be an important factor in indirect

  16. Microfungal oasis in an oligotrophic desert: diversity patterns and community structure in three freshwater systems of Cuatro Ciénegas, Mexico.

    Science.gov (United States)

    Velez, Patricia; Gasca-Pineda, Jaime; Rosique-Gil, Edmundo; Eguiarte, Luis E; Espinosa-Asuar, Laura; Souza, Valeria

    2016-01-01

    The Cuatro Ciénegas Basin (CCB) comprises several oligotrophic aquatic ecosystems limited by phosphorus. These aquatic systems are dominated by a high prokaryotic diversity, shaped by the stress of low nutrient supplies and interspecific competition. Although fungi constitute a diverse and important component of microbial diversity, the microfungal diversity in the CCB remains to be unveiled. With the aim to explore microfungal diversity and ecological patterns in this area, we present the first investigation analyzing cultivable taxa from sediment and water, as well as lignocellulolytic taxa obtained from incubated submerged plant debris, and wood panels in three contrasting freshwater systems in the CCB: Churince, Becerra and Pozas Rojas. We chose a culture-based approach to analyze sediment and water samples in order to obtain fungal cultures, providing opportunities for a posteriori studies, and the possibility of ex situ preservation of the diversity. We evaluated sequence data from the nuclear ribosomal internal transcribed spacer including the 5.8 rDNA region for 126 isolates, revealing 37 OTUs. These OTUs were phylogenetically affiliated to several genera in the fungal phyla: Zygomycota, Basidiomycota, and Ascomycota. We recorded two OTUs with saline affinity, agreeing with previous findings on the prokaryotic communities with ancestral marine resemblances. All the studied systems showed moderate diversity levels, however discrepancies among the diversity indexes were observed, due to the occurrence of abundant taxa in the samples. Our results indicated that lignocellulolytic microfungal communities are dominated by transient fungal taxa, as resident species were not recorded perhaps as a result of the long-term strong competition with the highly adapted prokaryotic community. Moreover, the obtained microfungal taxa occurred mostly on the resident plant debris, rather than submerged wood panels, perhaps as a result of the high adaptation to specific

  17. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses

    Directory of Open Access Journals (Sweden)

    James Timothy Y

    2009-06-01

    Full Text Available Abstract Background Many fungi are obligate biotrophs of plants, growing in live plant tissues, gaining direct access to recently photosynthesized carbon. Photosynthate within plants is transported from source to sink tissues as sucrose, which is hydrolyzed by plant glycosyl hydrolase family 32 enzymes (GH32 into its constituent monosaccharides to meet plant cellular demands. A number of plant pathogenic fungi also use GH32 enzymes to access plant-derived sucrose, but less is known about the sucrose utilization ability of mutualistic and commensal plant biotrophic fungi, such as mycorrhizal and endophytic fungi. The aim of this study was to explore the distribution and abundance of GH32 genes in fungi to understand how sucrose utilization is structured within and among major ecological guilds and evolutionary lineages. Using bioinformatic and PCR-based analyses, we tested for GH32 gene presence in all available fungal genomes and an additional 149 species representing a broad phylogenetic and ecological range of biotrophic fungi. Results We detected 9 lineages of GH32 genes in fungi, 4 of which we describe for the first time. GH32 gene number in fungal genomes ranged from 0–12. Ancestral state reconstruction of GH32 gene abundance showed a strong correlation with nutritional mode, and gene family expansion was observed in several clades of pathogenic filamentous Ascomycota species. GH32 gene number was negatively correlated with animal pathogenicity and positively correlated with plant biotrophy, with the notable exception of mycorrhizal taxa. Few mycorrhizal species were found to have GH32 genes as compared to other guilds of plant-associated fungi, such as pathogens, endophytes and lichen-forming fungi. GH32 genes were also more prevalent in the Ascomycota than in the Basidiomycota. Conclusion We found a strong signature of both ecological strategy and phylogeny on GH32 gene number in fungi. These data suggest that plant biotrophic fungi

  18. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes.

    Science.gov (United States)

    Ruiz-Dueñas, Francisco J; Lundell, Taina; Floudas, Dimitrios; Nagy, Laszlo G; Barrasa, José M; Hibbett, David S; Martínez, Angel T

    2013-01-01

    The genomes of three representative Polyporales (Bjerkandera adusta, Phlebia brevispora and a member of the Ganoderma lucidum complex) were sequenced to expand our knowledge on the diversity of ligninolytic and related peroxidase genes in this Basidiomycota order that includes most wood-rotting fungi. The survey was completed by analyzing the heme-peroxidase genes in the already available genomes of seven more Polyporales species representing the antrodia, gelatoporia, core polyporoid and phlebioid clades. The study confirms the absence of ligninolytic peroxidase genes from the manganese peroxidase (MnP), lignin peroxidase (LiP) and versatile peroxidase (VP) families, in the brown-rot fungal genomes (all of them from the antrodia clade), which include only a limited number of predicted low redox-potential generic peroxidase (GP) genes. When members of the heme-thiolate peroxidase (HTP) and dye-decolorizing peroxidase (DyP) superfamilies (up to a total of 64 genes) also are considered, the newly sequenced B. adusta appears as the Polyporales species with the highest number of peroxidase genes due to the high expansion of both the ligninolytic peroxidase and DyP (super)families. The evolutionary relationships of the 111 genes for class-II peroxidases (from the GP, MnP, VP, LiP families) in the 10 Polyporales genomes is discussed including the existence of different MnP subfamilies and of a large and homogeneous LiP cluster, while different VPs mainly cluster with short MnPs. Finally, ancestral state reconstructions showed that a putative MnP gene, derived from a primitive GP that incorporated the Mn(II)-oxidation site, is the precursor of all the class-II ligninolytic peroxidases. Incorporation of an exposed tryptophan residue involved in oxidative degradation of lignin in a short MnP apparently resulted in evolution of the first VP. One of these ancient VPs might have lost the Mn(II)-oxidation site being at the origin of all the LiP enzymes, which are found only in

  19. Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Sanders Ian R

    2006-03-01

    Full Text Available Abstract Background The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota, which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. Results In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. Conclusion On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence

  20. Effect of Carbonized Apple Branches on Bacterial and Fungal Diversities in Apple Root-Zone Soil%炭化苹果枝对苹果根区土壤细菌和真菌多样性的影响

    Institute of Scientific and Technical Information of China (English)

    曹辉; 李燕歌; 周春然; 宁留芳; 杨洪强

    2016-01-01

    Objective]The microorganisms in soil of root-zone are important factors affecting root environment, carbonized apple branches are the low oxygen pyrolysis products of the abandoned fruit trees. The purpose of this study was to understand the structure of soil bacteria and fungi in apple root-zone and the response of their diversities to carbonized apple branches, and to provide a theoretical basis for the reasonable application of carbonized apple branches and the improvement of soil biological characters in orchard.[Method] In the spring, the 2-year-old ‘Fuji’ apple trees (rootstock forMalus hupehensisRehd) in similar growth were transplanted to the potting soil, the soil was mixed with different mass ratios (0-4%) of carbonized apple branches beforehand. Soil samples were collected after 120 days of transplanting, genomic DNA was extracted, and PCR amplification was made to establish libraries. In this study, the 16S rRNA genes V3+V4 regions of soil bacteria and fungal ITS1 regions were sequenced by Illumina high-throughput sequencing technology on Miseq platform, and related biological analysis was conducted to explore the changes of soil bacterial and fungal abundances, diversities and structures.[Result]A total of 16 656 bacterial operational taxonomic units (OTUs) and 435 fungal OTUs were obtained from 15 apple root-zone soil samples, among them, Proteobacteria, Bacteroidetes and Acidobacteria were the dominant bacteria which the total relative abundance was 70.68%-72.80%, and Basidiomycota, Ascomycota and Zygomycota were dominant fungi which the total relative abundance was 68.00%-75.14%. The richness indices of Chao and Ace showed that 1% (w/w) carbonized apple branches increased the abundance of bacteria by 15.42% and 3.89% compared with the control, respectively. 0.5% (w/w) carbonized apple branches increased the richness of fungi by 2.80% and 3.61%, respectively. Simpson and Shannon diversity index analysis showed that 0.5%-4% (w/w) carbonized apple

  1. Characterising coarse PBA dynamics in real-time above and below a tropical rainforest canopy using a dual channel UV fluorescence aerosol spectrometer.

    Science.gov (United States)

    Gabey, A.; Gallagher, M. W.; Burgess, R.; Coe, H.; McFiggans, G.,; Kaye, P. H.; Stanley, W. R.; Davies, F.; Foot, V. E.

    2009-04-01

    Primary biogenic aerosols (PBA) are used by organisms as a means to propagate their genetic material, either by transport of the organisms themselves, such as bacterial clusters and viruses, or of their reproductive components in the case of fungi and plants that release spores and pollen. Many studies have suggested PBA might be important for initiation of cloud formation and subsequent precipitation evolution by acting as cloud condensation nuclei (CCN) or possibly as ice nuclei (IN). This link is inferred from laboratory studies demonstrating the high activation efficiency of PBA at warm temperatures, coupled with observations that biological particles are ubiquitous in the atmosphere. Despite more than two hundred years of research (e.g. Ehrenberg, 1830) information on the abundance, composition and more importantly the sources and heterogeneity of PBA on global scales is still lacking. The first estimates of global average PBA emission rates based on observations and budget calculations were provided by Elbert et al. (2007). They demonstrate that fungi contribute a major fraction of the observed coarse PBA PM10 mass (particles with diameters between 1-10 m), particularly Acomycota (AAM) and Basidiomycota (ABM) commonly seen in tropical regions. These species discharge their spores via so-called "active wet" mechanisms that eject spores inside liquid droplets. Elbert et al. (2007) estimate a global average spore emission rate for ABM of ~17-50 Tg yr-1, corresponding to a global average abundance of ~1 g m-3 and a net emission rate for all fungal spores of 50 Tg yr-1. Uncertainty in the latter estimate is significant compared to the result, placed at 50-1000 Tg yr-1. Nonetheless, these calculations demonstrate the potential importance of PBA and particularly fungal spores in the tropics, where up to half of the coarse mode particulate loading is PBA, and potentially in the global organic aerosol budget. Data was collected using the WIBS-3: a low-cost, portable

  2. Diversity, taxonomic composition, and functional aspects of fungal communities in living, senesced, and fallen leaves at five sites across North America

    Science.gov (United States)

    Arnold, A. Elizabeth

    2016-01-01

    differed among fungal classes. Within Dothideomycetes, activity differed significantly between fungi from living vs. non-living leaves, but such differences were not observed in Sordariomycetes. Discussion Although some fungi with endophytic life stages clearly persist for periods of time in leaves after senescence and incorporation into leaf litter, our sampling across diverse biomes and host lineages detected consistent differences between fungal assemblages in living vs. non-living leaves, reflecting incursion by fungi from the leaf exterior after leaf death and as leaves begin to decompose. However, fungi found only in living leaves do not differ consistently in cellulolytic activity from those fungi detected thus far only in dead leaves. Future analyses should consider Basidiomycota in addition to the Ascomycota fungi evaluated here, and should explore more dimensions of functional traits and persistence to further define the endophytism-to-saprotrophy continuum. PMID:27994976

  3. Predominant Species Dynamic and Diversity of Fungal Endophytes in Barks of Two Populus Cultivars%两种杨树树皮内生真菌多样性及优势种群动态变化

    Institute of Scientific and Technical Information of China (English)

    李永; 朴春根; 郭利民; 常聚普; 王海明; 贺伟; 谢守江; 郭民伟

    2013-01-01

    In order to understand the predominant species dynamic and diversity of fungal endophytes in barks of Populus × euramericana cv.Robusta 94 and triploid of P.tomentosa,the fungal endophytes were isolated from barks of P.× euramericana cv.Robusta 94 and triploid of P.tomentosa by tissue isolation,and identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations.A total of 1 175 fungal endophytes were isolated from 996 bark tissues.The fungal endophytes were classified into 35fungal taxa belonging to 15 genera,including 1 species of Basidiomycota and 34 taxa of Ascomycota.And Alternaria alternata,Botryosphaeria dothidea,Fusarium spp.,and Diaporthe conorum were the predominant species of fungal endophytes in barks of P.× euramericana cv.Robusta 94 and triploid of P.tomentosa,while A.alternata and B.dothidea were the most common predominant species in the barks of the two cultivars.The variation of predominant fungal endophytes of two poplar species in different seasons was detected.%为了解健杨94(转基因抗虫杨94)、三倍体毛白杨2个杨树品种干部树皮内生真菌区系及其优势种群的季节变化情况,本研究利用组织分离法从2个杨树品种996块组织中分离内生真菌1 175株,健杨94和三倍体毛白杨分别分离612、563株.利用形态特征和分子生物学方法鉴定为15个属、35个分类单元,包括担子菌1个分类单元,子囊菌34个分类单元.2个杨树品种内生真菌优势种群包括链格孢、葡萄座腔菌、镰孢属真菌、间座壳属真菌等,其中,仅有链格孢、葡萄座腔菌和桑砖红镰孢是两品种共有的优势种群种类,而且优势种群会随季节变化而变化.在两品种的内生真菌中,链格孢、葡萄座腔菌是最为常见的优势种群.

  4. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    Science.gov (United States)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  5. Safeguarding saproxylic fungal biodiversity in Apennine beech forest priority habitats

    Science.gov (United States)

    Maggi, Oriana; Lunghini, Dario; Pecoraro, Lorenzo; Sabatini, Francesco Maria; Persiani, Anna Maria

    2015-04-01

    The FAGUS LIFE Project (LIFE11/NAT/IT/135) targets two European priority habitats, i.e. Habitat 9210* Apennine beech forests with Taxus and Ilex, and Habitat 9220* Apennine beech forests with Abies alba, within two National Parks: Cilento, Vallo di Diano and Alburni; Gran Sasso and Monti della Laga. The current limited distribution of the target habitats is also due to the impact of human activities on forest systems, such as harvesting and grazing. The FAGUS project aims at developing and testing management strategies able to integrate the conservation of priority forest habitats (9210* and 9220*) and the sustainable use of forest resources. In order to assess the responses to different management treatments the BACI monitoring design (Before-After, Control-Intervention) has been applied on forest structure and diversity of focus taxa before and after experimental harvesting treatments. Conventional management of Apennine beech forests impacts a wealth of taxonomic groups, such as saproxylic beetles and fungi, which are threatened throughout Europe by the lack of deadwood and of senescing trees, and by the homogeneous structure of managed forests. Deadwood has been denoted as the most important manageable habitat for biodiversity in forests not only for supporting a wide diversity of organisms, but also for playing a prominent role in several ecological processes, creating the basis for the cycling of photosynthetic energy, carbon, and nutrients stored in woody material. Especially fungi can be regarded as key group for understanding and managing biodiversity associated with decaying wood. The before-intervention field sampling was carried out in Autumn 2013 in 33 monitoring plots across the two national Parks. The occurrence at plot level of both Ascomycota and Basidiomycota sporocarps was surveyed. All standing and downed deadwood with a minimum diameter of 10 cm was sampled for sporocarps larger than 1 mm, and information on decay class and fungal morphogroups

  6. 长期定位秸秆还田对土壤真菌群落的影响%Fungal Community Development of Long-term Straw Returning Soil

    Institute of Scientific and Technical Information of China (English)

    辛励; 陈延玲; 刘树堂; 刘锦涛; 袁铭章; 南镇武

    2016-01-01

    为了研究不同秸秆还田条件对土壤真菌群落的影响,利用连续进行6年的莱阳潮土区长期定位秸秆还田试验与 ITS rRNA 扩增子测序技术,研究了小麦、玉米秸秆还田条件下,各处理土壤真菌群落的微生物多样性变化。结果表明,施用秸秆和有机肥能够提高土壤真菌群落多样性。秸秆还田后土壤真菌优势种群为子囊菌、接合菌和担子菌。主成分分析表明,各处理间微生物含量存在差异。两季秸秆还田配施氮肥处理能显著增加土壤全氮、有效磷、有效钾、有机碳含量。两季秸秆还田配施氮肥处理的土壤全氮、有效磷、有效钾、有机碳含量与蔗糖酶、脲酶、纤维素酶活性显著高于两季秸秆还田处理,与此同时,两季秸秆还田配施氮肥提高了当季玉米产量。这说明,秸秆还田施用氮肥显著增加土壤养分含量,增强土壤酶活性,有利于土壤真菌群落的多样性和稳定性的提高,改善土壤生态环境,从而促进作物增产。%A next-generation,Illumina-based sequencing approach was used to characterize the bacterial com-munity development of the long-term straw returning soil.Five treatments (soil without fertilizer,wheat and corn straw returning,wheat straw returning,manure,and wheat and corn straw returning)were tested in this study.In this study,the microbial diversity of soil fungi was studied by ITS rRNA PCR technology.The results showed that the community was composed of 3 dominant groups (Ascomycota,Zygomycota,Basidiomycota).Principal component analyses revealed that the microbiota were significantly different among treatments.The WCN treatment could signif-icantly increase soil total nitrogen,available phosphorus,available potassium,and organic carbon content.The WCN treatment showed relatively higher soil total N,available P,available K,and organic carbon and invertase,urease, and cellulase activities than WC treatment

  7. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    Science.gov (United States)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    biodiversity [3,4]. Filters collected at a semi-urban site in Germany for approximately one year determined that ~34% of the airborne fungal species were Ascomycota (sac fungi), 64% were Basidiomycota (club fungi), and that their relative proportions changed seasonally. Numerical simulations with state-of-the-art atmospheric chemistry and climate models are helping to unravel the regional and global distribution and transport of PBA [5]. The atmospheric abundance and environmental effects of PBA are particularly pronounced in tropical regions, where both the biological activity at the Earth’s surface and the physicochemical processes in the atmosphere are particularly intense and important for the Earth system and global climate. If climate change and human activities lead to changes in the abundance and properties of PBA, this might influence the hydrological cycle and provide a feedback to climate change [1]. [1] Elbert et al. (2007) Atmos. Chem. Phys., 7, 4569 - 4588. [2] Huffman et al. (2009) Atmos. Chem. Phys. Discuss., 9, 17705 - 17751. [3] Després et al. (2007) Biogeosciences, 4, 1127-1141. [4] Fröhlich-Nowoisky et al. (2009) Proc. Nat. Acad. Sci., 106, 12814 - 12819. [5] Burrows et al. (2009) Atmos. Chem. Phys. Discuss., 9, 10829 - 10881.

  8. Microbial degradation of a metal organic biocide in soils; Mikrobieller Abbau eines im Holzschutz verwendeten metallorganischen Biozids im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, Desiree

    2010-06-17

    -fingerprinting technique. Shifts in the bacterial community structure were analyzed by correspondence analysis to explore the effect of WP and incubation time on the microbial community patterns. Bacterial and eukaryotic community structure differed significant between samples with Cu-Amine treated samples and Cu-HDO treated samples. To identify abundant eukaryotic community members a cloning and sequencing approach was carried out. Only few fungal sequences were obtained of the eukaryotic sequence diversity in the interface of wood and soil, which were affiliated to pronounced shifts in the eukaryotic community structure along the incubation time. One of these was the white-rotter Sphaerobolus stellatus (basidiomycota) and the mold-rotter Lecytophora multabilis (ascomycota). The dominant eukaryotic community members were affiliated to the phyla Alveolata, Disicicrista, Amoebozoa, Arthropoda or Nematoda. However, the majority of these phyla are known to have a bacteriovorious lifestyle and are not able to degrade or metabolize wood, WP or WP ingredients. This finding suggests that the majority of eukaryotes grazes on the bacterial population and is rarely involved in Cu-HDO degradation. In conclusion, a defined bacterial population is involved in Cu-HDO degradation and both the bacterial and eukaryotic community was significantly directly and indirectly affected by the presence of Cu-HDO. (orig.)

  9. STUDY OF THE ANTIMICROBIAL PROPERTIES OF CERTAIN SAPROPHYTIC OBLIGATE MARINE FUNGI

    Directory of Open Access Journals (Sweden)

    Kalyuzhnaya O.S.

    2015-05-01

    Full Text Available Today promising area of the development and introduction of new antimicrobial agents is to search for new antibiotics from natural sources, namely among marine organisms - microscopic fungi. Such saprophytic fungi as Ascomycota (families Arenariomyces, Ceriosporopsis, Corollospora, Halosphaeria and Basidiomycota (family Nia, which are widely spreaded in Ukraine (salty estuaries and the coast of the Black Sea, are the objects of the study of this work. These types of marine organisms have been provided by the Odessa Branch of the Institute of Biology of the Southern Seas after collecting samples of water, sediment, cellulose substrates and subsequent isolation and obtain pure cultures by accumulation in the form fruiting bodies of Ascomycetes and Basidiomycetes - ascocarps and basidiocarps that can be stored 3-5 months in sterile seawater. The aim of this study was to investigate the presence of antimicrobial properties of saprophytic fungi obligate marine, which are characteristic for residents in Ukraine, namely the Black Sea. Materials and methods. At this stage the study of antimicrobial activity was performed by agar diffusion method and method of cocultivation of marine fungi with test strains in liquid culture medium. We have used reference strains of microorganisms: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Bacillus subtilis ATCC 6633, Proteus vulgaris ATCC 6896, Pseudomonas aeruginosa ATCC 27853 and opportunistic fungus Candida albicans ATCC 885-653. Results and Discussion. Determination of antimicrobial activity by agar diffusion method showed that all samples had antimicrobial activity against the Gram-positive test strains (S. aureus and B. subtilis, effect for the Gramnegative bacteria (E. coli, P. vulgaris, P. aeruginosa was much smaller or non-existent, and it isn’t observed against C. albicans (exclusion Nia vibrissa with zone of growth inhibition – 6.2 mm. The results of the counting of cells test strains

  10. 茎瘤芥(榨菜)根肿病不同发病时期根际土壤真菌群落变化特征的高通量分析%High Throughput Analysis on Change Characteristics of Rhizosphere Soil Fungal Community during Different Occurance Times of Tuber Mustard Clubroot Disease

    Institute of Scientific and Technical Information of China (English)

    王殿东; 谭永忠; 田雪亮; 张超; 秦明一; 潘丽梅

    2016-01-01

    Tuber mustard clubroot is a soil-borne disease and closely related with soil fungal community. In this study,the change regulation of soil fungal community during different occurance times of tuber mustard clubroot(pre-transplanting,premorbid after transplant,early and middle stages of disease occurance,after harvest)was sequenced by 454 high-throughout method using 18S rDNA sequence of soil fungi as target.The results showed that average of 1 056 OTUs(Operational Taxonomic Units)were obtained from one soil sample. According to taxonomy of each OTU,the dominant group wasAscomycetes,followed byBasidiomycota.The diversity indexes of Shannon and Simpson,numbers of OTU and genera in premorbid after transplanting,early and middle stages were all higher than that in pre-transplanting stage and after harvesting stage.The results indicated that the diversity of soil fungal community is higher in the period of tuber mustard clubroot development. It might be related to the vigorous production of root exudate of tuber mustard.%茎瘤芥(榨菜)根肿病是一种土传病害,与根际土壤真菌群落存在密切关系。本试验采用454高通量测序方法,以土壤真菌的18S rDNA序列为靶标,研究茎瘤芥根肿病不同发病时期(移栽前、移栽后发病前、发病初期、发病中期、采收后)土壤真菌群落的变化规律。结果表明:经454高通量测序,茎瘤芥根肿病各发病时期的OUT平均数量为1056个。依据OUT所属真菌物种信息对土壤真菌群落结构进行分析,子囊菌亚门真菌在各个时期土壤中均为优势真菌类群,其次为担子菌亚门真菌。移栽后发病前、发病初期和发病中期土壤真菌群落的Shannon和Simpson多样性指数、OTU数量和属的数量均高于移栽前和采收后,表明茎瘤芥根肿病发生发展时期土壤真菌群落多样性较高,这可能与茎瘤芥生长季节根系分泌物旺盛有关。

  11. Analysis on the Soil Fungal Community Structure in Melia azedarach-Triticum aestivum Agroforestry Ecosystem%苦楝-小麦农林复合生态系统土壤真菌群落结构分析

    Institute of Scientific and Technical Information of China (English)

    张敏; 周鹏; 季永华

    2015-01-01

    the treatments was divided into three groups. There were no obvious differences in species richness among rhizosphere-associated fungal communities and nonrhizosphere fungal communities. However, the species richness of rhizosphere-associated fungal community from wheat grown under M. azedarach and M. azedarach were higher than nonrhizosphere fungal community. There were significant differences in Shannon-Wiener indexes among rhizosphere-associated fungal communities, while the difference was not significant among nonrhizosphere fungal communities. Additionally,no significant differences were present in equitability index among rhizosphere-associated fungal communities or nonrhizosphere fungal communities,whereas,the equitability index between rhizosphere-associated and nonrhizosphere fungal community of wheat grown under M. azedarach was significantly different,and the same as M. azedarach. Finally,sequencing of eleven dominant DGGE bands showed that 3 of the 11 sequences were uncultured fungi and the rest 8 sequences belonged to Glomeromycota,Basidiomycota,Ascomycota or Deuteromycota. [Conclusion]The species richness,Shannon-Wiener index and equitability index of rhizosphere-associated fungi from wheat grown under M. azedarach were higher than that of monocultured wheat,which indicated that diversity of rhizosphere-associated fungal community of wheat was enriched by trees grown in this agroforestry ecosystem. Our results may provide new reference for agroforestry practice.%【目的】采用18S rDNA PCR-DGGE技术研究苦楝-小麦农林复合生态系统根际及非根际土壤真菌群落结构,以期揭示农林复合生态系统中伴生树种对作物根际真菌群落的影响,为农林复合经营实践提供理论参考。【方法】提取根际和非根际土壤真菌 DNA,采用通用引物 GC-FR1和 FF390扩增18S rDNA 基因目的片段,扩增片段用变性梯度凝胶电泳分析;不同处理间微生物群落结构的相似性采用非

  12. 长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响%Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization

    Institute of Scientific and Technical Information of China (English)

    陆海飞; 郑金伟; 余喜初; 周惠民; 郑聚锋; 张旭辉; 刘晓雨; 程琨; 李恋卿

    2015-01-01

    [目的]长期有机与无机肥配合施用是促进农田生产力和土壤有机碳固定的重要技术途径.本文以江西省红壤研究所长期不同施肥试验田的表土(0-15 cm)为对象,探讨不同施肥措施对土壤微生物群落多样性和酶活性的影响.[方法]在水稻收获后,采集表土壤样品,提取土壤总DNA.采用聚合酶链反应结合变性梯度凝胶电泳(PCR-DGGE)的方法研究土壤微生物的群落结构多样性,并结合克隆测序研究土壤微生物的群落组成;用实时荧光定量PCR (qPCR)的方法研究土壤微生物的丰度.土壤细菌定量和群落结构分析的分子标靶基因分别为16SrRNA基因V3区和V6区片段,土壤真菌定量和群落结构分析的标靶基因均为18S rRNA基因.DGGE分析采用8%的聚丙烯酰胺凝胶分离细菌和真菌,所用变性梯度分别为35%~65%和20%~40%.同时采用荧光微孔板检测技术测定土壤几丁质酶、α-葡萄糖苷酶、β-葡萄糖苷酶、纤维素酶、酸性磷酸单脂酶和木聚糖酶活性;用紫外分光光度计法测定土壤过氧化物酶活性.[结果]PCR-DGGE分析表明,与不施肥对照(CK)相比,有机无机肥配施(NPKM),土壤细菌的香农指数和丰富度指数显著增大,而土壤真菌的香农指数和丰富度指数在不同施肥处理间无显著差异.DGGE图谱聚类分析显示,NPKM处理的土壤细菌和真菌的群落结构显著区别于其他3个处理.后续的切胶测序得出,土壤细菌分属于Chloroflexi(绿弯菌门),Proteobacteria(变形菌门)和Firmicutes(厚壁菌门);NPKM处理下隶属于Clostridum(梭菌属)和Anaerolineaceae(厌氧绳菌科)的两类细菌显著增加.土壤真菌主要分属于Basidiomycota(担子菌门)和Ascomycota(子囊菌门),这些真菌条带在DGGE图谱上的分布不同处理间均无明显的规律性,因而不同处理间真菌的群落分布未出现较清晰的变化.qPCR的结果显示,土壤细菌和真菌拷贝数在不同